[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005000374A1 - 脊椎・脊髄手術用癒着防止材 - Google Patents

脊椎・脊髄手術用癒着防止材 Download PDF

Info

Publication number
WO2005000374A1
WO2005000374A1 PCT/JP2004/009750 JP2004009750W WO2005000374A1 WO 2005000374 A1 WO2005000374 A1 WO 2005000374A1 JP 2004009750 W JP2004009750 W JP 2004009750W WO 2005000374 A1 WO2005000374 A1 WO 2005000374A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesion
crosslinked
hyaluronic acid
sponge
linked
Prior art date
Application number
PCT/JP2004/009750
Other languages
English (en)
French (fr)
Inventor
Hirotaka Haro
Takeshi Kato
Teruzou Miyoshi
Yoshiaki Miyata
Toshihiko Umeda
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to EP04747218A priority Critical patent/EP1640026A4/en
Priority to JP2005511161A priority patent/JP4690892B2/ja
Priority to US10/562,906 priority patent/US20070020314A1/en
Publication of WO2005000374A1 publication Critical patent/WO2005000374A1/ja
Priority to US12/466,001 priority patent/US20090226503A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a sponge-like or film-like or suspension-like spine used for the purpose of promoting and promoting tissue healing.
  • Adhesion can be defined as adhesion between tissues that should be apart. Causes include not only direct surgical damage to tissue due to surgery, but also gauze, cotton, and other fiber fragments used in talc procedures applied to surgical gloves. Adhesion is a surgical operation
  • Adhesions are thought to be formed in six steps (artificial organs, 1994-95, 282-285). That is, first, body fluid, blood, etc., leak to a site where damage due to surgery or the like has occurred due to inflammation, and fibrinogen exudes to form fibrin, thereby forming a fibrin net. This process proceeds in minutes. Next, inflammatory cells such as leukocytes, macrophages, and fibroblasts invade the fibrin network in units of time, and the fibrin network is dissolved by various enzymes released from these cells. Subsequently, fibroblast invasion is activated by various growth factors produced by these cells, and the fibrin network surrounding the cells is replaced by collagen fibers.
  • inflammatory cells such as leukocytes, macrophages, and fibroblasts invade the fibrin network in units of time, and the fibrin network is dissolved by various enzymes released from these cells. Subsequently, fibroblast invasion is activated by various growth factors produced by these cells, and the fibrin network surrounding the cells is replaced
  • This process proceeds on a daily basis, but is irreversible due to the formation of the basic structure of the adherent tissue.
  • weekly cell fibrous tissue with complex collagen traffic formation is formed, Numerous capillaries invade due to auxotrophy by the vesicles and granulation tissue is formed.
  • some tissues follow the process of wound healing on a monthly basis, but the remaining tissues are dominated by collagen tissue, which is a condition called scar tissue, which is a very strong and strong tissue. become. Then, the amount of collagen in the scar tissue decreases every year, causing a phenomenon of “pulling” in the surrounding tissue.
  • the gaps between tissues and organs that may adhere to each other should be isolated, and the process of fibrin deposition, cell invasion, collagen fiber production, etc. should be suppressed before proceeding to the irreversible state described above.
  • the tissue that is likely to adhere to the position is frequently powered to keep the contact state.
  • Regeneration of mesothelial cells after serosal injury is generally required for 5 to 8 days, during which time the isolated tissue and the surrounding tissue can be physically isolated to block contact and prevent the formation of adhesions ⁇ Can be expected to reduce.
  • at least two weeks after surgery are required for the inflammation to subside after spine surgery, and isolation during that time is considered necessary.
  • adhesion is one of the physiological phenomena of tissue repair, it is necessary to prevent adhesion only at sites where adhesion is not desired. For this purpose, it is desirable to keep the gaps between tissues and organs that may adhere to each other.
  • isolation methods There are two main types of isolation methods: a floating effect that keeps the organ containing the wound non-specifically floating, and a barrier effect that blocks only the wound and its surroundings with other tissue forces. Is mentioned.
  • Suture hole Power of leaked intestinal bacteria may spread into the abdominal cavity using a high-viscosity product as a scaffold and cause infection.
  • the application of these anti-adhesion materials to the spine and spinal cord surgery reduces the problem of infectious diseases due to the surrounding environment of the surgical site, but the operability is poor. Therefore it is not practical.
  • JP-A-1-301624 and U.S. Pat. No. 5,906,997 disclose an anti-adhesion material for carboxymethylcellulose compositions using a chemical crosslinking agent or a chemical modifying agent.
  • Separafilm Genzyme
  • a film-based anti-adhesion agent consisting of hyaluronic acid and carboxymethylcellulose modified with kyropodiimide, developed based on Japanese Patent Publication No. 6-508169, is commercially available. I have.
  • No. 5,056,839 discloses a cross-linked product of carboxymethylcellulose and polyethylene oxide with dimethyl urea for the purpose of improving the adhesiveness or remaining property to an application site
  • a gel comprising a carboxyl group-containing polysaccharide and a compound containing two or more a-amino groups is disclosed. These are biocompatible polymer substances Although it is expected to have good tissue affinity and tissue adhesiveness because of the use of the compound, there is a concern that the remaining chemical substance used in the formation of a crosslinked body or gel may affect nerves and the like.
  • materials for preventing adhesion of the spinal cord or spinal cord using collagen or gelatin are disclosed in, for example, JP-A-2002-10376, US Pat. No.
  • Adhesion-preventing material strength using U.S. Patent No. 6,066,325 discloses an adhesion-preventing material made of gelatin. Eur. Spine J., Vol. 5 (1996), Neurosurgery, Vol. 38 (1996), Am. J. The effectiveness of substances called "ADCON-L” and "Gel Amidon Oxyde (GAO) j" Orthop., Vol. 27 (1998), Neurosurgery, Vol. 50 (2002) and J. Neurosurg., Vol. 97 (2002).
  • the spinal cord which plays the role of the nerve center, is wrapped in the pia mater, the arachnoid and the dura mater, covered with a fat layer and a periosteum, and housed in a spinal canal composed of a vertebral body and a lamina.
  • a certain space is maintained between the dura and the lamina. Therefore, it is important for the anti-adhesion material used to prevent adhesions while maintaining this space even after surgical treatment, and it is also required to suppress thickening of the dura and periosteum.
  • an anti-adhesion material for the spinal cord region having these performances has been seen and released so far.
  • JP-T 3-502704 discloses a film in which hyaluronic acid and carboxymethylcellulose are modified with carbodiimide and colored with brilliant blue R. Power is colored with a commercially available anti-adhesion material. What is easy to identify the application site is desired.
  • the inventors of the present invention have deliberately studied an antiadhesion material for the spine and spinal cord region which is highly biocompatible and safe. As a result, they found an effect of preventing adhesion in the spinal cord region by the crosslinked acidic polysaccharide without substantial modification, and completed the present invention. Also, by coloring the crosslinked acidic polysaccharide, it became possible to easily observe the state of application of the product of the present invention to a surgical site.
  • the present invention relates to (1) a spine, a film, or a suspended liquid spine including a crosslinked acidic polysaccharide used for reducing the degree of adhesion or preventing adhesion caused by spinal surgery.
  • Surgical adhesion inhibitor (2)
  • the time required for the dissolution rate of cross-linked acidic polysaccharide to reach 50% in phosphate buffered saline (pH 7.4) at 60 ° C must be 15 hours or more.
  • crosslinked structure of the crosslinked acidic polysaccharide is an ester bond
  • crosslinked structure of the crosslinked acidic polysaccharide is an ester bond. It is a self-crosslinking ester bond, and is characterized by (4) the anti-adhesion material described in (4), and (6) drying of the sponge.
  • the adhesion preventing material according to any one of (1) to (5), (9) the crosslinked acidic polysaccharide contained in the suspension has an average particle diameter of 100 ⁇ m to 1 mm ( 1) to (5), wherein the adhesion preventive material according to any one of (1) to (5) is colored to facilitate identification of a site to which the adhesion preventive material is applied; )).
  • FIG. 1 is a photograph of a hematoxylin and eosin-stained image of a control portion two weeks after the operation.
  • FIG. 2 is a photograph of a spongy crosslinked hyaluronic acid-applied site of hematoxylin and eosin stained for 2 weeks after the operation.
  • FIG. 3 shows the gap between the scar tissue and the dura at the control site and at the site of application of the spongy cross-linked hyaluronic acid after surgery.
  • FIG. 4 shows the number of inflammatory cells per unit area at high magnification of the tissue specimen of the control part and the site of application of the sponge-like cross-linked hyaluronic acid after operation.
  • FIG. 5 shows the hard film thickness in the tissue specimen of the control part and the site where the spongy cross-linked hyaluronic acid was applied after the operation.
  • the adhesion preventing material refers to a material that is applied to or indwelled on the incised or resected part of the spine or spinal cord to reduce the degree of adhesion at or around the surgical site or prevent adhesion.
  • the adhesion preventing material refers to a material that is applied to or indwelled on the incised or resected part of the spine or spinal cord to reduce the degree of adhesion at or around the surgical site or prevent adhesion.
  • the adhesion preventing material refers to a material that is applied to or indwelled on the incised or resected part of the spine or spinal cord to reduce the degree of adhesion at or around the surgical site or prevent adhesion.
  • herniated disc surgery in addition to inflammation caused by hernia, it refers to the application to and around the surgically damaged area of the disc and nervous tissue.
  • it since it is applied to the body, it means that it is biocompatible.
  • the acidic polysaccharide used in the present invention refers to a polymer compound having no harmful effects such as inflammation and damage to tissues.
  • the acidic polysaccharide can be used irrespective of a natural product or a synthetic product, and is not particularly limited as long as it can be made hardly water-soluble by crosslinking and has biocompatibility.
  • Representative examples of the natural acidic polysaccharides used include hyaluronic acid or hyaluronic acid salts, glycosaminodaricans excluding hyaluronic acid or hyaluronic acid salts (heparin, heparan sulfate, dermatan sulfate, etc.), chondroitin sulfate (Chondroitin-6_sulfuric acid, etc.), keratin sulfate, polylactic acid and the like.
  • Representative examples of the synthetic acidic polysaccharide include carboxymethylcellulose and carboxymethylcellulose, which are also used as a suspending agent and a viscosity agent for pharmaceuticals. The present invention is not limited to these polymer compounds.
  • the spongy anti-adhesion material refers to an anti-adhesion material obtained by drying the obtained cross-linked acidic polysaccharide by freeze-drying under reduced pressure.
  • the obtained crosslinked acidic polysaccharide is an adhesion preventing material obtained by drying under normal pressure in the range of room temperature to 50 ° C.
  • a suspension-type anti-adhesion material is an anti-adhesion material obtained by crushing the obtained cross-linked acidic polysaccharide in a pharmacologically acceptable aqueous solvent using a homogenizer, ultrasonic treatment, or the like. Re, u.
  • the phosphate buffered saline used in the present invention is preferably a pharmacologically acceptable solution in consideration of the fact that the cross-linked acidic polysaccharide is applied to a living body, specifically, in the case of cell culture.
  • potassium monosodium phosphate buffered saline ⁇ 7.4
  • the time until the dissolution rate of the crosslinked acidic polysaccharide reaches 50% is defined as When acidic polysaccharides are allowed to stand in phosphate-buffered saline (pH 7.4) at 60 ° C, the amount of acidic polysaccharide eluted from the cross-linked acidic polysaccharides is reduced by the amount of cross-linked acidic polysaccharides before dissolution. It means the time until it reaches 50% (hereinafter referred to as “dissolution half-life”).
  • solubility half-life is short, the retention at the application site is short.Because it is difficult to isolate the gap between tissues or organs before proceeding to the irreversible state of the adhesion formation step, the adhesion prevention effect is low. Can't expect.
  • solubility half-life is too long, inflammatory cells, macrophages and fibroblasts will enter the cross-linked acidic polysaccharide and maintain an irreversible state in which the basic structure of the adherent tissue is formed. Therefore, the formation of adhesions is promoted.
  • Adjustment of the solubility half-life is easy by selecting the reaction conditions for obtaining a cross-linked acidic polysaccharide, for example, by changing the concentration of acid polysaccharide in solution, reaction time, reaction temperature, etc.
  • a crosslinked acidic polysaccharide having a solubility half-life of Since it is applied to a site where the movement of the surrounding tissue is small, the solubility half-life for obtaining the retentivity required for the product of the present invention is preferably 15 hours or more, more preferably 20 hours to 30 hours.
  • the cross-linked structure of the cross-linked acidic polysaccharide is an ester bond, which means that an ester of a polyhydric alcohol and a carboxyl group, an ester of a polyhydric carboxylic acid and a hydroxyl group, an ester of a polyhydric epoxy compound and a carboxyl group. And the like.
  • the crosslinked structure of the crosslinked acidic polysaccharide in the present invention is a self-crosslinking ester bond
  • the formed ester bond is directly formed between molecules originally possessed by the biocompatible substance before crosslinking.
  • a self-crosslinked ester conjugate for example, in the case of hyaluronic acid, a self-crosslinked ester bond in which some or all of the carboxyl groups are esterified with the same polysaccharide chain or an alcohol group of another polysaccharide chain is used.
  • Hyaluronic acid is described in EP 341745B1, and a self-crosslinking ester-linked hyaluronic acid produced by freezing an aqueous solution of hyaluronic acid under acidic conditions and thawing at least once is described in WO09910385.
  • International Patent Publication WO01 / 57093 discloses a self-crosslinking ester-bonded hyaluronic acid formed by mixing and coexisting hyaluronic acid and an acidic solution so as to have a concentration of 5% or more without freezing.
  • the solubility half-life increases as the freezing time increases, but if the freezing time is excessive, the hyaluronic acid has a low molecular weight and the solubility half-life is adversely affected. It is allowed to shorten.
  • the thickness of the sponge-like anti-adhesion material in the present invention when the sponge is thin, the strength of the sponge becomes weak, so that there is a high possibility that the anti-adhesion material may be broken or bent in application using tweezers or the like. When the thickness is large, the strength can be maintained, but it is expected that it will be difficult to adjust the size of the defect site, or even if the application over the defect site becomes insufficient or unnecessary due to volume change due to absorption of body fluid. May apply over time.
  • the thickness of the sponge-like adhesion preventing material when dried is preferably from 2 mm to: LOmm. It should be noted that there is no problem in applying the product of the present invention in a thin manner.
  • the pore size of the sponge in the present invention When the pore size of the sponge in the present invention is small, the sponge becomes hard and sponge due to the high density of the biocompatible substance, which is preferable in consideration of the effect on the nerve. On the other hand, when the pore size is large, the handling performance is deteriorated as in the case of the soft power / sponge force S and thickness. For this reason, the pore size when drying the sponge is 50 n! ⁇ 200 / zm is preferred.
  • the thickness of the film-shaped adhesion preventing material in the present invention can be considered in the same manner as in the case of the sponge-shaped adhesion preventing material. In other words, when the film is thin, the film strength is low, so that the handling performance is reduced.
  • the thickness of the film-shaped adhesion preventing material when dried is preferably 50 / m to lmm. It is also edible to apply a thin film of adhesion preventive material on top of it.
  • the average particle size of the crosslinked acidic polysaccharide contained in the suspension-type adhesion preventing material is determined based on the operability at the time of application, the adhesiveness to a tissue, the easiness in the production process, and the like.
  • the average particle size is small, the operability at the time of application is good even at a high concentration of crosslinked acidic polysaccharide, but in many cases, multiple types of crushing operations are required.
  • the average particle size is large, it is expected that the force S, which can be prepared only by crushing with a cup mixer, etc., and the operability when applied at a high concentration will be poor.
  • the adhesiveness to tissue is affected not only by the average particle size but also by the type and concentration of the biocompatible substance contained therein, and it is desirable to easily adjust these factors. Therefore, the average particle size is preferably 100 wm to 1 mm, which is easy to manufacture and has good operability when applied. / ⁇ .
  • the concentration of the cross-linked acidic polysaccharide in the suspension is not particularly specified, but if the concentration is low, application may be uneven due to separation of the gel part and the solution part. It is concerned that the crosslinked acidic polysaccharide has insufficient adhesion to the application site. On the other hand, if the concentration is high, it may be necessary to apply a surgical technique to the application, which may impair operability during surgery. Therefore, the concentration is appropriately determined depending on the type of the acidic polysaccharide used, the average particle size of the crosslinked acidic polysaccharide, the type of the salt used in the solution, and its concentration.
  • a film is preferable to a suspension, and a sponge is more preferable than a suspension, in view of easiness of a manufacturing process, ease of handling at the time of application, and adhesiveness to a tissue.
  • hyaluronic acid used in the present invention can be used regardless of its origin, whether it is extracted from animal tissues or manufactured by a fermentation method. However, hyaluronic acid produced by a fermentation method is desirable because it does not fall into the category of biological products.
  • the strain used in the fermentation method is hyaluronic acid produced by Streptococcus sp. Isolated from nature. Microorganisms capable of producing, or Streptococcus 'equi FM-100 (JP No. 9027) described in JP-A-63-123392, and Streptococcus' Ekui described in JP-A-2-234689. Mutants that stably produce hyaluronic acid at high yields, such as FM-300 (Microorganisms No. 2319) are desirable. Cultured and purified products using the above mutant strains are used.
  • the molecular weight (weight average molecular weight, the same applies hereinafter) of the hyaluronic acid used in the present invention has a molecular weight in the above range, which is preferably in the range of about 1 ⁇ 10 5 to about 1 ⁇ 10 7 daltons. If present, those having a higher molecular weight and those having a lower molecular weight obtained by a hydrolysis treatment or the like can also be preferably used. It should be noted that the hyaluronic acid according to the present invention is used in a concept that also includes alkali metal salts thereof, for example, salts of sodium, potassium, lithium, calcium and the like.
  • the molecular weight of carboxymethylcellulose used in the present invention is not particularly limited, but is preferably in the range of about 1 ⁇ 10 4 to about 5 ⁇ 10 5 daltons. In addition, as long as it has a molecular weight within the above range, from those having a higher molecular weight to those having a low molecular weight obtained by hydrolysis treatment or the like, it can be similarly preferably used.
  • the degree of etherification which is another parameter of carboxymethylcellulose, is not limited at all in terms of its use as long as it is in a range where poor water solubility occurs.
  • carboxymethylcellulose used in the present invention is used in a concept that includes alkali metal salts thereof, for example, salts of sodium, potassium, lithium, calcium and the like.
  • Cross-linked acidic polysaccharides are prepared by freezing and thawing acidic solutions of acidic polysaccharides as in the example of hyaluronic acid described above. It can be obtained by a method of standing at a temperature. Of these methods, freezing and thawing of an acidic solution is simple, and a large amount of crosslinked acidic polysaccharide can be obtained. In this method, the solubility half-life of the crosslinked acidic polysaccharide is controlled by appropriately selecting conditions such as the molecular weight of the acidic polysaccharide, the concentration of the acidic polysaccharide in the acidic solution, the freezing time or the standing time. Further, there is an advantage that the crosslinked acidic polysaccharide obtained by selecting the container form at the time of freezing can be easily formed into various forms. Also, there is no problem even if multiple shapes are used in combination.
  • hyaluronic acid is highly sensitive to radiation
  • autoclave treatment can be used to sterilize crosslinked hyaluronic acid sponges. It is also possible to sterilize the hyaluronic acid solution under high temperature conditions in a short time, and to carry out the steps after acidification under aseptic conditions.
  • sponges made of cross-linked carboxymethylcellulose are sterilized with ⁇ -ray, electron beam, ethylene oxide gas, and plasma.
  • Various sterilization methods such as gas sterilization and autoclave sterilization can be adopted.
  • Example 1 Example 1
  • Sodium hyaluronate having a molecular weight of 2 ⁇ 10 6 daltons was dissolved in distilled water to prepare a 2% by mass aqueous solution of hyaluronic acid. The pH of this aqueous solution was adjusted to pH 1.5 with 1 mol hydrochloric acid.
  • An acidic aqueous solution of hyaluronic acid was placed in a 9 cm ⁇ 9 cm ⁇ 1 cm square polystyrene dish, allowed to stand in a freezer set at 120 ° C. for 10 days, and then thawed at 25 ° C. Thereafter, washing with distilled water and a phosphate buffer (pH 6.8) having a concentration of 100 mmol Zl was carried out, followed by freeze-drying. As a result, a sponge-like crosslinked hyaluronic acid having a thickness of about 4 mm when dried and a pore size of 120 ⁇ 45 ⁇ was obtained.
  • Example 1 the acidic aqueous solution of hyaluronic acid was allowed to stand in a freezer set at 120 ° C. for 20 days to obtain a sponge-like crosslinked hyaluronic acid having a thickness of about 4 mm when dried and a pore size of 100 ⁇ 40 ⁇ .
  • a sponge-like crosslinked hyaluronic acid having a thickness of about 4 mm when dried and a pore size of 100 ⁇ 40 ⁇ .
  • Example 1 the acidic aqueous solution of hyaluronic acid was allowed to stand in a freezer set at 120 ° C. for 30 days to obtain a sponge-like crosslinked hyaluronic acid having a thickness of about 7 nm when dried and a pore size of 135 ⁇ 45 ⁇ .
  • a sponge-like crosslinked hyaluronic acid having a thickness of about 7 nm when dried and a pore size of 135 ⁇ 45 ⁇ .
  • Example 4 the acidic aqueous solution of carboxymethylcellulose was allowed to stand in a freezer set at a temperature of 20 ° C. for 3 days, and a sponge-like frame having a thickness of about 3 mm when dried and a pore size of 120 ⁇ 35 ⁇ m. A bridged carboxymethyl cellulose was obtained.
  • a phosphate buffered saline having the following composition and pH 7.4 was prepared.
  • Disodium phosphate dodecahydrate 0.29 mass 0/0
  • the crosslinked hyaluronic acid or crosslinked carboxymethylcellulose obtained in Example 1, Example 2, Example 3, Example 4 or Example 5 was crosslinked with 50 mg of hyaluronic acid or lipoxymethylcellulose by dry weight.
  • the cells were immersed in phosphate-buffered saline at a ratio of 50 ml of phosphate-buffered saline to the resulting hyaluronic acid or cross-linked carboxymethylcellulose.
  • the percentage of hyaluronic acid or carboxymethylcellulose eluted in phosphate-buffered saline at 60 ° C. was determined from the concentration of hyaluronic acid or carboxymethylcellulose in phosphate-buffered saline.
  • solubility of the cross-linked acidic bran in neutral 60 ° C aqueous solution is defined by the above test.
  • the concentration of hyaluronic acid or carboxymethylcellulose in phosphate buffered saline was determined from the peak area of a differential refractive index detector using gel filtration chromatography (GPC). That is, the phosphate buffered saline collected over time was filtered through a 0.45 ⁇ m filter, injected into GPC, and the resulting peak area and a known amount of hyaluronic acid or carboxymethyl Calculated by comparing the peak areas of llulose.
  • GPC gel filtration chromatography
  • the solubility half-lives of the cross-linked hyaluronic acid and cross-linked carboxymethyl cellulose obtained in Examples 1 to 5 were about 15 hours, about 28 hours, about 10 hours, about 8 hours, and about 10 hours, respectively. 18 hours.
  • Example 7 Test for prevention of adhesion of sponge-like cross-linked hyaluronic acid by Egret
  • Japanese white egrets weighing 2.0-2.5 kg were used.
  • the thoracolumbar spine was exposed through a median dorsal incision, and laminectomy was performed on the two vertebral bodies with a size of 10 mm x 5 mm.
  • One excision site was left with the dura exposed (control site), and the other excision site was applied with the sponge-like cross-linked hyaluronic acid obtained in Example 1, Example 2, or Example 3. .
  • Two weeks, one month, two months, and six months later, the animals were sacrificed, and a tissue section was prepared from the laminectomy and stained with hematoxylin and eosin to check the adhesion to the surrounding area.
  • the space between the scar tissue and the dura used the sponge-like crosslinked hyaluronic acid at 4 and 8 weeks after the operation.
  • the gap was significantly wider than in the control group (see Fig. 3).
  • the number of inflammatory cells per unit area at high magnification was significantly lower in the case of using sponge-like cross-linked hyaluronic acid at 4 and 8 weeks after surgery than in the control group. (See Figure 4).
  • the thickness of the hard film was significantly thinner at 4 and 8 weeks after the operation using the sponge-like cross-linked hyaluronic acid than the control group (see Fig. 5). From the above, it is clear that the application of sponge-like cross-linked hyaluronic acid can maintain the gap between scar tissue and dura and can suppress infiltration of inflammatory cells and thickening of the dura. It became.
  • Example 7 the spongy cross-linked carboxymethylcellulose obtained in Example 5 was applied to the resected part of the lamine, and the same observation was made after 2 months of sacrifice. Do. At the site to which the sponge-like crosslinked carboxymethylcellulose obtained in Example 4 was applied, adhesion was observed between the dura and the repair tissue, and the degree of adhesion was similar to that of the control site in Example 7. On the other hand, at the application site of the sponge-like crosslinked carboxymethyl cellulose obtained in Example 5, adhesion was observed in the same manner as when the sponge-like crosslinked hyaluronic acid obtained in Example 1 or Example 2 was applied. Is not recognized.
  • a cytotoxicity test is performed on the sponge-like crosslinked hyaluronic acid and sponge-like crosslinked carboxymethylcellulose obtained in Examples 1, 2 and 5. That is, in the culture of CCL1 (NCTC clone 929) cells, the crosslinked hyaluronic acid and crosslinked carboxymethylcellulose obtained in the present invention are allowed to coexist, and the cell toxicity is evaluated by observing the cell growth behavior.
  • the sponge-like crosslinked hyaluronic acid or sponge-like crosslinked carboxymethylcellulose obtained in the present invention is immersed in a cytotoxicity test medium and mechanically pulverized. 20 mg of a Falcon cell culture insert (pore size: 3 / m) and soak the cells in the seeded medium. In addition, culture using only the cytotoxicity test medium will be used as a control. Culture condition plate: 12 ⁇ L plate for cell culture
  • Number of cells to be seeded 1 ⁇ 10 2 Z-well Two days, five days and eight days after the start of culture, observe the cell density using an inverted microscope.
  • Cells have cross-linked hyaluronic acid! /, Cross-linked carboxymethylcellulose co-exists, but shows good growth as well as control, and the cross-linked hyaluronic acid and cross-linked carboxymethyl cellulose obtained in the present invention Has no cytotoxic effect.
  • Example 1 After being allowed to stand in a freezer set at 20 ° C for 20 days, it was thawed at 25 ° C. Then distilled water and lOOmmolZl phosphate buffer concentrations (P H6. 8) was cleaned by drying was carried out under normal pressure of from about 4 0 ° C. As a result, a crosslinked hyaluronic acid in the form of a film having a thickness of about 500 ⁇ when dried was obtained. The solubility half-life of this example was about 26 hours.
  • Example 4 the mixture was allowed to stand in a freezer set at 120 ° C. for 3 days, and then thawed at 25 ° C. After that, washing with distilled water and a phosphate buffer (PH6.8) having a concentration of 100 mmol Zl was performed, and drying was performed under normal pressure of about 40 ° C. As a result, a film-like crosslinked carboxymethyl cellulose having a thickness of about 200 ⁇ m when dried was obtained.
  • PH6.8 phosphate buffer
  • the solubility half-life of this example was about 21 hours.
  • Example 7 the crosslinked hyaluronic acid film or the crosslinked carboxymethylcellulose film obtained in Example 10 or Example 11 was applied to the resected part of the lamine, and two months later, they were sacrificed and the same. Observe.
  • Example 10 The film-like cross-linked hyaluronic acid obtained in Example 10 or the film-like cross-linked carboxymethyl cell obtained in Example 11 was cross-linked to the sponge-like cross-linkage obtained in Example 1 or Example 2. No adhesion was observed as in the case where hyaluronic acid or the sponge-like crosslinked carboxymethylcellulose obtained in Example 5 was applied. From this, it is clear that the adhesion preventing effect can be obtained even when the crosslinked hyaluronic acid or crosslinked carboxymethylcellulose is formed into a film.
  • the sponge-like crosslinked hyaluronic acid obtained in Example 2 was immersed in an aqueous solution containing Alcian Blue so as to have a mass ratio of 1/20, and dried under vacuum to obtain a colored sponge. This An adhesion prevention test was carried out using egrets described in Example 7 of the colored sponge, and observation was made two months later.
  • the spongy cross-linked hyaluronic acid obtained in Example 2 is placed in a stainless steel cup, and a 50 mmol / l phosphate buffered saline (pH 6.8) is used so that the hyaluronic acid concentration becomes about 1% by mass. Was added. This was crushed using a homogenizer (Nissei Excel Auto Homogenizer DX-11) at 10,000 rotations Z minutes. After the suspension was washed three times with a physiological saline solution by centrifugation, a suspension-like cross-linked hyaluronic acid containing about 4.5% by mass of hyaluronic acid in the physiological saline solution was obtained.
  • a homogenizer Neissei Excel Auto Homogenizer DX-11
  • carboxymethylcellulose obtained was spongy crosslinking in Example 5 in stainless steel cup, carboxymethylcellulose concentration was about 1 weight 0/0 so as to 50 mmol / 1 concentration phosphate buffered saline (pH 6. 8) was added. This was crushed at 10,000 rpm using a homogenizer (Nissei Excel Auto Homogenizer DX-11). After the suspension was washed with physiological saline three times by centrifugation, a suspension-like cross-linked carboxymethylcellulose containing about 3.5% by mass of carboxymethylcellulose in physiological saline was obtained.
  • a homogenizer Neissei Excel Auto Homogenizer DX-11
  • Example 6 The solubility test described in Example 6 was carried out on the crosslinked hyaluronic acid and the crosslinked lipoxymethylcellulose in the suspensions obtained in Examples 14 and 15. As a result, the solubility half-life was about 20 hours for cross-linked hyaluronic acid and about 17 hours for cross-linked carboxymethylcellulose, indicating that the solubility half-life of the cross-linked acidic polysaccharide even after crushing. It became clear that little changed.
  • Example 17 Particle size of cross-linked acidic polysaccharide in suspension
  • Example 7 0.5 ml of the suspension-form crosslinked hyaluronic acid obtained in Example 13 or the suspension-form crosslinked carboxymethylcellulose obtained in Example 14 was applied to the resected portion of the lamine. After 1 month and 2 months, the animals are sacrificed and the same observation is performed.
  • the gap between the scar tissue and the dura at the application site was 0.2 ⁇ 0.1 in the group to which cross-linked hyaluronic acid was applied, and 0.3 ⁇ 0.1 in the group to which cross-linked carboxymethyl cellulose was applied. Later, in the group to which crosslinked hyaluronic acid is applied, it is 0.4 ⁇ 0.1, and in the group to which crosslinked carboxymethylcellulose is applied, it is 0.4 ⁇ 0.1. No adhesion formation was observed at the application site 2 months later. From this, it is confirmed that the crosslinked hyaluronic acid in the form of a suspension and the crosslinked carboxymethyl cellulose in the form of a suspension have an adhesion preventing effect as in the case of a sponge or a film.
  • Example 18 Sponge-like cross-linked hyaluronic acid adhesion prevention test using a heron inflammation model
  • the distance between the scar tissue and the dura was 0.15 + 0.15 mm 2 weeks after application, but 0.4 month 0.1 mm 1 month after application (control site 0.02 + 0.01 mm ), And 2 months after application, 0.5 ⁇ 0.15 mm (control area 0.3 ⁇ 0.02 mm) was significantly different from the control area.
  • the number of inflammatory cells per unit area at high magnification (40x) was 1200 cells (2000 control parts) 2 weeks after application, 800 cells (1800 control parts) 1 month after application, 2 months Later, the number was 500 (900 in the control section), and a significant anti-inflammatory effect was already observed 2 weeks after application.
  • the dura thickness was 60 m (control part 80 im) two weeks after application, 45 ⁇ (control part 75 / m) one month later, and 4 ⁇ m (control part 55 ⁇ m) two months later. m), and a significant effect of suppressing thickening was already observed 2 weeks after application.
  • an antiadhesion effect in the spinal cord region can be obtained.
  • Useful as an anti-adhesion material during surgery because it avoids adverse effects on biocompatibility due to the use of chemical cross-linking agents and chemical decorating agents, and is easy to cut into shapes along the application site .
  • coloring makes it easy to identify the application site, and is effective in reducing the burden on the operator in the final stage of spinal surgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

組織治癒を補助・促進する目的で使用するスポンジ状またはフィルム状または懸濁液状の脊椎・脊髄癒着の防止材を提供する。脊椎・脊髄手術により生ずる癒着の程度を軽減あるいは癒着を防止するために用いられる架橋した酸性多糖類を含むスポンジ状、フィルム状、又は懸濁液状の脊椎・脊髄手術用癒着防止材。

Description

脊椎 ·脊髄手術用癒着防止材 技術分野
組織治癒を補助'促進する目的で使用するスポンジ状またはフィルム状または懸濁液 状の脊椎'脊髄癒着の防止材に関するものである。 背景技術 明
癒着とは本来は離れて存在すべき組織間の接着と定義することができる。その原因に は手術による組織への直接的な外科的損傷のみ書ならず、手術用手袋に塗布されているタ ルクゃ処置に用いられるガーゼ、コットン等の繊維片も挙げられる。癒着は外科的手術の
80%以上に認められると言われており、一般外科においては内臓の運動障害や腸閉塞 等を引き起こす可能性がある。また脊椎 ·脊髄手術においては、馬尾症、馬尾癒着による くも膜炎あるいは神経根症等、硬膜癒着による骨髄症等の重篤な症状を引き起こす可能 性が高ぐまた再手術が必要とされる場合には、本来必要な処置を行う前に癒着を剥離す ることが必要となり、術者の負担となるば力、りでなく術中の瘢痕剥離操作により神経損傷を 来す可能性もある。脊椎脊髄手術では外科的処置の際に神経に近接した箇所での操作 を伴うために、神経周囲の硬膜などと癒着を認める場合には術中神経損傷を起こすことが ある。例えば椎間板ヘルニアに対する除圧手術は神経組織への損傷を避けなければなら ないが、再発ヘルニアの場合には、初回術後に硬膜などに癒着が生じており再手術時に 操作が困難なために神経損傷を起こす可能性がある。したがって脊椎'脊髄領域におけ る術後の癒着防止は、治療を有効なものとするば力りでなぐ中枢神経系への人為的な損 傷を防ぎ、さらには難治性の癒着性クモ膜炎の発症の予防にもつながるものである。
癒着は 6つのステップにより形成されると考えられている(人工臓器, 1994-95, 282-285)。 すなわち、まず手術等による損傷や炎症などによる異常をきたした部位へ体液,血液など の漏出が起き、フイブリノ一ゲンが滲出してフイブリンが形成されフイブリン網が形成される。 この過程は分単位で進行する。次に時間単位でこのフイブリン網に白血球等の炎症細胞、 マクロファージ、線維芽細胞が侵入し、これらの細胞から出される種々の酵素によりフイブ リン網が溶解される。続いてこれらの細胞が出す種々の成長因子により繊維芽細胞の侵 入が活発となり、細胞周囲のフイブリン網がコラーゲン繊維に置換される。この過程は日単 位で進行するが、癒着組織の基本的構造が形成されるために不可逆的なものとなる。さら に週単位で複雑なコラーゲン走行の構築を持つ細胞線維性組織が形成され、これらの細 胞による栄養要求性のために無数の毛細血管が侵入し、肉芽組織が形成される。その後 月単位で一部の組織は創傷治癒の過程をたどるが、残存する組織はコラーゲン組織が大 半を占めることになり、非常に強固な、丈夫な組織である瘢痕組織と称される状態となる。 そして年単位で瘢痕組織のコラーゲン量の減少により周囲組織に〃引きつり〃現象を生じ させることになる。
癒着を防止するためには癒着する可能性のある組織,器官の間隙を隔絶させておくこと、 上述の不可逆的状態に進む前の段階でフイブリン析出,細胞侵入,コラーゲン繊維産出 などの過程を抑えること、位置的に癒着しそうな組織をたびたび動力、して接触状態を維持 させないことなどが考えられる。一般に漿膜損傷後の中皮細胞再生には 5〜8日間必要と されており、この期間損傷を受けた組織と周辺組織とを物理的に隔離して接触を遮断すれ ば、癒着の形成を防止 ·軽減することが期待できる。一方、脊椎脊髄手術の場合には、脊 椎手術後の炎症の沈静化には術後最低 2週間は必要であり、その間の隔離が必要と考え られる。
癒着は組織修復という生理的現象の一つであるため、癒着を希望しない部位のみの癒 着を防止することが必要である。そのためには癒着する可能性のある組織、器官の間隙を 隔絶させておくことが望ましい。隔絶する方法には大きく分けて 2種類、すなわち創傷を含 む臓器を非特異的に浮いた状態に保つフローティング効果による方法と、創傷及びその 周囲部分のみを他の組織力 遮蔽するバリアー効果による方法が挙げられる。
高分子物質を中心としたゲル状や高濃度溶液による高粘度品を腹腔内に充満させるフ ローテイング効果による癒着防止材としては、例えば、特開昭 57— 167919号公報に記 載されているアルギン酸ナトリウム、特許 2953702号公報記載のコンドロイチン硫酸ナトリ ゥム、高分子デキストラン (立崎達夫著「最新医学」、 44卷、 645頁、 1989年、五味淵秀人 著「産科と婦人科」、後藤幸子ら:応用薬理、 35卷、 359頁、 1988年、特開平 8— 157378 号公報)、特開平 10— 502663号公報記載のキトサン、特開平 8— 157378号公報記載 のヒアルロン酸ナトリウム等の高分子多糖体に有効性が見出されている。しかし、粘度が高 いために薬液注入チューブおよびカテーテル内での薬液の移動は非常に遅いために、 強制的に注入しなければならなレ、、あるいは十分には腹腔内に注入できないなどの不利 な点を有する。さらに、腸等を吻合した際にできる縫合針による微小な穴 〃スーチヤーホ ール(suture hole) "力 漏出した腸内細菌が高粘度品を足場として腹腔内に広がり、感 染症を引き起こす可能性が高く、実際の手術現場でも大きな問題となっている。これらの 癒着防止材の脊椎'脊髄手術への適用は、手術部位周辺の環境から感染症の問題は少 なくなるものの、操作性の悪さのために実用的とはいえない。
これに対し創傷部及びその周辺部位に適用するバリアー効果による癒着防止材は感染 症誘発の可能性が低く、一般外科に適するものと考えられている。特開平 1— 301624号 や米国特許第 5906997号等には化学的架橋剤又は化学的修飾剤を用いたカルボキシ メチルセルロース組成物の癒着防止材が開示されており、また特表平 5— 508161号、特 表平 6— 508169号を基に開発されたヒアルロン酸とカルボキシメチルセルロースを力ルポ ジイミドで修飾したものからなる組成物でフィルム状の癒着防止剤「セプラフイルム」 (Genzyme社製)が市販されている。一方架橋剤又は修飾剤を用いない、すなわち実質的 に改質されてレ、なレ、カルボキシメチルセルロースを癒着防止材に用レ、る例は米国特許第 5, 906, 997号,同第 6, 017, 301号や同第 6, 034, 140号こ基づレヽて開発された力ノレ ボキシメチルセルロースとポリエチレンオキサイドからなるフィルム状のォキシプレックス (Oxiplex ; FizioMed社)が米国で市販されている。しかしながら、これらの癒着防止材が脊 椎 '脊髄手術においてその有効性を示した例は開示されていない。
脊椎'脊髄手術時における癒着防止のための処置として、 1970年代後半頃より患者自 身の皮下脂肪の使用が提案されていた (Vopr. Neirokhir., Jul- Aug(4), 1976 年 等)。手 術部位付近の有血管あるいは無血管皮下脂肪を手術による欠損あるいは創傷部位に適 用するが、自己組織を使用することから免疫反応に対する配慮は不要であるものの皮下 脂肪の採取を行うことが必要とされ、手術者にとっては組織切除のための作業が増えると いった難点があった。また、 Clin. Orthop, 215 (1987年)にはブタ皮膚真皮の使用が報告 されており、 日本特許第 2, 905, 718号及び 2, 905, 719号にはヒト羊膜の使用が開示 されている。前者は異種の組織であるために免疫反応に対する処置あるいは真皮の抗原 性消失のために用いる化学物質の残存性が懸念される。一方後者は倫理的な問題も抱 えており、現実的な癒着防止材とは言い難い。
これに対し、ドイツ特許第 2, 722, 563号記載のシリコンゴム、米国特許第 5480436号 記載のポリエーテル一ポリエステル共重合体、 J. Neurosurgery, 63(3) (1985 年)に報告さ れたバイクリル(ポリグラクチン 910)メッシュ、 Yonsei Med. J., 31(4) (1990年)に報告され たダクロンや、特開平 10— 244611号記載のポリテトラフ/レオ口エチレン等を用いた脊椎' 脊髄癒着防止材も開示あるいは報告されている。しかしながらこれらの癒着防止材は生体 接着性がないか乏しいため、術部と他の組織の隔離のためにさらに縫合等の処置が必要 とされる。このことは手術者の負担が増えるば力りでなぐ縫合等の処置の際に出血や接 着剤の使用により誘発される新たな癒着の危険性を有している。
適用部位への接着性あるいは残存性の向上を目的として米国特許第 5, 056, 839号 にはカルポキシメチルセルロース及ぴポリエチレンオキサイドのジメチル尿素による架橋体、 特開第 2001— 278984号にはエステルイヒカルボキシル基含有多糖と a—アミノ基を 2個 以上含有する化合物とからなるゲルが開示されている。これらは生体適合性高分子物質 を用いていることから良好な組織親和性、組織接着性を有すると期待されるが、架橋体あ るいはゲル形成の際に用いられる化学物質の残存による神経等への影響が懸念される。 一方、コラーゲンあるいはゼラチンを用いた脊椎'脊髄領域の癒着防止材については、 例えば特開 2002— 10376号、米国特許第 6, 221,.109号や国際公開特許第 2002—0 22184号にはコラーゲンを用いた癒着防止材力 米国特許第 6, 066, 325号にはゼラチ ンによる癒着防止材が開示されている。また「ADCON- L」 「Gel Amidon Oxyde (GAO)j と呼ばれる物質についてもその有効性が Eur. Spine J., Vol. 5 (1996年)、 Neurosurgery, Vol. 38 (1996年)、 Am. J. Orthop., Vol. 27 (1998年)、 Neurosurgery, Vol.50 (2002年) や J.Neurosurg., Vol.97 (2002年)に報告されている。これらの癒着防止材は単体あるい は架橋剤を用いた架橋体として用いられる力 原材料であるコラーゲンあるいはゼラチン は生物由来製品であるため、規制動向等を考慮すると将来的な安定供給に難点がある。 生体適合性を有し、実質的に化学的架橋剤や修飾剤を含まないゲルとしては、欧州特 許第 107, 055号に記載されてレ、るポリビニルアルコールノヽイド口ゲルや国際公開特許第 99 10385号記載の水難溶性化ヒアルロン酸、国際公開特許第 01Z34214号記載の 水難溶性化カルポキシメチルセルロースが開示されている。しかし、これらのゲルや水難 溶性化物が脊椎 ·脊髄手術における癒着防止材として用いられた例は開示されていな レ、。
神経の中枢としての役割を担う脊髄は軟膜,くも膜及び硬膜に包まれ、その外側を脂肪 層と骨膜に覆われ、椎体と椎弓とで構成される脊柱管の中に納められており、硬膜と椎弓 との間には一定の空間が保たれている。したがって用いられる癒着防止材は外科的処置 後においてもこの空間を保持しつつ癒着を防止することが重要であり、加えて硬膜や骨膜 の肥厚化を抑制することも要求される。また除圧手術等の際には既に手術対象部位に炎 症が起きている場合が多ぐ抗炎症作用を有することが望ましレ、。しかしながらこれらの性 能を有する脊椎脊髄領域の癒着防止材はこれまでに見レ、だされてレ、なレ、。
一方、手術現場での医療用具の適用を見てみると、適用部位識別のために着色されて いるものが見受けられる。縫合糸はその代表的なものであり、例えばジョンソン 'エンド'ジョ ンソン社のコーテッドバイクリルやサージカルシノレクには紫色や黒色、青色といった着色が なされており、血液や体液の存在下でも縫合部位の識別を容易なものとしている。特表平 3— 502704号にはヒアルロン酸とカルボキシメチルセルロースをカルポジイミドで修飾し ブリリアントブルー Rで着色されたフィルムが開示されている力 市販されている癒着防止 材で着色されてレ、るものは見あたらず適用部位の識別が容易なものが望まれていた。 発明の開示 本発明者らは、生体適合性が高く安全な脊椎 ·脊髄領域での癒着防止材について銳 意検討してきた。その結果、実質的な改質を行わずに架橋した酸性多糖類による脊椎 '脊 髄領域での癒着防止効果を見出し、本発明を完成させるに至った。また架橋した酸性多 糖類を着色することにより、本発明品の手術部位への適用状態の観察を容易なものとする ことが可能となった。
すなわち、本発明は、(1)脊椎'脊髄手術により生ずる癒着の程度を軽減あるいは癒着 を防止するために用いられる架橋した酸性多糖類を含むスポンジ状、フィルム状、又は懸 濁液状の脊椎'脊髄手術用癒着防止材、(2) 60°Cのリン酸緩衝生理食塩水 (pH7. 4)中 で、架橋した酸性多糖類の溶解率が 50%になるまでの時間が 15時間以上であることを特 徴とする(1)記載の癒着防止材、 (3)酸性多糖類がヒアルロン酸及ぴ Z又はカルボキシメ チルセルロースであることを特徴とする(2)記載の癒着防止材、(4)架橋した酸性多糖類 の架橋構造がエステル結合であることを特徴とする(1)〜(3)のいずれ力 1項に記載の癒 着防止材、(5)架橋した酸性多糖類の架橋構造が自己架橋エステル結合であることを特 徴とする(4)記載の癒着防止材、(6)スポンジの乾燥時の厚みが 2mm〜 10mmであるこ とを特徴とする(1)〜(5)のいずれか 1項に記載の癒着防止材、(7)スポンジの乾燥時の ポアサイズが 50 IX m〜200 ix mであることを特徴とする(1)〜(6)のいずれか 1項に記載 の癒着防止材、 (8)フィルムの乾燥時の厚みが 50 μ m〜: Lmmであることを特徴とする(1) 〜(5)のいずれか 1項に記載の癒着防止材、(9)懸濁液に含まれる架橋した酸性多糖類 の平均粒子径が 100 μ m〜 lmmであることを特徴とする(1)〜(5)のいずれか 1項に記載 の癒着防止材、(10)癒着防止材の適用部位の識別を容易にするために着色されている ことを特徴とする(1)〜(9)のいずれか 1項に記載の癒着防止材である。 図面の簡単な説明
図 1は、術後 2週間のコントロール部のへマトキシリン'ェォジン染色像の写真である。 図 2は、術後 2週間のスポンジ状の架橋したヒアルロン酸適用部位のへマトキシリン 'ェォ ジン染色像の写真である。
図 3は、術後におけるコントロール部及ぴスポンジ状の架橋したヒアルロン酸適用部位の 瘢痕組織と硬膜との間隙である。
図 4は、術後におけるコントロール部及びスポンジ状の架橋したヒアルロン酸適用部位の 組織標本の高倍率における単位面積当たりの炎症性細胞数である。
図 5は、術後におけるコントロール部及ぴスポンジ状の架橋したヒアルロン酸適用部位の 組織標本における硬膜厚である。
符号の説明 1. 椎弓の残り
2. 椎弓切除後の瘢痕形成
3.脊髄
4. 残存するヒアルロン酸ゲル 発明を実施するための最良の形態
以下、本発明を詳細に説明する
本発明でレ、う癒着防止材とは、脊椎'脊髄手術の際に切開または切除した部分に貼付 あるいは留置することにより、手術部位やその周辺等に生ずる癒着の程度を軽減あるいは 癒着を防止するものを意味する。例えば、椎間板ヘルニア手術の場合には、ヘルニアによ る炎症に加え、椎間板や神経組織に施された外科的損傷部位及ぴその周辺に対して適 用することを指す。さらに体内に適用されるものであることから生体適合性のあるものであ ることを意味する。
本発明に用いられる酸性多糖類とは、組織への炎症性や障害性等の有害作用を有さ ない高分子化合物を指す。酸性多糖類は、天然品あるいは合成品を問わず用いることが でき、架橋による水難溶性化が可能であり生体適合性を有するものであれば何ら制限され るものではない。
用いられる天然酸性多糖類の代表例としては、ヒアルロン酸又はヒアルロン酸塩、ヒアル ロン酸又はヒアルロン酸塩を除くグリコサミノダリカン類(へパリン、へパラン硫酸、デルマタ ン硫酸等)、コンドロイチン硫酸塩(コンドロイチンー 6_硫酸等)、ケラチン硫酸塩、ポリ乳 酸等が挙げられる。また、合成酸性多糖類としては、医薬品の懸濁剤や粘性剤としても使 用されているカルボキシメチルセルロース、又はカルボキシメチルセルロース塩が代表例 である。なお、本発明は、これらの高分子化合物に何ら制限されなレ、ものである。
本発明でレ、うスポンジ状の癒着防止材とは、得られた架橋した酸性多糖類を減圧凍結 乾燥により乾燥して得られる癒着防止材であることをいい、またフィルム状の癒着防止材と は、得られた架橋した酸性多糖類を室温から 50°Cの範囲の常圧下で乾燥して得られる癒 着防止材であることをいう。さらに懸濁液状の癒着防止材とは、得られた架橋した酸性多 糖類を薬理学的に許容される水性溶媒中でホモジナイザーや超音波処理等により破砕し て得られる癒着防止材であることをレ、う。
本発明に用いられるリン酸緩衝生理食塩水とは、架橋した酸性多糖類が生体に適用さ れることを考慮し、薬理学的に許容される溶液が好ましぐ具体的には細胞培養の際に一 般的に用レ、られるカリウム一ナトリウム系リン酸緩衝生理食塩水 (ρΗ7· 4)が好ましい。 本発明における架橋した酸性多糖類の溶解率が 50%になるまでの時間とは、架橋した 酸性多糖類を 60°Cのリン酸緩衝生理食塩水(pH7. 4)中に静置するとき、架橋した酸性 多糖類から溶出した酸性多糖類の量が溶解前の架橋した酸性多糖類量の 50%になるま での時間をいう(以下、「溶解性半減期」とよぶ)。
溶解性半減期が短い場合には適用部位における貯留性が短 癒着形成ステップのう ちの不可逆的状態に進む前の段階での組織あるいは器官の間隙の隔絶が困難となるた め、癒着防止効果は期待できない。一方、溶解性半減期が長すぎる場合には、炎症細胞、 マクロファージゃ繊維芽細胞が架橋した酸性多糖類内に侵入し、癒着組織の基本的構造 が形成される不可逆的状態を維持することになるため、逆に癒着形成を助長することとな る。溶解性半減期の調整は、架橋した酸性多糖類を得るための反応条件を選択すること により容易であり、例えば酸性多糖類の溶液中の濃度、反応時間、反応温度等を変えるこ とにより希望の溶解性半減期を有する架橋した酸性多糖類を得ることができる。周囲組織 の動きが少ない部位に適用するので本発明品に必要な貯留性を得るための溶解性半減 期は、好ましくは 15時間以上であり、より好ましくは 20時間〜 30時間である。
本発明における架橋した酸性多糖類の架橋構造がエステル結合であるとは、多価アル コールとカルボキシル基のエステル、多価カルポン酸と水酸基とのエステル、多価ェポキ シ化合物とカルボキシル基とのエステル等が挙げられる。
本発明における架橋した酸性多糖類の架橋構造が自己架橋エステル結合であるとは、 形成されるエステル結合が架橋前の生体適合性物質が本来有する分子間で直接形成さ れることを意味する。自己架橋エステル結合体の製造方法としては、ヒアルロン酸を例にと ると、一部または全てのカルボキシル基が同一の多糖鎖または他の多糖鎖のアルコール' 基でエステル化された自己架橋エステル結合ヒアルロン酸が欧州特許第 341745B1に、 ヒアルロン酸の水溶液を酸性条件下で凍結し、っレ、で解凍することを少なくとも 1回行うこと によって生成する自己架橋エステル結合ヒアルロン酸が国際公開特許 W099 10385 に、凍結を行うことなく 5%以上の濃度となるようにヒアルロン酸と酸性溶液を混合,共存さ せることにより生成する自己架橋エステル結合ヒアルロン酸が国際公開特許 WO01/57 093に開示されている。ヒアルロン酸の水溶液を酸性条件下で凍結する方法では、凍結 時間が長くなるにつれて溶解性半減期も長くなるが、過度の凍結時間ではヒアルロン酸の 低分子量ィ匕が生じ溶解性半減期が逆に短くなることが認められる。
本発明におけるスポンジ状の癒着防止材の厚みについては、薄い場合にはスポンジの 強度が弱くなるためにピンセット等を用いた適用において癒着防止材の破れや曲がりが生 じる可能性が高い。また厚い場合には強度は保てるものの欠損部位の大きさへの調整が 困難になることが予想され、あるいは体液の吸収による容積変化により欠損部位にわたる 適用が不十分となるか必要のない部分にまでまたがって適用する可能性がある。したがつ てスポンジ状の癒着防止材の厚みは乾燥時において 2mm〜: LOmmが好ましい。なお厚 みの薄レ、本発明品を重ねて適用することも何ら問題ではなレ、。
本発明におけるスポンジのポアサイズが小さい場合には、生体適合性物質の密度が高 いために硬レ、スポンジとなり、神経に与える影響を考慮すると好ましくなレ、。一方ポアサイ ズが大きい場合には柔らカ /、スポンジとなる力 S、厚みの場合と同様にハンドリング性能が 低下する。このため、スポンジの乾燥時のポアサイズは 50 n!〜 200 /z mが好ましい。 本発明におけるフィルム状の癒着防止材の厚みについてもスポンジ状の癒着防止材の 場合と同様に考えることができる。すなわち、薄い場合にはフィルム強度が低いためにハ ンドリング性能が低下し、厚い場合にはフィルム強度が高いために適用時に神経等に損 傷を与える可能性が高い。したがって乾燥時におけるフィルム状の癒着防止材の厚みは、 50 / m〜 lmmが好ましい。さらに厚みの薄いフィルム状の癒着防止材を重ねて適用する ことも可食 gである。
懸濁液状の癒着防止材に含まれる架橋した酸性多糖類の平均粒子径は、適用時の操 作性や組織に対する接着性、また製造工程での容易性等から決められる。平均粒子径が 小さい場合には高い架橋した酸性多糖類濃度においても適用時の操作性が良好である が、複数種の破砕操作が必要となるケースが多い。一方、平均粒子径が大きい場合には カップ式ミキサー等の破砕のみで調製が可能である力 S、高濃度での適用時の操作性が悪 レ、ことが予想される。また組織への接着性は平均粒子径の大きさのみならず含有される生 体適合性物質の種類、濃度等により影響を受けるものであり、これらの要因を調整しやす いことが望ましい。したがって平均粒子径は製造が容易であり、適用時の操作性も良好で ある 100 w m〜 1mmが好まし!/ヽ。
懸濁液中の架橋した酸性多糖類の濃度については特に規定されるものではなレ、が、濃 度が低い場合にはゲル部分と溶液部分との分離のために適用が不均一になる可能性があ り、また架橋した酸性多糖類の適用部位への接着性が十分でないことが懸念される。一方 濃度が高い場合には、適用に術斜のカを要することが考えられ、手術時の操作性に支障 を来す可能性がある。したがって濃度は用いる酸性多糖類の種類、架橋された酸性多糖 類の平均粒子径、溶液に用いる塩の種類やその濃度によって適宜決められる。
適用の形態としては、製造工程の容易さ、適用時の扱い易さ及び組織への接着性の点 から、懸濁液よりもフィルムが好ましぐさらにスポンジより好ましい。
本発明に用いられるヒアルロン酸は、動物組織から抽出したものでも、また発酵法で製 造したものでもその起源を問うことなく使用できる。しかしながら、生物由来製品の範疇に 入らなレ、発酵法で製造したヒアルロン酸が望ましレ、。
発酵法で使用する菌株は自然界から分離されるストレプトコッカス属等のヒアルロン酸生 産能を有する微生物、又は特開昭 63— 123392号公報に記載したストレプトコッカス 'ェク ィ FM— 100 (微ェ研菌寄第 9027号) 、特開平 2— 234689号公報に記載したストレプト コッカス'ェクイ FM— 300 (微ェ研菌寄第 2319号) のような高収率で安定にヒアルロン酸 を生産する変異株が望ましい。上記の変異株を用いて培養、精製されたものが用いられ る。
また本発明に用いられるヒアルロン酸の分子量 (重量平均分子量、以下同じ)は、約 1 X 105〜約 1 X 107ダルトンの範囲内のものが好ましぐ上記範囲内の分子量をもつもので あれば、より高分子量のものから、加水分解処理等をして得た低分子量のものでも同様に 好ましく使用できる。なお、本発明にいうヒアルロン酸は、そのアルカリ金属塩、例えば、ナ トリウム、カリウム、リチウム、カルシウム等の塩をも包含する概念で使用される。
本発明に用いられるカルボキシメチルセルロースの分子量は、特に規定される物ではな いが、約 1 X 104〜約 5 X 105ダルトンの範囲内のものが好ましい。また、上記範囲内の 分子量をもつものであれば、より高分子量のものから、加水分解処理等をして得た低分子 量のものでも同様に好ましく使用できる。
また、カルポキシメチルセルロースのもうひとつのパラメーターであるエーテル化度につ いては、水難溶性ィ匕が起こる範囲のものであればその利用に関し何ら制限されなレ、。なお、 本発明にいうカルボキシメチルセルロースは、そのアルカリ金属塩、例えば、ナトリウム、力 リウム、リチウム、カルシウム等の塩をも包含する概念で使用される。
架橋した酸性多糖類は、上述のヒアルロン酸の例のように、酸性多糖類の酸性溶液の 凍結 ·解凍を用いる方法、酸性多糖類を 5質量%以上になるように酸溶液と混和し非凍結 温度下で放置する方法等により得ることが可能である。このうち酸性溶液の凍結'解凍を 用 、る方法は簡便で多量の架橋した酸性多糖類の取得が可能である。この方法では用レ、 る酸性多糖類の分子量、酸性溶液中の酸性多糖類濃度、凍結時間あるいは放置時間等 の条件を適宜選択することにより架橋した酸性多糖類の溶解性半減期を制御することが 可能であり、さらに凍結時の容器形態を選択することにより得られる架橋した酸性多糖類 を種々の形態に形成しやすいという利点を有する。また複数の形状のものを組み合わせ て使用しても何ら問題はなレヽ。
次に、医療用具として必要な滅菌処理について述べる。ヒアルロン酸は放射線に対する 感受性が強いために、架橋したヒアルロン酸からなるスポンジの滅菌はオートクレーブ処 理を用いることができる。またヒアルロン酸溶液を高温条件下で短時間に滅菌し、酸性ィ匕 以降の工程を無菌条件下で行うことも可能である。一方、カルボキシメチルセルロースの 糖鎖構造は熱や放射線等に比較的安定であるために、架橋したカルボキシメチルセル口 ースからなるスポンジには γ線滅菌、電子線滅菌、エチレンオキサイドガス滅菌、プラズマ ガス滅菌あるいはオートクレープ滅菌などの種々の滅菌方法が採用できる。こうした滅菌と いう過酷な処理により架橋したヒアルロン酸あるいは架橋したカルボキシメチルセルロース の in vitroでの溶解性ひいては生体内貯留性が変化する現象が確認される力 S、製造条 件を変化させてあらかじめより安定な、すなわちより溶解性半減期の長い架橋したヒアルロ ン酸あるレ、は架橋したカルボキシメチルセルロースを製造しておき、滅菌処理後の生体内 貯留性を制御することも可能である。
本発明品を着色する場合には、非経口的に投与された場合での安全性が確認されて いる色素を用いることが必要である。例えば医薬品添加物事典(日本医薬品添加剤協会 編集)に記載されてレ、るカンゾゥエキス、三二酸化鉄、銅クロロフィリンナトリウム、パーマネ ントバイオレット— R—スペシャル、ベンガラ、薬用炭、また実際に縫合糸の着色に用いら れている通称「紫 2015」による着色が可能である。色については適用部位や適用方法に よって任意に決められ何ら制限されるものではない。
以下、実施例により本発明をさらに詳しく説明する。なお、本発明はこれらにより限定さ れるものではない。 実施例 1
分子量が 2 X 106ダルトンのヒアルロン酸ナトリウムを蒸留水に溶解し、 2質量%のヒアル ロン酸の水溶液を調製した。この水溶液の pHを lmol 塩酸で pHl . 5に調整した。ヒア ルロン酸の酸性水溶液を 9cmX 9cm X lcmの角形ポリスチレンシャーレに入れ、一 20°C に設定した冷凍庫に 10日間静置した後、 25°Cで解凍した。その後蒸留水及ぴ lOOmmol Zl濃度のリン酸緩衝液 (pH6. 8)による洗浄を行い、凍結乾燥による乾燥を行った。その 結果、乾燥時の厚み約 4mm、ポアサイズ 120 ±45 μ πιのスポンジ状の架橋したヒアルロ ン酸を得た。
実施例 2
実施例 1において、ヒアルロン酸の酸性水溶液を一 20°Cに設定した冷凍庫に 20日間 静置し、乾燥時の厚み約 4mm、ポアサイズ 100 ±40 μ ιηのスポンジ状の架橋したヒアル ロン酸を得た。
実施例 3
実施例 1において、ヒアルロン酸の酸性水溶液を一 20°Cに設定した冷凍庫に 30日間 静置し、乾燥時の厚み約 7nmi、ポアサイズ 135 ±45 μ ιηのスポンジ状の架橋したヒアル ロン酸を得た。
実施例 4
25°Cでの 1%粘度 1000〜2800mPa' sのカルボキシメチルセルロースナトリウム(エー テル化度 0. 65〜0. 95、換算分子量約 3. 0 X 105ダルトン、ハーキュレス社製)を蒸留水 に溶解し、 2質量%のカルボキシメチルセルロースの水溶液を調製した。この水溶液の pH を lmolZl塩酸で pHl. 5に調整した。
カルポキシメチルセルロースの酸性水溶液を 9cm X 9cmの角形ポリスチレンシャーレに 入れ、一20°Cに設定した冷凍庫に 1日間静置した後、 25°Cで解凍した。その後蒸留水及 び lOOmmol/1濃度のリン酸緩衝液 (pH6. 8)による洗浄を行い、凍結乾燥による乾燥を 行った。その結果、乾燥時の厚み約 4mm、ポアサイズ 125 ±45 Ai mのスポンジ状の架橋 したカルボキシメチルセル口ースを得た。
実施例 5
実施例 4におレ、て、カルボキシメチルセルロースの酸性水溶液を一 20°Cに設定した冷 凍庫に 3日間静置し、乾燥時の厚み約 3mm、ポアサイズ 120± 35 μ mのスポンジ状の架 橋したカルボキシメチルセルロースを得た。
実施例 6 : 架橋した酸性多糖類の溶解性試験
次の組成力 なる pH7. 4のリン酸緩衝生理食塩水を調製した。
リン酸緩衝生理食塩水
塩化カリウム 0. 02質量0 /0
リン酸一カリウム . 0. 02質量0 /0
リン酸ニナトリウム 12水和物 0. 29質量0 /0
塩化ナトリウム 0. 81質量0 /0
実施例 1、実施例 2、実施例 3、実施例 4及ぴ実施例 5で得られた架橋したヒアルロン酸 または架橋したカルボキシメチルセルロースを、乾燥重量で 50mgのヒアルロン酸または力 ルポキシメチルセルロースを含む架橋したヒアルロン酸または架橋したカルボキシメチルセ ルロースに対して 50mlのリン酸緩衝生理食塩水の割合で、リン酸緩衝生理食塩水中に浸 漬した。 60°Cの静置下でリン酸緩衝生理食塩水中に溶出するヒアルロン酸またはカルボ キシメチルセルロースの割合を、リン酸緩衝生理的食塩水中のヒアルロン酸濃度または力 ルポキシメチルセルロース濃度から求めた。
従って、中性の 60°Cの水溶液中での架橋した酸性多糠類の溶解性は、上記試験によ り規定されるものである。
酸性多糖類の濃度の測定
リン酸緩衝生理食塩水中のヒアルロン酸またはカルボキシメチルセルロースの濃度は、 ゲルろ過クロマトグラフ法 (GPC)を使って示差屈折率検出器のピーク面積から求めた。す なわち経時的に採取したリン酸緩衝生理食塩水を孔経が 0. 45 μ mのフィルターでろ過 後 GPCに注入し、得られたピーク面積と既知量のヒアルロン酸またはカルボキシメチルセ ルロースのピーク面積を比較することにより算出した。
その結果を表 1に示す。
表 1
Figure imgf000013_0001
例えば、実験 No.lの実施例 1で得られた架橋したヒアルロン酸については、ヒアルロン 酸の溶解が 3時間後では認められず、 5時間後では 3質量%、 10時間後では 20質量%、 15時間後では 48質量%であった。すなわち 5時間後においては 97質量%が、 15時間後 におレ、ても 52質量0 /0が架橋したヒアルロン酸として残存して!/、た。他の実施例で得られた 架橋したヒアルロン酸及び架橋したカルボキシメチルセルロースにつレ、ても同様であり、凍 結時間により溶解性を制御できることが明らかとなった。またこれらの溶解率より実施例 1 〜実施例 5で得られた架橋したヒアルロン酸及び架橋したカルボキシメチルセルロースの 溶解性半減期はそれぞれ約 15時間、約 28時間、約 10時間、約 8時間及び約 18時間で あった。
実施例 7: ゥサギによるスポンジ状の架橋したヒアルロン酸の癒着防止試験
体重 2. 0〜2. 5kgの日本白色ゥサギを用いた。背面正中切開により胸腰椎を露出させ、 2椎体に椎弓切除を 10mm X 5mmの大きさで行った。一方の切除部位は硬膜を露出さ せたままとし (コントロール部位)、他方の切除部位には実施例 1、実施例 2あるいは実施例 3で得られたスポンジ状の架橋したヒアルロン酸を適用した。 2週間後、 1ヶ月後、 2ヶ月後 及び 6ヶ月に屠殺し、椎弓切除部分につき組織切片の作成及びへマトキシリン '·ェォジン 染色を行い、周囲との癒着状況等を確認した。
術後 2週間のコントロール部においては炎症性細胞や線維芽細胞などの浸潤を伴う瘢 痕組織が切除部位に侵入してレヽることが観察され、硬膜との接着力 S確認された(図 1参照)。 これに対し、実施例 1あるレ、は実施例 2で得られたスポンジ状の架橋したヒアルロン酸適用 部位では架橋したヒアルロン酸の残存が認められ(図 2参照)、切除部位への炎症性細胞 の浸潤はコントロール部と比較して有意に低下していた。 術後 2ヶ月ではいずれの部位においても椎弓の修復が確認された力 コントロール部位 及び実施例 3で得られたスポンジ状の架橋したヒアルロン酸適用部位では硬膜と修復組 織との癒着が認められたのに対し、実施例 1あるいは実施例 2で得られたスポンジ状の架 橋したヒアルロン酸適用部位では当該部位での癒着が防止された。なお癒着防止効果が 認められた部位について、架橋したヒアルロン酸の残存は確認されなかった。実施例 2で 得られたスポンジ状の架橋したヒアルロン酸適用部位を例にとると、瘢痕組織と硬膜との間 隙は、術後 4、 8週目でスポンジ状の架橋したヒアルロン酸を使用したものが、コントロール 群よりも有意に間隙が広力 た(図 3参照)。また、組織標本において高倍率における単位 面積当たりの炎症性細胞数は術後 4、 8週目でスポンジ状の架橋したヒアルロン酸を使用 したものが、コントロール群よりも有意に浸潤細胞数が減少していた(図 4参照)。さらに、組 織標本において硬膜厚は術後 4、 8週目でスポンジ状の架橋したヒアルロン酸を使用した ものが、コントロール群よりも有意に薄かった(図 5参照)。以上のことより、スポンジ状の架 橋したヒアルロン酸を適用することにより、瘢痕組織と硬膜との間隙を保つことが可能であり、 炎症性細胞の浸潤及び硬膜の肥厚を抑制できることが明らかとなった。
実施例 8: ゥサギによるスポンジ状の架橋したカルボキシメチルセルロースの癒着防止 試験
実施例 7におレ、て、椎弓の切除部分に実施例 4あるレ、は実施例 5で得られたスポンジ状 の架橋したカルボキシメチルセルロースを適用し、 2ヶ月後に屠殺して同様の観察を行う。 実施例 4で得られたスポンジ状の架橋したカルボキシメチルセルロースを適用した部位 では硬膜と修復組織との間に癒着が認められ、その程度は実施例 7におけるコントロール 部位と同等である。一方実施例 5で得られたスポンジ状の架橋したカルボキシメチルセル ロースの適用部位では、実施例 1あるいは実施例 2で得られたスポンジ状の架橋したヒア ルロン酸を適用した場合と同様に、癒着が認められない。
実施例 9 : 細胞毒性試験
実施例 1、実施例 2及び実施例 5で得られたスポンジ状の架橋したヒアルロン酸及ぴス ポンジ状の架橋したカルボキシメチルセルロースにっき細胞毒性試験を行う。すなわち、 CCL 1 (NCTC clone 929) 細胞の培養において本発明で得られた架橋したヒアルロン酸 及ぴ架橋したカルボキシメチルセルロースを共存させ、細胞増殖挙動の観察によりその細 胞毒性を評価する。本発明で得られたスポンジ状の架橋したヒアルロン酸あるいはスポン ジ状の架橋したカルボキシメチルセルロースを細胞毒性試験用培地に浸漬し、機械的に 粉砕したもの 20mgをファルコン社製のセルカルチャーインサート(ポアサイズ: 3 / m)中 に入れ、細胞を播種した培地に浸す。また、細胞毒性試験用培地のみでの培養をコント口 ールとする。 培養条件プレート :細胞培養用 12ゥエルプレート
培地 : DMEM培地 + 10%ゥシ胎児血清, 2mlZゥエル 温度 :37°C (5%C02下)
播種細胞数 : 1 X 102個 Zゥエル 培養開始後 2日、 5日及ぴ 8日後に、倒立顕微鏡を用いて細胞密度を観察する。細胞 は架橋したヒアルロン酸ある!/、は架橋したカルボキシメチルセルロースが共存してレ、てもコ ントロールと同様に良好な増殖を示し、本発明で得られた架橋したヒアルロン酸及び架橋 したカルボキシメチルセルロースには細胞毒性作用がないことが見出される。
実施例 10
実施例 1において、一20°Cに設定した冷凍庫に 20日間静置した後、 25°Cで解凍した。 その後蒸留水及び lOOmmolZl濃度のリン酸緩衝液(PH6. 8)による洗浄を行い、約 4 0°Cの常圧下で乾燥を行った。その結果、乾燥時の厚み約 500 μ πιのフィルム状の架橋し たヒアルロン酸を得た。なお本実施例の溶解性半減期は約 26時間であった。
実施例 11
実施例 4において、一 20°Cに設定した冷凍庫に 3日間静置した後、 25°Cで解凍した。 その後蒸留水及ぴ lOOmmolZl濃度のリン酸緩衝液(PH6. 8)による洗浄を行い、約 4 0°Cの常圧下で乾燥を行った。その結果、乾燥時の厚み約 200 μ mのフィルム状の架橋し たカルボキシメチルセル口ースを得た。
なお本実施例の溶解性半減期は約 21時間であった。
実施例 12 ゥサギによるフィルム状の癒着防止材の評価試験
実施例 7において、椎弓の切除部分に実施例 10あるいは実施例 11で得られたフィルム 状の架橋したヒアルロン酸あるいはフィルム状の架橋したカルボキシメチルセルロースを適 用し、 2ヶ月後に屠殺して同様の観察を行う。
実施例 10で得られたフィルム状の架橋したヒアルロン酸あるいは実施例 11で得られた フィルム状の架橋したカルボキシメチルセル口 スは、実施例 1または実施例 2で得られた スポンジ状の架橋したヒアルロン酸あるいは実施例 5得られたスポンジ状の架橋したカル ポキシメチルセルロースを適用した場合と同様に、癒着が認められなレ、。このことより、架 橋したヒアルロン酸または架橋したカルボキシメチルセルロースをフィルム状とした場合に も癒着防止効果が得られることが明らかである。
実施例 13 : 着色スポンジの効果
実施例 2で得られたスポンジ状の架橋したヒアルロン酸を質量比で 20分の 1となるように アルシアンブルーを含む水溶液に浸漬し、これを真空乾燥して着色スポンジを得た。この 着色スポンジにっき実施例 7に記載したゥサギによる癒着防止試験を行い、 2ヶ月後に観 察を行った。
適用時には、血液存在下においても着色によりスポンジ状の架橋したヒアルロン酸の識 別が容易であった。また硬膜と修復組織との間に癒着は認められず、着色による影響は観 察されなかった。
実施例 14
実施例 2において得られたスポンジ状の架橋したヒアルロン酸をステンレス製カップに取 り、ヒアルロン酸濃度が約 1質量%となるように 50mmol/l濃度のリン酸緩衝生理食塩水 (pH6. 8)を添加した。これをホモジナイザー(Nissei Excel Auto Homogenizer DX - 11)を 用いて 10, 000回転 Z分で破砕した。懸濁液を生理食塩水で遠心分離法により 3回洗浄 したのち、生理食塩水中にヒアルロン酸を約 4. 5質量%含む懸濁液状の架橋したヒアルロ ン酸を得た。
実施例 15
実施例 5において得られたスポンジ状の架橋したカルボキシメチルセルロースをステン レス製カップに取り、カルボキシメチルセルロース濃度が約 1質量0 /0となるように 50mmol /1濃度のリン酸緩衝生理食塩水(pH6. 8)を添加した。これをホモジナイザー(Nissei Excel Auto Homogenizer DX- 11)を用いて 10, 000回転/分で破碎した。懸濁液を生理 食塩水で遠心分離法により 3回洗浄したのち、生理食塩水中にカルボキシメチルセルロー スを約 3. 5質量%含む懸濁液状の架橋したカルボキシメチルセルロースを得た。
実施例 16: 懸濁液中の架橋した酸性多糖類の溶解性試験
実施例 14及び実施例 15で得られた懸濁液中の架橋したヒアルロン酸及び架橋した力 ルポキシメチルセルロースにっき、実施例 6に記載した溶解性試験を実施した。その結果、 溶解性半減期は架橋したヒアルロン酸では約 20時間、架橋したカルボキシメチルセル口 ースでは約 17時間であり、破砕処理を行った場合にも架橋した酸性多糖類の溶解性半減 期はほとんど変化しないことが明ら力となった。
実施例 17 : 懸濁液中の架橋した酸性多糖類の粒子径
実施例 14及ぴ実施例 1 5で得られた懸濁液について粒径測定装置( B E C KM AN COULTER LS 13 320型)を用いた懸濁液中の架橋したヒアルロン酸及ぴ架橋したカルボ キシメチルセルロースの粒子径測定を行つた。架橋したヒアルロン酸では平均粒子径 409 土 284 μ mであり、架橋したカルボキシメチルセルロースでは 548 ± 388 μ mであった。 実施例 18 ゥサギによる懸濁液状の架橋した酸性多糖類の癒着防止試験
実施例 7において、椎弓の切除部分に実施例 13で得られた懸濁液状の架橋したヒアル ロン酸あるいは実施例 14懸濁液状の架橋したカルポキシメチルセルロースを 0· 5ml適用 し、 1ヶ月及ぴ 2ヶ月後に屠殺して同様の観察を行う。
1ヶ月後の適用部位の瘢痕組織と硬膜との間隙は架橋したヒアルロン酸適用群では 0. 2±0. 1、架橋したカルボキシメチルセルロース適用群では 0. 3±0. 1であり、 2ヶ月後で は架橋したヒアルロン酸適用群では 0. 4±0. 1、架橋したカルボキシメチルセルロース適 用群では 0. 4土 0. 1である。また 2ヶ月後の適用部位には癒着形成が認められない。この ことより懸濁液状の架橋したヒアルロン酸及び懸濁液状の架橋したカルボキシメチルセル ロースにおいて、スポンジ状あるいはフィルム状の場合と同様に癒着防止効果が確認され る。
実施例 18: ゥサギ炎症モデルによるスポンジ状の架橋したヒアルロン酸の癒着防止試 験
体重 2. 0〜2. 5kgの日本白色ゥサギを用いた。背面正中切開により胸腰椎を露出させ、 2椎体に椎弓切除を 10mm X 5mmの大きさで行った。椎弓切除部位にヒトリコンビナント TNF-α (腫瘍壌死因子— a)を lOngZO. 5mlずつ適用し炎症を惹起した。一方の切除部 位は硬膜を露出させたままとし(コントロール部位)、他方の切除部位には実施例 2で得ら れたスポンジ状の架橋したヒアルロン酸を適用した。 2週間後、 1ヶ月後、 2ヶ月後に屠殺し、 椎弓切除部分につき組織切片の作成及びへマトキシリン'ェォジン染色を行い、周囲との 癒着状況等を確認した。
瘢痕組織と硬膜との距離は、適用 2週間後においては 0. 15 + 0. 15mmであったが、 適用 1ヶ月後には 0. 4土 0. 1mm (コントロール部位 0. 02 + 0. 01mm)、適用 2ヶ月後に は 0. 5 ±0. 15mm (コントロール部位 0. 3 ±0. 02mm)とコントロール部と比較して有意 な差が認められた。組織標本において高倍率(40倍)における単位面積あたりの炎症性 細胞数は、適用 2週間後には 1200個(コントロール部 2000個)、 1ヶ月後には 800個(コ ントロール部 1800個)、 2ヶ月後には 500個(コントロール部 900個)であり、適用 2週間後 で既に有意な炎症抑制効果が認められた。さらに硬膜の厚さは、適用 2週間後には 60 m (コントロール部 80 i m)、 1ヶ月後には 45 μ πι (コントロール部 75 / m)、 2ヶ月後には 4 Ο μ m (コントロール部 55 μ m)であり、適用 2週間後で既に有意な肥厚化抑制効果が認め られた。
以上のように、本発明品は炎症部位に対して適用した場合にも癒着防止効果が認めら れることが明らかとなった。 産業上の利用可能性
以上、本発明によれば、なんら化学的架橋剤や化学的修飾剤を使用することなく得られ るスポンジ状またはフィルム状または懸濁液状の架橋した酸性多糖類、特に架橋したヒア ルロン酸及ぴ Z又は架橋したカルボキシメチルセルロースは in vitro での溶解性を制御 することにより脊椎'脊髄領域での癒着防止効果が得られる。化学的架橋剤や化学的修 飾剤を使用することに起因する生体適合性への悪影響が避けられ、さらに適用部位に沿 つた形へ切断が容易なため手術時における癒着防止材に有用である。
また、着色により適用部位の識別が容易となり、脊椎'脊髄手術の最終段階における術 者の負担軽減にも有効である。

Claims

請求の範囲
1 . 脊椎 ·脊髄手術により生ずる癒着の程度を軽減あるいは癒着を防止するために用 レ、られる架橋した酸性多糖類を含むスポンジ状、フィルム状、又は懸濁液状の脊椎' 脊髄手術用癒着防止材。
2. 60°Cのリン酸緩衝生理食塩水 (pH7. 4)中で、架橋した酸性多糖類の溶解率が 50% になるまでの時間が 15時間以上であることを特徴とする請求項 1に記載の癒着防止 材。
3.酸性多糖類がヒアルロン酸及びノ又はカルポキシメチルセルロースであることを特徴と する請求項 2記載の癒着防止材。
4.架橋した酸性多糖類の架橋構造がエステル結合であることを特徴とする請求項 1〜3 にのレ、ずれか 1項に記載の癒着防止材。
5.架橋した酸性多糖類の架橋構造が自己架橋エステル結合であることを特徴とする請求 項 4に記載の癒着防止材。
6.スポンジの乾燥時の厚みが 2mm〜10mmであることを特徴とする請求項 1〜5のいず れか 1項に記載の癒着防止材。
7.スポンジの乾燥時のポアサイズが 50 μ m〜200 μ mであることを特徼とする請求項:!〜 6のいずれか 1項に記載の癒着防止材。
8.フィルムの乾燥時の厚みが 50 m〜lmmであることを特徴とする請求項 1〜5のいず れか 1項に記載の癒着防止材。
9.懸濁液に含まれる架橋した酸性多糖類の平均粒子径が 100 w m〜lmmであることを 特徴とする請求項 1〜5のいずれか 1項に記載の癒着防止材。
10.癒着防止材の適用部位の識別を容易にするために着色されていることを特徴とする 請求項;!〜 9のいずれか 1項に記載の癒着防止材。
PCT/JP2004/009750 2003-06-30 2004-06-30 脊椎・脊髄手術用癒着防止材 WO2005000374A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04747218A EP1640026A4 (en) 2003-06-30 2004-06-30 MATERIAL INHIBITING ADHESION IN AN INTERVENTION ON VERTEBRATES / RACHIS
JP2005511161A JP4690892B2 (ja) 2003-06-30 2004-06-30 脊椎・脊髄手術用癒着防止材
US10/562,906 US20070020314A1 (en) 2003-06-30 2004-06-30 Adhesion inhibiting material for vertebral/spinal operation
US12/466,001 US20090226503A1 (en) 2003-06-30 2009-05-14 Adhesion inhibiting material for vertebral/spinal operation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-186760 2003-06-30
JP2003186760 2003-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/466,001 Division US20090226503A1 (en) 2003-06-30 2009-05-14 Adhesion inhibiting material for vertebral/spinal operation

Publications (1)

Publication Number Publication Date
WO2005000374A1 true WO2005000374A1 (ja) 2005-01-06

Family

ID=33549701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009750 WO2005000374A1 (ja) 2003-06-30 2004-06-30 脊椎・脊髄手術用癒着防止材

Country Status (4)

Country Link
US (2) US20070020314A1 (ja)
EP (1) EP1640026A4 (ja)
JP (1) JP4690892B2 (ja)
WO (1) WO2005000374A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015579A1 (ja) * 2005-08-04 2007-02-08 Teijin Limited セルロース誘導体
JP2011518922A (ja) * 2008-04-24 2011-06-30 メドトロニック,インコーポレイテッド 再水和可能な多糖粒子およびスポンジ
CN101605817B (zh) * 2007-02-06 2013-03-27 帝人株式会社 纤维素衍生物及其制备方法
JP5620387B2 (ja) * 2009-09-02 2014-11-05 テルモ株式会社 多孔質構造体
JPWO2020137903A1 (ja) * 2018-12-26 2021-10-21 国立研究開発法人物質・材料研究機構 粉体、創傷被覆材、癒着防止材、止血材、及び紛体の製造方法
WO2021246388A1 (ja) * 2020-06-01 2021-12-09 株式会社大塚製薬工場 癒着防止剤及びそれを用いた癒着防止方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241270A1 (en) * 2007-03-30 2008-10-02 Neal Robert A Fluid composition for inhibiting surgical adhesion formation and related method of production
US8092541B2 (en) 2007-08-03 2012-01-10 Warsaw Orthopedic, Inc. Method of using an anti-growth matrix as a barrier for cell attachment and osteo-inductive factors
WO2009132227A1 (en) 2008-04-24 2009-10-29 Medtronic, Inc. Protective gel based on chitosan and oxidized polysaccharide
EP2291524A2 (en) * 2008-04-24 2011-03-09 Medtronic, Inc Rehydratable thiolated polysaccharide particles and sponge
WO2010028025A1 (en) 2008-09-02 2010-03-11 Gurtner Geoffrey C Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
ES2645860T3 (es) * 2010-10-20 2017-12-11 Allergan Holdings France S.A.S. Hilos de ácido hialurónico reticulado y uso de los mismos
US8617240B2 (en) 2010-11-17 2013-12-31 Charles D. Hightower Moldable cushion for implants
EP3088008A4 (en) * 2013-12-25 2017-07-05 Nissan Chemical Industries, Ltd. Aqueous dispersion for solidifying serum and blood

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010385A1 (fr) * 1997-08-22 1999-03-04 Denki Kagaku Kogyo Kabushiki Kaisha Gel d'acide hyaluronique, son procede de production et substance therapeutique le contenant
WO2000059516A1 (en) * 1999-04-02 2000-10-12 Fziomed, Inc. Compositions of polyacids and polyethers and methods for their use in reducing adhesions
WO2001034214A1 (fr) * 1999-11-09 2001-05-17 Denki Kagaku Kogyo Kabushiki Kaisha Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives
JP2002515086A (ja) * 1996-08-27 2002-05-21 フュージョン メディカル テクノロジーズ,インコーポレイテッド 癒着防止用の断片化重合体ヒドロゲルおよびそれらの調製
JP2003518167A (ja) * 1999-12-22 2003-06-03 ジェンザイム、コーポレーション ポリアニオン性多糖類の水不溶性誘導体
JP2004051531A (ja) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk 水難溶性化したカルボキシメチルセルロースを含有する癒着防止材

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983585A (en) * 1987-05-04 1991-01-08 Mdr Group, Inc. Viscoelastic fluid for use in surgery and other therapies and method of using same
US5017229A (en) * 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
IT1219587B (it) * 1988-05-13 1990-05-18 Fidia Farmaceutici Polisaccaridi carbossiilici autoreticolati
US5056839A (en) * 1988-05-30 1991-10-15 Yoon Yi C Automobile cover assembly
AU670136B2 (en) * 1992-04-24 1996-07-04 Chienna B.V. Devices for preventing tissue adhesion
AU718484B2 (en) * 1995-08-29 2000-04-13 Fidia Advanced Biopolymers S.R.L. Biomaterials for preventing post-surgical adhesions comprised of hyaluronic acid derivatives
US6066325A (en) * 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US5906997A (en) * 1997-06-17 1999-05-25 Fzio Med, Inc. Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
US5997895A (en) * 1997-09-16 1999-12-07 Integra Lifesciences Corporation Dural/meningeal repair product using collagen matrix
AU774977B2 (en) * 1998-11-10 2004-07-15 Denki Kagaku Kogyo Kabushiki Kaisha Hyaluronic acid gel, process for the preparation thereof and medical materials containing the same
KR100730527B1 (ko) * 1999-02-19 2007-06-20 덴끼 가가꾸 고교 가부시키가이샤 히알루론산 겔 조성물과 그의 제조방법 및 그것을함유하는 의용 재료
GB9910975D0 (en) * 1999-05-13 1999-07-14 Univ Strathclyde Rapid dehydration of proteins
ES2223583T3 (es) * 1999-07-28 2005-03-01 United States Surgical Corporation Barrera antiadherente de acido hialuronico.
US6221109B1 (en) * 1999-09-15 2001-04-24 Ed. Geistlich Söhne AG fur Chemische Industrie Method of protecting spinal area
CN1259343C (zh) * 2000-02-03 2006-06-14 电气化学工业株式会社 透明质酸凝胶、其制造方法以及含有它的医用材料
CA2416126C (en) * 2000-07-28 2011-07-05 Anika Therapeutics, Inc. Bioabsorbable composites of derivatized hyaluronic acid
US20030114061A1 (en) * 2001-12-13 2003-06-19 Kazuhisa Matsuda Adhesion preventive membrane, method of producing a collagen single strand, collagen nonwoven fabric and method and apparatus for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515086A (ja) * 1996-08-27 2002-05-21 フュージョン メディカル テクノロジーズ,インコーポレイテッド 癒着防止用の断片化重合体ヒドロゲルおよびそれらの調製
WO1999010385A1 (fr) * 1997-08-22 1999-03-04 Denki Kagaku Kogyo Kabushiki Kaisha Gel d'acide hyaluronique, son procede de production et substance therapeutique le contenant
WO2000059516A1 (en) * 1999-04-02 2000-10-12 Fziomed, Inc. Compositions of polyacids and polyethers and methods for their use in reducing adhesions
WO2001034214A1 (fr) * 1999-11-09 2001-05-17 Denki Kagaku Kogyo Kabushiki Kaisha Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives
JP2003518167A (ja) * 1999-12-22 2003-06-03 ジェンザイム、コーポレーション ポリアニオン性多糖類の水不溶性誘導体
JP2004051531A (ja) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk 水難溶性化したカルボキシメチルセルロースを含有する癒着防止材

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015579A1 (ja) * 2005-08-04 2007-02-08 Teijin Limited セルロース誘導体
JP5039552B2 (ja) * 2005-08-04 2012-10-03 帝人株式会社 セルロース誘導体
US8378091B2 (en) 2005-08-04 2013-02-19 Teijin Limited Cellulose derivative
CN101605817B (zh) * 2007-02-06 2013-03-27 帝人株式会社 纤维素衍生物及其制备方法
US8455001B2 (en) 2007-02-06 2013-06-04 Teijin Limited Cellulose derivative and method for production thereof
JP2011518922A (ja) * 2008-04-24 2011-06-30 メドトロニック,インコーポレイテッド 再水和可能な多糖粒子およびスポンジ
JP5620387B2 (ja) * 2009-09-02 2014-11-05 テルモ株式会社 多孔質構造体
JPWO2020137903A1 (ja) * 2018-12-26 2021-10-21 国立研究開発法人物質・材料研究機構 粉体、創傷被覆材、癒着防止材、止血材、及び紛体の製造方法
JP7333640B2 (ja) 2018-12-26 2023-08-25 国立研究開発法人物質・材料研究機構 粉体、創傷被覆材、癒着防止材、止血材、及び紛体の製造方法
WO2021246388A1 (ja) * 2020-06-01 2021-12-09 株式会社大塚製薬工場 癒着防止剤及びそれを用いた癒着防止方法
JPWO2021246388A1 (ja) * 2020-06-01 2021-12-09
JP7321610B2 (ja) 2020-06-01 2023-08-07 株式会社大塚製薬工場 癒着防止剤及びそれを用いた癒着防止方法

Also Published As

Publication number Publication date
US20090226503A1 (en) 2009-09-10
JP4690892B2 (ja) 2011-06-01
JPWO2005000374A1 (ja) 2006-08-03
EP1640026A4 (en) 2011-12-07
US20070020314A1 (en) 2007-01-25
EP1640026A1 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
KR100730527B1 (ko) 히알루론산 겔 조성물과 그의 제조방법 및 그것을함유하는 의용 재료
JP4551563B2 (ja) ヒアルロン酸ゲルの製造方法及び医用材料
AU2003227050B2 (en) Ester derivatives of hyaluronic acid for the preparation of hydrogel materials by photocuring
US6869938B1 (en) Compositions of polyacids and polyethers and methods for their use in reducing adhesions
US20090226503A1 (en) Adhesion inhibiting material for vertebral/spinal operation
KR101610268B1 (ko) 외과용 하이드로겔
KR100395724B1 (ko) 경조직자극제
US20050074495A1 (en) Compositions of polyacids and methods for their use in reducing adhesions
JP2006193535A (ja) フィブリン溶解増強剤の局所送達
AU778853B2 (en) Compositions of polyacids and polyethers and methods for their use in reducing adhesions
JP6862441B2 (ja) セルロース系短尺繊維及び長尺繊維の止血混合物
WO2001057093A1 (fr) Gel de l'acide hyaluronique, son procede de production et produit medical le contenant
WO2001034214A1 (fr) Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives
Mehrabi et al. In-situ forming hydrogel based on thiolated chitosan/carboxymethyl cellulose (CMC) containing borate bioactive glass for wound healing
JP3955107B2 (ja) 架橋多糖の製造法
JP4986273B2 (ja) アルギン酸を含む創傷被覆材
US20040096422A1 (en) Compositions of polyacids and polyethers and methods for their use in reducing pain
WO2003084571A1 (fr) Composition therapeutique destinee aux maladies infectieuses des os
JP2004051531A (ja) 水難溶性化したカルボキシメチルセルロースを含有する癒着防止材
JP2004181121A (ja) 軟骨組織再生用注入剤組成物
JP2007146178A (ja) キトサン誘導体及び架橋キトサン
JP2003019194A (ja) ヒアルロン酸とカルボキシメチルセルロースからなる共架橋ゲル組成物
JP2000107278A (ja) 皮膚潰瘍補填修復材料
KR102546437B1 (ko) 생체적합성 고분자를 포함하는 파우더형 유착방지제 및 그의 제조방법
JP4726402B2 (ja) 管腔形成誘導性材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004747218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005511161

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004747218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007020314

Country of ref document: US

Ref document number: 10562906

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10562906

Country of ref document: US