[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005032605A1 - 脱臭剤及びその製造方法 - Google Patents

脱臭剤及びその製造方法 Download PDF

Info

Publication number
WO2005032605A1
WO2005032605A1 PCT/JP2004/012551 JP2004012551W WO2005032605A1 WO 2005032605 A1 WO2005032605 A1 WO 2005032605A1 JP 2004012551 W JP2004012551 W JP 2004012551W WO 2005032605 A1 WO2005032605 A1 WO 2005032605A1
Authority
WO
WIPO (PCT)
Prior art keywords
deodorant
weight
organic material
strength
mixture
Prior art date
Application number
PCT/JP2004/012551
Other languages
English (en)
French (fr)
Inventor
Toshihiko Tsuda
Original Assignee
Kobayashi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobayashi Pharmaceutical Co., Ltd. filed Critical Kobayashi Pharmaceutical Co., Ltd.
Publication of WO2005032605A1 publication Critical patent/WO2005032605A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances

Definitions

  • the present invention relates to a deodorant having a high deodorizing effect on acidic, alkaline and neutral odor components.
  • a deodorant for removing odor components in the air one that adsorbs and removes odor components using an adsorbent having a porous structure such as activated carbon is known.
  • the activated carbon has excellent adsorption performance and is widely used as a deodorant.However, it has low strength and is difficult to be formed into an arbitrary shape.At present, it is used as a granular material in a container. And there were restrictions on the design.
  • Patent Document 1 discloses a papermaking sludge containing 30 to 60% by weight, 5 to 30% by weight of aluminums, and 10 to 60% by weight of clays, which is calcined. The adsorbent obtained is described. This adsorbent can be formed into an arbitrary shape by using clays.
  • Patent Document 1 JP-A-63-256132
  • the present invention provides a deodorizing agent that can be molded into an arbitrary shape that has a high deodorizing effect against any of acidic, alkaline, and neutral odor components, and that has sufficient strength after molding.
  • the purpose is to: Means for solving the problem
  • an inorganic raw material such as clay, which has been conventionally used for forming an adsorbent into an arbitrary shape, and an organic material for carbonizing and firing. And carbonizing and firing in a calcined state, it is possible to deodorize acidic odor components such as sulfuric acid hydrogen and methyl mercaptan at the same level as activated carbon, even if the amount of organic materials to be blended is small. As a result, it was found that both the power and ammonia can be effectively deodorized, and the present invention was completed.
  • the inorganic material and the organic material are mixed so that the dry weight of the organic material is less than 30% by weight based on the total dry weight. After kneading and shaping the mixture, the kneaded product is carbonized and fired in an unfired state.
  • the dry weight refers to the weight of an inorganic raw material and an organic material each dried at 105 ° C for 24 hours.
  • firing in the unfired state means firing at a temperature lower than the sintering temperature of the inorganic raw material to form a porous inorganic structure having air permeability.
  • carbonization firing is generated when an organic material is carbonized by firing an organic material together with an inorganic material in a state where air is shut off as in a closed space or a nitrogen atmosphere, and when the organic material is carbonized. This means fixing soot to the fired body.
  • the state of the fired body after carbonization firing is such that the carbide generated by carbonizing the organic material is dispersed in the inorganic porous structure. And a state in which soot is adhered and held on the surface of the porous structure. Therefore, as the deodorant, a fired body whose surface and cross section are colored black can be obtained.
  • the deodorant obtained in the present invention has the ability to deodorize acidic odor components even when the amount of the organic material used as a raw material for carbide is as small as less than 30% by weight. This is a high point.
  • the calcined inorganic structure has almost no ability to deodorize acidic odor components such as sulfuric acid hydrogen and methyl mercaptan, so that the ability to deodorize acidic odor components depends exclusively on the deodorizing capability of activated carbon. become. Therefore, conventionally, it has been considered that it is necessary to increase the amount of activated carbon (carbide) in order to deodorize an acidic odor component. Therefore, there has been a problem that the strength of the fired body is reduced as a result.
  • acidic odor components such as sulfuric acid hydrogen and methyl mercaptan
  • the deodorant according to the present invention can sufficiently deodorize acidic odor components even when the amount of the organic material is small, so that the amount of carbide finally remaining in the fired body is reduced. By suppressing it, the strength of the deodorant can be increased.
  • the amount of the paper sludge (hereinafter referred to as "PS") is changed from 74 to 6% by weight based on the dry weight of the entire mixture to obtain six types of fired bodies. Samples were prepared and their deodorizing performance was evaluated.Each sample was confirmed to deodorize acidic and alkaline odor components at the same level in a well-balanced manner!
  • a deodorant having a PS content of less than 30% by weight has a deodorizing performance equivalent to that of a deodorant containing PS of 30% by weight or more.
  • a deodorant having sufficient strength can be obtained.
  • the strength of the fired body it has been confirmed that if the strength of the unbaked product is 50%, it can be used without any practical problem, and the PS content in the mixture of the deodorant according to the present invention is determined. Is less than 30% by weight, PS content is 23% by weight, 12% by weight, 6% by weight % Is preferable because the strength of the fired body increases.
  • the evaluation was performed only when the PS content was in the range of 6% by weight or more, the evaluation results show that even if the amount of the organic material is less than 6% by weight, sufficient deodorizing performance was obtained. It is presumed to exhibit As the minimum amount of organic material required to exhibit sufficient deodorizing performance, an organic material that can generate soot enough to cover the entire surface of the porous structure should be used. It is presumed that.
  • the inorganic raw material is a raw material for firing, and generally, clay which is a raw material for ceramics or the like can be used.
  • the firing temperature for firing this inorganic raw material in an unglazed state varies depending on the sintering temperature of the inorganic raw material, but is about 770 ° C to 930 ° C for general clay for ceramics. If the temperature is lower than 770 ° C, the strength of the fired body may decrease. If the temperature is higher than 930 ° C, the porous structure may be densified and the surface area of the fired body may decrease.
  • any material that carbonizes while generating soot by carbonization and firing such as rice hulls, paper, wood chips, rice straw, and paper sludge, can be used.
  • the organic material in order to reduce the variation in the strength of the fired body after carbonization firing, it is necessary to make the structure of the fired body uniform, and for that purpose, it is desirable to use the organic material as finely as possible and pulverize it. .
  • paper sludge is discharged in large quantities from paper mills, is easily available, and has short fibers of paper and inorganic substances derived from fillers (kaolin, talc, calcium carbonate, etc.) It is also preferable because it can be easily mixed with inorganic raw materials and a fired body having a uniform structure can be obtained.
  • fillers kaolin, talc, calcium carbonate, etc.
  • the deodorant obtained as described above can be formed into an arbitrary shape having a high deodorizing effect on any of acidic, alkaline, and neutral odor components, and has sufficient strength even after firing. Is very high added value.
  • the deodorant according to the present invention can be formed into an arbitrary shape because the inorganic raw material and the organic material are mixed at a predetermined weight ratio, and this is obtained by carbonizing and firing the raw material. Therefore, although the amount of carbon in the deodorant is small, it is possible to efficiently deodorize acidic odor components, and it is possible to suppress a decrease in the strength of the fired body.
  • clay which is a raw material for ceramics (water content: 20%, SiO: 54.3%, Al 2 O 3
  • Moisture content (% by weight) (initial weight-weight after drying) X 100Z initial weight ⁇ ⁇ ⁇ ⁇ (1)
  • Table 1 shows the dry weight ratio of clay and PS and the content of dry weight of PS relative to the total dry weight of the mixture.
  • the dry weight of the clay and PS was calculated as follows based on the water content calculated by the above equation (1).
  • Clay dry weight actual clay use weight X (l—0.20)
  • PS dry weight actual PS weight X (1-0. 035)
  • the shape of the fired body thus obtained was a bowl shape having a bottom area of 9.4 cm 2 , a height of 6. Ocm, an opening circumference of 21.6 cm, and a wall thickness of 4.7 mm.
