明 細 書 Specification
可視光活性を有する光触媒体、その原料及びその製造方法 Photocatalyst having visible light activity, raw material thereof and method for producing the same
技術分野 Technical field
[0001] 本発明は、可視光照射下において光触媒活性を有する光触媒体及びその製造方 法に関する。 The present invention relates to a photocatalyst having photocatalytic activity under irradiation with visible light and a method for producing the same.
背景技術 Background art
[0002] 酸化チタン、酸化スズ、酸化亜鉛等の金属酸化物は紫外光を照射すると光励起に より電子や正孔を生じ、強い還元力や酸化カを呈する光触媒体として作用する。この 光触媒体は、有害物質の分解'浄化、脱臭、殺菌等に広く利用されている。 [0002] Metal oxides such as titanium oxide, tin oxide, and zinc oxide generate electrons and holes by photoexcitation when irradiated with ultraviolet light, and act as photocatalysts that exhibit strong reducing power and oxide power. This photocatalyst is widely used for decomposition, purification, deodorization, sterilization, and the like of harmful substances.
[0003] これら紫外光領域において光触媒活性を有する金属酸化物の表面に鉄や銅等の 金属やそれらの酸化物を担持固定することによって、紫外光領域での光触媒活性を 高める技術が開示されている(例えば、特開平 6— 39285号公報、特開平 7— 30383 5号公報、特開平 9-227319号公報、特開平 11-244709号公報、特開 2000-95 976号公報、特開 2000-205103号公報、特開 2003-135974号公報、特開 200 3—190811号公報等)。 [0003] A technique has been disclosed for increasing the photocatalytic activity in the ultraviolet region by supporting and fixing metals such as iron and copper and their oxides on the surface of a metal oxide having photocatalytic activity in the ultraviolet region. (For example, JP-A-6-39285, JP-A-7-303835, JP-A-9-227319, JP-A-11-244709, JP-A-2000-95976, JP-A-2000-95 205103, JP-A-2003-135974, JP-A-2003-190811, etc.).
[0004] 一方、酸化チタン、酸化スズ、酸化亜鉛等の金属酸化物の結晶において、その酸 素の一部を窒素、硫黄、炭素、燐で置換したり、その結晶の格子のすき間に窒素、硫 黄、炭素、燐をドーピングしたり、その多結晶集合体の粒界に窒素、硫黄、炭素、燐 を含有させることによって、紫外光のみならず可視光の照射下においても高い光触 媒活性を呈することが知られてきている (例えば、特開 2000-205103号公報等)。 [0004] On the other hand, in crystals of metal oxides such as titanium oxide, tin oxide, and zinc oxide, a part of the oxygen is replaced by nitrogen, sulfur, carbon, and phosphorus, or nitrogen, High photocatalytic activity not only under ultraviolet light but also under visible light irradiation by doping sulfur, carbon, and phosphorus, and by including nitrogen, sulfur, carbon, and phosphorus in the grain boundaries of the polycrystalline aggregate. (Eg, Japanese Patent Application Laid-Open No. 2000-205103).
[0005] し力、しながら、従来の光触媒体は紫外光領域に比べて可視光領域の吸光度が低く 、紫外光照射下と可視光照射下における光の利用効率を示す指針となる量子効率 比が紫外光 Z可視光 = 5Zl程度であり、可視光領域において十分な反応速度を得 ることができていなかった。従って、これらの光触媒体を家具、壁材、照明器具、電化 製品、浴室部材、洗面台用品、台所用品、使い捨て紙、 自動車内装部材、その他屋 内部材、歯科用材等に使用する場合に十分な反応を得ることができな力 た。 [0005] However, the conventional photocatalyst has a lower absorbance in the visible light region than in the ultraviolet light region, and the quantum efficiency ratio is a guide to the light use efficiency under ultraviolet light irradiation and under visible light irradiation. However, the ultraviolet light Z visible light was about 5Zl, and a sufficient reaction rate could not be obtained in the visible light region. Therefore, when these photocatalysts are used for furniture, wall materials, lighting equipment, appliances, bathroom members, washbasin supplies, kitchenware, disposable paper, automobile interior parts, other indoor parts, dental materials, etc. I couldn't get a reaction.
[0006] また、上記従来技術では、金属酸化物の紫外光領域での光触媒活性を高めること
はでさるが、可視光領域で活性を有する光触媒体の光触媒活性を高めることはでき なかった。また、プラチナ(Pt)等の貴金属を光触媒体に担持する技術では、原料が 高価であるという問題があった。 [0006] Further, in the above-described conventional technology, it is necessary to enhance the photocatalytic activity of a metal oxide in an ultraviolet light region. Despite this, the photocatalytic activity of the photocatalyst having activity in the visible light region could not be increased. In addition, the technique of supporting a noble metal such as platinum (Pt) on a photocatalyst has a problem that the raw material is expensive.
発明の開示 Disclosure of the invention
[0007] 本発明は、窒素、硫黄、炭素、燐のうち少なくとも 1つを含有する金属酸化物の表 面又は内部にバナジウム、マンガン、クロム、鉄、コバルト、銅、イットリウム、ジルコ二 ゥム、ニオブ、モリブデン、ランタノイドのうち少なくとも 1つを酸素原子と結合した状態 、水酸化物の状態又は塩の状態で含有させた可視光照射下において光触媒活性を 呈する光触媒体である。 [0007] The present invention provides a metal oxide containing at least one of nitrogen, sulfur, carbon, and phosphorus on a surface or inside of a metal oxide containing vanadium, manganese, chromium, iron, cobalt, copper, yttrium, zirconium, A photocatalyst that exhibits photocatalytic activity under visible light irradiation, containing at least one of niobium, molybdenum, and a lanthanoid in a state of being bonded to an oxygen atom, in a state of a hydroxide, or in a state of a salt.
[0008] ここで、上記本発明の光触媒体にぉレ、て、前記金属酸化物はチタン、スズ、亜鉛の うち少なくとも 1つの酸化物であることが好適である。 [0008] Here, in the photocatalyst of the present invention, it is preferable that the metal oxide is at least one oxide of titanium, tin, and zinc.
[0009] また、上記本発明の光触媒体において、前記金属酸化物は窒素又は硫黄のうち少 なくとも 1つを含有することが好適である。さらには、その含有量は原子数比で全体の 0.01— 13%以内であることが望ましい。より好ましくは、 0.01%— 2.00%以内の範 囲内である。 [0009] In the photocatalyst of the present invention, the metal oxide preferably contains at least one of nitrogen and sulfur. Further, the content thereof is desirably within 0.01 to 13% of the whole in terms of the atomic number ratio. More preferably, it is within the range of 0.01% to 2.00%.
[0010] また、上記本発明の光触媒体において、大気中において酸化物として安定に存在 し得る最大の原子価よりも低い原子価の状態にあるバナジウム、マンガン、クロム、鉄 [0010] Further, in the photocatalyst of the present invention, vanadium, manganese, chromium, iron, and vanadium having a valence lower than the maximum valence that can stably exist as an oxide in the atmosphere.
、コバルト、銅、イットリウム、ジルコニウム、ニオブ、モリブデン、ランタノイドのうち少な くとも 1つを含むことが好適である。 , Cobalt, copper, yttrium, zirconium, niobium, molybdenum, and lanthanoids.
[0011] また、上記本発明の光触媒体において、バナジウム、マンガン、クロム、鉄、コバルト[0011] In the photocatalyst of the present invention, vanadium, manganese, chromium, iron, cobalt
、銅、イットリウム、ジルコニウム、ニオブ、モリブデン、ランタノイドを 0. 01重量0 /0以上, Copper, yttrium, zirconium, niobium, molybdenum, lanthanide the 0.01 weight 0/0 or more
6. 0重量%以下の範囲で含有することが好適である。 It is preferable to contain it in a range of 6.0% by weight or less.
[0012] また、上記本発明の光触媒体において、鉄及び銅のうち少なくとも 1つを含有し、 X[0012] Further, the photocatalyst of the present invention contains at least one of iron and copper, and X
PSによる 2p殻スペクトルにおいて各々 709eV以上 710eV以下及び 932eV以上 93709 eV or more and 710 eV or less and 932 eV or more in 2p shell spectra by PS 93
3eV以下に最も大きなピークを有することが好適である。 It is preferable to have the largest peak below 3 eV.
[0013] また、上記本発明の光触媒体において、 Cu〇及び Fe〇のうち少なくとも 1つを含 The photocatalyst of the present invention contains at least one of Cu 上 記 and Fe〇.
2 2
むことが好適である。 Is preferred.
[0014] また、上記本発明の光触媒体において、鉄又は銅の硝酸塩、炭酸塩、硫酸塩、リン
酸塩、酢酸塩及び塩化物のうち少なくとも 1つを含有することが好適である。 Further, in the photocatalyst of the present invention, the iron or copper nitrate, carbonate, sulfate, phosphorus It preferably contains at least one of acid salts, acetates and chlorides.
[0015] また、上記本発明の光触媒体において、一次粒子径が 5nm以上 50nm以下である ことが好適である。 [0015] In the photocatalyst of the present invention, it is preferable that the primary particle diameter is 5 nm or more and 50 nm or less.
[0016] 本発明の別の形態は、窒素、硫黄、炭素、燐のうち少なくとも 1つを含有する金属酸 化物と、バナジウム、マンガン、クロム、鉄、コバルト、銅、イットリウム、ジルコニウム、 ニオブ、モリブデン、ランタノイドのうち少なくとも 1つの塩或いはイオンと、を含む光触 媒体原料である。 [0016] Another embodiment of the present invention relates to a metal oxide containing at least one of nitrogen, sulfur, carbon, and phosphorus, and vanadium, manganese, chromium, iron, cobalt, copper, yttrium, zirconium, niobium, and molybdenum. And at least one salt or ion of a lanthanoid.
[0017] 本発明の別の形態は、金属酸化物又はその前駆体と、アンモニゥム塩又はアンモ ユア水と、バナジウム、マンガン、クロム、鉄、コバルト、銅、イットリウム、ジルコニウム、 ニオブ、モリブデン、ランタノイドのうち少なくとも 1つの塩或いはイオンと、を含む光触 媒体原料である。 Another embodiment of the present invention relates to a method for preparing a metal oxide or a precursor thereof, an ammonium salt or aqueous ammonia, vanadium, manganese, chromium, iron, cobalt, copper, yttrium, zirconium, niobium, molybdenum, and a lanthanoid. It is a photocatalyst raw material containing at least one salt or ion.
[0018] 本発明の別の形態は、金属酸化物又はその前駆体と、尿素、チォ尿素、二酸化尿 素及び二酸化チォ尿素のうち少なくとも 1つと、バナジウム、マンガン、クロム、鉄、コ バルト、銅、イットリウム、ジルコニウム、ニオブ、モリブデン、ランタノイドのうち少なくと も 1つの塩或いはイオンと、を含む光触媒体原料である。 Another embodiment of the present invention relates to a metal oxide or a precursor thereof, at least one of urea, thiourea, urine dioxide, and thiourea dioxide, and vanadium, manganese, chromium, iron, cobalt, and copper. A photocatalyst raw material containing at least one salt or ion of, yttrium, zirconium, niobium, molybdenum, and lanthanoid.
[0019] ここで、上記本発明の光触媒体原料において、前記金属酸化物は、酸化チタンで あることが好適である。 Here, in the photocatalyst raw material of the present invention, the metal oxide is preferably titanium oxide.
[0020] また、上記本発明の光触媒体原料にぉレ、て、前記金属酸化物の前駆体は、硫酸 チタニル、硫酸チタン、含水酸化チタン、水酸化チタン、チタンアルコキシド、メタチタ ン酸、オルソチタン酸、水和酸化チタン、塩化チタン及び有機チタン化合物のうち少 なくとも 1つを含むことが好適である。 [0020] Further, in the above photocatalyst raw material of the present invention, the precursor of the metal oxide is titanyl sulfate, titanium sulfate, titanium oxide hydroxide, titanium hydroxide, titanium alkoxide, metatitanic acid, orthotitanium. It preferably contains at least one of an acid, hydrated titanium oxide, titanium chloride and an organic titanium compound.
[0021] 本発明の別の形態は、金属酸化物又はその前駆体に窒素、硫黄、炭素及び燐のう ち少なくとも 1つを添加する第 1の工程と、前記金属酸化物又は前記前駆体の表面 又は内部にバナジウム、マンガン、クロム、鉄、コバルト、銅、イットリウム、ジルコユウ ム、ニオブ、モリブデン、ランタノイドのうち少なくとも 1つを酸素原子と結合した状態、 水酸化物の状態又は塩の状態で含有させる第 2の工程と、を含む可視光照射下に おいて光触媒活性を有する光触媒体の製造方法である。 [0021] Another embodiment of the present invention provides a first step of adding at least one of nitrogen, sulfur, carbon, and phosphorus to a metal oxide or a precursor thereof, and a step of adding the metal oxide or the precursor thereof. Contains at least one of vanadium, manganese, chromium, iron, cobalt, copper, yttrium, zirconium, niobium, molybdenum, and lanthanoid on the surface or in the state of being bonded to an oxygen atom, hydroxide or salt And a second step of producing a photocatalyst having photocatalytic activity under visible light irradiation.
[0022] 本発明の別の形態は、表面又は内部にバナジウム、マンガン、クロム、鉄、コバルト
、銅、イットリウム、ジルコニウム、ニオブ、モリブデン、ランタノイドのうち少なくとも 1つ を酸素原子と結合した状態、水酸化物の状態又は塩の状態で含有した金属酸化物 又はその前駆体に窒素、硫黄、炭素及び燐のうち少なくとも 1つを添加する可視光照 射下において光触媒活性を有する光触媒体の製造方法である。 [0022] Another embodiment of the present invention provides vanadium, manganese, chromium, iron, cobalt Metal, copper, yttrium, zirconium, niobium, molybdenum, and lanthanoids in the form of a metal oxide or hydroxide containing at least one of them bonded to an oxygen atom, hydroxide, or salt; And a method for producing a photocatalyst having photocatalytic activity under visible light irradiation to which at least one of phosphorus and phosphorus is added.
[0023] 本発明の別の形態は、窒素、硫黄、炭素及び燐のうち少なくとも 1つが添加された 金属酸化物又はその前駆体の表面又は内部にバナジウム、マンガン、クロム、鉄、コ バルト、銅、イットリウム、ジルコニウム、ニオブ、モリブデン、ランタノイドのうち少なくと も 1つを酸素原子と結合した状態、水酸化物の状態又は塩の状態で含有させる可視 光照射下において光触媒活性を有する光触媒体の製造方法である。 [0023] Another embodiment of the present invention provides vanadium, manganese, chromium, iron, cobalt, copper on the surface or inside of a metal oxide or a precursor thereof to which at least one of nitrogen, sulfur, carbon, and phosphorus is added. Manufacture of a photocatalyst having photocatalytic activity under visible light irradiation in which at least one of yttrium, zirconium, niobium, molybdenum, and lanthanoid is contained in a state of being bonded to an oxygen atom, in a hydroxide state or in a salt state. Is the way.
[0024] 本発明の別の形態は、窒素、硫黄、炭素、燐のうち少なくとも 1つを含有する金属酸 化物と、バナジウム、マンガン、クロム、鉄、コバルト、銅、イットリウム、ジルコニウム、 ニオブ、モリブデン、ランタノイドのうち少なくとも 1つの塩と、を混合する第 1の工程と 、その混合物を 80°C以上 600°C以下の温度で加熱する第 2の工程と、を含む可視 光照射下において光触媒活性を有する光触媒体の製造方法である。 [0024] Another embodiment of the present invention relates to a metal oxide containing at least one of nitrogen, sulfur, carbon, and phosphorus, and vanadium, manganese, chromium, iron, cobalt, copper, yttrium, zirconium, niobium, and molybdenum. A first step of mixing at least one salt of a lanthanoid, and a second step of heating the mixture at a temperature of 80 ° C. or more and 600 ° C. or less under visible light irradiation. This is a method for producing a photocatalyst having:
[0025] 本発明の別の形態は、アンモニアガスを含む雰囲気下において金属酸化物又は その前駆体を加熱する第 1の工程と、前記第 1の工程において得られた生成物と、バ ナジゥム、マンガン、クロム、鉄、コバルト、銅、イットリウム、ジルコニウム、ニオブ、モリ ブデン、ランタノイドのうち少なくとも 1つの塩と、を混合する第 2の工程と、前記第 2の 工程で得られた混合物を 80°C以上 600°C以下の温度で加熱する第 3の工程と、を 含む可視光照射下において光触媒活性を有する光触媒体の製造方法である。 [0025] Another embodiment of the present invention provides a first step of heating a metal oxide or a precursor thereof in an atmosphere containing ammonia gas, a product obtained in the first step, vanadium, A second step of mixing at least one of manganese, chromium, iron, cobalt, copper, yttrium, zirconium, niobium, molybdenum, and a lanthanoid; and mixing the mixture obtained in the second step with 80 °. A method for producing a photocatalyst having photocatalytic activity under irradiation with visible light, comprising: a third step of heating at a temperature of C to 600 ° C.
[0026] 本発明の別の形態は、金属酸化物又はその前駆体と、尿素、チォ尿素、二酸化尿 素、二酸化チォ尿素、メラミン、グァニジン、シァヌル酸、ビウレット、ゥラシルやその他 アミドゃイミドのうち少なくとも 1つと、の混合物を加熱する第 1の工程と、前記第 1のェ 程で得られた生成物と、バナジウム、マンガン、クロム、鉄、コバルト、銅、イットリウム、 ジルコニウム、ニオブ、モリブデン、ランタノイドのうち少なくとも 1つの塩と、を混合す る第 2の工程と、前記第 2の工程で得られた混合物を 80°C以上 600°C以下の温度で 加熱する第 3の工程と、を含む可視光照射下において光触媒活性を有する光触媒 体の製造方法である。
[0027] ここで、上記本発明において、前記金属酸化物の前駆体は、硫酸チタニル、硫酸 チタン、含水酸化チタン、水酸化チタン、チタンアルコキシド、メタチタン酸、オルソチ タン酸、水和酸化チタン、塩化チタン及び有機チタン化合物のうち少なくとも 1つであ ることが好適である。 [0026] Another embodiment of the present invention relates to a method for preparing a metal oxide or a precursor thereof, which includes urea, thiourea, urine dioxide, thiourea dioxide, melamine, guanidine, cyanuric acid, biuret, peracyl, and other amide / imide. A first step of heating a mixture of at least one of the above, and the product obtained in the first step, and vanadium, manganese, chromium, iron, cobalt, copper, yttrium, zirconium, niobium, molybdenum, a lanthanoid. And a third step of heating the mixture obtained in the second step at a temperature of not less than 80 ° C. and not more than 600 ° C. This is a method for producing a photocatalyst having photocatalytic activity under irradiation with visible light. Here, in the present invention, the precursor of the metal oxide is titanyl sulfate, titanium sulfate, hydrous titanium oxide, titanium hydroxide, titanium alkoxide, metatitanic acid, orthotitanic acid, hydrated titanium oxide, chloride It is preferable that at least one of titanium and an organic titanium compound is used.
[0028] 本発明の別の形態は、金属酸化物の前駆体と、非金属の硫化物又は SH基を有す る有機硫黄化合物と、を混合する第 1の工程と、酸素を含む雰囲気下において前記 第 1の工程において得られた生成物を加熱する第 2の工程と、前記第 2の工程で得ら れた生成物と、バナジウム、マンガン、クロム、鉄、コバルト、銅、イットリウム、ジルコ二 ゥム、ニオブ、モリブデン、ランタノイドのうち少なくとも 1つの塩と、を混合する第 3の 工程と、前記第 3の工程で得られた混合物を 80°C以上 600°C以下の温度で加熱す る第 4の工程と、を含む可視光照射下において光触媒活性を有する光触媒体の製 造方法である。 [0028] Another embodiment of the present invention provides a first step of mixing a metal oxide precursor and a nonmetal sulfide or an organic sulfur compound having an SH group; In the second step, the product obtained in the first step is heated, and the product obtained in the second step is mixed with vanadium, manganese, chromium, iron, cobalt, copper, yttrium, and zirconium. A third step of mixing at least one of dium, niobium, molybdenum, and a lanthanoid; and heating the mixture obtained in the third step at a temperature of 80 ° C to 600 ° C. And a fourth step of producing a photocatalyst having photocatalytic activity under visible light irradiation.
[0029] ここで、上記本発明において、前記金属酸化物の前駆体は、金属の有機化合物、 ハロゲン化物及びォキシハロゲン化物のうち少なくとも 1つを含むことが好適である。 Here, in the present invention, it is preferable that the metal oxide precursor contains at least one of a metal organic compound, a halide, and an oxyhalide.
[0030] さらに、上記本発明において、前記金属酸化物は、酸化チタンであることが好適で ある。 Further, in the present invention, it is preferable that the metal oxide is titanium oxide.
図面の簡単な説明 Brief Description of Drawings
[0031] [図 1]本発明の実施の形態における光触媒体の製造方法のフローチャートを示す図 である。 FIG. 1 is a view showing a flowchart of a method for producing a photocatalyst according to an embodiment of the present invention.
[図 2]実施例 1で得られた光触媒体の XPS測定の結果を示す図である。 FIG. 2 is a view showing a result of XPS measurement of the photocatalyst obtained in Example 1.
[図 3]実施例 2で得られた光触媒体の XPS測定の結果を示す図である。 FIG. 3 is a view showing a result of XPS measurement of the photocatalyst obtained in Example 2.
[図 4]可視光照射によるァセトアルデヒド濃度の減少を示すグラフである。 FIG. 4 is a graph showing a decrease in the concentration of acetoaldehyde due to irradiation with visible light.
[図 5]可視光照射による二酸化炭素濃度の増加を示すグラフである。 FIG. 5 is a graph showing an increase in carbon dioxide concentration due to irradiation with visible light.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 本発明の実施の形態について、図を参照して説明を行う。図 1に、本実施の形態に おける可視光照射下において光触媒活性を有する光触媒体の製造プロセスのフロ 一チャートを示す。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a flowchart of a process for producing a photocatalyst having photocatalytic activity under irradiation with visible light in the present embodiment.
[0033] ステップ S10では、従来と同様に可視光応答型の金属酸化物を生成する。金属酸
化物は、酸化チタン (Ti一 0)、酸化スズ(Sn— 0)、酸化亜鉛 (Zn—〇)とすることがで きる。このとき、これらの金属酸化物に窒素 (N)、硫黄 (S)、炭素 (C)、燐 (P)のうち少 なくとも 1つを含有させることによって可視光照射下において光触媒活性を呈する金 属酸化物とすることができる。 In step S10, a visible light responsive metal oxide is generated as in the conventional case. Metal acid The oxides can be titanium oxide (Ti-10), tin oxide (Sn-0), and zinc oxide (Zn-〇). At this time, by adding at least one of nitrogen (N), sulfur (S), carbon (C), and phosphorus (P) to these metal oxides, a metal exhibiting photocatalytic activity under visible light irradiation. It can be a group oxide.
[0034] このとき、窒素、硫黄、炭素、燐は、金属酸化物の結晶における酸素原子と置換さ れる状態、金属酸化物の結晶の格子のすき間にドーピングされた状態及び金属酸 化物の結晶の粒界にドーピングされた状態のすくなくとも 1つの状態を含むことによつ て可視光照射下において光触媒活性を呈することができると考えられる。また、上記 窒素、硫黄、炭素、燐が酸素原子位置を置換した場合、これらがさらに水素原子また は酸素原子と結合されている場合も含まれる。すなわち、窒素 (N)を例に挙げて説 明すると、 N_H、 N— Oの形態をとり Nが酸素原子位置を置換していても良い。 [0034] At this time, nitrogen, sulfur, carbon, and phosphorus are substituted with oxygen atoms in the crystal of the metal oxide, doped with gaps in the lattice of the crystal of the metal oxide, and in the crystal of the metal oxide. It is considered that the inclusion of at least one of the states in which the grain boundaries are doped makes it possible to exhibit photocatalytic activity under visible light irradiation. The case where the above-mentioned nitrogen, sulfur, carbon and phosphorus substitute oxygen atoms, and the case where these are further bonded to a hydrogen atom or an oxygen atom are also included. That is, taking nitrogen (N) as an example, N-H and N-O may be used, and N may substitute for an oxygen atom position.
[0035] 特に、金属酸化物が酸化チタンである場合には、アナターゼ型、ルチル型、ブルツ カイト型及びアモルファスのうち少なくとも 1つの構造を有することが好適である。特に 、 X線回折による測定にぉレ、てアナターゼ型又はルチル型を示す際には可視光照 射下において高い光触媒活性を呈する。 In particular, when the metal oxide is titanium oxide, it preferably has at least one of anatase, rutile, wurtzite, and amorphous structures. In particular, when it shows an anatase type or a rutile type as measured by X-ray diffraction, it exhibits high photocatalytic activity under visible light irradiation.
[0036] また、窒素を含有させた酸化チタンの場合、 X線光電子分光法 (XPS)による測定 スペクトルにおいて 400eV付近にピークが見られるときに可視光照射下において高 い光触媒活性を呈する。特に、 396eV— 397eV付近においてピークが見られること が好ましい。このとき、酸化チタンのチタン原子と含有される窒素原子とが化学的な 結合を有していると考えられる。例えば、酸素原子のサイトの一部が窒素原子によつ て置換された構造を有してレ、ると考えられる。 [0036] Titanium oxide containing nitrogen exhibits high photocatalytic activity under visible light irradiation when a peak is observed around 400 eV in a spectrum measured by X-ray photoelectron spectroscopy (XPS). In particular, it is preferable that a peak is observed around 396 eV to 397 eV. At this time, it is considered that the titanium atom of the titanium oxide and the contained nitrogen atom have a chemical bond. For example, it is considered that a site of an oxygen atom has a structure in which a part of the site is replaced by a nitrogen atom.
[0037] 金属酸化物は、金属酸化物又はその前駆体と窒素化合物とを攪拌混合しながら加 熱することによって得ること力 Sできる。ここでも、金属酸化物として酸化チタン、酸化ス ズ又は酸化亜鉛を用いることができる。金属酸化物の前駆体としては、例えば、硫酸 チタニル、硫酸チタン、塩化チタン、有機チタン化合物等のチタン化合物、硫酸スズ 、塩化スズ等のスズィヒ合物、又は、硫酸亜鉛、塩化亜鉛等の亜鉛化合物を用いるこ とができる。また、窒素化合物としては、尿素、チォ尿素、二酸化尿素、二酸化チォ 尿素、メラミン、グァニジン、シァヌル酸、ビウレット、ゥラシノレを用いることができる。こ
れらの金属酸化物の前駆体及び窒素化合物を用いた場合、加熱は 200°C— 500°C の温度範囲で行うことが好適である。また、加熱処理後、硫酸、塩酸、硝酸など酸や 水酸化ナトリウム、アンモニア水などのアルカリや高温水蒸気を用いて表面の反応残 留物を洗浄すると、さらに高い活性が得られる場合があるため必要に応じて処理する と良い。 [0037] The metal oxide can be obtained by heating the metal oxide or its precursor and the nitrogen compound while stirring and mixing. Here, titanium oxide, tin oxide, or zinc oxide can be used as the metal oxide. Examples of the precursor of the metal oxide include titanium compounds such as titanyl sulfate, titanium sulfate, titanium chloride, and organic titanium compounds; tin sulfate compounds such as tin sulfate and tin chloride; or zinc compounds such as zinc sulfate and zinc chloride. Can be used. As the nitrogen compound, urea, thiourea, urea dioxide, thiourea dioxide, melamine, guanidine, cyanuric acid, biuret, and perasinole can be used. This When a precursor of these metal oxides and a nitrogen compound are used, the heating is preferably performed in a temperature range of 200 ° C to 500 ° C. In addition, if the reaction residue on the surface is washed with an acid such as sulfuric acid, hydrochloric acid, or nitric acid, or an alkali such as sodium hydroxide or ammonia water or high-temperature steam after the heat treatment, higher activity may be obtained in some cases. It is better to process according to.
[0038] なお、加熱は、ステップ S14において金属塩の水溶液と混合及び攪拌したスラリに 対して行っても良い。 [0038] The heating may be performed on the slurry mixed and stirred with the aqueous solution of the metal salt in step S14.
[0039] また、金属の有機化合物、ハロゲン化物又はォキシハロゲン化物を溶媒に溶かし 込み、有機硫黄化合物を加えて前駆体を得て、酸素を含む雰囲気下でその前駆体 を加熱することによって金属酸化物を得ることができる。 Further, a metal organic compound, a halide or an oxyhalide is dissolved in a solvent, an organic sulfur compound is added to obtain a precursor, and the precursor is heated in an atmosphere containing oxygen to thereby form a metal oxide. Can be obtained.
[0040] ここで、金属の有機化合物としては、金属のアルコキシドゃァセチルァセトネート等 を用いることができる。例えば、チタンの場合、有機化合物としてテトライソプロポキシ チタンを用いることができる。その他に、チタニウムブトキシド、テトライソプロピルチタ ネート、テトラノルマルブチルチタネート、ブチルチタネート、テトラオクチルチタネート 、チタンキレート、チタンァセチノレアセトネート、チタンオタチレングリコレート、チタン テトラァセチルァセトナート、チタンェチルァセトアセテート、チタンァシレート、ポリヒド ロキシチタンステアレート、チタンラタテート、チタントリエタノールアミネートテトラー i一 プロポキシチタニウム、ジ _i_プロポキシ 'ビス(ェチノレアセトアセテート)チタニウム、 ジ _i_プロボキシ.ビス(ァセチノレアセテート)チタニウム、ジ _i_プロボキシ.ビス(ァセ チルアセトン)チタニウムが挙げられる。 Here, as the metal organic compound, a metal alkoxide acetyl acetonate or the like can be used. For example, in the case of titanium, tetraisopropoxy titanium can be used as the organic compound. In addition, titanium butoxide, tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate, tetraoctyl titanate, titanium chelate, titanium acetinoleacetonate, titanium octaylene glycolate, titanium tetraacetyl acetate toner, titanium ethyl Acetate acetate, titanium acylate, polyhydroxytitanium stearate, titanium ratate, titanium triethanolaminate tetra i-propoxytitanium, di_i_propoxy 'bis (ethynoleacetoacetate) titanium, di_i_propoxy Bis (acetinoleate acetate) titanium; di_i_propoxy.bis (acetylacetone) titanium.
[0041] また、硫黄含有化合物としては、非金属の硫化物又は SH基を有する有機硫黄化 合物を用いることができる。非金属の硫化物は、硫黄と硫黄よりも陽性の非金属元素 との化合物であることが好ましい。例えば、硫化水素(H S)や二硫化炭素(CS )とす As the sulfur-containing compound, a nonmetallic sulfide or an organic sulfur compound having an SH group can be used. The nonmetal sulfide is preferably a compound of sulfur and a nonmetal element that is more positive than sulfur. For example, hydrogen sulfide (HS) or carbon disulfide (CS)
2 2 ること力 Sできる。特に、反応性がよい硫化水素を用いることが好適である。 SH基を有 する有機硫黄化合物としては、チオール類 (R - SH : Rはアルキル基等の有機基。以 下同じ)、ジチォカルボン酸類 (R-CSSH)を用いることが好適である。また、これらの 有機硫黄化合物は SH以外の官能基、例えば、アミノ基等を有していても良い。 2 2 Power S In particular, it is preferable to use hydrogen sulfide having good reactivity. As the organic sulfur compound having an SH group, thiols (R-SH: R is an organic group such as an alkyl group; the same applies hereinafter) and dithiocarboxylic acids (R-CSSH) are preferably used. These organic sulfur compounds may have a functional group other than SH, for example, an amino group.
[0042] また、溶媒は、エタノールやメタノールのようなプロトン性溶媒ではない非プロトン性
溶媒を用いることが好ましレ、。例えば、ァセトニトリルゃジメチルホルムアミドを用いる ことが好ましぐ特にァセトニトリルを用いることが好ましい。これは、硫化水素の H+が 溶媒分子に容易に付着し、金属有機化合物 (例えば、テトライソプロポキシチタン)と の反応性が高い HS—を効率的に生成できるためである。また、溶媒は一種類に限定 されるものではなぐ複数の溶媒を混合したものを用いても良い。例えば、ベンゼン等 の非極性溶媒とァセトニトリルの混合物を用いることができる。 [0042] The solvent is an aprotic solvent that is not a protic solvent such as ethanol or methanol. It is preferable to use a solvent. For example, it is preferable to use acetonitrile-dimethylformamide, and particularly preferable to use acetonitrile. This is because H + of hydrogen sulfide easily attaches to the solvent molecules, and HS— having high reactivity with metal organic compounds (eg, tetraisopropoxytitanium) can be efficiently produced. The solvent is not limited to one type, and a mixture of a plurality of solvents may be used. For example, a mixture of a non-polar solvent such as benzene and acetonitrile can be used.
[0043] また、光触媒活性を発現させるためには金属酸化物を結晶化させる必要があり、少 なくとも 300°C以上の温度範囲で前駆体を焼成することが好ましい。一方、高温にな ると金属酸化物から硫黄が抜けやすくなるため、 700°C以下の温度範囲で焼成する ことが好ましい。前駆体の焼成は、酸素を含む雰囲気であれば良ぐ例えば、乾燥空 気中や湿潤空気中で加熱を行えば良い。湿潤空気中では水(H O)が残存有機物 [0043] Further, in order to exhibit photocatalytic activity, it is necessary to crystallize the metal oxide, and it is preferable to calcine the precursor in a temperature range of at least 300 ° C. On the other hand, when the temperature becomes high, sulfur is easily released from the metal oxide. Therefore, the firing is preferably performed at a temperature of 700 ° C. or less. The precursor may be fired in an atmosphere containing oxygen, for example, by heating in dry air or humid air. Water (H 2 O) remains organic matter in humid air
2 2
の除去を促進するため、乾燥空気中よりも低温で金属酸化物が結晶化する。以上の こと力ら、乾燥空気中では 450°C以上 550°C以下の温度範囲で焼成することが好ま しぐ湿潤空気中では 350°C以上 500°C以下の温度範囲で焼成することが好ましレ、 The metal oxide crystallizes at a lower temperature than in the dry air to promote the removal of the metal oxide. From the above, it is preferable to fire in a temperature range of 450 ° C to 550 ° C in dry air, and it is preferable to fire in a temperature range of 350 ° C to 500 ° C in wet air. Masuri,
[0044] さらに、酸化チタン、酸化スズ又は酸化亜鉛に窒素ガスをキャリアガスとして硫黄化 合物を溶かした溶媒中を通して生成された混合ガスを供給し、室温から所定の到達 処理温度まで昇温加熱を行うことによって金属酸化物を得ることもできる。このとき、 硫黄化合物としては、二硫化炭素(CS )や硫化水素(H S)を用レ、ること力 Sできる。ま Further, a mixed gas generated by passing a titanium compound, a tin oxide or a zinc oxide through a solvent in which a sulfur compound is dissolved using a nitrogen gas as a carrier gas is supplied, and the temperature is raised from room temperature to a predetermined processing temperature. By performing the above, a metal oxide can also be obtained. At this time, carbon disulfide (CS) or hydrogen sulfide (HS) can be used as the sulfur compound. Ma
2 2 twenty two
た、所定の到達処理温度は、 400°C以下に設定することが好適である。特に、 100°C 以上 300°C以下とすることが好適である。 Further, it is preferable that the predetermined reaching processing temperature is set to 400 ° C. or lower. In particular, it is preferable that the temperature be 100 ° C or more and 300 ° C or less.
[0045] またその他の窒素含有酸化チタンの合成例として、尿素とチタンテトライソプロポキ シドをエタノール中で混合した後乾燥した前駆体を 400_700°Cの範囲において酸 化雰囲気中で焼成する方法がある。処理温度は、 450_600°Cの範囲がさらに好ま しい。また、尿素の代わりにチォ尿素、二酸化チォ尿素を用いてもよぐまた溶媒に ついても、イソプロピルアルコールなどの各種アルコールを使用してもよい。 Another example of the synthesis of nitrogen-containing titanium oxide is a method in which urea and titanium tetraisopropoxide are mixed in ethanol, and then the dried precursor is calcined in an oxidizing atmosphere at a temperature in the range of 400 to 700 ° C. . The processing temperature is more preferably in the range of 450 to 600 ° C. In addition, thiourea or thiourea dioxide may be used instead of urea, and various alcohols such as isopropyl alcohol may be used as the solvent.
[0046] また、炭化チタンを酸化雰囲気中において加熱処理することにより、炭素を含有す る酸化チタンを得ることができる。このときの熱処理温度は、 300°Cから 700°Cの範囲
が好ましい。さらには、 450°Cから 600°Cの範囲内がより好ましレ、。また、酸化チタン、 酸化錫、酸化亜鉛あるいはこれらの前駆体を反応容器に入れ、真空度を大気圧より 低くした状態でメタンなど炭素含有ガスを封入して電磁波を照射することによって、炭 素を含有する金属酸化物を製作できる。このときの圧力としては、 0. l_10Torrの範 囲が好ましレ、。より好ましくは、 0. 5_5Torrの範囲がよレ、。また電磁波の周波数とし ては、たとえば 2. 45GHzを使用すると取り扱いが比較的容易である。また反応容器 内には、水素やアンモニアガスなどの還元性のガスを同時に封入すると、この割合に よって製作時間が調整できる。 [0046] By subjecting titanium carbide to heat treatment in an oxidizing atmosphere, carbon-containing titanium oxide can be obtained. The heat treatment temperature at this time ranges from 300 ° C to 700 ° C Is preferred. Furthermore, the range of 450 ° C to 600 ° C is more preferable. In addition, titanium oxide, tin oxide, zinc oxide or their precursors are placed in a reaction vessel, and a carbon-containing gas such as methane is sealed in a state where the degree of vacuum is lower than atmospheric pressure to irradiate electromagnetic waves to irradiate carbon. Metal oxide containing can be manufactured. The pressure at this time is preferably in the range of 0.1 to 10 Torr. More preferably, the range of 0.5 to 5 Torr is preferable. If the electromagnetic wave frequency is set to, for example, 2.45 GHz, it is relatively easy to handle. If a reducing gas such as hydrogen or ammonia gas is simultaneously enclosed in the reaction vessel, the production time can be adjusted by this ratio.
[0047] また、燐化合物ガスを含む雰囲気で酸化チタン、酸化錫、酸化亜鉛あるいはこれら の前駆体を熱処理する事により、 Pを添加した酸化物が作製できる。 [0047] By subjecting titanium oxide, tin oxide, zinc oxide or a precursor thereof to a heat treatment in an atmosphere containing a phosphorus compound gas, an oxide to which P is added can be produced.
[0048] これらの方法によって生成された金属酸化物をイオン交換水等の純度が高い溶媒 に溶かす。このとき、適切な粘度を得るために固形分濃度を 10%程度とすることが好 ましい。機械式分散機等を用いてこの溶液を分散させることによって沈降性の低いス ラリとする。 [0048] The metal oxide produced by these methods is dissolved in a highly pure solvent such as ion-exchanged water. At this time, it is preferable to set the solid concentration to about 10% in order to obtain an appropriate viscosity. By dispersing this solution using a mechanical disperser or the like, a slurry with low sedimentation is obtained.
[0049] このとき、スラリに対してポリアクリル酸、オノレソリン酸、ピロリン酸、へキサメタリン酸 のうち少なくとも 1つを分散剤として添カ卩することが好適である。また、これらの酸のァ ルカリ塩、オルソケィ酸ナトリウム、メタケイ酸ナトリウム等の分散剤を用いても良い。 At this time, it is preferable that at least one of polyacrylic acid, onoresolic acid, pyrophosphoric acid, and hexametaphosphoric acid is added to the slurry as a dispersant. In addition, dispersants such as alkali salts of these acids, sodium orthosilicate and sodium metasilicate may be used.
[0050] ステップ S 12では、所定の金属塩の溶液を生成する。金属塩に含まれる金属は、バ ナジゥム (V)、マンガン (Mn)、クロム (Cr)、鉄(Fe)、コバルト (Co)、銅 (Cu)、イット リウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ランタノイドとすること ができる。金属塩は、これらの金属の硝酸塩、硫酸塩、炭酸塩、リン酸塩、酢酸塩又 は塩ィ匕物とすることによって同様の作用を得ることができる。これらの金属塩のうち少 なくとも 1つをイオン交換水等の純度の高い溶媒に溶力、して水溶液を生成する。この とき、これらの金属塩を複数混合して用いても良い。 [0050] In step S12, a solution of a predetermined metal salt is generated. Metals contained in metal salts include vanadium (V), manganese (Mn), chromium (Cr), iron (Fe), cobalt (Co), copper (Cu), yttrium (Y), zirconium (Zr), Niobium (Nb), molybdenum (Mo), and lanthanoids can be used. The same effect can be obtained by using metal salts such as nitrates, sulfates, carbonates, phosphates, acetates or chlorides of these metals. At least one of these metal salts is dissolved in a highly pure solvent such as ion-exchanged water to produce an aqueous solution. At this time, a plurality of these metal salts may be mixed and used.
[0051] ステップ S14では、ステップ S10で生成した金属酸化物含有のスラリとステップ S12 で生成した金属塩の水溶液とを混合及び攪拌する。このステップで生成されたスラリ が本実施の形態における光触媒体の原料となる。 In step S14, the slurry containing the metal oxide generated in step S10 and the aqueous solution of the metal salt generated in step S12 are mixed and stirred. The slurry generated in this step is a raw material of the photocatalyst in the present embodiment.
[0052] ステップ S16では、ステップ S14で生成した混合物を乾燥させた後に焼成する。乾
燥は、大気中において 100°C程度で行うことが好適である。乾燥を終えると乳鉢で粉 状に粉碎した後に焼成を行う。焼成は、大気中で 80°C以上 600°C以下の温度範囲 で行うことが好適である。特に、 150°C以上 450°C以下の温度範囲で焼成することが 好適であり、 250°C以上 350°C以下の温度範囲で焼成することによって特に高い光 触媒活性を呈する。これは、低温であれば原料の不要成分が残存し、また高温であ ればベースとなる粉末中の窒素や硫黄が抜け出してしまうからである。 In step S16, the mixture generated in step S14 is dried and then fired. Dry Drying is preferably performed at about 100 ° C. in the atmosphere. After drying, pulverize in a mortar and then bake. The firing is preferably performed in the temperature range of 80 ° C or higher and 600 ° C or lower in the atmosphere. In particular, firing at a temperature in the range of 150 ° C to 450 ° C is preferred, and firing at a temperature in the range of 250 ° C to 350 ° C exhibits particularly high photocatalytic activity. This is because if the temperature is low, unnecessary components of the raw material remain, and if the temperature is high, nitrogen and sulfur in the base powder escape.
[0053] また、得られた光触媒体の幾つかにっレ、て X線回折測定を行った。 X線回折測定 は、 Cu-K a線を用いて行った。その回折線からその Cu_K a線(波長 λ nm)を用 いて測定した回折線の反値幅 /3 (ラジアン)とピーク位置 2 Θ (ラジアン)から以下のシ ヱラー(Scherrer)の式 D = 0.94 ' ;i Z ( j3 - cos θ )を用いて以下の一次粒子径 Dを算 出した結果、金属酸化物の一次粒子径 Dは 5nm以上 l OOnm以下であり、複数の粒 子が凝集して 0. 01 μ m以上 50 μ m以下の凝集粒子を形成していることが判明した Further, X-ray diffraction measurement was performed on some of the obtained photocatalysts. X-ray diffraction measurement was performed using Cu-Ka radiation. From the reciprocal width / 3 (radian) and peak position 2Θ (radian) of the diffraction line measured using the Cu_Ka line (wavelength λ nm) from the diffraction line, the following Scherrer equation D = 0.94 ' ; The primary particle diameter D of the following was calculated using i Z (j3-cos θ), and as a result, the primary particle diameter D of the metal oxide was 5 nm or more and 100 nm or less. . It was found that agglomerate particles between 01 μm and 50 μm were formed.
[0054] また、これらの光触媒体について XPS測定を行った。アルバックフアイ社の PHI— 5 500MCによって Mg— Κ α線を用いて測定した。また、測定前に試料のエッチングな どの前処理は実施せず、サンプノレ表面をそのままの状態で測定した。その結果、金 属塩の水溶液から金属酸化物の表面又は XPSで分析可能な約 3nmまでの内部に 金属化合物が添加されている可能性が見出された。 XPS測定のスぺクトノレのケミカ ルシフトから、金属化合物は酸素原子と結合した状態又は水酸化物の状態で含有さ れていると考えられる。特に、大気中において酸化物として安定に存在し得る最大の 原子価よりも低い原子価の状態で含有されている可能性が高いと考えられる。または 、金属の硝酸塩、炭酸塩、硫酸塩、リン酸塩、酢酸塩又は塩化物の状態で存在して レ、ると考えられる。 [0054] XPS measurement was performed on these photocatalysts. The measurement was performed using PHI-5500MC (manufactured by ULVAC FAI) using Mg-α-rays. Before the measurement, no pretreatment such as etching of the sample was performed, and the measurement was performed with the surface of Sampnolet as it was. As a result, it was found that the metal compound may be added from the aqueous solution of the metal salt to the surface of the metal oxide or to the inside of about 3 nm which can be analyzed by XPS. From the chemical shift of the spectrum measured by XPS, it is considered that the metal compound is contained in a state of being bonded to an oxygen atom or in a state of a hydroxide. In particular, it is highly probable that the oxide is contained in a valence lower than the maximum valence that can be stably present as an oxide in the atmosphere. Alternatively, it is considered that the metal exists in the form of nitrate, carbonate, sulfate, phosphate, acetate or chloride.
[0055] また、可視光領域において高い光触媒活性を呈した光触媒に対する XPS測定のス ぺクトルから同定したところ、金属塩の含有量は、金属に換算して 0. 0005重量%— 10重量%であることが好適であった。特に、可視光照射下で高い光触媒活性を得る ためには、 0. 001重量%以上 6重量%以下が好ましぐ 0. 05重量%以上 3重量% 以下がより好ましぐ 0. 1重量%以上 1.5重量%以下が最も好ましかった。
[0056] なお、本実施の形態において得られた光触媒体が可視光照射下において高い光 触媒活性を示す理由としては、酸化チタン、酸窒化チタン、硫酸化チタン等の金属 酸化物の表面に担持された、或いは、前記金属酸化物の表面近傍の内部にドープ された Cu Oや FeO等の金属化合物力 可視光の照射によって光触媒の内部に発 [0055] Further, the content of the metal salt was determined to be 0.0005% by weight to 10% by weight in terms of metal when identified from the spectrum of the XPS measurement for the photocatalyst exhibiting high photocatalytic activity in the visible light region. Something was preferred. In particular, in order to obtain high photocatalytic activity under visible light irradiation, 0.001% by weight or more and 6% by weight or less are preferred 0.05% by weight or more and 3% by weight or less 0.1% by weight More than 1.5% by weight or less was most preferred. [0056] The reason why the photocatalyst obtained in this embodiment exhibits high photocatalytic activity under visible light irradiation is that the photocatalyst is supported on the surface of a metal oxide such as titanium oxide, titanium oxynitride, or titanium sulfate. Of a metal compound such as CuO or FeO that has been deposited or doped inside the vicinity of the surface of the metal oxide.
2 2
生する電子又は正孔の電荷分離を促進するためであると考えられる。また、光照射 によって励起された電子又は正孔の寿命を長くするためとも考えられる。 This is considered to promote the charge separation of generated electrons or holes. It is also considered to extend the life of electrons or holes excited by light irradiation.
[0057] 以下、上記実施の形態に沿った本発明の実施例及び各実施例に対応する比較例 を示す。ただし、これらの実施例は本実施の形態の一部を示すに留まるものであり、 本実施の形態はこれらの実施例の範囲に限定されるものではない。 Hereinafter, examples of the present invention along the above-described embodiments and comparative examples corresponding to the examples will be described. However, these examples show only a part of the present embodiment, and the present embodiment is not limited to the scope of these examples.
[0058] (比較例 1) (Comparative Example 1)
本発明に対する比較例 1として、ミレニアムケミカル社製の紫外線応答型酸化チタ ン光触媒 (型番 PC500)を準備した。比較例 1では、特に処理を行わなかった。 As Comparative Example 1 for the present invention, an ultraviolet-responsive titanium oxide photocatalyst (model number PC500) manufactured by Millennium Chemical Co., Ltd. was prepared. In Comparative Example 1, no particular treatment was performed.
[0059] (比較例 2) (Comparative Example 2)
酸化チタン (石原産業社製: ST01) 250gを石英容器に入れ、アンモニアガスを流 量 lOOOsccmで容器内に流通させながら 600°Cで 180分間加熱処理した。これによ り、黄色を呈する可視光応答型の酸窒化チタンを生成した。この酸窒化チタンの粉 末 10gをイオン交換水 90gに混合し、固形分濃度 10%のスラリを生成した。さらに、 機械式分散機を用いて沈降性の低レ、スラリとした。 250 g of titanium oxide (ST01, manufactured by Ishihara Sangyo Co., Ltd.) was placed in a quartz container, and heated at 600 ° C. for 180 minutes while flowing ammonia gas through the container at a flow rate of 100 sccm. As a result, visible light responsive titanium oxynitride exhibiting yellow color was produced. 10 g of this titanium oxynitride powder was mixed with 90 g of ion-exchanged water to produce a slurry having a solid concentration of 10%. In addition, the sedimentation was low and the slurry was made using a mechanical disperser.
[0060] このスラリを 100°Cの加熱雰囲気下で乾燥させた後、乳鉢で粉碎したものを大気中 において 300°Cで 1時間焼成した。焼成後、再度粉砕することにより光触媒体の粉末 を得た。 [0060] After drying this slurry under a heating atmosphere of 100 ° C, the slurry ground in a mortar was fired at 300 ° C for 1 hour in the air. After calcination, the powder was crushed again to obtain a photocatalyst powder.
[0061] (比較例 3) (Comparative Example 3)
酸化チタン (石原産業社製: ST01) 250gを石英容器に入れ、アンモニアガスを流 量 lOOOsccmで容器内に流通させながら 600°Cで 180分間加熱処理した。これによ り、黄色を呈する可視光応答型の酸窒化チタンを生成した。この酸窒化チタンの粉 末 10gをイオン交換水 90gに混合し、固形分濃度 10%のスラリを生成した。さらに、 機械式分散機を用いて沈降性の低レ、スラリとした。 250 g of titanium oxide (ST01, manufactured by Ishihara Sangyo Co., Ltd.) was placed in a quartz container, and heated at 600 ° C. for 180 minutes while flowing ammonia gas through the container at a flow rate of 100 sccm. As a result, visible light responsive titanium oxynitride exhibiting yellow color was produced. 10 g of this titanium oxynitride powder was mixed with 90 g of ion-exchanged water to produce a slurry having a solid concentration of 10%. In addition, the sedimentation was low and the slurry was made using a mechanical disperser.
[0062] このスラリ中に 10%硝酸を 15. 5g添カロして 1時間攪拌した。その後、スラリを 100°C
の加熱雰囲気下で乾燥させた後、乳鉢で粉碎したものを大気中において 300°Cで 1 時間焼成した。焼成後、再度粉碎することにより光触媒体の粉末を得た。 [0062] The slurry was mixed with 15.5 g of 10% nitric acid and stirred for 1 hour. Afterwards, slurry at 100 ° C After being dried in a heating atmosphere, the mixture was ground in a mortar and fired at 300 ° C. for 1 hour in the air. After firing, the powder was again ground to obtain a photocatalyst powder.
[0063] (比較例 4) (Comparative Example 4)
ァセトニトリルとテトライソプロポキシチタンをモル比 20/1で混合及び溶解させた溶 液を生成した。この溶液に対して、室温で硫化水素(H S)ガスを供給してパブリング A solution was prepared by mixing and dissolving acetonitrile and tetraisopropoxy titanium at a molar ratio of 20/1. Hydrogen sulfide (HS) gas is supplied to this solution at room temperature for publishing.
2 2
を行った。溶液が黒色となった後、さらに 3時間パブリングを続け、硫化水素ガスの供 給を停止した。その後、溶液を減圧濾過することによって黒色の析出物を得た。 Was done. After the solution turned black, publishing was continued for another 3 hours, and the supply of hydrogen sulfide gas was stopped. Thereafter, the solution was filtered under reduced pressure to obtain a black precipitate.
[0064] さらに、析出物をエタノールに再分散させた後、濾過を行った。エタノールへの再 分散及び濾過を 3回繰り返した後に洗浄及び風乾させて前駆体粉末を得た。この前 駆体粉末を湿潤空気中において 400°Cで 6時間加熱処理した。 [0064] Further, the precipitate was redispersed in ethanol and then filtered. After repeating redispersion in ethanol and filtration three times, the resultant was washed and air-dried to obtain a precursor powder. This precursor powder was heat-treated at 400 ° C for 6 hours in humid air.
[0065] (比較例 5) (Comparative Example 5)
酸化チタン (石原産業社製: STOl OOgと尿素 (和光純薬) 125gを石英容器に入 れ 450°Cで 1時間加熱処理した。その後、硫酸で洗浄し、さらにイオン交換水で洗浄 した後に乾燥させた。これにより、黄色を呈する可視光応答型の酸窒化チタンを生成 した。 Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: STOl OOg and 125 g of urea (Wako Pure Chemical Industries) were placed in a quartz container and heated at 450 ° C for 1 hour, then washed with sulfuric acid, further washed with ion-exchanged water and dried As a result, visible light responsive titanium oxynitride exhibiting yellow color was produced.
[0066] この酸窒化チタンの粉末 12gを 80ccのイソプロピルアルコールと混合し、バインダ 剤としてアクリルシリコン系ェマルジヨン (ダイセル化学製)を添加した。このとき、固形 分として酸窒化チタン/アクリルシリコン系ェマルジヨン =8/2の割合となるように調 整を行った。その後、機械式分散機を用いて湿式粉砕を行い、固形分濃度 4%とな るようにイソプロピルアルコールで希釈して光触媒コーティング液を生成した。スピン コータを用いて、このコーティング液を 40mm X 40mmのガラス基板表面に塗布し、 110°Cで 3分間乾燥させた。 [0066] Titanium oxynitride powder (12 g) was mixed with 80 cc of isopropyl alcohol, and an acrylic silicon-based emulsion (manufactured by Daicel Chemical) was added as a binder agent. At this time, adjustment was made so that the ratio of titanium oxynitride / acrylic silicon emulsion was 8/2 as the solid content. Then, wet pulverization was performed using a mechanical disperser, and the mixture was diluted with isopropyl alcohol to a solid concentration of 4% to produce a photocatalyst coating liquid. This coating solution was applied to a 40 mm × 40 mm glass substrate surface using a spin coater, and dried at 110 ° C. for 3 minutes.
[0067] (比較例 6) (Comparative Example 6)
四塩化チタン 500gを純水の氷水(水に換算して 2リットル)に添加して攪拌すること によって四塩ィ匕チタン水溶液を得た。この水溶液 200gをスターラーで攪拌しながら、 窒素源としてアンモニア水(NHを 13重量%含有)を約 50mリットルだけ速やかに添 500 g of titanium tetrachloride was added to pure water of ice water (2 liters in terms of water) and stirred to obtain an aqueous solution of titanium tetrachloride. While stirring 200 g of this aqueous solution with a stirrer, quickly add about 50 ml of aqueous ammonia (containing 13% by weight of NH) as a nitrogen source.
3 Three
加した。アンモニア水の添カ卩量は、最終的に水溶液の pHが約 8となるように調整した 。この白色スラリを 15分間攪拌した後、吸引濾過器を用いて濾過した。濾過して得ら
れた沈殿物を 20mリットルのアンモニア水(NHを 6重量0 /0含有)に分散させ、スター Added. The amount of ammonia water added was adjusted so that the pH of the aqueous solution finally became about 8. After stirring the white slurry for 15 minutes, it was filtered using a suction filter. Obtained by filtration The precipitate 20m liters of ammonia water (NH 6 wt 0/0 containing) were dispersed in a star
3 Three
ラーで約 20時間攪拌した後、再度吸引濾過を行って白色の加水分解物を得た。得 られた加水分解物を坩堝に入れ、電気炉を用レ、て大気中におレ、て 400°Cで 1時間 加熱して粉末を得た。 After stirring for about 20 hours with a filter, suction filtration was performed again to obtain a white hydrolyzate. The obtained hydrolyzate was placed in a crucible, placed in an electric furnace using an electric furnace, and heated at 400 ° C. for 1 hour to obtain a powder.
[0068] この X線回折で測定した。 X線回折のピークから光触媒体はアナターゼ型の酸化チ タンを含んでいることが判明した。さらに、 X線回折線のアナターゼ(101)の半値幅 力、らシエラー (Scherrer)の式を用いて算出したところ、光触媒体の一次粒子径は約 13 . 5nmで 3つた。 [0068] This was measured by X-ray diffraction. X-ray diffraction peaks revealed that the photocatalyst contained anatase-type titanium oxide. Furthermore, the primary particle diameter of the photocatalyst was about 13.5 nm when calculated using the half-width power of anatase (101) and the Scherrer equation of the X-ray diffraction line.
[0069] さらに、得られた粉末を乾燥し、粉末 10gをイオン交換水 90ccに混合し、機械式分 散機を用いて湿式粉砕を行って沈降性の低レ、スラリを生成した。 Further, the obtained powder was dried, 10 g of the powder was mixed with 90 cc of ion-exchanged water, and wet pulverization was performed using a mechanical disperser to produce a low sedimentable slurry.
[0070] 一方、硝酸銅水和物(Cu (N〇 ) · 3Η〇)をイオン交換水に溶かして銅濃度 5%の [0070] On the other hand, copper nitrate hydrate (Cu (N〇) · 3Η〇) is dissolved in ion-exchanged water to obtain a copper concentration of 5%.
3 2 2 3 2 2
水溶液を生成した。この水溶液 lgを粉末のスラリに加えて 1時間攪拌した。さらに、こ のスラリを 100°Cで乾燥させた後、乳鉢で粉砕し、大気中において 300°Cで 1時間焼 成した。さらに、乳鉢で粉砕することによって光触媒体の粉末を得た。 An aqueous solution was formed. This aqueous solution lg was added to the powder slurry and stirred for 1 hour. The slurry was dried at 100 ° C, crushed in a mortar, and baked at 300 ° C for 1 hour in air. Furthermore, the powder of the photocatalyst was obtained by grinding in a mortar.
[0071] (比較例 7) (Comparative Example 7)
酸化チタン (石原産業製: ST01)粉末 10gとイオン交換水 90gを混合して固形分濃 度 10%のスラリを作製し、さらに機械式分散機によって沈降性の低レ、スラリにした。ま た、硝酸銅 (II)水和物をイオン交換水に溶かし、銅濃度 5%の水溶液を作製した。スラ リ 100gと硝酸銅水溶液 lgを混合し、一時間撹拌した。このときの銅の換算混合濃度 は、重量にして 0. 5%であった。 A slurry having a solid content of 10% was prepared by mixing 10 g of titanium oxide (ST01, manufactured by Ishihara Sangyo) and 90 g of ion-exchanged water, and was further made into a low sedimentable slurry with a mechanical disperser. Copper (II) nitrate hydrate was dissolved in ion-exchanged water to prepare an aqueous solution with a copper concentration of 5%. 100 g of the slurry and an aqueous solution of copper nitrate (lg) were mixed and stirred for one hour. At this time, the converted mixed concentration of copper was 0.5% by weight.
[0072] このスラリを 100°Cで乾燥させた後、乳鉢で粉砕したものを大気中において 300°C で 1時間焼成した。焼成後、再度粉砕することにより光触媒体の粉末を得た。 [0072] After drying this slurry at 100 ° C, what was ground in a mortar was fired at 300 ° C for 1 hour in the air. After calcination, the powder was crushed again to obtain a photocatalyst powder.
[0073] (比較例 8) (Comparative Example 8)
酸化チタン (石原産業製: ST01)粉末 10gとイオン交換水 90gを混合して固形分濃 度 10%のスラリを作製し、さらに機械式分散機によって沈降性の低レ、スラリにした。ま た、硝酸鉄 (ΙΠ)水和物をイオン交換水に溶かし、鉄濃度 5%の水溶液を作製した。ス ラリ 100gと硝酸鉄水溶液 lgを混合し、一時間撹拌した。このときの鉄の換算混合濃 度は、重量にして 0. 5%であった。
[0074] このスラリを 100°Cの加熱雰囲気下で乾燥させた後、乳鉢で粉碎したものを大気中 において 300°Cで 1時間焼成した。焼成後、再度粉砕することにより光触媒体の粉末 を得た。 A slurry having a solid content of 10% was prepared by mixing 10 g of titanium oxide (ST01, manufactured by Ishihara Sangyo) and 90 g of ion-exchanged water, and was further made into a low sedimentable slurry with a mechanical disperser. In addition, iron nitrate (II) hydrate was dissolved in ion-exchanged water to prepare an aqueous solution with a 5% iron concentration. 100 g of slurry and an aqueous solution of iron nitrate (lg) were mixed and stirred for one hour. At this time, the converted mixed concentration of iron was 0.5% by weight. [0074] After drying this slurry under a heating atmosphere of 100 ° C, the slurry ground in a mortar was fired in the air at 300 ° C for 1 hour. After calcination, the powder was crushed again to obtain a photocatalyst powder.
[0075] (実施例 1) (Example 1)
酸化チタン (石原産業社製: STOl OOOgと尿素(和光純薬) 375gをステンレス容 器に入れ、攪拌混合しながら 450°Cで 120分間加熱処理した。これにより、黄色を呈 する可視光応答性の酸窒化チタンを生成した。この酸窒化チタンの粉末 10gとイオン 交換水 90gとを混合し、固形分濃度 10。/oのスラリを生成した。さらに、機械式分散機 を用いて沈降性の低レ、スラリとした。 Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd .: STOl OOOg and 375 g of urea (Wako Pure Chemical Industries) were placed in a stainless steel container and heat-treated at 450 ° C for 120 minutes with stirring and mixing. This resulted in yellow visible light response. 10 g of this titanium oxynitride powder and 90 g of ion-exchanged water were mixed to produce a slurry having a solid content of 10./o. Low level and slurry.
[0076] 一方、硝酸銅 (II)水和物をイオン交換水に溶かし、銅濃度 5%の金属塩の水溶液 を作成した。 On the other hand, copper (II) nitrate hydrate was dissolved in ion-exchanged water to prepare an aqueous solution of a metal salt having a copper concentration of 5%.
[0077] その後、酸窒化チタンのスラリ 100gと硝酸銅の水溶液 lgとを混合し、 1時間攪拌し て光触媒体と金属化合物との混合溶液を生成した。このときの銅の混合濃度は 0. 5 重量%となった。この混合溶液を 100°Cで乾燥させた後、乳鉢で粉碎し、大気中に おいて 300°Cで 1時間焼成した。さらに、乳鉢で粉砕することによって光触媒体の粉 末を得た。 [0077] Thereafter, 100 g of a slurry of titanium oxynitride and an aqueous solution lg of copper nitrate were mixed and stirred for 1 hour to produce a mixed solution of a photocatalyst and a metal compound. At this time, the mixed concentration of copper was 0.5% by weight. After drying this mixed solution at 100 ° C, it was ground in a mortar and fired at 300 ° C for 1 hour in the air. Furthermore, the powder of the photocatalyst was obtained by crushing in a mortar.
[0078] この光触媒体の粉末の最表面をエッチングすることなく XPSで測定した。 XPS測定 のスペクトルから粉末中の銅の組成比を求めたところ、原子数比にして 0. 7原子%で あった。また、図 2に示すように、 2p殻スペクトルにおいて 932eV以上 933eV以下の 領域に最も強いピークが見られた。特に、 933eV付近にピークが見られた。このケミ カルシフトから酸窒化チタンの表面又は内部に Cu〇の状態で銅が含有されている [0078] The photocatalyst powder was measured by XPS without etching the outermost surface of the powder. When the composition ratio of copper in the powder was determined from the XPS measurement spectrum, the atomic ratio was 0.7 atomic%. In addition, as shown in FIG. 2, the strongest peak was observed in the region from 932 eV to 933 eV in the 2p shell spectrum. In particular, a peak was observed around 933 eV. Due to this chemical shift, copper is contained in the state of Cu〇 on the surface or inside of titanium oxynitride.
2 2
可能性が高いと考えられる。ただし、 XPS測定のみから完全に同定することは困難で あり、水酸化物又は塩の状態で銅が含有されている可能性もある。 It is considered likely. However, it is difficult to completely identify it only from XPS measurement, and copper may be contained in the form of hydroxide or salt.
[0079] また、光触媒体の粉末を X線回折で測定した。 X線回折のピークから光触媒体はァ ナターゼ型の酸化チタンを含んでいることが判明した。さらに、 X線回折線のアナタ ーゼ(101)の半値幅からシエラー (Scherrer)の式を用いて算出したところ、光触媒体 の一次粒子径は約 11. 5nmであった。 The powder of the photocatalyst was measured by X-ray diffraction. X-ray diffraction peaks revealed that the photocatalyst contained anatase-type titanium oxide. Further, the primary particle diameter of the photocatalyst was about 11.5 nm when calculated from the half width of the anatase (101) of the X-ray diffraction line using the Scherrer equation.
[0080] (実施例 2)
酸化チタン (石原産業社製: ST01) 250gを石英容器に入れ、アンモニアガスを流 量 lOOOsccmで容器内に流通させながら 600°Cで 180分間加熱処理した。これによ り、黄色を呈する可視光応答型の酸窒化チタンを生成した。この粉末をエッチングす ることなく XPS測定したところ、 396eV付近に N— Ti結合に由来するピークが観察さ れた。この酸窒化チタンの粉末 10gをイオン交換水 90gに混合し、固形分濃度 10% のスラリを生成した。さらに、機械式分散機を用いて沈降性の低レ、スラリとした。 (Example 2) 250 g of titanium oxide (ST01, manufactured by Ishihara Sangyo Co., Ltd.) was placed in a quartz container, and heated at 600 ° C. for 180 minutes while flowing ammonia gas through the container at a flow rate of 100 sccm. As a result, visible light responsive titanium oxynitride exhibiting yellow color was produced. XPS measurement of this powder without etching showed a peak at about 396 eV derived from the N—Ti bond. 10 g of this titanium oxynitride powder was mixed with 90 g of ion-exchanged water to produce a slurry having a solid content of 10%. Furthermore, the sedimentation was low and the slurry was made using a mechanical disperser.
[0081] 一方、硝酸鉄 (III)水和物をイオン交換水に溶かし、鉄濃度 5%の金属塩の水溶液 を作成した。 On the other hand, iron (III) nitrate hydrate was dissolved in ion-exchanged water to prepare an aqueous solution of a metal salt having an iron concentration of 5%.
[0082] その後、酸窒化チタンのスラリ 100gと硝酸鉄の水溶液 lgとを混合し、 1時間攪拌し て光触媒体と金属化合物との混合溶液を生成した。このときの鉄の混合濃度は 0. 5 重量%となった。この混合溶液を 100°Cで乾燥させた後、乳鉢で粉砕し、大気中に おいて 300°Cで 1時間焼成した。さらに、乳鉢で粉砕することによって光触媒体の粉 末を得た。 Thereafter, 100 g of a titanium oxynitride slurry and an aqueous solution of iron nitrate lg were mixed and stirred for 1 hour to produce a mixed solution of a photocatalyst and a metal compound. At this time, the iron concentration was 0.5% by weight. After drying this mixed solution at 100 ° C, it was pulverized in a mortar and fired at 300 ° C for 1 hour in the air. Furthermore, the powder of the photocatalyst was obtained by crushing in a mortar.
[0083] この光触媒体の粉末の最表面をエッチングすることなく XPSで測定した。 XPS測定 のスペクトルから粉末中の鉄の組成比を求めたところ、原子数比にして 0. 8原子%で あった。また、図 3に示すように、 2p殻スペクトルにおいて 709eV以上 710eV以下の 領域に最も強いピークが見られた。特に、 709eV付近にピークが見られた。このケミ カルシフトから酸窒化チタンの表面又は内部に Fe〇の状態で鉄が含有されている可 能性が高いと考えられる。ただし、 XPS測定のみから完全に同定することは困難であ り、水酸化物又は塩の状態で鉄が含有されている可能性もある。 [0083] The photocatalyst powder was measured by XPS without etching the outermost surface of the powder. When the composition ratio of iron in the powder was determined from the spectrum of the XPS measurement, the atomic ratio was 0.8 atomic%. In addition, as shown in Fig. 3, the strongest peak was observed in the region from 709 eV to 710 eV in the 2p shell spectrum. In particular, a peak was observed around 709 eV. From this chemical shift, it is highly probable that iron is contained in the surface or inside of titanium oxynitride in the form of Fe〇. However, it is difficult to completely identify it only from XPS measurement, and iron may be contained in the form of hydroxide or salt.
[0084] また、光触媒体の粉末を X線回折で測定した。 X線回折のピークから光触媒体はァ ナターゼ型の酸化チタンを含んでいることが判明した。さらに、 X線回折線のアナタ ーゼ(101)の半値幅からシエラー (Scherrer)の式を用いて算出したところ、光触媒体 の一次粒子径は約 19. Onmであった。 The powder of the photocatalyst was measured by X-ray diffraction. X-ray diffraction peaks revealed that the photocatalyst contained anatase-type titanium oxide. Further, the primary particle diameter of the photocatalyst was about 19. Onm when calculated from the half width of the anatase (101) of the X-ray diffraction line using the Scherrer equation.
[0085] (実施例 3) (Example 3)
ァセトニトリルとテトライソプロポキシチタンをモル比 20/1で混合及び溶解させた溶 液を生成した。この溶液に対して、室温で硫化水素(H S)ガスを供給してパブリング A solution was prepared by mixing and dissolving acetonitrile and tetraisopropoxy titanium at a molar ratio of 20/1. Hydrogen sulfide (HS) gas is supplied to this solution at room temperature for publishing.
2 2
を行った。溶液が黒色となった後、さらに 3時間パブリングを続け、硫化水素ガスの供
給を停止した。その後、溶液を減圧濾過することによって黒色の析出物を得た。 Was done. After the solution turns black, continue publishing for another 3 hours to supply hydrogen sulfide gas. I stopped paying. Thereafter, the solution was filtered under reduced pressure to obtain a black precipitate.
[0086] さらに、析出物をエタノールに再分散させた後、濾過を行った。エタノールへの再 分散及び濾過を 3回繰り返した後に洗浄及び風乾させて前駆体粉末を得た。この前 駆体粉末を湿潤空気中において 400°Cで 6時間加熱処理した。これにより、アナター ゼ型の酸窒化チタンの粉末を得た。この粉末をエッチングすることなく XPS測定した ところ、 160eV付近に S-Ti結合に由来するピークが観察された。続いて、得られた 酸窒化チタンの粉末 12gをイオン交換水 80ccに混合してスラリを生成した。 [0086] Further, the precipitate was redispersed in ethanol, and then filtered. After repeating redispersion in ethanol and filtration three times, the resultant was washed and air-dried to obtain a precursor powder. This precursor powder was heat-treated at 400 ° C for 6 hours in humid air. Thus, an anatase type titanium oxynitride powder was obtained. When XPS measurement was performed on this powder without etching, a peak derived from the S-Ti bond was observed at around 160 eV. Subsequently, 12 g of the obtained powder of titanium oxynitride was mixed with 80 cc of ion-exchanged water to form a slurry.
[0087] 一方、硝酸銅水和物(Cu (N〇 ) · 3Η 0) 17. 2gをイオン交換水 82. 8gに溶かし [0087] On the other hand, 17.2 g of copper nitrate hydrate (Cu (N〇) · 3Η0) was dissolved in 82.8 g of ion-exchanged water.
3 2 2 3 2 2
た水溶液を生成した。この水溶液 1. 33gを酸窒化チタンのスラリに加えた。次に、機 械式分散機を用いて湿式粉砕を行った。さらに、このスラリを 100°Cで乾燥させた後 、乳鉢で粉砕し、大気中において 300°Cで 1時間焼成した。さらに、乳鉢で粉砕する ことによって光触媒体の粉末を得た。 An aqueous solution was formed. 1.33 g of this aqueous solution was added to a slurry of titanium oxynitride. Next, wet pulverization was performed using a mechanical disperser. The slurry was dried at 100 ° C., pulverized in a mortar, and fired at 300 ° C. for 1 hour in the atmosphere. Furthermore, the powder of the photocatalyst was obtained by grinding in a mortar.
[0088] 以上の比較例及び実施例で得られた光触媒体の可視光照射下における光触媒特 性を測定した。光触媒特性は以下のように測定した。 [0088] The photocatalytic properties of the photocatalysts obtained in the above Comparative Examples and Examples under irradiation with visible light were measured. Photocatalytic properties were measured as follows.
[0089] ガラス容器中 (lOOOcc)に作製した粉末を 0. lg入れた後に、内部の空気を乾燥空 気で置換した。その後、ブラックライトを紫外線強度 5. OmW/cm2 (トプコン製の光 強度計、 UVR— 2及び UD-36使用)で予め 14時間照射した。その後、ァセトアルデ ヒドガスをそれぞれのガラス容器に等モル注入した。具体的には容器中 (lOOOcc)で 1 OOOppm換算となる量の濃いガスをマイクロシリンジで注入した。その後喑所におい て 12時間放置してガスを粉末の表面に吸着させた。そして、周囲に紫外線カットフィ ルタ(富士フィルム、 SC42)を取り付けた 10W蛍光管(松下電工、 FL10N)から波長 410nm以上の可視光を照射し、内部の二酸化炭素およびァセトアルデヒドの濃度の 計時変化を計測した。その結果は図 4および図 5のとおりであった。 [0089] After 0.1 g of the prepared powder was placed in a glass container (100000 cc), the inside air was replaced with dry air. Thereafter, the black light was irradiated for 14 hours in advance with an ultraviolet intensity of 5. OmW / cm 2 (using a light intensity meter made by Topcon, UVR-2 and UD-36). Thereafter, acetoaldehyde gas was injected into each glass container in an equimolar amount. Specifically, the amount of gas equivalent to 1 OOOppm in the container (100000cc) was injected with a microsyringe. After that, the gas was adsorbed on the surface of the powder by leaving it at a place for 12 hours. Visible light with a wavelength of 410 nm or more is radiated from a 10-W fluorescent tube (Matsushita Electric Works, FL10N) equipped with an ultraviolet cut filter (Fuji Film, SC42) around it to measure the time-dependent changes in the concentrations of carbon dioxide and acetoaldehyde inside. Measured. The results were as shown in FIGS.
[0090] 測定初期(時刻 0)における濃度は、喑所吸着後の濃度であり、各粉末の吸着性の 差を示す。本発明の実施例 1と実施例 2においては、可視光照射時におけるァセトァ ルデヒドガス濃度の減少速度が比較例 1 , 2, 6の 3倍以上に大きく向上しており、 10 OOppmm相当のァセトアルデヒドを 2時間以内の可視光照射で Oppmに減少させるこ とができる。また、本実施例においては最終分解生成物である二酸化炭素(CO )の
生成速度も 2倍以上に向上している。 [0090] The concentration at the beginning of measurement (time 0) is the concentration after in-place adsorption, and indicates the difference in the adsorbability of each powder. In Examples 1 and 2 of the present invention, the rate of decrease in the concentration of the acetyl aldehyde gas upon irradiation with visible light was significantly improved to more than three times that of Comparative Examples 1, 2, and 6, and acetoaldehyde equivalent to 10 OO ppmm was obtained. Can be reduced to Oppm by visible light irradiation within 2 hours. Further, in the present embodiment, carbon dioxide (CO 2), The production speed has more than doubled.
[0091] また、図 4の比較例 6についての結果からわかるように、四塩ィ匕チタンから出発する ような湿式法で作製した酸化チタンに銅酸化物を担持した場合には、かえって光触 媒活性が損なわれた。すなわち、比較例 6のように、加水分解法によってあらかじめ 前駆体に窒素を含有させて作製した湿式法窒素含有酸化チタンをベースとし、これ に銅酸化物を担持したものでは、可視光下における反応速度が低下した。 [0091] Further, as can be seen from the results of Comparative Example 6 in Fig. 4, when copper oxide was supported on titanium oxide produced by a wet method such as starting from titanium tetrachloride, the photocatalyst was rather exposed. Media activity was impaired. In other words, as in Comparative Example 6, a wet-process nitrogen-containing titanium oxide prepared by preliminarily adding nitrogen to a precursor by a hydrolysis method, and a copper oxide supported on the base was used for reaction under visible light. Speed decreased.
[0092] これに対し、最表面側から熱反応により窒素を含有させた実施例 1と 2においては、 さらに向上効果が高ぐ反応速度は 2倍以上に向上した。このことから推定すると、本 発明は、酸化チタン表面に、含有させた窒素や硫黄などがチタン元素と含有した状 態で存在する形態を担体とする場合に、より高い酸化物、水酸化物、塩の担持効果 が得られるものと考えられる。酸化錫や酸化亜鉛についても同様と考えられる。上記 実施例で得られたいずれの光触媒体も比較例で得られた光触媒体よりもァセトアル デヒドの減少速度及び二酸化炭素の生成速度が大きかった。特に、最終分解生成 物である二酸化炭素の生成速度では比較例に対して 2倍以上の生成速度を示した。 このことは、実施例における処理によって、可視光照射下において高い光触媒活性 を有する光触媒体を得ることができることを示している。 [0092] On the other hand, in Examples 1 and 2 in which nitrogen was contained from the outermost surface side by a thermal reaction, the reaction rate at which the improvement effect was further improved was more than doubled. From the above, it can be inferred that the present invention provides higher oxides, hydroxides, and the like when the carrier has a form in which nitrogen, sulfur, or the like is present on the surface of titanium oxide in the state of containing titanium element. It is thought that the effect of supporting the salt can be obtained. The same applies to tin oxide and zinc oxide. All of the photocatalysts obtained in the above Examples had a higher reduction rate of acetoaldehyde and a higher generation rate of carbon dioxide than the photocatalyst obtained in the Comparative Example. In particular, the production rate of carbon dioxide, which is the final decomposition product, was more than twice that of the comparative example. This indicates that a photocatalyst having high photocatalytic activity under visible light irradiation can be obtained by the treatment in the examples.
[0093] また、 500ppm相当のァセトアルデヒドガスを注入して、可視光における分解速度 を測定した結果を表 1に示す。実施例 1および 2では、比較例 2および 3と比較して、 二酸化炭素の生成速度が 2倍以上に向上している。実施例 3でも、比較例 4と比較し て二酸化炭素の生成速度が 2倍以上に向上している。一方、従来の湿式法で作製し た可視光光触媒である比較例 6では、 Cu化合物を含有させる前の反応速度が 51pp mZhであったことから、力、えって反応速度が低下しており坦持の効果が見られなか つた。また比較例 7, 8においては、可視光応答性のない酸化チタンに本発明の方法 で Cuや Fe化合物を含有させても、可視光照射における触媒性能に差はほとんど見 られないことがわかった。 [0093] Table 1 shows the results of measuring the decomposition rate of visible light by injecting an acetoaldehyde gas equivalent to 500 ppm. In Examples 1 and 2, the production rate of carbon dioxide is more than doubled as compared with Comparative Examples 2 and 3. Also in Example 3, the generation rate of carbon dioxide is more than doubled as compared with Comparative Example 4. On the other hand, in Comparative Example 6, which was a visible light photocatalyst produced by the conventional wet method, the reaction rate before the inclusion of the Cu compound was 51 ppmZh. No effect was observed. Further, in Comparative Examples 7 and 8, it was found that even if the titanium oxide having no visible light response contained a Cu or Fe compound by the method of the present invention, there was almost no difference in the catalytic performance under visible light irradiation. .
[0094] [表 1]
可視 照射下における光 速度 [0094] [Table 1] Light speed under visible light
[0095] 一方、可視光源の代わりにブラックライト(東芝製: BLB— A)を用いて容器内部の二 酸化炭素及びァセトアルデヒドの濃度の経時的な変化を計測した結果を表 2に示す 。このとき、紫外光領域の光強度を 5. OmW/cm2とし、可視光領域の光強度の約 5 倍の強度とした。 [0095] On the other hand, Table 2 shows the results of measuring the time-dependent changes in the concentrations of carbon dioxide and acetoaldehyde in the container using a black light (BLB-A, manufactured by Toshiba) instead of the visible light source. At this time, the light intensity in the ultraviolet light region was set to 5. OmW / cm 2 , which was about five times the light intensity in the visible light region.
[0096] [表 2] 紫外光照射下における光触媒反応速度 [Table 2] Photocatalytic reaction rate under ultraviolet light irradiation
[0097] 上記実施例で得られたいずれの光触媒体も比較例で得られた光触媒体とほぼ同 程度のァセトアルデヒドの減少速度及び二酸化炭素の生成速度を示した。すなわち 、実施例における処理では、紫外光領域における光触媒活性の改善効果は少なぐ 可視光領域における光触媒活性の向上に有効であるといえる。また、比較例 7, 8に おいて、本発明の方法で酸化チタンに Cu, Feを含有させても、紫外線での反応速 度を向上させる効果はみられなかった。
[0098] また、実施例 1と 2と同様な方法で、それぞれ Fe化合物と Cu化合物の含有量を変 化させたサンプノレを別途作製した。これらのサンプルに対して二酸化炭素生成速度 を測定した結果を表 3に示す。表 3からも明らかなように、 Fe化合物及び Cu化合物の 含有量は、表 3の範囲内で効果がみられるが、特に、 0. 5重量%付近において最も 可視光下での光触媒活性が向上する。 [0097] Each of the photocatalysts obtained in the above examples exhibited almost the same reduction rate of acetaldehyde and the generation rate of carbon dioxide as the photocatalyst obtained in the comparative example. That is, in the processing in the embodiment, the effect of improving the photocatalytic activity in the ultraviolet light region is small. It can be said that the process is effective in improving the photocatalytic activity in the visible light region. In Comparative Examples 7 and 8, even if Cu and Fe were added to titanium oxide by the method of the present invention, no effect of improving the reaction speed with ultraviolet light was observed. [0098] In the same manner as in Examples 1 and 2, sampnoles in which the contents of the Fe compound and the Cu compound were respectively changed were separately produced. Table 3 shows the results of measuring the carbon dioxide generation rate for these samples. As is evident from Table 3, the content of Fe and Cu compounds is effective within the range shown in Table 3, but the photocatalytic activity under visible light is most improved especially at around 0.5% by weight. I do.
[0099] 重量比にして 0. 5%相当の Cuと Feを含有させた場合の、後熱処理温度と二酸化 炭素ガス反応速度を表 4に示す。熱処理無しの場合は、 Cuおよび Feは酸化物には なっておらず、金属、水酸化物、あるいは塩の状態で表面に固着していると考えられ る。このときの二酸化炭素生成速度はいずれも低い。これに対し、熱処理を施すこと により反応速度は増大する。 100°C処理で比較例 2および 3よりも高い反応速度を示 し、 250°Cから 350°Cの温度範囲で最も高い反応速度を示す。 300°C処理において は前述の XPSの結果の通り、 Cuならびに Feは、主にそれぞれ Cu〇, FeOの低次 [0099] Table 4 shows the post-heat treatment temperature and the carbon dioxide gas reaction rate when Cu and Fe were contained in a weight ratio of 0.5%. Without heat treatment, Cu and Fe are not converted to oxides, but are considered to be fixed to the surface in the form of metal, hydroxide, or salt. At this time, the carbon dioxide generation rates are all low. In contrast, heat treatment increases the reaction rate. The reaction rate at 100 ° C is higher than that of Comparative Examples 2 and 3, and the highest in the temperature range of 250 ° C to 350 ° C. In the 300 ° C treatment, Cu and Fe are mainly lower than Cu Fe and FeO, respectively, as the result of XPS mentioned above.
2 2
酸化物となっていると考えられる。 Cuおよび Fe化合物の酸化をさらに進めるため、よ り高い温度で処理した場合には反応速度が低下する。し力 ながら、 600°C以下の 温度では、比較例 2および 3よりも高い反応速度を維持している。 700°Cでの処理で の反応速度の大きな低下は、酸化チタンに添加された窒素が抜けることによって可 視光応答性が低下したことが原因と考えられる。すなわち、 100°C近傍から 600°Cの 範囲で熱処理すれば、本発明の効果を得ることができる。 It is considered to be an oxide. If the treatment is performed at a higher temperature to further promote the oxidation of the Cu and Fe compounds, the reaction rate will decrease. However, at a temperature of 600 ° C. or lower, the reaction rate is higher than that of Comparative Examples 2 and 3. The large decrease in the reaction rate in the treatment at 700 ° C is considered to be due to the decrease in visible light responsiveness due to the escape of nitrogen added to titanium oxide. That is, the effect of the present invention can be obtained by performing heat treatment in the range of about 100 ° C. to 600 ° C.
[0100] [表 3] [0100] [Table 3]
[0101] [表 4]
可視光照射下での光触媒反応速 二 度) [0101] [Table 4] (Photocatalytic reaction rate under visible light irradiation twice)
[0102] (実施例 4) (Example 4)
酸化チタン(ミレニアムケミカル社製: PC500) 100gと尿素(和光純薬) 125gとを石 英容器に入れ、 450°Cで 60分加熱処理した。次に、硫酸で洗浄し、さらにイオン交 換水で洗浄した後に乾燥させた。これにより、黄色を呈する可視光応答性の酸窒化 チタンを生成した。この酸窒化チタンの粉末 12gとイソプロピルアルコール 80ccとを 混合した。 100 g of titanium oxide (manufactured by Millennium Chemical Co., Ltd .: PC500) and 125 g of urea (Wako Pure Chemical Industries, Ltd.) were placed in a stone container and heated at 450 ° C. for 60 minutes. Next, it was washed with sulfuric acid, further washed with ion exchange water, and then dried. As a result, visible light responsive titanium oxynitride exhibiting yellow color was produced. 12 g of this titanium oxynitride powder and 80 cc of isopropyl alcohol were mixed.
[0103] 一方、硝酸銅水和物(Cu (NO ) · 3Η 0) 17. 2gをイオン交換水 82· 8gに溶かし [0103] On the other hand, 17.2 g of copper nitrate hydrate (Cu (NO) 3Η0) was dissolved in 82.8 g of ion-exchanged water.
3 2 2 3 2 2
た水溶液を生成した。この水溶液 1. 33gを酸窒化チタンとイソプロピルアルコールの 溶液に加えた。このとき、バインダ剤としてアクリルシリコン系ェマルジヨン (ダイセル化 学社製: TT一 105)を添加した。アクリルシリコン系ェマルジヨンは、固形分にして酸 窒化チタン/アクリルシリコン系ェマルジヨンの比が 8/2となるように添加した。 An aqueous solution was formed. 1.33 g of this aqueous solution was added to a solution of titanium oxynitride and isopropyl alcohol. At this time, an acrylic silicone emulsion (manufactured by Daicel Kagaku: TT-105) was added as a binder agent. Acrylic silicon emulsion was added so that the ratio of titanium oxynitride / acryl silicon emulsion was 8/2 as solid content.
[0104] 続いて、機械式分散機を用いて湿式粉砕を行った。その後、固形分濃度 4%ととな るまでイソプロピルアルコールで希釈し、光触媒体のコーティング液を生成した。スピ ンコータを用いてこのコーティング液を 40mm X 40mmのガラス基板表面に塗布し、 110°Cで 3分間乾燥させた。 Subsequently, wet pulverization was performed using a mechanical disperser. Thereafter, the mixture was diluted with isopropyl alcohol until the solid content concentration became 4%, thereby producing a photocatalyst coating liquid. This coating solution was applied to a 40 mm × 40 mm glass substrate surface using a spin coater, and dried at 110 ° C. for 3 minutes.
[0105] (実施例 5) (Example 5)
250gの酸化チタン (石原産業製: ST01)を石英容器中に入れ、アンモニアガスを 1 OOOsccm流通させながら、 600°Cで 180分処理する。これにより、黄色の可視光応 答型の酸窒化チタン光触媒を作製する。この粉末 10gとイオン交換水 90gを混合し て固形分濃度 10%のスラリを作製し、さらに機械式分散機によって沈降性の低レ、ス
ラリにする。硝酸鉄 (III)水和物をイオン交換水に溶かし、鉄濃度 5%の水溶液を作製 する。前記光触媒スラリ 100gと硝酸鉄水溶液 lgを混合し、再度、機械式分散機で 1 5分間粉砕混合する。このときの鉄の換算混合濃度は、重量にして 0.5%である。ノく インダ剤としてダイセル化学製のアクリルシリコン系エマルシヨン (TT一 105)を、固形 分にして酸窒化チタン/アクリルシリコン系エマルシヨン = 8/2となるように添加した のちに、機械式分散機で湿式粉砕した。これを固形分濃度 4%にまでイオン交換水 で希釈し、光触媒コーティング液を作製した。このコーティング液をスピンコータによ つて 40x40mmのガラス基板上に塗布し、 110°Cで 3分間乾燥させた。 Place 250g of titanium oxide (ST01, manufactured by Ishihara Sangyo) in a quartz container and treat it at 600 ° C for 180 minutes while flowing ammonia gas at 1 OOOsccm. Thus, a yellow visible light responsive titanium oxynitride photocatalyst is produced. 10 g of this powder and 90 g of ion-exchanged water are mixed to produce a slurry having a solid content of 10%, and the sedimentation is reduced by a mechanical disperser. Rari. Dissolve iron (III) nitrate hydrate in ion-exchanged water to make an aqueous solution with a 5% iron concentration. 100 g of the photocatalyst slurry and an aqueous solution of iron nitrate (lg) are mixed, and pulverized and mixed again with a mechanical disperser for 15 minutes. The converted concentration of iron at this time is 0.5% by weight. Acrylic silicon-based emulsion (TT-105) manufactured by Daicel Chemical Co., Ltd. was added as an indating agent to a solid content of titanium oxynitride / acrylic-silicon emulsion = 8/2. Wet pulverized. This was diluted with ion-exchanged water to a solid concentration of 4% to prepare a photocatalyst coating solution. This coating solution was applied on a 40 × 40 mm glass substrate by a spin coater, and dried at 110 ° C. for 3 minutes.
[0106] 実施例 4及び 5と、比較例 5の薄膜サンプルの可視光照射下でのメチレンブルーの 分解特性を測定した。 The decomposition characteristics of methylene blue of the thin film samples of Examples 4 and 5 and Comparative Example 5 under irradiation with visible light were measured.
[0107] 濃度 60 μ Μのメチレンブルー水溶液の光脱色を、 1. 2W白色蛍光灯に 410nm以 下の紫外線をカットするフィルタ(富士写真フィルム)を巻き付けた可視光の照射下で 測定した。表 5に、光照射 20分後の、波長 650nm付近におけるメチレンブルー吸光 度の変化量を示す。本実施例では、従来例と比較して非常に高い可視光下での光 触媒活性を示した。 The photobleaching of the aqueous solution of methylene blue having a concentration of 60 μM was measured under irradiation of visible light with a filter (Fuji Photo Film) that cuts ultraviolet light of 410 nm or less wound around a 1.2 W white fluorescent lamp. Table 5 shows the change in methylene blue absorbance around 650 nm after 20 minutes of light irradiation. In this example, a very high photocatalytic activity under visible light was shown as compared with the conventional example.
[0108] [表 5] [0108] [Table 5]
[0109] また、実施例 4と 5のサンプルを使用して、抗菌性品技術協議会の評価法 III (光照 射フィルム密着法)によって 15W白色蛍光灯 (東芝製)を用いた照度 2000Lx下にお ける MRSA (メシチリン耐性黄色ブドウ球菌)の抗菌試験を実施した。比較対照として ポリエチレンフィルムを使用した。実施例 4と 5においては、 24時間照射後に菌数が 1 0万分の 1以下に低減されており、一方ポリエチレンフィルムでは菌の低減率は 1Z2 程度であった。従って本発明における高い抗菌性が確認された。 [0109] Further, using the samples of Examples 4 and 5, the evaluation method III (light irradiation film adhesion method) of the Antibacterial Antimicrobial Product Technology Committee was conducted under an illuminance of 2000 Lx using a 15W white fluorescent lamp (manufactured by Toshiba). An antimicrobial test of MRSA (mesitillin-resistant Staphylococcus aureus) was performed. A polyethylene film was used as a control. In Examples 4 and 5, the number of bacteria was reduced to 1 / 100,000 or less after irradiation for 24 hours, while the rate of bacterial reduction was about 1Z2 for polyethylene film. Therefore, high antibacterial properties in the present invention were confirmed.
[0110] なおバインダとしては実施例に限定されることはなぐ酸化珪素ゾル、シリコン樹脂、 フッ素樹脂、イソシァネート類、カルボキシノレ基と反応するエポキシ化合物、アジリジ
ン系化合物、ォキサゾリン系化合物、カルポジイミド系化合物、セルロース系バインダ 、多糖類、アモルファス酸化チタンを用いてもよい。 [0110] It should be noted that the binder is not limited to the examples but silicon oxide sol, silicon resin, fluororesin, isocyanates, epoxy compound which reacts with carboxy group, aziridi Alternatively, an oxazoline-based compound, a carbodiimide-based compound, a cellulose-based binder, a polysaccharide, or amorphous titanium oxide may be used.
[0111] またコーティング液を作製する際の溶媒としては、メタノール、エタノール、 n—プロピ ノレアノレコーノレ、 i—プロピノレアノレコーノレ、 n—ブチノレアノレコーノレ、 sec—ブチノレアノレコー ノレ、 t_ブチノレアノレコーノレ、 n—へキシノレアノレコーノレ、 n_オタチノレアノレコーノレ、 ェチレ ングリコーノレ、ジエチレングリコーノレ、トリエチレングリコーノレ、エチレングリコーノレモノ ブチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレアセテート、ジエチレングリ コーノレモノエチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレンモ ノメチルエーテルアセテート、ジアセトンアルコール、ベンゼン、トルエン、キシレン、 テトラヒドロフラン、ジォキサン、アセトン、メチルェチルケトン、メチルイソブチルケトン 、ジイソプチルケトン、酢酸ェチル、酢酸プロピル、酢酸ブチル、炭酸プロピレン、乳 酸メチル、乳酸ェチル、乳酸ノルマルプロピル、乳酸イソプロピル、 3_エトキシプロピ オン酸メチル、 3—エトキシプロピオン酸ェチル、またはこれらと水の混合物を用いても よい。 [0111] Examples of the solvent for preparing the coating liquid include methanol, ethanol, n-propynoleanolone, i-propynoleanolone, n-butynoleanolone, and sec-butinoleanolone. Nore, t_butinoreanorenore, n-hexinoreanorenore, n_otatinoreanorenore, ethylenglycoreno, diethyleneglycoreno, triethyleneglycoreno, ethyleneglyconele monobutinoreatenore, ethyleneglycol Noremonoethenoletheneoleate acetate, diethyleneglycol monoethynoleatenoate, propylene glycolemonomethinoleatenoate, propylene monomethyl ether acetate, diacetone alcohol, benzene, toluene, xylene, tetrahydrofuran, dioxane, a Ton, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate, methyl 3_ethoxypropionate, Ethyl 3-ethoxypropionate or a mixture thereof with water may be used.
[0112] また、溶媒本発明の窒素、硫黄、炭素、燐を含有する酸化物を作製する際の溶媒と しては、実施例で限定を加えたもの以外については、メタノール、エタノール、 n-プロ ピルアルコール、 i一プロピルアルコール、 n -ブチルアルコール、 sec -ブチルアルコ 一ノレ、 tーブチノレアノレコーノレ、 n-へキシノレアノレコーノレ、 n-オタチノレアノレコーノレ、ェチ レングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモ ノブチルエーテル、エチレングリコールモノェチルエーテルアセテート、ジエチレング リコールモノェチルエーテル、プロピレングリコールモノメチルエーテル、プロピレンモ ノメチルエーテルアセテート、ジアセトンアルコール、ベンゼン、トルエン、キシレン、 テトラヒドロフラン、ジォキサン、アセトン、メチルェチルケトン、メチルイソブチルケトン 、ジイソプチルケトン、酢酸ェチル、酢酸プロピル、酢酸ブチル、炭酸プロピレン、乳 酸メチル、乳酸ェチル、乳酸ノルマルプロピル、乳酸イソプロピル、 3_エトキシプロピ オン酸メチル、 3_エトキシプロピオン酸ェチルなどを用いることもできる。 [0112] Solvents for producing the oxide containing nitrogen, sulfur, carbon, and phosphorus according to the present invention include methanol, ethanol, n- Propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butylinoreanolone, n-hexinoleanoreone, n-otatinoleanoleone, ethylene glycol, Diethylene glycol, triethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene monomethyl ether acetate, diacetone alcohol, benzene, toluene, xylene, tetrahydro Orchid, dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate, 3_ethoxypropyl Methyl onate, ethyl 3-ethoxypropionate and the like can also be used.
[0113] 尚、本発明は、上記した実施の形態に限定されるものではなぐ本発明の要旨を逸 脱しなレ、範囲内におレ、て種々変更をカ卩ぇ得る。
[0113] The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the spirit and scope of the present invention.