[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005032226A1 - 多層積層回路基板 - Google Patents

多層積層回路基板 Download PDF

Info

Publication number
WO2005032226A1
WO2005032226A1 PCT/JP2003/012431 JP0312431W WO2005032226A1 WO 2005032226 A1 WO2005032226 A1 WO 2005032226A1 JP 0312431 W JP0312431 W JP 0312431W WO 2005032226 A1 WO2005032226 A1 WO 2005032226A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sheet
winding
dielectric
laminated
Prior art date
Application number
PCT/JP2003/012431
Other languages
English (en)
French (fr)
Inventor
Yukiharu Suzuki
Toshihiko Kobayashi
Toshimi Mizoguchi
Original Assignee
Tamura Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corporation filed Critical Tamura Corporation
Priority to JP2005509194A priority Critical patent/JPWO2005032226A1/ja
Priority to US10/573,633 priority patent/US7375609B2/en
Priority to PCT/JP2003/012431 priority patent/WO2005032226A1/ja
Priority to AU2003266683A priority patent/AU2003266683A1/en
Priority to CNA038271850A priority patent/CN1860833A/zh
Publication of WO2005032226A1 publication Critical patent/WO2005032226A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties

Definitions

  • the present invention relates to a multilayer laminated circuit board in the field of semiconductor technology, and more particularly, to a multilayer laminated circuit board having a laminated transformer formed by laminating sheets having electromagnetic characteristics to form a coil and a core.
  • FIG. 13 is an exploded perspective view showing a conventional laminated transformer.
  • FIG. 14 is a vertical sectional view taken along line XIV-XIV in FIG. 13 after lamination.
  • the conventional laminated transformer 80 includes a primary winding magnetic sheet 82b, 82d having primary windings 81a, 81c formed thereon, and secondary windings 81b, 81d. And magnetic sheets 82a and 82g for sandwiching the magnetic sheets 82b to 82e, respectively. .
  • a magnetic sheet 82 f for improving magnetic saturation characteristics is interposed between the magnetic sheet 82 e and the magnetic sheet 82 g.
  • the magnetic sheets 82a to 82e are connected to the through-holes 90, 91, 92 connecting the primary windings 81a, 81c and the secondary windings 81b, 81d. Through holes 93, 94, 95 are provided.
  • External electrodes 96 and 97 for the primary winding and external electrodes 98 and 99 for the secondary winding are provided on the lower surface of the magnetic sheet 82a.
  • c magnetic sheets 82a to 82g filled with a conductor are cores of the laminated transformer 80.
  • FIGS. 13 and 14 are schematic diagrams, strictly speaking, the number of turns of the primary windings 8 1 a and 8 1 c and the secondary windings 8 1 b and 8 1 d ⁇ through hole 9 0
  • the positions of ⁇ 96 do not correspond between Fig. 13 and Fig. 14.
  • the external electrode 96 in the order of the external electrode 96 ⁇ through hole 92 ⁇ primary winding 81 c ⁇ through hole 91 ⁇ primary winding 81 a ⁇ through hole 90 ⁇ external electrode 97 Alternatively, the current flows in the reverse order.
  • the external electrode 99 on the secondary side of the laminated transformer 80, the external electrode 99 ⁇ through hole 95 ⁇ secondary winding 81 d ⁇ through hole 94 ⁇ secondary winding 81 b ⁇ through hole 93 ⁇ external electrode 9.
  • the current flows in the order of 8, and vice versa.
  • the current flowing through the primary windings 81a and 81c generates a magnetic flux 85 (Fig. 14) on the magnetic sheets 82a to 82g.
  • the magnetic flux 85 generates an electromotive force corresponding to the turn ratio in the secondary windings 8 1 b and 8 1 d.
  • the laminated transformer 80 operates.
  • the self-inductance of the primary windings 81a and 81c is L1
  • the self-inductance of the secondary windings 81b and 81d is L2
  • the primary windings 81a and 81c is M
  • the electromagnetic coupling coefficient k is defined by the following equation.
  • the magnetic coupling coefficient k is one of the indicators of transformer performance. The larger the value, the smaller the leakage magnetic flux (leakage inductance), and the higher the power conversion efficiency.
  • the multilayer transformer 80 has been mounted on a printed wiring board, for example, as an individual component. However, it is becoming difficult for such conventional technologies to meet the demand for further miniaturization of electronic devices.
  • the magnetic layer (magnetic sheets 82c to 82e) is provided between the primary windings S1a and 81c and the secondary windings 81b and 81d.
  • leakage magnetic flux 86 (Fig. 14) was generated, and a sufficient electromagnetic coupling coefficient k could not be obtained.
  • a dielectric layer (not shown) is formed on the primary windings' 81a, 81c and on the secondary windings 81b, 81d by screen printing or pasting. ) To reduce the magnetic permeability of the magnetic layer by the substance diffusing from this dielectric layer Once ". ) Is considered.
  • the dielectric windings applied on the primary windings 8 1a and 8 1c and on the secondary windings 8 lb and 81 d are added to the primary windings 8 1a and 8 1d.
  • the conductive material eg, Ag particles
  • the insulation between the windings 81b and between the secondary windings 81d may be reduced.
  • the paste is in a liquid state by, for example, an organic solvent, so that the substance is easily diffused.
  • the distance between the primary windings 81a and 81c and the secondary windings 81b and 81d is determined as "magnetic layer + dielectric layer". It becomes wider. This makes it easier for the leakage magnetic flux to enter the space, and conversely acts in the direction of reducing the electromagnetic coupling coefficient k. Therefore, it was extremely difficult to increase the electromagnetic coupling coefficient k in the conventional multilayer transformer.
  • a main object of the present invention is to provide a technology for realizing further miniaturization of an electronic device by making full use of the advantages of the laminated transformer being light and small.
  • Another object of the present invention is to provide a laminated transformer capable of increasing the electromagnetic coupling coefficient while maintaining the insulation between the windings. Disclosure of the invention
  • the multilayer laminated circuit board according to the present invention incorporates a laminated transformer formed by laminating a magnetic sheet, a primary winding and a secondary winding, and a dielectric sheet made of a non-conductive material, and has a circuit pattern formed therein. It is equipped with a wiring sheet.) Further, in a preferred embodiment, the wiring sheet may be laminated above or below the laminated transformer, or a laminated transformer may be provided on a part of the wiring sheet. Furthermore, the laminated component sheet on which the laminated component is formed is further It may be provided, or a thick film and a chip passive element and a chip active element are mounted on the surface. At this time, the thick film or chip passive element or chip active element may be mounted on the surface.
  • non-magnetic material as used herein means a substance having a magnetic permeability smaller than that of a magnetic sheet.
  • Dielectric sheet means a sheet having at least a higher resistivity than a magnetic sheet, and may be called a dielectric sheet or an insulating sheet.
  • multilayer transformers were mounted on printed wiring boards as individual components.However, the size of the multilayer transformer package and the reduction in wiring between the multilayer transformer and other components have reached their limits. I was Therefore, in the present invention, the laminated transformer is built in the multilayer laminated circuit board. As a result, since the multilayer laminated circuit board is packaged, the package of the multilayer transformer is omitted. Moreover, since wiring can be performed in the stacking direction, the area occupied by the wiring is reduced, and wiring between the multilayer transformer and other components is also minimized.
  • a laminated transformer incorporated in a multilayer laminated circuit board has the following laminated body.
  • the laminate comprises a first magnetic sheet, a first dielectric sheet laminated on the first magnetic sheet and made of a non-magnetic material having a through hole formed in the center, and a first dielectric sheet.
  • a first winding which is located around the upper through hole and is made up of one or both of a primary winding and a secondary winding; and a first winding laminated on the first winding and having a first dielectric sheet.
  • a plurality of the laminates are further laminated, and A magnetic sheet is also used as a first magnetic sheet in the laminated body thereon, and a through-hole connecting each of the plurality of primary windings and each of the plurality of secondary windings is provided on the magnetic sheet and the dielectric sheet. It may be.
  • the dielectric sheet has the following advantages over a dielectric layer formed by applying a dielectric paste on the windings. 1. Since it is a solid sheet, it is not a paste, so the film thickness is uniform regardless of the presence or absence of windings. C Therefore, a sufficient film thickness can be ensured even in the parts with windings . 2. Since it is not pasty, there is very little diffusion material from the winding. Therefore, the insulation between the primary windings and the secondary windings does not deteriorate.
  • a through hole is provided in the center of the dielectric sheet, and the size of the dielectric sheet is made smaller than that of the magnetic sheet. Accordingly, when the dielectric sheet is sandwiched between the pair of magnetic sheets, the magnetic sheets come into contact with each other at the center and the periphery of the dielectric sheet, so that the core of the magnetic sheet is formed. Since a dielectric sheet is interposed between the primary winding and the secondary winding, the insulation is excellent.
  • the laminated transformer incorporated in the multilayer laminated circuit board according to a preferred embodiment of the present invention includes a dielectric sheet made of a non-magnetic material having a through hole formed in the center, and a dielectric sheet formed on one surface of the dielectric sheet and having a through hole.
  • a first winding consisting of one or both of the primary winding and the secondary winding and a primary winding and a secondary winding which are located on the other surface of the dielectric sheet and around the through hole;
  • a second winding consisting of one or both of the following windings, and a pair of dielectric sheets, the first winding and the second winding sandwiched therebetween and in contact with each other at the periphery of the dielectric sheet and through holes.
  • a magnetic sheet may be a single sheet or a plurality of stacked sheets.
  • the primary winding and the secondary winding face each other across the dielectric sheet, the primary winding and the secondary winding are alternately arranged on one surface of the dielectric sheet, and the primary winding is arranged on the other surface. Wires and secondary windings may be arranged alternately.
  • a plurality of primary windings and secondary windings can be provided with these dielectric sheets interposed therebetween. At this time, a through-hole may be provided in the dielectric sheet for interconnecting the primary windings and the secondary windings.
  • the magnetic layer is formed between the primary winding and the secondary winding, so the leakage magnetic flux is generated in this magnetic layer, and the electromagnetic coupling coefficient is reduced. .
  • a nonmagnetic layer (dielectric sheet) is provided between the primary winding and the secondary winding. Since a core cannot be formed by only this, a core is formed by providing a through hole in the center of the dielectric sheet and bringing the pair of magnetic sheets into contact with the through hole and the peripheral edge of the dielectric sheet. Therefore, since the non-magnetic layer (dielectric sheet) is provided between the primary winding and the secondary winding in the laminated transformer of the present invention, the leakage magnetic flux can be suppressed. In addition, unlike conventional multilayer transformers, there is no need to apply a dielectric paste on the primary winding and the secondary winding to form a dielectric layer. The insulation between the primary winding and the secondary winding does not increase.
  • the magnetic sheet further includes a magnetic frame housed in a peripheral edge of the dielectric sheet and a magnetic core housed in the through hole, and a pair of magnetic sheets sandwich the dielectric sheet and form a magnetic frame and a magnetic core. And may be in contact with each other through. Also in this case, the number of dielectric sheets may be one or plural (lamination). When there are a plurality of dielectric sheets, a plurality of primary windings and a plurality of secondary windings are provided with these dielectric sheets interposed therebetween. At this time, through holes for connecting the primary windings and the secondary windings may be provided in the dielectric sheet.
  • a dielectric sheet is sandwiched between the first magnetic sheet and the second magnetic sheet, and a primary winding and a secondary winding are respectively formed on both surfaces of the dielectric sheet. positioned.
  • the magnetic frame is accommodated in the periphery of the dielectric sheet, and the magnetic core is accommodated in the central through hole of the dielectric sheet. Therefore, the pair of magnetic sheets has few depressions at the periphery and the center of the dielectric sheet. Therefore, the pair of magnetic sheets does not need to be bent so much, so that the production is easy.
  • the magnetic saturation characteristics are also improved. This effect becomes more noticeable as the number of laminated dielectric sheets increases.
  • the thickness of the magnetic frame (total for multiple sheets), the thickness of the magnetic core (total for multiple sheets), and the thickness of the dielectric sheet (total for multiple sheets) match, an extremely flat laminated transformer can be obtained. Can be Therefore, even if the wiring sheet is stacked on the multilayer transformer, the distortion of the wiring sheet is suppressed, and the reliability of the wiring sheet is improved.
  • the magnetic frame and the magnetic core may be made of a magnetic sheet connected to each other via a support.
  • the magnetic frame and core can simultaneously formed, moreover laminated transformer incorporated in a multilayer laminated circuit board in preferred embodiments of the c the present invention capable of positioning at the time of stacking at the same time, the magnetic pattern center ⁇ Pi periphery A composite sheet in which a part other than the center and the periphery is made of a dielectric pattern made of a non-magnetic material; and one of a primary winding and a secondary winding located on one surface of the dielectric pattern and around the center.
  • a second winding which is located on the other surface of the dielectric pattern and around the center and which is comprised of one or both of the primary winding and the secondary winding, It comprises a hybrid sheet, a pair of magnetic sheets sandwiching the first winding and the second winding and being in contact with each other via a magnetic pattern.
  • the hybrid sheet may be a single sheet or a plurality of laminated sheets. If the primary winding and the secondary winding face each other across the dielectric pattern of the hybrid sheet, the primary winding and the secondary winding are alternately arranged on one surface of the hybrid sheet, and the other surface is formed on the other surface. The primary winding and the secondary winding may be alternately arranged. When there are a plurality of hybrid sheets, a plurality of primary windings and secondary windings can be formed with these hybrid sheets interposed. At this time, through holes for connecting the primary windings and the secondary windings may be provided in the hybrid sheet.
  • the magnetic layer is formed between the primary winding and the secondary winding, a leakage magnetic flux is generated in the magnetic layer, so that the electromagnetic coupling coefficient is reduced. Therefore, in the laminated transformer according to the present invention, a space between the primary winding and the secondary winding is formed as a nonmagnetic layer (dielectric pattern). Since a core cannot be formed by this alone, the center and the periphery of the hybrid sheet were formed into a magnetic pattern, and the core was formed by bringing a pair of magnetic sheets into contact with this magnetic pattern. Therefore, in the laminated transformer according to the present invention, since the non-magnetic layer (dielectric pattern) is provided between the primary winding and the secondary winding, the leakage magnetic flux can be suppressed. -In addition, unlike conventional multilayer transformers, there is no need to apply a dielectric paste on the primary winding and the secondary winding to form a dielectric layer. The insulation between the primary winding and the secondary winding is not widened.
  • the above-described hybrid sheet may be interposed between the first winding or the second winding and the magnetic sheet. This hybrid sheet serves to enhance the insulation of the primary or secondary winding.
  • the hybrid sheet may have a thickness of the magnetic pattern equal to the thickness of the dielectric pattern.
  • the film thickness of the hybrid sheet becomes constant everywhere, the pair of magnetic sheets sandwiching the hybrid sheet also becomes flat. Therefore, even if the wiring sheet is laminated on the multilayer transformer, the wiring and the distortion of the wiring sheet are suppressed, and the reliability of the wiring sheet is improved.
  • the package of the laminated transformer can be omitted and the wiring between the laminated transformer and other components can be minimized. Therefore, the advantages of the laminated transformer being light, small and thin can be fully utilized, and further downsizing of the electronic device can be realized.
  • the windings are arranged on the dielectric sheet, so that the thickness of the dielectric layer can be sufficiently ensured even in the portion where the windings exist.
  • the dielectric sheet is solid and not in a paste form, the amount of diffusing material from the windings to the dielectric sheet is extremely small, which may degrade the insulation between the primary windings and the secondary windings. Absent. Therefore, the insulation between the windings can be greatly improved.
  • the core made of the magnetic sheet can be formed by a simple configuration and a simple method.
  • a dielectric sheet is provided between the primary winding and the secondary winding, and a through hole is provided in the center of the dielectric sheet.
  • the distance between the primary winding and the secondary winding does not increase. Therefore, the electromagnetic coupling coefficient can be increased while maintaining the mutual insulation of the windings. Further, the insulation between the primary winding and the secondary winding can be improved by interposing the dielectric sheet in place of the conventional magnetic sheet.
  • the pair of magnetic sheets sandwiching the dielectric sheet are in contact with each other at the peripheral edge of the dielectric sheet and the through hole, so that the magnetic sheet itself is formed. Functions as a magnetic core and a magnetic frame, so that the number of parts can be reduced.
  • the magnetic frame is housed in the periphery of the dielectric sheet
  • the magnetic core is housed in the through hole at the center of the dielectric sheet, and these are held by a pair of magnetic sheets.
  • the bending of the magnetic sheet at the periphery and center of the dielectric sheet can be reduced. Therefore, the magnetic sheet does not need to be bent so much or at all, and thus the manufacturing can be facilitated.
  • the cross-sectional area of the magnetic path can be sufficiently obtained, the magnetic saturation characteristics can be improved.
  • the magnetic frame and the magnetic core are composed of the magnetic sheets connected via the support, so that the magnetic frame and the magnetic core can be formed simultaneously, and At the time of lamination Since alignment can be performed at the same time, manufacturing can be simplified.
  • a laminated transformer in a multilayer laminated circuit board there is provided a laminated transformer in a multilayer laminated circuit board.
  • a dielectric pattern of a hybrid sheet is provided between a primary winding and a secondary winding, and a center and a peripheral edge of the hybrid sheet are magnetic patterns.
  • the conventional laminated transformer there is no need to apply a dielectric paste on the primary winding and the secondary winding to form a dielectric layer, so that the insulation between the primary windings and between the secondary windings is eliminated.
  • the space between the primary winding and the secondary winding is not widened without deterioration of performance. Therefore, the electromagnetic coupling coefficient can be increased while maintaining the insulation between the winding cores.
  • the insulating property between the primary winding and the secondary winding can be improved by interposing the dielectric pattern in place of the conventional magnetic individual sheet.
  • both the dielectric pattern and the magnetic pattern are formed into a single composite sheet, the same structure is formed by laminating a dielectric sheet consisting of only a dielectric and a magnetic sheet consisting of only a magnetic substance. Compared with the case of forming, the number of sheets can be reduced and the lamination method can be simplified.
  • the same hybrid sheet as described above is interposed between the primary winding or the secondary winding and the magnetic sheet.
  • the primary winding or the secondary winding can be electrically protected, so that the insulation can be improved.
  • the film thickness of the magnetic pattern is equal to the film thickness of the dielectric pattern
  • the film thickness of the hybrid sheet becomes constant everywhere.
  • the pair of magnetic sheets that hold the hybrid sheet 1 can be flattened. Therefore, a round pattern or the like can be formed on the magnetic sheet with high accuracy.
  • FIG. 1 is an exploded perspective view showing a first embodiment of a multilayer laminated circuit board according to the present invention.
  • FIG. 2 is a longitudinal sectional view taken along the line II-II in FIG. 1 after lamination.
  • FIG. 3 is a partial cross-sectional view showing a second embodiment of the multilayer laminated circuit board according to the present invention, and
  • FIG. 4 is a process chart showing a method for manufacturing the multilayer laminated circuit board of FIG.
  • FIG. 5 is an exploded perspective view showing a third embodiment of a multilayer laminated circuit board according to the present invention
  • FIG. 6 is a longitudinal sectional view taken along line VII-VII in FIG. 5 after lamination.
  • FIG. 7 is an exploded perspective view showing a fourth embodiment of the multilayer laminated circuit board according to the present invention
  • FIG. 8 is a longitudinal sectional view taken along line VIII-VIII in FIG. 7 after lamination.
  • FIG. 9 is an exploded perspective view showing a fifth embodiment of the multilayer laminated circuit board according to the present invention
  • FIG. 10 is a vertical cross-sectional view taken along line XX in FIG. 9 after lamination.
  • FIG. 11 is an exploded perspective view showing a sixth embodiment of the multilayer laminated circuit board according to the present invention
  • FIG. 12 is a vertical sectional view taken along line XII-XII in FIG. 11 after lamination.
  • FIG. 13 is an exploded perspective view showing a conventional laminated transformer
  • FIG. 14 is a longitudinal sectional view taken along line XIV-XIV in FIG. 13 after lamination.
  • FIG. 1 is an exploded perspective view showing a first embodiment of a multilayer laminated circuit board according to the present invention.
  • FIG. 2 is a vertical sectional view taken along the line II-II in FIG. 1 after lamination.
  • description will be made based on these drawings.
  • the multilayer laminated circuit board 1OA includes a laminated transformer 10, a laminated component sheet 30 on which laminated components are formed, and a wiring sheet 50 on which a circuit pattern is formed, which are laminated in this order. It is a thing.
  • the package of the multilayer transformer 10 is omitted and the wiring between the multilayer transformer 10 and other components is minimized.
  • the multilayer laminated circuit board 1 OA This is because the body is packaged, so that the package of the multilayer transformer 10 becomes unnecessary.
  • the laminated transformer 10 may be provided in a part of the rooster line sheet as in a third embodiment described later.
  • the lamination transformer 10 has a lamination body 15a.
  • the laminated body 15a is made up of a magnetic sheet 11a and a dielectric for a primary winding made of a nonmagnetic material laminated on the magnetic sheet 11a and having a through hole 12a formed in the center.
  • the sheet 13a, the primary winding 14a located around the through hole 12a on the dielectric sheet 13a, and the dielectric sheet 13 laminated on the primary winding 14a a magnetic sheet 11b in contact with the magnetic sheet 11a at the periphery and through hole 12a of a, and a nonmagnetic material laminated on the magnetic sheet 11b and having a through hole 12 formed in the center
  • the magnetic sheet 11c in contact with the magnetic sheet 11b at the periphery of the dielectric sheet 13b and the through hole 12b.
  • the magnetic sheets 11a and lib and the dielectric sheets 13a and 13b are provided with through holes 15 and 16 and the secondary winding 14b connecting the primary winding 14a. Through holes 17 and 18 for connection are provided. On the upper surface of the wiring sheet 50, external electrodes 19 and 20 for the primary winding and external electrodes 21 and 22 for the secondary winding are provided. The through holes 15 to 18 are filled with a conductor.
  • the magnetic sheets 11 a to 11 c are the core of the laminated transformer 10.
  • the laminated component sheet 30 is an example of a low-pass filter for blocking high-frequency noise at the secondary winding 14b.
  • Reference numeral 30 denotes a dielectric sheet 13 c for improving electrical and magnetic insulation with the multilayer transformer 10, and a multilayer inductor 3 2 composed of magnetic sheets 11 d and lie and coil windings 31. And high dielectric constant dielectric sheet 13d and parallel flat
  • a multilayer capacitor 34 composed of plate electrodes 33 a and 3 ′′ 3 b.
  • the current flowing through the coil winding 31 generates a magnetic flux 35 (FIG. 2) in the magnetic sheets 11 d and 11 e.
  • the voltage applied between the parallel plate electrodes 33a and 33b causes the parallel plate electrodes 33a and 33b to accumulate charges.
  • the wiring sheet 50 has the external electrodes 19 to 22 of the multilayer transformer 10, the wiring line 51, the component lands 52, the multilayer resistor 53, etc., on the upper surface of the dielectric sheet 13e as an insulating substrate. It was formed. On the component land 52, a chip component 54 (FIG. 2) and the like are mounted.
  • FIGS. 1 and 2 are schematic diagrams, strictly speaking, the number of turns of the primary winding 14a, the secondary winding 14b and the coil winding 31 and the wiring line 5 1.
  • the positions of the component lands 52, the multilayer resistor 53, etc. do not correspond to those in Fig. 1 and Fig. 2.
  • the film thickness direction vertical direction
  • the width direction left and right directions).
  • a current flows in the order of the external electrode 19 ⁇ the through hole 15 ⁇ the primary winding 14a ⁇ the through hole 16 ⁇ the external electrode 20 or vice versa.
  • external electrode 21 ⁇ through hole 17 ⁇ secondary winding 14 b ⁇ through hole 18 ⁇ coil winding 3 1 ⁇ through hole 23 ⁇ external electrode 22
  • the current flows in the order of,, or vice versa.
  • the current flowing through the primary winding 14a generates a magnetic flux 24 (FIG. 2) in the magnetic sheets 11a to 11c.
  • the magnetic flux 24 generates an electromotive force in the secondary winding 14b according to the turn ratio.
  • the multilayer transformer 10 operates.
  • the magnetic flux 24 does not interfere with the magnetic flux 35 because the dielectric sheet 13c is interposed.
  • the exposed sheets 13a to 13b enhance the insulating properties of the primary winding 14a and the secondary winding 14b.
  • the dielectric sheet 13a is between the outside and the primary winding 14a
  • the dielectric sheet 13b is between the primary winding 14a and the secondary winding 14b. Is increasing.
  • the primary winding 14a is arranged on the dielectric sheet 13a, and the secondary winding 14b is arranged on the induction sheet 13b.
  • FIG. 2 shows the dielectric sheets 13a and 13 under the primary winding 14a and the secondary winding 14b in a depressed state.
  • the thickness of the dielectric sheets 13a and 13b is uniform regardless of the presence or absence of the winding. 2. Since it is not a pace, the diffusion material from the primary winding 14a and the secondary winding 14b is extremely small. Therefore, the insulation between the primary windings 14a and between the secondary windings 14b does not deteriorate.
  • the magnetic sheet 11c and the dielectric sheet 13b can be omitted.
  • a dielectric sheet may be interposed between the dielectric sheet 13b and the magnetic sheet 11c in order to increase the insulation between the secondary winding 14 and the outside.
  • FIG. 3 is a partial cross-sectional view showing a second embodiment of the multilayer laminated circuit board according to the present invention.
  • description will be made based on this drawing. However, the same parts as those in FIG. 1 and FIG.
  • the laminates 15b,... are further laminated on the laminate 15a.
  • the magnetic sheet 11c is shared by both the laminates 15a and 15b.
  • the laminate 15b is made up of the magnetic sheets 11c, 11f, llg, the dielectric sheets 13f, 13g, the primary winding 14c and the secondary winding.
  • Line 14 d is provided.
  • through-holes connecting the primary windings 14a, 14c,... And the secondary windings 14b, 14d,. ... and the dielectric sheets 13a, ... are provided.
  • dielectric sheets 13a ... enhance the insulation of the primary windings 14a, 14c and the secondary windings 14b, 14d.
  • dielectric sheet 13a is between the outside and primary winding 14a
  • dielectric sheet 13b is primary winding 14a and secondary winding 1
  • dielectric sheet 13f is between secondary winding 14b and primary winding 14c
  • dielectric sheet 13g is primary winding 14c and secondary winding 14d In between, the insulation of each is enhanced.
  • the laminated transformer 60 of the present embodiment also has the same operation and effects as the laminated transformer 10 of the first embodiment.
  • the magnetic sheets 11a, ... have a film thickness of 80m, a width of 8mm, and a depth of 6mm.
  • the dielectric sheets 13a, ... have a film thickness of 40111, a width of 7 mm, and a depth of 5 mm.
  • the primary winding, wires 14a, ... and the secondary windings 14b, ... have a film thickness of 12 ⁇ m, a line width of 20 O ⁇ m, and a space between the lines of 150 ⁇ m.
  • the practical number of laminated sheets constituting the laminated transformers 10 and 60 is about 10 to 50 sheets.
  • FIG. 4 is a process chart showing a method for manufacturing the multilayer laminated circuit board of FIG. The following is a description based on FIGS. 1 and 4.
  • a magnetic slurry is prepared (Step 61).
  • the magnetic material is, for example, a Ni-C ⁇ -Zn system.
  • a magnetic material sheet is formed by placing a magnetic material slurry on a PET (polyethylene terephthalate) film using a doctor blade method (step 62).
  • the magnetic sheets are cut to obtain magnetic sheets 11a to lie (step 63).
  • a low dielectric constant and a high dielectric constant nonmagnetic slurry are separately prepared (step 64).
  • a non-magnetic sheet is formed by placing a non-magnetic slurry on the PET film using the doctor blade method (step 65).
  • the nonmagnetic sheet is cut to obtain dielectric sheets 13c to 13e (step 66).
  • the dielectric sheets 13c and 13e have a low dielectric constant, and the dielectric sheet 13d has a high dielectric constant.
  • create a non-magnetic paste (glass paste) with a low dielectric constant (Step 67).
  • the dielectric sheets 13a and 13b are prepared by placing a non-magnetic paste on the PET finolem using a screen printing method (step 68).
  • through holes 15 are formed in the dielectric sheets 13a to 13e and the magnetic sheets 11a to 11e by pressing or the like. (Step 69).
  • the resistor paste 53 is formed by screen-printing the resistor paste only on the dielectric sheet 13e (step 70).
  • the primary winding 14a and the secondary winding 14b, the coil winding 31, the wiring line 51, the component land 52, and the like are formed by screen-printing the Ag-based conductive paste.
  • the through holes 15 are filled with a conductor (step 71).
  • the magnetic sheets 11 a to lie and the dielectric sheets 13 a to 13 e obtained in step 71 are peeled off from the PET film and laminated, and these are adhered to each other using an isostatic press to form a multilayer laminate.
  • Circuit board 1 OA (Step 72).
  • the multilayer laminated circuit board 10A is cut into a predetermined size (step 73).
  • simultaneous firing is performed at around 900 ° C (Step 74).
  • the method of manufacturing a multilayer laminated circuit board in each embodiment described later also conforms to the present embodiment. Therefore, description of the manufacturing method will be omitted in the embodiments described later.
  • FIG. 5 is an exploded perspective view showing a third embodiment of the multilayer laminated circuit board according to the present invention.
  • FIG. 6 is a vertical sectional view taken along line VI-VI in FIG. 5 after lamination.
  • description will be made based on these drawings.
  • the multilayer laminated circuit board 100 of the present embodiment has a laminate transformer 110 laminated on a wiring sheet 101 on which a circuit pattern is formed.
  • the multilayer transformer circuit board 100 incorporates the multilayer transformer 110, thereby eliminating the package of the multilayer transformer 110 and minimizing the wiring between the multilayer transformer 110 and other components. Is limited.
  • the wiring sheet 101 may be stacked on the multilayer transformer 110 as in the first embodiment described above.
  • the distribution sheet 101 is formed by laminating a number of dielectric sheets 102a, 102b, 102c,... On the upper surface of the uppermost dielectric sheet 102a, the external electrodes 122 to 125 of the multilayer transformer 110, wiring lines 103, component lands 104, multilayer resistors 105, etc. are formed. ing. On the component land 104, a chip component 106 (FIG. 6) and the like are mounted. Internal dielectric
  • FIG. 6 are formed with a wiring line 107, a through wire 108, a multilayer resistor 109, and the like. Note that a multilayer capacitor and a multilayer inductor (not shown) are formed on the wiring sheet 101.
  • the laminated transformer 111 has a dielectric sheet 1 for a primary winding made of a non-magnetic material having a through-hole 111a formed in the center and a primary winding 112 formed around the through-hole 111a. 13 and a nonmagnetic material laminated on the dielectric sheet 113 and having a through-hole 111b formed in the center and a secondary winding 114 formed around the through-hole 111b.
  • the dielectric sheet 1 15 for the next winding and the dielectric sheets 1 13 and 1 15 are sandwiched and the periphery and the through holes 1 1 1 a and 1 1 1 of the dielectric sheets 1 13 and 1 15 are sandwiched.
  • Magnetic sheets 1 16 and 1 17 that are in contact with each other at b.
  • the dielectric sheets 113, 114 and the magnetic sheet 111 are connected to the through holes 111, 119 connecting the primary winding 112, and the secondary winding 114, respectively.
  • Through holes 12 0 and 12 1 are provided.
  • On the lower surface of the magnetic sheet 1 16 are provided external electrodes 122, 123 for the primary winding and external electrodes 124, 125 for the secondary winding.
  • a conductor is filled in the through holes 118 to 121.
  • the magnetic sheets 1 16 and 1 17 are the core of the laminated transformer 110.
  • FIG. 5 and 6 are schematic diagrams. Strictly speaking, the number and positions of the primary windings 112 and the secondary windings 114, as well as the through-holes 118 to 121, The positions of the wiring line 103, the component land 104, the multilayer resistor 105, etc. do not correspond between FIG. 5 and FIG. In FIG. 6, the film thickness direction (up and down directions) is shown larger than the width direction (left and right directions).
  • the order of the external electrode 1 2 2 ⁇ through hole 1 1 8 ⁇ the next winding 1 1 2 ⁇ through hole 1 1 9 ⁇ external electrode 1 2 3, or vice versa The current flows in order.
  • the order of the external electrode 124 ⁇ through hole 120 ⁇ secondary winding 114 ⁇ through hole 121 ⁇ external electrode 125, or vice versa The current flows in this order.
  • the current flowing through the winding 1 12 generates a magnetic flux 1 26 (FIG. 6) in the magnetic sheets 1 16 and 1 17.
  • the magnetic flux 126 generates an electromotive force in the secondary winding 114 according to the turn ratio. In this way, the multilayer transformer 110 operates.
  • the space between the primary winding 112 and the secondary winding 114 is a nonmagnetic layer (dielectric sheet 115), the leakage magnetic flux can be suppressed.
  • the insulation between the secondary windings 114 and the secondary windings 114 does not deteriorate, and the distance between the primary windings 112 and the secondary windings 114 does not increase. Therefore, the electromagnetic coupling coefficient k can be increased while maintaining the insulation between the windings.
  • the insulation between the primary winding 112 and the secondary winding 114 is enhanced by the interposition of the dielectric sheet 115.
  • the laminated transformer 110 in the present embodiment is suitable when the number of laminated dielectric sheets 113 and 114 is small. This is because if the number of laminated dielectric sheets 113, 114 is small, the curvature force S at the bent portion of the magnetic sheets 116, 117 becomes small, so that the manufacturing is easy, and the center sheet and the peripheral part are not. This is because the thickness of the magnetic layer can be sufficiently obtained.
  • FIG. 7 is an exploded perspective view showing a fourth embodiment of the multilayer laminated circuit board according to the present invention.
  • FIG. 8 is a vertical sectional view taken along line VIII-VIII in FIG. 7 after lamination.
  • the laminated transformer 130 has a primary winding made of a non-magnetic material having a through hole 13 1 a formed in the center and a primary winding 13 2 a formed around the through hole 13 1 a.
  • Sheet 1 3 3 and a dielectric sheet 1 for a primary winding made of a non-magnetic material having a through hole 1 3 1 b formed in the center and a primary winding 13 2 b formed around the through hole 1 3 1 b 3 4 and the dielectric sheet 1 3 3 and a through hole 1 3 5 a is formed in the center and a secondary winding 1 is formed around the through hole 1 3 5 a
  • a dielectric sheet 13 7 made of a non-magnetic material and having a formed on it is laminated with a dielectric sheet 13 4, and a through hole 1 3 5 b is formed at the center and a through hole 1 3
  • the magnetic frames 13 9a and 13 9b that fit in the periphery of 13 8 and the magnetic cores 14 0a that fit in 13 1a, 13 1b, 13 35a, and 13 35b 140 b and the dielectric sheets 13 3, 13 4, 13 7, and 13 8 are sandwiched, and the magnetic frames 13 a, 13 b and the magnetic cores 14 a, 14 0 b And magnetic sheets 14 1 and 14 2 that are in contact with each other through the intermediary.
  • the magnetic frame 1339a and the magnetic core 140a are connected via four support portions 144a to form a magnetic sheet 144.
  • the magnetic frame 1339b and the magnetic core 140b are connected via four support portions 144b to form a magnetic sheet 145.
  • a dielectric sheet 1 having the same size as the dielectric sheet 13 7 and having a through hole 1 46 a formed in the center for protecting the secondary winding 1 4 7 are intervened.
  • winding protection means improving the insulation of the winding.
  • the dielectric sheets 1 3 3, 1 3 4, 1 3 7, 1 4 7 and the magnetic sheet 1 4 1 have through-holes 1 4 9 and 1 5 to connect the primary windings 13 2 a and 13 2 b. 0 and 15 1 are provided. Dielectric sheet 1 3 3 1 3 4 1 3 7 1
  • the through holes 15 2, 15 3 and 15 4 for connecting the secondary windings 13 36 a and 13 36 are provided on 38, 1 47 and the magnetic sheet 14 1.
  • On the lower surface of the magnetic sheet 141 external electrodes 155, 156 for the primary winding and external electrodes 157, 158 for the secondary winding are provided.
  • the through holes 149 to 154 are filled with a conductor.
  • the magnetic sheets 14 1, 14 2, 14 4, and 14 5 are the core of the laminated transformer 130.
  • FIGS. 7 and 8 are schematic diagrams, strictly speaking, the primary winding 13
  • the dielectric sheets 13 3, 1 3 4, 1 3 4, 1 3 7, 1 3 8, 1 4 7, 1 4 8 have a film thickness of 33 ⁇ m N a width of 7 mm and a depth of 5 mm.
  • the primary windings 13 2 a and 13 2 b and the secondary windings 13 36 a and 13 36 b have a film thickness of 15 ⁇ m and a line width of 200 im.
  • the practical number of laminated sheets of the laminated transformers 110 and 130 is about 10 to 50 sheets.
  • the external electrode 15 6 ⁇ through hole 1 5 1 ⁇ primary winding 13 2 a ⁇ through hole 15 0 ⁇ secondary winding 13 2 b ⁇ Current flows in the order of 9 ⁇ external electrode 1 5 and vice versa.
  • the external electrode 157 ⁇ sulfur metal 154 ⁇ secondary winding 136a ⁇ through hole 153 ⁇ secondary winding 136
  • the haze flows in the order of b ⁇ through hole 15 2 ⁇ external electrode 15 8, or vice versa.
  • the current flowing through the primary windings 13 2a and 13 2 generates a magnetic flux 15 9 (FIG. 8) in the magnetic sheets 14 1, 14 2, 14 4 and 14 45.
  • the magnetic flux 159 generates an electromotive force according to the turns ratio in the secondary windings 13 a, 1.
  • the multilayer transformer 130 operates.
  • the non-magnetic material layer (the dielectric sheets 13 4, 13) is provided between the primary windings 13 2 a, 13 2 b and the secondary windings 13 36 a, 13 36 b. 7, 1
  • the leakage magnetic flux can be suppressed.
  • a dielectric paste is applied on the primary windings 1332a and 1332b and the secondary windings 1336a and 1336b to form a dielectric layer. Deterioration of insulation of primary windings 1 3 2a, primary windings 13 2b, secondary windings 13 6a, and secondary windings 1 36 b In addition, the distance between the primary windings 1332a and 1332b and the secondary windings 1336a and 1336b does not increase. Therefore, the electromagnetic coupling coefficient k can be increased while maintaining the insulation between the windings. In addition to this, the insulation between the primary windings 1332a and 1332b and the secondary windings 1336a and 1336b is improved by the interposition of the dielectric sheets 1337 and 1338. Increase.
  • the laminated transformer 130 of the present embodiment is suitable when the number of laminated dielectric sheets 133,... Is large. This is because even if the number of laminated dielectric sheets 13 3,... Is large, the magnetic frames 13 9 a and 13 9 b fit around the periphery of the dielectric sheets 13 3,. Since the magnetic cores 140a and 140b fit in the magnetic sheet 1401 and 142, the magnetic sheets 141 and 142 hardly bend, so that the manufacturing is easy and the magnetic layers at the center and the outer edge are formed. This is because the thickness can be obtained sufficiently.
  • the magnetic frame 1339a and the magnetic core 140a may be separated from each other without being connected by the support portion 144a. The same applies to the magnetic frame 1339b and the magnetic core 140b.
  • the dielectric sheets 147 and 148 may be omitted.
  • Magnetic sheet 1
  • 4 4 and 1 4 5 may be only one of them.
  • FIG. 9 is an exploded perspective view showing a fifth embodiment of the multilayer laminated circuit board according to the present invention.
  • FIG. 10 is a vertical sectional view taken along line XX in FIG. 1 after lamination.
  • description will be made based on these drawings.
  • the multilayer laminated circuit board of the present embodiment is the same as the first and third embodiments except for the laminated transformer 210. Therefore, only the multilayer transformer 210 will be described.
  • the laminated transformer 210 is composed of a central magnetic z-turn 21a and a peripheral magnetic pattern 2 12a formed at the center and the periphery, respectively, and a nonmagnetic dielectric pattern 2 formed at a portion other than the center and the periphery.
  • the composite sheet 2 14a composed of 13a and the central magnetic pattern 2 11b and the peripheral magnetic pattern 2 12b formed on the central and peripheral edges, respectively, are formed on portions other than the central and peripheral edges.
  • a composite sheet 2 14 b composed of a nonmagnetic dielectric pattern 2 13 b, a primary winding 2 15 a located on one surface of the dielectric pattern 2 13 a and around the center, and a dielectric Secondary windings 2 15 b located on one side of the pattern 2 13 b and around the center, hybrid sheets 2 14 a and 2 14 b, primary windings 2 15 a and secondary
  • the windings 2 15 b are sandwiched and the center magnetic, ⁇ ° turn 2 11 a, 2 1 1 b and the peripheral magnetic patterns 2 1 2 a, 2 1 2 b It is obtained by a pair of magnetic sheet 2 1 6 a, 2 1 6 b in contact. That is, the primary winding 2 15 a is located on the other surface of the dielectric pattern 2 13 b, and the secondary winding 2 15 b is located on one surface of the dielectric pattern 2 13 b.
  • the primary winding 2 15 a is located on the other surface of the dielectric pattern 2 13 b
  • the composite sheet 2 14 a, 2 14 b and the magnetic sheet 2 16 a have through holes 2 18, 2 19 to connect the primary winding 2 15 a, and the secondary winding. There are provided through holes 220 and 221 that connect the springs 215b. On the lower surface of the magnetic sheet 2 16a, external electrodes 222, 223 for the primary winding and external electrodes 222, 225 for the secondary winding are provided. A conductor is filled in the through holes 218 to 221.
  • the center magnetic patterns 2 11 a and 2 11 b, the peripheral magnetic patterns 2 12 a and 2 12 b and the magnetic sheets 2 16 and 2 17 form the core of the multilayer transformer 210. I have.
  • FIGS. 9 and 10 are schematic diagrams, strictly speaking, the number of turns of the primary winding 2 15 a and the secondary winding 2 15 b ⁇ the position of the through holes 2 18 to 22 1
  • FIG. 9 and FIG. 10 do not correspond.
  • the thickness direction vertical direction
  • the width direction horizontal direction
  • the order of the external electrode 2 2 2 ⁇ through hole 2 18 ⁇ next winding 2 15 a ⁇ through hole 2 1 9 ⁇ external electrode 2 2 3 Alternatively, the current flows in the reverse order.
  • the order of the external electrode 2 24 ⁇ through hole 2 20 ⁇ secondary winding 2 15 b ⁇ through hole 2 2 1 ⁇ external electrode 2 25 Alternatively, the current flows in the reverse order.
  • the current flowing through the primary winding 2 15a generates a magnetic flux 2 26 (Fig. 10) on the magnetic sheets 2 16a and 2 16b.
  • the magnetic flux 2 26 generates an electromotive force in the secondary winding 2 15 b according to the turn ratio.
  • the multilayer transformer 210 operates.
  • the leakage magnetic flux can be suppressed.
  • ⁇ between the primary winding 2 15a and the secondary winding 2 15b is a nonmagnetic layer (dielectric pattern 2 13b)
  • the leakage magnetic flux can be suppressed.
  • the insulation between the two windings a and the secondary winding .2b is not degraded, and the distance between the primary winding 2a and the secondary winding 2b is not widened. Therefore, the electromagnetic coupling coefficient k can be increased while maintaining the insulation between the windings.
  • the interposition of the dielectric pattern 2 13 b increases the insulation '1' between the primary winding 2 15 a and the secondary winding 2 15 b.
  • the film thickness of the central magnetic pattern 2 11 a and the peripheral magnet raw pattern 2 12 a is equal to the film thickness of the dielectric pattern 2 13 b.
  • the composite sheet 2 14 b the film thickness of the hybrid sheets 2 14 a and 2 14 b is constant everywhere, and a pair of magnetic sheets 2 16 a and 2 16 b sandwiching the hybrid sheets 2 14 a and 2 14 b Also becomes flat.
  • the composite sheet 2 14 a is obtained by forming a central magnetic pattern 2 1 a and a peripheral magnetic pattern 2 1 2 a on a single PET film by screen printing, and peeling this from the PET film. .
  • the hybrid sheet 2 14 a By forming the primary winding 2 15 a and the secondary winding 2 15 on both sides of the hybrid sheet 2 14 b, the hybrid sheet 2 14 a can be omitted.
  • the secondary winding 2 15 b may be formed not on the hybrid sheet 2 14 b but on the magnetic sheet 2 16 b.
  • Secondary winding 2 1 5 b and magnetic sheet A composite sheet for improving the insulation of the secondary winding 215b may be interposed between the composite sheet 216 and the contact 216b.
  • the dimensions of each component are in accordance with the later described sixth embodiment.
  • FIG. 11 is an exploded perspective view showing a sixth embodiment of the multilayer laminated circuit board according to the present invention.
  • FIG. 12 is a vertical sectional view taken along the line XII—XII in FIG. 11 after lamination.
  • description will be made based on these drawings.
  • the multilayer laminated circuit board of the present embodiment is the same as the first and third embodiments except for the laminated transformer 230. Therefore, only the multilayer transformer 230 will be described.
  • the laminated transformer 230 includes a central magnetic pattern 23 1 a and a peripheral magnetic pattern 23 2 a formed at the center and a peripheral edge, respectively, and a non-magnetic dielectric pattern 23 formed at a portion other than the central and peripheral edges.
  • 3a a composite sheet 234a for forming a primary winding, and a central magnetic pattern 231b and a peripheral magnetic pattern 232b formed on the central and peripheral edges, respectively, and a composite sheet other than the central and peripheral edges.
  • a composite sheet for forming a secondary winding composed of a non-magnetic dielectric pattern formed on a portion thereof; and a central magnetic pattern formed on a center and a peripheral edge, respectively.
  • a composite sheet for forming a primary winding composed of a peripheral magnetic pattern, a non-magnetic dielectric pattern formed in a portion other than the center and the periphery, and a center and a periphery.
  • Center magnetic pattern 23 1d and peripheral magnetic pattern A composite sheet 2 34 d for forming a secondary winding composed of 2 3 2 d and a dielectric pattern 2 33 d of a non-magnetic material formed in portions other than the center and the periphery, and formed on the center and the periphery, respectively.
  • the primary winding 235a is located on the other surface of the dielectric pattern 233b
  • the secondary winding 235b is located on one surface of the dielectric pattern 233b
  • the secondary winding 2 3 5b is located on the other side of the dielectric pattern 2 3 3c
  • the primary winding 2 3 5c is located on one side of the dielectric pattern 2 3 3c
  • the primary winding 2 In other words, 35 c is located on the other surface of the dielectric pattern 23 3 d
  • the secondary winding 23 35 d is located on one surface of the dielectric pattern 23 3 d.
  • the composite sheet 2 3 4 a to 2 3 4 c and the magnetic sheet 2 3 6 a have through holes 2 4 0, 2 4 1, 2 4 2 to connect the primary windings 2 3 5 a and 2 3 5 c. S is provided.
  • the composite sheet 2 3 4 a to 2 3 4 d and the magnetic sheet 2 3 6 a have through holes 2 4 3, 2 4 4, 2 4 to connect the secondary windings 2 3 5 b and 2 3 5 d. 5 are provided.
  • External electrodes 24 6 and 24 7 for the primary winding and external electrodes 24 8 and 24 9 for the secondary winding are provided on the lower surface of the magnetic sheet 2 36 a.
  • a conductor is filled in the through holes 240 to 245.
  • Center magnetic pattern 2 3 1 a to 2 3 e, peripheral magnetic pattern 2 3 2 a to 2 3 2 e and magnetic sheet 2 3 6 a, 2 3 6 b force Laminated transformer 2 3 0 core and Has become.
  • FIGS. 11 and 12 are schematic diagrams, strictly speaking, the number of turns of the primary windings 2 35 a, 2 35 c and the secondary windings 2 35 b, 2 35 d
  • the positions of the through holes 240 to 245 do not correspond between FIG. 11 and FIG. In FIG. 12, the film thickness direction (vertical direction) is shown larger than the width direction (horizontal direction).
  • the magnetic sheets 2336a and 2336b have a thickness of 100 ⁇ m, a width of 8 mm, and a depth of 6 mm.
  • Hybrid sea Each of the specimens 234a to 234e has a thickness of 50 ⁇ m, a width of 8 mm, and a depth of 6 mm.
  • the primary windings 2 35 a and 2 35 c and the secondary windings 2 35 b and 2 35 d have a thickness of 15 / zm and a line width of 200 ⁇ m.
  • the practical number of laminated sheets of the laminated transformers 210 and 230 is about 10 to 50 sheets.
  • the current flowing through the primary windings 2 3 5 a and 2 3 5 c is the central magnetic pattern 2 3 1 a to 2 3 e, the peripheral magnetic pattern 2 3 2 a to 2 3 2 e and the magnetic sheet 2 3 6
  • a magnetic flux of 250 (Fig. 12) is generated at a and 236b.
  • the magnetic flux 250 generates an electromotive force corresponding to the turns ratio in the secondary windings 2 35 b, 2
  • the multilayer transformer 230 operates.
  • the nonmagnetic layer (dielectric pattern 2333b to 2333d) is provided between 35b and 2335d, the leakage magnetic flux can be suppressed.
  • a dielectric paste is applied on the primary windings 235a, 235c and the secondary windings 235b, 235d to form a dielectric layer. Since there is no need to form, the insulation between the primary windings 2 35 a, between the primary windings 2 35 c, between the secondary windings 2 35 b, and between the secondary windings 2 35 d deteriorates. Neither does the distance between the primary windings 2 35 a and 2 35 c and the secondary windings 2 35 b and 2 35 d increase.
  • the electromagnetic coupling coefficient k can be increased while maintaining the insulation between the windings.
  • the presence of the dielectric patterns 234b to 234d allows the primary windings 235a and 235c to be connected to the secondary windings 235b and 235d. Insulation also increases.
  • the composite sheet 2 34 a is composed of the central magnetic pattern 2
  • the thickness of the dielectric pattern 233a is equal to the thickness of the dielectric pattern 233a.
  • the hybrid sheets 2 3 4 b to 2 3 4 e As a result, the thickness of the composite sheet 2 3 4 a to 2 3 4 e becomes constant everywhere, so that a pair of magnetic sheets 2 3 6 a and 2 3 6 b sandwiching the composite sheet 2 3 4 a to 2 3 4 e Also becomes flat.
  • the present invention is not limited to the first to sixth embodiments.
  • the number of sheets, the number of primary windings and the number of secondary windings may be any.
  • the shape of the primary winding and the secondary winding is not limited to a spiral shape, but may be a shape in which a number of L-shaped ones are stacked.
  • the multilayer laminated circuit board of the present invention it is possible to further reduce the size of an electronic device by fully utilizing the advantages of the laminated transformer being light and small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 本発明の多層積層回路基板10Aは、積層トランス10と、積層部品が形成された積層部品シート30と、回路パターンが形成された配線シート50とが積層されたものである。多層積層回路基板10Aでは、積層トランス10を内蔵することにより、積層トランス10のパッケージが省略されるとともに、積層トランス10と他の部品との配線も最小限になっている。

Description

技術分野 '
本発明は、 半導体技術分野における多層積層回路基板に関し、 詳しく は電磁気的な特性を有するシートを積層してコイル及びコアを形成し た積層トランスを内蔵したもの明に関する。
背景技術
近年、 電子機器の小型化の急速な進展に伴い、 軽く小さく、 しかも薄 い積層トランスが注目されている。 図 1 3は、 従来の積層トランスを示 す分解斜視図である。 図 1 4は、 積層後の図 1 3における XIV— XIV線 縦断面図である。 以下、 これらの図面に基づき説明する。
従来の積層トランス 8 0は、 一次卷線 8 1 a, 8 1 cが形成された一 次卷線用の磁性シート 8 2 b , 8 2 dと、 二次卷線 8 1 b, 8 1 dが形 成された二次卷線用の磁性シート 8 2 c , 8 2 eと、 磁性シート 8 2 b 〜8 2 eを挟持する磁性シート 8 2 a, 8 2 gとを備えたものである。 また、 磁性シート 8 2 eと磁性シート 8 2 gとの間には、 磁気飽和特 性を改善するための磁性シート 8 2 f が介揷されている。 磁性シート 8 2 a〜 8 2 eには、 一次卷線 8 1 a , 8 1 cを接続するスルーホール 9 0, 9 1, 9 2及び二次卷線 8 1 b, 8 1 dを接続するスルーホール 9 3, 9 4, 9 5が設けられている。 磁性シート 8 2 aの下面には、 一次 卷線用の外部電極 9 6, 9 7及び二次卷線用の外部電極 9 8, 9 9が設 けられている。 スルーホール 9 0〜 9 6内には導電体が充填されている c 磁性シート 8 2 a〜8 2 gが積層トランス 8 0のコアとなっている。
なお、 図 1 3及び図 1 4は概略図であるので、 厳密に言えば一次卷線 8 1 a , 8 1 c及び二次卷線 8 1 b , 8 1 dの卷数ゃスルーホール 9 0 〜9 6の位置が、 図 1 3と図 1 4とで対応していない。 積層トランス 8 0の一次側では、 外部電極 9 6→スルーホール 9 2→ 一次卷線 8 1 c→スルーホール 9 1→一次卷線 8 1 a→スルーホール 9 0 →外部電極 9 7、 の順又はこの逆の順で電流が流れる。 一方、 積層 トランス 8 0の二次側では、 外部電極 9 9→スルーホール 9 5→二次巻 線 8 1 d→スルーホール 9 4→二次卷線 8 1 b→スルーホール 9 3→ 外部電極 9 8、 の順又はこの逆の順で電流が流れる。 一次卷線 8 1 a , 8 1 cを流れる電流は、磁性シート 8 2 a〜8 2 gに磁束 8 5 (図 1 4 ) を発生させる。 その磁束 8 5は、 卷数比に応じた起電力を二次卷線 8 1 b , 8 1 dに発生させる。 このよ うにして、 積層トランス 8 0が動作す る。
こ こで、 一次巻線 8 1 a , 8 1 cの自己ィンダクタンスを L 1、 二次 卷線 8 1 b, 8 1 dの自己インダクタンスを L 2、 一次卷線 8 1 a, 8 1 c と二次卷線 8 1 b , 8 1 d との相互インダクタンスを Mとすると、 電磁結合係数 kは次式で定義される。
k = I M I / (L 1 - L 2) ( k≤ 1 )
鼋磁結合係数 kは、 トランス性能の指標の一つであり、 大きいほど洩 れ磁束 (洩れインダクタンス) が少ないので電力変換効率が高い。
〔解決すべき課題〕
積層トランス 8 0は、 例えば個別部品として、 プリ ント配線板に実装 されていた。 しかしながら、 このような従来技術では、 電子機器の更な る小型化の要求に、 応えることが難しくなりつつある。
また、 積層トランス 8 0では、 一次卷線 S 1 a, 8 1 c と二次卷線 8 1 b, 8 1 dとの間が磁性体層 (磁性シート 8 2 c〜8 2 e ) であるこ とにより、.洩れ磁束 8 6 (図 1 4) が発生するので、 十分な電磁結合係 数 k を得られなかった。 この問題を解決するために、 スク リーン印刷又 はペース ト塗布によって一次卷線' 8 1 a, 8 1 c上及び二次卷線 8 1 b, 8 1 d上に誘電体層 (図示せず) を設け、 この誘電体層から拡散する物 質によって磁性体層の透磁率を小さくする技術 (以下 「従来の積層トラ ンス」 とレヽう。) が考えられる。
しかしながら、 この従来の積層トランスでは、 一次卷線 8 1 a, 8 1 c上及ぴ二次卷線 8 l b , 8 1 d上に塗布された誘電体ペーストに、 一 次卷線 8 1 a , 8 1 c及び二次巻線 8 1 b, 8 1 dから導電性物質 (例 えば A g粒子) が拡散することにより、 一次卷線 8 1 a同士、 一次卷線 8 1 c同士、 二次巻線 8 1 b同士、 及び二次卷線 8 1 d同士の絶縁性が 低下するおそれがあった。 ペース トは、 例えば有機溶媒などによって液 体状になっているので、 物質が拡散しやすいためである。
また、 誘電体層を設けて洩れ磁束を減らしたとしても、 一次卷線 8 1 a , 8 1 c と二次卷線 8 1 b , 8 1 dとの間隔が 「磁性体層 +誘電体層」 になって広くなる。 このことは、 その間隔に洩れ磁束が入り込みやすく なるので、 逆に電磁結合係数 kを小さくする方向に作用する。 したがつ て、 従来の積層トランスでは、 電磁結合係数 kを大きくすることが極め て困難であった。
〔発明の目的〕
そこで、 本発明の主な目的は、 積層トランスの軽く小さく薄いという 利点を十分に生かすことにより、 電子機器の更なる小型化を実現する技 術を提 することにある。 また、 本発明の他の目的は、 卷線相互の絶縁 性を維持したまま電磁結合係数を増大できる積層トランスを提供する ことにある。 発明の開示
本発明に係る多層積層回路基板は、 磁性シートと一次卷線及ぴ二次卷 線と非碟性体からなる誘電シートとを積層してなる積層トランスを内 蔵すると ともに、 回路パターンが形成された配線シートを備えたもので ある)。 また、 好ましい実施形態では、 配線シートは積層トランスの上 又は下に楨層された、 又は配線シートの一部に積層トランスが設けられ た、 としてもよい。 更に、 積層部品が形成された積層部品シートを更に 備えた、 又は厚膜及びチップ受動素子並びにチップ能動素子が表面に実 装された、 としてもよい。 このとき、 厚膜若しくはチップ受動素子又は チップ能動素子が表面に実装された、 としてもよい。 なお、 ここでいう 「非磁性体」 とは、 少なく とも磁性シートよりも小さい透磁率を有する 物質という意味である。 「誘電シート」 とは、 少なく とも磁性シートよ りも大きい抵抗率を有するシートという意味であり、 誘電体シート又 絶縁シートと呼んでもよい。
従来技術では、 積層トランスを個別部品としてプリント配線板に実装 ' していたが、 積層トランスのパッケージを小型にすることも、 積層トラ ンス と他の部品との配線を縮小することも限界に達していた。 そこで、 本発明では、 積層トランスを多層積層回路基板に内蔵させることにした。 その結果、 多層積層回路基板をパッケージングするので、 積層トランス のパッケージが省略される。 しかも、 積層方向に配線できることから、 配線の占有面積が減少するので、 積層トランスと他の部品との配線も最 小限になる。
本発明の好ましい実施形態における多層積層回路基板に内蔵された 積層 トランスは、 次の積層体を備えたものである。 その積層体は、 第一 の磁性シートと、 この第一の磁性シート上に積層されるとともに中央に 貫通孔が形成された非磁性体からなる第一の誘電シートと、 この第一の 誘電シート上の貫通孔の周囲に位置するとともに一次卷線及び二次卷 線のどちらか一方又は両方からなる第一の卷線と、 この第一の巻線上に 積層 されるとともに第一の誘電シートの周縁及び貫通孔で第一の磁性 シー トに接する第二の磁性シートと、 この第二の磁性シート上に積層さ れる とともに中央に貫通孔が形成された非磁性体からなる第二の誘電 シー トと、 この第二の誘電シート上の貫通孔の周囲に位置するとともに 一次卷線及ぴ二次卷線のどちらか他方又は両方からなる第二の卷線と、 この第二の卷線上に積層されるとともに第二の誘電シートの周縁及ぴ 貫通孔で第二の磁性シートに接する第三の磁性シートとを含んでなる。 また、 望ましくは、 この積層体が更に複数積層され、 上端を除く第三の 磁性シートがその上の積層体で第一の磁性シートとして兼用され、 複数 の一次卷線同士及び複数の二次卷線同士をそれぞれ接続するスルーホ ールが磁性シート及び誘電シートに設けられた、 としてもよい。
誘電シートは、 卷線上に誘電体ペーストを塗布して形成された誘電体 層に _b匕べて、 次の利点を有する。 ①. 固形のシート状であるので、 すな わちペースト状ではないので、 卷線の有無に関係なく膜厚が均一になる c そのため、 卷線の有る部分でも、 十分な膜厚を確保できる。 ②. ペース ト状ではないので、 卷線からの拡散物質は極めて少ない。 そのため、 一 次卷線同士及び二次卷線同士の絶縁性を劣化させることがない。
また、 望ましくは、 誘電シー トの中央に貫通孔を設け、 誘電シー トの 大きさを磁性シートよりも小さく している。 これにより、 誘電シートを 一対の磁性シートで挟持すると、 誘電シートの中央及び周縁で磁性シー ト同士が接するので、 磁性シー トのコアが形成される。 一次卷線と二次 卷線との間には、 誘電シートが介在しているので、 絶縁性にも優れる。 本発明の好ましい実施形態における多層積層回路基板に内蔵された 積層卜ランスは、 中央に貫通孔が形成された非磁性体からなる誘電シー トと、 この誘電シートの一方の面上かつ貫通孔の周囲に位置するととも に一次卷線及び二次卷線のどちらか一方又は両方からなる第一の卷線 と、 誘電シートの他方の面上かつ貫通孔の周囲に位置するとともに一次 卷線及び二次卷線のどちらか他方又は両方からなる第二の卷線と、 誘電 シー卜、 第一の卷線及ぴ第二の卷線を挟持するとともに誘電シートの周 縁及び貫通孔で互いに接する一対の磁性シートとを備えたものである。 望ましくは、 誘電シートは一枚でも積層した複数枚でもよい。 一次卷 線と二次卷線とが誘電シートを挟んで対向していれば、 誘電シートのー 方の面に一次卷線と二次卷線とを交互に配置し、 他方の面に一次卷線と 二次巻線とを交互に配置してもよい。 誘電シートが複数枚である場合は. これらの誘電シートを挟んで一次卷線及び二次卷線を複数本設けるこ とができる。 このとき、 これらの一次卷線同士及ぴ二次卷線同士をそれ ぞれ換続するスルーホールを、 誘電シートに設けてもよい。 従 5feの積層トランスでは、 一次卷線と二次巻線との間が磁性体層にな つているため、 この磁性体層に洩れ磁束が発生することにより、 電磁結 合係数が小さくなつていた。そこで、本発明における積層トランスでは、 まず一次卷線と二次卷線との間を非磁性体層 (誘電シート) とした。 こ れだけではコアを形成できないので、 誘電シートの中央に貫通孔を設け て、 この貫通孔と誘電シートの周縁とで一対の磁性シートを接触させる ことにより、 コアを形成した。 したがって、 本発明における積層トラン スでぼ、 一次卷線と二次卷線との間が非磁性体層 (誘電シート) である ので、 洩れ磁束を抑制できる。 しかも、 従来の積層トランスと異なり、 一次巻線上及び二次巻線上に誘電体ペース トを塗布して誘電体層を形 成する必要がないので、 一次卷線伺士及ぴ二次卷線同士の絶縁性が劣化 するこ ともなく、 一次卷線と二次卷線との間隔も広がらない。
ますこ、 好ましい実施形態では、 誘電シートの周縁に収められた磁性枠 と、 莨通孔に収められた磁心とを更に備え、 一対の磁性シートが誘電シ 一トを挟持するとともに磁性枠及び磁心を介して互いに接する、 として もよい。 この場合も、誘電シートは、一枚でも複数枚(積層) でもよい。 誘電シートが複数枚であるときは、 これらの誘電シートを挟んで一次卷 線及ぴ二次卷線が複数本設けられる。 このとき、 これらの一次卷線同士 及び二次巻線同士をそれぞれ接続するスルーホールを、 誘電シートに設 けても よい。
望ま しくは、 第一の磁性シートと第二の磁性シートとの間に、 誘電シ ートが挟まれており、 また、 誘電シートの両面には、 それぞれ一次卷線 と二次卷線とが位置している。 そして、 誘電シートの周縁には磁性枠が 収まり 、誘電シートの中央の貫通孔には磁心が収まっている。そのため、 一対の磁性シートは、 誘電シートの周縁及び中央での窪みが少ない。 し たがって、 一対の磁性シートをあまり屈曲させなくてもよいので、 製造 が容易である。 しかも、 磁路の断面積を十分にとれるので、 磁気飽和特 性も向上する。 この作用は、 誘電シートの積層枚数が多い程、 顕著に現 われる。 特に、 磁性枠の厚み (複数枚ならば総和) と磁心の厚み (複数枚なら ぱ総和) と誘電シー トの厚み (複数枚ならば総和) とを一致させると、 極めて平坦な積層トランスが得られる。 したがって、 積層トランスの上 に配線シートを積層しても、 配線シー トの歪みが抑えられるので、 配線 シー ト の信頼性が向上する。
また、 好ましい実施形態では、 磁性枠及び磁心が支持部を介して互い に連結された磁性シートからなる、 としてもよい。 この場合は、 磁性枠 及び磁心を同時に形成でき、 しかも積層時の位置合わせも同時にできる c 本発明の好ましい実施形態における多層積層回路基板に内蔵された 積層ト ランスは、 中央及ぴ周縁を磁性パターンとし中央及び周縁以外の 部分を非磁性体からなる誘電パターンとした混成シートと、 誘電パタ一 ンの一方の面上かつ中央の周囲に位置するとともに一次卷線及び二次 卷線のどちらか一方又は両方からなる第一の卷線と、 誘電パターンの他 方の面上かつ中央の周囲に位置するとともに一次卷線及び二次卷線の どちらか他方又は両方からなる第二の卷線と、 混成シート、 第一の卷線 及び第二の卷線を挟持するとともに磁性パターンを介して互いに接す る一対の磁性シートとを備えたものである。
望ま しくは、 混成シートは一枚でも積層した複数枚でもよい。 一次卷 線と二次卷線とが混成シートの誘電パターンを挟んで対向していれば、 混成シートの一方の面に一次卷線と二次卷線とを交互に配置し、 他方の 面に一次卷線と二次.卷線とを交互に配置してもよい。 混成シートが複数 枚である場合は、 これらの混成シートを挟んで一次卷線及び二次巻線を 複数本穀けることができる。 このとき、 これらの一次卷線同士及び二次 卷線同士をそれぞれ接続するスルーホールを、 混成シートに設けてもよ レゝ
従来の積層トランスでは、 一次卷線と二次卷線との間が磁性体層にな つているため、 この磁性体層に洩れ磁束が発生することにより、 電磁結 合係数が小さくなっていた。そこで、本発明における積層トランスでは、 まず一次卷線と二次卷線との間を非磁性体層 (誘電パターン) とした。 これだけではコアを形成できないので、 混成シートの中央及ぴ周縁を磁 性パターンとし、 この磁性パターンで一対の磁性シートを接触させるこ とにより、 コアを形成した。 したがって、 本発明における積層トランス では、 一次卷線と二次卷線との間が非磁性体層 (誘電パターン) である ので、 洩れ磁束を抑制できる。—しかも、 従来の積層トランスと異なり、 一次卷線上及ぴ二次卷線上に誘電体ペース トを塗布して誘電体層を形 成する必要がないので、 一次卷線同士及び二次卷線同士の絶縁性が劣化 することもなく、 一次卷線と二次卷線との間隔も広がらない。
また、 好ましい実施形態では、 前述の混成シートを第一の卷線又は第 二の卷線と磁性シートとの間に介挿してもよい。 この混成シートは、 一 次卷線又ぼ二次卷線の絶縁性を高める働きをする。
好ましレ、実施形態では、 混成シートは、 磁性パターンの膜厚と誘電パ ターンの漠厚とが等しい、 としてもよい。 この場合は、 混成シー トの膜 厚がどこでも一定になるので、 混成シートを挟持する一対の磁性シート も平坦になる。 したがって、 積層トランスの上に配線シートを積層して も、 配線、 > ^一トの歪みが抑えられるので、 配線シー トの信頼性が向上す る。
本発明に係る多層積層回路基板によれば、 積層トランスを内蔵するこ とにより、 積層トランスのパッケージを省略できるとともに、 積層トラ ンスと他の部品との配線も最小限にできる。 したがって、 積層トランス の軽く小さ く薄いという利点を十分に生かすことができるので、 電子機 器の更なる小型化を実現できる。
本発明の好ましい実施形態における多層積層回路基板における積層 トランスによれば、 誘電シート上に卷線を配置したことにより、 巻線の 有る部分でも、 誘電体層の膜厚を十分に確保できる。 しかも、 誘電シー トは固形であってペース ト状ではないので、 卷線から誘電シートへの拡 散物質が極めて少ないため、 一次卷線同士及び二次卷線同士の絶縁性を 劣化させる こともない。 したがって、 巻線相互の絶縁性を大幅に向上さ せることができる。 しかも、 中央に貫通孔を設けた誘電シートを一対の 磁性シートで挟持することにより、 誘電シートの中央及び周縁で磁性シ 一ト同士が接するので、 磁性シートからなるコアを単純な構成かつ簡単 な方法で形成できる。
本 ¾明の好ましい実施形態における多層積層回路基板における積層 トランスによれば、 一次卷線と二次卷線との間を誘電シートとし、 誘電 シート の中央に貫通孔を設けて、 この貫通孔と誘電シートの周縁とで一 対の磁性シートを接触させてコアを形成したことにより、 一次卷線と二 次卷線との間が非磁性体層である積層トランスを実現できたので、 洩れ 磁束を抑制できる。 しかも、 従来の積層トランスと異なり、 一次巻線上 及び二次卷線上に誘電体ペース トを塗布して誘電体層を形成する必要 がないので、 一次卷線同士及ぴ二次卷線同士の絶縁性が劣化することも なく、 一次巻線と二次卷線との間隔も広がらない。 したがって、 卷線相 互の絶縁性を維持したまま電磁結合係数を増大できる。 更に、 従来の磁 性シー トに代わって誘電シートが介在することによって、 一次卷線と二 次巻線との絶縁性も向上できる。
本発明の好ましい実施形態における多層積層回路基板における積層 トランスによれば、 これに加え、 誘電シートを挟持する一対の磁性シー トが誘電シートの周縁及び貫通孔で互いに接することにより、 磁性シー ト自体が磁心及ぴ磁性枠として機能するので、 部品点数を削減できる。 本発明の好ましい実施形態における多層積層回路基板における積層 トランスによれば、 誘電シートの周縁に磁性枠が収められ、 誘電シート の中央の貫通孔に磁心が収められ、 これらを一対の磁性シートが挟持し ていることにより、 誘電シートの周縁及び中央での磁性シートの屈曲を 低減できる。 したがって、 磁性シートをあまり又は全く屈曲させなくて もよいので、 製造を容易化できる。 しかも、 磁路の断面積を十分にとれ るので、 磁気飽和特性も向上できる。
本発明の好ましい実施形態における多層積層回路基板における積層 トランスによれば、 磁性枠及ぴ磁心が支持部を介して連結された磁性シ ートからなるので、 磁性枠及び磁心を同時に形成でき、 しかも積層時の 位置合わせも同時にできるので、 製造を容易化できる。
本発明の好ましい実施形態における多層積層回路基板における積層 トランス こよれば、 一次卷線と二次卷線との間を混成シートの誘電パタ ーンとし、 混成シー トの中央及ぴ周縁を磁性パターンとし、 この磁性パ ターンで一対の磁性シートを接触させてコアを形成したことにより、 ― 次卷線と二次卷線との間が非磁性体層である積層トランスを実現でき たので、浪れ磁束を抑制できる。 しかも、従来の積層トランスと異なり、 一次卷線上及び二次卷線上に誘電体ペース トを塗布して誘電体層を形 成する必要がないので、 一次卷線同士及び二次卷線同士の絶縁性が劣化 することもなく、 一次巻線と二次卷線との間隔も広がらない。 したがつ て、卷線核互の絶縁性を維持したまま電磁結合係数を増大できる。更に、 従来の磁个生シートに代わって誘電パターンが介在することによって、 一 次卷線と二次卷線との絶縁性も向上できる。
また、 誘電パターンと磁性パターンとの両方が一枚の混成シートに形 成されてレ、ることにより、 誘電体のみからなる誘電シートと磁性体のみ からなる磁性シートとを積層して同じ構造を形成する場合に比べて、 シ 一ト枚数を少なくできるとともに、 積層方法も簡略化できる。
本発明の好ましい実施形態における多層積層回路基板における積層 トランスによれば、 これに加え、 前述の混成シートと同じものを一次卷 線又は二次卷線と磁性シー ト との間に介揷することにより、 一次卷線又 は二次卷線を電気的に保護できるので、 絶縁性を向上できる。
本発明の好ましい実施形態における多層積層回路基板における積層 トランスによれば、 磁性パターンの膜厚と誘電パターンの膜厚とが等し いことに り、 混成シー トの膜厚がどこでも一定になるので、 混成シー トを挟持 1~る一対の磁性シートを平坦にできる。 したがって、 磁性シー ト上に回 パターン等を精度よく形成できる。 図面の簡取な説明
図 1は、 本発明に係る多層積層回路基板の第一実施形態を示す分解斜 視図であ り、 図 2は、 積層後の図 1における II一 II線縦断面図である。 図 3 は、 本発明に係る多層積層回路基板の第二実施形態を示す部分 断面図であり、 図 4は、 図 1の多層積層回路基板の製造方法を示す工程 図である。
図 5 は、 本発明に係る多層積層回路基板の第三実施形態を示す分解 斜視図であり、 図 6は、 積層後の図 5における VII— VII 線縦断面図で ある。
図 7 は、 本発明に係る多層積層回路基板の第四実施形態を示す分解 斜視図であり、 図 8は、積層後の図 7における VIII— VIII線縦断面図で ある。
図 9 は、 本発明に係る多層積層回路基板の第五実施形態を示す分解 斜視図であり、 図 1 0は、 積層後の図 9における X— X線縦断面図であ る。
図 1 1は、 本発明に係る多層積層回路基板の第六実施形態を示す分 解斜視図であり、 図 1 2は、 積層後の図 1 1における XII— XII 線縦断 面図である。
図 1 3は、従来の積層トランスを示す分解斜視図であり、図 1 4は、 積層後の図 1 3における XIV— XIV線縦断面図である。 発明を実施するための最良の形態
図 1は、 本発明に係る多層積層回路基板の第一実施形態を示す分解斜 視図である。 図 2は、 積層後の図 1における II一 II線縦断面図である。 以下、 これらの図面に基づき説明する。
本実施开態の多層積層回路基板 1 O Aは、 積層トランス 1 0と、 積層 部品が形成された積層部品シート 3 0と、 回路パターンが形成された配 線シート 5 0とが、 この順に積層されたものである。 多層積層回路基板 1 0 Aでは、 積層トランス 1 0を内蔵することにより、 積層トランス 1 0のパッケージが省略されるとともに、 積層トランス 1 0と他の部品と の配線も最小限になっている。 その理由は、 多層積層回路基板 1 O A全 体をパッケージングするので、 積層トランス 1 0のパッケージが不要と なるためである。 及ぴ、 積層方向に配線できることから、 配線の占有面 積が減少するので、 積層トランス 1 0と他の部品との配線も最小限にな るからである。 また、 積層トランス 1 0は、 後述する第三実施形態のよ うに、 酉己線シー トの一部に設けてもよい。
積層卜ランス 1 0は積層体 1 5 aを備えたものである。 積層体 1 5 a は、 磁十生シート 1 1 a と、 磁性シート 1 1 a上に積層されるとともに中 央に貫通孔 1 2 aが形成された非磁性体からなる一次卷線用の誘電シ ート 1 3 a と、 誘電シート 1 3 a上の貫通孔 1 2 aの周囲に位置する一 次巻線 1 4 aと、 一次卷線 1 4 a上に積層されるとともに誘電シート 1 3 a の周縁及び貫通孔 1 2 aで磁性シート 1 1 aに接する磁性シート 1 1 bと、 磁性シート 1 1 b上に積層されるとともに中央に貫通孔 1 2 が形成された非磁性体からなる二次卷線形成用の誘電シート 1 3 b と、 誘電シート 1 3 b上の貫通孔 1 2 bの周囲に位置する二次卷線 1 4 bと、 二次卷線 1 4 b上に積層されるとともに誘電シート 1 3 bの周縁 及ぴ貫通孔 1 2 bで磁性シート 1 1 bに接する磁性シート 1 1 c とか らなる。
また、磁性シー ト 1 1 a , l i b及び誘電シー ト 1 3 a, 1 3 bには、 一次卷線 1 4 aを接続するスルーホール 1 5, 1 6及ぴ二次卷線 1 4 b を接続するスルーホール 1 7, 1 8が設けられている。 配線シート 5 0 の上面には、 一次卷線用の外部電極 1 9, 2 0及び二次卷線用の外部電 極 2 1, 2 2が設けられている。 スルーホール 1 5〜 1 8内には導電体 が充填されている。 磁性シート 1 1 a〜 1 1 cは、 積層トランス 1 0の コアとなつている。
積層部品シー ト 3 0は、 二次卷線 1 4 bで高周波ノイズを遮断するた めのローパスフィルタを例示したものである。 つまり、 積層部品シート
3 0は、 積層トランス 1 0との電気的及ぴ磁気的絶縁性を高めるための 誘電シー ト 1 3 c と、 磁性シート 1 1 d, l i e及びコイル卷線 3 1か らなる積層ィンダクタ 3 2と、 高誘電率の誘電シート 1 3 d及ぴ平行平
2 板電極 3 3 a , 3'' 3 bからなる積層コンデンサ 3 4とを備えている。 コ ィル卷線 3 1に流れる電流は、磁性シート 1 1 d, 1 1 eに磁束 3 5 (図 2 )を発生させる。平行平板電極 3 3 a , 3 3 b間に印加される電圧は、 平行平板電極 3 3 a, 3 3 bに電荷を蓄積させる。
配線シート 5 0は、 絶縁基板としての誘電シート 1 3 eの上面に、 積 層トランス 1 0の外部電極 1 9〜 2 2、 配線ライン 5 1、 部品ランド 5 2、 積層抵抗器 5 3等が形成されたものである。 部品ランド 5 2には、 チップ部品 5 4 (図 2 ) 等が実装される。
なお、 図 1及び図 2は概略図であるので、 厳密に言えば一次卷線 1 4 a、 二次巻線 1 4 b及ぴコイル卷線 3 1 の卷数ゃ位置、 並びに配線ライ ン 5 1、 部品ランド 5 2、 積層抵抗器 5 3等の位置が、 図 1と図 2とで 対応してレヽない。 また、 図 2では、 膜厚方向 (上下方向) を幅方向 (左 右方向) よりも拡大して示している。
積層トランス 1 0の一次側では、 外部電極 1 9→スルーホール 1 5→ 一次卷線 1 4 a→スルーホール 1 6→外部電極 2 0、 の順又はこの逆の 順で電流;^流れる。 一方、 積層トランス 1 0の二次側では、 外部電極 2 1→スルーホール 1 7→二次卷線 1 4 b→スルーホール 1 8→コイル 卷線 3 1→スルーホール 2 3→外部電極 2 2、 の順又はこの逆の順で電 流が流れる。 一次卷線 1 4 aを流れる電流は、 磁性シート 1 1 a〜 1 1 cに磁束 2 4 (図 2 ) を発生させる。 その磁束 2 4は、 卷数比に応じた 起電力を二次卷線 1 4 bに発生させる。 このよ うにして、 積層トランス 1 0が動作する。 なお、 磁束 2 4は、 誘電シート 1 3 cが介在している ので、 磁 3 5と干渉することがない。
また、 露電シート 1 3 a〜 1 3 bは、 一次卷線 1 4 a及び二次卷線 1 4 bの絶緣性を高めている。 主に、 誘電シート 1 3 aは外部と一次卷線 1 4 a との間、 誘電シート 1 3 bは一次卷線 1 4 a と二次卷線 1 4 bと の間、 それぞれの絶縁性を高めている。
積層トヲンス 1 0では、 誘電シート 1 3 a上に一次卷線 1 4 aが配置 され、 誘鼋シート 1 3 b上に二次卷線 1 4 bが配置されている。 誘電シ
3 ート 1 3 a, 1 3 bは、 卷線上に誘電体ペース トを塗布して直接形成さ れた誘電体層に比べて、 次の利点を有する。 ①. 固形のシート状である ので、 すなわちペース ト状ではないので、 卷線の有無に関係なく膜厚が 均一になる。そのため、卷線の有る部分でも、十分な膜厚を確保できる。 便宜上、 図 2では、 一次卷線 1 4 a及び二次卷線 1 4 bの下の誘電シー ト 1 3 a, 1 3 を窪ませて示している。 しかし、 実際には、 図 3に示 すよ うに、 誘電シート 1 3 a, 1 3 bの膜厚は卷線の有無に関係なく均 一になる。 ②. ペース 状ではないので、 一次卷線 1 4 a及び二次卷線 1 4 bからの拡散物質は極めて少ない。 そのため、 一次卷線 1 4 a同士 及び二次卷線 1 4 b同士の絶縁性を劣化させることがない。
なお、 誘電シート 1 3 a上に一次卷線 1 4 a及び二次卷線 1 4 bの両 方を形成することにより、 磁性シート 1 1 c及び誘電シート 1 3 bを省 略することもできる。 また、 二次卷線 1 4 と外部との間の絶縁性を高 めるために、 誘電シート 1 3 bと磁性シート 1 1 cとの間に、 誘電シー トを介揷してもよい。
図 3は、 本発明に係る多層積層回路基板の第二実施形態を示す部分断 面図である。 以下、 この図面に基づき説明する。 ただし、 図 1及び図 2 と同じ部分は同じ符号を付すことにより説明を省略する。
本実施形態の多層積層回路基板における積層トランス 6 0は、 積層体 1 5 aの上に更に積層体 1 5 b, …が積層されている。 磁性シート 1 1 cは、積層体 1 5 a, 1 5 bの両方で兼用されている。積層体 1 5 bは、 積層体 1 5 a と同じように、 磁性シート 1 1 c, 1 1 f , l l g、 誘電 シート 1 3 f , 1 3 g、 一次卷線 1 4 c及ぴ二次卷線 1 4 dを備えてい る。 また、 図示しないが、 一次卷線 1 4 a , 1 4 c , …同士及び二次卷 線 1 4 b, 1 4 d , …同士をそれぞれ接続するスルーホールが、 磁性シ ート 1 1 a , …及び誘電シート 1 3 a, …に設けられている。
誘電シート 1 3 a, …は、 一次卷線 1 4 a , 1 4 c及ぴ二次卷線 1 4 b , 1 4 dの絶縁性を高めている。 主に、 誘電シート 1 3 aは外部と一 次卷線 1 4 a との間、 誘電シート 1 3 bは一次卷線 1 4 aと二次卷線 1
4 4 bとの間、 誘電シート 1 3 f は二次卷線 1 4 bと一次卷線 1 4 c との 間、 誘電シート 1 3 gは一次卷線 1 4 cと二次卷線 1 4 dとの間、 それ ぞれの絶縁性を高めている。 本実施形態における積層トランス 6 0も、 第一実施形態における積層トランス 1 0と同様の作用及び効果を奏す る。
ここで、 各構成要素の実際の寸法を例示する。 磁性シート 1 1 a, … は、 膜厚が 8 0 m、 幅が 8 mm、 奥行きが 6 mmである。 誘電シート 1 3 a , …は、 膜厚が 4 0 111、 幅が 7 mm、 奥行きが 5 mmである。 一次卷,線 1 4 a , …及び二次卷線 1 4 b, …は、 膜厚が 1 2 μ m、 線幅 が 20 O μ m、 線間が 1 5 0 μ mである。 積層トランス 1 0, 6 0を構 成するシートの積層枚数は、 1 0〜 5 0枚程度が実用的である。
図 4は、 図 1の多層積層回路基板の製造方法を示す工程図である。 以 下、 図 1及び図 4に基づき説明する。
まず、 磁性体スラ リーを作成する (工程 6 1 )。 磁性材料は例えば N i - C ι - Z n系である。 続いて、 ドクターブレード法を用いて P E T (polyethylene terephthalate) フィルム上に磁性体スラ リーを载置す ることにより、 磁性体シートを成形する'(工程 6 2)。 続いて、 この磁 性体シートを切断することにより、 磁性シート 1 1 a〜 l i eを得る (工程 6 3)。 同様に、低誘電率及び高誘電率の非磁性体スラリ一を別々 に作成する (工程 6 4)。 続いて、 ドクタープレード法を用いて P E T フィルム上に非磁性体スラ リーを載置することによ り、 非磁性体シー ト を成形する (工程 6 5)。 続いて、 この非磁性体シートを切断すること により、 誘電シート 1 3 c〜1 3 eを得る (工程 6 6)。 誘電シート 1 3 c, 1 3 eは低誘電率とし、 誘電シート 1 3 dは高誘電率とする。 別途、 低誘電率の非磁性体ペースト (ガラスペースト) を作成する (ェ 程 6 7)。 続いて、 スク リ ーン印刷法を用いて非磁性体ペース トを P E Tフイノレム上に载置することにより、 誘電シート 1 3 a, 1 3 bを作成 する ( 程 6 8)。 続いて、 誘電シート 1 3 a〜1 3 e及び磁性シート 1 1 a〜 1 1 eに対し、 プレス等によりスルーホール 1 5 , …を形成す る (工程 6 9)。 続いて、 誘電シート 1 3 eにのみ抵抗体ペース トをス クリ ーン印刷することにより、積層抵抗器 5 3を形成する (工程 70)。 続いて、 A g系導電ペース トをスクリーン印刷することにより、 一次卷 線 1 4 a及ぴ二次卷線 1 4 b、 コィル卷線 3 1、 配線ライン 51、 部品 ランド 5 2等を形成するとともに、 スルーホール 1 5, …に導電体を充 填する (工程 7 1 )。
続いて、 工程 7 1で得られた磁性シート 1 1 a〜 l i e及び誘電シー ト 1 3 a〜 l 3 eを PETフィルムから剥がして積層し、 これらを静水 圧プレスを用いて密着させて多層積層回路基板 1 O Aとする (工程 7 2)。 続いて、 この多層積層回路基板 1 0 Aを所定の大きさに切断する (工程 7 3)。 最後に、 900°C前後で同時焼成を行う (工程 74)。 なお、 後述する各実施形態における多層積層回路基板の製造方法も-、 本実施形態に準ずる。 したがって、 後述する実施形態では、 製造方法の 説明を省略する。
図 5は、 本発明に係る多層積層回路基板の第三実施形態を示す分解斜 視図である。図 6は、積層後の図 5における VI— VI線縦断面図である。 以下、 これらの図面に基づき説明する。
本実施形態の多層積層回路基板 1 00は、 回路パターンが形成された 配線シート 1 0 1上に、 積層トランス 1 1 0が積層されたものである。 多層犢層回路基板 1 00では、 積層トランス 1 1 0を内蔵することによ り、 積層トランス 1 1 0のパッケージが省略されるとともに、 積層トラ ンス 1 1 0と他の部品との配線も最小限になっている。 なお、 配線シー ト 1 0 1は、 前述した第一実施形態のように、 積層トランス 1 1 0の上 に積層してもよい。
配,豫シート 1 0 1は、 多数の誘電シート 1 02 a, 1 0 2 b, 1 0 2 c, …が積層されたものである。 最上層の誘電シート 1 0 2 aの上面に は、積層トランス 1 1 0の外部電極 1 2 2〜 1 2 5、配線ライン 1 03、 部品ランド 1 04、 積層抵抗器 1 0 5等が形成されている。 部品ランド 1 0 4には、 チップ部品 1 06 (図 6) 等が実装される。 内部の誘電シ
6 ート 1 0 2 b, 1 0 2 c , ··· (図 6 ) には、 配線ライン 1 0 7、 スルー おール 1 0 8、 積層抵抗器 1 0 9等が形成されている。 なお、 配線シー ト 1 0 1には、 図示しない積層コンデンサや積層ィンダクタが形成され ている。
積層トランス 1 1 0は、 中央に貫通孔 1 1 1 aが形成され貫通孔 1 1 1 aの周囲に一次卷線 1 1 2が形成された非磁性体からなる一次卷線 用の誘電シート 1 1 3と、 誘電シート 1 1 3に積層されるとともに中央 に貫通孔 1 1 1 bが形成され貫通孔 1 1 1 bの周囲に二次卷線 1 1 4 形成された非磁性体からなる二次卷線用の誘電シート 1 1 5と、 誘電 シー ト 1 1 3, 1 1 5を挟持するとともに誘電シー ト 1 1 3, 1 1 5の 周縁及ぴ貫通孔 1 1 1 a, 1 1 1 bで互いに接する磁性シート 1 1 6, 1 1 7とを備えている。
また、 誘電シート 1 1 3, 1 1 4及ぴ磁性シート 1 1 6には、 一次卷 線 1 1 2を接続するスルーホール 1 1 8, 1 1 9、 及び二次卷線 1 1 4 を接続するスルーホール 1 2 0, 1 2 1が設けられている。 磁性シー ト 1 1 6の下面には、 一次巻線用の外部電極 1 2 2 , 1 2 3及び二次卷線 用の外部電極 1 2 4, 1 2 5が設けられている。 スルーホール 1 1 8〜 1 2 1内には導電体が充填されている。 磁性シート 1 1 6, 1 1 7が積 層 トランス 1 1 0のコアとなっている。
なお、 図 5及び図 6は概略図であるので、 厳密に言えば一次卷線 1 1 2及ぴ二次卷線 1 1 4の卷数及び位置、 並びにスルーホール 1 1 8〜 1 2 1、 配線ライン 1 0 3、 部品ランド 1 0 4、 積層抵抗器 1 0 5等の位 置が、 図 5 と図 6 とで対応していない。 また、 図 6では、 膜厚方向 (上 下方向) を幅方向 (左右方向) よりも拡大して示している。
犢層トランス 1 1 0の一次側では、 外部電極 1 2 2→スルーホール 1 1 8→—次卷線 1 1 2→スルーホール 1 1 9→外部電極 1 2 3、 の順又 はこの逆の順で電流が流れる。一方、積層トランス 1 1 0の二次側では、 外部電極 1 2 4→スルーホール 1 2 0→二次卷線 1 1 4→スルーホー ル 1 2 1→外部電極 1 2 5、 の順又はこの逆の順で電流が流れる。 一次 卷線 1 1 2を流れる電流は、磁性シート 1 1 6, 1 1 7に磁束 1 2 6 (図 6 ) を発生させる。 その磁束 1 2 6は、 卷数比に応じた起電力を二次卷 線 1 1 4に発生させる。 このようにして、 積層トランス 1 1 0が動作す る。
積層トランス 1 1 0では、 一次卷線 1 1 2と二次卷線 1 1 4 との間が 非磁'性体層 (誘電シート 1 1 5 ) であることにより、 洩れ磁束を抑制で きる。 しかも、 従来の積層トランスと異なり、 一次巻線 1 1 2及び二次 卷線 1 1 4上に誘電体ペース トを塗布して誘電体層を形成する必要が ないので、 一次卷線 1 1 2同士及び二次卷線 1 1 4同士の絶縁性が劣化 することもなく、 一次卷線 1 1 2と二次卷線 1 1 4との間隔も広がらな い。 したがって、 卷線相互の絶縁性を維持したまま電磁結合係数 kを増 大できる。 これに加え、 誘電シート 1 1 5が介在することによって、 一 次卷線 1 1 2と二次卷線 1 1 4との絶縁性も高まる。
本実施形態における積層トランス 1 1 0は、 誘電シート 1 1 3 , 1 1 4の積層枚数が少ない場合に好適である。 なぜなら、誘電シート 1 1 3, 1 1 4の積層枚数が少ないと、 磁性シート 1 1 6, 1 1 7の屈曲部での 曲率力 S小さくなるので、 製造が容易であるとともに、 中央及び周縁での 磁性体層の厚みも十分に得られるからである。
なお、 誘電シート 1 1 5の両面に一次卷線 1 1 2及ぴ二次卷線 1 1 4 をそれぞれ形成することにより、 誘電シート 1 1 3を省略することもで きる。 二次卷線 1 1 4は、 誘電シート 1 1 5上ではなく、 磁性シート 1 1 7上に形成してもよい。 二次卷線 1 1 4と磁性シート 1 1 7との間に、 二次巻線 1 1 2の絶縁性を高める誘電シートを介挿してもよい。 誘電シ -トを複数枚積層した場合には、 ところどころに磁性シートを介挿して もよレ、。 また、 各構成要素の寸法は、 後述する第四実施形態に準ずる。 図 7は、 本発明に係る多層積層回路基板の第四実施形態を示す分解斜 視図である。 図 8は、積層後の図 7における VIII— VIII線縦断面図であ る。 以下、 これらの図面に基づき説明する。
本実施形態の多層積層回路基板は、 積層トランス 1 3 0を除き、 第一 W
及び第三実施形態と同じである。 したがって、 積層トランス 1 3 0につ レヽてのみ説明する。
積層トランス 1 3 0は、 中央に貫通孔 1 3 1 aが形成され貫通孔 1 3 1 a の周囲に一次卷線 1 3 2 aが形成された非磁性体からなる一次卷 ,锿用の誘電シート 1 3 3と、 中央に貫通孔 1 3 1 bが形成され貫通孔 1 3 1 b の周囲に一次卷線 1 3 2 bが形成された非磁性体からなる一次 卷線用の誘電シート 1 3 4と、 誘電シート 1 3 3に積層されるとともに 中央に貫通孔 1 3 5 aが形成され貫通孔 1 3 5 aの周囲に二次卷線 1
3 6 aが形成された非磁性体からなる二次卷線用の誘電シート 1 3 7 と、 誘電シート 1 3 4に積層されるとともに中央に貫通孔 1 3 5 bが形 成され貫通孔 1 3 5 bの周囲に二次卷線 1 3 6 bが形成された非磁性 体からなる二次卷線用の誘電シート 1 3 8と、 誘電シート 1 3 3, 1 3 4 , 1 3 7, 1 3 8の周縁に収まる磁性枠 1 3 9 a, 1 3 9 bと、 貫通 孑し 1 3 1 a, 1 3 1 b, 1 3 5 a, 1 3 5 bに収まる磁心 1 4 0 a, 1 4 0 bと、 誘電シート 1 3 3, 1 3 4 , 1 3 7, 1 3 8を挟持するとと もに磁性枠 1 3 9 a, 1 3 9 b及び磁心 1 4 0 a, 1 4 0 を介して互 いに接する磁性シート 1 4 1, 1 4 2とを備えている。
また、 磁性枠 1 3 9 a と磁心 1 4 0 aとは、 四本の支持部 1 4 3 aを 介して接続され、 磁性シート 1 4 4を構成している。 磁性枠 1 3 9 bと 磁心 1 4 0 bとは、 四本の支持部 1 4 3 bを介して接続され、 磁性シー ト 1 4 5を構成している。 誘電シート 1 3 7と磁性シート 1 4 4との間 には、 誘電シート 1 3 7 と同じ大きさで中央に貫通孔 1 4 6 aが形成さ れた二次卷線保護用の誘電シート 1 4 7が介揷されている。 誘電シート 1 3 8 と磁性シート 1 4 5との間には、 誘電シート 1 3 8と同じ大きさ で中央に貫通孔 1 4 6 bが形成された二次卷線保護用の誘電シート 1
4 8が介挿されている。 ここでいう 「卷線保護」 とは、 卷線の絶縁性を 高めるという意味である。
誘電シート 1 3 3 , 1 3 4 , 1 3 7 , 1 4 7及ぴ磁性シート 1 4 1に は、 一次卷線 1 3 2 a, 1 3 2 bを接続するスルーホール 1 4 9, 1 5 0 , 1 5 1が設けられている。 誘電シート 1 3 3, 1 3 4, 1 3 7 , 1
3 8, 1 4 7及び磁性シート 1 4 1には、 二次卷線 1 3 6 a, 1 3 6 を接続するスルーホール 1 5 2, 1 5 3, 1 5 4が設けられている。 磁 性シート 1 4 1の下面には、 一次巻線用の外部電極 1 5 5, 1 5 6及び 二次卷線用の外部電極 1 5 7, 1 5 8が設けられている。 スルーホール 1 4 9〜 1 5 4内には導電体が充填されている。 磁性シート 1 4 1, 1 4 2 , 1 4 4, 1 4 5が積層トランス 1 3 0のコアとなっている。
なお、 図 7及び図 8は概略図であるので、 厳密に言えば一次卷線 1 3
2 a , 1 3 2 及び二次卷線 1 3 6 a , 1 3 6 bの卷数ゃスルーホール 1 4 9〜 1 5 4の位置が、 図 7と図 8とで対応していない。 また、 図 7 でま、 膜厚方向 (上下方向) を幅方向 (左右方向) よりも拡大して示し てレヽる。
各構成要素の実際の寸法を例示する。 磁性シート 1 4 1, 1 4 2 , 1
4 4, 1 4 5は、 膜厚が 1 0 0 m、 幅が 8 mm、 奥行きが 6 mmであ る。 誘電シート 1 3 3, 1 3 4, 1 3 7 , 1 3 8, 1 4 7, 1 4 8は、 膜厚が 3 3 μ mN 幅が 7 m m、 奥行きが 5 m mである。 一次卷線 1 3 2 a, 1 3 2 b及ぴ二次卷線 1 3 6 a, 1 3 6 bは、 膜厚が 1 5 μ m、 線 幅が 2 0 0 i mである。 積層トランス 1 1 0, 1 3 0を構成するシート の積層枚数は、 1 0〜 5 0枚程度が実用的である。
積層トランス 1 3 0の一次側では、 外部電極 1 5 6→スルーホール 1 5 1→一次卷線 1 3 2 a→スルーホール 1 5 0→—次巻線 1 3 2 b→ ス /レーホール 1 4 9→外部電極 1 5 5、 の順又はこの逆の順で電流が流 れる。 一方、 積層トランス 1 3 0の二次側では、 外部電極 1 5 7→スル 一おール 1 5 4→二次卷線 1 3 6 a→スルーホール 1 5 3→二次卷線 1 3 6 b→スルーホール 1 5 2→外部電極 1 5 8、 の順又はこの逆の順 で霞流が流れる。 一次卷線 1 3 2 a, 1 3 2 を流れる電流は、 磁性シ ート 1 4 1 , 1 4 2 , 1 4 4 , 1 4 5に磁束 1 5 9 (図 8 ) を発生させ る。 その磁束 1 5 9は、 卷数比に応じた起電力を二次卷線 1 3 6 a, 1
3 6 bに発生させる。 このようにして、積層トランス 1 3 0が動作する。 積層トランス 1 3 0では、 一次卷線 1 3 2 a, 1 3 2 bと二次巻線 1 3 6 a , 1 3 6 b との間が非磁性体層 (誘電シート 1 3 4 , 1 3 7 , 1
3 8, 1 4 7 ) であることにより、 洩れ磁束を抑制できる。 しかも、 従 来の積層トランスと異なり、 一次卷線 1 3 2 a, 1 3 2 b及び二次卷線 1 3 6 a , 1 3 6 b上に誘電体ペース トを塗布して誘電体層を形成する 必要がないので、 一次卷線 1 3 2 a同士、 一次卷線 1 3 2 b同士、 二次 卷線 1 3 6 a同士、 及ぴ二次卷線 1 3 6 bの絶縁性が劣化することもな く、 一次卷線 1 3 2 a, 1 3 2 bと二次卷線 1 3 6 a, 1 3 6 bとの間 隔も広がらない。 したがって、 卷線相互の絶縁性を維持したまま電磁結 合係数 kを増大できる。 これに加え、 誘電シート 1 3 7, 1 3 8が介在 することによって、 一次卷線 1 3 2 a, 1 3 2 b と二次巻線 1 3 6 a, 1 3 6 bとの絶縁性も高まる。
本実施形態の積層トランス 1 3 0は、 誘電シー ト 1 3 3, …の積層枚 数が多い場合に好適である。 なぜなら、 誘電シート 1 3 3, …の積層枚 数が多くても、 誘電シート 1 3 3, …の周縁に磁性枠 1 3 9 a, 1 3 9 bが収まるとともに、 貫通孔 1 3 1 a, …に磁心 1 4 0 a, 1 4 0 bが 収まることにより、 磁性シート 1 4 1, 1 4 2がほとんど屈曲しないの で、 製造が容易であるとともに、 中央及ぴ周縁での磁性体層の厚みも十 分に得られるからである。
なお、 磁性枠 1 3 9 aと磁心 1 4 0 a とは、 支持部 1 4 3 aで連結せ ずに、 分離してもよい。 磁性枠 1 3 9 b及び磁心 1 4 0 bについても同 様である。 誘電シート 1 4 7, 1 4 8は省略してもよい。 磁性シート 1
4 4 , 1 4 5はどちらか一方のみとしてもよい。
図 9は、 本発明に係る多層積層回路基板の第五実施形態を示す分解斜 視図である。 図 1 0は、積層後の図 1における X— X線縦断面図である。 以下、 これらの図面に基づき説明する。
本実施形態の多層積層回路基板は、 積層トランス 2 1 0を除き、 第一 及び第三実施形態と同じである。 したがって、 積層トランス 2 1 0につ いてのみ説明する。 積層トランス 2 1 0は、 中央及び周縁にそれぞれ形成された中央磁性 z ターン 2 1 1 a及ぴ周縁磁性パターン 2 1 2 a と中央及び周縁以外 の部分に形成された非磁性体の誘電パターン 2 1 3 a とからなる混成 シート 2 1 4 a と、 中央及ぴ周縁にそれぞれ形成された中央磁性パター ン 2 1 1 b及び周縁磁性パターン 2 1 2 b と中央及ぴ周縁以外の部分 に形成された非磁性体の誘電パターン 2 1 3 b とからなる混成シート 2 1 4 bと、 誘電パターン 2 1 3 aの一方の面上かつ中央の周囲に位置 する一次卷線 2 1 5 a と、 誘電パターン 2 1 3 bの一方の面上かつ中央 の周囲に位置する二次卷線 2 1 5 bと、混成シート 2 1 4 a, 2 1 4 b、 一次卷線 2 1 5 a及ぴ二次卷線 2 1 5 bを挟持するとともに中央磁性 ,ヽ°ターン 2 1 1 a, 2 1 1 b及び周縁磁性パターン 2 1 2 a, 2 1 2 b を介して互いに接する一対の磁性シート 2 1 6 a, 2 1 6 bとを備えた ものである。 すなわち、 一次卷線 2 1 5 aは誘電パターン 2 1 3 bの他 方の面上に位置し、 二次卷線 2 1 5 bは誘電パターン 2 1 3 bの一方の 面上に位置する、 と言い換えることができる。
また、 混成シート 2 1 4 a, 2 1 4 b及ぴ磁性シート 2 1 6 aには、 一次卷線 2 1 5 aを接続するスルーホール 2 1 8, 2 1 9、 及ぴ二次卷 糸泉 2 1 5 bを接続するスルーホール 2 2 0, 2 2 1が設けられている。 磁性シート 2 1 6 aの下面には、 一次卷線用の外部電極 2 2 2 , 2 2 3 及び二次卷線用の外部電極 2 2 4 , 2 2 5が設けられている。 スルーホ ール 2 1 8〜 2 2 1内には導電体が充填されている。 中央磁性パターン 2 1 1 a , 2 1 1 b、 周縁磁性パターン 2 1 2 a, 2 1 2 b及ぴ磁性シ ー ト 2 1 6, 2 1 7が、 積層トランス 2 1 0のコアとなっている。
なお、 図 9及び図 1 0は概略図であるので、 厳密に言えば一次卷線 2 1 5 a及び二次卷線 2 1 5 b の卷数ゃスルーホール 2 1 8〜 2 2 1 の 位置が、 図 9と図 1 0とで対応していない。 また、 図 1 0では、 膜厚方 向 (上下方向) を幅方向 (左右方向) よりも拡大して示している。
積層トランス 2 1 0の一次側では、 外部電極 2 2 2→スルーホール 2 1 8→—次卷線 2 1 5 a→スルーホール 2 1 9→外部電極 2 2 3、 の順 又はこの逆の順で電流が流れる。 一方、 積層トランス 2 1 0の二次側で ίま、 外部電極 2 2 4→スルーホール 2 2 0→二次巻線 2 1 5 b→スルー ホール 2 2 1→外部電極 2 2 5、 の順又はこの逆の順で電流が流れる。 一次卷線 2 1 5 aを流れる電流は、 磁性シート 2 1 6 a, 2 1 6 bに磁 束 2 2 6 (図 1 0 ) を発生させる。 その磁束 2 2 6は、 卷数比に応じた 起電力を二次卷線 2 1 5 bに発生させる。 このようにして、 積層トラン ス 2 1 0が動作する。
積層トランス 2 1 0では、 一次卷線 2 1 5 aと二次卷線 2 1 5 bとの 閩が非磁性体層 (誘電パターン 2 1 3 b ) であることにより、 洩れ磁束 を抑制できる。 しかも、 従来の積層トランスと異なり、 一次卷線 2 1 5 a 及び二次卷線 2 1 5 b上に誘電体ペース トを塗布して誘電体層を形 成する必要がないので、 一次卷線 2 1 5 a同士及び二次卷線.2 1 5 b同 d の絶縁性が劣化することもなく、 一次卷線 2 1 5 a と二次卷線 2 1 5 b との間隔も広がらない。 したがって、 卷線相互の絶縁性を維持したま ま電磁結合係数 kを増大できる。 これに加え、 誘電パターン 2 1 3 bが 介在することによって、 一次卷線 2 1 5 aと二次卷線 2 1 5 bとの絶縁 '1¾も高まる。
また、 混成シート 2 1 4 aは、 中央磁性パターン 2 1 1 a及ぴ周縁磁 ャ生パターン 2 1 2 a の膜厚と、 誘電パターン 2 1 3 bの膜厚とが等しく なっている。 混成シート 2 1 4 bも同様である。 そのため、 混成シート 2 1 4 a , 2 1 4 bの膜厚がどこでも一定になるので、 混成シート 2 1 4 a , 2 1 4 bを挟持する一対の磁性シート 2 1 6 a, 2 1 6 bも平坦 になる。 混成シート 2 1 4 aは、 一枚の P E Tフィルム上に中央磁性パ ターン 2 1 1 a と周縁磁性パターン 2 1 2 a とをスクリーン印刷で形 成し、 これを P E Tフィルムから剥がしたものである。
なお、 混成シート 2 1 4 bの両面に一次卷線 2 1 5 a及ぴ二次巻線 2 1 5 をそれぞれ形成することにより、 混成シート 2 1 4 aを省略する こ ともできる。 二次卷線 2 1 5 bは、 混成シート 2 1 4 b上ではなく、 磁 生シート 2 1 6 b上に形成してもよい。 二次卷線 2 1 5 bと磁性シー ト 2 1 6 b との間に、 二次卷線 2 1 5 bの絶縁性を高める混成シートを 介挿してもよい。 また、 各構成要素の寸法は、 後述する六実施形態に準 ずる。
図 1 1は、 本発明に係る多層積層回路基板の第六実施形態を示す分解 斜視図である。 図 1 2は、 積層後の図 1 1における XII— XII線縦断面 図である。 以下、 これらの図面に基づき説明する。
本実施形態の多層積層回路基板は、 積層トランス 2 3 0を除き、 第一 及び第三実施形態と同じである。 したがって、 積層トランス 2 3 0につ いてのみ説明する。
積層トランス 2 3 0は、 中央及び周縁にそれぞれ形成された中央磁性 パターン 2 3 1 a及び周縁磁性パターン 2 3 2 a と中央及ぴ周縁以外 の部分に形成された非磁性体の誘電パターン 2 3 3 a とからなる一次 卷線形成用の混成シート 2 3 4 aと、 中央及ぴ周縁にそれぞれ形成され た中央磁性パターン 2 3 1 b及び周縁磁性パターン 2 3 2 b と中央及 び周縁以外の部分に形成された非磁性体の誘電パターン 2 3 3 b とか らなる二次卷線形成用の混成シート 2 3 4 bと、 中央及び周縁にそれぞ れ形成された中央磁性パターン 2 3 1 c及び周縁磁性パターン 2 3 2 c と中央及び周縁以外の部分に形成された非磁性体の誘電パターン 2 3 3 c とからなる一次卷線形成用の混成シート 2 3 4 cと、 中央及び周 縁にそれぞれ形成された中央磁性パターン 2 3 1 d及び周縁磁性パタ ーン 2 3 2 dと中央及び周縁以外の部分に形成された非磁性体の誘電 パターン 2 3 3 dとからなる二次卷線形成用の混成シート 2 3 4 dと、 中央及ぴ周縁にそれぞれ形成された中央磁性パターン 2 3 1 e及ぴ周 縁磁性パターン 2 3 2 e と中央及ぴ周縁以外の中央に形成された非磁 性体の誘電パターン 2 3 3 e とからなる二次卷線保護用の混成シート 2 3 4 e と、 誘電パターン 2 3 3 aの一方の面上かつ中央の周囲に位置 する一次卷線 2 3 5 a と、 誘電パターン 2 3 3 bの一方の面上かつ中央 の周囲に位置する二次卷線 2 3 5 bと、 誘電パターン 2 3 3 cの一方の 面上かつ中央の周囲に位置する一次卷線 2 3 5 cと、 誘電パターン 2 3 3 dの一方の面上かつ中央の周囲に位置する二次卷線 2 3 5 dと、 混成 シート 2 3 4 a〜 2 3 4 e、 一次卷線 2 3 5 a, 2 3 5 c及ぴ二次卷線 2 3 5 b , 2 3 5 dを挟持するとともに中央磁性パターン 2 3 1 a〜 2 3 1 e及び周縁磁性パターン 2 3 2 a〜 2 3 2 eを介して互いに接す る一対の磁性シート 2 3 6 a, 2 3 6 bとを備えたものである。
すなわち、 一次卷線 2 3 5 aは誘電パターン 2 3 3 bの他方の面上に 位置し、 二次卷線 2 3 5 bは誘電パターン 2 3 3 bの一方の面上に位置 し、 二次卷線 2 3 5 bは誘電パターン 2 3 3 cの他方の面上に位置し、 一次卷線 2 3 5 cは誘電パターン 2 3 3 cの一方の面上に位置し、 一次 巻線 2 3 5 cは誘電パターン 2 3 3 dの他方の面上に位置し、 二次卷線 2 3 5 dは誘電パターン 2 3 3 dの一方の面上に位置する、 と言い換え ることができる。
混成シート 2 3 4 a〜 2 3 4 c及び磁性シート 2 3 6 aには、 一次卷 線 2 3 5 a , 2 3 5 cを接続するスルーホール 2 4 0, 2 4 1 , 2 4 2 力 S設けられている。 混成シート 2 3 4 a〜 2 3 4 d及ぴ磁性シート 2 3 6 aには、二次卷線 2 3 5 b , 2 3 5 dを接続するスルーホール 2 4 3, 2 4 4, 2 4 5が設けられている。 磁性シート 2 3 6 aの下面には、 一 次卷線用の外部電極 2 4 6 , 2 4 7及び二次卷線用の外部電極 2 4 8, 2 4 9が設けられている。 スルーホール 2 4 0〜 2 4 5内には導電体が 充填されている。 中央磁性パターン 2 3 1 a〜 2 3 1 e、 周縁磁性パタ ーン 2 3 2 a〜 2 3 2 e及び磁性シー ト 2 3 6 a, 2 3 6 b力 積層ト ランス 2 3 0のコアとなっている。
なお、 図 1 1及び図 1 2は概略図であるので、 厳密に言えば一次卷線 2 3 5 a , 2 3 5 c及び二次卷線 2 3 5 b, 2 3 5 dの卷数ゃスルーホ ール 2 4 0〜 2 4 5の位置が、 図 1 1 と図 1 2とで対応していない。 ま こ、 図 1 2では、 膜厚方向 (上下方向) を幅方向 (左右方向) よりも拡 ≠ して示している。
各構成要素の実際の寸法を例示する。 磁性シート 2 3 6 a , 2 3 6 b 、 膜厚が 1 0 0 μ m、 幅が 8 mm、 奥行きが 6 mmである。 混成シー ト 2 3 4 a〜2 3 4 eは、 膜厚が 5 0 μ m、 幅が 8 mm、 奥行きが 6 m mである。 一次卷線 2 3 5 a , 2 3 5 c及び二次卷線 2 3 5 b , 2 3 5 dは、膜厚が 1 5 /z m、線幅が 2 0 0 μ mである。積層トランス 2 1 0, 2 3 0を構成するシー トの積層枚数は、 1 0〜 5 0枚程度が実用的であ る。 - 積層トランス 2 3 0の一次側では、 外部電極 2 4 6→スルーホール 2 4 2→一次巻線 2 3 5 c→スルーホール 2 4 1→一次卷線 2 3 5 a→ スルーホール 2 4 0→外部電極 2 4 7、 の順又はこの逆の順で電流が流 れる。 一方、 積層トランス 2 3 0の二次側では、 外部電極 2 4 9→スル 一ホール 2 4 5→二次卷線 2 3 5 d→スルーホール 2 4 4→二次卷線
2 3 5 b→スルーホール 2 4 3→外部電極 2 4 8、 の順又はこの逆の順 で電流が流れる。 一次卷線 2 3 5 a, 2 3 5 cを流れる電流は、 中央磁 性パターン 2 3 1 a〜2 3 1 e、 周縁磁性パターン 2 3 2 a〜2 3 2 e 及ぴ磁性シート 2 3 6 a, 2 3 6 bに磁束 2 5 0 (図 1 2 ) を発生させ る。 その磁束 2 5 0は、 卷数比に応じた起電力を二次卷線 2 3 5 b , 2
3 5 dに発生させる。 このよ うにして、積層トランス 2 3 0が動作する。 積層トランス 2 3 0では、 一次卷線 2 3 5 a, 2 3 5 c と二次卷線 2
3 5 b , 2 3 5 d との間が非磁性体層 (誘電パターン 2 3 3 b〜 2 3 3 d ) であることにより、 洩れ磁束を抑制できる。 しかも、 従来の積層ト ランスと異なり、 一次卷線 2 3 5 a, 2 3 5 c と二次卷線 2 3 5 b, 2 3 5 d上に誘電体ペース トを塗布して誘電体層を形成する必要がない ので、 一次卷線 2 3 5 a同士、 一次卷線 2 3 5 c同士、 二次卷線 2 3 5 b同士及び二次卷線 2 3 5 d同士の絶縁性が劣化することもなく、 一次 卷線 2 3 5 a , 2 3 5 c と二次卷線 2 3 5 b, 2 3 5 dとの間隔も広が らない。 したがって、 卷線相互の絶縁性を維持したまま電磁結合係数 k を増大できる。 これに加え、 誘電パターン 2 3 4 b〜2 3 4 dが介在す ることによって、 一次卷線 2 3 5 a, 2 3 5 c と二次卷線 2 3 5 b, 2 3 5 dとの絶縁性も高まる。
また、 混成シー ト 2 3 4 aは、 中央磁性パターン 2 3 1 a及び周縁磁 性パターン 2 3 2 aの膜厚と、 誘電パターン 2 3 3 aの膜厚とが等しく なっている。 混成シート 2 3 4 b〜 2 3 4 eも同様である。 そのため、 混成シート 2 3 4 a〜 2 3 4 eの膜厚がどこでも一定になるので、 混成 シート 2 3 4 a〜2 3 4 eを挟持する一対の磁性シート 2 3 6 a, 2 3 6 bも平坦になる。
なお、 本発明は、 言うまでもなく、 上記第一乃至第六実施形態に限定 されるものではない。 例えば、 各シートの枚数、 一次卷線及び二次卷線 の本数は幾つでもよい。 一次卷線及び二次卷線の形状は、 螺旋状に限ら ず、 L字状のものを多数重ねたものとしてもよい。 産業上の利用可能性
本発明.の多層積層回路基板によれば、 積層トランスの軽く小さく薄い という利点を十分に生かすことにより、 電子機器の更なる小型化を実現 することができる。

Claims

請求の範囲
1 . 磁性シートと一次卷線及び二次卷線と非磁性体からなる誘電シー トとを積層してなる積層トランスを内蔵するとともに、 回路パターンが 形成された配線シートを備えた多層積層回路基板。
2 . 前記配線シートは前記積層トランスの上又は下に積層された、 請求項 1記載の多層積層回路基板。
3 . 前記配線シー トの一部に前記積層トランスが設けられた、
請求項 1又は 2記載の多層積層回路基板。
4 . 積層部品が形成された積層部品シートを更に備えた、
請求項 1乃至 3のいずれかに記載の多層積層回路基板。
5 . 厚膜及びチップ受動素子並びにチップ能動素子が表面に実装され た、
請求項 1乃至 4のいずれかに記載の多層積層回路基板。
6 . 前記積層トランスは、 第一の磁性シートと、 この第一の磁性シー ト上に積層されるとともに中央に貫通孔が形成された非磁性体からな る第一の誘電シートと、 この第一の誘電シート上の前記貫通孔の周囲に 位置するとともに一次卷線及ぴ二次卷線のどちらか一方又は両方から なる第一の卷線と、 この第一の卷線上に積層されるとともに前記第一の 誘電シートの周縁及び前記貫通孔で前記第一の磁性シートに接する第 二の磁性シートと、 この第二の磁性シート上に積層されるとともに中央 に貫通孔が形成された非磁性体からなる第二の誘電シートと、 この第二 の誘電シート上の前記貫通孔の周囲に位置するとともに一次卷線及ぴ 二次卷線のどちらか他方又は両方からなる第二の卷線と、 この第二の卷 線上に積層されるとともに前記第二の誘電シートの周縁及び前記貫通 孔で前記第二の磁性シートに接する第三の磁性シートとを含んでなる 積層体を備えた、
請求項 1乃至 5のいずれかに記載の多層積層回路基板。
7 . 前記積層トランスは、 前記積層体が更に複数積層され、 上端を除 く前記第三の磁性シートがその上の積層体で前記第一の磁性シートと して兼用された、
請求項 6記載の多層積層回路基板。 .
8 . 前記積層トランスは、 中央に貫通孔が形成された非磁性体からな る誘電シートと、 この誘電シートの一方の面上かつ前記貫通孔の周囲に 位置するとともに一次卷線及び二次卷線のどちらか一方又は両方から なる第一の卷線と、 前記誘電シートの他方の面上かつ前記貫通孔の周囲 に位置するとともに一次卷線及び二次卷線のどちらか他方又は両方か らなる第二の卷線と、 前記誘電シート、 前記第一の卷線及び前記第二の 卷線を挟持するとともに当該誘電シー トの周縁及び前記貫通孔で互い に接する一対の磁性シートとを備えた、
請求項 1乃至 5のいずれかに記載の多層積層回路基板。
9 . 前記積層トランスは、 前記誘電シー トの周縁に収められた磁性枠 と、 前記貫通孔に収められた磁心とを更に備え、 前記一対の磁性シート が前記誘電シートを挟持するとともに前記磁性枠及び前記磁心を介し て互いに接する、
請求項 8記載の多層積層回路基板。
1 0 . 前記磁性枠及び前記磁心が支持部を介して互いに連結された磁 性シートからなる、
請求項 9記載の多層積層回路基板。
1 1 . 前記積層トランスは、 中央及ぴ周縁を磁性パターンとし前記中 央及ぴ周縁以外の部分を非磁性体からなる誘電パターンとした混成シ ートと、 前記誘電パターンの一方の面上かつ前記中央の周囲に位置する とともに一次卷線及び二次巻線のどちらか一方又は両方からなる第一 の卷線と、 前記誘電パターンの他方の面上かつ前記中央の周囲に位置す るとともに一次巻線及び二次卷線のどちらか他方又は両方からなる第 二の卷線と、 前記混成シー ト、 前記第一の卷線及び前記第二の巻線を挟 持するとともに前記磁性パターンを介して互いに接する一対の磁性シ 一トとを備えた、
請求項 1乃至 5のいずれかに記載の多層積層回路基板。
1 2 . 前記積層トランスは、 中央及び周縁を磁性パターンとし前記中 央及ぴ周縁以外の部分を非磁性体からなる誘電パターンとした混成シ ートが、 前記第一の卷線又は前記第二の卷線と前記磁性シー トとの間に 介挿された、
請求項 1 1記載の多層積層回路基板。
1 3 . 前記混成シートは、 前記磁性パターンの膜厚と前記誘電パター ンの膜厚とが等しい、
請求項 1 1又は 1 2記載の多層積層回路基板。
PCT/JP2003/012431 2003-09-29 2003-09-29 多層積層回路基板 WO2005032226A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005509194A JPWO2005032226A1 (ja) 2003-09-29 2003-09-29 多層積層回路基板
US10/573,633 US7375609B2 (en) 2003-09-29 2003-09-29 Multilayer laminated circuit board
PCT/JP2003/012431 WO2005032226A1 (ja) 2003-09-29 2003-09-29 多層積層回路基板
AU2003266683A AU2003266683A1 (en) 2003-09-29 2003-09-29 Multilayer laminated circuit board
CNA038271850A CN1860833A (zh) 2003-09-29 2003-09-29 多层层叠电路基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012431 WO2005032226A1 (ja) 2003-09-29 2003-09-29 多層積層回路基板

Publications (1)

Publication Number Publication Date
WO2005032226A1 true WO2005032226A1 (ja) 2005-04-07

Family

ID=34385882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012431 WO2005032226A1 (ja) 2003-09-29 2003-09-29 多層積層回路基板

Country Status (5)

Country Link
US (1) US7375609B2 (ja)
JP (1) JPWO2005032226A1 (ja)
CN (1) CN1860833A (ja)
AU (1) AU2003266683A1 (ja)
WO (1) WO2005032226A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131884A1 (de) * 2006-05-16 2007-11-22 Osram Gesellschaft mit beschränkter Haftung Induktives bauelement und verfahren zum herstellen eines induktiven bauelements
EP1916677A1 (en) * 2006-10-25 2008-04-30 Laird Technologies AB Transformer and method of making a transformer
US7907044B2 (en) 2006-01-31 2011-03-15 Hitachi Metals, Ltd. Laminate device and module comprising same
JP2013070035A (ja) * 2011-09-22 2013-04-18 Ibiden Co Ltd 多層プリント配線板
JP2013236046A (ja) * 2012-04-12 2013-11-21 Shinko Electric Ind Co Ltd 配線基板、及び、配線基板の製造方法
JP2018519758A (ja) * 2015-06-30 2018-07-19 トゥルンプフ ヒュッティンガー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRUMPF Huettinger GmbH + Co. KG 高周波増幅器装置
US10660193B2 (en) 2016-08-03 2020-05-19 Kabushiki Kaisha Toyota Jidoshokki Multilayer substrate
US10714313B2 (en) 2015-06-30 2020-07-14 Trumpf Huettinger Gmbh + Co. Kg High frequency amplifier apparatuses

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982436B2 (en) * 2002-12-10 2011-07-19 Pure Energy Solutions, Inc. Battery cover with contact-type power receiver for electrically powered device
WO2006035511A1 (ja) * 2004-09-29 2006-04-06 Tadahiro Ohmi チップ素子
JP4547703B2 (ja) * 2004-11-19 2010-09-22 ミネベア株式会社 高圧トランス
US7471180B2 (en) * 2005-04-21 2008-12-30 Pstek Co., Ltd. Transformer having multi-layered winding structure
TWI354302B (en) * 2006-05-26 2011-12-11 Delta Electronics Inc Transformer
CN101356599A (zh) * 2006-08-07 2009-01-28 株式会社村田制作所 层叠线圈元件及其制造方法
CN101578670B (zh) * 2007-01-24 2012-05-02 株式会社村田制作所 层叠线圈元器件及其制造方法
JP4859700B2 (ja) * 2007-02-20 2012-01-25 セイコーエプソン株式会社 コイルユニットおよび電子機器
US20080238602A1 (en) * 2007-03-30 2008-10-02 Gerhard Schrom Components with on-die magnetic cores
JP5118394B2 (ja) * 2007-06-20 2013-01-16 パナソニック株式会社 非接触電力伝送機器
TWM335792U (en) * 2007-08-16 2008-07-01 Aflash Technology Co Ltd Device structure of IC
DE102007044602A1 (de) * 2007-09-19 2009-04-23 Continental Automotive Gmbh Multilayer-Leiterplatte und Verwendung einer Multilayer-Leiterplatte
CN101981635B (zh) * 2008-04-08 2013-09-25 株式会社村田制作所 电子元器件
JP4343254B1 (ja) * 2008-06-02 2009-10-14 株式会社東芝 多層プリント配線基板
KR101267857B1 (ko) * 2008-06-12 2013-05-27 가부시키가이샤 무라타 세이사쿠쇼 전자 부품
DE102008049756A1 (de) * 2008-09-30 2010-05-27 Osram Gesellschaft mit beschränkter Haftung Schaltungsträger mit Transformator
US8446243B2 (en) * 2008-10-31 2013-05-21 Infineon Technologies Austria Ag Method of constructing inductors and transformers
KR101609597B1 (ko) * 2009-02-16 2016-04-07 삼성디스플레이 주식회사 회로기판 및 이를 갖는 표시패널 어셈블리
JP5339974B2 (ja) * 2009-03-11 2013-11-13 新光電気工業株式会社 インダクタ装置及びその製造方法
EP2242066A1 (en) * 2009-04-17 2010-10-20 Nxp B.V. Inductive components for dc/dc converters and methods of manufacture thereof
JP5168234B2 (ja) * 2009-05-29 2013-03-21 Tdk株式会社 積層型コモンモードフィルタ
US8513771B2 (en) 2010-06-07 2013-08-20 Infineon Technologies Ag Semiconductor package with integrated inductor
ITTO20110295A1 (it) * 2011-04-01 2012-10-02 St Microelectronics Srl Dispositivo ad induttore integrato ad elevato valore di induttanza, in particolare per l'uso come antenna in un sistema di identificazione a radiofrequenza
CN102833946B (zh) * 2011-06-16 2015-06-24 相互股份有限公司 具有线圈结构环绕埋入元件的多层电路板及其制造方法
KR101850806B1 (ko) * 2011-07-22 2018-04-20 히타치 긴조쿠 가부시키가이샤 안테나
TWI441205B (zh) * 2011-09-23 2014-06-11 Inpaq Technology Co Ltd 多層螺旋結構之共模濾波器及其製造方法
US9724211B1 (en) 2012-06-04 2017-08-08 Christopher C. Snell Prosthetic devices having electronic display and methods of fabrication thereof
US8824161B2 (en) * 2012-06-15 2014-09-02 Medtronic, Inc. Integrated circuit packaging for implantable medical devices
US11213690B2 (en) 2012-06-15 2022-01-04 Medtronic, Inc. Wafer level packages of high voltage units for implantable medical devices
US9136213B2 (en) * 2012-08-02 2015-09-15 Infineon Technologies Ag Integrated system and method of making the integrated system
US9921640B2 (en) * 2012-09-28 2018-03-20 Intel Corporation Integrated voltage regulators with magnetically enhanced inductors
US20160307695A1 (en) * 2014-03-19 2016-10-20 Ionel Jitaru Magnetic structures for low leakage inductance and very high efficiency
DE102014210013A1 (de) 2014-05-26 2015-11-26 Schaeffler Technologies AG & Co. KG Magnetische Platine und Verfahren zu deren Herstellung
US10097054B2 (en) 2015-01-30 2018-10-09 Honeywell International Inc. Methods for manufacturing high temperature laminated stator cores
KR101762023B1 (ko) * 2015-11-19 2017-08-04 삼성전기주식회사 코일 부품 및 그 실장 기판
WO2017111910A1 (en) 2015-12-21 2017-06-29 Intel Corporation High performance integrated rf passives using dual lithography process
KR101825695B1 (ko) * 2016-05-16 2018-02-05 주식회사 모다이노칩 회로 보호 소자
CN107667407B (zh) * 2016-05-31 2019-06-04 新电元工业株式会社 线圈构造体以及磁性部件
US9859357B1 (en) * 2016-07-14 2018-01-02 International Business Machines Corporation Magnetic inductor stacks with multilayer isolation layers
JP6558329B2 (ja) * 2016-09-01 2019-08-14 株式会社村田製作所 電子部品
US10283249B2 (en) 2016-09-30 2019-05-07 International Business Machines Corporation Method for fabricating a magnetic material stack
JP6400803B2 (ja) * 2016-10-28 2018-10-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル部品
US10373747B2 (en) * 2017-01-11 2019-08-06 International Business Machines Corporation Magnetic inductor stacks
US10593449B2 (en) 2017-03-30 2020-03-17 International Business Machines Corporation Magnetic inductor with multiple magnetic layer thicknesses
US10607759B2 (en) 2017-03-31 2020-03-31 International Business Machines Corporation Method of fabricating a laminated stack of magnetic inductor
US10597769B2 (en) 2017-04-05 2020-03-24 International Business Machines Corporation Method of fabricating a magnetic stack arrangement of a laminated magnetic inductor
US10347411B2 (en) 2017-05-19 2019-07-09 International Business Machines Corporation Stress management scheme for fabricating thick magnetic films of an inductor yoke arrangement
KR101998269B1 (ko) * 2017-09-26 2019-09-27 삼성전기주식회사 코일 부품
JP7352363B2 (ja) * 2018-03-16 2023-09-28 日東電工株式会社 磁性配線回路基板およびその製造方法
JP6948757B2 (ja) * 2018-06-01 2021-10-13 株式会社タムラ製作所 電子部品
EP3584813A1 (en) 2018-06-20 2019-12-25 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with integrated inductor and manufacturing method
WO2020035967A1 (ja) * 2018-08-17 2020-02-20 株式会社村田製作所 スイッチング電源装置
US11437188B2 (en) 2018-09-25 2022-09-06 Honeywell International Inc. Low porosity glass coatings formed on coiled wires, high temperature devices containing the same, and methods for the fabrication thereof
KR102691323B1 (ko) * 2018-09-28 2024-08-05 삼성전기주식회사 코일 전자 부품
JP6919641B2 (ja) 2018-10-05 2021-08-18 株式会社村田製作所 積層型電子部品
JP2020061410A (ja) * 2018-10-05 2020-04-16 株式会社村田製作所 積層型電子部品
JP2020161645A (ja) * 2019-03-26 2020-10-01 国立大学法人信州大学 電子部品
CN112151545B (zh) 2019-06-28 2024-05-14 西部数据技术公司 包括磁性压持层的半导体设备
FR3127841A1 (fr) * 2021-10-01 2023-04-07 Stmicroelectronics (Tours) Sas Transformateur dans un substrat de boitier
CN113972057A (zh) * 2021-12-13 2022-01-25 潜润电子科技(苏州)有限公司 一种用于串联谐振电路的多层板变压器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201566A (ja) * 1993-12-28 1995-08-04 Taiyo Yuden Co Ltd 積層型電子部品
JPH08241814A (ja) * 1995-03-02 1996-09-17 Murata Mfg Co Ltd 薄型コイルおよびトランス
DE10122393A1 (de) * 2001-05-09 2002-11-14 Philips Corp Intellectual Pty Flexible Leiterfolie mit einer elektronischen Schaltung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340234A1 (en) * 2000-11-21 2003-09-03 Koninklijke Philips Electronics N.V. System, printed circuit board, charger device, user device, and apparatus
JP4214700B2 (ja) * 2002-01-22 2009-01-28 株式会社村田製作所 コモンモードチョークコイルアレイ
KR100466884B1 (ko) * 2002-10-01 2005-01-24 주식회사 쎄라텍 적층형 코일 부품 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201566A (ja) * 1993-12-28 1995-08-04 Taiyo Yuden Co Ltd 積層型電子部品
JPH08241814A (ja) * 1995-03-02 1996-09-17 Murata Mfg Co Ltd 薄型コイルおよびトランス
DE10122393A1 (de) * 2001-05-09 2002-11-14 Philips Corp Intellectual Pty Flexible Leiterfolie mit einer elektronischen Schaltung

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907044B2 (en) 2006-01-31 2011-03-15 Hitachi Metals, Ltd. Laminate device and module comprising same
US8018313B2 (en) 2006-01-31 2011-09-13 Hitachi Metals, Ltd. Laminate device and module comprising same
WO2007131884A1 (de) * 2006-05-16 2007-11-22 Osram Gesellschaft mit beschränkter Haftung Induktives bauelement und verfahren zum herstellen eines induktiven bauelements
JP2009537976A (ja) * 2006-05-16 2009-10-29 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング 誘導素子及び誘導素子を製造するための方法
US7973631B2 (en) 2006-05-16 2011-07-05 Osram Gesellschaft mit beschränkter Haftung Inductive component and method for manufacturing an inductive component
KR101433838B1 (ko) * 2006-05-16 2014-08-27 지멘스 악티엔게젤샤프트 인덕티브 구성요소 및 상기 인덕티브 구성요소를 제조하기 위한 방법
EP1916677A1 (en) * 2006-10-25 2008-04-30 Laird Technologies AB Transformer and method of making a transformer
JP2013070035A (ja) * 2011-09-22 2013-04-18 Ibiden Co Ltd 多層プリント配線板
JP2013236046A (ja) * 2012-04-12 2013-11-21 Shinko Electric Ind Co Ltd 配線基板、及び、配線基板の製造方法
JP2018519758A (ja) * 2015-06-30 2018-07-19 トゥルンプフ ヒュッティンガー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRUMPF Huettinger GmbH + Co. KG 高周波増幅器装置
US10714313B2 (en) 2015-06-30 2020-07-14 Trumpf Huettinger Gmbh + Co. Kg High frequency amplifier apparatuses
US10660193B2 (en) 2016-08-03 2020-05-19 Kabushiki Kaisha Toyota Jidoshokki Multilayer substrate

Also Published As

Publication number Publication date
AU2003266683A1 (en) 2005-04-14
US20070030659A1 (en) 2007-02-08
JPWO2005032226A1 (ja) 2006-12-14
CN1860833A (zh) 2006-11-08
US7375609B2 (en) 2008-05-20

Similar Documents

Publication Publication Date Title
WO2005032226A1 (ja) 多層積層回路基板
US8050045B2 (en) Electronic component and method of manufacturing the same
US7375608B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US7696849B2 (en) Electronic component
CN104575935B (zh) 电感器及其制造方法
US8484829B2 (en) Methods for manufacturing magnetic components having low probile layered coil and cores
US8325003B2 (en) Common mode filter and method of manufacturing the same
KR20140137306A (ko) 코일 부품 및 그 제조방법
JP7369546B2 (ja) コイル部品
JP2002270428A (ja) 積層チップインダクタ
JP2014038883A (ja) 電子部品および電子部品の製造方法
JP2007088461A5 (ja)
KR20180046262A (ko) 코일 전자 부품
KR102618476B1 (ko) 코일 장치
US6551426B2 (en) Manufacturing method for a laminated ceramic electronic component
JP2003309021A (ja) 表面実装型素子
JP2011029222A (ja) 電子部品
WO2023149350A1 (ja) インダクタ部品およびインダクタアレイ
JPH08273936A (ja) コイル部品及びコイル内蔵基板
JP2002008922A (ja) コイル部品
KR20150031954A (ko) 인덕터 소자
JPH0410657Y2 (ja)
WO2005031763A1 (ja) 積層型磁性部品及びその製造方法
JP6024826B2 (ja) 積層型インダクタ素子とその製造方法
JPH04251905A (ja) トランスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 03827185.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005509194

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007030659

Country of ref document: US

Ref document number: 10573633

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10573633

Country of ref document: US