[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005007909A2 - Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom - Google Patents

Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom Download PDF

Info

Publication number
WO2005007909A2
WO2005007909A2 PCT/US2004/010066 US2004010066W WO2005007909A2 WO 2005007909 A2 WO2005007909 A2 WO 2005007909A2 US 2004010066 W US2004010066 W US 2004010066W WO 2005007909 A2 WO2005007909 A2 WO 2005007909A2
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt alloy
implant
cobalt
alloy
percent
Prior art date
Application number
PCT/US2004/010066
Other languages
French (fr)
Other versions
WO2005007909A3 (en
Inventor
Richard L. Kennedy
Henry E. Lippard
Original Assignee
Ati Properties, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33450751&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005007909(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ati Properties, Inc. filed Critical Ati Properties, Inc.
Priority to DE602004016651T priority Critical patent/DE602004016651D1/en
Priority to JP2006532365A priority patent/JP2007502372A/en
Priority to EP04785880A priority patent/EP1627091B1/en
Publication of WO2005007909A2 publication Critical patent/WO2005007909A2/en
Publication of WO2005007909A3 publication Critical patent/WO2005007909A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/045Cobalt or cobalt alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/842Flexible wires, bands or straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/40Joints for shoulders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30016Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30682Means for preventing migration of particles released by the joint, e.g. wear debris or cement particles
    • A61F2002/30685Means for reducing or preventing the generation of wear particulates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30922Hardened surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/3097Designing or manufacturing processes using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3611Heads or epiphyseal parts of femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0019Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium

Definitions

  • the various embodiments of the present invention generally relate to cobalt alloys, methods of processing cobalt alloys, and articles of manufacture made therefrom. More particularly, certain embodiments of the invention relate to methods of processing cobalt alloys to increase the tensile strength, yield strength, hardness, wear resistance, and fatigue strength of the alloys. Certain cobalt alloys processed according to various embodiments of the present invention are suitable for use in articles of manufacture, such as, for example, articulating medical implants. DESCRIPTION OF RELATED ART Cobalt alloys are useful in a variety of applications requiring high tensile and fatigue strength, and/or corrosion resistance.
  • cobalt alloys comprising chromium and molybdenum alloy additions, which are commonly referred to as "cobalt-chrome-moly" or “CoCrMo” alloys, have been widely used in both cast and wrought forms to form the articulating component of both knee and hip joint replacements.
  • the implants can degrade during service due to wear.
  • wear means deterioration of at least a portion of a surface due to material removal caused by the relative motion between the at least a portion of the surface and at least a portion of another surface or substance.
  • certain implant surfaces, or “wear surfaces” are subjected to substantial wear during service.
  • wear surface means at least a portion of a surface that is subjected to wear.
  • wear debris refers to material that is removed from the wear surface during wear.
  • metal-on-polymer articulating joints (i.e., joints wherein a metal surface articulates over a polymer surface)
  • polyethylene wear debris is a principal cause of failures requiring replacement of the implant device.
  • the design of implant devices can be limited by the properties of the material used to make the device.
  • the range of motion between the ball and the socket may be limited if the implants are made from materials having a relatively low tensile and/or fatigue strength due to the large size of the implant required.
  • the same implant made using materials having higher tensile and/or fatigue strengths would allow for a larger margin of safety.
  • the use of higher strength materials could allow for the development of smaller implants with a greater range of motion.
  • the use of higher strength materials can permit a device design incorporating a smaller ball size, thereby reducing the volumetric wear rate of a polyethylene cup in a metal- on-polymer joint.
  • Cobalt alloys having improved friction and fatigue properties have also been disclosed.
  • U.S. Patent No. 6,187,045 B1 to Fehring et al. discloses a cobalt alloy having improved fatigue and friction properties with ultra high molecular weight polyethylene (or "UHMWPE"), which is commonly used, for example, to form socket portions of metal-on-polymer implant devices.
  • UHMWPE ultra high molecular weight polyethylene
  • the cobalt alloy of Fehring et al. is essentially free of carbides, nitrides, and sigma second phases that reduce the friction and fatigue properties of the alloy.
  • one embodiment provides a method of processing a cobalt alloy comprising from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, the method comprising cold working the cobalt alloy and aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 50.
  • Another embodiment provides a method of selectively hardening a cobalt alloy including from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, the method comprising cold working at least one selected portion of the cobalt alloy, and aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the cold worked cobalt alloy, the at least one selected portion of the cobalt alloy has a Knoop hardness number of at least 560.
  • Still another embodiment provides a method of processing a cobalt alloy including, in percent by weight, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.05 carbon, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt, the method comprising cold working the cobalt alloy such that at least a portion of the cobalt alloy has a hardness of at least Rockwell C 45 after cold working.
  • cobalt alloys relate to cobalt alloys.
  • one embodiment provides a cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt, wherein at least a portion of the cobalt alloy has a hardness of at least Rockwell C 50.
  • one embodiment provides a method of processing an implant comprising a cobalt alloy, the method comprising cold working at least a portion of the implant and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a hardness of at least Rockwell C 50.
  • Another embodiment provides a method of processing an implant comprising a cobalt alloy, the method comprising cold working at least a portion of the implant and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a Knoop hardness number of at least 560.
  • Other embodiments of the present invention relate to implants and articles of manufacture.
  • one embodiment provides an implant comprising a cobalt alloy, the cobalt alloy including at least a portion having a hardness of at least Rockwell C 50.
  • an implant comprising a cobalt alloy, the cobalt alloy including at least a portion having a Knoop hardness number of at least 560.
  • an implant comprising a cobalt alloy, the cobalt alloy having a percent elongation of at least 10 percent and including a first portion having a Knoop hardness number of at least 560 and a second portion, adjacent the first portion, the second portion having a Knoop hardness number that is less than the Knoop hardness number of the first portion.
  • Still another embodiment provides an article of manufacture comprising a cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt, wherein at least a portion of the alloy has a hardness of at least Rockwell C 50.
  • FIG. 1 is a schematic, cross-sectional view of an implant according to certain embodiments of the present invention.
  • Various embodiments of the present invention are useful in providing cobalt alloys having improved tensile strength, hardness, wear resistance, and fatigue strength as compared to conventionally processed cobalt alloys. Further, certain embodiments of the present invention can be useful in modifying the surface hardness of the cobalt alloys while maintaining a tough, ductile core comparable to conventionally processed cobalt alloys.
  • Wrought cobalt alloys for use in medical implant devices are typically supplied to implant manufacturers in a several conditions as described in "Standard Specification for Wrought Cobalt-28Chromium-6Molybendum Alloys for Surgical Implants," ASTM F1537-00, American Society for Testing and Materials (2001), which is specifically incorporated herein by reference.
  • a typical processing sequence for a warm worked, wrought cobalt alloy suitable for use in a medical implant is as follows. First, the alloy is melted in an air or vacuum induction process, both of which are well known in the art. The alloy is subsequently refined in a vacuum arc refining or an electro-slag refining operation, as known in the art.
  • the alloy ingot is then thermomechanically processed into bars or shape configurations, which are subsequently provided to the implant manufacturer.
  • the implant manufacturer then forms the wrought cobalt alloy, such as by machining and/or forging the alloy, into the desired configuration.
  • wrought alloys in the warm worked condition typically have the highest available tensile strength and hardness, with a minimum tensile strength of approximately 170 kilopounds per square inch (“ksi”), a minimum 0.2%-offset yield strength of approximately 120 ksi, and a typical hardness of approximately Rockwell C 35 ("HRC 35").
  • Rockwell C or “HRC” followed by a number denotes the hardness of a material as measured by the Rockwell hardness test using the "C-scale,” as tested according to ASTM E18-02 which is specifically incorporated by reference herein.
  • conventionally processed cobalt alloys have limitations related to their tensile strength, yield strength, hardness, wear resistance, and fatigue strength.
  • various embodiments of the present invention can be advantageous in providing cobalt alloys having one or more of the following: improved tensile strength, improved yield strength, improved hardness, improved wear resistance, and improved fatigue strength as compared to conventionally processed cobalt alloys.
  • the methods of processing cobalt alloys according to various embodiments of the present invention are useful in processing cobalt alloys including, but not limited to, cobalt alloys containing chromium and molybdenum alloying additions.
  • cobalt alloys that include chromium and molybdenum alloying additions, such as those described in ASTM F 1537-00, are suitable for use in medical or surgical implant devices, or prostheses ("implants").
  • cobalt alloys that are useful in various embodiments of the present invention include, but are not limited to, cobalt alloys comprising from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt.
  • cobalt alloys that are believed to be useful in various embodiments of the present invention include the alloys designated as "Alloy 1" and "Alloy 2," in Table 1 of ASTM F 1537-00.
  • “Alloy 1” is a "low carbon alloy” that comprises up to 0.14 weight percent carbon, from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, up to 1.0 weight percent nickel, up to 0.75 weight percent iron, up to 1.0 weight percent silicon, up to 1.0 weight percent manganese, up to 0.25 weight percent nitrogen, and cobalt.
  • Alloy 2 is a "high carbon alloy” that comprises from 0.15 to 0.35 weight percent carbon, from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, up to 1.0 weight percent nickel, up to 0.75 weight percent iron, up to 1.0 weight percent silicon, up to 1.0 weight percent manganese, up to 0.25 weight percent nitrogen, and cobalt.
  • the cobalt alloy is a cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt.
  • the cobalt alloy is a cobalt alloy comprising, in percent by weight, up to 0.05 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt.
  • one advantage of processing cobalt alloys in accordance with various embodiments of the present invention is that the cobalt alloys can have improved tensile strength, yield strength, hardness, wear resistance, and fatigue strength.
  • a method of processing a cobalt alloy comprising cold working a cobalt alloy which includes from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, such that after cold working, the cobalt alloy has an increased hardness.
  • suitable methods of cold working include, rolling, drawing, swaging, shot peening, and laser peening.
  • cold working the cobalt alloy comprises cold drawing the cobalt alloy.
  • cold drawing can be conducted such that the cobalt alloy has a total reduction in area ranging from 5 percent to 40 percent.
  • cold drawing is conducted such that the cobalt alloy has a total reduction in area ranging from 10 percent to 25 percent.
  • cold working the cobalt alloy comprises cold rolling the cobalt alloy.
  • cold rolling can be conducted such that the alloy has a total reduction in thickness ranging from 5 percent to 40 percent.
  • cold rolling is conducted such that the cobalt alloy has a total reduction in thickness ranging from 10 percent to 25 percent.
  • cobalt and many cobalt alloys have an fee phase that is generally stable at elevated temperatures and which can be stabilized at lower temperatures, such as room temperature, by the addition of certain types and amounts of alloying elements. Further, it is known that cobalt and many cobalt alloys have an hep phase that is generally stable at lower temperatures than the fee phase. See Chester Sims et al., Superallovs I, John Wiley & Sons, Inc., New York (1987) at pages 140-142, which are specifically incorporated by reference herein.
  • one non-limiting embodiment of the present invention comprises processing a cobalt alloy including, in percent by weight, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.05 carbon, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt, by cold working the cobalt alloy such that at least a portion of the cobalt alloy has a hardness of at least Rockwell C 45 after cold working.
  • additional process ng of the cobalt alloy may be desired to further increase the tensile strength, y eld strength, hardness, wear resistance, or fatigue strength of the cobalt alloy, wh le maintaining at least a minimum level of ductility in the alloy.
  • the cobalt alloy is aged to further increase the desired properties as compared to the cold worked, but unaged cobalt alloy.
  • the cold worked cobalt alloy can be aged to further increase one or more of the following properties: tensile strength, yield strength, hardness, wear resistance, and fatigue strength, while maintaining at least a minimum level of ductility in the alloy.
  • the increases in tensile strength, yield strength, hardness, wear resistance, and/or fatigue strength of the cobalt alloy after cold working and aging are believed to be due to the at least partial transformation of the crystal structure of the cobalt alloy from an fee phase to an hep phase during cold working, combined with further structural changes that occur in the alloy upon aging. While the structural changes that occur in the alloy upon aging are not fully understood, it has been observed by the inventors that substantial increases in both the strength and hardness of the alloy after aging the cold worked cobalt alloy can be achieved.
  • both the type and amount of cold work and the aging time and temperature must be controlled to achieve the desired properties.
  • the inventors have observed that if a cold worked cobalt alloy is aged for too long a time at too high of a temperature, the properties of the cold worked cobalt alloy after aging can decrease as compared to the cold worked but unaged cobalt alloy.
  • the cold worked cobalt alloy is aged for too long of a time or at too high of a temperature, the cobalt , alloy may undergo recovery and recrystallization during aging, or the hep phase may develop in an undesirable size and form, which can result in a decrease in the properties discussed above.
  • aging may be less effective or, in some cases, ineffective in producing the desired properties.
  • the cold worked cobalt alloy is aged at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, such that after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 50.
  • the cobalt alloy after cold working the cobalt alloy according to this embodiment, at least a portion of the cobalt alloy can comprise an hep crystal structure.
  • the cobalt alloys formed according to this embodiment of the present invention can comprise an fee phase matrix with one or more regions of hep phase distributed in the fee phase matrix.
  • the cold worked cobalt alloy is aged at a temperature ranging from 1000°F to 1200°F for a time period ranging from 1 hour to 24 hours, such that after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 53, a 0.2%-offset yield strength of at least 210 kilopounds per square inch, and a tensile strength of at least 260 kilopounds per square inch.
  • the present invention further contemplates methods of processing at least one selected portion of the cobalt alloy in order to increase the hardness of the at least one selected portion.
  • one non-limiting embodiment of the present invention provides a method of selectively hardening a cobalt alloy including from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt.
  • the method comprises cold working at least one selected portion of the cobalt alloy, and subsequently aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours. After aging, the at least one selected portion of the cobalt alloy has a Knoop Hardness Number ("KHN”) of at least 560.
  • KHN Knoop Hardness Number
  • the at least one selected portion can include at least a portion of at least one surface of the alloy, and after aging the cold worked cobalt alloy, at least a portion of the at least one surface of the cobalt alloy has a KHN of at least 560.
  • a cobalt alloy having a hardened surface and tough "core” can be produced.
  • surface means the region extending from the exterior of the alloy inwardly approximately 0.4 millimeters ("mm") or less.
  • core or “subsurface” mean regions interior to the surface of the alloy.
  • At least a portion of at least one surface of the cobalt alloy can be cold worked prior to aging, such that after aging, the at least a portion of the at least one surface of the cobalt alloy has a hardness greater than subsurface or core regions of the cobalt alloy.
  • the selected portions of the cobalt alloy can have wear properties associated with a hardened alloy, while the cobalt alloy retains much of its bulk ductility.
  • such a structure is believed to be advantageous in imparting both wear resistance and toughness to the cobalt alloy.
  • one embodiment of the present invention comprises cold working at least one selected portion of a cobalt alloy.
  • Selective cold working can include any method of cold working know in the art that permits processing of selected portions of the cobalt alloy.
  • suitable methods of cold working at least one selected portion of the cobalt alloy include, but are not limited to: swaging, shot peening, and laser peening.
  • the cobalt alloy is aged such that, after aging, the at least one selected portion of the cobalt alloy has a hardness that is higher than an unselected portion of the alloy.
  • at least a portion of at least one surface of a cobalt alloy can be selectively cold worked by shot peening the at least a portion of the at least one surface of the alloy.
  • the cobalt alloy can be aged at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours.
  • the at least a portion of the at least one surface of the cobalt alloy that was cold worked can have a KHN of at least 560, whereas an unselected portion of the alloy, which may include subsurface or core regions of the alloy, can have a KHN less than 560.
  • the at least one selected portion of the cobalt alloy can include at least a portion of at least one surface of the alloy that can be selectively cold worked by laser peening.
  • Knoop hardness measurements are generally conducted in accordance with ASTM E384-99, which is specifically incorporated by reference herein.
  • the Knoop hardness test is generally considered to be a "microindentation" hardness test, which can be used to measure the hardness of specific regions of the alloy that are either too small or too thin to be measured using a "macroindentiation” hardness test, such as the Rockwell hardness test previously described. See ASTM E384-99 at page 3. Accordingly, when the at least one portion of the cobalt alloy selected for cold working includes at least a portion of a surface of the cobalt alloy, Knoop hardness measurements are preferably used to measure the hardness of the at least a portion of the surface of the cobalt alloy after aging.
  • macroindentation hardness tests such as the Rockwell hardness tests previously described, can be used to measure the hardness of the at least one selected portion of the alloy when the at least one selected portion includes both surface and subsurface regions and the at least one selected portion has a thickness compatible with the Rockwell hardness test. See ASTM E18-02 at pages 5-6.
  • the method for selectively hardening a cobalt alloy including from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt comprises cold working at least one selected portion of the cobalt alloy.
  • the at least one selected portion includes both surface and subsurface regions of the cobalt alloy.
  • the cobalt alloy is aged in a furnace at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours.
  • the at least one selected portion of the cobalt alloy has a hardness of at least Rockwell C 50.
  • the cobalt alloy comprises, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt; and has a hardness of at least Rockwell C 50.
  • at least a portion of the alloy can comprise an hep crystal structure.
  • the cobalt alloy can comprise an fee phase matrix having one or more regions of an hep phase distributed in the fee phase matrix.
  • the cobalt alloy according to this embodiment of the present invention can be a cold worked and aged alloy. Suitable methods of cold working and aging the alloy are described above in detail.
  • the cobalt alloy comprises, in percent by weight, up to 0.05 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt; wherein at least a portion of the cobalt alloy comprises an hep crystal structure.
  • the cobalt alloy can comprise an fee phase matrix having one or more regions of an hep phase distributed in the fee phase matrix.
  • cobalt alloys according to this non-limiting embodiment can have a hardness of at least Rockwell C 50 and be cold worked and aged.
  • cobalt alloys comprising chromium and molybdenum alloying additions are commonly used in medical or surgical implant applications.
  • medical or surgical implants for which these cobalt alloys may be used include: orthopedic implants including, but not limited to, hip and knee joints implants; shoulder implants; spinal components and devices including, but not limited to, articulating components; cardiovascular components and devices including, but not limited to, wires, cables, and stents; and fracture fixation devices including, but not limited to plates and screws.
  • certain non- limiting embodiments of the present invention contemplate implants comprising cobalt alloys and methods of processing implants comprising cobalt alloys.
  • One non-limiting embodiment of the present invention provides a method of processing an implant comprising a cobalt alloy.
  • the method according to this non- limiting embodiment comprises cold working at least a portion of the implant, and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a hardness of at least Rockwell C 50.
  • the at least a portion of the implant that has a hardness of at least Rockwell C 50 can comprise both surface and subsurface regions of the implant.
  • the at least a portion of the implant that has a hardness of at least Rockwell C 50 can include the at least a portion of a wear surface of the implant and subsurface regions adjacent the wear surface.
  • the at least a portion of the implant can include, for example, the "ball" portion of a ball and socket joint implant.
  • the at least a portion of the implant that has a hardness of at least Rockwell C 50 can comprise an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
  • the method of processing an implant comprising a cobalt alloy comprises cold working at least a portion of the implant, and aging the implant after cold working the at least one portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a KHN of at least 560.
  • the at least a portion of the implant that has a KHN of at least 560 can include at least a portion of a wear surface of the implant.
  • the at least a portion of the implant that has a KHN of at least 560 can comprise an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
  • One non-limiting embodiment of the present invention provides an implant comprising a cobalt alloy, wherein the cobalt alloy includes at least a portion having a KHN of at least 560.
  • KHN of at least 560 can comprise an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
  • the cobalt alloy according to this embodiment can be a cold worked and aged alloy.
  • at least a region of a wear surface of the implant can include the at least a portion of the cobalt alloy having a KHN of at least 560.
  • the deterioration of implant wear surfaces can be particularly problematic and can result in a failure of the implant.
  • conventional methods of nitriding the surface of cobalt alloys to increase surface hardness can pose reliability concerns with respect to the nitride layer.
  • the implants according to this non-limiting embodiment of the present invention can be particularly advantageous in providing wear surfaces having increased hardness, without the need to nitride the surface of the cobalt alloy. Accordingly, although not required, according to this embodiment, the at least a portion of the cobalt alloy having a KHN of at least 560 is an un-nitrided surface comprising less than 5 atomic percent nitrogen.
  • the implant comprises a cobalt alloy, the cobalt alloy including at least a portion having a hardness of at least Rockwell C 50.
  • both surface and subsurface regions of the implant can include the at least a portion of the cobalt alloy having a hardness of at least Rockwell C 50.
  • the at least a portion of the cobalt alloy having a hardness of at least Rockwell C 50 can comprise less than 5 atomic percent nitrogen.
  • the cobalt alloy according to this embodiment can be a cold worked and aged alloy.
  • the implant comprises a cobalt alloy including at least a portion having a hardness of at least Rockwell C 50, the at least a portion having a hardness of at least Rockwell C 50 comprising an hep crystal structure.
  • the at least a portion having a hardness of at least Rockwell C 50 can comprise an fee phase matrix including one or more regions of an hep phase distributed in the fee phase matrix.
  • Cobalt alloys that are suitable for use in the implants according to the present invention include those cobalt alloys previously discussed.
  • the cobalt alloy can comprise, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt.
  • the implant comprises a cobalt alloy comprising, in percent by weight, up to 0.14 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt.
  • the implant comprises a cobalt alloy comprising, in percent by weight, up to 0.05 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt.
  • the implant comprises a cobalt alloy comprising, in percent by weight, from 0.15 to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt.
  • the implant comprises a cobalt alloy, the cobalt alloy having a percent elongation of at least 10 percent and including a first portion having a KHN of at least 560, and a second portion, adjacent the first portion, the second portion having a KHN that is less than the KHN of the first portion.
  • the first portion of the cobalt alloy having a KHN of at least 560 can comprise less than 5 atomic percent nitrogen.
  • At least a region of a wear surface of the implant can comprise the first portion of the cobalt alloy and a subsurface region of the implant can comprise the second portion of the cobalt alloy.
  • the implant (which is shown schematically in cross-section), generally designated as 10, can comprise a wear surface 12, and a subsurface region 16.
  • the wear surface 12 of implant 10 can comprise a first portion 14 of cobalt alloy having a KHN of at least 560 and the subsurface region 16, adjacent the wear surface 12, can comprise a second portion 18 of the cobalt alloy having a KHN less than the first portion 14 of the cobalt alloy, as indicated schematically by the shading in Fig. 1.
  • the non-limiting embodiments of the present invention further include articles of manufacture comprising a cobalt alloy comprising up to 0.35 weight percent carbon, from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, up to 1.0 weight percent nickel, up to 0.75 weight percent iron, up to 1.0 weight percent silicon, up to 1.0 weight percent manganese, up to 0.25 weight percent nitrogen, and cobalt; the cobalt alloy having a hardness of at least Rockwell C 50 and/or a KHN of at least 560.
  • a cobalt alloy comprising up to 0.35 weight percent carbon, from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, up to 1.0 weight percent nickel, up to 0.75 weight percent iron, up to 1.0 weight percent silicon, up to 1.0 weight percent manganese, up to 0.25 weight percent nitrogen, and cobalt; the cobalt alloy having a hardness of at least Rockwell C 50 and/or a KHN of at least 560.
  • Non-limiting examples of articles of manufacture according to the present invention include, but are not limited to: orthopedic implants including, but not limited to, hip and knee joints implants; shoulder implants; spinal components and devices including, but not limited to, articulating components; cardiovascular components and devices including, but not limited to, wires, cables, and stents; and fracture fixation devices including, but not limited to plates and screws.
  • Example 1 An ingot of a cobalt alloy having the low-carbon, "Alloy 1" composition given in ASTM F1537-00 was prepared as follows. The alloy was vacuum induction melted and subsequently refined in an electroslag reduction process, as well known in the art. The resulting ingot was thermomechanically processed by hot rolling into a bar having a diameter of approximately 0.39 inches. The bar was subsequently cold worked by cold drawing to achieve a 20 percent reduction in area. Thereafter, samples taken from the cold worked bar were subjected to aging treatments as indicated in Table 1 below.
  • both the UTS and 0.2% YS values for the as- drawn (i.e., cold worked, but unaged) sample is higher than the average UTS and 0.2%YS for the as-rolled (i.e., warm worked only) sample.
  • the Elong. % and %RA for the as-drawn sample is lower than the average values for the as-rolled samples, it is believed that the ductility of the as-drawn material is still acceptable for many applications, including medical implant applications.
  • the samples that were aged at temperatures up to about 1500°F from 1 to 24 hours also displayed higher UTS and 0.2% YS values than the average UTS and 0.2% YS values for the as-rolled samples.
  • the samples that were aged from 1 to 24 hours at a temperature of up to about 1200°F had higher UTS, 0.2% YS, and HRC values.
  • improved HRC values as compared to the as-drawn sample were also observed after aging from 1 to 24 hours at temperatures up to about 1500°F.
  • Example 2 An additional cobalt alloy bar formed as described above in Example 1 was selectively cold worked as follows.
  • An as-rolled and centerless ground bar was commercially shot peened with a number 550 shot to an intensity of 0.008 to 0.0012 with 400 percent coverage. After shot peening, the bar was heat treated at 1100°F for 1 hour and air cooled.
  • a cross sectional sample was cut from the aged bar and prepared for microhardness testing.
  • Knoop microhardness readings were taken according to ASTM E384-99, using a 300-gram load. The first Knoop microhardness reading was taken as close as possible to the exterior of the sample, with subsequent readings being in 0.05 mm increments progressing toward the center of the sample, i.e. toward the core of the bar. The results of the Knoop microhardness tests are presented below in Table 2 as a function of distance away from the exterior of the sample. Table 2
  • portions of the surface of the bar have a higher hardness than the subsurface regions of the bar.
  • Example 2 is believed to be consistent with the depth of maximum residual stress observed from shot peening. However, it is believed that deeper hardening results can be expected with other selective cold working processes, such as, but not limited to, the laser peening process, which is believed to be capable of imparting a 4-fold increase in the depth of maximum residual stresses.
  • Example 3 A cobalt alloy bar was prepared by warm rolling. Samples were taken for tesing in the warm rolled condition ("Comparative Sample") and after aging at 1100°F for 1 hour and 24 hours (“Sample A”). The remainder of the bar was cold worked by cold rolling to achieve a 20% reduction in area, followed by aging at 1100°F for 1 hour (“Sample B”). Room temperature tensile and hardness tests were performed on each of the samples. The results of these tests are presented below in Table 3.
  • Sample B shows a large increase in strength and hardness as compared to both the Comparative Sample and Sample A. Similar increases strength and hardness were not observed for Sample A as compared to the Comparative Sample. In fact, the tensile strength and hardness values observed for Sample A are typical of warm worked material.
  • Sample B which was processed according to one embodiment of the present invention, has a higher runout stress than the Comparative Sample.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Metallurgy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

Embodiments of the present invention provide methods of processing cobalt alloys including, in weight percent, from 26 to 30 chromium, from 5 to 7 molybdenum, and greater than 50 cobalt, the methods comprises cold working and aging the alloys such that after aging the cobalt alloys have a hardness of at least Rockwell C 50. Other embodiments provide methods of selectively cold working at least one portion of a cobalt alloy, and subsequently aging the alloy, such after aging, the selectively cold worked portions of the alloy have a higher hardness value then portions of the alloy that were not selectively cold worked. The present invention also discloses cobalt alloys, implants, and articles of manufacture made from cobalt alloys within the present invention.

Description

COBALT ALLOYS, METHODS OF MAKING COBALT ALLOYS, AND IMPLANTS AND ARTICLES OF MANUFACTURE MADE THEREFROM
CROSS-REFERENCE TO RELATED APPLICATIONS Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable.
REFERENCE TO A SEQUENCE LISTING Not applicable.
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION The various embodiments of the present invention generally relate to cobalt alloys, methods of processing cobalt alloys, and articles of manufacture made therefrom. More particularly, certain embodiments of the invention relate to methods of processing cobalt alloys to increase the tensile strength, yield strength, hardness, wear resistance, and fatigue strength of the alloys. Certain cobalt alloys processed according to various embodiments of the present invention are suitable for use in articles of manufacture, such as, for example, articulating medical implants. DESCRIPTION OF RELATED ART Cobalt alloys are useful in a variety of applications requiring high tensile and fatigue strength, and/or corrosion resistance. For example, although not limiting herein, applications for which the properties of cobalt alloy are particularly well-suited include medical prosthetic or implant applications. More specifically, the fatigue properties of cobalt alloys are desirable for use in implants subjected to cyclical loading, such as hip or knee joint implants; whereas the corrosion resistant properties of cobalt alloys are desirable for biocompatibility. More particularly, cobalt alloys comprising chromium and molybdenum alloy additions, which are commonly referred to as "cobalt-chrome-moly" or "CoCrMo" alloys, have been widely used in both cast and wrought forms to form the articulating component of both knee and hip joint replacements.
However, one shortcoming of implants made from such conventional cobalt alloys is that the implants can degrade during service due to wear. As used herein the term "wear" means deterioration of at least a portion of a surface due to material removal caused by the relative motion between the at least a portion of the surface and at least a portion of another surface or substance. For example, it is known that certain implant surfaces, or "wear surfaces," are subjected to substantial wear during service. As used herein, the term "wear surface" means at least a portion of a surface that is subjected to wear.
The deterioration of implant wear surfaces can ultimately result in the need to replace the implant. One particular problem associated with the deterioration of implant wear surfaces is the generation of wear debris. As used herein, the term "wear debris" refers to material that is removed from the wear surface during wear. For example, in "metal-on-polymer" articulating joints (i.e., joints wherein a metal surface articulates over a polymer surface), polyethylene wear debris is a principal cause of failures requiring replacement of the implant device. Further, concerns have been reported regarding the long term effects on the human body of small, high surface area alloy wear debris generated from wear of "metal-on-metal" articulating joints (i.e., joints wherein a metal surface articulates over another metal surface) and the elevated serum cobalt and chromium levels observed from wear of such joints.
In addition, the design of implant devices can be limited by the properties of the material used to make the device. For example, in ball and socket joint implants, the range of motion between the ball and the socket may be limited if the implants are made from materials having a relatively low tensile and/or fatigue strength due to the large size of the implant required. In contrast, the same implant made using materials having higher tensile and/or fatigue strengths would allow for a larger margin of safety. Alternatively, the use of higher strength materials could allow for the development of smaller implants with a greater range of motion. Additionally, the use of higher strength materials can permit a device design incorporating a smaller ball size, thereby reducing the volumetric wear rate of a polyethylene cup in a metal- on-polymer joint.
While increasing the hardness of implant wear surfaces can reduce the occurrence of wear-related implant failure by resisting the generation of wear debris during service, attempts to increase the hardness of implants have generally focused on nitriding or coating the surface of the implants. For example, U.S. Patent No. 5,308,412 to Shβtty et al. describes a method of hardening the surface of a cobalt- chromium based orthopedic implant device. The implant device is hardened by exposure to molecular nitrogen gas or ionized nitrogen at a temperature ranging from 500°F to 2400°F for a time sufficient to permit the diffusion of nitrogen into the surface of the implant. The nitrogen diffusion results in a hardened diffusion layer and hardened outer surface layer. See Shetty et al. at col. 3, lines 21-28. According to Shetty et al., the Knoop hardness of the implant can be increased up to 5000 KHN depending upon the temperature, time, and nitrogen gas pressure used. See Shetty et al., at col. 6, lines 24-26. U.S. Patent No. 5,180,394 to Davidson discloses orthopedic implants coated with a wear-resistant coating of zirconium oxide, nitride, carbide, or carbonitride. For example, a zirconium containing alloy surface layer can be applied to a conventional implant material and thereafter treated to form a diffusion-bonded layer of zirconium oxide on the surface of the implant. See Davidson at col. 9, lines 53-57.
Cobalt alloys having improved friction and fatigue properties have also been disclosed. For example, U.S. Patent No. 6,187,045 B1 to Fehring et al. discloses a cobalt alloy having improved fatigue and friction properties with ultra high molecular weight polyethylene (or "UHMWPE"), which is commonly used, for example, to form socket portions of metal-on-polymer implant devices. In particular, the cobalt alloy of Fehring et al. is essentially free of carbides, nitrides, and sigma second phases that reduce the friction and fatigue properties of the alloy.
However, utilization of coatings on implant devices has not been widespread due to concerns about reliability, and there remains a need for improved cobalt alloys for orthopedic implants that can increase the service life of the implant and reduce the number of revision surgeries necessary to replace failed implants. In particular, it would be desirable to develop cost-effective methods of processing cobalt alloys to increase the tensile strength, yield strength, hardness, wear resistance, and fatigue strength of the cobalt alloys that can be used in conjunction with a variety of cobalt alloy compositions.
BRIEF SUMMARY OF THE INVENTION Embodiments of the present invention related to methods of processing cobalt alloys. For example, one embodiment provides a method of processing a cobalt alloy comprising from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, the method comprising cold working the cobalt alloy and aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 50. Another embodiment provides a method of selectively hardening a cobalt alloy including from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, the method comprising cold working at least one selected portion of the cobalt alloy, and aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the cold worked cobalt alloy, the at least one selected portion of the cobalt alloy has a Knoop hardness number of at least 560. Still another embodiment provides a method of processing a cobalt alloy including, in percent by weight, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.05 carbon, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt, the method comprising cold working the cobalt alloy such that at least a portion of the cobalt alloy has a hardness of at least Rockwell C 45 after cold working.
Other embodiments of the present invention relate to cobalt alloys. For example, one embodiment provides a cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt, wherein at least a portion of the cobalt alloy has a hardness of at least Rockwell C 50.
Still other embodiments of the present invention relate to methods of processing implants. For example, one embodiment provides a method of processing an implant comprising a cobalt alloy, the method comprising cold working at least a portion of the implant and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a hardness of at least Rockwell C 50. Another embodiment provides a method of processing an implant comprising a cobalt alloy, the method comprising cold working at least a portion of the implant and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a Knoop hardness number of at least 560. Other embodiments of the present invention relate to implants and articles of manufacture. For example, one embodiment provides an implant comprising a cobalt alloy, the cobalt alloy including at least a portion having a hardness of at least Rockwell C 50. Another embodiment provides, an implant comprising a cobalt alloy, the cobalt alloy including at least a portion having a Knoop hardness number of at least 560. Another embodiment provides, an implant comprising a cobalt alloy, the cobalt alloy having a percent elongation of at least 10 percent and including a first portion having a Knoop hardness number of at least 560 and a second portion, adjacent the first portion, the second portion having a Knoop hardness number that is less than the Knoop hardness number of the first portion. Still another embodiment provides an article of manufacture comprising a cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt, wherein at least a portion of the alloy has a hardness of at least Rockwell C 50.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S) Certain embodiments of the present invention will be better understood if read in conjunction with the following figure in which: Fig. 1 is a schematic, cross-sectional view of an implant according to certain embodiments of the present invention.
DETAILED DESCRIPTION OF THE INVENTION Various embodiments of the present invention are useful in providing cobalt alloys having improved tensile strength, hardness, wear resistance, and fatigue strength as compared to conventionally processed cobalt alloys. Further, certain embodiments of the present invention can be useful in modifying the surface hardness of the cobalt alloys while maintaining a tough, ductile core comparable to conventionally processed cobalt alloys. Wrought cobalt alloys for use in medical implant devices are typically supplied to implant manufacturers in a several conditions as described in "Standard Specification for Wrought Cobalt-28Chromium-6Molybendum Alloys for Surgical Implants," ASTM F1537-00, American Society for Testing and Materials (2001), which is specifically incorporated herein by reference. For example, a typical processing sequence for a warm worked, wrought cobalt alloy suitable for use in a medical implant is as follows. First, the alloy is melted in an air or vacuum induction process, both of which are well known in the art. The alloy is subsequently refined in a vacuum arc refining or an electro-slag refining operation, as known in the art. The alloy ingot is then thermomechanically processed into bars or shape configurations, which are subsequently provided to the implant manufacturer. The implant manufacturer then forms the wrought cobalt alloy, such as by machining and/or forging the alloy, into the desired configuration. As described in ASTM F1537-00, wrought alloys in the warm worked condition typically have the highest available tensile strength and hardness, with a minimum tensile strength of approximately 170 kilopounds per square inch ("ksi"), a minimum 0.2%-offset yield strength of approximately 120 ksi, and a typical hardness of approximately Rockwell C 35 ("HRC 35"). As used herein, the term "Rockwell C" or "HRC" followed by a number denotes the hardness of a material as measured by the Rockwell hardness test using the "C-scale," as tested according to ASTM E18-02 which is specifically incorporated by reference herein.
However, as previously discussed, conventionally processed cobalt alloys have limitations related to their tensile strength, yield strength, hardness, wear resistance, and fatigue strength. As discussed below in more detail, various embodiments of the present invention can be advantageous in providing cobalt alloys having one or more of the following: improved tensile strength, improved yield strength, improved hardness, improved wear resistance, and improved fatigue strength as compared to conventionally processed cobalt alloys. The methods of processing cobalt alloys according to various embodiments of the present invention are useful in processing cobalt alloys including, but not limited to, cobalt alloys containing chromium and molybdenum alloying additions. As will be recognized by those skilled in the art, cobalt alloys that include chromium and molybdenum alloying additions, such as those described in ASTM F 1537-00, are suitable for use in medical or surgical implant devices, or prostheses ("implants"). For example, cobalt alloys that are useful in various embodiments of the present invention include, but are not limited to, cobalt alloys comprising from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt.
More particularly, specific, non-limiting examples of cobalt alloys that are believed to be useful in various embodiments of the present invention include the alloys designated as "Alloy 1" and "Alloy 2," in Table 1 of ASTM F 1537-00. As described in ASTM F1537-00, "Alloy 1" is a "low carbon alloy" that comprises up to 0.14 weight percent carbon, from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, up to 1.0 weight percent nickel, up to 0.75 weight percent iron, up to 1.0 weight percent silicon, up to 1.0 weight percent manganese, up to 0.25 weight percent nitrogen, and cobalt. Further, according to ASTM F1537- 00, "Alloy 2" is a "high carbon alloy" that comprises from 0.15 to 0.35 weight percent carbon, from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, up to 1.0 weight percent nickel, up to 0.75 weight percent iron, up to 1.0 weight percent silicon, up to 1.0 weight percent manganese, up to 0.25 weight percent nitrogen, and cobalt.
In one specific, non-limiting example, the cobalt alloy is a cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt. In another specific, non-limiting example, the cobalt alloy is a cobalt alloy comprising, in percent by weight, up to 0.05 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt.
Other non-limiting examples of cobalt alloys that are believed to be useful according various non-limiting embodiments of the present invention include those compositions disclosed in U.S. Patent No. 6,187,045 B1 , the disclosure of which is specifically incorporated by reference herein.
As previously discussed, one advantage of processing cobalt alloys in accordance with various embodiments of the present invention is that the cobalt alloys can have improved tensile strength, yield strength, hardness, wear resistance, and fatigue strength. In one non-limiting embodiment according to the present invention, there is provided a method of processing a cobalt alloy comprising cold working a cobalt alloy which includes from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, such that after cold working, the cobalt alloy has an increased hardness. Non-limiting examples of suitable methods of cold working include, rolling, drawing, swaging, shot peening, and laser peening.
In one specific, non-limiting embodiment of the present invention, cold working the cobalt alloy comprises cold drawing the cobalt alloy. Although not required, cold drawing can be conducted such that the cobalt alloy has a total reduction in area ranging from 5 percent to 40 percent. In some non-limiting embodiments, cold drawing is conducted such that the cobalt alloy has a total reduction in area ranging from 10 percent to 25 percent.
In another specific, non-limiting embodiment, cold working the cobalt alloy comprises cold rolling the cobalt alloy. Although not required, cold rolling can be conducted such that the alloy has a total reduction in thickness ranging from 5 percent to 40 percent. In some non-limiting embodiments, cold rolling is conducted such that the cobalt alloy has a total reduction in thickness ranging from 10 percent to 25 percent.
Cold working a cobalt alloy will result in an increase in dislocation density in the material, which in turn will generally result in an increase in the ultimate tensile strength, yield strength, and hardness of the alloy, while generally decreasing the ductility of the alloy. Further, cold working certain cobalt alloys comprising a matrix phase having a face centered cubic ("fee") crystal structure (of "fee phase") can result in an at least partial transformation of the fee phase to a phase having a hexagonal close packed ("hep") crystal structure (or "hep phase"), which can also result in increases in the hardness and strength of the material. The orientation of atoms in these crystal structures are well known in the art, for example, see William Callister, Jr., Materials Science and Engineering: An Indroduction. 2nd Ed.. John Wiley & Sons, Inc., New York (1991) at pages 32-36, which are specifically incorporated by reference herein.
It will be appreciated by those skilled in the art that cobalt and many cobalt alloys have an fee phase that is generally stable at elevated temperatures and which can be stabilized at lower temperatures, such as room temperature, by the addition of certain types and amounts of alloying elements. Further, it is known that cobalt and many cobalt alloys have an hep phase that is generally stable at lower temperatures than the fee phase. See Chester Sims et al., Superallovs I, John Wiley & Sons, Inc., New York (1987) at pages 140-142, which are specifically incorporated by reference herein. Conventional cobalt alloys having the compositions designated in ASTM F1537-00 as "Alloy 1 " and "Alloy 2" will predominately comprise the fee phase at room temperature due, in part, to the type and amount of alloying additions and the processing history of the material. Accordingly, implants made from such conventional cobalt alloys will have the wear and hardness properties associated with the fee phase. Although not intending to be bound by any particular theory, it is believed by the inventors that by appropriately cold working these alloys, the fee phase can be at least partially transformed to the hep phase, which can result in an increase in the hardness and strength of the cobalt alloy.
For certain applications, the properties of the cobalt alloy after cold working will be sufficient such that no further processing of the alloy is required. For example, one non-limiting embodiment of the present invention comprises processing a cobalt alloy including, in percent by weight, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.05 carbon, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt, by cold working the cobalt alloy such that at least a portion of the cobalt alloy has a hardness of at least Rockwell C 45 after cold working. However, as discussed below, for other applications additional process ng of the cobalt alloy may be desired to further increase the tensile strength, y eld strength, hardness, wear resistance, or fatigue strength of the cobalt alloy, wh le maintaining at least a minimum level of ductility in the alloy.
Accordingly, after cold working the cobalt alloy as discussed above, in some non-limiting embodiments of the present invention, the cobalt alloy is aged to further increase the desired properties as compared to the cold worked, but unaged cobalt alloy. For example, although not limiting herein, the cold worked cobalt alloy can be aged to further increase one or more of the following properties: tensile strength, yield strength, hardness, wear resistance, and fatigue strength, while maintaining at least a minimum level of ductility in the alloy. While not intending to be bound by any particular theory, the increases in tensile strength, yield strength, hardness, wear resistance, and/or fatigue strength of the cobalt alloy after cold working and aging are believed to be due to the at least partial transformation of the crystal structure of the cobalt alloy from an fee phase to an hep phase during cold working, combined with further structural changes that occur in the alloy upon aging. While the structural changes that occur in the alloy upon aging are not fully understood, it has been observed by the inventors that substantial increases in both the strength and hardness of the alloy after aging the cold worked cobalt alloy can be achieved.
However, both the type and amount of cold work and the aging time and temperature must be controlled to achieve the desired properties. The inventors have observed that if a cold worked cobalt alloy is aged for too long a time at too high of a temperature, the properties of the cold worked cobalt alloy after aging can decrease as compared to the cold worked but unaged cobalt alloy. Again, while not intending to be bound by any particular theory, it is believed that if the cold worked cobalt alloy is aged for too long of a time or at too high of a temperature, the cobalt , alloy may undergo recovery and recrystallization during aging, or the hep phase may develop in an undesirable size and form, which can result in a decrease in the properties discussed above. Further, if sufficient cold work is not introduced into the cobalt alloy, aging may be less effective or, in some cases, ineffective in producing the desired properties.
Accordingly, in one non-limiting embodiment of the present invention, the cold worked cobalt alloy is aged at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, such that after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 50. For example, although not limiting herein, after cold working the cobalt alloy according to this embodiment, at least a portion of the cobalt alloy can comprise an hep crystal structure. Thus, although not limiting herein, the cobalt alloys formed according to this embodiment of the present invention can comprise an fee phase matrix with one or more regions of hep phase distributed in the fee phase matrix.
In another, non-limiting embodiment of the present invention, the cold worked cobalt alloy is aged at a temperature ranging from 1000°F to 1200°F for a time period ranging from 1 hour to 24 hours, such that after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 53, a 0.2%-offset yield strength of at least 210 kilopounds per square inch, and a tensile strength of at least 260 kilopounds per square inch. The present invention further contemplates methods of processing at least one selected portion of the cobalt alloy in order to increase the hardness of the at least one selected portion. For example, one non-limiting embodiment of the present invention provides a method of selectively hardening a cobalt alloy including from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt. The method comprises cold working at least one selected portion of the cobalt alloy, and subsequently aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours. After aging, the at least one selected portion of the cobalt alloy has a Knoop Hardness Number ("KHN") of at least 560. According to this non- limiting embodiment, the at least one selected portion can include at least a portion of at least one surface of the alloy, and after aging the cold worked cobalt alloy, at least a portion of the at least one surface of the cobalt alloy has a KHN of at least 560.
While not meaning to be bound by any particular theory, it is believed by the inventors that by selectively cold working portions of the cobalt alloy prior to aging, and in particular, cold working surface portions of the alloy, a cobalt alloy having a hardened surface and tough "core" can be produced. As used herein, the term "surface" means the region extending from the exterior of the alloy inwardly approximately 0.4 millimeters ("mm") or less. As used herein, the terms "core" or "subsurface" mean regions interior to the surface of the alloy. For example, at least a portion of at least one surface of the cobalt alloy can be cold worked prior to aging, such that after aging, the at least a portion of the at least one surface of the cobalt alloy has a hardness greater than subsurface or core regions of the cobalt alloy. By selectively cold working the cobalt alloy in this manner prior, the selected portions of the cobalt alloy can have wear properties associated with a hardened alloy, while the cobalt alloy retains much of its bulk ductility. Although not limiting herein, such a structure is believed to be advantageous in imparting both wear resistance and toughness to the cobalt alloy. For example, one embodiment of the present invention comprises cold working at least one selected portion of a cobalt alloy. Selective cold working can include any method of cold working know in the art that permits processing of selected portions of the cobalt alloy. Examples of suitable methods of cold working at least one selected portion of the cobalt alloy include, but are not limited to: swaging, shot peening, and laser peening. After selectively cold working, the cobalt alloy is aged such that, after aging, the at least one selected portion of the cobalt alloy has a hardness that is higher than an unselected portion of the alloy. For example, although not limiting herein, at least a portion of at least one surface of a cobalt alloy can be selectively cold worked by shot peening the at least a portion of the at least one surface of the alloy. Thereafter, the cobalt alloy can be aged at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours. After aging the selectively cold worked cobalt alloy, the at least a portion of the at least one surface of the cobalt alloy that was cold worked can have a KHN of at least 560, whereas an unselected portion of the alloy, which may include subsurface or core regions of the alloy, can have a KHN less than 560. In another non-limiting example, the at least one selected portion of the cobalt alloy can include at least a portion of at least one surface of the alloy that can be selectively cold worked by laser peening.
Knoop hardness measurements are generally conducted in accordance with ASTM E384-99, which is specifically incorporated by reference herein. The Knoop hardness test is generally considered to be a "microindentation" hardness test, which can be used to measure the hardness of specific regions of the alloy that are either too small or too thin to be measured using a "macroindentiation" hardness test, such as the Rockwell hardness test previously described. See ASTM E384-99 at page 3. Accordingly, when the at least one portion of the cobalt alloy selected for cold working includes at least a portion of a surface of the cobalt alloy, Knoop hardness measurements are preferably used to measure the hardness of the at least a portion of the surface of the cobalt alloy after aging. Alternatively, macroindentation hardness tests, such as the Rockwell hardness tests previously described, can be used to measure the hardness of the at least one selected portion of the alloy when the at least one selected portion includes both surface and subsurface regions and the at least one selected portion has a thickness compatible with the Rockwell hardness test. See ASTM E18-02 at pages 5-6. For example, although not limiting herein, in another embodiment of the present invention, the method for selectively hardening a cobalt alloy including from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, comprises cold working at least one selected portion of the cobalt alloy. According to this non-limiting embodiment, the at least one selected portion includes both surface and subsurface regions of the cobalt alloy. After cold working, the cobalt alloy is aged in a furnace at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours. After aging, the at least one selected portion of the cobalt alloy has a hardness of at least Rockwell C 50.
Various non-limiting embodiments of the present invention further contemplate cobalt alloys as are described below in detail. In one non-limiting embodiment of the present invention, the cobalt alloy comprises, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt; and has a hardness of at least Rockwell C 50. Although not limiting herein, according to this non-limiting embodiment at least a portion of the alloy can comprise an hep crystal structure. For example, although not limiting herein, the cobalt alloy can comprise an fee phase matrix having one or more regions of an hep phase distributed in the fee phase matrix. Further, although not limiting herein, the cobalt alloy according to this embodiment of the present invention can be a cold worked and aged alloy. Suitable methods of cold working and aging the alloy are described above in detail. In another non-limiting embodiment of a cobalt alloy according to the present invention, the cobalt alloy comprises, in percent by weight, up to 0.05 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt; wherein at least a portion of the cobalt alloy comprises an hep crystal structure. For example, although not limiting herein, the cobalt alloy can comprise an fee phase matrix having one or more regions of an hep phase distributed in the fee phase matrix. Further, cobalt alloys according to this non-limiting embodiment can have a hardness of at least Rockwell C 50 and be cold worked and aged.
As previously discussed, cobalt alloys comprising chromium and molybdenum alloying additions are commonly used in medical or surgical implant applications. Non-limiting examples of medical or surgical implants for which these cobalt alloys may be used include: orthopedic implants including, but not limited to, hip and knee joints implants; shoulder implants; spinal components and devices including, but not limited to, articulating components; cardiovascular components and devices including, but not limited to, wires, cables, and stents; and fracture fixation devices including, but not limited to plates and screws. As described below, certain non- limiting embodiments of the present invention contemplate implants comprising cobalt alloys and methods of processing implants comprising cobalt alloys.
One non-limiting embodiment of the present invention provides a method of processing an implant comprising a cobalt alloy. The method according to this non- limiting embodiment comprises cold working at least a portion of the implant, and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a hardness of at least Rockwell C 50. Although not limiting herein, the at least a portion of the implant that has a hardness of at least Rockwell C 50 can comprise both surface and subsurface regions of the implant. For example, the at least a portion of the implant that has a hardness of at least Rockwell C 50 can include the at least a portion of a wear surface of the implant and subsurface regions adjacent the wear surface. Alternatively, although not limiting herein, the at least a portion of the implant can include, for example, the "ball" portion of a ball and socket joint implant. Further, the at least a portion of the implant that has a hardness of at least Rockwell C 50 can comprise an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
In another embodiment, the method of processing an implant comprising a cobalt alloy comprises cold working at least a portion of the implant, and aging the implant after cold working the at least one portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours, wherein after aging the implant, the at least a portion of the implant that was cold worked has a KHN of at least 560. Although not required, according to this non- limiting embodiment, the at least a portion of the implant that has a KHN of at least 560 can include at least a portion of a wear surface of the implant. Further, the at least a portion of the implant that has a KHN of at least 560 can comprise an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
Implants according to various, non-limiting embodiments of the present invention will now be discussed. One non-limiting embodiment of the present invention provides an implant comprising a cobalt alloy, wherein the cobalt alloy includes at least a portion having a KHN of at least 560. Although not limiting herein, according to this embodiment, the at least a portion of the cobalt alloy that has a
KHN of at least 560 can comprise an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix. Further, the cobalt alloy according to this embodiment can be a cold worked and aged alloy. Furthermore, according to the above embodiment, at least a region of a wear surface of the implant can include the at least a portion of the cobalt alloy having a KHN of at least 560. As previously discussed, the deterioration of implant wear surfaces can be particularly problematic and can result in a failure of the implant. Further, conventional methods of nitriding the surface of cobalt alloys to increase surface hardness can pose reliability concerns with respect to the nitride layer. Therefore, the implants according to this non-limiting embodiment of the present invention can be particularly advantageous in providing wear surfaces having increased hardness, without the need to nitride the surface of the cobalt alloy. Accordingly, although not required, according to this embodiment, the at least a portion of the cobalt alloy having a KHN of at least 560 is an un-nitrided surface comprising less than 5 atomic percent nitrogen.
In another non-limiting embodiment of the present invention, the implant comprises a cobalt alloy, the cobalt alloy including at least a portion having a hardness of at least Rockwell C 50. Although not limiting herein, both surface and subsurface regions of the implant can include the at least a portion of the cobalt alloy having a hardness of at least Rockwell C 50. Further, according to this embodiment, the at least a portion of the cobalt alloy having a hardness of at least Rockwell C 50 can comprise less than 5 atomic percent nitrogen. Although not limiting herein, the cobalt alloy according to this embodiment can be a cold worked and aged alloy.
In still another non-limiting embodiment of an implant according to the present invention, the implant comprises a cobalt alloy including at least a portion having a hardness of at least Rockwell C 50, the at least a portion having a hardness of at least Rockwell C 50 comprising an hep crystal structure. For example, although not limiting herein, the at least a portion having a hardness of at least Rockwell C 50 can comprise an fee phase matrix including one or more regions of an hep phase distributed in the fee phase matrix.
Cobalt alloys that are suitable for use in the implants according to the present invention include those cobalt alloys previously discussed. For example, although not limiting herein, the cobalt alloy can comprise, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt. In another non-limiting embodiment of the present invention, the implant comprises a cobalt alloy comprising, in percent by weight, up to 0.14 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt.
In another non-limiting embodiment of the present invention, the implant comprises a cobalt alloy comprising, in percent by weight, up to 0.05 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt.
In yet another non-limiting embodiment if the present invention, the implant comprises a cobalt alloy comprising, in percent by weight, from 0.15 to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt.
In still another non-limiting embodiment of an implant according to the present invention, the implant comprises a cobalt alloy, the cobalt alloy having a percent elongation of at least 10 percent and including a first portion having a KHN of at least 560, and a second portion, adjacent the first portion, the second portion having a KHN that is less than the KHN of the first portion. Further, according to this embodiment, the first portion of the cobalt alloy having a KHN of at least 560 can comprise less than 5 atomic percent nitrogen.
Although not limiting herein, according to the above embodiment, at least a region of a wear surface of the implant can comprise the first portion of the cobalt alloy and a subsurface region of the implant can comprise the second portion of the cobalt alloy. For example, although not limiting herein, as shown in Fig. 1 the implant (which is shown schematically in cross-section), generally designated as 10, can comprise a wear surface 12, and a subsurface region 16. The wear surface 12 of implant 10 can comprise a first portion 14 of cobalt alloy having a KHN of at least 560 and the subsurface region 16, adjacent the wear surface 12, can comprise a second portion 18 of the cobalt alloy having a KHN less than the first portion 14 of the cobalt alloy, as indicated schematically by the shading in Fig. 1.
The non-limiting embodiments of the present invention further include articles of manufacture comprising a cobalt alloy comprising up to 0.35 weight percent carbon, from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, up to 1.0 weight percent nickel, up to 0.75 weight percent iron, up to 1.0 weight percent silicon, up to 1.0 weight percent manganese, up to 0.25 weight percent nitrogen, and cobalt; the cobalt alloy having a hardness of at least Rockwell C 50 and/or a KHN of at least 560. Non-limiting examples of articles of manufacture according to the present invention include, but are not limited to: orthopedic implants including, but not limited to, hip and knee joints implants; shoulder implants; spinal components and devices including, but not limited to, articulating components; cardiovascular components and devices including, but not limited to, wires, cables, and stents; and fracture fixation devices including, but not limited to plates and screws.
Embodiments of the present invention will now be illustrated by the following specific, non-limiting examples.
EXAMPLES
Example 1 An ingot of a cobalt alloy having the low-carbon, "Alloy 1" composition given in ASTM F1537-00 was prepared as follows. The alloy was vacuum induction melted and subsequently refined in an electroslag reduction process, as well known in the art. The resulting ingot was thermomechanically processed by hot rolling into a bar having a diameter of approximately 0.39 inches. The bar was subsequently cold worked by cold drawing to achieve a 20 percent reduction in area. Thereafter, samples taken from the cold worked bar were subjected to aging treatments as indicated in Table 1 below. The following properties were measured on both the as-drawn and as-aged bars: ultimate tensile strength ("UTS"), 0.2% off-set yield strength ("0.2% YS"), percent elongation ("Elong %"), percent reduction in area ("RA %"), and Rockwell C hardness ("HRC"). The UTS, 0.2% YS, Elong %, and RA% were determined according to ASTM E8-01. The HRC values were determined according to ASTM E18-02. For comparison, the average value for UTS, 0.2% YS, Elong %, and % RA for 322 conventionally warm worked ("As-Rolled") bars is also included in Table 1.
Table 1
Figure imgf000024_0001
As can be seen from Table 1 , both the UTS and 0.2% YS values for the as- drawn (i.e., cold worked, but unaged) sample is higher than the average UTS and 0.2%YS for the as-rolled (i.e., warm worked only) sample. Further, although the Elong. % and %RA for the as-drawn sample is lower than the average values for the as-rolled samples, it is believed that the ductility of the as-drawn material is still acceptable for many applications, including medical implant applications.
The samples that were aged at temperatures up to about 1500°F from 1 to 24 hours also displayed higher UTS and 0.2% YS values than the average UTS and 0.2% YS values for the as-rolled samples. As compared to the as-drawn sample, the samples that were aged from 1 to 24 hours at a temperature of up to about 1200°F had higher UTS, 0.2% YS, and HRC values. Further, improved HRC values as compared to the as-drawn sample were also observed after aging from 1 to 24 hours at temperatures up to about 1500°F.
Although not limiting herein, it is believed that for certain medical implant applications where it is desirable have increased UTS, 0.2% YS, and HRC values while maintaining at least a minimum level of ductility in the cobalt alloy, for this particular alloy, aging for 1 to 24 hours at a temperature up to about 1200°F appears to give suitable properties. Additionally for this particular alloy, although not limiting herein, where higher HRC values are desired, aging for 1 to 24 hours at a temperature of about 1100°F can provide HRC values greater than 50, and may provide HRC values of at least 53.
Example 2 An additional cobalt alloy bar formed as described above in Example 1 was selectively cold worked as follows. An as-rolled and centerless ground bar was commercially shot peened with a number 550 shot to an intensity of 0.008 to 0.0012 with 400 percent coverage. After shot peening, the bar was heat treated at 1100°F for 1 hour and air cooled. A cross sectional sample was cut from the aged bar and prepared for microhardness testing. Knoop microhardness readings were taken according to ASTM E384-99, using a 300-gram load. The first Knoop microhardness reading was taken as close as possible to the exterior of the sample, with subsequent readings being in 0.05 mm increments progressing toward the center of the sample, i.e. toward the core of the bar. The results of the Knoop microhardness tests are presented below in Table 2 as a function of distance away from the exterior of the sample. Table 2
Figure imgf000026_0001
As can be seen from Table 2, portions of the surface of the bar have a higher hardness than the subsurface regions of the bar. The depth of hardening in
Example 2 is believed to be consistent with the depth of maximum residual stress observed from shot peening. However, it is believed that deeper hardening results can be expected with other selective cold working processes, such as, but not limited to, the laser peening process, which is believed to be capable of imparting a 4-fold increase in the depth of maximum residual stresses.
Example 3 A cobalt alloy bar was prepared by warm rolling. Samples were taken for tesing in the warm rolled condition ("Comparative Sample") and after aging at 1100°F for 1 hour and 24 hours ("Sample A"). The remainder of the bar was cold worked by cold rolling to achieve a 20% reduction in area, followed by aging at 1100°F for 1 hour ("Sample B"). Room temperature tensile and hardness tests were performed on each of the samples. The results of these tests are presented below in Table 3.
Table 3
Figure imgf000027_0001
As can be seen from Table 3, Sample B shows a large increase in strength and hardness as compared to both the Comparative Sample and Sample A. Similar increases strength and hardness were not observed for Sample A as compared to the Comparative Sample. In fact, the tensile strength and hardness values observed for Sample A are typical of warm worked material.
Although not limiting herein, it is believed that the properties of the cold worked regions of a cobalt alloy that has been selectively cold worked according to various embodiments of the present invention, will be similar to the properties of Sample B, after the selectively worked cobalt alloy is aged; while the properties of the unselected regions of the selectively cold worked cobalt alloy (i.e., the regions that were not selectively cold worked) will be similar to the properties of Sample A after aging. Example 4 Fatigue tests were conducted on the Sample B material (described above in Example 3) after aging the material at 1100°F for 1 hour. The runout stress after 107 cycles in fully reversed bending (R= -1 ) for the Sample B material was determined at room temperature using a smooth rotating beam fatigue test. The results of the fatigue test are presented in Table 4 below, along with the results for a similar test conducted on the material of the Comparative Sample of Example 2. Table 4
Figure imgf000028_0001
As can be seen from the results presented in Table 4, Sample B, which was processed according to one embodiment of the present invention, has a higher runout stress than the Comparative Sample.
It is to be understood that the present description illustrates aspects of the invention relevant to a clear understanding of the invention. Certain aspects of the invention that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although the present invention has been described in connection with certain embodiments, those of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.

Claims

CLAIMS I CLAIM
1. A method of processing a cobalt alloy comprising from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, the method comprising: cold working the cobalt alloy; and aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours; wherein after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 50.
2. The method of claim 1 wherein the cold worked cobalt alloy is aged at a temperature ranging from 1000°F to 1200°F.
3. The method of claim 2 wherein after aging the cold worked cobalt alloy, the cobalt alloy has a hardness of at least Rockwell C 53.
4. The method of claim 2 wherein after aging the cold worked cobalt alloy, the cobalt alloy has a 0.2%-offset yield strength of at least 210 kilopounds per square inch after.
5. The method of claim 2 wherein after aging the cold worked cobalt alloy, the cobalt alloy has an ultimate tensile strength of at least 260 kilopounds per square inch.
6. The method of claim 1 wherein the cobalt alloy further comprises, in percent by weight, up to 0.35 carbon, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, and up to 0.25 nitrogen.
7. The method of claim 1 wherein the cobalt alloy further comprises, in percent by weight, up to 0.14 carbon, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, and up to 0.25 nitrogen.
8. The method of claim 1 wherein the cobalt alloy further comprises, in percent by weight, up to 0.05 carbon, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, and up to 0.15 nitrogen.
9. The method of claim 1 wherein cold working the cobalt alloy, at least a portion of the cobalt alloy comprises an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix
10. The method of claim 1 wherein the cobalt alloy further comprises, in percent by weight, from 0.15 to 0.35 carbon, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, and up to 0.25 nitrogen.
11. The method of claim 1 wherein the cold working is at least one of rolling, drawing, swaging, shot peening, and laser peening.
12. The method of claim 1 wherein the cold working comprises drawing.
13. The method of claim 12 wherein the drawing is conducted such that the cobalt alloy has a total reduction in area ranging from 5 percent to 40 percent.
14. The method of claim 13 wherein the total reduction in area ranges from 10 percent to 25 percent.
15. The method of claim 1 wherein the cold working comprises rolling.
16. The method of claim 15 wherein the rolling is conducted such that the cobalt alloy has a total reduction in thickness ranging from 10 percent to 25 percent.
17. The method of claim 1 wherein the cobalt alloy has a runout stress for 107 cycles in fully reversed bending of at least 130 kilopounds per square inch.
18. A method of selectively hardening a cobalt alloy including from 26 to 30 weight percent chromium, from 5 to 7 weight percent molybdenum, and greater than 50 weight percent cobalt, the method comprising: cold working at least one selected portion of the cobalt alloy; and aging the cold worked cobalt alloy at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours; wherein after aging the cold worked cobalt alloy, the at least one selected portion of the cobalt alloy has a Knoop Hardness Number of at least 560.
19. The method of claim 18 wherein the at least one selected portion comprises at least a portion of a surface of the cobalt alloy.
20. The cobalt alloy of claim 18 wherein the at least one selected portion of the cobalt alloy having the Knoop hardness number of at least 560 comprises an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
21. A method of processing a cobalt alloy including, in percent by weight, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.05 carbon, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt; the method comprising cold working the cobalt alloy such that at least a portion of the cobalt alloy has a hardness of at least Rockwell C 45 after cold working.
22. A cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt; wherein at least a portion of the cobalt alloy has a hardness of at least Rockwell C 50.
23. The cobalt alloy of claim 22 wherein the at least a portion of the cobalt alloy that has a hardness of at least Rockwell C 50 comprises an hep phase.
24. The cobalt alloy of claim 22 wherein the at least a portion of the cobalt alloy that has a hardness of at least Rockwell C 50 comprises an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
25. The cobalt alloy of claim 22 wherein the cobalt alloy is a cold worked and aged alloy.
26. The cobalt alloy of claim 22 wherein the cobalt alloy comprises, in percent by weight, up to 0.05 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 0.75 nickel, up to 0.35 iron, up to 0.50 silicon, up to 0.50 manganese, up to 0.15 nitrogen, and cobalt.
27. A method of processing an implant comprising a cobalt alloy, the method comprising: cold working at least a portion of the implant; and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours; wherein after aging the implant, the at least a portion of the implant that was cold worked has a hardness of at least Rockwell C 50.
28. The method of claim 27 wherein after aging the implant, the at least a portion of the implant that has a hardness of at least Rockwell C 50 comprises an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
29. A method of processing an implant comprising a cobalt alloy, the method comprising: cold working at least a portion of the implant; and aging the implant after cold working the at least a portion of the implant at a temperature ranging from 900°F to 1300°F for a time period ranging from 1 hour to 24 hours; wherein after aging the implant, the at least a portion of the implant that was cold worked has a Knoop Hardness Number of at least 560.
30. The method of claim 29 wherein the at least a portion of the implant that has a Knoop Hardness Number of at least 560 includes at least a portion of a wear surface of the implant.
31. The method of claim 29 wherein the at least a portion of the implant that has a Knoop Hardness Number of at least 560 comprises an fee phase matrix with one or more regions of an hep phase distributed in the fee phase matrix.
32. An implant comprising a cobalt alloy, the cobalt alloy including at least a portion having a hardness of at least Rockwell C 50.
33. The implant of claim 32 wherein the at least a portion of the cobalt alloy having a hardness of at least Rockwell C 50 comprises an fee phase matrix including one or more regions of an hep phase distributed in the fee phase matrix.
34. The implant of claim 32 wherein the cobalt alloy is a cold worked and aged alloy.
35. The implant of claim 32 wherein the cobalt alloy comprises, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt.
36. The implant of claim 32 wherein the at least a portion of the cobalt alloy having a hardness of Rockwell C 50 comprises less than 5 atomic percent nitrogen.
37. An implant comprising a cobalt alloy, the cobalt alloy including at least a portion having a Knoop Hardness Number of at least 560.
38. The implant of claim 37 wherein at least a region of a wear surface of the implant includes the at least a portion of the cobalt alloy having a Knoop Hardness Number of at least 560.
39. The implant of claim 37 the at least a portion of the cobalt alloy having a Knoop Hardness Number of at least 560 comprises an fee phase matrix including one or more regions of an hep phase distributed in the fee phase matrix.
40. The implant of claim 37 wherein the at least a portion of the cobalt alloy having a Knoop Hardness Number of at least 560 comprises less than 5 atomic percent nitrogen.
41. An implant comprising a cobalt alloy, the cobalt alloy having a percent elongation of at least 10 percent and including: a first portion having a Knoop Hardness Number of at least 560; and a second portion, adjacent the first portion, the second portion having a Knoop Hardness Number that is less than the Knoop Hardness Number of the first portion.
42. The implant of claim 41 wherein a wear surface of the implant comprises the first portion of the cobalt alloy and a subsurface region of the implant comprises the second portion of the cobalt alloy.
43. The implant of claim 41 the at least one portion having a Knoop Hardness Number of at least 560 comprises an fee phase matrix including one or more regions of an hep phase distributed in the fee phase matrix.
44. The implant of claim 41 wherein the first portion having a Knoop Hardness Number of at least 560 comprises less than 5 atomic percent nitrogen.
45. An article of manufacture comprising a cobalt alloy comprising, in percent by weight, up to 0.35 carbon, from 26 to 30 chromium, from 5 to 7 molybdenum, up to 1.0 nickel, up to 0.75 iron, up to 1.0 silicon, up to 1.0 manganese, up to 0.25 nitrogen, and cobalt; wherein at least a portion of the alloy has a hardness of at least Rockwell C 50.
46. The article of manufacture according to claim 45 wherein the article of manufacture is selected from the group consisting of orthopedic implants, shoulder implants, spinal components, cardiovascular components, and fracture fixation devices.
PCT/US2004/010066 2003-05-23 2004-04-01 Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom WO2005007909A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004016651T DE602004016651D1 (en) 2003-05-23 2004-04-01 METHOD FOR THE PRODUCTION OF COBALT ALLOYS AND IMPLANTS AND OBJECTS MADE THEREOF
JP2006532365A JP2007502372A (en) 2003-05-23 2004-04-01 Cobalt alloy, method for producing cobalt alloy, and implant and product manufactured therefrom
EP04785880A EP1627091B1 (en) 2003-05-23 2004-04-01 Methods of making cobalt alloys, and implants and articles of manufacture made therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/444,791 US7520947B2 (en) 2003-05-23 2003-05-23 Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom
US10/444,791 2003-05-23

Publications (2)

Publication Number Publication Date
WO2005007909A2 true WO2005007909A2 (en) 2005-01-27
WO2005007909A3 WO2005007909A3 (en) 2005-06-16

Family

ID=33450751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/010066 WO2005007909A2 (en) 2003-05-23 2004-04-01 Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom

Country Status (6)

Country Link
US (1) US7520947B2 (en)
EP (2) EP2047871B1 (en)
JP (1) JP2007502372A (en)
AT (1) ATE408716T1 (en)
DE (1) DE602004016651D1 (en)
WO (1) WO2005007909A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655384A1 (en) 2004-11-09 2006-05-10 Cordis Corporation A cobalt-chromium-molybdenum fatigue resistant alloy for intravascular medical devices
JP2010500139A (en) * 2006-08-16 2010-01-07 アエスキュラップ アーゲー Implant and method for manufacturing implant
US9078753B2 (en) 2012-05-03 2015-07-14 Kennametal Inc. Surgical orthopedic implants made from wear-resistant cobalt—chromium—molybdenum alloys
EP3202427A1 (en) * 2016-02-03 2017-08-09 Deutsche Edelstahlwerke GmbH Use of a biocompatible cobalt based alloy hardened by precipitation or reinforcing by mixed crystal forming and method for the manufacture of implants or prosthetics by material removal

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922065B2 (en) 2004-08-02 2011-04-12 Ati Properties, Inc. Corrosion resistant fluid conducting parts, methods of making corrosion resistant fluid conducting parts and equipment and parts replacement methods utilizing corrosion resistant fluid conducting parts
US7361194B2 (en) * 2004-10-14 2008-04-22 Wright Medical Technology, Inc. Metallic bearings for joint replacement
JP4467064B2 (en) * 2005-02-24 2010-05-26 日本発條株式会社 Co-Cr-Mo alloy and method for producing the same
US8579985B2 (en) 2006-12-07 2013-11-12 Ihip Surgical, Llc Method and apparatus for hip replacement
US8974540B2 (en) 2006-12-07 2015-03-10 Ihip Surgical, Llc Method and apparatus for attachment in a modular hip replacement or fracture fixation device
US8029573B2 (en) 2006-12-07 2011-10-04 Ihip Surgical, Llc Method and apparatus for total hip replacement
EP2072629B1 (en) * 2007-08-20 2010-10-06 DePuy Products, Inc. Ultra-passivation of chromium-containing alloy
US20090204213A1 (en) * 2008-02-13 2009-08-13 Depuy Products, Inc. Metallic implants
US20100051141A1 (en) * 2008-09-02 2010-03-04 Zimmer, Inc. Method for enhancing fretting fatigue resistance of alloys
JP5283136B2 (en) * 2008-09-05 2013-09-04 国立大学法人東北大学 Grain refinement method of nitrogen-added Co-Cr-Mo alloy and nitrogen-added Co-Cr-Mo alloy
US8302341B2 (en) 2009-05-26 2012-11-06 Dynamic Flowform Corp. Stress induced crystallographic phase transformation and texturing in tubular products made of cobalt and cobalt alloys
US20100308517A1 (en) * 2009-06-04 2010-12-09 James Edward Goodson Coated spring and method of making the same
US20100329920A1 (en) * 2009-06-26 2010-12-30 Edward Rosenberg Cobalt-based jewelry article
US8910409B1 (en) 2010-02-09 2014-12-16 Ati Properties, Inc. System and method of producing autofrettage in tubular components using a flowforming process
JP5561690B2 (en) * 2010-02-09 2014-07-30 国立大学法人大阪大学 Co-Cr alloy single crystal for implant member, method for producing the same, and implant member
JP2011184783A (en) * 2010-03-11 2011-09-22 Tohoku Univ Method for fining crystal grain of nitrogen-added co-cr-mo alloy
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
WO2011155063A1 (en) * 2010-06-11 2011-12-15 日本メディカルマテリアル株式会社 Cast base for biomedical use formed of cobalt/chromium-based alloy and having excellent diffusion hardening treatability, sliding alloy member for biomedical use and artificial joint
US9566147B2 (en) 2010-11-17 2017-02-14 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys containing one or more platinum group metals, refractory metals, or combinations thereof
US11298251B2 (en) 2010-11-17 2022-04-12 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys with primarily single-phase supersaturated tungsten content
US8869443B2 (en) 2011-03-02 2014-10-28 Ati Properties, Inc. Composite gun barrel with outer sleeve made from shape memory alloy to dampen firing vibrations
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9724494B2 (en) 2011-06-29 2017-08-08 Abbott Cardiovascular Systems, Inc. Guide wire device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor
JP2013181190A (en) * 2012-02-29 2013-09-12 Seiko Instruments Inc Co-BASED ALLOY FOR LIVING BODY AND STENT
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
KR101383584B1 (en) * 2012-06-21 2014-04-21 주식회사 기현테크 Manufacturing method of round bar of alloy material for dental implant abutment
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process
RU2509816C1 (en) * 2012-12-21 2014-03-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Method of making cobalt-based alloy for cermet and clasp dental prosthesis
DE102013003434A1 (en) * 2013-02-27 2014-08-28 Gernot Hausch Milling blank, useful for manufacturing dental prosthesis parts by CAD/computer-aided manufacturing method, comprises alloy containing specified amount of chromium, molybdenum, iron, manganese, silicon, nickel, carbon, nitrogen and cobalt
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
EP2989225B1 (en) * 2013-04-26 2021-07-07 Icon Medical Corp. Improved metal alloys for medical devices
CN106029931A (en) * 2013-10-09 2016-10-12 怡康医疗股份有限公司 Improved metal alloy for medical devices
US9339585B2 (en) * 2014-04-03 2016-05-17 Kennametal Inc. Porous coating for surgical orthopedic implants
CN106535826A (en) 2014-06-24 2017-03-22 怡康医疗股份有限公司 Improved metal alloys for medical devices
US9452827B2 (en) * 2014-09-26 2016-09-27 Goodrich Corporation Landing gear components having improved joints
DE202016008737U1 (en) 2015-12-15 2019-04-05 Neovasc Tiara Inc. Transseptal delivery system
WO2017127939A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
WO2017151548A1 (en) 2016-03-04 2017-09-08 Mirus Llc Stent device for spinal fusion
EP3541462A4 (en) 2016-11-21 2020-06-17 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
CN111263622A (en) 2017-08-25 2020-06-09 内奥瓦斯克迪亚拉公司 Sequentially deployed transcatheter mitral valve prosthesis
WO2020093172A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
JP2020093352A (en) * 2018-12-13 2020-06-18 新東工業株式会社 METHOD FOR MODIFYING SURFACE OF Co-Cr ALLOY, METHOD OF MANUFACTURING HIGH FATIGUE STRENGTH Co-Cr ALLOY, AND HIGH FATIGUE STRENGTH Co-Cr ALLOY
JP7430732B2 (en) 2019-03-08 2024-02-13 ニオバスク ティアラ インコーポレイテッド Retrievable prosthesis delivery system
JP7457298B2 (en) * 2019-03-20 2024-03-28 国立大学法人東北大学 Nitrogen-added Co-Cr-Mo based alloy and method for producing nitrogen-added Co-Cr-Mo based alloy
CN113811265A (en) 2019-04-01 2021-12-17 内奥瓦斯克迪亚拉公司 Prosthetic valve deployable in a controlled manner
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
CN114144144A (en) 2019-06-20 2022-03-04 内奥瓦斯克迪亚拉公司 Low-profile prosthetic mitral valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462575A (en) * 1993-12-23 1995-10-31 Crs Holding, Inc. Co-Cr-Mo powder metallurgy articles and process for their manufacture
EP0804934A2 (en) * 1996-04-30 1997-11-05 Schneider (Usa) Inc. Cobalt-chromium-molybdenum alloy stent and stent-graft
US6187045B1 (en) * 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486576A (en) 1946-04-13 1949-11-01 Crucible Steel Company Heat-treatment of cobalt base alloys and products
US2678894A (en) * 1947-05-03 1954-05-18 Elgin Nat Watch Co Process of making articles of high elastic strength
US2524661A (en) 1947-05-03 1950-10-03 Elgin Nat Watch Co Alloy having high elastic strengths
US3317285A (en) * 1964-02-18 1967-05-02 Du Pont Composition comprising iron-group metal and particulate refractory metal oxide
US3356542A (en) 1967-04-10 1967-12-05 Du Pont Cobalt-nickel base alloys containing chromium and molybdenum
CH514331A (en) 1969-05-23 1971-10-31 Osteo Ag Hip joint prosthesis
US3767385A (en) * 1971-08-24 1973-10-23 Standard Pressed Steel Co Cobalt-base alloys
DE2225577C3 (en) 1972-05-26 1980-01-31 Edelstahlwerk Witten Ag, 5810 Witten Use of a cobalt-chromium-based alloy as a biomaterial
US3989557A (en) 1972-06-01 1976-11-02 Fujitsu Ltd. Process of producing semi-hard magnetic materials
US3839024A (en) 1973-02-15 1974-10-01 Du Pont Wear and corrosion resistant alloy
JPS5435575B2 (en) 1973-11-12 1979-11-02
US3893024A (en) * 1973-11-15 1975-07-01 Itt Method and apparatus for fault testing multiple stage networks
US3970445A (en) 1974-05-02 1976-07-20 Caterpillar Tractor Co. Wear-resistant alloy, and method of making same
DE2621789C2 (en) * 1976-05-15 1983-10-06 Fried. Krupp Gmbh, 4300 Essen Process for the heat treatment of a cobalt cast alloy
US4591393A (en) 1977-02-10 1986-05-27 Exxon Production Research Co. Alloys having improved resistance to hydrogen embrittlement
JPS5410224A (en) 1977-06-23 1979-01-25 Howmedica Nitrogen containing cobalt cromium molibuden alloy
US4152181A (en) 1977-12-27 1979-05-01 United Technologies Corporation Cobalt alloy heat treatment
US4687487A (en) 1978-07-21 1987-08-18 Association Suisse Pour La Recherches Horlogere Joint implant
US4581913A (en) 1983-07-27 1986-04-15 Luster Finish, Inc. Method for improving the release and finish characteristics of metal stamping dies
FR2557145B1 (en) 1983-12-21 1986-05-23 Snecma THERMOMECHANICAL TREATMENT PROCESS FOR SUPERALLOYS TO OBTAIN STRUCTURES WITH HIGH MECHANICAL CHARACTERISTICS
JPS6237355A (en) * 1985-08-08 1987-02-18 Mitsubishi Metal Corp Manufacture of co base alloy plate material superior in wear resistance
US4714468A (en) 1985-08-13 1987-12-22 Pfizer Hospital Products Group Inc. Prosthesis formed from dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization
DE3601206A1 (en) * 1986-01-17 1987-07-23 Stihl Maschf Andreas COBALT BASED ALLOY AS APPLICATION MATERIAL FOR GUIDE RAILS FOR CHAINSAWS
JPS6311638A (en) 1986-03-20 1988-01-19 Hitachi Ltd Cobalt-base alloy having high strength and high toughness and its production
US4775426A (en) 1986-04-03 1988-10-04 Richards Medical Company Method of manufacturing surgical implants from cast stainless steel and product
FR2604893B1 (en) 1986-10-14 1995-06-16 Roulements Soc Nouvelle KNEE JOINT PROSTHESIS
US4714469A (en) * 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
CH672587A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
US5169463A (en) 1987-10-19 1992-12-08 Sps Technologies, Inc. Alloys containing gamma prime phase and particles and process for forming same
US4908069A (en) 1987-10-19 1990-03-13 Sps Technologies, Inc. Alloys containing gamma prime phase and process for forming same
CA2021814C (en) 1989-07-25 2002-04-02 James A. Davidson Zirconium alloy-based prosthesis with zirconium oxide or zirconium nitride coating
US5316594A (en) 1990-01-18 1994-05-31 Fike Corporation Process for surface hardening of refractory metal workpieces
US5360496A (en) 1991-08-26 1994-11-01 Aluminum Company Of America Nickel base alloy forged parts
DK0555033T3 (en) * 1992-02-07 1999-12-13 Smith & Nephew Inc Surface-cured, biocompatible metal medical implants
US5232361A (en) 1992-04-06 1993-08-03 Sachdeva Rohit C L Orthodontic bracket
SK279694B6 (en) * 1992-06-01 1999-02-11 Prefoam Ag Device for the continuous manufacture of slabstock polyurethane foam
WO1994016646A1 (en) 1993-01-19 1994-08-04 Schneider (Usa) Inc. Clad composite stent
US5308412A (en) 1993-03-15 1994-05-03 Zimmer, Inc. Method of surface hardening cobalt-chromium based alloys for orthopedic implant devices
JP3212433B2 (en) 1993-12-28 2001-09-25 株式会社不二機販 Wear prevention method for sliding parts of metal products
US5486576A (en) * 1994-07-01 1996-01-23 Rohm And Haas Company Method for reducing microfoam in a spray-applied waterborne thermoset composition
US5515590A (en) 1994-07-19 1996-05-14 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US6290726B1 (en) 2000-01-30 2001-09-18 Diamicron, Inc. Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces
JP2000512164A (en) 1995-11-02 2000-09-19 ライト メディカル テクノロジー インコーポレーテッド Low wear ball cup artificial joint
JPH09279229A (en) 1996-04-15 1997-10-28 Suncall Corp Surface treatment of steel work
DE19620525A1 (en) 1996-05-22 1997-11-27 Gmt Medizinische Technik Gmbh Elbow joint endoprosthesis
EP0832620A3 (en) 1996-09-25 1999-01-13 Biomet, Inc. Modular component connector
GB9623540D0 (en) 1996-11-12 1997-01-08 Johnson & Johnson Professional Hip joint prosthesis
US6025536A (en) 1997-08-20 2000-02-15 Bristol-Myers Squibb Company Process of manufacturing a cobalt-chromium orthopaedic implant without covering defects in the surface of the implant
US6045909A (en) 1997-11-07 2000-04-04 Stryker Technologies Corporation Orthopaedic wires and cables and methods of making same
JP3730015B2 (en) 1998-06-02 2005-12-21 株式会社不二機販 Surface treatment method for metal products
US6261322B1 (en) 1998-05-14 2001-07-17 Hayes Medical, Inc. Implant with composite coating
US5989294A (en) 1998-07-29 1999-11-23 Marlow; Aaron L. Ball-and-socket joint, particularly a prosthetic hip joint
US6409852B1 (en) 1999-01-07 2002-06-25 Jiin-Huey Chern Biocompatible low modulus titanium alloy for medical implant
US6390924B1 (en) 1999-01-12 2002-05-21 Ntn Corporation Power transmission shaft and constant velocity joint
US6395327B1 (en) 1999-03-12 2002-05-28 Zimmer, Inc. Enhanced fatigue strength orthopaedic implant with porous coating and method of making same
JP4081537B2 (en) * 2001-06-07 2008-04-30 国立大学法人岩手大学 Bio-based Co-based alloy and method for producing the same
US6802916B2 (en) 2001-06-29 2004-10-12 Honeywell International Inc. Selectively cold worked hydraulic motor/pump shoe
US20040148033A1 (en) 2003-01-24 2004-07-29 Schroeder David Wayne Wear surface for metal-on-metal articulation
JP2004269994A (en) 2003-03-11 2004-09-30 Japan Science & Technology Agency BIOCOMPATIBLE Co BASED ALLOY, AND PRODUCTION METHOD THEREFOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462575A (en) * 1993-12-23 1995-10-31 Crs Holding, Inc. Co-Cr-Mo powder metallurgy articles and process for their manufacture
EP0804934A2 (en) * 1996-04-30 1997-11-05 Schneider (Usa) Inc. Cobalt-chromium-molybdenum alloy stent and stent-graft
US6187045B1 (en) * 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEVINE, DAVID J.: "Metallurgical relationships of porous-coated ASTM F75 alloys" ASTM SPECIAL TECHNICAL PUBLICATION , 953(QUANT. CHARACT. PERFORM. POROUS IMPLANTS HARD TISSUE APPL.), 60-73 CODEN: ASTTA8; ISSN: 0066-0558, 1987, XP009042452 *
LIPPARD, H. E. ET AL: "Process metallurgy of wrought CoCrMo alloy" ASTM SPECIAL TECHNICAL PUBLICATION , STP 1365(COBALT-BASE ALLOYS FOR BIOMEDICAL APPLICATIONS), 98-107 CODEN: ASTTA8; ISSN: 0066-0558, 1999, XP009042453 *
SALDIVAR, A. J. ET AL: "Role of aging on the martensitic transformation in a cast cobalt alloy" SCRIPTA MATERIALIA , 45(4), 427-433 CODEN: SCMAF7; ISSN: 1359-6462, 2001, XP004327933 *
ZHUANG, L. Z. ET AL: "Determination of cyclic strain-hardening behavior produced during fatigue crack growth in cast cobalt-chromium-molybdenum alloy used for surgical implants" MATERIALS SCIENCE & ENGINEERING, A: STRUCTURAL MATERIALS: PROPERTIES, MICROSTRUCTURE AND PROCESSING , A108, 247-52 CODEN: MSAPE3; ISSN: 0921-5093, 1989, XP001204740 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655384A1 (en) 2004-11-09 2006-05-10 Cordis Corporation A cobalt-chromium-molybdenum fatigue resistant alloy for intravascular medical devices
JP2010500139A (en) * 2006-08-16 2010-01-07 アエスキュラップ アーゲー Implant and method for manufacturing implant
US8147560B2 (en) 2006-08-16 2012-04-03 Ionbond Ag Olten Implant and method for the production of an implant
US9078753B2 (en) 2012-05-03 2015-07-14 Kennametal Inc. Surgical orthopedic implants made from wear-resistant cobalt—chromium—molybdenum alloys
EP3202427A1 (en) * 2016-02-03 2017-08-09 Deutsche Edelstahlwerke GmbH Use of a biocompatible cobalt based alloy hardened by precipitation or reinforcing by mixed crystal forming and method for the manufacture of implants or prosthetics by material removal
WO2017134209A1 (en) * 2016-02-03 2017-08-10 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Use of a bio-compatible cobalt base alloy, for precipitation hardening or solidifying via mixed crystal formation, and method for the production of implants or prosthetics via material-removing machining
CN108601859A (en) * 2016-02-03 2018-09-28 德国不锈钢特钢有限及两合公司 The method that precipitation-hardening or mixed crystal are strengthened, produce implantation material or prosthese after the application of the cobalt-base alloys of bio-compatible and material removal
RU2707074C1 (en) * 2016-02-03 2019-11-22 Дойче Эдельштальверке Спешелти Стил Гмбх Унд Ко. Кг Use of dispersion hardening or solidification of solid solution of biocompatible alloy on cobalt base and method of obtaining implants or prostheses using mechanical processing of material
US10751446B2 (en) 2016-02-03 2020-08-25 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Use of a precipitation-hardening or solid-solution-strengthening, biocompatible cobalt-based alloy and method for producing implants or prostheses by means of material-removing machining

Also Published As

Publication number Publication date
EP2047871A1 (en) 2009-04-15
EP1627091B1 (en) 2008-09-17
ATE408716T1 (en) 2008-10-15
EP1627091A2 (en) 2006-02-22
EP2047871B1 (en) 2013-08-28
JP2007502372A (en) 2007-02-08
WO2005007909A3 (en) 2005-06-16
US20040236433A1 (en) 2004-11-25
US7520947B2 (en) 2009-04-21
DE602004016651D1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US7520947B2 (en) Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom
EP0359446B1 (en) High strength, low modulus titanium alloy
US6200685B1 (en) Titanium molybdenum hafnium alloy
EP0437079B1 (en) Biocompatible low modulus titanium alloy for medical implants
US5509933A (en) Medical implants of hot worked, high strength, biocompatible, low modulus titanium alloys
EP2330227B1 (en) METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
US10422027B2 (en) Metastable beta-titanium alloys and methods of processing the same by direct aging
JP5192382B2 (en) Titanium alloy with increased oxygen content and improved mechanical properties
US6773520B1 (en) Enhanced biocompatible implants and alloys
Long et al. Titanium alloys in total joint replacement—a materials science perspective
US5545227A (en) Biocompatible low modulus medical implants
Williams Titanium as a metal for implantation Part 1: physical properties
US4952236A (en) Method of making high strength, low modulus, ductile, biocompatible titanium alloy
Semlitsch et al. Properties of implant alloys for artificial hip joints
Szala et al. Microstructural characterisation of Co-Cr-Mo casting dental alloys
Basha et al. The Effect of Si Addition on the Microstructure, Mechanical Properties, and Wear Rate of the Co–Cr–Mo-Based Biomedical Alloys
KR20240128007A (en) Articles manufactured from cold-worked and case-hardened stainless steel alloys, which are essentially Co-free, and methods for manufacturing the same
Goswami et al. Recent bio-medical alloys in cobalt base systems
Chu et al. Porous NiTi Shape Memory Alloys Produced by Combustion Synthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004785880

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006532365

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004785880

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)