La présente invention est relative à un perfectionnement aux pompes hydrauliques à barillet tournant à double sens de rotation. Une pompe de ce genre est décrite dans le brevet français 2 199 811 du 18 août 1973. Ce brevet décrit une pompe dite à axe brisé c'est-à-dire dans laquelle les pistons sont disposés dans un barillet, lequel est monté à rotation dans un carter dont l'axe fait angle avec l'arbre d'entraînement de la pompe, cet arbre portant un plateau sur lequel sont articulées les têtes sphériques des pistons. Selon ce brevet, on dispose un disque intermédiaire entre le barillet tournant et le carter, ce disque intermédiaire comportant deux perçages arqués, disposés symétriquement par rapport à l'axe du barillet tournant. Ces deux perçages servent l'un à l'alimentation, l'autre au refoulement et l'on peut inverser le sens de circulation du liquide hydraulique dans la pompe, en inversant le sens de rotation de l'arbre moteur. Cette disposition s'avère complexe et d'une mise en œuvre difficile, le changement de sens nécessitant des démontages et remontages délicats. Dans le brevet DE 617.689 du 25 août 1935 on a décrit une pompe hydraulique a barillet tournant dans laquelle le barillet tourne devant une culasse munie de deux lumières identiques et symétriques l'une servant à l'aspiration, l'autre au refoulement. Ce brevet ne mentionne pas la possibilité d'inverser le sens de rotation de l'arbre d'entraînement du barillet ; mais il est évident que si l'on inverse ce sens de rotation, la lumière de refoulement deviendra lumière d'aspiration et réciproquement, la lumière d'aspiration deviendra lumière de refoulement. Il s'avère cependant qu'une telle pompe ne peu t pas avoir un bon rendement aux vitesses de rotation élevées parce que les lumières décrites dans ce brevet doivent obligatoirement être de petites dimensions, afin d'éviter que la haute pression de refoulement ne provoque la séparation du barillet et de la culasse. Du fait que les lumières sont de petites dimensions, l'aspiration sera freinée aux grandes vitesses et le rendement sera mauvais.
Dans le brevet DE 2 149 616 on a décrit une pompe à barillet tournant dans laquelle les lumières d'aspiration et de refoulement sont dissymétriques, la lumière d'aspiration ayant une surface plus importante que celle de la lumière de refoulement. L'inconvénient de cette pompe est qu'elle ne peut tourner que dans un seul sens. La présente invention a pour objet une pompe dans laquelle l'extrémité du barillet est plane et appliquée par la poussée des pistons contre la face de la culasse de la pompe comportant les lumières d'aspiration et de refoulement caractérisé par le fait que ces lumières sont de dimensions différentes, la surface de la lumière d'admission étant considérablement supérieure à celle de la lumière de refoulement, ladite culasse étant disposée de manière à pouvoir être pivotée d'environ 180° pour permettre une inversion du sens de rotation de l'arbre de la pompe. A titre d'exemples et pour faciliter la compréhension de l'invention, on a représenté aux dessins annexés : - Figure 1, une vue en coupe en élévation latérale d'une pompe à axe brisé à barillet tournant selon l'invention. - Figure 2, une vue de la face avant de la culasse d'une pompe connue ayant deux lunules identiques et symétriques. - Figure 3, une vue de la face avant selon F de la figure 1 de la culasse d'un premier mode de réalisation pour un sens de rotation anti-horaire. - Figure 4, une vue analogue à la figure 3 illustrant la position de la culasse par un sens de rotation horaire. - Figure 5, une vue selon G correspondant à la figure 3. - Figure 6, une vue selon G correspondant à la figure 4. - Figure 7, une vue en coupe en élévation latérale d'une pompe selon l'invention à axe droit et plateau incliné. La figure 1 représente de façon schématique et en coupe longitudinale, une pompe à barillet et à axe brisé.
A l'intérieur du carter 2 sont disposés : d'une part un arbre moteur 1, portant un plateau d'entraînement 3, perpendiculaire à l'arbre moteur 1 ; d'autre part, un barillet 4 monté à pivotement sur un arbre 5 dont l'axe fait un angle, d'environ 30° à 40°, avec celui de l'arbre moteur 1. La tête sphérique 5a de l'arbre 5 est engagée dans un logement sphérique correspondant ménagé au centre du plateau d'entraînement 3 ; tandis que son extrémité est engagée dans un logement cylindrique 5b ménagé au centre d'une culasse 10, constituant le fond de la partie oblique du carter 2. Le barillet 4 porte une pluralité de pistons 6 qui coulissent dans des alésages cylindriques 7 ménagés dans la masse du barillet 4. Les têtes sphériques 6a des pistons 6 sont engagées dans des logements sphériques correspondants, ménagés dans le plateau 3. En tournant, l'arbre moteur 1 entraîne en rotation le barillet 4 tout en imprimant un mouvement de va-et-vient aux pistons 6. A l'arrière de chaque alésage 7 est disposé un perçage 8 qui vient buter contre la face avant 11 de la culasse 10. La figure 2 représente la disposition décrite dans le brevet DE 617 689, mentionné ci-dessus, les lumières 12 et 13 pratiquées dans la culasse 10 étant identiques et symétriques. Pour un sens de rotation de l'arbre 1, la lumière 12 est la lumière d'aspiration et la lumière 13 la lumière de refoulement. Si l'on inverse le sens de rotation de l'arbre 1 la lumière 13 devient lumière d'aspiration et la lumière 12 lumière de refoulement. Une telle pompe peut donc tourner dans un sens ou dans l'autre ; mais elle présente le grave inconvénient d'avoir un très mauvais rendement aux grandes vitesses de rotation de l'arbre 1, parce que les dimensions des lumières 12 et 13 sont trop petites, ce qui va considérablement freiner l'entrée du liquide par la lumière jouant le rôle de lumière d'aspiration. Et il n'est pas possible d'augmenter la surface de ces lumières pour une question d'équilibrage hydrostatique.
En effet le barillet 4 est appliqué contre la face 11 de la culasse 10 par la poussée engendrée par les pistons 6. Si la lumière jouant le rôle de lumière de refoulement, et recevant donc la haute pression P a une surface S trop grande, la force PxS sera supérieure à la poussée engendrée par les pistons 6, le barillet 4 ne sera plus appliqué contre la face 11 de la culasse 10 et la pompe ne fonctionnera plus. Il n'est donc pas possible d'augmenter la surface des lumières 12 et 13 et c'est la raison pour laquelle de telles pompes ont de très mauvais rendement pour les grandes vitesses de rotation de l'arbre moteur 1. Or l'on recherche actuellement des pompes à grandes vitesses.The present invention relates to an improvement to hydraulic pumps with a rotating barrel with two directions of rotation. A pump of this kind is described in French patent 2,199,811 of August 18, 1973. This patent describes a pump known as a broken axis, that is to say in which the pistons are arranged in a barrel, which is mounted to rotate in a casing whose axis is at an angle with the drive shaft of the pump, this shaft carrying a plate on which the spherical heads of the pistons are articulated. According to this patent, there is an intermediate disc between the rotating barrel and the casing, this intermediate disc comprising two arcuate holes, arranged symmetrically with respect to the axis of the rotating barrel. These two holes are used one for the supply, the other for the delivery and one can reverse the direction of circulation of the hydraulic liquid in the pump, by reversing the direction of rotation of the motor shaft. This arrangement proves to be complex and difficult to implement, the change of direction requiring delicate disassembly and reassembly. In patent DE 617,689 of August 25, 1935, a hydraulic pump with rotating barrel has been described in which the barrel rotates in front of a cylinder head provided with two identical and symmetrical ports, one serving for suction, the other for delivery. This patent does not mention the possibility of reversing the direction of rotation of the barrel drive shaft; but it is obvious that if we reverse this direction of rotation, the discharge light will become suction light and vice versa, the suction light will become discharge light. However, it turns out that such a pump cannot have a good efficiency at high rotational speeds because the lights described in this patent must necessarily be small, in order to prevent the high discharge pressure from causing the separation of the barrel and the breech. Because the lights are small, the suction will be braked at high speeds and the performance will be poor. In patent DE 2 149 616 a rotary barrel pump has been described in which the suction and discharge ports are asymmetrical, the suction port having a larger surface than that of the discharge port. The downside of this pump is that it can only rotate in one direction. The present invention relates to a pump in which the end of the barrel is flat and applied by the pushing of the pistons against the face of the cylinder head of the pump comprising the suction and discharge ports, characterized in that these ports are of different dimensions, the surface of the intake lumen being considerably greater than that of the discharge lumen, said cylinder head being arranged so that it can be pivoted by approximately 180 ° to allow reversing of the direction of rotation of the shaft of the pump. By way of examples and to facilitate understanding of the invention, there is shown in the accompanying drawings: - Figure 1, a sectional view in side elevation of a broken axis pump with rotating barrel according to the invention. - Figure 2, a view of the front face of the cylinder head of a known pump having two identical and symmetrical lunules. - Figure 3, a view of the front face according to F of Figure 1 of the cylinder head of a first embodiment for a counterclockwise direction of rotation. - Figure 4, a view similar to Figure 3 illustrating the position of the cylinder head by a clockwise direction of rotation. - Figure 5, a view along G corresponding to Figure 3. - Figure 6, a view along G corresponding to Figure 4. - Figure 7, a sectional view in side elevation of a pump according to the invention with a straight axis and inclined tray. Figure 1 shows schematically and in longitudinal section, a barrel pump and broken axis. Inside the casing 2 are arranged: on the one hand a drive shaft 1, carrying a drive plate 3, perpendicular to the drive shaft 1; on the other hand, a barrel 4 pivotally mounted on a shaft 5 whose axis makes an angle, of about 30 ° to 40 °, with that of the motor shaft 1. The spherical head 5a of the shaft 5 is engaged in a corresponding spherical housing formed in the center of the drive plate 3; while its end is engaged in a cylindrical housing 5b formed in the center of a cylinder head 10, constituting the bottom of the oblique part of the casing 2. The barrel 4 carries a plurality of pistons 6 which slide in cylindrical bores 7 formed in the mass of the barrel 4. The spherical heads 6a of the pistons 6 are engaged in corresponding spherical housings formed in the plate 3. By turning, the drive shaft 1 rotates the barrel 4 while imparting a back-and-forth movement comes to the pistons 6. At the rear of each bore 7 is arranged a bore 8 which abuts against the front face 11 of the cylinder head 10. FIG. 2 represents the arrangement described in patent DE 617 689, mentioned above, the lights 12 and 13 made in the cylinder head 10 being identical and symmetrical. For a direction of rotation of the shaft 1, the light 12 is the suction light and the light 13 the discharge light. If the direction of rotation of the shaft 1 is reversed, the light 13 becomes suction light and the light 12 discharge light. Such a pump can therefore rotate in one direction or the other; but it has the serious drawback of having a very poor efficiency at the high rotational speeds of the shaft 1, because the dimensions of the lights 12 and 13 are too small, which will considerably slow down the entry of the liquid by the light playing the role of suction light. And it is not possible to increase the surface of these lights for a question of hydrostatic balancing. Indeed the barrel 4 is applied against the face 11 of the cylinder head 10 by the thrust generated by the pistons 6. If the light playing the role of discharge light, and therefore receiving the high pressure P has a surface S too large, the force PxS will be greater than the thrust generated by the pistons 6, the barrel 4 will no longer be applied against the face 11 of the cylinder head 10 and the pump will no longer operate. It is therefore not possible to increase the surface of the lights 12 and 13 and this is the reason why such pumps have very poor efficiency for the high rotational speeds of the motor shaft 1. However, we is currently looking for high speed pumps.
Pour que la pompe puisse être entraînée à vitesse de rotation élevée, il est indispensable d'améliorer l'alimentation de la pompe. Pour cela l'une des deux lumières, la lumière 13 par exemple, est dédiée à l'alimentation ; tandis que l'autre, la lumière 12 est dédiée au refoulement et, comme cela est représenté aux figures 1, 3, 4, 5 et 6, la largeur de la lumière 13 est fortement augmentée par rapport à celle de la lumière 12. Dans l'exemple représenté, la largeur de la lumière 13 est approximativement trois fois plus large que celle de la lumière 12. L'alésage 15 pratiqué dans la culasse 10 qui communique avec la lumière 13 a également un diamètre beaucoup plus important que celui de l'alésage 14 qui communique avec la lumière 12. L'alésage 15 est relié au réservoir de liquide hydraulique ; tandis que l'alésage 14 est relié à l'équipement hydraulique devant recevoir le liquide hydraulique à haute pression. Il n'est plus possible dans l'état d'inverser le sens de rotation de la pompe parce que si l'on refoule de la haute pression par la lumière 13, le produit PxS aura une valeur considérablement plus élevée que F et le barillet 4 ne sera plus appliqué contre la face 11 de la culasse 10.
Selon la présente invention, la culasse 10 est munie de moyens lui permettant d'occuper deux positions, à l'inverse l'une de l'autre. En inversant cette position, on peut faire tourner la pompe en sens inverse les lumières 12 et 13 conservant leurs fonctions respectives. Pour que cette inversion soit possible, la culasse 10 n'est pas fixée rigidement au corps du carter 2. Elle est circulaire et enfilée dans l'extrémité 21 du carter 2 avec un léger jeu afin de pouvoir pivoter à l'intérieur de cette extrémité 21. Elle est maintenue en position contre tout déplacement longitudinal par un circlip 16 (ou analogue), l'étanchéité étant assurée par un joint 17. Le liquide de lubrification se trouvant dans le volume interne 20 du carter 2 ne servant qu'à la lubrification des pièces en mouvement n'est pas sous pression de sorte que, l'étanchéité est facilement assurée par le joint 17. La culasse 10 est immobilisée en rotation au moyen d'un dispositif de blocage, tel par exemple qu'une vis 18 qui traverse la paroi de la partie 21 du carter 2. Pour changer le sens de rotation de la pompe il suffit de dévisser la vis 18, de faire tourner sur elle-même la culasse 10 d'environ 180° et de la bloquer à nouveau dans la nouvelle position au moyen de ladite vis 18. Cette opération peut donc être faite sans la moindre difficulté, sans le moindre démontage/remontage par un personnel utilisateur non qualifié. La présente invention n'est pas limitée aux pompes à axe brisé : elle peut également s'appliquer aux pompes axiales à plateau biais à condition qu'elles soient à barillet tournant, comme cela est représenté à la figure 7 où les mêmes éléments portent les mêmes références. Sur cette figure 7, on voit que l'arbre 1 entraîne en rotation un barillet 4 portant une pluralité de pistons 6. Ces pistons 6 viennent prendre appui par leurs têtes 6a contre un plateau 30 qui est en position oblique et est fixe en rotation ; de sorte que lorsque le barillet 4 tourne, les pistons 6 sont animés d'un mouvement de va-et-vient.
La culasse 10 est, comme dans l'exemple précédent, cylindrique et enfilée dans l'extrémité cylindrique 21 du carter 2 de la pompe. Elle est bloquée contre tout déplacement axial par un rebord circulaire 23 de l'extrémité 21 du carter et est immobilisée en rotation par une vis 18, l'étanchéité étant assurée par un ou plusieurs joints 19, analogue au joint 17 de la figure 1. Comme dans l'exemple précédent, il suffit de dévisser la vis 18 et de faire tourner sur elle-même d'environ 180° la culasse 10 pour inverser le sens de rotation de la pompe. Dans l'exemple représenté, le plateau biais 30 est un plateau à inclinaison variable, mais il pourrait être à inclinaison fixe. Dans la pratique, il s'avère préférable de faire tourner la culasse 10 d'un peu plus de 180° pour changer le sens de rotation de la pompe ; de façon à décaler légèrement la position des lumières 12 et 13. Il est bien évident que la surface de la lumière 12, dédiée au refoulement doit être calculée en fonction de la pression maximale de refoulement de la pompe afin que, si l'on appelle « s » la surface de la lumière 12, « P » la haute pression maximale, « S » la surface de la lumière 13, « p » la pression (très faible voire nulle) de la pression d'alimentation, et « T » la force totale exercée par les pistons 6 sur le barillet 4 on ait Ps + pS < T
In order for the pump to be able to be driven at high speed, it is essential to improve the pump supply. For this, one of the two lights, light 13 for example, is dedicated to food; while the other, the light 12 is dedicated to the discharge and, as shown in Figures 1, 3, 4, 5 and 6, the width of the light 13 is greatly increased compared to that of the light 12. In the example shown, the width of the light 13 is approximately three times wider than that of the light 12. The bore 15 made in the cylinder head 10 which communicates with the light 13 also has a much larger diameter than that of the the bore 14 which communicates with the light 12. The bore 15 is connected to the hydraulic fluid reservoir; while the bore 14 is connected to the hydraulic equipment to receive the high pressure hydraulic fluid. It is no longer possible in the state to reverse the direction of rotation of the pump because if we discharge high pressure through the light 13, the product PxS will have a value considerably higher than F and the barrel 4 will no longer be applied against the face 11 of the cylinder head 10. According to the present invention, the cylinder head 10 is provided with means enabling it to occupy two positions, opposite to one another. By reversing this position, the pump 12 can be turned in the opposite direction, the lights 12 and 13 retaining their respective functions. For this reversal to be possible, the cylinder head 10 is not rigidly fixed to the body of the casing 2. It is circular and threaded into the end 21 of the casing 2 with a slight clearance so as to be able to pivot inside this end 21. It is held in position against any longitudinal displacement by a circlip 16 (or the like), the seal being ensured by a seal 17. The lubrication liquid located in the internal volume 20 of the casing 2 serving only for the lubrication of moving parts is not under pressure so that sealing is easily ensured by the gasket 17. The cylinder head 10 is immobilized in rotation by means of a locking device, such as for example a screw 18 which crosses the wall of the part 21 of the casing 2. To change the direction of rotation of the pump, it suffices to unscrew the screw 18, to rotate the cylinder head 10 about 180 ° and to lock it again in the new position at the hub n of said screw 18. This operation can therefore be done without the slightest difficulty, without the slightest disassembly / reassembly by unqualified user personnel. The present invention is not limited to broken axis pumps: it can also be applied to axial pumps with a bias plate provided that they are with rotating barrel, as shown in FIG. 7 where the same elements bear the same references. In this FIG. 7, it can be seen that the shaft 1 rotates a barrel 4 carrying a plurality of pistons 6. These pistons 6 come to bear by their heads 6a against a plate 30 which is in an oblique position and is fixed in rotation; so that when the barrel 4 rotates, the pistons 6 are moved back and forth. The cylinder head 10 is, as in the previous example, cylindrical and threaded into the cylindrical end 21 of the casing 2 of the pump. It is blocked against any axial movement by a circular rim 23 of the end 21 of the casing and is immobilized in rotation by a screw 18, the seal being provided by one or more seals 19, similar to the seal 17 in FIG. 1. As in the previous example, it suffices to unscrew the screw 18 and rotate the cylinder head 10 about itself by 180 ° to reverse the direction of rotation of the pump. In the example shown, the bias plate 30 is a plate with variable inclination, but it could be with fixed inclination. In practice, it is preferable to rotate the cylinder head 10 by a little more than 180 ° to change the direction of rotation of the pump; so as to slightly shift the position of the lights 12 and 13. It is obvious that the area of the light 12, dedicated to the discharge must be calculated as a function of the maximum discharge pressure of the pump so that, if called "S" the surface of the light 12, "P" the maximum high pressure, "S" the surface of the light 13, "p" the pressure (very low or even zero) of the supply pressure, and "T" the total force exerted by the pistons 6 on the barrel 4 we have Ps + pS <T