WO2005037643A1 - De-coupling clutch, particularly for marine use - Google Patents
De-coupling clutch, particularly for marine use Download PDFInfo
- Publication number
- WO2005037643A1 WO2005037643A1 PCT/AU2004/001428 AU2004001428W WO2005037643A1 WO 2005037643 A1 WO2005037643 A1 WO 2005037643A1 AU 2004001428 W AU2004001428 W AU 2004001428W WO 2005037643 A1 WO2005037643 A1 WO 2005037643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- speed
- output shaft
- drive
- decoupling
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
- F16D48/066—Control of fluid pressure, e.g. using an accumulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H23/00—Transmitting power from propulsion power plant to propulsive elements
- B63H23/30—Transmitting power from propulsion power plant to propulsive elements characterised by use of clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D25/00—Fluid-actuated clutches
- F16D25/06—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
- F16D25/062—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
- F16D25/063—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
- F16D25/0635—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
- F16D25/0638—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/02—Clutches
- B60W2710/025—Clutch slip, i.e. difference between input and output speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/102—Actuator
- F16D2500/1026—Hydraulic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/104—Clutch
- F16D2500/10443—Clutch type
- F16D2500/1045—Friction clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/11—Application
- F16D2500/1105—Marine applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/3041—Signal inputs from the clutch from the input shaft
- F16D2500/30415—Speed of the input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/3042—Signal inputs from the clutch from the output shaft
- F16D2500/30426—Speed of the output shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/70—Details about the implementation of the control system
- F16D2500/704—Output parameters from the control unit; Target parameters to be controlled
- F16D2500/70402—Actuator parameters
- F16D2500/70406—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/70—Details about the implementation of the control system
- F16D2500/704—Output parameters from the control unit; Target parameters to be controlled
- F16D2500/70422—Clutch parameters
- F16D2500/70426—Clutch slip
Definitions
- This invention relates to a de-coupling clutch, particularly for marine use.
- a marine engine is coupled to a propeller via a gear box which provides a single gear ratio.
- the speed of the watercraft is controlled by controlling the engine speed via a throttle.
- watercraft are geared so that they run most efficiently at their intended cruising speed.
- a large yacht may be designed to cruise at 35 to 40 knots and is thus geared to be most efficient and controllable at or around that speed.
- a problem with this arrangement is that such craft are very difficult to operate at the low speeds that may be required, for example, when docking the craft. It is very difficult to dock a boat safely if, for example, the lowest speed that the boat will satisfactorily travel at, is around 10 knots.
- the present invention concerns the provision of a decoupling clutch in a drive shaft, most preferably a drive shaft of a watercraft of the like.
- the decoupling clutch is separate from the transmission and is not associated with a gearbo or the like.
- the clutch does not change the direction of rotation of the drive shaft and has a single clutch area.
- the advantage of having a single clutch area is that the clutch may be slipped at any speed or torque. This also allows for high energy launches and driveline protection.
- a control system is provided for controlling slippage of the clutch.
- the slip speed of the clutch is controlled by monitoring both the input shaft speed and the output propeller speeds.
- the output speed may be used as an input to control the slip speed, allowing for clutch slip at any speed and torque.
- the present invention provides a decoupling clutch system for use in a marine craft, the system including a decoupling clutch having a single clutch area and being separate from and not associated with a gearbox or the like, the decoupling clutch system including an input shaft for operative connection to a drive shaft of the marine craft, and being arranged to drive, via the decoupling clutch, an output shaft which, in use, is operatively connected to a propeller, jet drive or the like of the marine craft, the decoupling clutch system further includedin a piston or the like for controlling engagement of the clutch, a control system, means for monitoring the input shaft speed and transmitting the input shaft speed to the control system, means for monitoring the output shaft speed and transmitting the output shaft speed to the control system, the control system being arranged to control slippage of the clutch by monitoring both the input shaft speed and the output shaft speeds and adjusting the engaging forces on the clutch to adjust clutch slippage accordingly.
- the decoupling clutch typically includes an input shaft and friction plates which are splined to the input shaft. Drive is provided to the output shaft through clutch plates which are splined to a clutch drum which is in turn, splined to an output shaft. Alternatively the output shaft and input shaft may be reversed, with the friction plates splined to the output shaft.
- a piston or the like may be provided to force the friction plates and clutch plates together to transfer drive from the input shaft to the output shaft.
- the force provided by the piston is controlled by controlling the pressure in the piston using direct acting high flow electro hydraulic solenoids.
- a biasing means such as a return spring may be provided to disengage the piston.
- the control system typically monitors driver input, input speed and output speed to control the output speed through control of piston pressure. The various modes may be programmed into the control means which using feedback from sensors automatically controls the piston to ensure that the system operates in the correct mode
- the present invention provides a number of significant advantages over existing systems.
- controlled slipping of the clutch or disengaging the clutch during forward or reverse gear engagement transmission “clunk” can be diminated.
- controlled slip across the clutch automatically corrects for clutch wear/clearance, oil type, oil degradation, oil levels and is not affected by temperature.
- the control of slip speed together with a single area clutch allows the clutch to slip at any speed or torque which achieves high energy launches and also protects the driveline of a marine craft when the craft's propeller contacts obstacles such as the sea bed, branches, rocks or the like.
- controlled slippage of the clutch may also be used for slow speed operation of marine craft for trolling and docking functions without the need for a more complex and expensive two speed gearbox.
- the present invention also allows additional functionality in the form of a "Hi-launch energy" mode in which the clutch is slipped to reduce the load on the engine which allows the engine to rev to maximum torque before locking the clutch on.
- Figure 1 is a section through de-coupling clutch embodying the present invention
- Figure 2 shows the de-coupling clutch of Figure 1 and an associated control system.
- Figures 3a to 3d schematically illustrate the use of the de-coupling clutch of Figure 1 in various watercraft having differing transmission systems.
- a marine de-coupling clutch 10 for a watercraft embodying the present invention is shown.
- the clutch is enclosed in a casing 11.
- An input in the form of a rotating shaft having torque provides drive via a damper 12 to an input shaft 14.
- the input shaft 14 is connected to an output shaft 16 via a clutch means 18.
- the clutch means 18 includes friction plates 20 which are splined to the input shaft 14.
- a single clutch area is provided.
- Drive is provided to the output shaft 16 through the clutch steel plates 22 which are splined to clutch drum 24 which is in turn, splined to the output shaft 16.
- the clutch further includes a piston 26 which is arranged to provide force to compress the friction plates 20 and steel plates 22 together.
- the force provided by the piston is controlled by controlling the pressure in the piston using direct acting high flow electro hydraulic solenoids 36 (refer to Figure 2).
- a return spring 30 pushes the piston off.
- Pressure is supplied to the solenoids through an axially mounted pump 28 linked to a regulator valve.
- the system includes a centrifugal dam 34 to prevent the clutch self-applying due to rotational speed.
- the system includes an embedded control system which monitors driver input, and includes an input speed sensor 38, an output speed sensor 40 and a temperature sensor 42 whose signals are fed to an electronic control unit 44 which control the slip speed (the output speed minus the input speed).
- the control system controls the output speed through control of piston pressure via an electrical signal sent to the electro hydraulic solenoid 36.
- the electronic control unit may receive input signals indicative of the engine's throttle position 26 and gear position 48.
- the system may receive electronic requests for the various modes that the system operates in such as docking, trolling, hi-launch energy, via a CAN/BUS 50 for example from any suitable input such as buttons, levers, radio controls or the like.
- the engine speed is increased with the de-coupling clutch disengaged, and the clutch then engaged to provide a sudden impetus to the watercraft.
- the present invention provides stand alone controllable clutch which is entirely independent of the transmission of the watercraft. The system does not change the direction of rotation of the transmission shaft.
- the system may be fitted to any type of marine propulsion system such as jet drives, ⁇ ntboards, etc in which it acts as a speed control device.
- the system does not change drive direction and is not rotation direction sensitive.
- the clutch may also be used to achieve slip to protect the driveline of a marine craft, when the craft's propeller contacts obstacles such as branches, the sea bed, rocks or the like.
- the clutch may be used to maintain continuous slip to achieve high energy launches, in which the engine is driven at high rpm with the clutch slipping and the clutch is then engaged to accelerate the craft rapidly.
- Figures 3 a to 3d schematically illustrate the use of the de-coupling clutch in a number of different watercraft having different drive systems.
- Figure 1 illustrates the use of the decoupling clutch 10 in a boat 302 driven by an outboard motor 304 in which the de-coupling clutch is installed in the drive shaft 306 between the motor 308 and propeller 310.
- Figure 3b illustrates the use of the decoupling clutch 10 in a boat 320 with an inboard outboard drive in which the decoupling clutch 10 is disposed between the inboard engine 322 and the outboard drive 324.
- Figure 3c illustrates a yet further boat 340 which includes a shaft drive in which a de-coupling clutch is disposed in the output shaft between the engine/transmission 324 and propeller 344.
- an in-line shaft drive is shown, the de-coupling clutch may also be used with offset and step down shaft drives.
- Figure 3d illustrates a boat 360 having a V-drive system in which the decoupling clutch is installed in the drive shaft 361 between the engine 362 and propeller drive 364.
- the above are only examples and the system may be used in watercraft having other types of drive system. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04761444A EP1680320A4 (en) | 2003-10-20 | 2004-10-20 | Decoupling clutch, particularly for marine |
JP2006535908A JP2007509292A (en) | 2003-10-20 | 2004-10-20 | Decoupling clutch especially for ships |
US10/576,924 US20080045093A1 (en) | 2003-10-31 | 2004-10-20 | De-Coupling Clutch, Particularly for Marine Use |
CA002542748A CA2542748A1 (en) | 2003-10-20 | 2004-10-20 | Decoupling clutch, particularly for marine |
AU2004281855A AU2004281855A1 (en) | 2003-10-20 | 2004-10-20 | Decoupling clutch, particularly for marine use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003905767A AU2003905767A0 (en) | 2003-10-20 | De-coupling clutch, particularly for marine use | |
AU2003905767 | 2003-10-20 | ||
US51583803P | 2003-10-30 | 2003-10-30 | |
US60/515,838 | 2003-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005037643A1 true WO2005037643A1 (en) | 2005-04-28 |
WO2005037643A8 WO2005037643A8 (en) | 2006-06-15 |
Family
ID=34465840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2004/001428 WO2005037643A1 (en) | 2003-10-20 | 2004-10-20 | De-coupling clutch, particularly for marine use |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1680320A4 (en) |
JP (1) | JP2007509292A (en) |
KR (1) | KR20060083222A (en) |
CA (1) | CA2542748A1 (en) |
WO (1) | WO2005037643A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1908684A1 (en) * | 2005-07-20 | 2008-04-09 | Toyota Jidosha Kabushiki Kaisha | Ship maneuvering device |
CN110234554A (en) * | 2016-12-20 | 2019-09-13 | 传输Cvt股份有限公司 | Slip control method and arrangement for power train |
CN111803259A (en) * | 2020-07-25 | 2020-10-23 | 西安交通大学医学院第二附属医院 | Orthopedics tractor for hospital physiotherapy rehabilitation |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101890094B1 (en) * | 2018-05-11 | 2018-08-20 | 김문규 | A boat with a clutch |
KR101976322B1 (en) * | 2018-05-11 | 2019-05-07 | 김문규 | Clutch of water jet propulsion boat |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3548987A (en) * | 1968-07-30 | 1970-12-22 | Nordberg Manufacturing Co | Electric speed control for fluid operated marine clutches |
US4305710A (en) * | 1979-06-13 | 1981-12-15 | Twin Disc, Incorporated | Ship propulsion transmission having a torque converter for driving a fixed pitch propeller in reverse |
US5474480A (en) * | 1991-08-01 | 1995-12-12 | Zf Friedrichshafen Ag | Control system for operating the drive assembly of a ship |
US6350165B1 (en) | 2000-06-21 | 2002-02-26 | Bombardier Motor Corporation Of America | Marine stern drive two-speed transmission |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2775328A (en) * | 1953-11-17 | 1956-12-25 | Twin Disc Clutch Co | Slip operating clutch and cooling means therefor |
US3823801A (en) * | 1973-09-07 | 1974-07-16 | Twin Disc Inc | Clutches with a fluid and cam operated pressure modulating valve |
US3922997A (en) * | 1974-04-17 | 1975-12-02 | Gardner Denver Co | Marine power transmission system |
JPH07196090A (en) * | 1993-12-28 | 1995-08-01 | Jidosha Buhin Kogyo Kk | Slip quantity adjuster of ship marine gear |
JP3476931B2 (en) * | 1994-11-30 | 2003-12-10 | Jfeエンジニアリング株式会社 | Ship propulsion agency |
DE19800490C2 (en) * | 1997-01-31 | 2000-02-24 | Audi Ag | Device for cooling two multi-plate clutches arranged on a gear shaft |
-
2004
- 2004-10-20 EP EP04761444A patent/EP1680320A4/en not_active Withdrawn
- 2004-10-20 CA CA002542748A patent/CA2542748A1/en not_active Abandoned
- 2004-10-20 JP JP2006535908A patent/JP2007509292A/en not_active Withdrawn
- 2004-10-20 KR KR1020067007541A patent/KR20060083222A/en not_active Application Discontinuation
- 2004-10-20 WO PCT/AU2004/001428 patent/WO2005037643A1/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3548987A (en) * | 1968-07-30 | 1970-12-22 | Nordberg Manufacturing Co | Electric speed control for fluid operated marine clutches |
US4305710A (en) * | 1979-06-13 | 1981-12-15 | Twin Disc, Incorporated | Ship propulsion transmission having a torque converter for driving a fixed pitch propeller in reverse |
US5474480A (en) * | 1991-08-01 | 1995-12-12 | Zf Friedrichshafen Ag | Control system for operating the drive assembly of a ship |
US6350165B1 (en) | 2000-06-21 | 2002-02-26 | Bombardier Motor Corporation Of America | Marine stern drive two-speed transmission |
Non-Patent Citations (1)
Title |
---|
See also references of EP1680320A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1908684A1 (en) * | 2005-07-20 | 2008-04-09 | Toyota Jidosha Kabushiki Kaisha | Ship maneuvering device |
EP1908684A4 (en) * | 2005-07-20 | 2012-05-30 | Toyota Motor Co Ltd | Ship maneuvering device |
CN110234554A (en) * | 2016-12-20 | 2019-09-13 | 传输Cvt股份有限公司 | Slip control method and arrangement for power train |
EP3558778A4 (en) * | 2016-12-20 | 2020-07-29 | Transmission CVT Corp Inc. | Slip control method and arrangement for a driveline |
US10919534B2 (en) | 2016-12-20 | 2021-02-16 | Transmission Cvtcorp Inc. | Slip control method and arrangement for a driveline |
CN110234554B (en) * | 2016-12-20 | 2022-09-06 | 传输Cvt股份有限公司 | Slip control method and arrangement for a drive train |
CN111803259A (en) * | 2020-07-25 | 2020-10-23 | 西安交通大学医学院第二附属医院 | Orthopedics tractor for hospital physiotherapy rehabilitation |
CN111803259B (en) * | 2020-07-25 | 2022-04-12 | 西安交通大学医学院第二附属医院 | Orthopedics tractor for hospital physiotherapy rehabilitation |
Also Published As
Publication number | Publication date |
---|---|
WO2005037643A8 (en) | 2006-06-15 |
EP1680320A4 (en) | 2008-09-10 |
JP2007509292A (en) | 2007-04-12 |
EP1680320A1 (en) | 2006-07-19 |
KR20060083222A (en) | 2006-07-20 |
CA2542748A1 (en) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080045093A1 (en) | De-Coupling Clutch, Particularly for Marine Use | |
AU2004257892B2 (en) | Dual speed transmission | |
US7892052B2 (en) | Boat propulsion system, control device thereof, and control method | |
EP1352178B1 (en) | Modulatable power transmission clutch and a marine transmission | |
US5711742A (en) | Multi-speed marine propulsion system with automatic shifting mechanism | |
AU2004257893B2 (en) | Single clutch transmission | |
JP2006528100A5 (en) | ||
JP2006528310A5 (en) | ||
US5085302A (en) | Marine reverse reduction gearbox | |
US4688665A (en) | Apparatus for preventing engine stall | |
WO2005037643A1 (en) | De-coupling clutch, particularly for marine use | |
US8038489B2 (en) | Boat propulsion system, and control device and control method for the same | |
EP3336382A1 (en) | Direct drive pivot and pivot lockup of a transmission system and method thereof | |
AU2004281855A1 (en) | Decoupling clutch, particularly for marine use | |
US20080124989A1 (en) | Marine propulsion shift control | |
FI76034C (en) | KOPPLING FOER SKYDDNING AV MEKANISM. | |
US10737752B1 (en) | Outboard motors having flexible connector assembly for shift actuation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2542748 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067007541 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004761444 Country of ref document: EP Ref document number: 2006535908 Country of ref document: JP Ref document number: 2004281855 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2004281855 Country of ref document: AU Date of ref document: 20041020 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004281855 Country of ref document: AU |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
CFP | Corrected version of a pamphlet front page |
Free format text: UNDER (54) PUBLISHED TITLE REPLACED BY CORRECT TITLE |
|
WWP | Wipo information: published in national office |
Ref document number: 2004761444 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067007541 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10576924 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10576924 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2004761444 Country of ref document: EP |