  • the fired body has an inorganic porous structure, and carbide is dispersed and maintained in the inorganic porous structure. At the same time, the soot adhered to the porous surface and was in a black state as a whole. Table 1 also shows the weight of the fired body obtained for each sample.
  • the deodorizing performance was evaluated using the seven types of deodorizing agents prepared as described above. As an evaluation method, first, each sample was grouped in groups of four, and each of the samples was stored in a 10 liter tedranock. Four types of odor components, ammonia, trimethylamine, hydrogen sulfide, and methylmercaptan were used.Eight liters of the reference gas, each prepared to a concentration of 100 ppm, was sealed in the four tedrapacks above, and at predetermined intervals The gas concentration was measured (detector tube method), and based on the measured gas concentration, the deodorization rate was calculated by the following equation (2).
  • Deodorization rate (%) (initial gas concentration measured gas concentration) x 100Z initial gas concentration ⁇ ⁇ ⁇ ⁇ (2)
  • activated carbon a commercially available deodorant containing 44 g of activated carbon
  • the carbon content (% by weight) in the deodorant was measured using the above seven types of deodorants. The measurement conditions are described below.
  • an elemental CHN automatic analyzer (varioEL) equipped with a thermal conductivity detector was used, and helium gas (gas flow rate: 200 ⁇ 5 ml Zmin) was used as a carrier gas.
  • the temperature was set at 950 ° C for the combustion tube and 500 ° C for the reduction tube.
  • Acetairide was used as a reagent, and analysis was performed with a sample amount of 3 mg. The obtained carbon content was multiplied by the weight of each sample to calculate the carbon content (g) present in the sample (fired body). Table 1 shows the results of these analyses.
  • a strength test was performed using the above seven types of deodorants.
  • the test contents are as follows.
  • the strength was evaluated using a rheometer (manufactured by Sun Kagaku) under the following conditions.
  • the unbaked product has an acidic odor component, hydrogen sulfide and methyl mercaptan, which have poor deodorizing performance. It can be seen that the deodorization rate is lower than other baked samples (samples 16 and unbaked products) even after the elapse.
  • the samples 116 produced in the present embodiment efficiently deodorized any of the odor components of ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan.
  • methyl mercaptan which is an acidic odor component (FIG. 4, Table 5)
  • the deodorizing rate is higher and the deodorizing rate is reached earlier than activated carbon.
  • the sample 116 has a bowl shape and has a large contact area in direct contact with the odor component, whereas the activated carbon is contained in a container as a set of granular materials, and therefore exists inside. This was presumed to be due to the fact that the granular material was unlikely to come into contact with the odor component. Thus, the performance of the deodorant It is considered that the shape is greatly affected by the shape of the material as well as the adsorption performance of the material itself.
  • the strength of the deodorant exceeds 5815, and the strength of the deodorant is higher than about 60% of the strength of the unglazed product. Will be. It has been confirmed that if it has a strength that is 50% of the strength of the unglazed product, it can be used practically without any problems, and as a result, a deodorant with unprecedented superior strength Can be obtained.
  • the strength of the unbaked product is 69%
  • the strength of the unbaked product is 74%
  • the PS content is 6% by weight.
  • the strength of each of the unbaked products is 81%, and it can be seen that the strength of the fired body increases as the PS content decreases. Therefore, the lower the PS content, the more preferable the strength of the fired body.
  • the amount of the organic material was less than 6% by weight, or the carbon content was 1.
  • the minimum amount of organic material required to exhibit sufficient deodorizing performance should be an amount of organic material capable of generating soot enough to cover the entire surface of the porous structure.
  • FIG. 1 is a graph showing the ammonia deodorizing performance of each deodorizing agent.
  • FIG. 2 is a graph showing the deodorizing performance of trimethylamine in each deodorant.
  • FIG. 3 is a graph showing the deodorizing performance of sulfur dioxide on each deodorant.
  • FIG. 4 is a graph showing the deodorizing performance of methyl mercaptan for each deodorant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】酸性、アルカリ性及び中性いずれの臭気成分に対しても脱臭効果が高く、しかも十分な強度を備えた脱臭剤を提供する。 【解決手段】無機原料と、炭化焼成用の有機材料とを混合する際に、全体の乾燥重量に対して有機材料の乾燥重量が30重量%未満となるように配合し、この混合物を混練して、該混練物を素焼状に炭化焼成してなる脱臭剤である。

Description

明 細 書
脱臭剤及びその製造方法
技術分野
[0001] 本発明は、酸性、アルカリ性及び中性いずれの臭気成分に対しても、脱臭効果の 高い脱臭剤に関するものである。
背景技術
[0002] 従来、空気中の臭気成分を除去する脱臭剤として、活性炭のように多孔質構造を 有する吸着材を用いて臭気成分を吸着除去するものが知られている。上記活性炭は 、優れた吸着性能を有するため、脱臭剤として広く使用されているが、強度が低ぐ 任意形状に成形することが困難であり、現状では粒状物として容器に収容して使用さ れており、デザイン面で制約があった。
[0003] 上記問題を解決するものとして、特許文献 1には、製紙スラッジ 30— 60重量%、ァ ルミナ類 5— 30重量%、及び粘土類 10— 60重量%を主成分とし、これを焼成してな る吸着材が記載されている。この吸着材は、粘土類を使用することで任意形状に成 形可能としたものである。
特許文献 1:特開昭 63- 256132号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、上記吸着材においては、脱臭能力を高めるために 30— 60重量%と 多量の製紙スラッジを配合して 、るため、吸着材の強度が低下すると 、つた問題が 生じていた。また、吸着材は、その表面の性質により酸性の臭気成分あるいはアル力 リ性の臭気成分の 、ずれか一方に有効であるが、他方に対してはあまり効果がな 、 のが一般的であり、活性炭の場合には、アンモニアなどの臭気成分の吸着能力が比 較的弱いといった問題があった。
[0005] そこで、本発明は、酸性、アルカリ性及び中性いずれの臭気成分に対しても脱臭効 果が高ぐ任意形状に成形可能で、しかも成形後に十分な強度を備えた脱臭剤を提 供することを目的とする。 課題を解決するための手段
[0006] 上記課題を解決するために、本発明者が種々検討した結果、従来、吸着材を任意 形状に成形する目的で用いられていた粘土等の無機原料と、炭化焼成用の有機材 料とを混合して素焼状に炭化焼成すれば、配合する有機材料の量が少なくても、活 性炭と同レベルで硫ィ匕水素ゃメチルメルカブタン等の酸性臭気成分を脱臭すること ができ、し力もアンモニアなどをも効果的に脱臭可能であることを見 、だして本発明 を完成するに至った。
[0007] すなわち、本発明では、無機原料と、炭化焼成用の有機材料とを混合する際に、全 体の乾燥重量に対して有機材料の乾燥重量が 30重量%未満になるように配合し、こ の混合物を混練して成形した後に、該混練物を素焼状に炭化焼成することを特徴と する。
[0008] 上記構成によれば、酸性、アルカリ性及び中性!/、ずれの臭気成分に対しても脱臭 効果を発揮する脱臭剤を得ることができるとともに、無機原料に対する有機原料の配 合量が多くないため、両者を混合した混合物は、任意の形状に容易に成形可能であ るとともに、素焼状に焼成した状態でも十分な強度を有する焼成体を得ることができ る。
[0009] ここで、乾燥重量とは、無機原料及び有機材料を夫々 105°Cで 24時間処理して乾 燥させた状態での重量をいう。また、素焼状に焼成するとは、無機原料の焼結温度よ りも低温で焼成することにより、通気性を有する無機多孔質構造体を形成するよう〖こ 焼成することを意味する。さらに、炭化焼成とは、密閉空間あるいは窒素雰囲気下の ように空気を遮断した状態で、無機原料とともに有機材料を焼成することにより、有機 原料を炭化させるとともに、有機原料が炭化する際に発生する煤を焼成体に定着さ せることをいうものである。
[0010] 本発明においては、有機材料を無機原料と混合しているため、炭化焼成後の焼成 体の状態は、有機材料が炭化して生じた炭化物が無機多孔質構造体中に分散した 状態で保持されるとともに、多孔質構造体表面に煤が付着保持された状態のものが 得られる。従って、脱臭剤としては、焼成体の表面及び断面が黒く着色されたものが 得られること〖こなる。 [0011] ここで特筆すべきは、本発明で得られた脱臭剤は、炭化物の原料となる有機材料 の配合量が 30重量%未満と少量であっても、酸性臭気成分を脱臭する能力が高い 点である。通常、素焼状の無機構造体は、硫ィ匕水素ゃメチルメルカブタン等の酸性 臭気成分を脱臭する能力はほとんどな 、ため、酸性臭気成分を脱臭する能力は専ら 活性炭の脱臭能力に依存することになる。したがって、従来、酸性臭気成分を脱臭 するためには、活性炭 (炭化物)の量を増加させる必要があると考えられて 、たため、 結果的に焼成体の強度が低下するという問題があった。
[0012] ところが、本発明に係る脱臭剤では、有機材料の配合量が少なくても、十分酸性臭 気成分を脱臭することが可能となるため、最終的に焼成体中に残存する炭化物量を 抑えることで脱臭剤の強度を高めることが可能となる。
[0013] 後述の実施形態においては、混合物全体の乾燥重量に対してペーパースラッジ( 以下、 PSと 、う)の配合量(乾燥重量)を 74— 6重量%まで変化させて 6種の焼成体 試料を作製し、夫々の脱臭性能について評価を行なったが、いずれの試料も酸性、 アルカリ性の両臭気成分をバランスよく同等レベルで脱臭することが確認されて!、る
[0014] このように、 PSが 30重量%未満の脱臭剤力 PSを 30重量%以上含有する脱臭剤 と同等の脱臭性能を有することは、従来は全く知られておらず、本発明によりはじめ て明かになったものであり、これにより、十分な強度を有する脱臭剤を得ることができ る。
[0015] 具体的には、有機材料を含まない無機原料 100%のものを上記試料と同条件で焼 成して得られた焼成体 (以下、素焼品という)の強度を 100とした場合、混合物中の P S含有量が 30重量%未満の場合は素焼品の 60%を超える強度を有しており、 PS含 有量が 23重量%の場合は素焼品の 69%の強度を、 PS含有量が 12重量%の場合 は素焼品の 74%の強度を、 PS含有量が 6重量%の場合は素焼品の 81%の強度を それぞれ備えている。
[0016] 焼成体の強度としては、素焼品の 50%の強度があれば実用上問題なく使用するこ とができることが確認されており、本発明に係る脱臭剤の混合物中の PS含有量として は、 30重量%未満であればよぐさらに PS含有量が 23重量%、 12重量%、 6重量 %と低くなるほど焼成体の強度が増加するため好ましい。
[0017] 炭化物量の含有量が少量でも酸性臭気成分を脱臭することができる理由について は明かになっていないものの、有機材料の量を変化させても脱臭剤としての脱臭性 能が同等であること、ただし炭化焼成しな ヽ素焼品では硫化水素ゃメチルメルカプタ ン等の酸性臭気成分の脱臭能がな 、こと等を考え合わせると、無機多孔質構造体と
、炭化焼成により無機多孔質構造体の表面に付着した煤とが相乗的に作用している ものと推測される。
[0018] 今回の実施形態においては、 PS含有量が 6重量%以上の範囲でしか評価はして いないものの、評価結果を見れば、有機材料の量が 6重量%未満でも十分な脱臭性 能を発揮するものと推定される。なお、十分な脱臭性能を発揮するために最低限必 要とされる有機材料量としては、多孔質構造体の全表面を被覆するだけの煤を発生 し得る量の有機材料を用いればょ ヽものと推定される。
[0019] 本発明において無機原料とは、焼成用の原料であり、一般的には陶磁器等の原料 である粘土を使用することができる。この無機原料を素焼状に焼成するための焼成 温度は、無機原料の焼結温度によって変化するが、一般的な陶磁器用の粘土の場 合は 770°C— 930°C程度である。 770°Cよりも低温になると、焼成体の強度が低下す るおそれが生じ、 930°Cよりも高温になると、多孔質構造が緻密化して焼成体の表面 積が減少するおそれが生じる。
[0020] 有機材料としては、炭化焼成により煤を発生しながら炭化するものであればよぐ例 えば、籾殻、紙、木材片、稲わら、ペーパースラッジなどを使用することができる。た だ、炭化焼成後の焼成体強度のばらつきを少なくするには、焼成体の構造を均質に する必要があり、そのためには有機材料をできるだけ細力べ粉砕して使用するのが望 ましい。この観点力、らいえば、ペーパースラッジは、製紙工場より大量に排出されるも のであり、入手が容易であるとともに、紙の短繊維と、填料由来の無機物 (カオリン、タ ルク、炭酸カルシウム等)との混合物力もなり、無機原料との混練が容易で、均一な 構造の焼成体が得られる点で好まし ヽ。
[0021] 上述のようにして得られた脱臭剤は、酸性、アルカリ性及び中性いずれの臭気成分 に対しても脱臭効果が高ぐ任意形状に成形可能で、焼成後も十分な強度を備えて いるため、非常に付加価値が高い。
発明の効果
[0022] 本発明に係る脱臭剤は、無機原料と、有機材料とを所定の重量比で混合して ヽる ため、任意形状に成形可能であるとともに、これを素焼状に炭化焼成してなるため、 脱臭剤中の炭素量が少量であるにもかかわらず、酸性臭気成分を効率よく脱臭する ことができ、また、焼成体の強度の低下を抑制することが可能となる。
発明を実施するための最良の形態
[0023] [脱臭剤の作製]
次に、本発明に係る脱臭剤の製造方法について説明する。なお、本実施形態にお いては、特にことわりのない限り、「%」の表示は、「重量%」を示すものである。
[0024] 無機原料として、陶磁器用原料である粘土 (含水率: 20%、 SiO: 54. 3%、 Al O
2 2 3
: 16. 4%、Fe O : 0. 4%、 TiO : 0. 2%、CaO : 0. 2%、 MgO : 0. 2%、Κ Ο : 2· 4
2 3 2 2
%、 Na 0 : 1. 2%、その他: 4. 7%)を使用し、有機材料として天日干しした PS (含
2
水率: 3. 5%、強熱減量: 59. 8%、残渣物量: 36. 7%)を使用した。上記粘土及び PSの含水率は、予め一部をサンプリングし、初期重量を測定した後、 105°Cで 24時 間乾燥した後の乾燥重量を測定し、下記式 (1)により算出した。
[0025] 含水率 (重量%) = (初期重量 -乾燥後重量) X 100Z初期重量 · · · (1)
次に、表 1に示すように、粘土と、 PSとの実使用重量比を変化させた 7種類の混合 物を調製し、それぞれ均一に混練した。表 1に粘土と PSの乾燥重量比及び混合物 全体の乾燥重量に対する PSの乾燥重量の含有量を併記する。粘土及び PSの乾燥 重量は、上記式(1)で算出した含水率を基に以下のようにして算出した。
[0026] 粘土乾燥重量 =粘土実使用重量 X (l— 0. 20)
PS乾燥重量 =PS実使用重量 X (1-0. 035)
次いで、上記混合物を成形し、得られた成形体を密閉容器 (さや)に収容し、窯で 炭化焼成(800°C X 7. 5-8. 5時間)した。このようにして得られた焼成体の形状は 、底面積 9. 4cm2,高さ 6. Ocm,開口周長さ 21. 6cm、肉厚 4. 7mmの茶碗形状で あった。
[0027] また、焼成体は、無機多孔質構造を有し、炭化物が無機多孔質構造体内に分散保 持されるとともに、煤が多孔質表面に付着して全体として黒色を呈した状態であった 。試料ごとに得られた焼成体の重量を表 1に併記する。
[0028] [表 1]
Figure imgf000007_0001
1:混合物 (乾燥重量)における有機材料 (乾燥重量)の重量 <%
[脱臭剤の性能評価]
以上のようにして作製した 7種類の脱臭剤を用いて、脱臭性能の評価を実施した。 評価方法としては、先ず、各試料を 4個一組にして、一個ずつ 10リットル容量のテドラ ノックに収容した。臭気成分として、アンモニア、トリメチルァミン、硫化水素、メチルメ ルカブタンの 4種類を用い、それぞれ lOOppm濃度になるように調製した基準ガス 8リ ットルをさきほどの 4つのテドラパックにそれぞれ封入して、所定時間ごとにガス濃度 を測定し (検知管法)、測定したガス濃度を基に以下の式 (2)により脱臭率を算出し た。
[0029] 脱臭率 (%) = (初期ガス濃度 測定ガス濃度) X 100Z初期ガス濃度 · · ·(2)
なお、比較として、 PSを混合せずに粘土単体を使用して焼成した焼成体 (素焼品) と、市販の活性炭 44g入り脱臭剤(以下、活性炭という)とを用いて同様に評価した。 脱臭率の結果を図 1一 4及び表 2— 5に示す。
[0030] [表 2] アンモニア
Figure imgf000008_0002
[0031] [表 3]
トリメチルァミン
Figure imgf000008_0003
[0032] [表 4]
硫化水素
Figure imgf000008_0004
[0033] [表 5]
Figure imgf000008_0001
[脱臭剤の炭素含有率及び炭素含有量測定]
本発明に係る脱臭剤においては、試料中に存在する炭化物及び煤に由来する炭 素が酸性の臭気成分の脱臭性能に寄与していると考えられる。そこで、上記 7種類の 脱臭剤を用いて脱臭剤中の炭素含有率 (重量%)を測定した。以下に測定条件を記 す。
[0034] 分析方法としては、熱伝導度検出器を備えたエレメンタール社製 CHN自動分析装 置 (varioEL)を使用して、キャリアガスとしてヘリウムガス(ガス流量: 200± 5mlZmi n)を用い、燃焼管温度 950°C、還元管温度 500°Cに設定して行なった。試薬として はァセトァ-リドを使用し、試料量 3mgで分析を行なった。なお、得られた炭素含有 率を各試料の重量を乗じ、試料 (焼成体)中に存在する炭素含有量 (g)を算出した。 これらの分析結果を表 1に併記する。
[0035] [脱臭剤の強度評価]
上記 7種類の脱臭剤を用いて強度試験を行なった。試験内容は以下の通りである 。強度の評価は、レオメーター (サン科学社製)を用い、下記の条件で測定した。
[0036] 試験台の上にサンプルを置き、先端直径 0. 45mmのプローブを押しあて、進入速 度 60mmZminで最大強度を測定した。試験結果を表 1に併記する。
[0037] [評価結果]
図 1一 4及び表 2— 5より、素焼品は酸性臭気成分である硫ィヒ水素及びメチルメル カブタンの脱臭性能が乏しぐ活性炭ではアンモニアの脱臭試験(図 1、表 2)におい て、 1時間経過後も他の焼成試料 (試料 1一 6及び素焼品)よりも脱臭率が低いことが 判る。
[0038] 一方、本実施形態で作製した試料 1一 6は、アンモニア、トリメチルァミン、硫化水素 及びメチルメルカブタンのいずれの臭気成分も効率よく脱臭することが確認された。 特に、酸性臭気成分であるメチルメルカブタンの脱臭試験(図 4、表 5)においては、 活性炭よりも早期に高 、脱臭率に達して 、ることが判る。
[0039] これは、試料 1一 6が茶碗形状であり、臭気成分と直接触れる接触面積が大きいの に対して、活性炭は粒状体の集合物として容器に収容されているため、内部に存在 する粒状体が臭気成分と接触しにくいためと推測された。このように、脱臭剤の性能 は、材料自身の吸着性能もさることながら、その形状にも大きく影響されているものと 考えられる。
[0040] 試料 1一 6と活性炭とを比較した場合、試料 1一 6に含まれる炭素含有量は 3. 1-0 . 8gであり、活性炭 44gに対して大幅に少なくなつている。特に、試料 6は炭素含有 量が 0. 8gと最も少量であるのにも拘らず、他の試料と同レベルの脱臭性能を示すこ とが確認された。
[0041] ただ、試料 1及び 2は、脱臭性能は優れて 、るものの、その強度は素焼品の強度の 23— 29%程度しかなく脆くなつている(表 1)。なお、強度を Yとし、 PS乾燥重量%を Xとすると、両者の間には Y=-9600. 7Χ+8695という相関性が存在する(R2 = 0. 9 531)。
[0042] 従って、混合物全体の乾燥重量に対して PSの乾燥重量%が30%未満のときには 、脱臭剤の強度は 5815を超えることになり、素焼品強度の約 60%よりも大きい強度 を保持することになる。素焼品の強度の 50%の強度を有していれば、実用上はまつ たく問題なく使用することが可能であることは確認されており、これにより従来にない 優れた強度を備えた脱臭剤を得ることができる。
[0043] さらに、 PS含有量が 23重量%の場合は素焼品の 69%の強度を、 PS含有量が 12 重量%の場合は素焼品の 74%の強度を、 PS含有量が 6重量%の場合は素焼品の 81%の強度をそれぞれ備えており、 PS含有量が低くなるほど焼成体の強度が増加 しているのが判る。従って、 PS含有量は、低いほど、焼成体の強度が増加するため に好ましい。
[0044] 以上、混合物全体に対する PS含有量と焼成体強度に見られる関係について説明 したが、同様の関係が炭素含有率と焼成体強度についても見られる。すなわち、焼 成体中の炭素含有率が小さいほど、焼成体強度が大きくなつている。具体的には炭 素含有率が 2. 1%未満の場合は素焼品の強度の 56%よりも大きい強度を保持する ことになる。炭素含有率が 1. 8%の場合は素焼品の 69%の強度となり、炭素含有率 が 1. 2%の場合は素焼品の 74%の強度を、炭素含有率が 1. 0%の場合は素焼品 の 81%の強度をそれぞれ備えており、炭素含有率が低下するほど、焼成体の強度 は大きくなる。 [0045] 本実施形態では、混合物全体に対する PS含有量が 6%、炭素含有率でいえば 1. 0%を最低レベルとして評価したが(試料 6)、脱臭性能は他の試料 (試料 1一 5)と変 わらない結果となった。
[0046] 一方、炭化焼成して!/、な 、素焼品では、硫ィ匕水素ゃメチルメルカプタンと!/、つた酸 性臭気成分に対する脱臭能はほとんど見られない。これらを考え合わせると、酸性臭 気成分の脱臭能力は、主として無機多孔質構造体と、無機多孔質構造体の表面に 付着した煤とが相乗的に作用することで発揮されるものと推測された。
[0047] 以上の評価結果より、有機材料の量が 6重量%未満、あるいは、炭素含有率が 1.
0%未満でもまだ十分な脱臭性能を発揮するものと推定される。なお、十分な脱臭性 能を発揮するために最低限必要とされる有機材料量としては、多孔質構造体の全表 面を被覆するだけの煤を発生し得る量の有機材料を用いればょ ヽものと推定される 図面の簡単な説明
[0048] [図 1]各脱臭剤におけるアンモニアの脱臭性能を示すグラフ
[図 2]各脱臭剤におけるトリメチルァミンの脱臭性能を示すグラフ
[図 3]各脱臭剤における硫ィ匕水素の脱臭性能を示すグラフ
[図 4]各脱臭剤におけるメチルメルカブタンの脱臭性能を示すグラフ

Claims

請求の範囲
[1] 無機原料と、炭化焼成用の有機材料とを混合する際に、全体の乾燥重量に対して有 機材料の乾燥重量が 30重量%未満となるように配合し、この混合物を混練して、該 混練物を素焼状に炭化焼成することを特徴とする脱臭剤の製造方法。
[2] 前記有機材料が、ペーパースラッジであることを特徴とする請求項 1記載の脱臭剤の 製造方法。
[3] 無機原料と有機材料との混合物を成形して素焼状に炭化焼成してなる脱臭剤であつ て、前記混合物中の有機材料の配合割合が、乾燥重量%で30重量%未満であるこ とを特徴とする脱臭剤。
[4] 無機原料と有機材料との混合物を素焼状に炭化焼成してなる多孔質構造体であつ て、該構造体中の炭素含有率が 2. 1重量%未満であることを特徴とする脱臭剤。
[5] 前記有機材料がペーパースラッジである請求項 3又は 4記載の脱臭剤。
PCT/JP2004/012551 2003-09-30 2004-08-31 脱臭剤及びその製造方法 WO2005032605A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003342700A JP2005103110A (ja) 2003-09-30 2003-09-30 脱臭剤及びその製造方法
JP2003-342700 2003-09-30

Publications (1)

Publication Number Publication Date
WO2005032605A1 true WO2005032605A1 (ja) 2005-04-14

Family

ID=34419271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012551 WO2005032605A1 (ja) 2003-09-30 2004-08-31 脱臭剤及びその製造方法

Country Status (2)

Country Link
JP (1) JP2005103110A (ja)
WO (1) WO2005032605A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256132A (ja) * 1987-04-14 1988-10-24 Miyajima Shoji 吸着材
JPH054012A (ja) * 1991-06-26 1993-01-14 Minoru Igami ペーパースラツヂを原料とする濾過材
JPH1179864A (ja) * 1997-09-08 1999-03-23 Maruishi Yogyo Genryo Kk 炭化セラミックス
JP2001270773A (ja) * 2000-01-10 2001-10-02 Oyo Kikaku:Kk 吸着剤
JP2002079098A (ja) * 2000-09-07 2002-03-19 Shimaya:Kk 排気ガス浄化用のセラミックスの製造方法及び排ガス浄化用コンバータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256132A (ja) * 1987-04-14 1988-10-24 Miyajima Shoji 吸着材
JPH054012A (ja) * 1991-06-26 1993-01-14 Minoru Igami ペーパースラツヂを原料とする濾過材
JPH1179864A (ja) * 1997-09-08 1999-03-23 Maruishi Yogyo Genryo Kk 炭化セラミックス
JP2001270773A (ja) * 2000-01-10 2001-10-02 Oyo Kikaku:Kk 吸着剤
JP2002079098A (ja) * 2000-09-07 2002-03-19 Shimaya:Kk 排気ガス浄化用のセラミックスの製造方法及び排ガス浄化用コンバータ

Also Published As

Publication number Publication date
JP2005103110A (ja) 2005-04-21

Similar Documents

Publication Publication Date Title
ES2683326T3 (es) Composición basada en carbono activado para secuestrar el mercurio del gas de combustión en el concreto
BRPI0617033A2 (pt) adsorvente, método para fazer um adsorvente, processo para remover os gases ácidos de correntes de ar úmido e método para produzir um adsorvente
Manocha et al. Porosity development on activation of char from dry and wet babbool wood
WO2005032605A1 (ja) 脱臭剤及びその製造方法
JP2742070B2 (ja) 脱臭剤
JP4732680B2 (ja) 脱臭剤及びその製造方法
ES2681680T3 (es) Método para la preparación de un ligante de aceite
KR20070057015A (ko) 카본계 흡착재를 포함하는 친환경 조적벽돌 및 그 제조방법
KR100969639B1 (ko) 고온 작동 음식물 쓰레기 처리장치의 악취 흡착제 및 이를 이용한 악취제거방법
JP2011188888A (ja) 脱臭材及びその製造方法、並びにその脱臭材を用いた脱臭装置
JPS63256132A (ja) 吸着材
JPH0333022B2 (ja)
JP3168387B2 (ja) 脱臭材およびその製造方法
KR960000552B1 (ko) 원적외선 방사 세라믹 탈취제 및 그의 제조방법
JP2009256897A (ja) 籾殻炭利用の建築材とその製造方法
JP2011092808A (ja) 吸着材およびその製造方法
JP2016034620A (ja) 金属酸化物触媒及び脱臭材
JPH06121823A (ja) 消臭剤
JP2007099603A (ja) セラミックス製品
JP4100735B2 (ja) 脱臭材
JP2006272047A (ja) アルデヒドガス吸着剤及びその製造方法
JP3576302B2 (ja) 脱臭剤及び脱臭部材
JPH10194865A (ja) 多孔性焼成体
JP3576303B2 (ja) 脱臭剤及び脱臭部材
JPH0947495A (ja) 脱臭殺菌部材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase