[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005026501A1 - Turbine rotor blade - Google Patents

Turbine rotor blade Download PDF

Info

Publication number
WO2005026501A1
WO2005026501A1 PCT/JP2003/011564 JP0311564W WO2005026501A1 WO 2005026501 A1 WO2005026501 A1 WO 2005026501A1 JP 0311564 W JP0311564 W JP 0311564W WO 2005026501 A1 WO2005026501 A1 WO 2005026501A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
turbine
tip
cover
section
Prior art date
Application number
PCT/JP2003/011564
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomi Nakajima
Eiji Saito
Yutaka Yamashita
Hideo Yoda
Kenichiro Nomura
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2005508908A priority Critical patent/JP4299301B2/en
Priority to AU2003266505A priority patent/AU2003266505A1/en
Priority to PCT/JP2003/011564 priority patent/WO2005026501A1/en
Publication of WO2005026501A1 publication Critical patent/WO2005026501A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding

Definitions

  • the present invention relates to a turbine rotor blade provided with a cover for restraining twist at a blade tip.
  • the shape of the evening bin blade is closely related to the efficiency of the evening bin used in the power plant, and is being improved every day to achieve higher efficiency.
  • the working fluid passes between cascades.
  • the turbine In order to reduce the secondary flow loss that occurs near the wall surface, the turbine is inclined with respect to the radial direction of the turbine, the root is at the tip, the tip is partially curved, or the middle is locally curved.
  • Various shapes of turbine blades have been proposed.
  • the tip of the turbine blade may be connected by a connection cover.
  • a torsional moment generated in the direction opposite to the twist of the blade due to the centrifugal force during rotation, that is, an untwist generates a pressing force between the covers of adjacent blades and makes contact connection.
  • the lr covers of the adjacent wings may rub strongly, and local stress may act on the cover, so use it in high temperature and high pressure parts In such a case, the influence on the creep strength becomes large. Disclosure of the invention
  • the present invention has been made in view of the above-described conventional problems, and has an improved untwisting effect due to centrifugal force. Even when a relatively short wing is targeted, the connecting force between the covers during rotation is reduced.
  • An object of the present invention is to provide a turbine rotor blade capable of facilitating assembling work, suppressing local concentration of stress, and improving reliability by ensuring sufficient reliability.
  • the present invention is directed to a turbine rotor blade having a cover at the tip of a blade, wherein at least the centroid position of the blade section at the tip of the blade is the cross section of the blade at the root of the blade.
  • the profile portion is formed so as to be deviated from the radial line of the turbine extending from the center, and sufficient space is provided between circumferentially adjacent covers according to the positional relationship between the centroid and the radial line and the rotation direction of the profile portion.
  • the inclination direction of the tangential horn of the cover with respect to the axis of the turbine is set so that the pressing force acts.
  • Figure 1 is a schematic diagram of a computational model of a turbine rotor blade for analyzing the relationship between the inclination direction of the blade profile and the torsional return.
  • Fig. 2W A diagram showing the positional relationship of the centroid of the calculation model shown in Fig. 1 with respect to the radial line in each cross section of the wing.
  • FIG. 3 is a diagram showing the correlation between the inclination direction of the blade profile and the torsion return obtained using the calculation model in Fig. 1.
  • FIG. 4 is a perspective view illustrating a schematic configuration of the first embodiment of the turbine bucket of the present invention.
  • FIG. 5 is a view of the blade shape of the turbine blade shown in FIG. 4 as viewed from the outer peripheral side in the evening bin radial direction.
  • FIG. 6 is an external view of the turbine blade shown in FIG. 4 as viewed from the outer peripheral side in the turbine radial direction.
  • FIG. 7 is an external view of the turbine blade shown in FIG. 4 as viewed from the circumferential direction.
  • FIG. 8 is a perspective view illustrating a schematic configuration of a second embodiment of the turbine bucket of the present invention.
  • FIG. 9 is an external view of the turbine blade shown in FIG. 8 as viewed from the outer peripheral side in the turbine radial direction.
  • FIG. 10 is an external view of the turbine blade shown in FIG. 8 as viewed from the circumferential direction.
  • FIG. 11 is a perspective view illustrating a schematic configuration of a third embodiment of the turbine bucket of the present invention.
  • FIG. 12 is an external view of the turbine rotor blade shown in FIG. 11 as viewed from the outer peripheral side in the evening bin radial direction.
  • FIG. 13 is a perspective view illustrating a schematic configuration of a fourth embodiment of the turbine bucket of the present invention.
  • FIG. 14 is an external view of the turbine rotor blade shown in FIG. 13 viewed from the outer peripheral side in the turbine radial direction.
  • FIG. 15 is an external view of the fifth embodiment of the turbine blade of the present invention viewed from the outer peripheral side in the turbine radial direction.
  • FIG. 16 is a perspective view illustrating a schematic configuration of a sixth embodiment of the turbine bucket of the present invention.
  • FIG. 17 is a perspective view illustrating a schematic configuration of a sixth embodiment of the turbine bucket of the present invention.
  • the evening bin rotor blade according to the present invention is applicable to various fluid machines including, for example, a steam turbine and a gas turbine.
  • a case of a steam evening bin will be described as an example.
  • the principle of the present invention will be described with reference to FIGS.
  • centrifugal force causes the blade to untwist due to the deviation of the torsion center position (centroid) of each blade section from the radial line extending from the centroid of the blade root and the difference in centrifugal force acting on each blade section. Occurs. Focusing on this, the inventors of the present application considered that the blade profile was formed by stacking blade cross sections orthogonal to the turbine radial direction line from the root to the tip, and considered the radius of the centroid position of each blade cross section. We analyzed the correlation between the deviation with respect to the direction line and the torsion phenomenon that occurred, and examined the blade profile that would provide a greater effect of torsion.
  • Figure 1 shows a schematic diagram of the turbine rotor blade calculation model used in this analysis.
  • the blade cross section 101 which is perpendicular to the evening bin radial direction line R, is stacked from its root portion 102 to its tip portion 103. It is formed. A cover 104 is physically provided at the distal end 103.
  • Each wing cross section obtained by cutting this model 100 at equal intervals from the base part 102 to the tip part 103, and then the respective centroids O and root parts The correlation between the deviation of the radial line R of the turbine extending from the centroid of the blade cross section and the torsional return (untwist angle) generated during rotation was analyzed. However, the shapes of the wing cross sections 101 a to 101 j are almost the same.
  • the tip portion 103 is set to a free end, and there is no binding force by the cover 104.
  • the root part 102 is a fixed end fixed to the mounting part 105 for a turbine disk (not shown).
  • FIG. 2 is a diagram showing various positional relationships of the centroid O with respect to the radial line R in the wing cross sections 101 a to 101 j.
  • cases 1 to 8 were assumed in which the model 100 was inclined in each direction on the coordinates with the steam flow direction X and the circumferential direction Y as axes.
  • the upstream side is + (plus) and the downstream side is-(minus).
  • the back side of the model 100 is + (plus), and the ventral side is-(minus). (See also Fig. 1 3 €>.)
  • Figure 3 shows the calculation results of the correlation between the wing cross section and the untwist angle in each case 1 to 8. From this calculation result, when the model 100 is tilted upstream in the steam flow direction X, the torsional return angle (untwist angle) increases, and conversely, when the model 100 is tilted downstream in the steam flow direction X, However, there was a tendency for the torsional return angle to decrease (to further twist in the torsional direction of the wing). In particular, the untwisting angle increased when the blade was inclined upstream of the steam and to the back of the blade (case 8).
  • the reverse torsion ie, the phenomenon that the blade profile is further twisted in the twisting direction
  • the phenomenon of twisting back in the direction opposite to the twisting direction by inclining to the upstream side, and in the twisting direction by inclining to the downstream side causes the blade profile to move upstream and downstream of the steam. It has also been found that when tilted to the side, the untwist angle increases.
  • the present inventors have found that, based on the above analysis results, it is possible to control the torsional return angle of the turbine blade during rotation by adjusting the inclination of the blade with respect to the radial line of the turbine.
  • each of the embodiments described below sequentially increases the effect of torsional return during rotation, and effectively converts the torsional return to the binding force of the cover, so that adjacent ones can be connected to each other. It is for firmly contacting and connecting.
  • FIG. 4 is a perspective view showing a schematic configuration of a first embodiment of the evening bin rotor blade of the present invention
  • FIG. 5 is a view of the blade shape of the evening bin rotor blade of FIG.
  • Fig. 6 is an external view of the turbine blade shown in Fig. 4 as viewed from the outer peripheral side in the turbine radial direction
  • Fig. 7 is an external view of the turbine blade shown in Fig. 4 as viewed from the circumferential direction.
  • a flat cover 3 is provided at the tip 2 of the turbine blade 1 in the present embodiment.
  • the blade profile portion 4 of the evening bin rotor blade 1 is twisted counterclockwise from the root portion 5 toward the tip portion 2 when viewed from the outer peripheral side in the turbine radial direction.
  • the root 5 of the turbine blade 1 is fixed to a rotating shaft (not shown) (turbine disk or a mounting member for this disk).
  • the turbine blades 1 are arranged in the circumferential direction Y,
  • the cover 3 is in contact with the turbine blades 1 adjacent to each other in the circumferential direction ⁇ via a contact surface ⁇ (including a case where there is a slight gap when viewed microscopically).
  • this contact surface ⁇ is located on the upstream side of the cover 3 in the flow direction X, and is inclined in the rotation direction toward the downstream side in the flow direction X with respect to the turbine axis ⁇ . are doing. Therefore, the angle ⁇ formed by the contact surface Z and the axial spring A clockwise from the contact surface Z when viewed from the outer peripheral side in the turbine radial direction is an obtuse angle.
  • the profile portion 4 of the turbine rotor blade 1 in the present embodiment has a pressing force F acting on the contact surface Z in accordance with the inclination direction of the contact surface Z with respect to the axis A based on the analysis result described above. Inclined with respect to radial line R to increase. In other words, in consideration of the blade length of the profile part 4, the inclination direction of the contact surface Z of the cover 3 with respect to the axis A according to the inclination direction of the profile part 4 is obtained so that a desired untwist angle is obtained. Set.
  • the contact surface Z is inclined in the rotational direction toward the downstream side in the flow direction X, so that as the twist-return action works more strongly, as shown in FIG. Fitting cover 3, The binding force between three becomes stronger.
  • the untwist angle increases. From these, in the case of this embodiment, By inclining the profile part 4 upstream in the flow direction X, the binding force between the covers 3, 3 will be increased.
  • the evening bin rotor 1 of the present embodiment has: Flow direction: inclined to the upstream side of X, the centroid O of the wing cross section is located upstream (in the middle of Fig. 4) in the flow direction X with respect to the radial line R extending from the centroid of the root 5. positioned.
  • the stacking line L is a line obtained by connecting the centroids of the respective blade cross sections orthogonal to the radial spring R from the root 5 to the tip 2 of the turbine rotor blade 1. As shown in FIG.
  • the stacking line L is inclined to the upstream side in the flow direction X with respect to the radial line R, and as shown in FIG.
  • the trailing edge of the root 5 of the part 4 is located upstream of the trailing edge of the tip 2 in the flow direction X.
  • the effect of torsional return during rotation can be increased, so that even when the blade length of the turbine rotor blade 1 is relatively short, the cover 3, 3 Can be sufficiently secured.
  • Second embodiment Second embodiment
  • FIG. 8 is a perspective view showing a schematic configuration of a second embodiment of the turbine rotor blade of the present invention.
  • FIG. 9 is an external view of the turbine rotor blade shown in FIG.
  • FIG. 9 is an external view of the evening bin rotor blade shown in FIG. 8 viewed from a circumferential direction.
  • the same reference numerals are given to the same portions or the portions performing the same functions as those in the preceding drawings, and description thereof will be omitted.
  • each turbine blade 1 rotates clockwise as viewed from the upstream side in the flow direction X, and the blade profile section 4 has a sunsetting line shown by a two-dot chain line in FIG. 8.
  • the root of the profile portion 4 when viewed from the circumferential direction, the root of the profile portion 4
  • the trailing edge of the portion 5 is located downstream of the trailing portion of the tip 2 in the flow direction X.
  • the swinging line L of the blade is inclined downstream in the flow direction X, and the centroid of each blade cross section is located downstream from the radial line.
  • the wing profile portion 4 rotates in the opposite direction to the above-described first embodiment of the present invention (in the direction opposite to the torsional moment M shown in FIG. 5, Twisted counterclockwise as viewed from the radially outer side. Therefore, when the cover 3 is formed in the same manner as in the first embodiment, no binding force is generated between the adjacent covers 3.
  • the contact surface Z of the cover 3 with the cover 3 of the adjacent turbine blade 1 is set in the direction opposite to the rotation direction toward the downstream in the flow direction X with respect to the axis A of the turbine. (In the present embodiment, they are inclined counterclockwise as viewed from the upstream side in the flow direction X).
  • the angle 0 that the contact surface Z forms with the axis A in a counterclockwise direction from the contact surface Z when viewed from the outer peripheral side in the turbine radial direction is an obtuse angle.
  • the turbine blade 1 of the present embodiment is inclined downstream in the flow direction X, and is further twisted in the twisting direction during rotation. Therefore, by forming the cover 13 as described above, the adjacent cover The opposing pressing forces F are applied between the cover end faces P and S of the cover 3 so that the adjacent covers 3 and 3 can be firmly contacted and connected to each other. Therefore, as described above, assembling work can be facilitated, local stress concentration acting on the cover 3 can be reduced, and a highly reliable evening bin can be provided. Can be.
  • Fig. 11 is a perspective view showing a schematic configuration of a third embodiment of the turbine blade of the present invention
  • Fig. 12 is an external view of the turbine blade shown in Fig. 11 as viewed from the outer peripheral side in the turbine radial direction. It is.
  • FIGS. 11 and 12 the same reference numerals are given to the same portions or the portions that perform the same functions as those in the previous drawings, and description thereof will be omitted.
  • each turbine blade 1 moves from the root 5 to the tip 2. And twisted clockwise as viewed from the radially outer side.
  • the turbine blade 1 rotates counterclockwise when viewed from the upstream side in the flow direction X, and its blade profile 4 has a stacking line indicated by a two-dot chain line in FIG. 11 parallel to the radial line R. It is inclined upstream in the flow direction X, as can be seen in comparison with the normal wing.
  • the sucking line L of the blade is inclined to the upstream side in the steam flow direction X, and the centroid of each blade cross section is upstream of the radial line R in the flow direction X.
  • the blade profile 4 twists in the opposite direction to its twisting direction (ie, counterclockwise as viewed from the radially outer side) during rotation. .
  • the contact surface Z of the cover 3 is rotated in the direction of rotation toward the downstream side of the steam flow direction X with respect to the turbine axis A (in this embodiment, the upstream of the steam flow direction X). Counterclockwise as viewed from the side).
  • the angle ⁇ that the contact surface Z forms with the axis A in the counterclockwise direction from the contact surface Z when viewed from the evening bin radial direction is an obtuse angle.
  • the turbine rotor blade 1 is inclined to the upstream side in the flow direction X and twists in the direction opposite to the twisting direction during rotation. Therefore, by forming the cover 13 as described above, The mating covers 3, 3 can be firmly contacted and connected. Therefore, the same effect as above can be obtained.
  • Fourth embodiment
  • FIG. 13 is a perspective view showing a schematic configuration of a fourth embodiment of the turbine rotor blade of the present invention
  • FIG. 14 is an external view of the turbine rotor blade shown in FIG. 13 as viewed from the outer peripheral side in the evening bin radial direction. '.
  • the same reference numerals are given to the same portions or the portions performing the same functions as those in the previous drawings, and the description thereof will be omitted.
  • each turbine blade 1 is twisted clockwise from the root 5 to the tip 2 when viewed from the radially circumferential side.
  • the turbine blade 1 rotates counterclockwise as viewed from the upstream side in the flow direction X, and its blade profile 4 has a radial line R indicated by a two-dot chain line in FIG. It is inclined downstream in the flow direction X, as can be seen in comparison with the blade parallel to.
  • the sucking line L is inclined to the downstream side in the flow direction X, and the cross section of each wing is shown in FIG.
  • the wing profile section 4 can be further twisted during rotation, that is, clockwise as viewed from the radially outer side, as shown in FIGS. 2 and 3 above. Twist.
  • the contact angle Z between the cover 3 and the cover 3 of the turbine blade 1 adjacent to the cover 3 is set to the rotation direction toward the downstream of the steam flow direction X with respect to the turbine axis A. It is inclined in the opposite direction (in this embodiment, clockwise as viewed from the upstream side in the steam flow direction X).
  • the angle ⁇ formed by the contact surface Z and the axis A clockwise from the contact surface Z is an obtuse angle when viewed from the outer peripheral side in the evening bin radial direction.
  • FIG. 15 is an external view of a fifth embodiment of the evening bin rotor blade of the present invention viewed from the outer peripheral side in the turbine radial direction.
  • the same reference numerals are given to the same portions or the portions performing the same functions as those in the previous drawings, and description thereof will be omitted.
  • the turbine blade 1 of the present embodiment is twisted counterclockwise from the root 5 to the tip 2 when viewed from the radially outer peripheral side. It is also assumed that the blade rotates clockwise as viewed from the upstream side in the flow direction X, and that the blade profile portion 4 is inclined downstream in the flow direction X as compared with the blade parallel to the radial line. That is, in the present embodiment, the stacking line of the blade is inclined to the downstream side in the flow direction X, as in the second or fourth embodiment, and the centroid of each blade section is located downstream of the radial direction line. Located on the side. As described above, when the profile part 4 is inclined to the downstream side, from the previous FIGS. 2 and 3, when rotating, the profile part 4 is further twisted in the twisting direction, that is, when viewed from the radially outer side. You will be twisted counterclockwise.
  • the contact surface Z between the covers 1 and 3 is formed linearly.
  • the cover 3 rotates counterclockwise in the illustrated state during rotation. And So that the contact surface Z is on the downstream side in the flow direction X with respect to the turbine axis A.
  • the shapes of the facing end surfaces of the covers 3 are different from those of the above-described embodiments.
  • the opposing end faces of the covers 3 and 3 are formed in a substantially “V” shape.
  • the opposing end faces of the covers 1 and 3 and the contact surface Z are extended. It is formed almost linearly.
  • the contact surface Z having an appropriate inclination direction is provided so that the twisting of the rotating profile portion 4 is restricted according to the rotation direction and the inclination direction of the evening bin rotor blade 1, the cover 3, 3
  • the shape of the entire opposing end face is not particularly limited. In such a case, the same effect as above can be obtained.
  • FIG. 16 is a perspective view illustrating a schematic configuration of a sixth embodiment of the turbine bucket of the present invention.
  • the same reference numerals are given to the same portions as those in the previous drawings or the portions performing the same functions, and description thereof will be omitted.
  • the present invention is not limited to this.
  • the present invention is applicable even in the case of being inclined. Even when the profile part 4 is inclined in a curved manner, the positional relationship between the inclination direction, that is, the radial center line R of the centroid of each blade section from the root part 5 to the tip end part 2, and the evening bin rotor The same effect can be obtained by setting the inclination of the contact surface Z according to the rotation direction of 1.
  • the turbine rotor blade 1 shown in Fig. 16 rotates clockwise when viewed from the upstream side, and the two-dot chain line whose crossing line is parallel to the radial line R. It is inclined upstream in the flow direction X with respect to the turbine blade shown by.
  • the stacking line L of the turbine rotor blade 1 extends from the tip 2 to the root 5 along a radial line R. It draws a curve that converges and is separated from the radial line R from the root 5 to the tip 2 on the upstream side in the flow direction X.
  • the centroid of each blade cross section is located on the upstream side with respect to the radial line R, and the rotation direction of the tarpin rotor blade 1 is clockwise as viewed from the upstream side. From the results shown in FIGS. 2 and 3, the cover 3 tries to rotate clockwise as viewed from the radially outer side. Therefore, as in the first embodiment, if the contact surface Z is provided so as to incline in the rotation direction toward the downstream side in the flow direction X, the contact surface Z can be firmly attached to the contact surface Z by the action of the torsion return of the profile portion 4. A binding force can be generated, and the same effect as described above can be obtained.
  • the present invention is also applicable to a case where a part is parallel to the radial line R and the part on the tip 2 side is inclined linearly or curvedly.
  • the inclination direction of the contact surface Z of the cover 3 depends on the inclination direction of the inclined part and the rotation direction of the evening bin rotor blade 1.
  • the inclined portion of the blade profile section 4 is directed toward the upstream side in the flow direction X, and the turbine blade 1 rotates clockwise as viewed from the upstream side in the flow direction X.
  • the profile section 4 tries to rotate clockwise when viewed from the outer peripheral side in the turbine radial direction. Therefore, if a contact surface Z inclined in the rotation direction of the turbine rotor blade 1 is provided toward the downstream side of the flow direction X, the binding force between the adjacent covers 3 is secured in the same manner as in the first embodiment. can do.
  • the turbine blade 1 is moved upstream or downstream in the flow direction X. Was inclined to the downstream side, but as described earlier with reference to Fig.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A turbine rotor blade (1) with a cover (3) restricting a twist at a blade tip part (2), wherein a profile part (4) is formed so that at least the centroid of the blade tip part (2) in a blade cross section can be displaced from the radial line (R) of a turbine extending from the centroid of a blade root part (5) in the blade cross section, the tilted direction of a contact surface (Z) between the covers (3, 3) relative to the axis (A) of the turbine is set so that a pressing force can act between the covers (3, 3) adjacent to each other in circumferential direction according to the positional relation of the centroid to the radial line and the rotation direction of the profile part (4), whereby even when the length of the blade is rather short, an assembly operation can be facilitated and a local stress concentration can be suppressed by sufficiently assuring a connection force between the covers at the time of rotation to increase a reliability.

Description

明 細 書 タービン動翼 技術分野  Description Turbine rotor blade Technical field
本発明は、 翼先端部にねじれを拘束するためのカバ一を備えたタービン動翼に 関する。 背景技術  The present invention relates to a turbine rotor blade provided with a cover for restraining twist at a blade tip. Background art
夕一ビン動翼の形状は、 発電プラントで用いられる夕一ビンの効率に密接に関 わり、 更なる高効率化を目指して日々改良されている。 このように高効率化を目 的としたものとしては、 例えば、 特開 2 0 0 1— 2 2 1 0 0 5号公滓艮に記載のよ うに、 作動流体が翼列間を通過する際に壁面近傍で発生する二次流れ損失の低減 を図るために、 タービンの半径方向に対して傾斜させたもの、 根元若分や先端部 分、 或いは中間部分を局部的に湾曲させたもの等、 様々な形状のタービン動翼が 提唱されている。  The shape of the evening bin blade is closely related to the efficiency of the evening bin used in the power plant, and is being improved every day to achieve higher efficiency. For the purpose of achieving high efficiency in this way, for example, as described in Japanese Patent Application Laid-Open No. 2001-210205, the working fluid passes between cascades. In order to reduce the secondary flow loss that occurs near the wall surface, the turbine is inclined with respect to the radial direction of the turbine, the root is at the tip, the tip is partially curved, or the middle is locally curved. Various shapes of turbine blades have been proposed.
一方、 例えば特開平 9一 2 0 9 7 0 4号公報ゃ特開平 7— 2 2 9 4, 0 4号公報 等に記載のように、 剛性の増加と減衰効果を付加し、 さらに流れの漏洩損失を低 減するために、 タービン動翼の先端部を連結カバーによって連結する場合がある。 この翼連結構造は、 回転中の遠心力を受けて翼のねじれと反対方向に生じるねじ りモーメント、 すなわちアンツイストによって、 隣接する翼のカバー間に押付力 を発生させ接触連結するものである。 このねじり戻りの作用は、 根元から先端に 向かって各翼断面のねじれ角が異なることから、 夕一ビン半径方向と直交する遠 心力の分力差が各翼断面に復元モーメントとして作用し、 各翼断面力ねじり中心 に引っ張られることにより得られる。 したがって、 例えば蒸気タービンの低圧段 の最終段に使用されるもの等、 特に翼長が長く根元部から先端部に けてねじれ ている夕一ビン動翼に対して有効な手段となる。  On the other hand, for example, as described in Japanese Patent Application Laid-Open No. Hei 9-1990 / 2004, Japanese Patent Application Laid-Open No. Hei 7-229,044, an increase in rigidity and a damping effect are added, In order to reduce the loss, the tip of the turbine blade may be connected by a connection cover. In this blade connection structure, a torsional moment generated in the direction opposite to the twist of the blade due to the centrifugal force during rotation, that is, an untwist, generates a pressing force between the covers of adjacent blades and makes contact connection. The effect of this torsional return is that the torsion angle of each blade section differs from the root to the tip, so the difference in the centrifugal force perpendicular to the evening bin radial direction acts as a restoring moment on each blade section. Obtained by being pulled to the center of the torsional force of the wing section. Therefore, it is an effective means especially for the one-blade blades having a long blade length and twisting from the root to the tip, such as those used in the last stage of the low-pressure stage of a steam turbine.
それに対し、 例えば、 蒸気タービンの高圧段や中圧段等で使用される翼等、 比 較的翼長もねじれ角も小さく、 各翼断面にさほど大きな遠心力が作用しない場合 には、 回転中に作用する復元モーメントは小さくなる。 そのため、 比較的短い翼 に対し、 比較的長い翼の場合と同等の押付力をカバー間に作用させるために、 組 み立て時に予めねじり変形を与えた状態で翼を組み込むといったことが一般に行 われている。 しかしながら、 翼を予めねじって組み込むのには専用の道具を要す るため、 この組み込み作業は、 非常に煩わしく多大な労力及び時間を要する。 ま た、 翼を組み込む際、 ねじった状態で翼を組み込むことにより、 瞵接の翼のカバ 一同 lrが強く擦れ合い、 カバーに局所的な応力が作用する場合もあり、 高温高圧 部で使用する場合にはクリープ強度に与える影響が大きくなる。 発明の開示 On the other hand, for example, blades used in high-pressure and medium-pressure stages of steam turbines, where the blade length is relatively small and the torsion angle is small, and no significant centrifugal force acts on each blade section Therefore, the restoring moment acting during rotation is small. Therefore, in order to apply the same pressing force between the covers to a relatively short wing as to a relatively long wing, it is common practice to incorporate the wing in a state where it has been subjected to torsional deformation in advance during assembly. ing. However, since a special tool is required to pre-twist and install the wings, this installation work is very cumbersome and requires a great deal of labor and time. In addition, when installing the wings, by incorporating the wings in a twisted state, the lr covers of the adjacent wings may rub strongly, and local stress may act on the cover, so use it in high temperature and high pressure parts In such a case, the influence on the creep strength becomes large. Disclosure of the invention
本発明は、 上記した従来の問題点に鑑みてなされたものであり、 遠心力による アンツイスト効果を向上させ、 比較的短い翼を対象とした場合でも、 回転時にお けるカバ一間の連結力を十分に確保することで、 組立作業の容易化、 局所的な応 力集中の抑制を図り、 信頼性を向上させることができるタービン動翼を提供する ことを目的とする。  The present invention has been made in view of the above-described conventional problems, and has an improved untwisting effect due to centrifugal force. Even when a relatively short wing is targeted, the connecting force between the covers during rotation is reduced. An object of the present invention is to provide a turbine rotor blade capable of facilitating assembling work, suppressing local concentration of stress, and improving reliability by ensuring sufficient reliability.
本発明は、 上記目的を達成するために、 翼先端部にねじれを拘束するカバーを 有するタービン動翼において、 少なくとも翼先端部の翼断面の図心位置が、 翼根 元部の翼断面の図心から延びるタービンの半径方向線からずれるようにプロフィ ル部を形成し、 上記図心及び半径方向線の位置関係と上記プロフィル部の回転方 向とに応じ、 周方向に隣り合うカバー間に十分な押付力が作用するように、 カバ 一の接角虫面のタービンの軸線に対する傾斜方向を設定する。 図面の簡単な説明  In order to achieve the above object, the present invention is directed to a turbine rotor blade having a cover at the tip of a blade, wherein at least the centroid position of the blade section at the tip of the blade is the cross section of the blade at the root of the blade. The profile portion is formed so as to be deviated from the radial line of the turbine extending from the center, and sufficient space is provided between circumferentially adjacent covers according to the positional relationship between the centroid and the radial line and the rotation direction of the profile portion. The inclination direction of the tangential horn of the cover with respect to the axis of the turbine is set so that the pressing force acts. Brief Description of Drawings
図 1は、 翼プロフィル部の傾斜方向とねじり戻りとの関係の解析用のタービン 動翼の 算モデルの概形図である。  Figure 1 is a schematic diagram of a computational model of a turbine rotor blade for analyzing the relationship between the inclination direction of the blade profile and the torsional return.
図 2 W:、 図 1に示した計算モデルの各翼断面における図心の半径方向線に対す る位置関係を示した図である。  Fig. 2W: A diagram showing the positional relationship of the centroid of the calculation model shown in Fig. 1 with respect to the radial line in each cross section of the wing.
図 3 ま、 図 1の計算モデルを用いて得られた翼プロフィル部の傾斜方向とねじ り戻りとの相関関係を表す図である。 図 4は、 本発明のタービン動翼の第 1実施形態の概略構成を表す斜視図である。 図 5は、 図 4に示したターピン動翼の翼形状を夕一ビン半径方向外周側から見 た図である。 Fig. 3 is a diagram showing the correlation between the inclination direction of the blade profile and the torsion return obtained using the calculation model in Fig. 1. FIG. 4 is a perspective view illustrating a schematic configuration of the first embodiment of the turbine bucket of the present invention. FIG. 5 is a view of the blade shape of the turbine blade shown in FIG. 4 as viewed from the outer peripheral side in the evening bin radial direction.
図 6は、 図 4に示したタービン動翼をタービン半径方向外周側から見た外観図 である。  FIG. 6 is an external view of the turbine blade shown in FIG. 4 as viewed from the outer peripheral side in the turbine radial direction.
図 7は、 図 4に示したタービン動翼を周方向から見た外観図である。  FIG. 7 is an external view of the turbine blade shown in FIG. 4 as viewed from the circumferential direction.
図 8は、 本発明のタービン動翼の第 2実施形態の概略構成を表す斜視図である。 図 9は、 図 8に示したタービン動翼をタービン半径方向外周側から見た外観図 である。  FIG. 8 is a perspective view illustrating a schematic configuration of a second embodiment of the turbine bucket of the present invention. FIG. 9 is an external view of the turbine blade shown in FIG. 8 as viewed from the outer peripheral side in the turbine radial direction.
図 1 0は、 図 8に示したタービン動翼を周方向から見た外観図である。  FIG. 10 is an external view of the turbine blade shown in FIG. 8 as viewed from the circumferential direction.
図 1 1は、 本発明のタービン動翼の第 3実施形態の概略構成を表す斜視図であ る。  FIG. 11 is a perspective view illustrating a schematic configuration of a third embodiment of the turbine bucket of the present invention.
図 1 2は、 図 1 1に示したタービン動翼を夕一ビン半径方向外周側から見た外 観図である。  FIG. 12 is an external view of the turbine rotor blade shown in FIG. 11 as viewed from the outer peripheral side in the evening bin radial direction.
図 1 3は、 本発明のタービン動翼の第 4実施形態の概略構成を表す斜視図であ る。  FIG. 13 is a perspective view illustrating a schematic configuration of a fourth embodiment of the turbine bucket of the present invention.
図 1 4は、 図 1 3に示したタービン動翼をタービン半径方向外周側から見た外 観図である。  FIG. 14 is an external view of the turbine rotor blade shown in FIG. 13 viewed from the outer peripheral side in the turbine radial direction.
図 1 5は、 本発明のタービン動翼の第 5実施形態をタービン半径方向外周側か ら見た外観図である。  FIG. 15 is an external view of the fifth embodiment of the turbine blade of the present invention viewed from the outer peripheral side in the turbine radial direction.
図 1 6は、 本発明のタービン動翼の第 6実施形態の概略構成を表す斜視図であ る。  FIG. 16 is a perspective view illustrating a schematic configuration of a sixth embodiment of the turbine bucket of the present invention.
図 1 7は、 本発明のタービン動翼の第 6実施形態の概略構成を表す斜視図であ る。 発明を実施するための最良の形態  FIG. 17 is a perspective view illustrating a schematic configuration of a sixth embodiment of the turbine bucket of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の夕一ビン動翼は、 例えば、 蒸気タービンやガスタービン等を始めとし た各種流体機械に適用可能なものであるが、 以下においては、 例として蒸気夕一 ビンの場合を説明する。 始めに、 図 1〜図 3を参照しながら、 本発明の原理について説明する。 The evening bin rotor blade according to the present invention is applicable to various fluid machines including, for example, a steam turbine and a gas turbine. In the following, a case of a steam evening bin will be described as an example. First, the principle of the present invention will be described with reference to FIGS.
一般に、 遠心力による翼のねじり戻り現象は、 翼根元部の図心から延びる半径 方向線に対する各翼断面のねじり中心位置 (図心) の偏差と、 各翼断面に作用す る遠心力の差により生じる。 本願発明者等は、 このことに着目し、 翼プロフィル を、 根元部から先端きにかけてタービン半径方向線に直交する翼断面を積み重ね て形成したものと考 、 各翼断面の図心位置の上記半径方向線に対する偏差と発 生するねじり戻り現象との相関関係について解析し、 ねじり戻りの作用がより大 きく得られる翼プロフィルについて検討した。  Generally, centrifugal force causes the blade to untwist due to the deviation of the torsion center position (centroid) of each blade section from the radial line extending from the centroid of the blade root and the difference in centrifugal force acting on each blade section. Occurs. Focusing on this, the inventors of the present application considered that the blade profile was formed by stacking blade cross sections orthogonal to the turbine radial direction line from the root to the tip, and considered the radius of the centroid position of each blade cross section. We analyzed the correlation between the deviation with respect to the direction line and the torsion phenomenon that occurred, and examined the blade profile that would provide a greater effect of torsion.
図 1に、 本解析に用いたタービン動翼の計算モデルの概形図を示す。  Figure 1 shows a schematic diagram of the turbine rotor blade calculation model used in this analysis.
この図 1に示したタービン動翼のモデル 1 0 0は、 夕一ビン半径方向線 Rに直 交する翼断面 1 0 1が、 その根元部 1 0 2から先端部 1 0 3にかけて積み重ねら れて形成されている。 先端部 1 0 3には、 カバ一 1 0 4がー体的に設けてある。 このモデル 1 0 0を用レ 根元部 1 0 2から先端部 1 0 3にかけて等間隔に切断 して得た各翼断面 1 0 1 a〜l 0 1 jにっき、 それぞれの図心 O及び根元部の翼 断面の図心から延びるタービンの半径方向線 Rの偏差と、 回転時に生じるねじり 戻り (アンツイスト角) との相関関係を解析した。 但し、 各翼断面 1 0 1 a〜l 0 1 jの形状はほほ'同一形状とする。 また、 本解析においては、 このモデル 1 0 0単体に作用するアンツイストを解析するために、 先端部 1 0 3を自由端とし、 カバ一 1 0 4による拘束力がないものとする。 根元部 1 0 2は、 タービンデイス ク (図示せず) に対する取付部 1 0 5に固定された固定端とする。  In the turbine blade model 100 shown in Fig. 1, the blade cross section 101, which is perpendicular to the evening bin radial direction line R, is stacked from its root portion 102 to its tip portion 103. It is formed. A cover 104 is physically provided at the distal end 103. Each wing cross section obtained by cutting this model 100 at equal intervals from the base part 102 to the tip part 103, and then the respective centroids O and root parts The correlation between the deviation of the radial line R of the turbine extending from the centroid of the blade cross section and the torsional return (untwist angle) generated during rotation was analyzed. However, the shapes of the wing cross sections 101 a to 101 j are almost the same. In this analysis, in order to analyze the untwist acting on the model 100 alone, the tip portion 103 is set to a free end, and there is no binding force by the cover 104. The root part 102 is a fixed end fixed to the mounting part 105 for a turbine disk (not shown).
図 2は、 上記翼断面 1 0 1 a〜l 0 1 jにおける、 図心 Oの半径方向線 Rに対 する位置関係を各種想定して示した図である。  FIG. 2 is a diagram showing various positional relationships of the centroid O with respect to the radial line R in the wing cross sections 101 a to 101 j.
まず、 この図 2に示すように、 蒸気の流れ方向 Xと周方向 Yとを軸にとり、 モ デル 1 0 0をこの座標上の各方向に傾斜させたケース 1〜8を想定した。 但し、 流れ方向 Xにおいては、 上流側を + (プラス)、 下流側を— (マイナス) とし、 周 方向 Yにおいては、 モデル 1 0 0の背側を + (プラス)、 腹側を— (マイナス) と している (図 1も参 3€>。  First, as shown in FIG. 2, cases 1 to 8 were assumed in which the model 100 was inclined in each direction on the coordinates with the steam flow direction X and the circumferential direction Y as axes. However, in the flow direction X, the upstream side is + (plus) and the downstream side is-(minus). In the circumferential direction Y, the back side of the model 100 is + (plus), and the ventral side is-(minus). (See also Fig. 1 3 €>.)
各ケース 1〜8における各翼断面とアンツイスト角との相関関係の計算結果を 図 3に示す。 この計算結果から、 モデル 1 0 0を蒸気の流れ方向 Xの上流側に傾斜させると、 ねじり戻り角 (アンツイスト角) は増大し、 逆に蒸気の流れ方向 Xの下流側に傾 斜させると、 ねじり戻り角が減少する (翼のねじれ方向にさらにねじれる) 傾向 を得た。 特にアンツイスト角が大きくなるのは、 翼を蒸気上流側でかつ翼背側に 傾斜させた場合 (case8) であった。 一方、 逆方向のねじり戻り (すなわち翼プロ フィルがねじれる方向にさらにねじれる現象) は、 翼を蒸気下流側でかつ翼腹側 に傾斗させた場合 (case5) に特に大きくなることが分かった。 なお、 本願発明者 等は、 各翼断面の形状が異なるモデルについても同様の解析を行っている。 その 結果、 この場合も上流側に傾斜させることによってねじれ方向と反対方向に、 下 流側に傾斜させることによってねじれ方向にねじり戻り現象が発生し、 特に、 翼 プロフィルを蒸気上流側でかつ翼腹側に傾斜させた場合にアンツイスト角が大き くなることも知見している。 Figure 3 shows the calculation results of the correlation between the wing cross section and the untwist angle in each case 1 to 8. From this calculation result, when the model 100 is tilted upstream in the steam flow direction X, the torsional return angle (untwist angle) increases, and conversely, when the model 100 is tilted downstream in the steam flow direction X, However, there was a tendency for the torsional return angle to decrease (to further twist in the torsional direction of the wing). In particular, the untwisting angle increased when the blade was inclined upstream of the steam and to the back of the blade (case 8). On the other hand, it was found that the reverse torsion (ie, the phenomenon that the blade profile is further twisted in the twisting direction) becomes particularly large when the blade is funneled downstream of the steam and toward the ventral side of the blade (case 5). In addition, the inventors of the present application have performed a similar analysis on a model having different wing cross-sectional shapes. As a result, also in this case, the phenomenon of twisting back in the direction opposite to the twisting direction by inclining to the upstream side, and in the twisting direction by inclining to the downstream side, in particular, causes the blade profile to move upstream and downstream of the steam. It has also been found that when tilted to the side, the untwist angle increases.
本願発明者等は、 以上の解析結果を基に、 タービンの半径方向線に対する翼の 傾斜を調節してやることによって、 回転時におけるタービン動翼のねじり戻り角 が制御可能であることを知見した。  The present inventors have found that, based on the above analysis results, it is possible to control the torsional return angle of the turbine blade during rotation by adjusting the inclination of the blade with respect to the radial line of the turbine.
以下に順次説明する各実施形態は、 以上の知見に基づき、 回転時のねじり戻り の作用を増大させ、 このねじり戻りを効果的にカバーの拘束力に変換することに よって、 隣接するもの同士を強固に接触連結させるためのものである。 第 1実施形態  Based on the above findings, each of the embodiments described below sequentially increases the effect of torsional return during rotation, and effectively converts the torsional return to the binding force of the cover, so that adjacent ones can be connected to each other. It is for firmly contacting and connecting. First embodiment
図 4は本発明の夕一ビン動翼の第 1実施形態の概略構成を表す斜視図、 図 5は この図 4の夕一ビン動翼の翼形状をタービン半径方向外周側から見た図、 図 6は 図 4に示したタービン動翼をタービン半径方向外周側から見た外観図、 図 7は図 4に示したタービン動翼を周方向から見た外観図である。  FIG. 4 is a perspective view showing a schematic configuration of a first embodiment of the evening bin rotor blade of the present invention, FIG. 5 is a view of the blade shape of the evening bin rotor blade of FIG. Fig. 6 is an external view of the turbine blade shown in Fig. 4 as viewed from the outer peripheral side in the turbine radial direction, and Fig. 7 is an external view of the turbine blade shown in Fig. 4 as viewed from the circumferential direction.
図 4において、 本実施形態におけるタービン動翼 1の先端部 2には、 平板状の カバ一 3がー体的に設けられている。 この夕一ビン動翼 1の翼プロフィル部 4は、 図 5に示すように、 タービン半径方向外周側から見ると、 根元部 5から先端部 2 に向かって反時計回りにねじれている。 タービン動翼 1の根元部 5は、 図示しな い回転軸 (タービンディスク、 或いはこのディスクに対する取付部材) に固定さ れており、 複数のタービン動翼 1が周方向 Yに列設されることで、 1つの段落In FIG. 4, a flat cover 3 is provided at the tip 2 of the turbine blade 1 in the present embodiment. As shown in FIG. 5, the blade profile portion 4 of the evening bin rotor blade 1 is twisted counterclockwise from the root portion 5 toward the tip portion 2 when viewed from the outer peripheral side in the turbine radial direction. The root 5 of the turbine blade 1 is fixed to a rotating shaft (not shown) (turbine disk or a mounting member for this disk). The turbine blades 1 are arranged in the circumferential direction Y,
(翼列) を形成する。 本実施の形態において、 タービン動翼 1は、 運転時、 蒸気 の流れ方向 X (以下、 単に 「流れ方向 X」 と記載する) の上流側から見て時計回 りに回転する。 (Cascade). In the present embodiment, during operation, the turbine blade 1 rotates clockwise when viewed from the upstream side in the steam flow direction X (hereinafter simply referred to as “flow direction X”).
上記カバ一 3は、 周方向 Υに隣り合うタービン動翼 1のもの同士、 接触面 Ζを 介して接触している (微視的に見て若干の間隙を有する場合も含む)。 本実施形態 の場合、 この接触面 Ζは、 カバー 3における流れ方向 Xの上流側に位置し、 なお かつ、 タービンの軸線 Αに対し、 流れ方向 Xの下流側に向かって、 回転方向に傾 斜している。 したがって、 接触面 Zが、 タービン半径方向外周側から見て、 該接 触面 Zから時計回りに軸泉 Aとなす角度 Θは鈍角となる。  The cover 3 is in contact with the turbine blades 1 adjacent to each other in the circumferential direction Ζ via a contact surface 場合 (including a case where there is a slight gap when viewed microscopically). In the case of the present embodiment, this contact surface Ζ is located on the upstream side of the cover 3 in the flow direction X, and is inclined in the rotation direction toward the downstream side in the flow direction X with respect to the turbine axis Α. are doing. Therefore, the angle す formed by the contact surface Z and the axial spring A clockwise from the contact surface Z when viewed from the outer peripheral side in the turbine radial direction is an obtuse angle.
以上の夕一ビン動翼 1 には、 回転時、 図 5に示したようにねじれ方向と反対方 向に復元モーメント Mが作用し、 プロフィル部 4にねじり戻りが発生するため、 その先端に設けたカバー 3は、 単体で見た場合に、 復元モーメント Mの作用方向 に回転しょうとする。 これにより、 図 6に示すように、 隣り合うカバー 3 , 3の 互いのカバ一端面 S , Pに、 ほぼ対向する押付力 Fが接触面 Zを介して作用し、 隣接するカバー 3, 3同士が接触連結され、 プロフィル部 4のねじり戻りが拘束 される。 この拘束力によって、 回転時には、 隣り合うカバ一 3, 3が強固に接触 連結され、 段落全体の各タービン動翼 1が高剛性の回転体を構成することになる。 このとき、 本実施形態におけるタービン動翼 1のプロフィル部 4は、 先に説明 した解析結果に基づき、 接触面 Zの軸線 Aに対する傾斜方向に応じて、 この接触 面 Zに作用する押付力 Fが増すように半径方向線 Rに対して傾斜させてある。 言 い換えれば、 プロフィル部 4の翼長を考慮し、 所望のアンツイスト角が得られる ように、 プロフィル部 4の傾斜方向に応じてカバー 3の接触面 Zの軸線 Aに対す る傾斜方向を設定する。  During rotation, the resting moment M acts on the above-mentioned evening bin rotor blade 1 in the opposite direction to the twisting direction as shown in Fig. 5 and twists back in the profile part 4. Cover 3 attempts to rotate in the direction of action of the restoring moment M when viewed alone. As a result, as shown in FIG. 6, a substantially opposing pressing force F acts on one end surface S, P of the adjacent covers 3, 3 via the contact surface Z, and the adjacent covers 3, 3 are connected to each other. Are contact-connected, and the torsional return of the profile section 4 is restrained. Due to this restraining force, the adjacent covers 3, 3 are firmly contacted and connected at the time of rotation, and each turbine rotor blade 1 of the entire paragraph forms a highly rigid rotor. At this time, the profile portion 4 of the turbine rotor blade 1 in the present embodiment has a pressing force F acting on the contact surface Z in accordance with the inclination direction of the contact surface Z with respect to the axis A based on the analysis result described above. Inclined with respect to radial line R to increase. In other words, in consideration of the blade length of the profile part 4, the inclination direction of the contact surface Z of the cover 3 with respect to the axis A according to the inclination direction of the profile part 4 is obtained so that a desired untwist angle is obtained. Set.
本実施形態において、 接触面 Zは、 前述したように、 流れ方向 Xの下流側に向 かって回転方向に傾斜しているので、 図 6から分かるように、 ねじり戻りの作用 が強く働くほど、 隣り合うカバー 3, 3同士の拘束力が強くなる。 それに対し、 先の図 3の解析結果から、 流れ方向 Xの上流側に翼を傾斜させた塌合、 アンツイ スト角が増大することが分かっている。 これらのことから、 本実施形態の場合、 プロフィル部 4を流れ方向 Xの上流側に傾斜させることによって、 カバー 3, 3 同士の拘束力が:増大することになる。 In the present embodiment, as described above, the contact surface Z is inclined in the rotational direction toward the downstream side in the flow direction X, so that as the twist-return action works more strongly, as shown in FIG. Fitting cover 3, The binding force between three becomes stronger. On the other hand, from the analysis results in Fig. 3 above, it is known that when the blade is tilted upstream in the flow direction X, the untwist angle increases. From these, in the case of this embodiment, By inclining the profile part 4 upstream in the flow direction X, the binding force between the covers 3, 3 will be increased.
図 4に二点鎖線で示した根 部から先端部にかけてス夕ッキング線が半径方向 線 Rに平行なタービン動翼と比較して分かるように、 本実施形態の夕一ビン動翼 1は、 流れ方向: Xの上流側に傾斜しており、 翼断面の図心 Oは、 根元部 5の図心 から延びる半径方向線 Rに対し、 流れ方向 Xの上流側 (図 4中お側) に位置して いる。 なお、 スタツキング線 Lとは、 タービン動翼 1の根元部 5から先端部 2に かけて半径方向泉 Rに直交する各翼断面の図心を結ぶことにより得られる線であ る。 図 4に示すように、 本実施形態の場合、 スタツキング線 Lは、 半径方向線 R に対し流れ方向 Xの上流側に傾斜しており、 図 7に示すように、 周方向から見る と、 プロフィル部 4の根元部 5の後縁部は、 先端部 2の後縁部よりも流れ方向 X の上流側に位置している。  As can be seen in comparison with the turbine blade parallel to the radial line R from the root to the tip indicated by the two-dot chain line in FIG. 4, the evening bin rotor 1 of the present embodiment has: Flow direction: inclined to the upstream side of X, the centroid O of the wing cross section is located upstream (in the middle of Fig. 4) in the flow direction X with respect to the radial line R extending from the centroid of the root 5. positioned. The stacking line L is a line obtained by connecting the centroids of the respective blade cross sections orthogonal to the radial spring R from the root 5 to the tip 2 of the turbine rotor blade 1. As shown in FIG. 4, in the case of this embodiment, the stacking line L is inclined to the upstream side in the flow direction X with respect to the radial line R, and as shown in FIG. The trailing edge of the root 5 of the part 4 is located upstream of the trailing edge of the tip 2 in the flow direction X.
以上のように構成することにより、 本実施形態によれば、 回転中のねじり戻り の作用を増大させることができるため、 タービン動翼 1の翼長が比較的短い場合 でも、 カバ一 3, 3の接触連結力を十分に確保することができる。 これにより、 従来のように、 翼長の短いタービン動翼のカバ一間の連結力を補うために、 予め ねじりを加えてタービン動翼を組み付ける必要がなくなる (又は加えるねじり量 を低減すること力できる)。 したがって、 組立作業を容易化することができるとと もに、 組み立て時に、 カバー 3, 3に作用する局所的な応力集中を緩和すること ができ、 ひいて ま高い信頼性を有するタービンを提供することができる。 第 2実施形態  With the above configuration, according to the present embodiment, the effect of torsional return during rotation can be increased, so that even when the blade length of the turbine rotor blade 1 is relatively short, the cover 3, 3 Can be sufficiently secured. This eliminates the need to assemble the turbine blades by twisting them in advance to supplement the coupling force between the covers of the turbine blades with shorter blade lengths as in the past (or to reduce the amount of torsion added). it can). Therefore, the assembly work can be facilitated, and at the time of assembly, the local stress concentration acting on the covers 3, 3 can be reduced, thereby providing a highly reliable turbine. be able to. Second embodiment
図 8は本発明のタービン動翼の第 2の実施形態の概略構成を表す斜視図、 図 9 はこの図 8に示したタービン動翼をタービン半径方向外周側から見た外観図、 図 1 0は図 8に示した夕一ビン動翼を周方向から見た外観図である。 これら図 8〜 図 1 0において、 先の各図と同様の部分又は同様の機能を果たす部分には同符号 を付し、 その説明を省略する。  FIG. 8 is a perspective view showing a schematic configuration of a second embodiment of the turbine rotor blade of the present invention. FIG. 9 is an external view of the turbine rotor blade shown in FIG. FIG. 9 is an external view of the evening bin rotor blade shown in FIG. 8 viewed from a circumferential direction. In FIGS. 8 to 10, the same reference numerals are given to the same portions or the portions performing the same functions as those in the preceding drawings, and description thereof will be omitted.
図 8及び図 9において、 各タービン動翼 1は、 流れ方向 Xの上流側から見て時 計回りに回転し、 翼プロフィル部 4は、 図 8に二点鎖線で示したス夕ッキング線 が半径方向線 Rに平行な翼と比較して分かるように、 蒸気の流れ方向 Xにおける 下流側に傾斜しており、 図 1 0に示すように、 周方向から見ると、 プロフィル部 4の根元部 5の後縁部は、 先端部 2の後緣部よりも流れ方向 Xの下流側に位置し ている。 これによつて、 本実施形態においては、 翼のス夕ッキング線 Lが流れ方 向 Xの下流側に傾斜し、 各翼断面の図心が半径方向線 よりも下流側に位置する ことから、 先の図 2及び図 3に示した通り、 翼プロフィル部 4は、 回転時、 前述 の本発明の第 1実施形態とは逆方向 (先に図 5に示したねじりモーメント Mと逆 方向、 すなわち半径方向外周側から見て反時計回り) にねじれる。 したがって、 カバー 3を第 1実施形態と同様に形成すると、 隣接のカバ一 3間に拘束力が生じ ない。 8 and 9, each turbine blade 1 rotates clockwise as viewed from the upstream side in the flow direction X, and the blade profile section 4 has a sunsetting line shown by a two-dot chain line in FIG. 8. Is inclined downstream in the steam flow direction X, as can be seen from comparison with the blade parallel to the radial line R. As shown in Fig. 10, when viewed from the circumferential direction, the root of the profile portion 4 The trailing edge of the portion 5 is located downstream of the trailing portion of the tip 2 in the flow direction X. Thus, in the present embodiment, the swinging line L of the blade is inclined downstream in the flow direction X, and the centroid of each blade cross section is located downstream from the radial line. As shown in FIGS. 2 and 3 above, the wing profile portion 4 rotates in the opposite direction to the above-described first embodiment of the present invention (in the direction opposite to the torsional moment M shown in FIG. 5, Twisted counterclockwise as viewed from the radially outer side. Therefore, when the cover 3 is formed in the same manner as in the first embodiment, no binding force is generated between the adjacent covers 3.
そこで、 本実施形態の場合、 カバー 3の隣接するタービン動翼 1のカバ一 3と の接触面 Zを、 タービンの軸線 Aに対し、 流れ方向 Xの下流側に向かって回転方 向と反対方向 (本実施形態においては、 流れ方向 Xの上流側から見て反時計回 り) に傾斜させてある。 接触面 Zが、 タービン半径方向外周側から見て、 該接触 面 Zから反時計回り方向に軸線 Aとなす角 0は鈍角となる。  Therefore, in the case of the present embodiment, the contact surface Z of the cover 3 with the cover 3 of the adjacent turbine blade 1 is set in the direction opposite to the rotation direction toward the downstream in the flow direction X with respect to the axis A of the turbine. (In the present embodiment, they are inclined counterclockwise as viewed from the upstream side in the flow direction X). The angle 0 that the contact surface Z forms with the axis A in a counterclockwise direction from the contact surface Z when viewed from the outer peripheral side in the turbine radial direction is an obtuse angle.
本実施形態のタービン動翼 1は、 流れ方向 Xの下流側に傾斜しており、 回転時、 そのねじれ方向にさらにねじれるため、 上記の如くカバ一 3を形成することによ り、 隣り合うカバー 3 , 3のカバー端面 P, S間に互いに対抗する押付力 Fを作 用させ、 隣接するカバー 3 , 3同士を強固に接触連結させることができる。 した がって、 上記同様、 組立作業を容易化することができるとともに、 カバー 3に作 用する局所的な応力集中を緩和することができ、 ひいては高い信頼性を有する夕 —ビンを提供することができる。 第 3実施形 ¾j  The turbine blade 1 of the present embodiment is inclined downstream in the flow direction X, and is further twisted in the twisting direction during rotation. Therefore, by forming the cover 13 as described above, the adjacent cover The opposing pressing forces F are applied between the cover end faces P and S of the cover 3 so that the adjacent covers 3 and 3 can be firmly contacted and connected to each other. Therefore, as described above, assembling work can be facilitated, local stress concentration acting on the cover 3 can be reduced, and a highly reliable evening bin can be provided. Can be. Third embodiment ¾j
図 1 1は本猪明のタービン動翼の第 3の実施形態の概略構成を表す斜視図、 図 1 2はこの図 1 1に示したタービン動翼をタービン半径方向外周側から見た外観 図である。 これら図 1 1及び図 1 2において、 先の各図と同様の部分又は同様の 機能を果たす部分には同符号を付し、 その説明を省略する。  Fig. 11 is a perspective view showing a schematic configuration of a third embodiment of the turbine blade of the present invention, and Fig. 12 is an external view of the turbine blade shown in Fig. 11 as viewed from the outer peripheral side in the turbine radial direction. It is. In FIGS. 11 and 12, the same reference numerals are given to the same portions or the portions that perform the same functions as those in the previous drawings, and description thereof will be omitted.
図 1 1及び EI 1 2において、 各タービン動翼 1は、 根元部 5から先端部 2にか けて半径方向外周側から見て時計回りにねじれている。 また、 タービン動翼 1は、 流れ方向 Xの上流側から見て反時計回りに回転し、 その翼プロフィル部 4は、 図 1 1に二点鎖線で示したスタツキング線が半径方向線 Rに平行な翼と比較して分 かるように、 流れ方向 Xにおける上流側に傾斜している。 このように、 本実施形 態においては、 翼のス夕ッキング線 Lが蒸気の流れ方向 Xの上流側に傾斜し、 各 翼断面の図心が半径方向線 Rよりも流れ方向 Xの上流側に位置しているため、 先 の図 2及び図 3から分かるように、 回転時、 翼プロフィル部 4は、 そのねじり方 向と逆方向 (すなわち半径方向外周側から見て反時計回り) にねじれる。 In Fig. 11 and EI 12, each turbine blade 1 moves from the root 5 to the tip 2. And twisted clockwise as viewed from the radially outer side. The turbine blade 1 rotates counterclockwise when viewed from the upstream side in the flow direction X, and its blade profile 4 has a stacking line indicated by a two-dot chain line in FIG. 11 parallel to the radial line R. It is inclined upstream in the flow direction X, as can be seen in comparison with the normal wing. As described above, in the present embodiment, the sucking line L of the blade is inclined to the upstream side in the steam flow direction X, and the centroid of each blade cross section is upstream of the radial line R in the flow direction X. As can be seen from FIGS. 2 and 3, the blade profile 4 twists in the opposite direction to its twisting direction (ie, counterclockwise as viewed from the radially outer side) during rotation. .
そこで、 本実施形態の場合、 カバー 3の接触面 Zを、 タービンの軸線 Aに対し、 蒸気の流れ方向 Xの下流側に向かって回転方向 (本実施形態においては、 蒸気の 流れ方向 Xの上流側から見て反時計回り) に傾斜させてある。 この接触面 Zが、 夕ービン半径方向から見て、 該接触面 Zから反時計回り方向に軸線 Aとなす角 Θ は鈍角である。  Therefore, in the case of the present embodiment, the contact surface Z of the cover 3 is rotated in the direction of rotation toward the downstream side of the steam flow direction X with respect to the turbine axis A (in this embodiment, the upstream of the steam flow direction X). Counterclockwise as viewed from the side). The angle Θ that the contact surface Z forms with the axis A in the counterclockwise direction from the contact surface Z when viewed from the evening bin radial direction is an obtuse angle.
本実施形態【こよれば、 タービン動翼 1は、 流れ方向 Xの上流側に傾斜し、 回転 時、 そのねじれ方向と反対方向にねじれるので、 上記の如くカバ一 3を形成する ことにより、 隣り合うカバー 3, 3を強固に接触連結することができる。 よって、 上記同様の効果を得る。 第 4実施形態  According to this embodiment [according to this embodiment, the turbine rotor blade 1 is inclined to the upstream side in the flow direction X and twists in the direction opposite to the twisting direction during rotation. Therefore, by forming the cover 13 as described above, The mating covers 3, 3 can be firmly contacted and connected. Therefore, the same effect as above can be obtained. Fourth embodiment
図 1 3は本発明のタービン動翼の第 4実施形態の概略構成を表す斜視図、 図 1 4はこの図 1 3に示したタービン動翼を夕一ビン半径方向外周側から見た外観図 'である。 これら図 1 3及び図 1 4において、 先の各図と同様の部分又は同様の機 能を果たす部分には同符号を付し、 その説明を省略する。  FIG. 13 is a perspective view showing a schematic configuration of a fourth embodiment of the turbine rotor blade of the present invention, and FIG. 14 is an external view of the turbine rotor blade shown in FIG. 13 as viewed from the outer peripheral side in the evening bin radial direction. '. In FIGS. 13 and 14, the same reference numerals are given to the same portions or the portions performing the same functions as those in the previous drawings, and the description thereof will be omitted.
図 1 3及び図 1 4において、 各タービン動翼 1は、 根元部 5から先端部 2にか けて半径方向タ 周側から見て時計回りにねじれている。 また、 タービン動翼 1は、 流れ方向 Xの上流側から見て反時計回りに回転し、 その翼プロフィル部 4は、 図 1 3に二点鎖線で示したス夕ッキング線が半径方向線 Rに平行な翼と比較して分 かるように、 流れ方向 Xにおける下流側に傾斜している。 このように、 本実施形 態においては、 ス夕ッキング線 Lが流れ方向 Xの下流側に傾斜し、 各翼断面の図 心〇が半径方向線 Rよりも下流側に位置しているので、 先の図 2及び図 3から、 翼プロフィル部 4は、 回転時、 さらにねじれる方向、 つまり半径方向外周側から 見て時計回りにねじれる。 In FIGS. 13 and 14, each turbine blade 1 is twisted clockwise from the root 5 to the tip 2 when viewed from the radially circumferential side. The turbine blade 1 rotates counterclockwise as viewed from the upstream side in the flow direction X, and its blade profile 4 has a radial line R indicated by a two-dot chain line in FIG. It is inclined downstream in the flow direction X, as can be seen in comparison with the blade parallel to. Thus, in the present embodiment, the sucking line L is inclined to the downstream side in the flow direction X, and the cross section of each wing is shown in FIG. Since the center 〇 is located on the downstream side of the radial line R, the wing profile section 4 can be further twisted during rotation, that is, clockwise as viewed from the radially outer side, as shown in FIGS. 2 and 3 above. Twist.
そこで、 本実施形態の場合、 カバー 3の隣接するタービン動翼 1のカバー 3と の接角虫面 Zを、 タービンの軸線 Aに対し、 蒸気の流れ方向 Xの下流側に向かって 回転方向と反対方向 (本実施形態においては、 蒸気の流れ方向 Xの上流側から見 て時計回り) に傾斜させてある。 夕一ビン半径方向外周側から見て、 この接触面 Zが、 該接触面 Zから時計回りに軸線 Aとなす角 Θは鈍角である。  Therefore, in the case of the present embodiment, the contact angle Z between the cover 3 and the cover 3 of the turbine blade 1 adjacent to the cover 3 is set to the rotation direction toward the downstream of the steam flow direction X with respect to the turbine axis A. It is inclined in the opposite direction (in this embodiment, clockwise as viewed from the upstream side in the steam flow direction X). The angle す formed by the contact surface Z and the axis A clockwise from the contact surface Z is an obtuse angle when viewed from the outer peripheral side in the evening bin radial direction.
本実施形態のタービン動翼 1は、 回転時、 そのねじれ方向にさらにねじれるた め、 上記の如くカバー 3を形成することにより、 隣り合うカバー 3, 3同士を強 固に接触連結させることができる。 したがって、 上記同様の効果を得ることがで きる。 第 5実施形態  Since the turbine blade 1 of the present embodiment is further twisted in the twisting direction during rotation, forming the cover 3 as described above allows the adjacent covers 3 to be firmly contacted and connected to each other. . Therefore, the same effect as described above can be obtained. Fifth embodiment
図 1 5は、 本発明の夕一ビン動翼の第 5の実施形態をタービン半径方向外周側 から見た外観図である。 この図 1 5において、 先の各図と同様の部分又は同様の 機能を果たす部分には同符号を付し、 その説明を省略する。  FIG. 15 is an external view of a fifth embodiment of the evening bin rotor blade of the present invention viewed from the outer peripheral side in the turbine radial direction. In FIG. 15, the same reference numerals are given to the same portions or the portions performing the same functions as those in the previous drawings, and description thereof will be omitted.
本実施形態のタービン動翼 1は、 図 1 5には特に図示していないが、 根元部 5 から先端部 2にかけて半径方向外周側から見て反時計回りにねじれているものと する。 また、 流れ方向 Xの上流側から見て時計回りに回転し、 その翼プロフィル 部 4は、 半径方向線に平行な翼と比較して流れ方向 Xにおける下流側に傾斜して いるものとする。 つまり、 本実施形態において、 翼のスタツキング線は、 第 2又 は第 4の実施形態と同様、 流れ方向 Xの下流側に傾斜し、 各翼断面の図心は、 半 径方向線よりも下流側に位置している。 このように、 プロフィル部 4を下流側に 傾斜させた場合、 先の図 2及び図 3から、 回転時、 プロフィル部 4は、 そのねじ れ方向にさらにねじれる方向、 すなわち半径方向外周側から見て反時計回りにね じれることになる。  Although not particularly shown in FIG. 15, the turbine blade 1 of the present embodiment is twisted counterclockwise from the root 5 to the tip 2 when viewed from the radially outer peripheral side. It is also assumed that the blade rotates clockwise as viewed from the upstream side in the flow direction X, and that the blade profile portion 4 is inclined downstream in the flow direction X as compared with the blade parallel to the radial line. That is, in the present embodiment, the stacking line of the blade is inclined to the downstream side in the flow direction X, as in the second or fourth embodiment, and the centroid of each blade section is located downstream of the radial direction line. Located on the side. As described above, when the profile part 4 is inclined to the downstream side, from the previous FIGS. 2 and 3, when rotating, the profile part 4 is further twisted in the twisting direction, that is, when viewed from the radially outer side. You will be twisted counterclockwise.
本実施形態の場合、 カバ一 3, 3同士の接触面 Zが直線状に形成されているが、 この図 1 5の例の場合、 回転中、 カバー 3は図示した状態で反時計回りに回転し ようとするので、 接触面 Zが、 タービンの軸線 Aに対し、 流れ方向 Xの下流側In the case of the present embodiment, the contact surface Z between the covers 1 and 3 is formed linearly. In the case of the example of FIG. 15, the cover 3 rotates counterclockwise in the illustrated state during rotation. And So that the contact surface Z is on the downstream side in the flow direction X with respect to the turbine axis A.
(図 1 5中では左 {M) に向かって回転方向と反対方向 (図 1 5では下方向) に傾 斜させてある。 (In Fig. 15, it is inclined toward the left (M) in the direction opposite to the direction of rotation (downward in Fig. 15).
ここで、 図 1 5においては、 カバー 3, 3同士の対向端面の形状が、 前述した 各実施形態とは相違している。 先の各実施形態においては、 カバー 3, 3の対向 端面が概略 「V」 字状に形成されていたが、 本実施形態においては、 カバ一 3, 3の対向端面を、 接触面 Zを延長してほぼ直線的に形成してある。 このように、 夕一ビン動翼 1の回転方向と傾斜方向に応じ、 回転中のプロフィル部 4のねじれ が拘束されるよう、 傾斜方向が適切な接触面 Zが設けてあれば、 カバー 3, 3同 士の対向端面全体の形状は、 特に限定されるものではない。 このような場合も、 上記同様の効果を得ることができる。  Here, in FIG. 15, the shapes of the facing end surfaces of the covers 3 are different from those of the above-described embodiments. In each of the above embodiments, the opposing end faces of the covers 3 and 3 are formed in a substantially “V” shape. In the present embodiment, the opposing end faces of the covers 1 and 3 and the contact surface Z are extended. It is formed almost linearly. As described above, if the contact surface Z having an appropriate inclination direction is provided so that the twisting of the rotating profile portion 4 is restricted according to the rotation direction and the inclination direction of the evening bin rotor blade 1, the cover 3, 3 The shape of the entire opposing end face is not particularly limited. In such a case, the same effect as above can be obtained.
なお、 言うまでもないが、 タービン動翼 1を上流側に傾斜させた場合でも同様 であり、 勿論、 タービン動翼 1の回転方向にも捉われない。 第 6実施形態  Needless to say, the same applies to the case where the turbine blade 1 is inclined to the upstream side, and, of course, the rotation direction of the turbine blade 1 is not limited. Sixth embodiment
図 1 6は、 本発明のタービン動翼の第 6実施形態の概略構成を表す斜視図であ る。 この図 1 6において、 先の各図と同様の部分又は同様の機能を果たす部分に は同符号を付し、 その説明を省略する。  FIG. 16 is a perspective view illustrating a schematic configuration of a sixth embodiment of the turbine bucket of the present invention. In FIG. 16, the same reference numerals are given to the same portions as those in the previous drawings or the portions performing the same functions, and description thereof will be omitted.
前述した各実施形態においては、 根元部 5から先端部 2にかけ、 プロフィル部 4が、 半径方向線 Rに対し直線的に傾斜している場合を図示説明したが、 これに 限られず、 曲線的に傾斜している場合でも、 本発明は適用可能である。 プロフィ ル部 4が曲線的に傾斜している場合でも、 その傾斜方向、 つまり根元部 5から先 端部 2にかけての各翼断面の図心の半径方向線 Rに対する位置関係と夕一ビン動 翼 1の回転方向とに応じて接触面 Zの傾斜を設定することによって、 同様の効果 を得ることができる。  In each of the above-described embodiments, the case where the profile portion 4 is linearly inclined with respect to the radial line R from the root portion 5 to the tip portion 2 has been illustrated and described. However, the present invention is not limited to this. The present invention is applicable even in the case of being inclined. Even when the profile part 4 is inclined in a curved manner, the positional relationship between the inclination direction, that is, the radial center line R of the centroid of each blade section from the root part 5 to the tip end part 2, and the evening bin rotor The same effect can be obtained by setting the inclination of the contact surface Z according to the rotation direction of 1.
図 1 6を例に具体的に説明すると、 図 1 6に示したタービン動翼 1は、 上流側 から見て時計回り こ回転し、 ス夕ッキング線が半径方向線 Rに平行な二点鎖線で 示したタービン動翼に対し、 流れ方向 Xの上流側に傾斜している。 このタービン 動翼 1のスタツキング線 Lは、 先端部 2から根元部 5に向かつて半径方向線 Rに 収束するような曲線を描き、 半径方向線 Rに対し根元部 5から先端部 2にかけて 流れ方向 Xの上流側に離間している。 この場合も、 各翼断面の図心は、 第 1実施 形態と同様、 半径方向線 Rに対し上流側に位置し、 ターピン動翼 1の回転方向が 上流側から見て時計回りであるので、 図 2及び図 3の結果から、 カバー 3は半径 方向外周側から見て時計回りに回転しょうとする。 したがって、 第 1実施形態と 同様、 流れ方向 Xの下流側に向かって回転方向に傾斜するように接触面 Zを設け れば、 プロフィル部 4のねじり戻りの作用によつて接触面 Zに強固な拘束力を生 じさせることができ、 上記同様の効果を得ることができる。 Explaining in detail using Fig. 16 as an example, the turbine rotor blade 1 shown in Fig. 16 rotates clockwise when viewed from the upstream side, and the two-dot chain line whose crossing line is parallel to the radial line R. It is inclined upstream in the flow direction X with respect to the turbine blade shown by. The stacking line L of the turbine rotor blade 1 extends from the tip 2 to the root 5 along a radial line R. It draws a curve that converges and is separated from the radial line R from the root 5 to the tip 2 on the upstream side in the flow direction X. Also in this case, as in the first embodiment, the centroid of each blade cross section is located on the upstream side with respect to the radial line R, and the rotation direction of the tarpin rotor blade 1 is clockwise as viewed from the upstream side. From the results shown in FIGS. 2 and 3, the cover 3 tries to rotate clockwise as viewed from the radially outer side. Therefore, as in the first embodiment, if the contact surface Z is provided so as to incline in the rotation direction toward the downstream side in the flow direction X, the contact surface Z can be firmly attached to the contact surface Z by the action of the torsion return of the profile portion 4. A binding force can be generated, and the same effect as described above can be obtained.
なお、 言うまでもないが、 例えばこの図 1 6のプロフィル部 4を下流側に曲線 的に傾斜させた場合には、 図 8又は図 1 3のように、 流れ方向 Xの下流側に向か つて反回転方向に傾斜する接触面 Zを設ければ良い。 また、 図 1 6とは逆に、 先 の図 1 1のように、 上流側から見て反時計回りにタービン動翼 1が回転する場合 は、 接^!面の傾斜方向をその回転方向 (つまり反時計回り方向) に傾斜させれば 良い。  Needless to say, for example, when the profile portion 4 in FIG. 16 is curvedly inclined downstream, as shown in FIG. 8 or FIG. 13, the profile portion 4 is opposed toward the downstream in the flow direction X. What is necessary is just to provide the contact surface Z inclined in the rotation direction. Also, contrary to FIG. 16, when the turbine rotor blade 1 rotates counterclockwise as viewed from the upstream side as shown in FIG. What is necessary is just to incline the inclination direction of the surface in the rotation direction (that is, counterclockwise direction).
また、 図 1 7に示すように、 スタツキング線 Lが、 根元部 5から先端部 2に向 かう途中から半径方向線 Rに対しずれていく場合、 つまり、 翼プロフィル部 4の 根元部 5を含む一部が半径方向線 Rに平行で、 それよりも先端部 2側の部分が、 直線的又は曲線的に傾斜している場合にも、 本発明は適用可能である。 このよう に、 翼プロフィル部 4が、 部分的に傾斜している場合でも、 その傾斜部分の傾斜 方向及び夕一ビン動翼 1の回転方向に応じて、 カバ一 3の接触面 Zの傾斜方向を 設定すれば、 上記同様の効果を得ることができる。 図 1 7の場合は、 翼プロフィ ル部 4の傾斜部分が流れ方向 Xの上流側に向かっており、 流れ方向 Xの上流側か ら見て時計回りにタービン動翼 1が回転するので、 翼プロフィル部 4は、 回転中、 タービン半径方向外周側から見て時計回りに回転しょうとする。 したがって、 流 れ方向: Xの下流側に向かって、 タービン動翼 1の回転方向に傾斜する接触面 Zを 設ければ、 第 1実施形態と同様にして隣接するカバー 3間の拘束力を確保するこ とができる。 なお、 以上の各実施形態においては、 タービン動翼 1を流れ方向 Xの上流側又 は下流側に傾斜させたが、 図 3を用いて先に説明したように、 周方向に対してさ らに傾斜させることによって、 タービン動翼 1のねじり戻りの作用をより効果的 に得ることができる。 すなわち、 各翼断面がほぼ同一形状である夕一ビン動翼 1 を流れ方向 Xの上流御』に傾斜させる場合、 さらにそのタービン動翼 1を背側に傾 斜させることによって、 より大きくねじり戻りの作用を得ることができる。 逆に、 夕一ビン動翼 1を流れ方向 Xの下流側に傾斜させる場合、 さらにそのタービン動 翼 1を腹側に傾斜させることによって、 プロフィル部 4のねじれ方向に、 さらに 大きくねじりの作用を得ることができる。 したがって、 前述した各実施形態にお いて、 こうしてタービン動翼 1をさらに周方向へも傾斜させることによって、 よ り効果的にカバー 3, 3間の拘束力を作用させることができる。 産業上の利用可能性 Also, as shown in FIG. 17, when the stacking line L is shifted from the root portion 5 toward the tip portion 2 with respect to the radial line R, that is, includes the root portion 5 of the wing profile portion 4. The present invention is also applicable to a case where a part is parallel to the radial line R and the part on the tip 2 side is inclined linearly or curvedly. As described above, even when the wing profile part 4 is partially inclined, the inclination direction of the contact surface Z of the cover 3 depends on the inclination direction of the inclined part and the rotation direction of the evening bin rotor blade 1. By setting, the same effect as above can be obtained. In the case of Fig. 17, the inclined portion of the blade profile section 4 is directed toward the upstream side in the flow direction X, and the turbine blade 1 rotates clockwise as viewed from the upstream side in the flow direction X. During rotation, the profile section 4 tries to rotate clockwise when viewed from the outer peripheral side in the turbine radial direction. Therefore, if a contact surface Z inclined in the rotation direction of the turbine rotor blade 1 is provided toward the downstream side of the flow direction X, the binding force between the adjacent covers 3 is secured in the same manner as in the first embodiment. can do. In each of the above embodiments, the turbine blade 1 is moved upstream or downstream in the flow direction X. Was inclined to the downstream side, but as described earlier with reference to Fig. 3, by further inclining in the circumferential direction, the effect of torsional return of the turbine blade 1 can be obtained more effectively. Can be. In other words, when the evening bin rotor blades 1 having substantially the same shape in each blade section are tilted in the upstream direction in the flow direction X, the turbine rotor blades 1 are further tilted rearward to further twist back. Can be obtained. Conversely, when the evening blade 1 is tilted downstream in the flow direction X, the turbine blade 1 is further tilted abdominally to further increase the twisting action in the torsion direction of the profile portion 4. Obtainable. Therefore, in each of the above-described embodiments, by further inclining the turbine blade 1 in the circumferential direction, the binding force between the covers 3 can be more effectively exerted. Industrial applicability
本発明によれば、 比較的翼長が短い翼であっても、 回転時、 隣り合うカバ一間 の接触連結力を十分に確保することができる。 これにより、 予めねじってタ一ビ ン動翼を組み付ける作業の負担を軽減することができるので、 組み立て作業性を 向上させ、 しかも組立時に局所的な応力集中が発生することを防止でき、 信頼性 の高いタービン動翼を提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, even if it is a blade | wing with a comparatively short blade | wing length, the contact connection force between adjacent covers can be sufficiently ensured at the time of rotation. This makes it possible to reduce the load on the work of assembling the turbine blade by twisting in advance, thereby improving the assembly workability and preventing the occurrence of local stress concentration at the time of assembly. High turbine blades can be provided.

Claims

請求の範囲 The scope of the claims
1 . 翼先端部にねじれを拘束するためのカバーを有するタービン動翼において、 少なくとも翼先端部の翼断面の図心位置が、 翼根元部の翼断面の図心から延び る夕一ビンの半 ί圣方向線からずれるようにプロフィル部を形成し、 1. In a turbine bucket having a cover at the tip of the blade for restraining torsion, at least the center of gravity of the blade section at the tip of the blade is at least half a centimeter extending from the center of the blade cross section at the root of the blade.を Form a profile part so that it deviates from the direction line,
前記図心及び前記半径方向線の位置関係と前記プロフィル部の回転方向とに応 じ、 周方向に隣り合う前記カバー間に押付力が作用するように、 前記カバー間の 接触面のタ一ビンの軸線に対する傾斜方向を設定したことを特徴とする夕一ビン 動翼。  According to the positional relationship between the centroid and the radial direction line and the rotation direction of the profile portion, a vial of a contact surface between the covers is provided so that a pressing force acts between the adjacent covers in the circumferential direction. An evening bin rotor blade having a tilt direction set with respect to the axis of the blade.
2 . 少なくとも翼先端部の翼断面の図心位置が、 翼根元部の翼断面の図心から延 びる半径方向線よりも作動流体の流れ方向上流側に位置するプロフィル部と、 このプロフィル部の翼先端部に設けられるとともに、 周方向に隣り合うものと の接触面を、 タービンの軸線に対し、 前記作動流体の流れ方向の下流側に向かつ て前記プロフィ レ部の回転方向に傾斜させたカバーと 2. At least the profile center of the blade section at the tip of the blade is located upstream of the radial line extending from the center of the blade section at the root of the blade in the flow direction of the working fluid, and the blade of this profile section A cover provided at the tip end and having a contact surface with a circumferentially adjacent one inclined to the downstream side in the flow direction of the working fluid with respect to the axis of the turbine in the rotation direction of the profiler portion. When
を備えたことを特徴とするタービン動翼。 A turbine rotor blade comprising:
3 . 少なくとも翼先端部の翼断面の図心位置が、 翼根元部の翼断面の図心から延 びる半径方向線 cfcりも作動流体の流れ方向下流側に位置するプロフィル部と、 このプロフィル部の翼先端部に設けられるとともに、 周方向に隣り合うものと の接触面を、 タービンの軸線に対し、 前記作動流体の流れ方向の下流側に向かつ て前記プロフィル部の回転方向と逆方向に傾斜させたカバーと 3. At least the centroid position of the wing section at the tip of the wing is such that the radial line cfc extending from the centroid of the wing section at the root of the wing is located on the downstream side in the flow direction of the working fluid. The contact surface with the circumferentially adjacent one provided at the tip of the blade is inclined with respect to the axis of the turbine toward the downstream side in the flow direction of the working fluid and in the direction opposite to the rotation direction of the profile portion. With the cover
を備えたことを待徴とするタービン動翼。 Turbine rotor blades that have been equipped with.
4 . 翼先端部に互いのねじれを拘束するカバーを有するタービン動翼において、 作動流体の流れ方向上流側から見て時計回りに回転し、 根元部から先端部まで の各翼断面の図心、を結んで得られるス夕ッキング線の少なくとも一部を、 翼根元 断面の図心から延びる半径方向線に対し、 前記作動流体の流れ方向上流側に傾斜 させたこと、 周方向に隣り合うカバ一に対する前記カバーの接触面を、 タービン半径方向外 周側から見て、 該接触面から時計回りにタービンの軸線となす角度が鈍角となる ように、 タービンの軸線に対して傾斜させたこと 4. Turbine rotor blades with covers at the blade tip that restrain each other's torsion, rotate clockwise as viewed from the upstream side of the working fluid flow direction, and centroids of each blade section from the root to the tip. At least a portion of a sucking line obtained by connecting the above to a radial line extending from the centroid of the blade root cross section, and inclining to the upstream side in the flow direction of the working fluid; The contact surface of the cover with the cover that is adjacent in the circumferential direction is viewed from the outer peripheral side in the turbine radial direction, so that the angle between the contact surface and the turbine axis in a clockwise direction is an obtuse angle with respect to the turbine axis. Tilted
を特徴とする夕一ビン動翼。 The feature is the evening bucket.
5 . 翼先端部に互いのねじれを拘束するカバーを有するタービン動翼において、 作動流体の流れ方向上流側から見て時計回りに回転し、 根元部から先端部まで の各翼断面の図心を結んで得られるス夕ッキング線の少なくとも一部を、 翼根元 断面の図心から延びる半径方向線に対し、 前記作動流体の流れ方向下流側に傾斜 させたこと、 5. In a turbine blade having a cover at the tip of the blade that restrains each other's torsion, rotate clockwise as viewed from the upstream side in the flow direction of the working fluid, and change the centroid of each blade section from the root to the tip. At least a part of the sucking line obtained by tying is inclined to the downstream side in the flow direction of the working fluid with respect to a radial line extending from the centroid of the blade root cross section,
周方向に隣り合うカバーに対する前記カバーの接触面を、 夕一ビン半径方向外 周側から見て、 該接触面から反時計回りにタービンの軸線となす角度が鈍角とな るように、 タービンの軸線に対して傾斜させたこと  When the contact surface of the cover with the cover adjacent in the circumferential direction is viewed from the outer peripheral side in the evening bin radial direction, the angle between the contact surface and the axis of the turbine in the counterclockwise direction is an obtuse angle. Inclined to the axis
を特徴とするタービン動翼。 A turbine blade.
6 . 翼先端部に互いのねじれを拘束するカバーを有するタービン動翼において、 作動流体の流れ方向上流側から見て反時計回りに回転し、 根元部から先端部ま での各翼断面の図心を結んで得られるスタツキング線の少なくとも一部を、 翼根 元断面の図心から延びる半径方向線に対し、 前記作動流体の流れ方向上流側に傾 斜させたこと、 6. Cross section of each blade from the root to the tip, rotating counterclockwise as viewed from the upstream side of the working fluid flow direction, in the turbine blade having a cover at the tip of the blade that restrains each other's twist. Tilting at least a part of the stacking line obtained by connecting the cores with respect to a radial line extending from the centroid of the blade root cross section toward the upstream side in the flow direction of the working fluid;
周方向に隣り合うカバーに対する前記カバーの接触面を、 夕一ビン半径方向外 周側から見て、 該接触面から反時計回りにタービンの軸線となす角度が鈍角とな るように、 タービンの軸線に対して傾斜させたこと  When the contact surface of the cover with the cover adjacent in the circumferential direction is viewed from the outer peripheral side in the evening bin radial direction, the angle between the contact surface and the axis of the turbine in the counterclockwise direction is an obtuse angle. Inclined to the axis
を特徴とするタービン動翼。 A turbine blade.
7 . 翼先端部に互いのねじれを拘束するカバーを有するタービン動翼において、 作動流体の流れ方向上流側から見て反時計回りに回転し、 根元部から先端部ま での各翼断面の図心を結んで得られるス夕ッキング線の少なくとも一部を、 翼根 元断面の図心から延びる半径方向線に対し、 前記作動流体の流れ方向下流側に傾 斜させたこと、 7. A turbine rotor blade with a cover at the blade tip that restrains each other's twist, rotates counterclockwise when viewed from the upstream side in the working fluid flow direction, and shows a cross section of each blade from the root to the tip. At least a part of the sucking line obtained by connecting the cores is inclined to the downstream side in the flow direction of the working fluid with respect to the radial line extending from the centroid of the blade root cross section. Slanted,
周方向に隣り合うカバーに対する前記カバ一の接触面を、 タービン半径方向外 周側から見て、 該接触面から時計回りにタービンの軸線となす角度が鈍角となる ように、 タービンの軸線に対して傾斜させたこと  The contact surface of the cover with the cover which is adjacent in the circumferential direction is viewed from the outer peripheral side in the turbine radial direction, so that the angle formed with the axis of the turbine clockwise from the contact surface is obtuse. Tilted
を特徴とするタービン動翼。 A turbine blade.
8 . 請求項 1記載のタービン動翼において、 前記プロフィル部の根元部から先端 部にかけての各翼断面の図心を結んで得られるス夕ッキング線が、 翼先端部に向 かって曲線的に前記半径方向線から離間するように形成されていることを特徴と するタービン動翼。 8. The turbine rotor according to claim 1, wherein a sucking line obtained by connecting centroids of respective blade cross sections from a root portion to a tip portion of the profile portion is curved toward a blade tip portion. A turbine rotor blade formed so as to be separated from a radial line.
9 . 請求項 1記載のタービン動翼において、 前記プロフィル部の根元部から先端 部にかけての各翼断面の図心を結んで得られるスタツキング線が、 前記プロフィ ル部の翼長方向中間部から、 翼先端部に向かって前記半径方向線から離間するよ うに形成されていることを特徴とするタービン動翼。 9. The turbine rotor according to claim 1, wherein a stacking line obtained by connecting centroids of respective blade cross sections from a root portion to a tip portion of the profile portion is formed from a middle portion in the blade length direction of the profile portion, A turbine rotor blade formed so as to be separated from the radial line toward a blade tip.
1 0 . 請求項 1記載の夕一ビン動翼において、 前記プロフィル部の根元部から先 端部にかけての各翼断面が、 ほぼ同一形状となるように形成されていることを特 徴とするタービン動翼。 10. The turbine according to claim 1, wherein each blade section from the root portion to the tip end of the profile portion is formed to have substantially the same shape. Bucket.
1 1 . 翼先端部に互いのねじれを拘束するカバ一を有するタービン動翼において、 周方向に隣り合うカバーに対する前記カバーの接触面のタービンの軸線に対す る傾斜方向に応じ、 前記隣り合うカバー間に作用する押付力が増大するように、 少なくとも翼先端部の断面の図心位置を、 翼根元部の断面の図心から延びるター ビンの半径方向線に対してずらしたことを特徴とするタービン動翼。 1 1. In a turbine rotor blade having a cover at a blade tip portion that restrains mutual torsion, the adjacent covers are arranged according to the direction of inclination of the contact surface of the cover with respect to the circumferentially adjacent cover with respect to the axis of the turbine. A turbine characterized in that at least the centroid position of the cross section of the blade tip is shifted with respect to the radial line of the turbine extending from the centroid of the cross section of the blade root so that the pressing force acting therebetween increases. Bucket.
1 2 . 少なくとも翼先端部の後縁部が、 翼根元部の後縁部よりも作動流体の流れ 方向上流側に位置するプロフィル部と、 1 2. At least the trailing edge of the blade tip is located upstream of the trailing edge of the blade root in the flow direction of the working fluid.
このプロフィル部の翼先端部に設けられるとともに、 周方向に隣り合うものと の接触面を、 タービンの軸線に対し、 前記作動流体の流れ方向の下流側に向かつ て前記プロフィル部の回転方向に傾斜させたカバーと It is provided at the tip of the wing of this profile, and A contact surface of which is inclined with respect to the axis of the turbine toward the downstream side in the flow direction of the working fluid in the rotational direction of the profile portion.
を備えたことを特徴とするタービン動翼。 A turbine rotor blade comprising:
1 3 . 少なくとも翼先端部の後縁部が、 翼根元部の後縁部よりも作動流体の流れ 方向下流側に位置するプロフィル部と、 1 3. At least the trailing edge of the blade tip is located downstream of the trailing edge of the blade root in the flow direction of the working fluid;
このプロフィル部の翼先端部に設けられるとともに、 周方向に隣り合うものと の接触面を、 夕一ビンの軸線に対し、 前記作動流体の流れ方向の下流側に向かつ て前記プロフィル部の回転方向と逆方向に傾斜させたカバーと  A rotation surface of the profile portion is provided on the blade tip portion of the profile portion, and a contact surface between the profile portion and a circumferentially adjacent one is directed to the downstream side in the flow direction of the working fluid with respect to the axis of the evening bottle. Cover inclining in the opposite direction
を備えたことを特徴とするターピン動翼。 A turpentine rotor blade comprising:
PCT/JP2003/011564 2003-09-10 2003-09-10 Turbine rotor blade WO2005026501A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005508908A JP4299301B2 (en) 2003-09-10 2003-09-10 Turbine blade
AU2003266505A AU2003266505A1 (en) 2003-09-10 2003-09-10 Turbine rotor blade
PCT/JP2003/011564 WO2005026501A1 (en) 2003-09-10 2003-09-10 Turbine rotor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011564 WO2005026501A1 (en) 2003-09-10 2003-09-10 Turbine rotor blade

Publications (1)

Publication Number Publication Date
WO2005026501A1 true WO2005026501A1 (en) 2005-03-24

Family

ID=34308201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011564 WO2005026501A1 (en) 2003-09-10 2003-09-10 Turbine rotor blade

Country Status (3)

Country Link
JP (1) JP4299301B2 (en)
AU (1) AU2003266505A1 (en)
WO (1) WO2005026501A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020210A2 (en) * 2008-08-16 2010-02-25 Mtu Aero Engines Gmbh Rotating blade system for a row of rotating blades of a turbomachine
JP2011527395A (en) * 2008-07-09 2011-10-27 ロールス‐ロイス、パブリック、リミテッド、カンパニー Apparatus and method for measuring edge erosion of turbomachine blades
EP2161413A3 (en) * 2008-09-08 2013-12-25 General Electric Company Steam turbine rotating blade for a low pressure section of a steam turbine engine
EP3521564A4 (en) * 2016-12-22 2019-11-06 Mitsubishi Heavy Industries Compressor Corporation Turbine rotor blade assembly
JP2020023921A (en) * 2018-08-07 2020-02-13 株式会社東芝 Turbine rotor blade
WO2020095470A1 (en) * 2018-11-05 2020-05-14 株式会社Ihi Rotor blade of axial-flow fluid machine
WO2023247855A1 (en) * 2022-06-22 2023-12-28 Safran Aircraft Engines Turbomachine assembly comprising platforms having edges provided with complementary protrusions and notches and associated turbomachine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224151A1 (en) * 2015-12-03 2017-06-08 MTU Aero Engines AG Center point threading of blades

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578901U (en) * 1992-04-07 1993-10-26 三菱重工業株式会社 Turbine blades
US5509784A (en) * 1994-07-27 1996-04-23 General Electric Co. Turbine bucket and wheel assembly with integral bucket shroud
JPH0960501A (en) * 1995-08-25 1997-03-04 Toshiba Corp Turbine moving blade
JP2000018003A (en) * 1998-06-30 2000-01-18 Toshiba Corp Turbine moving blade
WO2001027443A1 (en) * 1999-10-15 2001-04-19 Hitachi, Ltd. Turbine rotor vane
JP2002213204A (en) * 2001-01-15 2002-07-31 Toshiba Corp Turbine moving blade and turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578901U (en) * 1992-04-07 1993-10-26 三菱重工業株式会社 Turbine blades
US5509784A (en) * 1994-07-27 1996-04-23 General Electric Co. Turbine bucket and wheel assembly with integral bucket shroud
JPH0960501A (en) * 1995-08-25 1997-03-04 Toshiba Corp Turbine moving blade
JP2000018003A (en) * 1998-06-30 2000-01-18 Toshiba Corp Turbine moving blade
WO2001027443A1 (en) * 1999-10-15 2001-04-19 Hitachi, Ltd. Turbine rotor vane
JP2002213204A (en) * 2001-01-15 2002-07-31 Toshiba Corp Turbine moving blade and turbine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527395A (en) * 2008-07-09 2011-10-27 ロールス‐ロイス、パブリック、リミテッド、カンパニー Apparatus and method for measuring edge erosion of turbomachine blades
WO2010020210A3 (en) * 2008-08-16 2010-11-18 Mtu Aero Engines Gmbh Rotating blade system for a row of rotating blades of a turbomachine
US8684659B2 (en) 2008-08-16 2014-04-01 MTU Aero Engines AG Rotating blade system for a row of rotating blades of a turbomachine
WO2010020210A2 (en) * 2008-08-16 2010-02-25 Mtu Aero Engines Gmbh Rotating blade system for a row of rotating blades of a turbomachine
EP2161413A3 (en) * 2008-09-08 2013-12-25 General Electric Company Steam turbine rotating blade for a low pressure section of a steam turbine engine
US10865648B2 (en) 2016-12-22 2020-12-15 Mitsubishi Heavy Industries Compressor Corporation Turbine rotor blade assembly
EP3521564A4 (en) * 2016-12-22 2019-11-06 Mitsubishi Heavy Industries Compressor Corporation Turbine rotor blade assembly
JP2020023921A (en) * 2018-08-07 2020-02-13 株式会社東芝 Turbine rotor blade
JP7021027B2 (en) 2018-08-07 2022-02-16 株式会社東芝 Turbine blades
WO2020095470A1 (en) * 2018-11-05 2020-05-14 株式会社Ihi Rotor blade of axial-flow fluid machine
JPWO2020095470A1 (en) * 2018-11-05 2021-09-02 株式会社Ihi Blades of axial fluid machinery
US11377959B2 (en) 2018-11-05 2022-07-05 Ihi Corporation Rotor blade of axial-flow fluid machine
WO2023247855A1 (en) * 2022-06-22 2023-12-28 Safran Aircraft Engines Turbomachine assembly comprising platforms having edges provided with complementary protrusions and notches and associated turbomachine
FR3137126A1 (en) * 2022-06-22 2023-12-29 Safran Aircraft Engines Turbomachine assembly comprising platforms having edges provided with complementary protuberances and notches

Also Published As

Publication number Publication date
JPWO2005026501A1 (en) 2006-11-24
JP4299301B2 (en) 2009-07-22
AU2003266505A1 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP3876195B2 (en) Centrifugal compressor impeller
US6290465B1 (en) Rotor blade
US7753652B2 (en) Aero-mixing of rotating blade structures
US5829955A (en) Steam turbine
JP5554542B2 (en) System and method for reducing bucket tip loss
JP4820695B2 (en) Method and system for assembling turbine bucket with shroud and tangential insertion dovetail
US7771170B2 (en) Turbine wheel
RU2347913C2 (en) Steam or gas turbine rotor
EP2513426B1 (en) Turbomachine rotor with a blade damping device
EP2103782B1 (en) Blade structure for gas turbine
JP4765882B2 (en) Steam turbine blades
JP2008545097A (en) Turbine machine blade
CN108506247B (en) Blade and axial flow impeller using same
JP4179282B2 (en) Turbine blade
WO2005026501A1 (en) Turbine rotor blade
JP2010065685A (en) Steam turbine rotating blade for low-pressure section of steam turbine engine
JP2007187053A (en) Turbine blade
WO2003102378A1 (en) Turbine moving blade
EP1512836B1 (en) Turbine bucket assembly and its assembling method
JP2007332893A (en) Vibration damping and fretting preventive structure of axial flow turbine blade
JP5090287B2 (en) Turbine blade and its fixed structure
JP3782161B2 (en) Rotor coupling device for axial flow turbine
JP3808655B2 (en) Turbine rotor and turbine
JPH06117201A (en) Assembly method for turbine moving blade
JP2013139778A (en) Last stage blade design to reduce turndown vibration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BR BZ CA CN CR CU DM DZ EC GD GE HR HU ID IL IS JP KR LC LK LR LT LV MA MG MK MX NI NO NZ OM PH PL RO SC SG SL TT UA US UZ VC VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IT LU NL PT RO SE SI SK TR BF BJ CF CI CM GA GN GQ GW ML MR NE SN TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508908

Country of ref document: JP

122 Ep: pct application non-entry in european phase