WO2005026245A1 - Method of continuously depolymerizing polyester, polycarbonate, or polylactic acid with supercritical fluid and apparatus for continuous depolymerization - Google Patents
Method of continuously depolymerizing polyester, polycarbonate, or polylactic acid with supercritical fluid and apparatus for continuous depolymerization Download PDFInfo
- Publication number
- WO2005026245A1 WO2005026245A1 PCT/JP2004/013098 JP2004013098W WO2005026245A1 WO 2005026245 A1 WO2005026245 A1 WO 2005026245A1 JP 2004013098 W JP2004013098 W JP 2004013098W WO 2005026245 A1 WO2005026245 A1 WO 2005026245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- supercritical fluid
- depolymerization
- polyester
- polycarbonate
- column
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/105—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to a method for continuously depolymerizing polyester, polycarbonate or polylactic acid using a supercritical fluid.
- the material recycling method, the chemical recycling method, the thermal recycling method, etc. are used to recycle synthetic polymers, but the ability to effectively use carbon resources must ultimately be returned to raw materials by the chemical recycling method. Is ideal.
- This chemical recycling method is known to recover monomers by a chemical depolymerization reaction. It is a large energy and energy consuming type, has a large burden on the environment, and is generally not profitable.
- Patent Literature 1 describes a method for converting polyproprolataton into a cyclic dimer using an enzyme catalyst and a method for repolymerizing the generated cyclic dimer using an enzyme catalyst.
- Patent Document 2 describes the selective conversion of polytrimethylene carbonate (PTMC) to cyclic trimethylene carbonate (TMC) and a method for repolymerizing this cyclic TMC with an enzyme.
- PTMC polytrimethylene carbonate
- TMC cyclic trimethylene carbonate
- a method for depolymerizing an alkylene alkanoate or poly (3-hydroxyalkanoate) into an oligomer having a cyclic body as a main component and a method for repolymerizing the cyclic oligomer are disclosed.
- an oligomer having a cyclic body as a main component is formed by depolymerization of a polymer by an enzyme, and the oligomer is It is easily re-polymerized by an enzyme (and also by a diversion catalyst), and since the polymerization at that time is a ring-opening polymerization, there is no elimination component such as water and it is not necessary to take these out of the reaction system. It has the advantages that the polymerization reaction operation is simple, no exhaust equipment is required, and simultaneous molding is possible.
- the present inventors depolymerize polyester and polycarbonate in a supercritical fluid in the presence of an enzyme catalyst to obtain a repolymerizable oligomer having a cyclic body as a main component.
- a method for repolymerization in a fluid was proposed (see Patent Document 4 below). This method has the advantage that the burden on the environment and the human body is small without using a usual organic solvent, and that the reaction product can be easily separated from the system.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2002-17385
- Patent Document 2 JP 2002-17384 A
- Patent Document 3 JP-A-2002-320499
- Patent Document 4 Japanese Patent Application Laid-Open No. 2003-79388
- the present invention has been made in view of the above problems, and an object of the present invention is to continuously depolymerize polyester, polycarbonate, or polylactic acid in a supercritical fluid, thereby improving the efficiency. It is often to obtain a depolymerized product.
- both a supercritical fluid and an organic solvent solution of polyester, polycarbonate or polylactic acid are continuously passed through a column packed with a carohydrolysis enzyme,
- This is a method in which polyester, polycarbonate or polylactic acid is depolymerized by a hydrolase, and the depolymerized product is separated from the reaction mixture containing the depolymerized product flowing out of the column packed with the hydrolase.
- the supercritical fluid is preferably supercritical carbon dioxide, and the hydrolase is an immobilized enzyme. Is preferred.
- the continuous depolymerization apparatus for use in the continuous depolymerization method of the present invention includes a supercritical fluid generator, a column packed with a hydrolytic enzyme, a knock pressure regulator, and a depolymerization product from a reaction mixture containing a depolymerization product.
- Means for separating a substance means for sending a supercritical fluid produced by a supercritical fluid generating device to the column, and means for sending an organic solvent solution of polyester, polycarbonate or polylactic acid to the column. It is characterized by having. It is preferable that the continuous depolymerization apparatus further includes means for returning a gasified substance from the supercritical fluid discharged from the knock pressure regulator to the supercritical fluid generation apparatus.
- the continuous depolymerization method of the present invention since the raw material polymer is continuously passed through the column filled with the hydrolase, the depolymerization efficiency is dramatically increased as compared with the batch operation.
- the continuous depolymerization method of the present invention uses a supercritical fluid as a solvent, it is more reactive (low-temperature reaction) than a method in which a solution in which a raw material polymer is dissolved only in an organic solvent is continuously passed through an enzyme-packed column.
- the cyclic oligomer obtained by the depolymerization method of the present invention can be easily repolymerized.
- the enzyme in the column used in the present invention is stable for a long period (several months) and does not deteriorate, the same column can be used continuously for a long period, and a large amount of processing can be performed with high efficiency. It becomes possible.
- FIG. 1 is a graph showing the results of MALDI-TOF MS analysis of the depolymerized product in Example 1.
- FIG. 2 is a graph showing a 1 H NMR analysis result of a depolymerized product in Example 1.
- FIG. 3 is a graph showing changes in SEC analysis before and after depolymerization in Example 1.
- FIG. 4 (A) shows the result of 1 H NMR structural analysis
- FIG. 4 (B) shows MALDI-TOF MS analysis. The results are shown.
- FIG. 5 is a graph showing changes in SEC analysis before and after depolymerization in Example 3.
- FIG. 6 is a graph showing changes in SEC analysis before and after depolymerization in Example 4.
- FIG. 7 is a graph showing changes in SEC analysis before and after depolymerization in Example 5.
- FIG. 8 is a graph showing SEC analysis after the reaction of Comparative Example 1.
- FIG. 9 is a conceptual diagram showing an example of a continuous depolymerization apparatus of the present invention.
- a supercritical fluid and an organic solvent solution of polyester, polycarbonate or polylactic acid are both continuously passed through a column packed with a hydrolase, and polyester, polycarbonate or It is characterized by depolymerizing polylactic acid and separating the depolymerized product from the reaction mixture containing the depolymerized product flowing out of the column packed with the hydrolase.
- polyesters that can be used in the continuous depolymerization of the present invention include a polyester of polycarboxylic acid and a polyol, a hydroxycarboxylic acid or a polyester or polylatatatone having an intramolecular ester (latataton) force.
- polyester comprising a polycarboxylic acid and a polyol include a repeating unit represented by the following structural formula (1) such as polybutylene succinate, polybutylene adipate, and poly (butylene succinate adipate) copolymer. Preferred are those having. [0010] [Formula 1]
- ⁇ represents a linear or branched alkylene group having 2 to 8 carbon atoms
- B represents a linear or branched alkylene group having 2 to 6 carbon atoms.
- a and B may each be two or more different (ie, copolymers).
- 50 mol% or less of the dicarboxylic acid represented by A (COOH) is converted to an aromatic dicarboxylic acid such as terephthalic acid.
- repeating units other than those represented by the structural formula (1) for example, repeating units represented by the following structural formulas (2) and Z or (3) (where D is a carbon atom 2-6 linear or branched alkylene, alkylene or alkylene group) of not more than 50 mol%.
- the molecular weight (number average molecular weight) of the polyester is not particularly limited, and the terminal group of the polyester can be substituted with any substituent determined by a polymer synthesis method.
- the polyester or polylatatatone has at least one kind of a repeating unit represented by the following structural formula (4). Also included are polyester or poly rataton.
- R represents a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
- R may be two or more different types (copolymers) selected from a hydrogen atom and an alkyl group having 11 to 12 carbon atoms.
- R force S methyl group is poly (3-hydroxybutyric acid)
- R force methyl group and hydrogen atom is 3-hydroxybutyric acid Z 3-hydroxypropionic acid copolymer (PHBZPHP)
- PHBZPHV 3-hydroxybutyric acid Z3-hydroxyvaleric acid copolymer
- the terminal group of the polylatatatone can be substituted with a different substituent as determined by a polymer synthesis method. Further, the polylatatatone may further have one or more types of repeating units represented by the following structural formulas (5) to (7) in the molecule.
- R is a linear or branched alkylene group having 117 carbon atoms, and R is 2-11 carbon atoms.
- R 1 2 linear or branched alkylene group, R is 1 carbon
- R represents a straight-chain or branched alkylene group having 2 to 10 carbon atoms.
- the repeating unit contains one represented by the structural formula (5), it indicates that it is a copolymer containing another rataton.
- the polyester of the present invention includes: 1) a dicarboxylic acid and a polyol
- Examples of the polycarbonate in the present invention include a trimethylene carbonate polymer, but are not limited thereto.
- the trimethylene carbonate polymer may contain one or more kinds of repeating units (Structural formulas (5) and (7)) which may be contained as the repeating units of the polylatatatone polymer.
- the copolymer of polyester and polycarbonate as described above is used.
- a coalesced poly (ester-carbonate) can also be used.
- polylactic acid or a polylactic acid copolymer used for a molded article such as a film or a fiber can be used without any particular limitation.
- examples of the homopolymer include poly (L-lactic acid), poly (DL-lactic acid), syndiotactic poly (DL-lactic acid), and atactic poly (DL-lactic acid).
- polylactic acid copolymer examples include polylactic acid as described above, such as j8-propiolatatone, ⁇ -butyrate rataton BL), ⁇ -force prolatataton ( ⁇ CL), 11-pindecanolide, 12-pindecanolide and the like.
- One-membered ring ratatones cyclic carbonate monomers such as trimethylene carbonate (TMC) and methyl-substituted trimethylene carbonate and their oligomers, cyclic ester oligomers, hydroxy acids and esters thereof such as ricinoleic acid, linear carbonate oligomers, Examples thereof include copolymers of comonomers, such as linear ester oligomers, ester carbonate oligomers, and ether ester oligomers, which can be copolymerized with lactide and form a bond which can be affected by a hydrolase.
- TMC trimethylene carbonate
- ester oligomers hydroxy acids and esters thereof
- linear carbonate oligomers examples thereof include copolymers of comonomers, such as linear ester oligomers, ester carbonate oligomers, and ether ester oligomers, which can be copolymerized with lactide and form a bond which can be affected by a hydrolase
- the hydrolase used is preferably Lino-IT due to the availability and heat stability of the enzyme, and among them, Linose derived from Candida antarctica and lipase derived from Rhizomucor miehei are particularly preferred.
- Linose derived from Candida antarctica Linose derived from Candida antarctica and lipase derived from Rhizomucor miehei are particularly preferred.
- an immobilized enzyme derived from Candida antarctica “Novozym 435 (trade name)” from Novozyms Japan Co., Ltd. IM (product name) ”.
- “Biopra Se (trade name)” of Nagase ChemteX Corp. which is a protease derived from Bacillus subtilis, can also be used as a hydrolase.
- the immobilized enzyme in the depolymerization of the present invention is used after being packed in a column, and the inner diameter and length of the column are appropriately determined in consideration of the flow rate of the reaction mixture flowing through the column and the like.
- a supercritical fluid is used as a depolymerization main solvent.
- the supercritical fluid used include carbon dioxide and fluoroform (CHF).
- Diacid carbon is suitable for handling relatively hydrophobic molecules
- Furorohorumu are relatively suitable hydrophilic molecules in handling Uno n
- an organic solvent such as toluene is used to dissolve the polymer. The amount of the organic solvent used needs to be such that the raw material polymer is dissolved.
- the ratio of the supercritical fluid flowing in the column to the toluene is about 1: 0.1-1: 0.6, preferably about 1: 0.2-1: 0.4.
- the ratio of toluene is larger than 1: 0.6, the effects of using the supercritical fluid as described above, such as reactivity, reaction rate, and environmental compatibility, are difficult to obtain.
- the ratio of toluene is 1: 0. When this happens, the polymer dissolves, and thus the above ratio is appropriate.
- organic solvent other than toluene, xylene, benzene, and the like that do not inhibit the enzyme activity and dissolve the polymer well can be used.
- the concentration of the depolymerized polymer contained in the depolymerization reaction solution is preferably 0.1 to 50 g / L, particularly preferably 11 to 20 g / L.
- concentration is lower than 0.1 lg / L, the yield itself is particularly low, but the concentration is low, so that it is difficult to secure a sufficient amount of the depolymerized product to be obtained.
- the above range is preferable because the conversion rate to the polymerization product decreases.
- the supercritical fluid is supercritical carbon dioxide
- its temperature is not lower than the temperature at which the supercritical fluid is maintained, and is about 80 ° C, preferably about 40-60 ° C, for example, enzyme activity, reaction rate, and temperature controllability. It is more preferable from the viewpoint of.
- the pressure of the supercritical fluid diacid carbon is preferably about 13 to 15 MPa from the viewpoint of the yield of the oligomer.
- the flow rate of the reaction solution in the enzyme packed column may be appropriately determined in consideration of the conversion rate to the oligomer, the molecular weight of the oligomer, the reaction rate, and the like. For example, if a stainless steel enzyme-filled column with an inner diameter of 7.8 mm and a length of 300 mm packed with 6.8 g of immobilized lipase derived from Candida antarctica (Novozym 435 Novozymes Japan Ltd), the total flow rate in the column (supercritical diacid) The raw polymer was completely depolymerized and disappeared even when the ratio of dani carbon to the organic solvent was increased from 0.5 mL / min to 1.51 mL / mm, but the molecular weight of the resulting oligomer was Gradually increased.
- the depolymerized product obtained by the depolymerization method of the present invention contains a cyclic oligomer as a main component.
- polycaprolactone is mainly produced from polycaprolactone and polytrimethylene Trimethylene carbonate is mainly produced from carbonate.
- the polyester power is mainly obtained from a cyclic polyester oligomer having a plurality of the unit units in the molecule.
- polylactic acid power a cyclic lactic acid oligomer having a plurality of lactic acid units in a molecule is mainly obtained.
- both ends of the resulting low molecular weight compound are irregular, and it is impossible to repolymerize this to form a polymer.
- the cyclic oligomer obtained by the polymerization method can be easily repolymerized. In addition, there is also an advantage that there is no elimination when the cyclic oligomer is repolymerized.
- the continuous depolymerization apparatus used in the continuous depolymerization method as described above includes at least a supercritical fluid generator, a column packed with a hydrolytic enzyme, a knock pressure regulator, and a reaction mixture containing a depolymerized product.
- Means for separating a substance a means for sending a supercritical fluid produced by a supercritical fluid generator to the column, and a means for sending an organic solvent solution of a raw material polymer to the column. .
- Knock pressure regulator force The gaseous substance from the released supercritical fluid may be collected or released into the atmosphere as it is, but is preferably recovered and reused.
- the configuration of the above-mentioned apparatus is further provided with a means for returning gasified substances from the supercritical fluid discharged from the knock pressure regulator to the supercritical fluid generation apparatus.
- the means includes means for recovering gaseous matter from the supercritical fluid, which also releases the back pressure regulator force, and sending it to the supercritical fluid generator.
- FIG. 9 shows a conceptual diagram of an example of a continuous depolymerization apparatus using supercritical carbon dioxide as a supercritical fluid.
- reference numeral 10 denotes a supercritical carbon dioxide generator, which is, for example, a carbon dioxide condenser (not shown), a pressurizing pump, and a normal one having heat exchange.
- Numeral 12 indicates a supply means of carbon dioxide (eg, a liquid carbon cylinder).
- Reference numeral 20 denotes a thermostat provided with a hydrolytic enzyme-filled column 22 therein, which is provided with a heating device and a temperature control device (not shown) so as to keep the column temperature constant.
- 30 is a back pressure regulator (back pressure control device) ), The pressure of the entire reaction system is controlled, and the reaction liquid after the completion of the reaction is separated from a carbon dioxide gas, a mixture of an organic solvent and a depolymerized product.
- Numeral 40 denotes means for separating the organic solvent solution of the depolymerized product into an organic solvent and a depolymerized product, and includes, for example, an evaporator for removing the organic solvent.
- the means for sending the supercritical fluid produced by the supercritical fluid generator to the column has a supercritical carbon dioxide sending pump 14 and a line (pipe) L1 for supplying the supercritical carbon dioxide.
- the means for sending the organic solvent solution of the raw material polymer to the column includes a liquid feed pump 16 for the raw material polymer solution and a line (tube) L2 for supplying the organic solvent solution of the raw material polymer.
- L3 indicates a line (pipe) for recovering the carbon dioxide gas that also releases the back pressure regulator force and returning it to the supercritical fluid generator.
- the carbon dioxide is returned to the supercritical fluid again by the supercritical carbon dioxide generator, but is released from the back pressure regulator 30 into the air.
- the method of using the apparatus is as follows. First, liquid carbon dioxide or the like is supplied from the carbon dioxide supply means 12 to the supercritical carbon dioxide generator 10 to generate supercritical carbon dioxide, and the liquid is sent through the line L1 by the liquid sending pump 14. Send the liquid to the column. On the other hand, the raw material polymer is dissolved in an organic solvent, and the solution is sent toward the column through the line L2 by the solution sending pump 16. The supercritical carbon dioxide and the raw polymer solution merge before entering the column, and form a mixed solution and flow into the column. In the thermostat 20, temperature control has already been performed to maintain the hydrolytic enzyme packed column 22 at the reaction temperature.
- the mixture of the supercritical carbon dioxide and the raw material polymer solution flows into the temperature-controlled column, and comes into contact with the hydrolase filled in the column to perform depolymerization.
- the reaction solution flowing out of the column has completed the depolymerization reaction, and a depolymerized oligomer has been generated.
- the back pressure regulator 30 controls the pressure of the whole reaction system.
- reaction solution after the completion of the reaction enters the back pressure regulator 30, and is separated into two, that is, a carbon dioxide gas and a mixture of an organic solvent and a depolymerized product. Separated
- the carbon dioxide gas passed through the line L3 is again introduced into the supercritical carbon dioxide generator and reused.
- the mixture of the organic solvent and the depolymerized product is separated into the organic solvent and the depolymerized product by means 40 for separating the depolymerized product, and the depolymerized product is recovered.
- a stainless steel column with an inner diameter of 7.8 mm and a length of 300 mm is filled with 6.8 g of Candida antarctica-derived immobilized lipase (Novozym 435 Novozymes Japan, Ltd) to form a hydrolytic enzyme filling ram.
- the temperature was controlled so that the inside was maintained at 40 ° C.
- the molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis.
- ⁇ NMR analysis and MALDI-TOF MS analysis confirmed that the oligomer obtained by the depolymerization was a substantially complete cyclic body centered on a heptamer (see FIGS. 1 and 2).
- hexamers were separated from the resulting oligomers by preparative high performance liquid chromatography using supercritical carbon dioxide as a mobile phase, and subjected to structural analysis by NMR.
- Example 2 Continuous depolymerization of atactic poly (RS-3-hydroxybutyric acid)
- the same hydrolytic enzyme packed column as in Example 1 was prepared, and the temperature was similarly adjusted to 40 ° C.
- the toluene solution of decomposition products and carbon dioxide were separately collected from the back pressure regulator. From the resulting toluene solution, toluene was distilled off under reduced pressure to obtain a depolymerized product.
- the molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis.
- ⁇ NMR analysis and MALDI-TOF MS analysis the oligomer obtained by the depolymerization was almost a perfect cyclic body.
- the spectrum and the like were the same as in Example 1.
- Mn poly-force prolatatatone
- the molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis.
- ⁇ NMR analysis and MALDI-TOF MS analysis confirmed that the oligomer obtained by the depolymerization was a substantially complete cyclic body mainly composed of a dimer.
- the molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and Analyzed by SEC analysis.
- ⁇ NMR analysis and MALDI-TOF MS analysis confirmed that the oligomer obtained by the depolymerization was a substantially complete cyclic body mainly composed of a dimer.
- supercritical carbon dioxide was passed at a flow rate of 15 MPa
- the molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis.
- the oligomer portion obtained by the depolymerization was almost completely cyclic.
- the molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis.
- the oligomer portion obtained by the depolymerization was a trimethylene carbonate monomer and a linear oligomer homolog.
- SEC analysis confirmed that the original polymer portion had completely disappeared and had been converted to oligomer.
- Example 2 Comparative Example 1 In Example 2, a toluene solution (10 mg / mL) of atactic poly (RS-3-hydroxybutyric acid) was passed through the hydrolytic enzyme packed column at a flow rate of 0.5 mL / min without flowing supercritical carbon dioxide. It was confirmed that undecomposed atactic poly (RS-3-hydroxybutyric acid) remained in the depolymerized product (see FIG. 8).
- the depolymerization method of the present invention can provide a polyester, polycarbonate, or polylactic acid capable of producing a repolymerizable cyclic oligomer at a good production rate, and can perform a large amount of treatment with high efficiency. A useful way to do that. Further, according to the present invention, it is possible to construct a completely circulating type polymer material utilization system that is environmentally acceptable and can completely reuse carbon resources. Extremely large.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Polymers & Plastics (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A method of the continuous depolymerization of a polyester, polycarbonate, or polylactic acid which comprises continuously passing both a supercritical fluid and an organic solvent solution of the polyester, polycarbonate, or polylactic acid through a column packed with a hydrolase to depolymerize the polyester, polycarbonate, or polylactic acid by the action of the hydrolase and separating a depolymerization product from the reaction mixture which contains the depolymerization product and flows out from the hydrolase-packed column; and an apparatus for continuous depolymerization for use in the continuous depolymerization method, which comprises a device for producing a supercritical fluid, a column packed with a hydrolase, a back pressure regulator, a means for separating a depolymerization product from a reaction mixture containing the depolymerization product, a means for sending the supercritical fluid produced by the device for supercritical-fluid production to the column, and a means for sending an organic solvent solution of a polyester, polycarbonate, or polylactic acid to the column.
Description
明 細 書 Specification
超臨界流体を用いるポリエステル、ポリカーボネート又はポリ乳酸の連続 解重合方法、及び連続解重合装置 Continuous depolymerization method of polyester, polycarbonate or polylactic acid using supercritical fluid, and continuous depolymerization apparatus
技術分野 Technical field
[0001] 本発明は、ポリエステル、ポリカーボネート又はポリ乳酸を、超臨界流体を用いて連 続的に解重合する方法に関する。 The present invention relates to a method for continuously depolymerizing polyester, polycarbonate or polylactic acid using a supercritical fluid.
背景技術 Background art
[0002] 21世紀の科学技術における重要課題の一つに「グリーンケミストリーの構築」がある [0002] One of the important issues in science and technology in the 21st century is "construction of green chemistry"
。特に、合成高分子は、全世界で年間 1. 5億トンもの石油や天然ガスなどの有限ィ匕 石資源力 化学合成されており、この分野が今後も持続的発展を遂げるためには、 省エネルギー型のケミカルリサイクル技術の開発が要請されて 、る。 . In particular, synthetic polymers are produced around 150 million tons of petroleum and natural gas resources annually around the world, and are chemically synthesized. In order for this field to achieve sustainable development in the future, energy conservation is essential. Development of chemical recycling technology for molds has been requested.
合成高分子のリサイクルには、マテリアルリサイクル法、ケミカルリサイクル法、サー マルリサイクル法などが用いられているが、炭素資源の有効利用の観点力もは、最終 的にはケミカルリサイクル法により原料に戻すことが理想的である。このケミカルリサイ クル法には、化学的な解重合反応によるモノマーの回収が知られている力 エネルギ 一多消費型で環境に対する負荷は大きぐまた一般に採算性はない。 The material recycling method, the chemical recycling method, the thermal recycling method, etc. are used to recycle synthetic polymers, but the ability to effectively use carbon resources must ultimately be returned to raw materials by the chemical recycling method. Is ideal. This chemical recycling method is known to recover monomers by a chemical depolymerization reaction. It is a large energy and energy consuming type, has a large burden on the environment, and is generally not profitable.
[0003] このようなエネルギー多消費型のケミカルリサイクル技術に対し、省エネルギー型の ケミカルリサイクル技術が喫緊に要請されており、この要請に応えるものとして、本発 明者による酵素触媒利用のケミカルリサイクル技術が提案された。例えば、以下の特 許文献 1には、酵素触媒によるポリ力プロラタトンの環状 2量体への変換と、生成した 環状 2量体の酵素触媒による再重合方法が記載され、また、以下の特許文献 2には 、ポリトリメチレンカーボネート(PTMC)の環状トリメチレンカーボネート(TMC)への 選択的変換と、この環状 TMCの酵素による再重合方法が記載され、更に以下の特 許文献 3には、ポリアルキレンアルカノエート又はポリ(3—ヒドロキシアルカノエート)の 、環状体を主成分とするオリゴマーへの解重合方法、および前記環状オリゴマーの 再重合方法が開示されている。これらの方法においてはいずれも、酵素によるポリマ 一の解重合により環状体を主成分とするオリゴマーが生成し、かつ前記オリゴマーは
酵素 (またィ匕学的触媒によっても)により容易に再重合し、その際の重合は開環重合 であるため、水等の脱離成分がなくこれらを反応系外に出す必要もないので、重合 反応操作が簡便で排気設備が不要であり、また同時成型も可能となるという利点を 有する。 [0003] An energy-saving chemical recycling technology is urgently required for such an energy-intensive chemical recycling technology. In response to this request, the present inventors have proposed a chemical recycling technology using an enzyme catalyst. Was suggested. For example, Patent Literature 1 below describes a method for converting polyproprolataton into a cyclic dimer using an enzyme catalyst and a method for repolymerizing the generated cyclic dimer using an enzyme catalyst. Patent Document 2 describes the selective conversion of polytrimethylene carbonate (PTMC) to cyclic trimethylene carbonate (TMC) and a method for repolymerizing this cyclic TMC with an enzyme. A method for depolymerizing an alkylene alkanoate or poly (3-hydroxyalkanoate) into an oligomer having a cyclic body as a main component and a method for repolymerizing the cyclic oligomer are disclosed. In each of these methods, an oligomer having a cyclic body as a main component is formed by depolymerization of a polymer by an enzyme, and the oligomer is It is easily re-polymerized by an enzyme (and also by a diversion catalyst), and since the polymerization at that time is a ring-opening polymerization, there is no elimination component such as water and it is not necessary to take these out of the reaction system. It has the advantages that the polymerization reaction operation is simple, no exhaust equipment is required, and simultaneous molding is possible.
また、本発明者は、ポリエステル及びポリカーボネートを酵素触媒の存在下超臨界 流体中で解重合させて環状体を主成分とする再重合性のオリゴマーを得、更に前記 再重合性のオリゴマーを超臨界流体中で再重合させる方法を提案した (以下の特許 文献 4を参照)。この方法は通常の有機溶媒を用いず環境及び人体に対する負荷が 小さぐまた系から反応生成物を分離することが容易であるという利点を有する。 Further, the present inventors depolymerize polyester and polycarbonate in a supercritical fluid in the presence of an enzyme catalyst to obtain a repolymerizable oligomer having a cyclic body as a main component. A method for repolymerization in a fluid was proposed (see Patent Document 4 below). This method has the advantage that the burden on the environment and the human body is small without using a usual organic solvent, and that the reaction product can be easily separated from the system.
[0004] し力しながら、超臨界液体中での解重合及び再重合をバッチ操作で行ったのでは 効率が悪ぐ大量消費されるプラスチックのケミカルリサイクル技術として十分とはい えない。 [0004] However, if depolymerization and repolymerization in a supercritical liquid are performed in a batch operation, the efficiency is low, and it is not sufficient as a chemical recycling technology for a large amount of consumed plastic.
特許文献 1:特開 2002-17385号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-17385
特許文献 2 :特開 2002-17384号公報 Patent Document 2: JP 2002-17384 A
特許文献 3:特開 2002— 320499号公報 Patent Document 3: JP-A-2002-320499
特許文献 4:特開 2003— 79388号公報 Patent Document 4: Japanese Patent Application Laid-Open No. 2003-79388
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 本発明は前記のごとき問題点に鑑みてなされたものであり、その目的は、ポリエステ ル、ポリカーボネート又はポリ乳酸を、超臨界流体中で連続的に解重合することによ り、効率よく解重合生成物を得ることにある。 [0005] The present invention has been made in view of the above problems, and an object of the present invention is to continuously depolymerize polyester, polycarbonate, or polylactic acid in a supercritical fluid, thereby improving the efficiency. It is often to obtain a depolymerized product.
課題を解決するための手段 Means for solving the problem
[0006] 本発明の、ポリエステル、ポリカーボネート又はポリ乳酸の連続解重合方法は、カロ 水分解酵素充填カラムに、超臨界流体とポリエステル、ポリカーボネート又はポリ乳 酸の有機溶媒溶液をともに連続的に通し、加水分解酵素によりポリエステル、ポリ力 ーボネート又はポリ乳酸を解重合し、加水分解酵素充填カラムから流出する解重合 生成物含有反応混合物から解重合生成物を分離する方法である。前記超臨界流体 は、超臨界二酸化炭素が好ましぐまた、前記加水分解酵素は固定ィ匕酵素であること
が好ましい。 [0006] In the method for continuously depolymerizing polyester, polycarbonate or polylactic acid of the present invention, both a supercritical fluid and an organic solvent solution of polyester, polycarbonate or polylactic acid are continuously passed through a column packed with a carohydrolysis enzyme, This is a method in which polyester, polycarbonate or polylactic acid is depolymerized by a hydrolase, and the depolymerized product is separated from the reaction mixture containing the depolymerized product flowing out of the column packed with the hydrolase. The supercritical fluid is preferably supercritical carbon dioxide, and the hydrolase is an immobilized enzyme. Is preferred.
また、本発明の前記連続解重合方法に用いるための連続解重合装置は、超臨界 流体生成装置、加水分解酵素充填カラム、ノ ックプレッシャーレギュレーター、解重 合生成物含有反応混合物から解重合生成物を分離する手段、超臨界流体生成装 置により製造された超臨界流体を前記カラムに送液する手段、及びポリエステル、ポ リカーボネート又はポリ乳酸の有機溶媒溶液を前記カラムに送液する手段を備えるこ とを特徴とする。前記連続解重合装置は、ノ ックプレッシャーレギュレーターから放出 される超臨界流体からのガス化物を超臨界流体生成装置に戻す手段を更に備える ことが好ましい。 The continuous depolymerization apparatus for use in the continuous depolymerization method of the present invention includes a supercritical fluid generator, a column packed with a hydrolytic enzyme, a knock pressure regulator, and a depolymerization product from a reaction mixture containing a depolymerization product. Means for separating a substance, means for sending a supercritical fluid produced by a supercritical fluid generating device to the column, and means for sending an organic solvent solution of polyester, polycarbonate or polylactic acid to the column. It is characterized by having. It is preferable that the continuous depolymerization apparatus further includes means for returning a gasified substance from the supercritical fluid discharged from the knock pressure regulator to the supercritical fluid generation apparatus.
発明の効果 The invention's effect
本発明の連続解重合方法は、加水分解酵素を充填したカラムに連続的に原料ポリ マーを通すため、バッチ操作に比較して解重合効率が飛躍的に増す。また、本発明 の連続解重合方法は溶媒として超臨界流体を用いるため、原料ポリマーを有機溶媒 のみに溶解させた溶液を酵素充填カラムに連続的に通す方法に比べて、反応性 (低 温反応性及び反応速度)及び再重合性の環状オリゴマー生成率が格段に向上する 本発明の解重合法により得られる環状オリゴマーは容易に再重合可能である。これ に対し、化学的分解や熱分解により解重合を行った場合、生成する低分子化合物の 両末端は不規則で、これを再重合させて高分子化することは不可能である。また、環 状オリゴマーを再重合させた場合脱離物がな ヽと ヽぅ利点も有する。 In the continuous depolymerization method of the present invention, since the raw material polymer is continuously passed through the column filled with the hydrolase, the depolymerization efficiency is dramatically increased as compared with the batch operation. In addition, since the continuous depolymerization method of the present invention uses a supercritical fluid as a solvent, it is more reactive (low-temperature reaction) than a method in which a solution in which a raw material polymer is dissolved only in an organic solvent is continuously passed through an enzyme-packed column. The cyclic oligomer obtained by the depolymerization method of the present invention can be easily repolymerized. On the other hand, when depolymerization is performed by chemical decomposition or thermal decomposition, both ends of the resulting low molecular weight compound are irregular, and it is impossible to repolymerize this to form a polymer. Further, when the cyclic oligomer is repolymerized, there is an advantage that there is no elimination product.
さらに、本発明において用いるカラム中の酵素は長期間 (数ケ月)安定で劣化しな いので、同じカラムを長期間連続的に使用することが可能であり、大量の処理が高効 率で実施可能となる。 Further, since the enzyme in the column used in the present invention is stable for a long period (several months) and does not deteriorate, the same column can be used continuously for a long period, and a large amount of processing can be performed with high efficiency. It becomes possible.
特に、超臨界流体として超臨界二酸化炭素を用い、解重合に用いる溶媒の大部分 を超臨界二酸ィヒ炭素に代替することにより、環境に有害な有機溶媒の使用を大幅に 削減可能であり(通常ポリマーはトルエン等の有機溶媒に対する溶解性が低 、ので 溶解させるには大量の有機溶媒が必要である)、そのため溶剤の再生に力かるコスト を削減でき、かつ発火、爆発や引火といった危険を低減させることができる。用いた
二酸ィ匕炭素は大気中に放出しても危険ではなぐまた、そのリサイクルも容易である。 図面の簡単な説明 In particular, by using supercritical carbon dioxide as the supercritical fluid and substituting most of the solvent used for depolymerization with supercritical carbon dioxide, the use of environmentally harmful organic solvents can be significantly reduced. (Ordinarily, polymers have low solubility in organic solvents such as toluene, so a large amount of organic solvent is necessary to dissolve them.) Therefore, the cost for regenerating the solvent can be reduced, and there is a danger of ignition, explosion, or ignition. Can be reduced. Using The carbon dioxide is not dangerous even if it is released into the atmosphere, and its recycling is easy. Brief Description of Drawings
[0008] [図 1]実施例 1における解重合生成物の MALDI-TOF MS分析結果を示すグラフであ る。 FIG. 1 is a graph showing the results of MALDI-TOF MS analysis of the depolymerized product in Example 1.
[図 2]実施例 1における解重合生成物の1 H NMR分析結果を示すグラフである。 FIG. 2 is a graph showing a 1 H NMR analysis result of a depolymerized product in Example 1.
[図 3]実施例 1の解重合の前後における、 SEC分析の変化を示すグラフである。 FIG. 3 is a graph showing changes in SEC analysis before and after depolymerization in Example 1.
[図 4(A)(B)]実施例 1における 6量体についての分析であり、図 4 (A)は1 H NMRによる 構造解析の結果を、図 4 (B)は MALDI-TOF MS分析結果を示す。 [FIGS. 4 (A) and (B)] Analysis of hexamer in Example 1. FIG. 4 (A) shows the result of 1 H NMR structural analysis, and FIG. 4 (B) shows MALDI-TOF MS analysis. The results are shown.
[図 5]実施例 3の解重合の前後における、 SEC分析の変化を示すグラフである。 FIG. 5 is a graph showing changes in SEC analysis before and after depolymerization in Example 3.
[図 6]実施例 4の解重合の前後における、 SEC分析の変化を示すグラフである。 FIG. 6 is a graph showing changes in SEC analysis before and after depolymerization in Example 4.
[図 7]実施例 5の解重合の前後における、 SEC分析の変化を示すグラフである。 FIG. 7 is a graph showing changes in SEC analysis before and after depolymerization in Example 5.
[図 8]比較例 1の反応後における、 SEC分析を示すグラフである。 FIG. 8 is a graph showing SEC analysis after the reaction of Comparative Example 1.
[図 9]本発明の連続解重合装置の一例を示す概念図である。 FIG. 9 is a conceptual diagram showing an example of a continuous depolymerization apparatus of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の連続解重合方法は、加水分解酵素充填カラムに、超臨界流体とポリエス テル、ポリカーボネート又はポリ乳酸の有機溶媒溶液をともに連続的に通し、加水分 解酵素によりポリエステル、ポリカーボネート又はポリ乳酸を解重合し、加水分解酵素 充填カラムから流出する解重合生成物含有反応混合物から解重合生成物を分離す ることを特徴とする。 [0009] In the continuous depolymerization method of the present invention, a supercritical fluid and an organic solvent solution of polyester, polycarbonate or polylactic acid are both continuously passed through a column packed with a hydrolase, and polyester, polycarbonate or It is characterized by depolymerizing polylactic acid and separating the depolymerized product from the reaction mixture containing the depolymerized product flowing out of the column packed with the hydrolase.
本発明の連続解重合に用いることのできるポリエステルとしては、ポリカルボン酸と ポリオールからのポリエステルのほ力、ヒドロキシカルボン酸あるいはその分子内エス テル (ラタトン)力ものポリエステルまたはポリラタトンが含まれる。ポリカルボン酸とポリ オールからのポリエステルとしては、ポリブチレンサクシネート、ポリブチレンアジべ一 ト、ポリ(ブチレンサクシネート アジペート)共重合体など、以下のごとき構造式(1)で 示される繰り返し単位を有するものが好適に挙げられる。
[0010] [化 1] Examples of the polyester that can be used in the continuous depolymerization of the present invention include a polyester of polycarboxylic acid and a polyol, a hydroxycarboxylic acid or a polyester or polylatatatone having an intramolecular ester (latataton) force. Examples of the polyester comprising a polycarboxylic acid and a polyol include a repeating unit represented by the following structural formula (1) such as polybutylene succinate, polybutylene adipate, and poly (butylene succinate adipate) copolymer. Preferred are those having. [0010] [Formula 1]
構造式 ( 1 )Structural formula (1)
[0011] 前記構造式(1)中、 Αは炭素数 2— 8の直鎖状または分岐状のアルキレン基を表し 、 Bは炭素数 2— 6の直鎖状または分岐状のアルキレン基を表す。 Aおよび Bはそれ ぞれ、 2つ以上の異なるもの(すなわち共重合体)であってもよい。さらに、 A(COOH )で表されるジカルボン酸の 50モル%以下を芳香族ジカルボン酸、たとえばテレフタIn the structural formula (1), Α represents a linear or branched alkylene group having 2 to 8 carbon atoms, and B represents a linear or branched alkylene group having 2 to 6 carbon atoms. . A and B may each be two or more different (ie, copolymers). Further, 50 mol% or less of the dicarboxylic acid represented by A (COOH) is converted to an aromatic dicarboxylic acid such as terephthalic acid.
2 2
ル酸、フタル酸、イソフタル酸などで置換してもよい。 It may be substituted with sulfonic acid, phthalic acid, isophthalic acid or the like.
本発明のポリエステルとしては、前記構造式(1)で示される以外の繰り返し単位、た とえば、以下の構造式 (2)および Zまたは (3)で示す繰り返し単位 (単位中、 Dは炭素 数 2— 6の直鎖状または分岐状のアルキレン基、ァルケ-レン基またはアルキ-レン 基を表す)を、 50モル%以下含んで 、てもよ 、。 As the polyester of the present invention, repeating units other than those represented by the structural formula (1), for example, repeating units represented by the following structural formulas (2) and Z or (3) (where D is a carbon atom 2-6 linear or branched alkylene, alkylene or alkylene group) of not more than 50 mol%.
[0012] [化 2] [0012] [Formula 2]
0 0 0 0
II II II II
-C— CH=CH— C一 0~D- 構造式 (2 ) -C— CH = CH— C-1 0 ~ D- Structural formula (2)
構造式 (3 )Structural formula (3)
[0013] 前記ポリエステルの分子量 (数平均分子量)は特に制限はなぐまた、ポリエステル の末端基部分にはポリマー合成法により決定されるいずれの置換基によって置換さ れて 、ることが可能である。 [0013] The molecular weight (number average molecular weight) of the polyester is not particularly limited, and the terminal group of the polyester can be substituted with any substituent determined by a polymer synthesis method.
[0014] また、前記ヒドロキシカルボン酸からのポリエステルまたはポリラタトンとしては、炭素 数 3— 20のヒドロキシカルボン酸またはラタトンの重合体の他、下記構造式 (4)で示さ れる繰り返し単位を 1種以上有するポリエステルまたはポリラタトンも含まれる。
式中、 Rは水素原子または炭素数 1から 12の直鎖状または分岐状のアルキル基を 表す。 [0014] Further, as the polyester or polylatatone from the hydroxycarboxylic acid, in addition to a hydroxycarboxylic acid or ratatone polymer having 3 to 20 carbon atoms, the polyester or polylatatatone has at least one kind of a repeating unit represented by the following structural formula (4). Also included are polyester or poly rataton. In the formula, R represents a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
[0015] [化 3] [0015] [Formula 3]
構造式 (4 )Structural formula (4)
[0016] 前記 Rは、水素原子および炭素数 1一 12のアルキル基より選ばれる、異なる 2種以 上(共重合体)であってもよい。 R力 Sメチル基の場合、ポリ(3—ヒドロキシ酪酸)であり、 R力メチル基および水素原子の場合 3—ヒドロキシ酪酸 Z 3—ヒドロキシプロピオン酸共 重合体 (PHBZPHP)であり、 R力メチル基およびェチル基の場合 3—ヒドロキシ酪酸 Z3—ヒドロキシバレリアン酸共重合体 (PHBZPHV)である。これらは、微生物が産 生するポリマーとして知られて 、る。このポリラタトンの末端基部分にはポリマー合成 法により決定される 、ずれの置換基によって置換されて 、ることが可能である。 また、前記ポリラタトンは、分子中にさらに以下の構造式 (5)ないし (7)で示す繰り返 し単位を 1種以上有して 、てもよ!/、。
[0016] R may be two or more different types (copolymers) selected from a hydrogen atom and an alkyl group having 11 to 12 carbon atoms. R force S methyl group is poly (3-hydroxybutyric acid), R force methyl group and hydrogen atom is 3-hydroxybutyric acid Z 3-hydroxypropionic acid copolymer (PHBZPHP), R force methyl group And in the case of an ethyl group, it is 3-hydroxybutyric acid Z3-hydroxyvaleric acid copolymer (PHBZPHV). These are known as polymers produced by microorganisms. The terminal group of the polylatatatone can be substituted with a different substituent as determined by a polymer synthesis method. Further, the polylatatatone may further have one or more types of repeating units represented by the following structural formulas (5) to (7) in the molecule.
[0017] [化 4] [0017] [Formula 4]
構造式Structural formula
構造式 (6 )Structural formula (6)
構造式 (7 ) Structural formula (7)
[0018] 式中 Rは炭素数 1一 17の直鎖または分岐のアルキレン基を、 Rは炭素数 2— 11の [0018] In the formula, R is a linear or branched alkylene group having 117 carbon atoms, and R is 2-11 carbon atoms.
1 2 直鎖または分岐のアルキレン基を、 Rは炭素数 1 1 2 linear or branched alkylene group, R is 1 carbon
3 一 10の直鎖または分岐のアルキレ ン基を、 Rは炭素数 2— 10の直鎖または分岐のアルキレン基をそれぞれ表わす。 ( 310 represents a straight-chain or branched alkylene group, and R represents a straight-chain or branched alkylene group having 2 to 10 carbon atoms. (
4 Four
繰り返し単位として構造式 (5)で示されるものを含む場合は、他のラタトンを含む共重 合体であることを表す。 ) When the repeating unit contains one represented by the structural formula (5), it indicates that it is a copolymer containing another rataton. )
[0019] また、本発明のポリエステルには、 1)ジカルボン酸とポリオール力もの繰り返し単位 [0019] Further, the polyester of the present invention includes: 1) a dicarboxylic acid and a polyol
(前記構造式(1)で表される繰り返し単位である。また、構造式(2)及び Z又は(3)で 表される繰り返し単位を含んでもょ ヽ)、 2)ヒドロキシカルボン酸からの繰り返し単位 ( 構造式 (4)で表される繰り返し単位を含む)、及び 3)ラタトンからの繰り返し単位 (構 造式(5)な 、し (7)で表される繰り返し単位を含んでもよ!、;)の 1)な 、し 3)から選ば れる繰り返し単位を 2種以上含む共重合体も含まれる。 (It is a repeating unit represented by the structural formula (1). It may contain a repeating unit represented by the structural formulas (2) and Z or (3).) 2) Repeating from a hydroxycarboxylic acid Units (including repeating units represented by Structural Formula (4)), and 3) Repeating units from rataton (including repeating units represented by Structural Formulas (5), (7) !, ;)) Also includes copolymers containing two or more types of repeating units selected from 1) and 3).
[0020] また、本発明におけるポリカーボネートとしては、トリメチレンカーボネート重合体が 挙げられるがこれらに限定されるものではない。また、前記トリメチレンカーボネート重 合体には、前記ポリラタトン重合体の繰り返し単位として含んでもよいとした繰り返し 単位 (構造式 (5)な 、し (7) )を 1種以上含んでもょ 、。 [0020] Examples of the polycarbonate in the present invention include a trimethylene carbonate polymer, but are not limited thereto. The trimethylene carbonate polymer may contain one or more kinds of repeating units (Structural formulas (5) and (7)) which may be contained as the repeating units of the polylatatatone polymer.
[0021] また、本発明の連続解重合には前記のごときポリエステルとポリカーボネートの共重
合体であるポリ(エステル-カーボネート)も用いることができる。 In the continuous depolymerization of the present invention, the copolymer of polyester and polycarbonate as described above is used. A coalesced poly (ester-carbonate) can also be used.
[0022] 本発明の解重合法において用いられるポリ乳酸は、フィルム、繊維等の成形体等 に用いられるポリ乳酸又はポリ乳酸共重合体が特に制限なく用いることができる。例 えば、ホモポリマーとしては、ポリ(L 乳酸)、ポリ(DL 乳酸)、シンジォタクチックポリ (DL-乳酸)、ァタクチックポリ(DL-乳酸)等が挙げられる。 As the polylactic acid used in the depolymerization method of the present invention, polylactic acid or a polylactic acid copolymer used for a molded article such as a film or a fiber can be used without any particular limitation. For example, examples of the homopolymer include poly (L-lactic acid), poly (DL-lactic acid), syndiotactic poly (DL-lactic acid), and atactic poly (DL-lactic acid).
また、ポリ乳酸共重合体としては、前記のごときポリ乳酸に、 j8—プロピオラタトン、 β —ブチ口ラタトン BL)、 ε一力プロラタトン( ε CL)、 11—ゥンデカノリド、 12—ゥン デカノリドなどの中一大員環ラタトン類、トリメチレンカーボネート (TMC)やメチル置 換トリメチレンカーボネートなどの環状カーボネートモノマー及びこれらのオリゴマー、 環状エステルオリゴマー、リシノール酸のごときヒドロキシ酸類及びそのエステル類、 線状カーボネートオリゴマー、線状エステルオリゴマー、エステル カーボネートオリ ゴマー、エーテル エステルオリゴマー等の、ラクチドと共重合可能でかつ加水分解 酵素の作用を受け得る結合を生成するコモノマーを共重合させたものが挙げられる。 Examples of the polylactic acid copolymer include polylactic acid as described above, such as j8-propiolatatone, β-butyrate rataton BL), ε-force prolatataton (εCL), 11-pindecanolide, 12-pindecanolide and the like. One-membered ring ratatones, cyclic carbonate monomers such as trimethylene carbonate (TMC) and methyl-substituted trimethylene carbonate and their oligomers, cyclic ester oligomers, hydroxy acids and esters thereof such as ricinoleic acid, linear carbonate oligomers, Examples thereof include copolymers of comonomers, such as linear ester oligomers, ester carbonate oligomers, and ether ester oligomers, which can be copolymerized with lactide and form a bond which can be affected by a hydrolase.
[0023] 本発明にお 、て用いる加水分解酵素は、入手のしゃすさと酵素の熱安定性によりリ ノ 一 ITが好ましく、中でも Candida antarctica由来のリノ ーゼや、 Rhizomucor miehei 由来のリパーゼが好ましい。例えば、 Candida antarctica由来の固定化酵素としては、 ノボザィムズジャパン(株)の「Novozym 435 (商品名 )」、 Rhizomucor miehei由来のリ パーゼとしてはノボザィムズジャパン (株)の「Lipozyme RM IM (商品名)」等を挙げるこ とができる。この他に、 Bacillus subtilis由来のプロテアーゼであるナガセケムテックス (株)の「BiopraSe (商品名)」も、加水分解酵素として同様に用いることができる。 [0023] In the present invention, the hydrolase used is preferably Lino-IT due to the availability and heat stability of the enzyme, and among them, Linose derived from Candida antarctica and lipase derived from Rhizomucor miehei are particularly preferred. For example, as an immobilized enzyme derived from Candida antarctica, “Novozym 435 (trade name)” from Novozyms Japan Co., Ltd. IM (product name) ”. In addition, "Biopra Se (trade name)" of Nagase ChemteX Corp., which is a protease derived from Bacillus subtilis, can also be used as a hydrolase.
本発明の解重合における固定ィ匕酵素はカラムに充填して用いられるが、カラムの内 径ゃ長さは、カラム中を流れる反応混合物の流速等を考慮して適宜決められる。 The immobilized enzyme in the depolymerization of the present invention is used after being packed in a column, and the inner diameter and length of the column are appropriately determined in consideration of the flow rate of the reaction mixture flowing through the column and the like.
[0024] 本発明においては、解重合主溶媒として超臨界流体を用いる。用いられる超臨界 流体としては、二酸ィ匕炭素やフロロホルム (CHF )などが挙げられる力 二酸化炭素 [0024] In the present invention, a supercritical fluid is used as a depolymerization main solvent. Examples of the supercritical fluid used include carbon dioxide and fluoroform (CHF).
3 Three
は、無害、安価、不燃性であり、また、その臨界点は、 31°C、 7.4MPa程度であるので、 臨界点に達し易ぐ本発明の解重合及び重合に用いる媒体として好適である。二酸 化炭素は比較的疎水性分子を扱うのに適し、フロロホルムは比較的親水性分子を扱 うのに適している n
また、本発明の解重合においてはポリマーを溶解するのにトルエン等の有機溶媒 が用いられる。用いる有機溶媒の量は原料ポリマーを溶解させる量が必要である。例 えばポリヒドロキシ酪酸をトルエンに溶解させる場合、カラム中を流れる超臨界流体と トルエンとの比率は 1 : 0.1— 1 : 0.6程度、好ましくは 1 : 0.2— 1 : 0.4程度である。トルエン の比率が 1 : 0.6より大きくなると、前述のような超臨界流体を用いることによる反応性、 反応速度、環境適合性等の効果が得にくぐまた、トルエンの比率が 1 : 0.はり小さく なるとポリマーが溶解しに《なるので前記比率が適切である。 Is harmless, inexpensive, and nonflammable, and its critical point is about 31 ° C. and 7.4 MPa. Therefore, it is suitable as a medium used in the depolymerization and polymerization of the present invention, which easily reaches the critical point. Diacid carbon is suitable for handling relatively hydrophobic molecules, Furorohorumu are relatively suitable hydrophilic molecules in handling Uno n In the depolymerization of the present invention, an organic solvent such as toluene is used to dissolve the polymer. The amount of the organic solvent used needs to be such that the raw material polymer is dissolved. For example, when dissolving polyhydroxybutyric acid in toluene, the ratio of the supercritical fluid flowing in the column to the toluene is about 1: 0.1-1: 0.6, preferably about 1: 0.2-1: 0.4. When the ratio of toluene is larger than 1: 0.6, the effects of using the supercritical fluid as described above, such as reactivity, reaction rate, and environmental compatibility, are difficult to obtain.In addition, the ratio of toluene is 1: 0. When this happens, the polymer dissolves, and thus the above ratio is appropriate.
前記有機溶媒としてはトルエンの他に、キシレン、ベンゼン等の酵素活性を阻害せ ずかつポリマーを良好に溶解するものが用いられる。 As the organic solvent, other than toluene, xylene, benzene, and the like that do not inhibit the enzyme activity and dissolve the polymer well can be used.
[0025] また、解重合反応溶液 (原料ポリマー、超臨界流体及び有機溶媒の混合物)中に 含まれる解重合ポリマーの濃度は、 0.1— 50g/L、中でも 1一 20g/Lが適切である。 0. lg/Lより低 、濃度の場合は、収率自体は特に低くな 、が濃度が低 、ため得られる 解重合生成物の量を十分に確保しにくぐまた 50g/Lを超えると解重合生成物への変 換率が低下するので、前記範囲が好ましい。 [0025] Further, the concentration of the depolymerized polymer contained in the depolymerization reaction solution (mixture of the raw material polymer, the supercritical fluid, and the organic solvent) is preferably 0.1 to 50 g / L, particularly preferably 11 to 20 g / L. When the concentration is lower than 0.1 lg / L, the yield itself is particularly low, but the concentration is low, so that it is difficult to secure a sufficient amount of the depolymerized product to be obtained. The above range is preferable because the conversion rate to the polymerization product decreases.
[0026] 前記超臨界流体が超臨界二酸化炭素の場合、その温度は超臨界を保つ温度以上 から 80°C程度、好ましくは 40— 60°C程度が、酵素活性、反応速度、温度制御性等の 観点からより好ましい。 [0026] When the supercritical fluid is supercritical carbon dioxide, its temperature is not lower than the temperature at which the supercritical fluid is maintained, and is about 80 ° C, preferably about 40-60 ° C, for example, enzyme activity, reaction rate, and temperature controllability. It is more preferable from the viewpoint of.
また超臨界流体二酸ィ匕炭素の圧力は 13— 15MPa程度がオリゴマーの収率の点か ら適切である。 The pressure of the supercritical fluid diacid carbon is preferably about 13 to 15 MPa from the viewpoint of the yield of the oligomer.
酵素充填カラム中での反応溶液の流速はオリゴマーへの転ィヒ率、オリゴマーの分 子量、反応速度等を考慮しつつ適宜決定すればよい。例えば、内径 7.8mm、長さ 300mmのステンレス製酵素充填カラムに Candida antarctica由来の固定化リパーゼ( Novozym 435Novozymes Japan Ltd)を 6.8g充填したものを用いた場合、カラム内の全 流量 (超臨界二酸ィ匕炭素と有機溶媒との比は 4:1)を 0.5mL/minから 1.51mL/mmに上 昇させても原料ポリマーは完全に解重合して消失したが、生成するオリゴマーの分子 量は徐々に増加した。 The flow rate of the reaction solution in the enzyme packed column may be appropriately determined in consideration of the conversion rate to the oligomer, the molecular weight of the oligomer, the reaction rate, and the like. For example, if a stainless steel enzyme-filled column with an inner diameter of 7.8 mm and a length of 300 mm packed with 6.8 g of immobilized lipase derived from Candida antarctica (Novozym 435 Novozymes Japan Ltd), the total flow rate in the column (supercritical diacid) The raw polymer was completely depolymerized and disappeared even when the ratio of dani carbon to the organic solvent was increased from 0.5 mL / min to 1.51 mL / mm, but the molecular weight of the resulting oligomer was Gradually increased.
[0027] 本発明の解重合法による解重合生成物は主成分として環状オリゴマーを含有する 。例えば、ポリ力プロラタトンからはジカプロラタトンが主として生成し、ポリトリメチレン
カーボネートからはトリメチレンカーボネートが主として生成する。また、ポリエステル 力 はその単位ユニットを分子中に複数有する環状ポリエステルオリゴマーが主とし て得られる。更に、ポリ乳酸力もは乳酸ユニットを分子中に複数有する環状乳酸オリ ゴマーが主として得られる。 [0027] The depolymerized product obtained by the depolymerization method of the present invention contains a cyclic oligomer as a main component. For example, polycaprolactone is mainly produced from polycaprolactone and polytrimethylene Trimethylene carbonate is mainly produced from carbonate. The polyester power is mainly obtained from a cyclic polyester oligomer having a plurality of the unit units in the molecule. Furthermore, as for the polylactic acid power, a cyclic lactic acid oligomer having a plurality of lactic acid units in a molecule is mainly obtained.
化学的分解や熱分解により解重合を行った場合、生成する低分子化合物の両末 端は不規則で、これを再重合させて高分子化することは不可能であるが、本発明の 解重合法により得られる環状オリゴマーは容易に再重合可能である。また、環状オリ ゴマーを再重合させた場合脱離物がな 、と 、う利点をも有する。 When depolymerization is carried out by chemical decomposition or thermal decomposition, both ends of the resulting low molecular weight compound are irregular, and it is impossible to repolymerize this to form a polymer. The cyclic oligomer obtained by the polymerization method can be easily repolymerized. In addition, there is also an advantage that there is no elimination when the cyclic oligomer is repolymerized.
さらに、有機溶媒だけを用いて連続解重合を行う場合に比べ、再重合性の環状オリ ゴマー生成率が格段に向上する。 Furthermore, compared to the case where continuous depolymerization is performed using only an organic solvent, the rate of formation of repolymerizable cyclic oligomers is significantly improved.
[0028] 前記のごとき連続解重合法に用いる連続解重合装置は、少なくとも、超臨界流体 生成装置、加水分解酵素充填カラム、ノ ックプレッシャーレギュレーター、解重合生 成物含有反応混合物から解重合生成物を分離する手段、超臨界流体生成装置によ り製造された超臨界流体を前記カラムに送液する手段、及び原料ポリマーの有機溶 媒溶液を前記カラムに送液する手段を備えて ヽる。 [0028] The continuous depolymerization apparatus used in the continuous depolymerization method as described above includes at least a supercritical fluid generator, a column packed with a hydrolytic enzyme, a knock pressure regulator, and a reaction mixture containing a depolymerized product. Means for separating a substance, a means for sending a supercritical fluid produced by a supercritical fluid generator to the column, and a means for sending an organic solvent solution of a raw material polymer to the column. .
[0029] ノ ックプレッシャーレギュレーター力 放出される超臨界流体からのガス化物は回 収してもよぐそのまま大気中に放出してもよいが、回収して再使用するのが好ましい 。再使用する場合には、前記装置の構成に更に、ノ ックプレッシャーレギュレーター から放出される超臨界流体からのガス化物を超臨界流体生成装置に戻す手段を備 える。前記手段はバックプレッシャーレギュレーター力も放出される超臨界流体から のガス化物を回収し超臨界流体生成装置に送る手段を有する。 [0029] Knock pressure regulator force The gaseous substance from the released supercritical fluid may be collected or released into the atmosphere as it is, but is preferably recovered and reused. In the case of re-use, the configuration of the above-mentioned apparatus is further provided with a means for returning gasified substances from the supercritical fluid discharged from the knock pressure regulator to the supercritical fluid generation apparatus. The means includes means for recovering gaseous matter from the supercritical fluid, which also releases the back pressure regulator force, and sending it to the supercritical fluid generator.
[0030] 図 9に、超臨界流体として超臨界二酸化炭素を用いる連続解重合装置の一例の概 念図を示す。 FIG. 9 shows a conceptual diagram of an example of a continuous depolymerization apparatus using supercritical carbon dioxide as a supercritical fluid.
図 9中、 10は超臨界二酸ィ匕炭素生成装置であり、例えば図示しない炭酸ガス凝縮 器、加圧ポンプ、熱交 力もなる通常のものが用いられる。 12は二酸ィ匕炭素の供 給手段を示す (例えば液体二酸ィヒ炭素ボンべ等)。 20は加水分解酵素充填カラム 2 2を内部に備えた恒温槽でカラム温度を一定に保つように図示しない加熱装置及び 温度制御装置を備えている。 30はバックプレッシャーレギュレーター(背圧制御装置
)であり、反応系全体の圧力を制御するとともに、反応終了後の反応液力 二酸ィ匕炭 素ガスと、有機溶媒と解重合生成物の混合物を分離する。バックプレッシャーレギュ レーターは市販されて 、るものを用いることができる。 40は解重合生成物の有機溶 媒溶液を、有機溶媒と解重合生成物とに分離する手段であり、例えば有機溶媒を除 去するためのエバポレーターを備えて 、る。 In FIG. 9, reference numeral 10 denotes a supercritical carbon dioxide generator, which is, for example, a carbon dioxide condenser (not shown), a pressurizing pump, and a normal one having heat exchange. Numeral 12 indicates a supply means of carbon dioxide (eg, a liquid carbon cylinder). Reference numeral 20 denotes a thermostat provided with a hydrolytic enzyme-filled column 22 therein, which is provided with a heating device and a temperature control device (not shown) so as to keep the column temperature constant. 30 is a back pressure regulator (back pressure control device) ), The pressure of the entire reaction system is controlled, and the reaction liquid after the completion of the reaction is separated from a carbon dioxide gas, a mixture of an organic solvent and a depolymerized product. A commercially available back pressure regulator can be used. Numeral 40 denotes means for separating the organic solvent solution of the depolymerized product into an organic solvent and a depolymerized product, and includes, for example, an evaporator for removing the organic solvent.
また、超臨界流体生成装置により製造された超臨界流体を前記カラムに送液する 手段は、超臨界二酸化炭素の送液ポンプ 14及び超臨界二酸化炭素を供給するライ ン (管) L1を有する。原料ポリマーの有機溶媒溶液を前記カラムに送液する手段は、 原料ポリマー溶液の送液ポンプ 16及び原料ポリマーの有機溶媒溶液を供給するラ イン (管) L2を有する。 The means for sending the supercritical fluid produced by the supercritical fluid generator to the column has a supercritical carbon dioxide sending pump 14 and a line (pipe) L1 for supplying the supercritical carbon dioxide. The means for sending the organic solvent solution of the raw material polymer to the column includes a liquid feed pump 16 for the raw material polymer solution and a line (tube) L2 for supplying the organic solvent solution of the raw material polymer.
更に、 L3はバックプレッシャーレギュレーター力も放出される二酸ィ匕炭素ガスを回 収して超臨界流体生成装置に戻すライン (管)を示す。 Further, L3 indicates a line (pipe) for recovering the carbon dioxide gas that also releases the back pressure regulator force and returning it to the supercritical fluid generator.
[0031] この態様のものでは二酸化炭素は再度、超臨界二酸化炭素生成装置により、超臨 界流体に戻されるが、バックプレッシャーレギュレーター 30から空気中に放出させて ちょい。 [0031] In this embodiment, the carbon dioxide is returned to the supercritical fluid again by the supercritical carbon dioxide generator, but is released from the back pressure regulator 30 into the air.
[0032] 装置の使用方法は、まず、二酸化炭素の供給手段 12から液体二酸化炭素等を超 臨界二酸化炭素生成装置 10に供給して超臨界二酸化炭素を生成させ、送液ポンプ 14によりライン L1を通してカラムに向け送液する。一方、原料ポリマーを有機溶媒に 溶解させこれを送液ポンプ 16によりライン L2を通してカラムに向け送液する。超臨界 二酸ィ匕炭素と原料ポリマー溶液はカラムに入る前に合流し、混合液となってカラム内 に流入する。恒温槽 20では既に加水分解酵素充填カラム 22を反応温度に維持する ため温度制御が行われて 、る。温度制御が行われたカラムに超臨界二酸ィ匕炭素と 原料ポリマー溶液の混合物が流入し、カラムに充填されている加水分解酵素に接触 し、解重合が行われる。カラムから流出する反応液は解重合反応が終了し解重合ォ リゴマーが生成している。バックプレッシャーレギュレーター 30は全反応系の圧力を 制御する。 [0032] The method of using the apparatus is as follows. First, liquid carbon dioxide or the like is supplied from the carbon dioxide supply means 12 to the supercritical carbon dioxide generator 10 to generate supercritical carbon dioxide, and the liquid is sent through the line L1 by the liquid sending pump 14. Send the liquid to the column. On the other hand, the raw material polymer is dissolved in an organic solvent, and the solution is sent toward the column through the line L2 by the solution sending pump 16. The supercritical carbon dioxide and the raw polymer solution merge before entering the column, and form a mixed solution and flow into the column. In the thermostat 20, temperature control has already been performed to maintain the hydrolytic enzyme packed column 22 at the reaction temperature. The mixture of the supercritical carbon dioxide and the raw material polymer solution flows into the temperature-controlled column, and comes into contact with the hydrolase filled in the column to perform depolymerization. The reaction solution flowing out of the column has completed the depolymerization reaction, and a depolymerized oligomer has been generated. The back pressure regulator 30 controls the pressure of the whole reaction system.
次に前記反応終了後の反応液はバックプレッシャーレギュレーター 30に入り、二酸 化炭素ガスと、有機溶媒及び解重合生成物の混合物の 2つに分離される。分離され
た二酸化炭素ガスはライン L3を通って、再び超臨界二酸化炭素生成装置に導入さ れ、再利用される。一方、有機溶媒及び解重合生成物の混合物は解重合生成物を 分離する手段 40により有機溶媒と解重合生成物に分離され、解重合生成物は回収 される。 Next, the reaction solution after the completion of the reaction enters the back pressure regulator 30, and is separated into two, that is, a carbon dioxide gas and a mixture of an organic solvent and a depolymerized product. Separated The carbon dioxide gas passed through the line L3 is again introduced into the supercritical carbon dioxide generator and reused. On the other hand, the mixture of the organic solvent and the depolymerized product is separated into the organic solvent and the depolymerized product by means 40 for separating the depolymerized product, and the depolymerized product is recovered.
実施例 Example
[0033] 以下に実施例を示し本発明をさらに具体的に説明する力 本発明はこれらの実施 例により限定されるものではない。なお、以下の連続解重合は図 9で示すような装置 を用いて行った。 [0033] The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The following continuous depolymerization was performed using an apparatus as shown in FIG.
実施例 1 [ァタクチックポリ(RS -3-ヒドロキシ酪酸)の連続解重合] Example 1 [Continuous depolymerization of atactic poly (RS-3-hydroxybutyric acid)]
内径 7.8mm、長さ 300mmのステンレス製カラムに、 Candida antarctica由来の固定化 リパーゼ(Novozym 435 Novozymes Japan, Ltd)を 6.8g充填し、加水分解酵素充填力 ラムとし、これを恒温槽に入れ、カラム内が 40°Cに維持されるように温度制御した。こ の酵素充填カラムに、ァタクチックポリ(RS-3-ヒドロキシ酪酸)(Mn= 110,000)の 1%ト ルェン溶液を流速 O.lmL/minで、また、超臨界二酸化炭素を 15MPa、流速 0.4mL/min で通した。バックプレッシャーレギュレーターから、分解生成物トルエン溶液と炭酸ガ スを別々に回収した。得られたトルエン溶液からトルエンを減圧留去し、解重合生成 物を得た。 A stainless steel column with an inner diameter of 7.8 mm and a length of 300 mm is filled with 6.8 g of Candida antarctica-derived immobilized lipase (Novozym 435 Novozymes Japan, Ltd) to form a hydrolytic enzyme filling ram. The temperature was controlled so that the inside was maintained at 40 ° C. A 1% toluene solution of atactic poly (RS-3-hydroxybutyric acid) (Mn = 110,000) was applied to this enzyme-packed column at a flow rate of 0.1 mL / min, and supercritical carbon dioxide at 15 MPa and a flow rate of 0.4 mL / min. Passed through. From the back pressure regulator, a toluene solution of the decomposition product and gaseous carbonate were separately collected. Toluene was distilled off from the obtained toluene solution under reduced pressure to obtain a depolymerized product.
得られた解重合生成物の分子構造を1 H NMR分析、 MALDI-TOF MS分析及び SEC分析により解析した。その結果、 Ή NMR分析及び MALDI-TOF MS分析により、 解重合によって得られたオリゴマーは 7量体を中心とするほぼ完全な環状体であるこ とが確認された(図 1及び図 2参照)。また、 SEC分析により元のポリマー部分は完全 に消失し、分子量 Mn= 500のオリゴマーに変換されたことが確認された(図 3参照)。 さらに、生成オリゴマーから超臨界二酸ィ匕炭素を移動相とする分取高速液体クロマ トグラフィ一により 6量体を分取し、 Ή NMRにより構造解析を行った。その結果図 4 (A )の点線で示す範囲内には、末端基 (水酸基)に由来するピークは認められな力つた 。更に前記 6量体の MALDI-TOF MS分析結果を図 4 (B)に示す。図 4 (A)及び(B) に示す結果から、前記 6量体が環状体であることが確認された。 The molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis. As a result, Ή NMR analysis and MALDI-TOF MS analysis confirmed that the oligomer obtained by the depolymerization was a substantially complete cyclic body centered on a heptamer (see FIGS. 1 and 2). In addition, SEC analysis confirmed that the original polymer portion had completely disappeared and had been converted into an oligomer having a molecular weight of Mn = 500 (see Fig. 3). Furthermore, hexamers were separated from the resulting oligomers by preparative high performance liquid chromatography using supercritical carbon dioxide as a mobile phase, and subjected to structural analysis by NMR. As a result, no peak derived from the terminal group (hydroxyl group) was observed within the range shown by the dotted line in FIG. 4 (A). Further, the result of MALDI-TOF MS analysis of the hexamer is shown in FIG. 4 (B). From the results shown in FIGS. 4 (A) and (B), it was confirmed that the hexamer was a cyclic body.
[0034] 実施例 2 [ァタクチックポリ(RS -3-ヒドロキシ酪酸)の連続解重合]
実施例 1と同じ加水分解酵素充填カラムを用意し、同様に 40°Cに温度調節した。こ れにァタクチックポリ(RS-3-ヒドロキシ酪酸)(Mn= 110,000)の 1%トルエン溶液を流 速 0.3mL/minで、また、超臨界二酸化炭素を 15MPa、流速 1.2mL/minで通した。バッ クプレッシャーレギュレーターから、分解生成物トルエン溶液と炭酸ガスを別々に回 収した。得られたトルエン溶液からトルエンを減圧留去し、解重合生成物を得た。 得られた解重合生成物の分子構造を1 H NMR分析、 MALDI-TOF MS分析及び SEC分析により解析した。その結果、 Ή NMR分析及び MALDI-TOF MS分析により、 解重合によって得られたオリゴマーはほぼ完全な環状体であった。また、 SEC分析に より元のポリマー部分は完全に消失し、分子量 Mn= 1,000のオリゴマーに変換された ことが確認された。スペクトル等は実施例 1と同様であった。 Example 2 [Continuous depolymerization of atactic poly (RS-3-hydroxybutyric acid)] The same hydrolytic enzyme packed column as in Example 1 was prepared, and the temperature was similarly adjusted to 40 ° C. To this, a 1% toluene solution of atactic poly (RS-3-hydroxybutyric acid) (Mn = 110,000) was passed at a flow rate of 0.3 mL / min, and supercritical carbon dioxide was passed at 15 MPa and a flow rate of 1.2 mL / min. The toluene solution of decomposition products and carbon dioxide were separately collected from the back pressure regulator. From the resulting toluene solution, toluene was distilled off under reduced pressure to obtain a depolymerized product. The molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis. As a result, according to Ή NMR analysis and MALDI-TOF MS analysis, the oligomer obtained by the depolymerization was almost a perfect cyclic body. Also, SEC analysis confirmed that the original polymer portion had completely disappeared and had been converted to an oligomer having a molecular weight of Mn = 1,000. The spectrum and the like were the same as in Example 1.
[0035] 実施例 3 [ポリ( ε -力プロラタトン)の連続解重合] Example 3 [Continuous Depolymerization of Poly (ε-force prolatataton)]
実施例 1と同じ加水分解酵素充填カラムを用意し、同様に 40°Cに温度調節した。こ れに、ポリ -力プロラタトン)(Mn= 110,000)の 1%トルエン溶液を流速 O.lmL/minで 、超臨界二酸化炭素を 15MPa、流速 0.4mL/minで通した。バックプレッシャーレギユレ 一ターから、分解生成物トルエン溶液と炭酸ガスを別々に回収した。得られたトルェ ン溶液からトルエンを減圧留去し、解重合生成物を得た。 The same hydrolytic enzyme packed column as in Example 1 was prepared, and the temperature was similarly adjusted to 40 ° C. To this, a 1% toluene solution of poly-force prolatatatone (Mn = 110,000) was passed at a flow rate of 0.1 mL / min, and supercritical carbon dioxide was passed at a flow rate of 15 MPa and a flow rate of 0.4 mL / min. From the back pressure regulator, a decomposition product toluene solution and carbon dioxide were separately collected. From the resulting toluene solution, toluene was distilled off under reduced pressure to obtain a depolymerized product.
得られた解重合生成物の分子構造を1 H NMR分析、 MALDI-TOF MS分析及び SEC分析により解析した。その結果、 Ή NMR分析及び MALDI-TOF MS分析により、 解重合によって得られたオリゴマーは 2量体を中心とするほぼ完全な環状体であるこ とが確認された。また、 SEC分析により元のポリマー部分は完全に消失し、分子量 Mn = 200のオリゴマーに変換されたことが確認された(図 5参照)。 The molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis. As a result, Ή NMR analysis and MALDI-TOF MS analysis confirmed that the oligomer obtained by the depolymerization was a substantially complete cyclic body mainly composed of a dimer. Also, SEC analysis confirmed that the original polymer portion had completely disappeared and had been converted into an oligomer having a molecular weight of Mn = 200 (see FIG. 5).
[0036] 実施例 4 [ポリ(ブチレンアジペート)の連続解重合] Example 4 [Continuous Depolymerization of Poly (butylene adipate)]
実施例 1と同じ加水分解酵素充填カラムを用意し、同様に 40°Cに温度調節した。こ れに、ポリ(ブチレンアジペート)(Mn= 18,000)の 1%トルエン溶液を流速 O.lmL/min で、超臨界二酸化炭素を 15MPa、流速 0.4mL/minで通した。バックプレッシャーレギュ レーターから、分解生成物トルエン溶液と炭酸ガスを別々に回収した。得られたトル ェン溶液からトルエンを減圧留去し、解重合生成物を得た。 The same hydrolytic enzyme packed column as in Example 1 was prepared, and the temperature was similarly adjusted to 40 ° C. To this, a 1% toluene solution of poly (butylene adipate) (Mn = 18,000) was passed at a flow rate of 0.1 mL / min, and supercritical carbon dioxide was passed at 15 MPa and a flow rate of 0.4 mL / min. From the back pressure regulator, a decomposition product toluene solution and carbon dioxide gas were separately collected. From the obtained toluene solution, toluene was distilled off under reduced pressure to obtain a depolymerized product.
得られた解重合生成物の分子構造を1 H NMR分析、 MALDI-TOF MS分析及び
SEC分析により解析した。その結果、 Ή NMR分析及び MALDI-TOF MS分析により、 解重合によって得られたオリゴマーは 2量体を中心とするほぼ完全な環状体であるこ とが確認された。また、 SEC分析により元のポリマー部分は完全に消失し、分子量 Mn = 500のオリゴマーに変換されたことが確認された(図 6参照)。 The molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and Analyzed by SEC analysis. As a result, Ή NMR analysis and MALDI-TOF MS analysis confirmed that the oligomer obtained by the depolymerization was a substantially complete cyclic body mainly composed of a dimer. In addition, SEC analysis confirmed that the original polymer portion had completely disappeared and had been converted into an oligomer having a molecular weight of Mn = 500 (see FIG. 6).
[0037] 実施例 5 [ポリ(L-乳酸- ε -力プロラタトン)共重合体の連続解重合] Example 5 [Continuous Depolymerization of Poly (L-lactic acid-ε-force prolatataton) copolymer]
実施例 1と同じ加水分解酵素充填カラムを用意し、同様に 40°Cに温度調節した。こ れに、ポリ(L-乳酸 ε -力プロラタトン)共重合体(Mn = 80,000、 L_乳酸: ε -カプロラ タトン =4:1)の 1%トルエン溶液を、流速 O.lmL/minで、また、超臨界二酸化炭素を 15MPa、流速 0.4mL/minで通した。バックプレッシャーレギュレーターから、分解生成 物トルエン溶液と炭酸ガスを別々に回収した。得られたトルエン溶液からトルエンを減 圧留去し、解重合生成物を得た。 The same hydrolytic enzyme packed column as in Example 1 was prepared, and the temperature was similarly adjusted to 40 ° C. Then, a 1% toluene solution of a poly (L-lactic acid ε-caprolataton) copolymer (Mn = 80,000, L_lactic acid: ε-caprolataton = 4: 1) was added at a flow rate of O.lmL / min. In addition, supercritical carbon dioxide was passed at a flow rate of 15 MPa and a flow rate of 0.4 mL / min. The toluene solution of decomposition products and carbon dioxide gas were separately collected from the back pressure regulator. From the obtained toluene solution, toluene was distilled off under reduced pressure to obtain a depolymerized product.
得られた解重合生成物の分子構造を1 H NMR分析、 MALDI-TOF MS分析及び SEC分析により解析した。その結果、 Ή NMR分析及び MALDI-TOF MS分析により、 解重合によって得られたオリゴマー部分はほぼ完全な環状体であった。また、 SEC分 析により元のポリマー部分は完全に消失し、分子量 Mn = 700のオリゴマーに変換され たことが確認された(図 7参照)。 The molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis. As a result, according to に よ っ て NMR analysis and MALDI-TOF MS analysis, the oligomer portion obtained by the depolymerization was almost completely cyclic. Also, SEC analysis confirmed that the original polymer portion had completely disappeared and had been converted to an oligomer having a molecular weight of Mn = 700 (see Fig. 7).
[0038] 実施例 6 [ポリ(トリメチレンカーボネート)の連続解重合] Example 6 [Continuous Depolymerization of Poly (trimethylene carbonate)]
実施例 1と同じ加水分解酵素充填カラムを用意し、同様に 40°Cに温度調節した。こ れに、ポリ(トリメチレンカーボネート)(Mn=5,000)の 1%トルエン溶液を、流速 O.lmL/minで、また、超臨界二酸化炭素を 15MPa、流速 0.4mL/minで通した。バック プレッシャーレギュレーターから、分解生成物トルエン溶液と炭酸ガスを別々に回収 した。得られたトルエン溶液からトルエンを減圧留去し、解重合生成物を得た。 The same hydrolytic enzyme packed column as in Example 1 was prepared, and the temperature was similarly adjusted to 40 ° C. To this, a 1% toluene solution of poly (trimethylene carbonate) (Mn = 5,000) was passed at a flow rate of 0.1 mL / min, and supercritical carbon dioxide was passed at a flow rate of 15 MPa and a flow rate of 0.4 mL / min. The toluene solution of decomposition products and carbon dioxide were separately collected from the back pressure regulator. From the resulting toluene solution, toluene was distilled off under reduced pressure to obtain a depolymerized product.
得られた解重合生成物の分子構造を1 H NMR分析、 MALDI-TOF MS分析及び SEC分析により解析した。その結果、 Ή NMR分析及び MALDI-TOF MS分析により、 解重合によって得られたオリゴマー部分はトリメチレンカーボネートモノマーと線状ォ リゴマー同族体であった。また、 SEC分析により元のポリマー部分は完全に消失し、ォ リゴマーに変換されたことが確認された。 The molecular structure of the obtained depolymerized product was analyzed by 1 H NMR analysis, MALDI-TOF MS analysis and SEC analysis. As a result, according to Ή NMR analysis and MALDI-TOF MS analysis, the oligomer portion obtained by the depolymerization was a trimethylene carbonate monomer and a linear oligomer homolog. In addition, SEC analysis confirmed that the original polymer portion had completely disappeared and had been converted to oligomer.
[0039] 比較例 1
実施例 2において、加水分解酵素充填カラムに、超臨界二酸化炭素を流さず、ァタ クチックポリ(RS-3-ヒドロキシ酪酸)のトルエン溶液(lOmg/mL)を流速 0.5mL/minで通 したところ、解重合生成物中に未分解のァタクチックポリ(RS-3-ヒドロキシ酪酸)が残 存することが確認された(図 8参照)。 [0039] Comparative Example 1 In Example 2, a toluene solution (10 mg / mL) of atactic poly (RS-3-hydroxybutyric acid) was passed through the hydrolytic enzyme packed column at a flow rate of 0.5 mL / min without flowing supercritical carbon dioxide. It was confirmed that undecomposed atactic poly (RS-3-hydroxybutyric acid) remained in the depolymerized product (see FIG. 8).
産業上の利用可能性 Industrial applicability
[0040] 本発明の解重合方法によりポリエステル、ポリカーボネート又はポリ乳酸力 再重合 性の環状オリゴマーが良好な生成率で得られ、また、大量の処理が高効率で可能に なるため、前記ポリマーをリサイクルするのに有用な方法である。また、本発明により、 環境受容型で、かつ炭素資源を完全再利用することが可能な、完全循環型の高分 子材料利用システムを構築することができ、本発明の産業上の利用価値は極めて大 きい。 [0040] The depolymerization method of the present invention can provide a polyester, polycarbonate, or polylactic acid capable of producing a repolymerizable cyclic oligomer at a good production rate, and can perform a large amount of treatment with high efficiency. A useful way to do that. Further, according to the present invention, it is possible to construct a completely circulating type polymer material utilization system that is environmentally acceptable and can completely reuse carbon resources. Extremely large.
符号の説明 Explanation of symbols
[0041] 10 超臨界二酸化炭素生成装置 [0041] 10 Supercritical carbon dioxide generator
20 恒温槽 20 constant temperature bath
22 加水分解酵素充填カラム 22 Hydrolysis enzyme packed column
30 ノ ックプレッシャーレギュレーター 30 Knock pressure regulator
40 解重合生成物を分離する手段
40 Means for separating depolymerized products
Claims
[1] 加水分解酵素充填カラムに、超臨界流体とポリエステル、ポリカーボネート又はポリ 乳酸の有機溶媒溶液をともに連続的に通し、加水分解酵素によりポリエステル、ポリ カーボネート又はポリ乳酸を解重合し、加水分解酵素充填カラムから流出する解重 合生成物含有反応混合物から解重合生成物を分離する、ポリエステル、ポリカーボ ネート又はポリ乳酸の連続解重合方法。 [1] The supercritical fluid and an organic solvent solution of polyester, polycarbonate or polylactic acid are continuously passed through the column packed with the hydrolase, and the polyester, polycarbonate or polylactic acid is depolymerized by the hydrolase, and the hydrolase is decomposed. A method for continuously depolymerizing polyester, polycarbonate or polylactic acid, wherein a depolymerized product is separated from a reaction mixture containing a depolymerized product flowing out of a packed column.
[2] 前記超臨界流体が、超臨界二酸化炭素であることを特徴とする請求項 1に記載の ポリエステル、ポリカーボネート又はポリ乳酸の連続解重合方法。 [2] The method for continuous depolymerization of polyester, polycarbonate or polylactic acid according to claim 1, wherein the supercritical fluid is supercritical carbon dioxide.
[3] 前記加水分解酵素が固定ィ匕酵素であることを特徴とする請求項 1又は請求項 2に 記載のポリエステル、ポリカーボネート又はポリ乳酸の連続解重合方法。 [3] The method for continuous depolymerization of polyester, polycarbonate or polylactic acid according to claim 1 or 2, wherein the hydrolase is an immobilization enzyme.
[4] 超臨界流体生成装置、加水分解酵素充填カラム、バックプレッシャーレギユレータ 一、解重合生成物含有反応混合物から解重合生成物を分離する手段、超臨界流体 生成装置により製造された超臨界流体を前記カラムに送液する手段、及びポリエス テル、ポリカーボネート又はポリ乳酸の有機溶媒溶液を前記カラムに送液する手段を 備える、請求項 1に記載の連続解重合方法に用いるための連続解重合装置。 [4] Supercritical fluid generator, hydrolytic enzyme packed column, back pressure regulator 1, means for separating depolymerized product from reaction mixture containing depolymerized product, supercritical fluid produced by supercritical fluid generator The continuous depolymerization for use in the continuous depolymerization method according to claim 1, further comprising: means for sending a fluid to the column, and means for sending an organic solvent solution of polyester, polycarbonate, or polylactic acid to the column. apparatus.
[5] ノ ックプレッシャーレギュレーター力 放出される超臨界流体からのガス化物を超 臨界流体生成装置に戻す手段を更に備える請求項 4に記載の連続解重合装置。
[5] The continuous depolymerization apparatus according to claim 4, further comprising: means for returning a gasified substance from the released supercritical fluid to the supercritical fluid generation device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003316611A JP2005082710A (en) | 2003-09-09 | 2003-09-09 | Method for continuous depolymerization of polyester, polycarbonate or polylactic acid with supercritical fluid and continuous depolymerization apparatus |
JP2003-316611 | 2003-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005026245A1 true WO2005026245A1 (en) | 2005-03-24 |
Family
ID=34308460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/013098 WO2005026245A1 (en) | 2003-09-09 | 2004-09-09 | Method of continuously depolymerizing polyester, polycarbonate, or polylactic acid with supercritical fluid and apparatus for continuous depolymerization |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2005082710A (en) |
WO (1) | WO2005026245A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8524471B2 (en) | 2007-03-19 | 2013-09-03 | Sud-Chemie Ip Gmbh & Co. Kg | Generation of chemical building blocks from plant biomass by selective depolymerization |
WO2014079844A1 (en) * | 2012-11-20 | 2014-05-30 | Carbios | Method for recycling plastic products |
US10287561B2 (en) | 2014-10-21 | 2019-05-14 | Carbios | Polypeptide having a polyester degrading activity and uses thereof |
US10385183B2 (en) | 2014-05-16 | 2019-08-20 | Carbios | Process of recycling mixed PET plastic articles |
US10508269B2 (en) | 2015-03-13 | 2019-12-17 | Carbios | Polypeptide having a polyester degrading activity and uses thereof |
US10626242B2 (en) | 2014-12-19 | 2020-04-21 | Carbios | Plastic compound and preparation process |
US10717996B2 (en) | 2015-12-21 | 2020-07-21 | Carbios | Recombinant yeast cells producing polylactic acid and uses thereof |
US10723848B2 (en) | 2015-06-12 | 2020-07-28 | Carbios | Masterbatch composition comprising a high concentration of biological entities |
US10767026B2 (en) | 2016-05-19 | 2020-09-08 | Carbios | Process for degrading plastic products |
CN115244120A (en) * | 2020-01-23 | 2022-10-25 | 普莱米尔塑料公司 | Method and system for depolymerizing waste plastics |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010254924A (en) * | 2009-04-28 | 2010-11-11 | Nippon Polyurethane Ind Co Ltd | Method of decomposition treating polymethylene polyphenylene polyisocyanate-based polyurea compound |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121098A (en) * | 1984-07-10 | 1986-01-29 | Ajinomoto Co Inc | Preparation of enzymic reaction product |
JP2001178483A (en) * | 1999-12-24 | 2001-07-03 | Dainichiseika Color & Chem Mfg Co Ltd | Method for degrading polylactic acid |
JP2002017385A (en) * | 2000-06-30 | 2002-01-22 | Keio Gijuku | Method for producing dicaprolactone and caprolactone polymer |
JP2002233396A (en) * | 2001-02-07 | 2002-08-20 | Ikeda Shokken Kk | Method for producing sterol fatty acid ester |
JP2003079388A (en) * | 2001-07-05 | 2003-03-18 | Keio Gijuku | Method for depolymerizing polyester or polycarbonate by using super critical fluid and method for producing polyester or polycarbonate |
-
2003
- 2003-09-09 JP JP2003316611A patent/JP2005082710A/en active Pending
-
2004
- 2004-09-09 WO PCT/JP2004/013098 patent/WO2005026245A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121098A (en) * | 1984-07-10 | 1986-01-29 | Ajinomoto Co Inc | Preparation of enzymic reaction product |
JP2001178483A (en) * | 1999-12-24 | 2001-07-03 | Dainichiseika Color & Chem Mfg Co Ltd | Method for degrading polylactic acid |
JP2002017385A (en) * | 2000-06-30 | 2002-01-22 | Keio Gijuku | Method for producing dicaprolactone and caprolactone polymer |
JP2002233396A (en) * | 2001-02-07 | 2002-08-20 | Ikeda Shokken Kk | Method for producing sterol fatty acid ester |
JP2003079388A (en) * | 2001-07-05 | 2003-03-18 | Keio Gijuku | Method for depolymerizing polyester or polycarbonate by using super critical fluid and method for producing polyester or polycarbonate |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8524471B2 (en) | 2007-03-19 | 2013-09-03 | Sud-Chemie Ip Gmbh & Co. Kg | Generation of chemical building blocks from plant biomass by selective depolymerization |
WO2014079844A1 (en) * | 2012-11-20 | 2014-05-30 | Carbios | Method for recycling plastic products |
US10124512B2 (en) | 2012-11-20 | 2018-11-13 | Carbios | Method for recycling plastic products |
EP3441423A1 (en) * | 2012-11-20 | 2019-02-13 | Carbios | Method for recycling plastic products |
US10385183B2 (en) | 2014-05-16 | 2019-08-20 | Carbios | Process of recycling mixed PET plastic articles |
US10287561B2 (en) | 2014-10-21 | 2019-05-14 | Carbios | Polypeptide having a polyester degrading activity and uses thereof |
US10626242B2 (en) | 2014-12-19 | 2020-04-21 | Carbios | Plastic compound and preparation process |
US10508269B2 (en) | 2015-03-13 | 2019-12-17 | Carbios | Polypeptide having a polyester degrading activity and uses thereof |
US10723848B2 (en) | 2015-06-12 | 2020-07-28 | Carbios | Masterbatch composition comprising a high concentration of biological entities |
US11198767B2 (en) | 2015-06-12 | 2021-12-14 | Carbios | Process for preparing a biodegradable plastic composition |
US11802185B2 (en) | 2015-06-12 | 2023-10-31 | Carbios | Masterbatch composition comprising a high concentration of biological entities |
US10717996B2 (en) | 2015-12-21 | 2020-07-21 | Carbios | Recombinant yeast cells producing polylactic acid and uses thereof |
US10767026B2 (en) | 2016-05-19 | 2020-09-08 | Carbios | Process for degrading plastic products |
US11377533B2 (en) | 2016-05-19 | 2022-07-05 | Carbios | Process for degrading plastic products |
CN115244120A (en) * | 2020-01-23 | 2022-10-25 | 普莱米尔塑料公司 | Method and system for depolymerizing waste plastics |
Also Published As
Publication number | Publication date |
---|---|
JP2005082710A (en) | 2005-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feghali et al. | Catalytic chemical recycling of biodegradable polyesters | |
WO2005026245A1 (en) | Method of continuously depolymerizing polyester, polycarbonate, or polylactic acid with supercritical fluid and apparatus for continuous depolymerization | |
WO2004013217A1 (en) | Method of enzymatic depolymerization of polylactic acid and process for producing polylactic acid from depolymerization product | |
JP4171823B2 (en) | Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product | |
CN108250415A (en) | A kind of poly- (gamma-butyrolacton)-b- polylactic-acid block copolymers and preparation method thereof | |
CN113150375A (en) | Method for recycling polylactic acid material under catalysis of zinc catalyst | |
Zhou et al. | Chemical upcycling of poly (lactide) plastic waste to lactate ester, lactide and new poly (lactide) under Mg-catalysis condition | |
Meng et al. | Progresses in synthetic technology development for the production of l-lactide | |
JP2002320499A (en) | Depolymerization method to oligomer consisting essentially of ring compound of polyalkylene alkanoate or poly(3-hydroxyalkanoate), and method for polymerizing the cyclic oligomer | |
CN117603043A (en) | Method for upgrading polyester material into dicarboxylic acid ester and ethylene carbonate | |
US8119763B2 (en) | Production of polyesters in a continuous packed-bed reactor using immobilized enzyme catalysts | |
US20070293591A1 (en) | Depolymerization Method for Polymer Containing Ester Bond in Main Chain and Method for Producing Polymer Containing Ester Bond in Main Chain From Depolymerization Product | |
JP4140804B2 (en) | Method for producing dicaprolactone and caprolactone polymer | |
US20110046308A1 (en) | Triblock copolymer having biodegradable polymer blocks and method of producing the same | |
Faisal et al. | Recycling of poly lactic acid into lactic acid with high temperature and high pressure water | |
CN111777508A (en) | Method for recovering glycollate | |
JPWO2003091444A1 (en) | Method for separating poly-3-hydroxyalkanoic acid | |
JP5696971B2 (en) | Treatment method of biodegradable resin | |
CN109749065A (en) | A kind of macrolide copolymer high-efficiency preparation method of binary catalyst catalysis | |
Anneaux et al. | A novel method for chemical recycling of PLA under mild conditions | |
Teo et al. | Sustainable chemical recycling of plastic waste | |
JPH09249597A (en) | Recovery of monomer from aromatic polyester | |
CN114797971B (en) | Organic base catalyst and method for catalyzing polycaprolactone alcoholysis by using same | |
JP3855359B2 (en) | Method for producing polylactic acid from ammonium lactate | |
Zheng et al. | Sustainable recycling of the biodegradable polyester poly (butylene succinate) via selective catalytic hydrolysis and repolymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |