WO2005030434A1 - Brazing flux powder of aluminum material and method of applying the flux powder - Google Patents
Brazing flux powder of aluminum material and method of applying the flux powder Download PDFInfo
- Publication number
- WO2005030434A1 WO2005030434A1 PCT/JP2004/014178 JP2004014178W WO2005030434A1 WO 2005030434 A1 WO2005030434 A1 WO 2005030434A1 JP 2004014178 W JP2004014178 W JP 2004014178W WO 2005030434 A1 WO2005030434 A1 WO 2005030434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- flux
- aluminum
- flux powder
- brazing
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
- B23K35/3605—Fluorides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/362—Selection of compositions of fluxes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/365—Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Definitions
- Flux powder for brazing aluminum-based material and method of applying this flux powder is
- the present invention relates to a flux powder suitable for brazing an aluminum-based material containing magnesium and a coating method using the flux powder.
- Non-corrosive flux consisting of potassium fluoroaluminate
- Non-corrosive flux consisting of potassium fluoroaluminate
- This KF-A1F flux is used in the molten state of KA1F, the main component.
- the aluminum-based material containing magnesium (Mg), which has excellent strength and corrosion resistance, is designed to reduce the weight of the member. Use is being considered.
- the KF-A1F-based flux is used for brazing aluminum-based materials containing Mg.
- the oxide film on the surface of the aluminum-based material is not sufficiently removed.
- brazing to an aluminum-containing material containing Mg must be performed by applying about 5 times the amount of application to an aluminum-based material without containing Mg.
- Patent Document 1 JP-A-60-184490 (Claims (1), page 3, upper left column, line 15, upper right column, second line)
- Patent Document 2 JP-A-61-162295 (Claims)
- An object of the present invention is to provide a brazing method for brazing an aluminum-based material containing Mg, which has good spreadability, is non-corrosive, has excellent safety, and is relatively inexpensive and economically excellent.
- An object of the present invention is to provide a flux powder for brazing an aluminum-based material that can be used for general purposes and a method for applying the flux powder.
- the first embodiment of the present invention relates to a method in which KA1F, KA1F, KA1F
- the molar ratio of A1 is 1.00-1.20 and the molar ratio of FZA1 is 3.80-4.10.
- the folding peak intensity is less than 12% of the maximum peak intensity by KA1F.
- the K A1F when the powder is subjected to X-ray diffraction analysis within the range of the molar ratio of K / A1 of 1.00-1.20 and the molar ratio of F / A1 of 3.804.10. ⁇ 2 ⁇ force 4deg by ⁇ ⁇
- composition and crystallinity of K A1F ⁇ ⁇ ⁇ are sufficiently formed and grown as specified below.
- the flux powder defined as above increases the fluidity and spreadability at the time of melting compared to the conventional flux powder and reduces the oxide film on the material surface when brazing the Mg-containing aluminum-based material.
- the coating amount can be greatly reduced compared to the case where a conventional flux powder is used for an Mg-containing aluminum-based material, and good brazing can be performed.
- it is non-corrosive and excellent in safety, relatively inexpensive and economical, and can be widely used for general purposes.
- the flux powder has a K / A1 molar ratio of 1.05-1.15 and an FZA1 molar ratio of 4.00- 4. It may be in the range of 10.
- the flux powder has a melting peak height of 560 ° C detected in a temperature range of 550 ° C to 560 ° C when the powder is subjected to Differential Thermal Analysis (hereinafter, referred to as DTA analysis). It may be higher than the melting peak height detected in the temperature range above C.
- DTA analysis Differential Thermal Analysis
- the melting peak height detected in the temperature range of 550 ° C to 560 ° C is higher than the melting peak height detected in the temperature range exceeding 560 ° C. If so, the composition and crystallinity of K A1F ⁇ ⁇ ⁇ should not be sufficiently formed and grown.
- the flux powder may have a content of fine powder having a particle size of 10 m or less of 17 to 33% by weight, and the powder may have a 200 mesh sieve transmittance force of 0% or more.
- the flux powder may have a content of fine powder having a particle size of 10 m or less of 19 to 28% by weight and a powder having a 200 mesh sieve transmittance of 50% or more! .
- the flux powder may have a content of fine powder having a particle diameter of 10 ⁇ m or less of 25% by weight or more.
- Another embodiment of the present invention is a method for applying a flux powder, wherein the flux powder is applied to a brazing position of an aluminum-based material by electrostatic coating.
- the washing step and the drying step before and after the coating step, which are performed in the conventional wet coating, are not required, so that the brazing step can be simplified.
- the flux powder of the present invention contains KA1F, KA1F, KA1F.HO and KA1F in the powder.
- Its characteristic composition is that the composition of the powder has a molar ratio of KZA1 of 1.00-1.20 and a molar ratio of FZA1 of 3.80-4.10. The maximum force existing between 2 ° and 4 ° —45 ° due to ⁇ deg
- the diffraction peak intensity is less than 12% of the maximum peak intensity by KA1F.
- the flux powder defined in this manner has a sufficient composition and crystallinity of K A1F ⁇ ⁇ ⁇ It is controlled so that it does not grow and grow, so that when brazing aluminum-based materials with a Mg content of 0.1% by weight to 1.0% by weight, the fluidity and spread when melting compared to conventional flux powders The coating performance is improved, and the oxide film on the material surface is also excellently removed. The coating amount is significantly reduced for Mg-containing aluminum-based materials compared to the case where conventional flux powder is used. You can get brazing. Moreover, it is non-corrosive and excellent in safety, and is relatively inexpensive and economically excellent, and can be widely used for general purposes.
- FIG. 1 is a flow chart showing a method for producing a flux powder according to the present invention.
- FIG. 2 is a diagram showing a DTA curve of No. 1 sample.
- FIG. 3 is a view showing a DTA curve of No. 2 sample.
- FIG. 4 is a diagram showing a DTA curve of No. 19 sample.
- FIG. 5 is a graph showing the relationship between the molar ratio of KZA1 and the relative strength in Samples No. 1 to No. 23.
- FIG. 6 is a graph showing the relationship between the molar ratio of KZA1 and the spreading property in Samples No. 1 to No. 23.
- FIG. 7 is a diagram showing the relationship between relative intensity and spreadability in Samples No. 1 to No. 23.
- FIG. 8 is a graph showing the relationship between the content of fine powder having a particle size of 10 m or less and the transmittance of a 200 mesh sieve in a No. 24-No. 42 flux powder sample.
- FIG. 9 is a diagram showing the particle size distribution of the No. 24, No. 29, No. 30, and No. 40 flux powder samples.
- FIG. 10 is a graph showing the relationship between the particle size distribution of a No. 24-No. 42 flux powder sample and the amount of flux applied to an aluminum plate.
- FIG. 11 is a graph showing the relationship between the particle size distribution of No. 24-No. 42 flux powder samples and the amount of flux applied per lm 2 .
- the obtained reaction product is subjected to a filtration and washing step, a step of drying the flux powder, and a particle size distribution and particle shape of the powder, as shown in (d) to (f) in Fig. 1, respectively. It is commercialized through the process of controlling
- the obtained flux powder is subjected to K A1F ⁇ ⁇ by a wet reaction represented by the formula (6).
- the present inventors have found that in brazing an Mg-containing aluminum-based material, it is possible to improve the fluidity of the flux during melting and suppress the reaction between Mg and the flux on the surface of the Mg-containing aluminum-based material.
- a flux that can be used to braze the contained aluminum-based material.
- the composition of the reaction product obtained by the production method shown in (a)-(c) in Fig. 1 is calculated as K / A1 mono kttl. 1.20, F / A1 mono ktt3.
- the composition and crystal of K A1F ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ which are factors that reduce the fluidity of flux by specifying within the range of 80 to 4.10
- the crystallinity is controlled so as not to form and grow sufficiently, and K A1F
- the flux powder having such a composition has an increased fluidity and spreadability upon melting, and is not only excellent in removing an oxidized film on the surface of the material, but also has an excellent effect on the exchange of Mg and flux on the surface of the aluminum-based material. Good brazing while suppressing the reaction It has been found that dispersibility can be obtained.
- the flux powder of the present invention contains KA1F, KA1F, KA1F.HO and KA1F in the powder.
- Its characteristic composition is that the composition of the powder has a molar ratio of KZA1 of 1.00-1.20 and a molar ratio of FZA1 of 3.80-4.10. The maximum force existing between 2 ° and 4 ° —45 ° due to ⁇ deg
- the diffraction peak intensity is less than 12% of the maximum peak intensity by KA1F.
- the maximum diffraction peak intensity to 12% or less of the maximum peak intensity by KA1F.
- the flux powder specified in this manner increases the fluidity and spreadability during melting when brazing an Mg-containing aluminum-based material compared to conventional flux powder, and removes the oxide film on the material surface.
- the coating amount can be greatly reduced compared to the case where the conventional flux powder is used for the Mg-containing aluminum-based material, and good brazing can be obtained.
- it is non-corrosive and excellent in safety, relatively inexpensive and economical, and can be widely used for general purposes.
- the flux powder of the present invention is a flux powder used for brazing an aluminum-based material having a Mg content of 0.1% by weight to 1.0% by weight, and particularly an aluminum powder having a Mg content exceeding 0.5% by weight. It is suitable for use as a system material.
- the composition of the powder is in the range of KZA1 molar ratio 1.00-1.20, FZA1 molar ratio 3.80-4.10, preferably KZA1 molar ratio 1.05-1.15, FZA1 molar ratio 4.00. —4. In the range of 10. X-ray diffraction analysis of K A1F ⁇ ⁇ 2 at 2 4 force 4deg—
- the maximum diffraction peak intensity existing during 45 deg is the maximum peak intensity of KA1F.
- the flux powder of the present invention has a melting peak height detected in a temperature range of 550 ° C to 560 ° C when the powder is subjected to DTA analysis, and a melting peak height detected in a temperature range exceeding 560 ° C. It is defined to be higher than the peak height.
- 550 ° C Melting peak height at 560 ° C If the melting peak height is higher than the temperature range above 560 ° C, the composition of K A1F
- the content of the fine powder having a particle size of 10 m or less is 17 to 33% by weight, and the powder has a 200 mesh sieve transmittance force of 0% or more. It is preferable that By adjusting the flux powder within the above range, high paintability can be obtained without the flux powder adhering to the pipes or nozzles of the electrostatic coating device or causing blockage. This is because the properties of the flux powder of the present invention are different from those of the conventional flux fine powder containing a large amount of columnar particles, so that even if the content of the fine powder having a particle size of 10 m or less is increased, the sieve transmittance and the like are increased. This is because the powder fluidity does not decrease.
- the content of the fine powder having a particle size of 10 m or less is less than the lower limit, if the amount applied to the Mg-containing aluminum material exceeds the upper limit that is not practically sufficient, it will adhere to the piping and nozzles of the electrostatic coating equipment. Or may cause blockage. Among them, it is particularly preferable to carry out electrostatic coating using a flux powder having a content of fine powder having a particle size of 10 m or less of 19 to 28% by weight and a transmittance of a 200 mesh sieve of 50% or more. .
- the content of the fine powder having a particle size of 10 m or less is preferably 25% by weight or more.
- the flux powder of the present invention makes it difficult to braze in the past and barely carried out by applying a large amount of flux to achieve an aluminum content of 0.1 wt%-1.0 wt%.
- Brazing Strength of Pummeled Material It is possible to reduce the amount to be applied to an aluminum-based material to almost the same amount without containing Mg, and to achieve good brazing property.
- the flux powder of the present invention preferably a fine powder having a particle size of 10 ⁇ m or less and having a content of 20% by weight or more, is dispersed and dispersed in a solvent.
- Good coating can be performed by adjusting the liquid and applying the dispersion to the brazing position of the Mg-containing aluminum-based material by wet coating.
- Flux powder with a content of fine powder with a particle size of 10 m or less with a content of 20% by weight or more has low sedimentation in a solvent and is suitable for application with a slurry in which such flux powder is dispersed. Excellent adhesion to brazing surface.
- the flux powder is dispersed in water. It is common to apply about 5 to 10 g / m 2 to the material to be coated by spraying or dipping using a slurry. In this wet coating, the material is coated before coating. A solvent washing process for the material, a drying process after coating, and a drying facility are required. In this wet coating, the performance of brazing Mg-containing aluminum-based materials cannot be demonstrated, as the amount of moisture brought into the furnace for brazing may increase.
- the flux powder of the present invention is used, and dry flux powder is applied by an electrostatic coating method to perform dry coating.
- the content of fine powder having a particle size of 10 / zm or less is 17 to 33% by weight, preferably 20 to 25% by weight, and the powder has a 200 mesh sieve permeability of 0% or more.
- the obtained flux powder is suitable. Flux powder with a content of fine powder with a particle size of 10 / zm or less of 17-33% by weight and a powder power of 200 mesh sieve permeability of 0% or more is required for dispersibility required for powder dispersion. And has fluidity.
- the washing step and the drying step before and after the coating step performed in the conventional wet coating are not required, so that the brazing step can be simplified. Therefore, it is advantageous in terms of cost, and a greater economic effect can be produced by combining the flux powder of the present invention with the coating method using the flux powder of the present invention.
- Fig. 2 shows a DTA curve obtained by DTA analysis of one sample
- Fig. 3 shows a DTA curve obtained by DTA analysis of No. 2 sample.
- each of the No. 1 and No. 2 sampnoles 550 o C-560 Melting peak height force detected in the temperature range of ° C
- the melting peak height is higher than the melting peak height detected in the temperature range exceeding 560 ° C, and the composition and crystallinity of K A1F
- an aluminum-based material A having a Mg content of 0.8% by weight was prepared.
- 2 mg of the sample was applied to the surface of the material A, placed in an atmosphere furnace maintained at 600 ° C, and held for about 6 minutes. After heating, the material was taken out of the atmosphere furnace, and the spreadability of the sample melted on the material surface was measured.
- Table 1 shows the spreadability test results for aluminum material A.
- Fig. 5 shows the relationship between the KZA1 molar ratio and the relative strength
- Fig. 6 shows the relationship between the KZA1 molar ratio and the broadening property
- Fig. 6 shows the relationship between the relative strength and the spreading property.
- Figure 7 shows each of them.
- the spreadability was measured in the same manner as in Example 1 except that flux powder samples No. 6 to No. 23 having the composition ratios shown in Table 1 below were used.
- the samples No. 6, No. 7, No. 9, No. 11, No. 14, No. 16—No. 20, No. 22 and No. 23 used were KZA1 mole ratio, FZA1 mole.
- the ratio and relative strength are out of the range of the present invention, respectively, and the samples of No. 8, No. 10 and No. 12 have the KZAl molar ratio and the relative strength out of the range of the present invention, and No. 13 and No.
- the KZAl molar ratio and the FZA1 molar ratio were out of the range of the present invention, and in the No. 21 sample, the FZA1 molar ratio was out of the range of the present invention.
- FIG. 4 shows a DTA curve diagram obtained by subjecting the No. 19 sample to DTA analysis.
- the No. 19 sample has a melting peak height detected in a temperature range of 550 ° C to 560 ° C, and a melting peak height detected in a temperature range exceeding 560 ° C. And the composition and crystallinity of K A1F ⁇ ⁇ ⁇ are sufficiently formed and grown.
- the flux powder samples manufactured in Example 1 were manufactured up to No. 24 to No. 42.
- the content of these flux powder samples following fine powder particle size 10 m is 11. 6 33.8 weight 0/0, 200 mesh sieve permeability of powder 0% 84. - which were prepared in 37% It is.
- the following electrostatic coating test was performed using the manufactured No. 24-No. 42 flux powder sample.
- a 5% by weight aluminum plate, a dried 250 ml polystyrene wide-mouth container, and 10.0 g of the above flux powder sample were prepared.
- the entire surface of the aluminum lithographic plate was washed with acetone, and the washed aluminum plate was dried at 100 ° C. for 30 minutes, and the weight was measured.
- 10.0 g of the flux powder sample was placed in the dried polystyrene wide-mouthed container, and the wide-mouthed container was sealed with a polypropylene lid, and the sealed wide-mouthed container was stirred for 2 minutes with a shaker to obtain the wide-mouthed container.
- the flux powder sample inside was charged.
- Table 2 below shows the particle size distribution, the cumulative weight at the particle size, and the results of the electrostatic coating test of the No. 24 to No. 42 flux powder samples.
- Fig. 8 shows the relationship between the content of fine powder having a particle size of 10 ⁇ m or less and the transmittance of a 200 mesh sieve in each flux powder sample
- Fig. 9 shows No. 24, No. 29, No. 30, and No. 40 the particle size distribution of the flux powder samples
- each flux powder sample in Figure 10 the flux powder sample application amount of relationship to particle size distribution and aluminum plates of each flux powder sample in Figure 11 particle size distributions and lm 2 per The relationship between the applied amounts of the flux powder sample is shown.
- the content of fine powder having a particle size of 10 ⁇ m or less and the 200-mesh sieve permeability have a correlation, and the smaller the fine powder content, the higher the sieve permeability and the finer the sieve permeability. It can be seen that the sieve transmittance decreases as the fine powder content increases. From this relationship, it can be seen that the higher the proportion of the fine powder, the easier the clogging becomes.
- the flux coating amount has been performed in 4 one 10 g / m 2 of within range, low to remove the oxide formed on the aluminum material surface layer Kutomo It is considered that a flux of 4 gZm 2 or more needs to be applied. Therefore, 0.5 4-0. 5 wt 0/0 Mg-containing fluxes powder sample application amount of aluminum flat sided 20cm 2 (40mm X 50mm) is 4g / m 2 or more, the amount of deposition of an aluminum flat sided Those of 17 mg or more were regarded as acceptance criteria in the electrostatic coating test.
- the reason is considered to be that if there are many large particles exceeding 10 ⁇ m in diameter, the aluminum surface force tends to fall off, and the rate of adhesion to the aluminum flat plate decreases, so that a sufficient coating amount cannot be secured.
- the conventional flux powder had a disadvantage that the sieve transmittance and the powder fluidity were reduced when the content of particles having a small particle size was increased. Since the particle shape is different from that of the fine powder containing a large amount of fine powder, even if the content of the fine powder having a particle size of 10 ⁇ m or less increases, the sieve transmittance and the powder fluidity do not decrease.
- No. 24—No. 42 flux powder samples were applied to aluminum using an electrostatic coating device, pipes and pipes were used for No. 40 and No.
- the flux powder of the present invention can be applied not only to brazing of an Mg-containing aluminum material, but also to brazing of an aluminum material containing no Mg.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
An improved brazing flux powder of aluminum material comprising KAlF4, K2AlF5, K2AlF5·H2O and K3AlF6 wherein Mg is contained in a proportion of 0.1 to 1.0 wt.%. In the composition of this flux powder, the molar ratio of K/Al is in the range of 1.00 to 1.20 while the molar ratio of F/Al is in the range of 3.80 to 4.10. In the X-ray diffractometry of the powder, the intensity of diffraction peak wherein 2θ ascribed to K2AlF5·H2O lies between 44 deg. and 45 deg. is not greater than 12% of the maximum peak intensity ascribed to KAlF4.
Description
明 細 書 Specification
アルミニウム系材料のろう付け用フラックス粉末及びこのフラックス粉末の 塗工方法 Flux powder for brazing aluminum-based material and method of applying this flux powder
技術分野 Technical field
[0001] 本発明は、マグネシウムを含有したアルミニウム系材料のろう付けに好適なフラック ス粉末及びこのフラックス粉末を用いた塗工方法に関するものである。 The present invention relates to a flux powder suitable for brazing an aluminum-based material containing magnesium and a coating method using the flux powder.
背景技術 Background art
[0002] 従来よりアルミニウム系材料のろう付けには、ろう材としてアルミニウム系材料よりも 若干低融点のアルミニウム シリコン (A1— Si)共晶合金が使用されている。このろう材 とアルミニウム系材料を良好に接合するためには、アルミニウム系材料表面に形成さ れる酸ィ匕被膜を除去する必要があり、この酸ィ匕被膜除去にフッ化物系フラックスが使 用されている。このうち、フッ化カリウム (KF)—フッ化アルミニウム (A1F )系の錯体(フ [0002] Conventionally, in brazing an aluminum-based material, an aluminum silicon (A1-Si) eutectic alloy having a slightly lower melting point than an aluminum-based material has been used as a brazing material. In order to bond the brazing material and the aluminum-based material satisfactorily, it is necessary to remove the oxide film formed on the surface of the aluminum-based material, and a fluoride flux is used to remove the oxide film. ing. Of these, potassium fluoride (KF) -aluminum fluoride (A1F) -based complex
3 Three
ルォロアルミン酸カリウム)からなる非腐食性フラックスがアルミニウム系材料表面に直 接塗布又は散布が可能で、窒素雰囲気炉での連続処理ができ、ろう付け後のフラッ タス薄膜が安定であり、塗布又は散布したフラックス粉末を除去する必要がなぐ更に 低コストかつ高品質である等の様々な優れた性能を有しているため、最も広く使用さ れている。この KF— A1F系フラックスは、主成分である KA1Fが溶融した状態でアル Non-corrosive flux consisting of potassium fluoroaluminate) can be applied or sprayed directly on the surface of aluminum-based material, can be continuously treated in a nitrogen atmosphere furnace, and the flat thin film after brazing is stable. It is the most widely used because it has various excellent performances such as low cost and high quality without the need to remove the generated flux powder. This KF-A1F flux is used in the molten state of KA1F, the main component.
3 4 3 4
ミニゥム系材料表面の酸ィ匕被膜と反応し、活性なアルミニウム系材料と溶融したろう 材を接合させる。 It reacts with the oxide film on the surface of the minimum material to bond the active aluminum material to the molten brazing material.
[0003] 一方、アルミニウム部材を薄肉化することにより材料使用量を削減してコストダウン するとともに部材の軽量ィ匕を図るベぐ強度及び耐食性に優れたマグネシウム (Mg) を含有したアルミニウム系材料の使用が検討されて 、る。 [0003] On the other hand, by reducing the thickness of the aluminum member, the amount of material used is reduced, and the cost is reduced. The aluminum-based material containing magnesium (Mg), which has excellent strength and corrosion resistance, is designed to reduce the weight of the member. Use is being considered.
[0004] し力し、この KF— A1F系フラックスは、 Mgを含有したアルミニウム系材料のろう付け [0004] The KF-A1F-based flux is used for brazing aluminum-based materials containing Mg.
3 Three
には十分な性能を示さないという欠点を有している。具体的には、 0. 4重量%を越え る Mgを含有したアルミニウム系材料のろう付けでは、次の式(1)に示すように、ろう付 け中に Mgとフラックスが反応してフラックスの主成分である KA1Fが消費され、高融 Has the drawback of not exhibiting sufficient performance. Specifically, when brazing an aluminum-based material containing more than 0.4% by weight of Mg, the flux reacts with Mg during brazing as shown in the following equation (1). KA1F, which is the main component, is consumed and
4 Four
点の KMgFや A1Fが生成、析出する。この KMgFや A1Fがフラックス層の融点を
上昇させ、溶融時の流動性を著しく低減させる。従って、溶融したフラックスは十分な 広がり性が得られず、フラックスの主成分である KA1Fが反応により消費されるため、 Point KMgF and A1F are generated and precipitated. This KMgF or A1F determines the melting point of the flux layer. And significantly reduce the fluidity during melting. Therefore, the molten flux does not have sufficient spreadability, and KA1F, the main component of the flux, is consumed by the reaction.
4 Four
アルミニウム系材料表面の酸ィ匕被膜の除去が十分に行われない。 The oxide film on the surface of the aluminum-based material is not sufficiently removed.
3Mg + 3KA1F → 3KMgF (s)丄 + A1F (s)丄 + 2AU …… (1) 3Mg + 3KA1F → 3KMgF (s) 丄 + A1F (s) 丄 + 2AU …… (1)
4 3 3 4 3 3
[0005] 従って現状使用されているフラックスでは、 Mg含有アルミニウム系材料へのろう付 けには、 Mgを含有しな 、アルミニウム系材料への塗布量の約 5倍量程度を塗布しな ければ、十分な広がり性が得られず、材料表面の酸ィ匕被膜の除去が行われないとい う問題があった。 [0005] Accordingly, in the flux currently used, brazing to an aluminum-containing material containing Mg must be performed by applying about 5 times the amount of application to an aluminum-based material without containing Mg. However, there was a problem that sufficient spreadability was not obtained and the oxide film on the surface of the material was not removed.
[0006] このような問題点を解決する方策として、単体ィ匕合物表示にてフッ化アルミニウム 6 0— 50重量0 /0、フッ化カリウム 40— 50重量0 /0を含有するフルォロアルミニウム酸カリ ゥム又はフルォロアルミニウム酸カリウムとフッ化アルミニウムとの混合組成物 100重 量0 /0と、その全量に対してフッ化アルミニウムアンモン 5— 15重量0 /0を含有したろう付 け用フラックスが提案されている (例えば、特許文献 1参照。 ) oこの特許文献 1に示さ れたフラックスでは、 Mg含有量が 2重量%近辺までのアルミニウム系材料のろう付け が可能であるとしている。 [0006] Furuoro containing As a measure to solve this problem, a single I匕合product display aluminum fluoride 6 0 50 weight 0/0 At, potassium fluoride 40- 50 weight 0/0 aluminum potassium © beam or full O b mixed composition 100 by weight 0/0 of potassium aluminate and aluminum fluoride, brazing containing aluminum fluoride ammon 5- 15 weight 0/0 for the total amount of (See, for example, Patent Document 1.) o The flux described in Patent Document 1 can braze aluminum-based materials with an Mg content of around 2% by weight. I have.
[0007] また、単体化合物表示にてフッ化アルミニウム Zフッ化セシウムのモル比が 67Z33 一 26Z74に相当する組成を有するフルォロアルミニウム酸セシウム又はフルォロア ルミ-ゥム酸セシウムとフッ化アルミニウムとの混合組成物力もなるろう付け用フラック スが提案されている (例えば、特許文献 2参照。 ) 0この特許文献 2に示されたフラック スでは、 Mg含有量が 1重量%以下のアルミニウム系材料のろう付けで使用可能であ る。 [0007] Furthermore, in terms of a single compound, aluminum fluoride and cesium fluoride have a composition corresponding to a molar ratio of cesium fluoride of 67Z33-126Z74. A brazing flux having a mixed composition strength has been proposed (for example, refer to Patent Document 2). 0 In the flux disclosed in Patent Document 2, an aluminum-based material having an Mg content of 1% by weight or less is used. Can be used for brazing.
特許文献 1 :特開昭 60— 184490号公報 (特許請求の範囲 (1)、 3頁左上欄 15行目一 右上欄 2行目) Patent Document 1: JP-A-60-184490 (Claims (1), page 3, upper left column, line 15, upper right column, second line)
特許文献 2:特開昭 61— 162295号公報 (特許請求の範囲) Patent Document 2: JP-A-61-162295 (Claims)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] しかし、前記特許文献 1に示されたフラックスでは、ろう付け過程でフッ化アンモニゥ ム (NH F)の有害なヒュームが大量に発生するため、装置の腐食、安全衛生及び公
害の見地力 大きな問題を有して 、た。 [0008] However, in the flux disclosed in Patent Document 1, a large amount of harmful fumes of ammonium fluoride (NHF) is generated during the brazing process, so that corrosion of equipment, safety and health, and public safety are required. The harm's perspective has a big problem.
また、前記特許文献 2に示されたフラックスでは、高価なセシウムが原料に用いられ ていることから、一般的に使用されるろう付け用としては経済的ではなぐ実用化され ていない。また、このセシウム含有フラックスに含まれるセシウム化合物が吸湿性を有 しているため、セシウム含有フラックスを使用することで、ろう付け設備の腐食の問題 が発生する。 Further, in the flux disclosed in Patent Document 2, since expensive cesium is used as a raw material, it is not economically practical for brazing, which is generally used, because it is expensive. Further, since the cesium compound contained in the cesium-containing flux has a hygroscopic property, the use of the cesium-containing flux causes a problem of corrosion of brazing equipment.
[0009] 本発明の目的は、 Mgを含有するアルミニウム系材料のろう付けにおいて、良好な 広がり性を有し、非腐食性で安全性に優れ、かつ比較的安価で経済的に優れる、広 く一般用に使用できるアルミニウム系材料のろう付け用フラックス粉末及びこのフラッ タス粉末の塗工方法を提供することにある。 [0009] An object of the present invention is to provide a brazing method for brazing an aluminum-based material containing Mg, which has good spreadability, is non-corrosive, has excellent safety, and is relatively inexpensive and economically excellent. An object of the present invention is to provide a flux powder for brazing an aluminum-based material that can be used for general purposes and a method for applying the flux powder.
課題を解決するための手段 Means for solving the problem
[0010] 本発明の第 1の態様は、粉末中に KA1F、 K A1F、 K A1F ·Η Ο及び K A1Fを [0010] The first embodiment of the present invention relates to a method in which KA1F, KA1F, KA1F
4 2 5 2 5 2 3 6 それぞれ含み、 Mg含有量が 0. 1重量%— 1. 0重量%のアルミニウム系材料のろう 付けに用いるフラックス粉末の改良である。その特徴ある構成は、粉末の組成が κΖ 4 2 5 2 5 2 3 6 This is an improvement in the flux powder used for brazing aluminum-based materials containing 0.1% by weight to 1.0% by weight, each containing Mg. Its characteristic composition is that the composition of the powder is κΖ
A1モル比 1. 00—1. 20、FZA1モル比 3. 80—4. 10の範囲を有し、粉末を X線回 折分析したときの K A1F ·Η Οによる 2 Θ力 4deg— 45degの間に存在する最大回 The molar ratio of A1 is 1.00-1.20 and the molar ratio of FZA1 is 3.80-4.10. When the powder is analyzed by X-ray diffraction analysis, the 2 A force of 4 ° -45deg due to K A1F · Η Η Maximum times between
2 5 2 2 5 2
折ピーク強度が KA1Fによる最大ピーク強度の 12%以下であるところにある。 The folding peak intensity is less than 12% of the maximum peak intensity by KA1F.
4 Four
[0011] この発明では、粉末の組成が K/A1モル比 1. 00—1. 20、 F/A1モル比 3. 80 4. 10の範囲内、粉末を X線回折分析したときの K A1F ·Η Οによる 2 Θ力 4deg [0011] In the present invention, the K A1F when the powder is subjected to X-ray diffraction analysis within the range of the molar ratio of K / A1 of 1.00-1.20 and the molar ratio of F / A1 of 3.804.10. · 2 Θ force 4deg by Η Ο
2 5 2 2 5 2
45degの間に存在する最大回折ピーク強度が KA1Fによる最大ピーク強度の 12% Maximum diffraction peak intensity existing during 45deg is 12% of the maximum peak intensity by KA1F
4 Four
以下となるように規定して、 K A1F ·Η Οの組成及び結晶性が十分に形成及び成長 The composition and crystallinity of K A1F · Η 形成 are sufficiently formed and grown as specified below.
2 5 2 2 5 2
しないように制御する。このように規定したフラックス粉末は、 Mg含有アルミニウム系 材料のろう付けにぉ 、て、従来のフラックス粉末に比べて溶融時の流動性及び広が り性が増加し、材料表面の酸化被膜の除去にも優れ、 Mg含有アルミニウム系材料に 対して従来のフラックス粉末を用いた場合に比べてその塗布量を大幅に低減するこ とができ、良好なろう付けをすることができる。また、非腐食性で安全性に優れ、かつ 比較的安価で経済的に優れ、広く一般用に使用することができる。 Control not to. The flux powder defined as above increases the fluidity and spreadability at the time of melting compared to the conventional flux powder and reduces the oxide film on the material surface when brazing the Mg-containing aluminum-based material. The coating amount can be greatly reduced compared to the case where a conventional flux powder is used for an Mg-containing aluminum-based material, and good brazing can be performed. In addition, it is non-corrosive and excellent in safety, relatively inexpensive and economical, and can be widely used for general purposes.
[0012] 前記フラックス粉末は、組成が K/A1モル比 1. 05—1. 15、FZA1モル比 4. 00—
4. 10の範囲であってもよい。 [0012] The flux powder has a K / A1 molar ratio of 1.05-1.15 and an FZA1 molar ratio of 4.00- 4. It may be in the range of 10.
[0013] 前記フラックス粉末は、粉末を示差熱分析(Differential Thermal Analysis,以下、 D TA分析という。)したときの 550°C— 560°Cの温度範囲に検出される溶融ピーク高さ 力 560°Cを越える温度範囲に検出される溶融ピーク高さよりも高くてもよい。 [0013] The flux powder has a melting peak height of 560 ° C detected in a temperature range of 550 ° C to 560 ° C when the powder is subjected to Differential Thermal Analysis (hereinafter, referred to as DTA analysis). It may be higher than the melting peak height detected in the temperature range above C.
[0014] この場合粉末を DTA分析したときの 550°C— 560°Cの温度範囲に検出される溶融 ピーク高さが、 560°Cを越える温度範囲に検出される溶融ピーク高さよりも高くなつて いれば、 K A1F · Η Οの組成及び結晶性を十分に形成及び成長させないように制 [0014] In this case, when the powder is subjected to DTA analysis, the melting peak height detected in the temperature range of 550 ° C to 560 ° C is higher than the melting peak height detected in the temperature range exceeding 560 ° C. If so, the composition and crystallinity of K A1F · Η 制 should not be sufficiently formed and grown.
2 5 2 2 5 2
御されていることが半 IJる。 It is half IJ controlled.
[0015] 前記フラックス粉末は、粒径 10 m以下の微細粉末の含有量が 17— 33重量%で あって、前記粉末の 200メッシュ篩透過率力 0%以上であってもよ 、。 [0015] The flux powder may have a content of fine powder having a particle size of 10 m or less of 17 to 33% by weight, and the powder may have a 200 mesh sieve transmittance force of 0% or more.
[0016] さらに前記フラックス粉末は、粒径 10 m以下の微細粉末の含有量が 19一 28重 量%であって、粉末の 200メッシュ篩透過率が 50%以上であってもよ!/、。 [0016] Further, the flux powder may have a content of fine powder having a particle size of 10 m or less of 19 to 28% by weight and a powder having a 200 mesh sieve transmittance of 50% or more! .
[0017] この場合、前記粒度に調節することで静電塗装に用いる場合に好適な粉末となる。 In this case, by adjusting the particle size to the above-mentioned particle size, a powder suitable for use in electrostatic coating can be obtained.
[0018] 前記フラックス粉末は、粒径 10 μ m以下の微細粉末の含有量が 25重量%以上で あってもよい。 [0018] The flux powder may have a content of fine powder having a particle diameter of 10 µm or less of 25% by weight or more.
[0019] この場合、前記粒度に調節することで湿式塗装に用いる場合に好適な粉末となる。 In this case, by adjusting the particle size to the above-mentioned particle size, a powder suitable for use in wet coating can be obtained.
[0020] 本発明の他の態様は、前記フラックス粉末をアルミニウム系材料のろう付け位置に 静電塗装により塗布するフラックス粉末の塗工方法である。 Another embodiment of the present invention is a method for applying a flux powder, wherein the flux powder is applied to a brazing position of an aluminum-based material by electrostatic coating.
[0021] この発明では、従来の湿式塗工で行われていた塗工工程前後における洗浄工程 及び乾燥工程が必要なくなるため、ろう付け工程を簡略ィ匕できる。 [0021] According to the present invention, the washing step and the drying step before and after the coating step, which are performed in the conventional wet coating, are not required, so that the brazing step can be simplified.
発明の効果 The invention's effect
[0022] 本発明のフラックス粉末は、粉末中に KA1F、 K A1F、 K A1F . H O及び K A1F The flux powder of the present invention contains KA1F, KA1F, KA1F.HO and KA1F in the powder.
4 2 5 2 5 2 3 6 をそれぞれ含み、 Mg含有量が 0. 1重量%— 1. 0重量%のアルミニウム系材料のろ う付けに用いるフラックス粉末の改良である。その特徴ある構成は、粉末の組成が K ZA1モル比 1. 00—1. 20、FZA1モル比 3. 80—4. 10の範囲を有し、粉末を X線 回折分析したときの K A1F · Η Οによる 2 Θ力 4deg— 45degの間に存在する最大 This is an improvement in the flux powder used for brazing aluminum-based materials containing 4 2 5 2 5 2 3 6 and having a Mg content of 0.1% by weight to 1.0% by weight. Its characteristic composition is that the composition of the powder has a molar ratio of KZA1 of 1.00-1.20 and a molar ratio of FZA1 of 3.80-4.10. The maximum force existing between 2 ° and 4 ° —45 ° due to Ο deg
2 5 2 2 5 2
回折ピーク強度が KA1Fによる最大ピーク強度の 12%以下であるところにある。 The diffraction peak intensity is less than 12% of the maximum peak intensity by KA1F.
4 Four
[0023] このように規定したフラックス粉末は、 K A1F · Η Οの組成及び結晶性が十分に形
成及び成長しないように制御されているため、 Mg含有量が 0. 1重量%— 1. 0重量 %のアルミニウム系材料のろう付けにおいて、従来のフラックス粉末に比べて溶融時 の流動性及び広がり性が増加し、材料表面の酸化被膜の除去にも優れ、 Mg含有ァ ルミ-ゥム系材料に対して従来のフラックス粉末を用いた場合に比べてその塗布量を 大幅に低減し、良好なろう付けを得ることができる。また、非腐食性で安全性に優れ、 かつ比較的安価で経済的に優れ、広く一般用に使用することができる。 [0023] The flux powder defined in this manner has a sufficient composition and crystallinity of K A1F · Η Ο It is controlled so that it does not grow and grow, so that when brazing aluminum-based materials with a Mg content of 0.1% by weight to 1.0% by weight, the fluidity and spread when melting compared to conventional flux powders The coating performance is improved, and the oxide film on the material surface is also excellently removed.The coating amount is significantly reduced for Mg-containing aluminum-based materials compared to the case where conventional flux powder is used. You can get brazing. Moreover, it is non-corrosive and excellent in safety, and is relatively inexpensive and economically excellent, and can be widely used for general purposes.
図面の簡単な説明 Brief Description of Drawings
[0024] [図 1]図 1は本発明のフラックス粉末の製造方法を示すフロー図である。 FIG. 1 is a flow chart showing a method for producing a flux powder according to the present invention.
[図 2]図 2は No. 1サンプルの DTA曲線を示す図である。 FIG. 2 is a diagram showing a DTA curve of No. 1 sample.
[図 3]図 3は No. 2サンプルの DTA曲線を示す図である。 FIG. 3 is a view showing a DTA curve of No. 2 sample.
[図 4]図 4は No. 19サンプルの DTA曲線を示す図である。 FIG. 4 is a diagram showing a DTA curve of No. 19 sample.
[図 5]図 5はサンプル No. 1— No. 23における KZA1モル比と相対強度の関係を示 す図である。 [FIG. 5] FIG. 5 is a graph showing the relationship between the molar ratio of KZA1 and the relative strength in Samples No. 1 to No. 23.
[図 6]図 6はサンプル No. 1— No. 23における KZA1モル比と広がり性の関係を示 す図である。 [FIG. 6] FIG. 6 is a graph showing the relationship between the molar ratio of KZA1 and the spreading property in Samples No. 1 to No. 23.
[図 7]図 7はサンプル No. 1— No. 23における相対強度と広がり性の関係を示す図 である。 [FIG. 7] FIG. 7 is a diagram showing the relationship between relative intensity and spreadability in Samples No. 1 to No. 23.
[図 8]図 8は No. 24— No. 42フラックス粉末サンプルにおける粒径 10 m以下の微 細粉末の含有量と 200メッシュ篩透過率の関係を示す図である。 FIG. 8 is a graph showing the relationship between the content of fine powder having a particle size of 10 m or less and the transmittance of a 200 mesh sieve in a No. 24-No. 42 flux powder sample.
[図 9]図 9は No. 24、 No. 29、 No. 30及び No. 40フラックス粉末サンプルの粒度分 布を示す図である。 [FIG. 9] FIG. 9 is a diagram showing the particle size distribution of the No. 24, No. 29, No. 30, and No. 40 flux powder samples.
[図 10]図 10は No. 24— No. 42フラックス粉末サンプルの粒度分布とアルミニウム平 板へのフラックス塗布量の関係を示す図である。 FIG. 10 is a graph showing the relationship between the particle size distribution of a No. 24-No. 42 flux powder sample and the amount of flux applied to an aluminum plate.
[図 11]図 11は No. 24— No. 42フラックス粉末サンプルの粒度分布と lm2あたりのフ ラックス塗布量の関係を示す図である。 FIG. 11 is a graph showing the relationship between the particle size distribution of No. 24-No. 42 flux powder samples and the amount of flux applied per lm 2 .
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0025] KF-A1F系フラックス粉末中に KA1Fの他に、 K A1Fや A1Fが存在すると、 [0025] In addition to KA1F in the KF-A1F flux powder, if K A1F or A1F is present,
3 4 2 5 3 6 3 4 2 5 3 6
Mg含有アルミニウム系材料に対しては、次の式(2)及び式(3)に示す反応が起こる
3Mg 2KA1F K A1F - 3KMgF (s) i KA1F 2AU (2) For Mg-containing aluminum-based materials, the reactions shown in the following equations (2) and (3) occur 3Mg 2KA1F K A1F-3KMgF (s) i KA1F 2AU (2)
4 2 5 3 4 2 5 3
3Mg 2KA1F K A1F - 3KMgF (s) i K A1F - 2AU (3) 3Mg 2KA1F K A1F-3KMgF (s) i K A1F-2AU (3)
3 6 2 5 3 6 2 5
[0026] このような反応により、 KA1Fの消費が抑制され、高融点の A1Fの析出も防止する [0026] By such a reaction, consumption of KA1F is suppressed, and precipitation of high melting point A1F is also prevented.
4 3 4 3
ことができる。しカゝしながら従来より使用されている KF— A1F系フラックス粉末の製造 be able to. Production of conventionally used KF-A1F flux powder
3 Three
は、図 1中の(a)— (c)及び次の式 (4)一式 (6)で示される湿式反応によって製造さ れる。 Is produced by a wet reaction represented by (a)-(c) in FIG. 1 and the following equation (4) and equation (6).
Al(OH) + 4HF→ HA1F + 3H 0 …… (4) Al (OH) + 4HF → HA1F + 3H 0 …… (4)
3 4 2 3 4 2
HA1F + KOH→ KA1F \ …… (5) HA1F + KOH → KA1F \ …… (5)
4 4 4 4
HA1F + HF + 2KOH→ K A1F ·Η 0丄 + Η 0 …… (6) HA1F + HF + 2KOH → K A1F · Η 0 丄 + Η 0 …… (6)
4 2 5 2 2 4 2 5 2 2
[0027] 得られた反応生成物は、図 1中の(d)—(f)にそれぞれ示すように、濾過洗浄工程 が施され、フラックス粉末を乾燥する工程、更に粉末の粒度分布と粒子形状を制御 する工程を経て製品化される。 [0027] The obtained reaction product is subjected to a filtration and washing step, a step of drying the flux powder, and a particle size distribution and particle shape of the powder, as shown in (d) to (f) in Fig. 1, respectively. It is commercialized through the process of controlling
[0028] 一方、得られたフラックス粉末には、式(6)で示される湿式反応により、 K A1F ·Η On the other hand, the obtained flux powder is subjected to K A1F · Η by a wet reaction represented by the formula (6).
2 5 2 2 5 2
Οの形態の結晶粒子が存在することになる。この結晶水を含有する K A1F ·Η Οは Crystal grains of the form Ο will be present. K A1F containing this water of crystallization
2 5 2 2 5 2
、ろう付け工程において水蒸気を発生し、アルミニウム系材料表面の酸ィ匕被膜を増 加させる。従って、フラックスの流動性が低減する。 In addition, water vapor is generated in the brazing process to increase the oxidation film on the surface of the aluminum-based material. Therefore, the fluidity of the flux is reduced.
[0029] 本発明者らは、 Mg含有アルミニウム系材料のろう付けにおいて、フラックスの溶融 時の流動性を改善し、 Mg含有アルミニウム系材料表面での Mgとフラックスとの反応 を抑制し得る、 Mg含有アルミニウム系材料のろう付け可能なフラックスを開発すること を進め、図 1中の(a)—(c)に示す製造方法によって得られる反応生成物中の組成を K/A1モノ kttl. 00—1. 20、 F/A1モノ ktt3. 80—4. 10の範囲内に規定すること で、フラックスの流動性を低減させる要因となっている K A1F ·Η Οの組成及び結晶 [0029] The present inventors have found that in brazing an Mg-containing aluminum-based material, it is possible to improve the fluidity of the flux during melting and suppress the reaction between Mg and the flux on the surface of the Mg-containing aluminum-based material. We proceeded with the development of a flux that can be used to braze the contained aluminum-based material. The composition of the reaction product obtained by the production method shown in (a)-(c) in Fig. 1 is calculated as K / A1 mono kttl. 1.20, F / A1 mono ktt3. The composition and crystal of K A1F · Η と な っ which are factors that reduce the fluidity of flux by specifying within the range of 80 to 4.10
2 5 2 2 5 2
性を十分に形成及び成長しないように制御し、 K A1F ·Η Οを不十分な結晶性及び The crystallinity is controlled so as not to form and grow sufficiently, and K A1F
2 5 2 2 5 2
結晶欠陥を有した粒子とすることで、低 、溶融温度で溶融時の広がり性に優れたフ ラックス粉末となることを見出した。このような組成を有するフラックス粉末は、溶融時 の流動性及び広がり性が増して ヽき、材料表面の酸ィ匕被膜除去にも優れるだけでな ぐアルミニウム系材料表面での Mgとフラックスとの反応を抑制しつつ、良好なろう付
け性が得られることが判明した。 It has been found that by using particles having crystal defects, a flux powder having excellent spreadability at the time of melting at a low melting temperature can be obtained. The flux powder having such a composition has an increased fluidity and spreadability upon melting, and is not only excellent in removing an oxidized film on the surface of the material, but also has an excellent effect on the exchange of Mg and flux on the surface of the aluminum-based material. Good brazing while suppressing the reaction It has been found that dispersibility can be obtained.
[0030] 本発明のフラックス粉末は、粉末中に KA1F、 K A1F、 K A1F .H O及び K A1F [0030] The flux powder of the present invention contains KA1F, KA1F, KA1F.HO and KA1F in the powder.
4 2 5 2 5 2 3 6 をそれぞれ含み、 Mg含有量が 0. 1重量%— 1. 0重量%のアルミニウム系材料のろ う付けに用いるフラックス粉末の改良である。その特徴ある構成は、粉末の組成が K ZA1モル比 1. 00—1. 20、FZA1モル比 3. 80—4. 10の範囲を有し、粉末を X線 回折分析したときの K A1F ·Η Οによる 2 Θ力 4deg— 45degの間に存在する最大 This is an improvement in the flux powder used for brazing aluminum-based materials containing 4 2 5 2 5 2 3 6 and having a Mg content of 0.1% by weight to 1.0% by weight. Its characteristic composition is that the composition of the powder has a molar ratio of KZA1 of 1.00-1.20 and a molar ratio of FZA1 of 3.80-4.10. The maximum force existing between 2 ° and 4 ° —45 ° due to Ο deg
2 5 2 2 5 2
回折ピーク強度が KA1Fによる最大ピーク強度の 12%以下であるところにある。粉 The diffraction peak intensity is less than 12% of the maximum peak intensity by KA1F. Powder
4 Four
末の組成力 ZA1モル比 1. 00—1. 20、 FZA1モル比 3. 80—4. 10の範囲内、粉 末を X線回折分析したときの K A1F ·Η Οによる 2 Θカ 44deg 45degの間に存在 Composition power of powder ZA1 molar ratio 1.00-1.20, FZA1 molar ratio 3.80-4.10. Within the range of K A1F · Η 分析 when powder is analyzed by X-ray diffraction 44 ° 45deg Exists between
2 5 2 2 5 2
する最大回折ピーク強度が KA1Fによる最大ピーク強度の 12%以下となるように規 The maximum diffraction peak intensity to 12% or less of the maximum peak intensity by KA1F.
4 Four
定して、 K A1F ·Η Οの組成及び結晶性が十分に形成及び成長しないように制御 Control so that the composition and crystallinity of K A1F · Η し な い do not form and grow sufficiently
2 5 2 2 5 2
する。このように規定したフラックス粉末は、 Mg含有アルミニウム系材料のろう付けに おいて、従来のフラックス粉末に比べて溶融時の流動性及び広がり性が増加し、材 料表面の酸ィ匕被膜の除去にも優れ、 Mg含有アルミニウム系材料に対して従来のフ ラックス粉末を用いた場合の塗布量に比べてその塗布量を大幅に低減でき、良好な ろう付けを得ることができる。また、非腐食性で安全性に優れ、かつ比較的安価で経 済的に優れ、広く一般用に使用することができる。本発明のフラックス粉末は、 Mg含 有量が 0. 1重量%— 1. 0重量%のアルミニウム系材料のろう付けに用いるフラックス 粉末であり、特に 0. 5重量%を越える Mg含有量のアルミニウム系材料に用いるのが 好適である。粉末の組成は KZA1モル比 1. 00—1. 20、 FZA1モル比 3. 80—4. 1 0の範囲であり、好ましくは KZA1モル比 1. 05—1. 15、FZA1モル比 4. 00—4. 1 0の範囲である。粉末を X線回折分析したときの K A1F ·Η Οによる 2 Θ力 4deg— I do. The flux powder specified in this manner increases the fluidity and spreadability during melting when brazing an Mg-containing aluminum-based material compared to conventional flux powder, and removes the oxide film on the material surface. The coating amount can be greatly reduced compared to the case where the conventional flux powder is used for the Mg-containing aluminum-based material, and good brazing can be obtained. In addition, it is non-corrosive and excellent in safety, relatively inexpensive and economical, and can be widely used for general purposes. The flux powder of the present invention is a flux powder used for brazing an aluminum-based material having a Mg content of 0.1% by weight to 1.0% by weight, and particularly an aluminum powder having a Mg content exceeding 0.5% by weight. It is suitable for use as a system material. The composition of the powder is in the range of KZA1 molar ratio 1.00-1.20, FZA1 molar ratio 3.80-4.10, preferably KZA1 molar ratio 1.05-1.15, FZA1 molar ratio 4.00. —4. In the range of 10. X-ray diffraction analysis of K A1F · Η 2 at 2 4 force 4deg—
2 5 2 2 5 2
45degの間に存在する最大回折ピーク強度は、 KA1Fによる最大ピーク強度の 12 The maximum diffraction peak intensity existing during 45 deg is the maximum peak intensity of KA1F.
4 Four
%以下である。 % Or less.
[0031] 本発明のフラックス粉末は、粉末を DTA分析したときの 550°C— 560°Cの温度範 囲に検出される溶融ピーク高さが、 560°Cを越える温度範囲に検出される溶融ピーク 高さよりも高くなるように規定される。 550°C— 560°Cの溶融ピーク高さ力 560°Cを 越える温度範囲の溶融ピーク高さよりも高くなつていれば、 K A1F ·Η Οの組成及び [0031] The flux powder of the present invention has a melting peak height detected in a temperature range of 550 ° C to 560 ° C when the powder is subjected to DTA analysis, and a melting peak height detected in a temperature range exceeding 560 ° C. It is defined to be higher than the peak height. 550 ° C — Melting peak height at 560 ° C If the melting peak height is higher than the temperature range above 560 ° C, the composition of K A1F
2 5 2
結晶性を十分に形成及び成長させな 、ように制御されて 、ることが判る。 2 5 2 It can be seen that the crystallinity is controlled so as not to form and grow sufficiently.
[0032] 本発明のフラックス粉末を静電塗装方法に用いる場合、粒径 10 m以下の微細粉 末の含有量が 17— 33重量%であって、粉末の 200メッシュ篩透過率力 0%以上と することが好ましい。フラックス粉末を前記範囲に調製することにより、フラックス粉末 が静電塗装装置の配管やノズル等に付着したり、閉塞を生じさせることがなぐかつ 高い塗装性が得られる。それは、本発明のフラックス粉末の性状が、従来の柱状粒 子を多く含むフラックス微粉末とは粒子形状が異なるため、粒径 10 m以下の微細 粉末の含有量が増加しても篩透過率や粉末流動性が低下しな 、ためである。粒径 1 0 m以下の微細粉末の含有量が下限値未満では、 Mg含有アルミニウム材料に対 する塗布量が実用上十分ではなぐ上限値を越えると静電塗装装置の配管やノズル 等に付着したり、閉塞を生じさせるおそれがある。なかでも粒径 10 m以下の微細粉 末の含有量が 19一 28重量%であって、粉末の 200メッシュ篩透過率を 50%以上と したフラックス粉末を用いて静電塗装することが特に好ましい。なお、本発明のフラッ タス粉末を湿式塗装方法に用いる場合、粒径 10 m以下の微細粉末の含有量が 2 5重量%以上とすることが好ま 、。 When the flux powder of the present invention is used in an electrostatic coating method, the content of the fine powder having a particle size of 10 m or less is 17 to 33% by weight, and the powder has a 200 mesh sieve transmittance force of 0% or more. It is preferable that By adjusting the flux powder within the above range, high paintability can be obtained without the flux powder adhering to the pipes or nozzles of the electrostatic coating device or causing blockage. This is because the properties of the flux powder of the present invention are different from those of the conventional flux fine powder containing a large amount of columnar particles, so that even if the content of the fine powder having a particle size of 10 m or less is increased, the sieve transmittance and the like are increased. This is because the powder fluidity does not decrease. If the content of the fine powder having a particle size of 10 m or less is less than the lower limit, if the amount applied to the Mg-containing aluminum material exceeds the upper limit that is not practically sufficient, it will adhere to the piping and nozzles of the electrostatic coating equipment. Or may cause blockage. Among them, it is particularly preferable to carry out electrostatic coating using a flux powder having a content of fine powder having a particle size of 10 m or less of 19 to 28% by weight and a transmittance of a 200 mesh sieve of 50% or more. . When the flat powder of the present invention is used in a wet coating method, the content of the fine powder having a particle size of 10 m or less is preferably 25% by weight or more.
[0033] 本発明のフラックス粉末により、従来ろう付けが困難であり、多量のフラックスを塗工 することで辛うじて実施されていた Mg含有量が 0. 1重量%— 1. 0重量%のアルミ- ゥム系材料のろう付け力 Mgを含有しな 、アルミニウム系材料に対する塗布量とほ ぼ同等量にまで低減でき、かつ良好なろう付け性を達成することができる。 [0033] The flux powder of the present invention makes it difficult to braze in the past and barely carried out by applying a large amount of flux to achieve an aluminum content of 0.1 wt%-1.0 wt%. Brazing Strength of Pummeled Material It is possible to reduce the amount to be applied to an aluminum-based material to almost the same amount without containing Mg, and to achieve good brazing property.
[0034] 次に、本発明のフラックス粉末の塗工方法について説明する。 Next, a method for applying a flux powder of the present invention will be described.
本発明のフラックス粉末を用いた塗工方法では、本発明のフラックス粉末、好ましく は粒径 10 μ m以下の微細粉末の含有量が 20重量%以上としたフラックス粉末を溶 媒に分散して分散液を調整し、分散液を Mg含有アルミニウム系材料のろう付け位置 に湿式塗装により塗布することで良好な塗工を行うことができる。粒径 10 m以下の 微細粉末の含有量が 20重量%以上としたフラックス粉末は、溶剤中での沈降性が低 ぐこのようなフラックス粉末を分散したスラリーでの塗布に適しており、塗布後にはろ う付け表面への付着性に優れる。 In the coating method using the flux powder of the present invention, the flux powder of the present invention, preferably a fine powder having a particle size of 10 μm or less and having a content of 20% by weight or more, is dispersed and dispersed in a solvent. Good coating can be performed by adjusting the liquid and applying the dispersion to the brazing position of the Mg-containing aluminum-based material by wet coating. Flux powder with a content of fine powder with a particle size of 10 m or less with a content of 20% by weight or more has low sedimentation in a solvent and is suitable for application with a slurry in which such flux powder is dispersed. Excellent adhesion to brazing surface.
[0035] 一方、従来のフラックス粉末を塗工する方法では、フラックス粉末を水に分散させた
スラリーを使用して散布したり、浸漬等を行うことにより被塗工材料に 5— 10g/m2程 度塗工することが一般的であり、この湿式塗工では塗工前に被塗工材料の溶剤洗浄 、塗工後の乾燥工程やその乾燥設備が必要となる。この湿式塗工では、ろう付けの 雰囲気炉への水分持ち込みも増加する可能性もあるなど、 Mg含有アルミニウム系材 料のろう付けでその性能を発揮することができない。 [0035] On the other hand, in the conventional method of applying a flux powder, the flux powder is dispersed in water. It is common to apply about 5 to 10 g / m 2 to the material to be coated by spraying or dipping using a slurry. In this wet coating, the material is coated before coating. A solvent washing process for the material, a drying process after coating, and a drying facility are required. In this wet coating, the performance of brazing Mg-containing aluminum-based materials cannot be demonstrated, as the amount of moisture brought into the furnace for brazing may increase.
[0036] そこで本発明のフラックス粉末の塗工方法では、本発明のフラックス粉末を用い、 乾燥したフラックス粉末を静電塗装方式で塗工する乾式塗工により行う。この乾式塗 ェには、粒径 10 /z m以下の微細粉末の含有量が 17— 33重量%、好ましくは 20— 2 5重量%であって、粉末の 200メッシュ篩透過率力 0%以上としたフラックス粉末が 好適である。粒径 10 /z m以下の微細粉末の含有量が 17— 33重量%であって、粉 末の 200メッシュ篩透過率力 0%以上としたフラックス粉末は、粉末での散布に要求 される分散性及び流動性を有する。従って、従来の湿式塗工で行われていた塗工ェ 程前後における洗浄工程及び乾燥工程が必要なくなるため、ろう付け工程を簡略ィ匕 することができる。従って、コスト面で有利となり、この本発明のフラックス粉末と本発 明のフラックス粉末を用いた塗工方法との組み合わせにより、更に大きな経済効果を 生むことができる。 [0036] Therefore, in the method for applying a flux powder of the present invention, the flux powder of the present invention is used, and dry flux powder is applied by an electrostatic coating method to perform dry coating. In this dry coating, the content of fine powder having a particle size of 10 / zm or less is 17 to 33% by weight, preferably 20 to 25% by weight, and the powder has a 200 mesh sieve permeability of 0% or more. The obtained flux powder is suitable. Flux powder with a content of fine powder with a particle size of 10 / zm or less of 17-33% by weight and a powder power of 200 mesh sieve permeability of 0% or more is required for dispersibility required for powder dispersion. And has fluidity. Therefore, the washing step and the drying step before and after the coating step performed in the conventional wet coating are not required, so that the brazing step can be simplified. Therefore, it is advantageous in terms of cost, and a greater economic effect can be produced by combining the flux powder of the present invention with the coating method using the flux powder of the present invention.
[0037] なお、本発明のフラックス粉末を、粒径 10 m以下の微細粉末の含有量が 25重量 %以上とすれば、湿式塗装方法であっても良好な塗装が可能となる。 [0037] When the content of the fine powder having a particle size of 10 m or less is 25% by weight or more in the flux powder of the present invention, satisfactory coating can be performed even by a wet coating method.
実施例 Example
[0038] 次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
<実施例 1 > <Example 1>
先ず、次の表 1に示す組成比を有するフラックス粉末サンプルを No. 1— No. 5ま で製造した。製造した No. 1— No. 5の各サンプルは、 KZA1モル比が 1. 05-1. 1 7、 FZA1モル比が 3. 84-4. 08の範囲内であり、サンプルを X線回折分析したとき の A1F ·Η Οによる 2 Θ力 4. 5degにおける相対強度は 5— 10%であった。 No. First, flux powder samples having the composition ratios shown in the following Table 1 were manufactured up to No. 1 to No. 5. The manufactured No. 1-No. 5 samples had a KZA1 molar ratio within the range of 1.05-1.17 and an FZA1 molar ratio within the range of 3.84-4.08. The relative strength at 2 deg. 4.5deg by A1F · Η Η was 5-10%. No.
2 5 2 2 5 2
1サンプルを DTA分析して得られた DTA曲線図を図 2に、 No. 2サンプルを DTA分 祈して得られた DTA曲線図を図 3にそれぞれ示す。 Fig. 2 shows a DTA curve obtained by DTA analysis of one sample, and Fig. 3 shows a DTA curve obtained by DTA analysis of No. 2 sample.
[0039] 図 2及び図 3より明ら力なように、 No. 1, No. 2サンプノレ ίまそれぞれ 550oC一 560
°Cの温度範囲に検出される溶融ピーク高さ力 560°Cを越える温度範囲に検出され る溶融ピーク高さよりも高くなつており、 K A1F ·Η Οの組成及び結晶性が十分に形 [0039] As is clear from Figs. 2 and 3, each of the No. 1 and No. 2 sampnoles 550 o C-560 Melting peak height force detected in the temperature range of ° C The melting peak height is higher than the melting peak height detected in the temperature range exceeding 560 ° C, and the composition and crystallinity of K A1F
2 5 2 2 5 2
成及び成長して 、な 、ことが判る。 It grows and grows.
[0040] 次いで、 Mg含有量が 0. 8重量%のアルミニウム系材料 Aをそれぞれ用意した。次 に、材料 Aの表面にサンプル 2mgを塗工して、 600°Cに維持した雰囲気炉に収容し て、約 6分間保持した。加熱後、材料を雰囲気炉より取出し、材料表面で溶融したサ ンプルの広がり性を測定した。アルミニウム系材料 Aへの広がり性試験結果を表 1〖こ 示す。また、 KZA1モル比と相対強度との関係を示す図を図 5に、 KZA1モル比と広 力 ^性との関係を示す図を図 6に、相対強度と広がり性との関係を示す図を図 7にそ れぞれ示す。 Next, an aluminum-based material A having a Mg content of 0.8% by weight was prepared. Next, 2 mg of the sample was applied to the surface of the material A, placed in an atmosphere furnace maintained at 600 ° C, and held for about 6 minutes. After heating, the material was taken out of the atmosphere furnace, and the spreadability of the sample melted on the material surface was measured. Table 1 shows the spreadability test results for aluminum material A. Fig. 5 shows the relationship between the KZA1 molar ratio and the relative strength, Fig. 6 shows the relationship between the KZA1 molar ratio and the broadening property, and Fig. 6 shows the relationship between the relative strength and the spreading property. Figure 7 shows each of them.
[0041] <比較例 1 > <Comparative Example 1>
次の表 1に示す組成比を有するフラックス粉末サンプル No. 6— No. 23を用いた 以外は実施例 1と同様にして広がり性を測定した。なお使用した No. 6, No. 7, No . 9, No. 11, No. 14, No. 16— No. 2 0, No. 22及び No. 23の各サンプルは K ZA1モル比、 FZA1モル比及び相対強度がそれぞれ本発明の範囲外であり、 No. 8 、 No. 10及び No. 12の各サンプルは KZAlモル比と相対強度が本発明の範囲外 であり、 No. 13及び No. 15の各サンプルは KZAlモル比と FZA1モル比が本発明 の範囲外であり、 No. 21サンプルは FZA1モル比が本発明の範囲外である。 No. 1 9サンプルを DTA分析して得られた DTA曲線図を図 4に示す。 The spreadability was measured in the same manner as in Example 1 except that flux powder samples No. 6 to No. 23 having the composition ratios shown in Table 1 below were used. The samples No. 6, No. 7, No. 9, No. 11, No. 14, No. 16—No. 20, No. 22 and No. 23 used were KZA1 mole ratio, FZA1 mole. The ratio and relative strength are out of the range of the present invention, respectively, and the samples of No. 8, No. 10 and No. 12 have the KZAl molar ratio and the relative strength out of the range of the present invention, and No. 13 and No. In each of the 15 samples, the KZAl molar ratio and the FZA1 molar ratio were out of the range of the present invention, and in the No. 21 sample, the FZA1 molar ratio was out of the range of the present invention. FIG. 4 shows a DTA curve diagram obtained by subjecting the No. 19 sample to DTA analysis.
[0042] 図 4より明らかなように、 No. 19サンプルは 550°C— 560°Cの温度範囲に検出され る溶融ピーク高さが、 560°Cを越える温度範囲に検出される溶融ピーク高さよりも高く なっておらず、 K A1F ·Η Οの組成及び結晶性が十分に形成及び成長していること [0042] As is clear from Fig. 4, the No. 19 sample has a melting peak height detected in a temperature range of 550 ° C to 560 ° C, and a melting peak height detected in a temperature range exceeding 560 ° C. And the composition and crystallinity of K A1F · Η Ο are sufficiently formed and grown.
2 5 2 2 5 2
が判る。 I understand.
図 5より明らかなように、図中、菱形で表示される K/A1モル比が 1. 20を越えてい る No . 6— No. 20、 No. 22及び No. 23のフラックス粉末は、図中、正四角形で表
示される KZAlモル比 1. 00-1. 20の範囲内のフラックス粉末に比べて相対強度 が高い傾向にあることが判る。また図 6より明らかなように、 KZA1モル比が 1. 20を越 えているフラックス粉末は、 KZA1モル比 1. 00-1. 20の範囲内のフラックス粉末に 比べて広がり性が低下する傾向があり、 Mg含有アルミニウム材料に必要とされる広 力 Sり性が得られていない。更に、図 7より明らかなように、相対強度が 12%を越える N o. 6— No. 12、 No. 14, No. 16— No. 20, No. 22及び No. 23フラックス粉末は 、相対強度が 12%以下のフラックス粉末に比べて広がり性が低下する傾向にあるこ とが判る。 As is clear from Fig. 5, the flux powders of No. 6—No. 20, No. 22 and No. 23, whose K / A1 molar ratio indicated by diamonds in the figure exceeds 1.20, Medium, square It can be seen that the relative strength tends to be higher than the flux powder within the indicated KZAl molar ratio of 1.00-1.20. Also, as is evident from FIG. 6, flux powder having a KZA1 molar ratio exceeding 1.20 tends to have a lower spreadability than flux powder having a KZA1 molar ratio in the range of 1.00-1.20. There is not enough wide strength S required for Mg-containing aluminum material. Further, as is clear from FIG. 7, the fluxes of No. 6—No. 12, No. 14, No. 16—No. 20, No. 22, and No. It can be seen that the spreadability tends to be lower than that of a flux powder with a strength of 12% or less.
[0045] <実施例 2 > <Example 2>
実施例 1で製造した各フラックス粉末サンプルのうち、次の表 2に示すフラックス粉 末サンプルを No. 24— No. 42まで製造した。これらのフラックス粉末サンプルは粒 径 10 m以下の微細粉末の含有量が 11. 6— 33. 8重量0 /0、粉末の 200メッシュ篩 透過率が 84. 0%— 37%にそれぞれ調製したものである。この製造した No. 24— N o. 42フラックス粉末サンプルを用いて以下に示す静電塗装試験を行った。 Among the flux powder samples manufactured in Example 1, the flux powder samples shown in Table 2 below were manufactured up to No. 24 to No. 42. The content of these flux powder samples following fine powder particle size 10 m is 11. 6 33.8 weight 0/0, 200 mesh sieve permeability of powder 0% 84. - which were prepared in 37% It is. The following electrostatic coating test was performed using the manufactured No. 24-No. 42 flux powder sample.
[0046] 静電塗装試験では、先ず 40mm X 50mm,厚さ 1. 0mmの Mg含有量が 0. 4-0. [0046] In the electrostatic coating test, first, the Mg content of 40mm X 50mm, thickness 1.0mm was 0.4-0.
5重量%のアルミニウム平板、乾燥させた 250mlポリスチレン広口容器及び前記フラ ックス粉末サンプル 10. 0gをそれぞれ用意した。次いで、このアルミニウム平版の全 面をアセトンにて洗浄し、洗浄したアルミニウム平板を 100°Cで 30分間乾燥した後、 その重量を測定した。次に、乾燥させたポリスチレン広口容器にフラックス粉末サン プル 10. 0gを入れ、広口容器にポリプロピレンの蓋をして密閉した後、この密閉した 広口容器をシェーカーにより 2分間攪拌することにより、広口容器内のフラックス粉末 サンプルを帯電させた。次に、ポリスチレン広口容器の中に先ほどアセトン洗浄を施 したアルミニウム平板を入れて、再び蓋を閉め、密閉した広口容器を 6回振盪し、広 口容器内で帯電しているフラックス粉末サンプルをアルミニウム平板の表裏面に付着 させた。更に、振盪した広口容器力もフラックス粉末サンプルが付着したアルミニウム 平板をピンセットにて取出し、その重量を測定した。このフラックス粉末サンプルが付 着したアルミニウム平板の重量と、アセトン洗浄を施したフラックス粉末サンプル付着 前のアルミニウム平板の重量差力もアルミニウム平板に付着したフラックス粉末サン
プル重量を計算した。次の表 2に No. 24— No. 42フラックス粉末サンプルの粒度分 布、粒径における累積重量、静電塗装試験結果をそれぞれ示す。また、図 8に各フラ ックス粉末サンプルにおける粒径 10 μ m以下の微細粉末の含有量と 200メッシュ篩 透過率の関係を、図 9に No. 24、 No. 29、 No. 30及び No. 40フラックス粉末サン プルの粒度分布を、図 10に各フラックス粉末サンプルの粒度分布とアルミニウム平板 へのフラックス粉末サンプル塗布量の関係を、図 11に各フラックス粉末サンプルの粒 度分布と lm2あたりのフラックス粉末サンプル塗布量の関係をそれぞれ示す。 A 5% by weight aluminum plate, a dried 250 ml polystyrene wide-mouth container, and 10.0 g of the above flux powder sample were prepared. Next, the entire surface of the aluminum lithographic plate was washed with acetone, and the washed aluminum plate was dried at 100 ° C. for 30 minutes, and the weight was measured. Next, 10.0 g of the flux powder sample was placed in the dried polystyrene wide-mouthed container, and the wide-mouthed container was sealed with a polypropylene lid, and the sealed wide-mouthed container was stirred for 2 minutes with a shaker to obtain the wide-mouthed container. The flux powder sample inside was charged. Next, place the aluminum plate that was previously washed with acetone into a polystyrene wide-mouth container, close the lid again, shake the sealed wide-mouth container six times, and remove the charged flux powder sample in the wide-mouth container from aluminum. It was attached to the front and back surfaces of a flat plate. Further, with the force of the shaken wide-mouthed container, the aluminum plate on which the flux powder sample was adhered was taken out with tweezers and its weight was measured. The weight difference between the aluminum plate to which the flux powder sample was attached and the weight difference between the aluminum plate before the acetone-washed flux powder sample and the flux powder sample adhered to the aluminum plate were also determined. The pull weight was calculated. Table 2 below shows the particle size distribution, the cumulative weight at the particle size, and the results of the electrostatic coating test of the No. 24 to No. 42 flux powder samples. Fig. 8 shows the relationship between the content of fine powder having a particle size of 10 μm or less and the transmittance of a 200 mesh sieve in each flux powder sample, and Fig. 9 shows No. 24, No. 29, No. 30, and No. 40 the particle size distribution of the flux powder samples, each flux powder sample in Figure 10 the flux powder sample application amount of relationship to particle size distribution and aluminum plates of each flux powder sample in Figure 11 particle size distributions and lm 2 per The relationship between the applied amounts of the flux powder sample is shown.
[表 2]
[Table 2]
図 8より明らかなように、粒径 10 μ m以下の微細粉末の含有量と 200メッシュ篩透 過率は相関関係を有し、微細粉末含有量が少なくなるほど篩透過率が高くなり、微
細粉末含有量が多くなるほど篩透過率が低くなる関係が見てとれる。この関係から微 細粉末の割合が高まるほど目詰まりし易くなる傾向が判る。 As is evident from FIG. 8, the content of fine powder having a particle size of 10 μm or less and the 200-mesh sieve permeability have a correlation, and the smaller the fine powder content, the higher the sieve permeability and the finer the sieve permeability. It can be seen that the sieve transmittance decreases as the fine powder content increases. From this relationship, it can be seen that the higher the proportion of the fine powder, the easier the clogging becomes.
[0049] 一般的にアルミニウム材料へのろう付けは、フラックス塗布量が 4一 10g/m2の範 囲内で行われており、アルミニウム材料表面に形成された酸化物層の除去には少な くとも 4gZm2以上のフラックスが塗布される必要があると考えられる。そのため、片面 20cm2 (40mm X 50mm)の 0. 4—0. 5重量0 /0Mg含有アルミニウム平板でフラック ス粉末サンプル塗布量が 4g/m2以上となる、アルミニウム平板両面での付着量が 1 7mg以上のものを静電塗装試験における合格基準とした。 [0049] Generally brazing to the aluminum material, the flux coating amount has been performed in 4 one 10 g / m 2 of within range, low to remove the oxide formed on the aluminum material surface layer Kutomo It is considered that a flux of 4 gZm 2 or more needs to be applied. Therefore, 0.5 4-0. 5 wt 0/0 Mg-containing fluxes powder sample application amount of aluminum flat sided 20cm 2 (40mm X 50mm) is 4g / m 2 or more, the amount of deposition of an aluminum flat sided Those of 17 mg or more were regarded as acceptance criteria in the electrostatic coating test.
[0050] 表 2より明らかなように、 No. 29— No. 42フラックス粉末サンプルがアルミニウム平 板へのフラックス塗布量 17mg以上、 lm2あたりの塗布量 4. 3g/m2と優れた結果が 得られた。微細粉末の含有量が低い、例えば No. 24フラックス粉末サンプルでは、 図 9に示すように、 10 mを越える大きな粒子の割合が高ぐこの粒径が大きな粒子 がアルミニウム表面力 脱落したために、アルミニウム平板に付着する割合が低下し たと考えられる。また図 10及び図 11の結果から、粒径 10 m以下の微細粉末の含 有量が多くなるほど塗布量が増加し、含有量が少なくなるほど塗布量が減少していく ことが判る。その理由としては、粒径 10 μ mを越える大きな粒子が多いとアルミニウム 表面力 脱落し易くなつてしまい、アルミニウム平板に付着する割合が低下して十分 な塗布量が確保できないためと考えられる。なお従来のフラックス粉末では、粒径の 小さな粒子の含有量が高くなると、篩透過率や粉末流動性が低下してしまう欠点を有 していたが、本発明のフラックス粉末では、従来の柱状粒子を多く含むフラックス微粉 末とは粒子形状が異なるため、粒径 10 μ m以下の微細粉末の含有量が増加しても 篩透過率や粉末流動性が低下しない。また No. 24— No. 42フラックス粉末サンプ ルを静電塗装装置を用いてアルミニウム材料に塗装したところ、 200メッシュ篩透過 率が 50%以下の No. 40及び No. 41フラックス粉末サンプルでは配管やノズルの閉 塞が一部発生し始め、 200メッシュ篩透過率力 0%以下の No. 42フラックス粉末サ ンプルでは、配管やノズルが閉塞してしまった。このことから、粒径 10 μ m以下の微 細粉末の含有量が 17— 33重量0 /0、粉末の 200メッシュ篩透過率力 0%以上の No . 29— No. 41フラックス粉末サンプルが静電塗装に用いる際に特に好適であること
が判った。 [0050] As is clear from Table 2, the results of No. 29- No. 42 flux powder samples fluxing amount 17mg or more to aluminum flat plate, and excellent coating weight 4. 3 g / m 2 per lm 2 Obtained. In the case of the No. 24 flux powder sample, which has a low content of fine powder, for example, as shown in Fig. 9, the proportion of large particles exceeding 10 m is high.This large particle has a large aluminum surface force. It is considered that the rate of adhesion to the flat plate decreased. From the results of FIGS. 10 and 11, it can be seen that the coating amount increases as the content of the fine powder having a particle size of 10 m or less increases, and the coating amount decreases as the content decreases. The reason is considered to be that if there are many large particles exceeding 10 μm in diameter, the aluminum surface force tends to fall off, and the rate of adhesion to the aluminum flat plate decreases, so that a sufficient coating amount cannot be secured. The conventional flux powder had a disadvantage that the sieve transmittance and the powder fluidity were reduced when the content of particles having a small particle size was increased. Since the particle shape is different from that of the fine powder containing a large amount of fine powder, even if the content of the fine powder having a particle size of 10 μm or less increases, the sieve transmittance and the powder fluidity do not decrease. In addition, when No. 24—No. 42 flux powder samples were applied to aluminum using an electrostatic coating device, pipes and pipes were used for No. 40 and No. 41 flux powder samples with a 200 mesh sieve transmittance of 50% or less. Some nozzle clogging began to occur, and pipes and nozzles were clogged with a No. 42 flux powder sample with a 200 mesh sieve permeability of 0% or less. Therefore, particle size 10 mu m or less fine fine powder content of 17 33 wt 0/0, 200 mesh sieve transmittance force of 0% or more of powder No. 29- No. 41 flux powder samples electrostatic Especially suitable for use in electropainting I understood.
[0051] なお、 Mgを含有しないアルミニウム平板や 0. 05重量0 /0Mg含有アルミニウム平板 についても、フラックス粉末サンプル No. 24— No. 42を用いて静電塗装試験を行つ たが、前記表 2に示す結果とほぼ同様の試験結果が得られた。 [0051] Note that also aluminum flat plate and 0.05 wt 0/0 Mg-containing aluminum flat plate containing no Mg, but the electrostatic coating test using a flux powder samples No. 24- No. 42 having conducted, the Test results almost similar to those shown in Table 2 were obtained.
産業上の利用可能性 Industrial applicability
[0052] 本発明のフラックス粉末は、 Mg含有アルミニウム系材料のろう付けに限らず、 Mgを 含有しないアルミニウム材料のろう付けにも適用できる。
[0052] The flux powder of the present invention can be applied not only to brazing of an Mg-containing aluminum material, but also to brazing of an aluminum material containing no Mg.
Claims
[1] 粉末中に KAIF、 K AIF、 K AIF · Η O及び K AIFをそれぞれ含み、マグネシ [1] The powder contains KAIF, KAIF, KAIF
4 2 5 2 5 2 3 6 4 2 5 2 5 2 3 6
ゥム含有量が 0. 1重量%— 1. 0重量%のアルミニウム系材料のろう付けに用いるフ ラックス粉末において、 In a flux powder used for brazing aluminum-based materials with a 0.1% by weight—1.0% by weight
前記粉末の組成力 ZA1モル比 1. 00—1. 20、FZA1モル比 3. 80—4. 10の範 囲を有し、 The composition power of the powder has a range of ZA1 molar ratio of 1.00-1.20 and FZA1 molar ratio of 3.80-4.10.
前記粉末を X線回折分析したときの K A1F · Η Οによる 2 Θ力 4deg— 45degの When the powder was analyzed by X-ray diffraction, K A1F · Η 2
2 5 2 2 5 2
間に存在する最大回折ピーク強度が KA1Fによる最大ピーク強度の 12%以下であ The maximum diffraction peak intensity existing between them is 12% or less of the maximum peak intensity by KA1F.
4 Four
ることを特徴とするアルミニウム系材料のろう付け用フラックス粉末。 A flux powder for brazing aluminum-based materials, characterized in that:
[2] 前記フラックス粉末の組成が K/A1モル比 1. 05—1. 15、FZA1モル比 4. 00— 4[2] The flux powder had a K / A1 molar ratio of 1.05-1.15 and an FZA1 molar ratio of 4.00-4.
. 10の範囲を有する請求項 1記載のアルミニウム系材料のろう付け用フラックス粉末。 The flux powder for brazing an aluminum-based material according to claim 1, having a range of 10.
[3] 粉末を示差熱分析したときの 550°C— 560°Cの温度範囲に検出される溶融ピーク 高さが、 560°Cを越える温度範囲に検出される溶融ピーク高さよりも高い請求項 1記 載のアルミニウム系材料のろう付け用フラックス粉末。 [3] The height of the melting peak detected in the temperature range of 550 ° C-560 ° C when the powder is subjected to differential thermal analysis is higher than the height of the melting peak detected in the temperature range exceeding 560 ° C. Flux powder for brazing aluminum-based materials described in 1.
[4] 粒径 10 m以下の微細粉末の含有量が 17— 33重量%であって、前記粉末の 20 0メッシュ篩透過率力 0%以上である請求項 1記載のアルミニウム系材料のろう付け 用フラックス粉末。 [4] The brazing of the aluminum-based material according to claim 1, wherein the content of the fine powder having a particle size of 10 m or less is 17 to 33% by weight, and the powder has a 200 mesh sieve permeability of 0% or more. For flux powder.
[5] 粒径 10 μ m以下の微細粉末の含有量が 19一 28重量%であって、粉末の 200メッ シュ篩透過率が 50%以上である請求項 1記載のアルミニウム系材料のろう付け用フラ ックス粉末。 [5] The brazing of the aluminum-based material according to claim 1, wherein the content of the fine powder having a particle size of 10 µm or less is 19 to 28% by weight, and the powder has a 200 mesh sieve transmittance of 50% or more. Flux powder.
[6] 粒径 10 μ m以下の微細粉末の含有量が 25重量%以上である請求項 1記載のアル ミニゥム系材料のろう付け用フラックス粉末。 6. The flux powder for brazing aluminum-based material according to claim 1, wherein the content of the fine powder having a particle size of 10 μm or less is 25% by weight or more.
[7] 請求項 4記載のフラックス粉末をアルミニウム系材料のろう付け位置に静電塗装に より塗布するフラックス粉末の塗工方法。 [7] A method for applying a flux powder according to claim 4, wherein the flux powder is applied to a brazing position of an aluminum-based material by electrostatic coating.
[8] 請求項 6記載のフラックス粉末をアルミニウム系材料のろう付け位置に湿式塗装に より塗布するフラックス粉末の塗工方法。
[8] A method for applying a flux powder according to claim 6, wherein the flux powder is applied to a brazing position of an aluminum-based material by wet coating.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003337120 | 2003-09-29 | ||
JP2003-337120 | 2003-09-29 | ||
JP2004270635A JP4845360B2 (en) | 2003-09-29 | 2004-09-17 | Flux powder for brazing aluminum material and coating method of the flux powder |
JP2004-270635 | 2004-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005030434A1 true WO2005030434A1 (en) | 2005-04-07 |
Family
ID=34395614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/014178 WO2005030434A1 (en) | 2003-09-29 | 2004-09-28 | Brazing flux powder of aluminum material and method of applying the flux powder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4845360B2 (en) |
WO (1) | WO2005030434A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006104007A1 (en) * | 2005-03-25 | 2006-10-05 | Jemco Inc. | Flux powder for brazing aluminum material and process for producing the flux powder |
CN102862006A (en) * | 2012-10-18 | 2013-01-09 | 浙江亚通焊材有限公司 | Preparation method of aluminum alloy soldering flux nano powder |
WO2014038361A1 (en) * | 2012-09-04 | 2014-03-13 | 株式会社神戸製鋼所 | Aluminum composite material, heat exchanger, and flux |
WO2020126090A1 (en) * | 2018-12-20 | 2020-06-25 | Solvay Sa | Brazing flux, brazing flux composition and process for manufacturing |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5921994B2 (en) * | 2011-10-26 | 2016-05-24 | 株式会社神戸製鋼所 | Flux composition and brazing sheet |
US20190099845A1 (en) * | 2017-10-04 | 2019-04-04 | Honeywell International Inc. | Low melting point potassium aluminum fluoride flux agent |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58202996A (en) * | 1982-05-21 | 1983-11-26 | Hitachi Ltd | Brazing method |
JPH04361895A (en) * | 1991-06-05 | 1992-12-15 | Tohkem Prod:Kk | Flux for brazing aluminum and production thereof |
JP2003512179A (en) * | 1999-10-25 | 2003-04-02 | ゾルファイ フルーオル ウント デリヴァーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Flux for dry application |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3749136B2 (en) * | 2001-03-15 | 2006-02-22 | 株式会社神戸製鋼所 | Brazing sheet made of aluminum alloy for non-corrosive flux brazing and brazing method |
-
2004
- 2004-09-17 JP JP2004270635A patent/JP4845360B2/en not_active Expired - Fee Related
- 2004-09-28 WO PCT/JP2004/014178 patent/WO2005030434A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58202996A (en) * | 1982-05-21 | 1983-11-26 | Hitachi Ltd | Brazing method |
JPH04361895A (en) * | 1991-06-05 | 1992-12-15 | Tohkem Prod:Kk | Flux for brazing aluminum and production thereof |
JP2003512179A (en) * | 1999-10-25 | 2003-04-02 | ゾルファイ フルーオル ウント デリヴァーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Flux for dry application |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006104007A1 (en) * | 2005-03-25 | 2006-10-05 | Jemco Inc. | Flux powder for brazing aluminum material and process for producing the flux powder |
EP1862251A1 (en) * | 2005-03-25 | 2007-12-05 | Jemco Inc. | Flux powder for brazing aluminum material and process for producing the flux powder |
JPWO2006104007A1 (en) * | 2005-03-25 | 2008-09-04 | 株式会社ジェムコ | Flux powder for brazing aluminum material and method for producing the flux powder |
EP1862251A4 (en) * | 2005-03-25 | 2009-07-29 | Jemco Inc | Flux powder for brazing aluminum material and process for producing the flux powder |
JP4676489B2 (en) * | 2005-03-25 | 2011-04-27 | 三菱マテリアル電子化成株式会社 | Flux powder for brazing aluminum material and method for producing the flux powder |
WO2014038361A1 (en) * | 2012-09-04 | 2014-03-13 | 株式会社神戸製鋼所 | Aluminum composite material, heat exchanger, and flux |
JP2014050846A (en) * | 2012-09-04 | 2014-03-20 | Kobe Steel Ltd | Aluminum composite material, heat exchanger and flux |
CN102862006A (en) * | 2012-10-18 | 2013-01-09 | 浙江亚通焊材有限公司 | Preparation method of aluminum alloy soldering flux nano powder |
WO2020126090A1 (en) * | 2018-12-20 | 2020-06-25 | Solvay Sa | Brazing flux, brazing flux composition and process for manufacturing |
CN113242778A (en) * | 2018-12-20 | 2021-08-10 | 索尔维公司 | Brazing flux, brazing flux composition and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2005125406A (en) | 2005-05-19 |
JP4845360B2 (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6264096B1 (en) | Flux suitable for soldering light metals such as aluminum | |
AU2004222774B2 (en) | Colloidal silica binder system | |
KR100919151B1 (en) | Brazing flux powder for aluminum based material and production method of flux powder | |
JPH0551398B2 (en) | ||
EP0671242A1 (en) | Modified substrate surface | |
WO1999048641A1 (en) | New fluxing agents | |
SK77493A3 (en) | Method of brazing metal surfaces | |
JPH03226396A (en) | Brazing flux | |
TW201136665A (en) | Fine particulate flux | |
JP2013514887A (en) | Flux formulation with increased dynamic viscosity containing dehydrated K2AlF5, process for its production and use thereof | |
US6648212B2 (en) | Components coated with an aluminum-silicon alloy | |
WO2005030434A1 (en) | Brazing flux powder of aluminum material and method of applying the flux powder | |
JP2009172615A (en) | Brazing method of aluminum or aluminum alloy member | |
MXPA06010750A (en) | Non-corrosive auxiliary agents, based on alkali fluoroaluminates and containing co-precipitated metallates, for soldering aluminium. | |
JP4938196B2 (en) | Alkali metal fluorozincate and method for producing the same | |
JP3749979B2 (en) | Potassium fluoroaluminate columnar particles, process for producing the same, and flux comprising the particles | |
JP4235073B2 (en) | Flux powder for brazing aluminum material and coating method of the flux powder | |
WO2014175142A1 (en) | Flux composition and brazing sheet | |
JP2006346680A (en) | Method for brazing aluminum alloy | |
JPS61195798A (en) | Flux composition for brazing | |
JPS61219466A (en) | Brazing method for aluminum and its alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |