[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005098068A1 - Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding - Google Patents

Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding Download PDF

Info

Publication number
WO2005098068A1
WO2005098068A1 PCT/JP2005/007109 JP2005007109W WO2005098068A1 WO 2005098068 A1 WO2005098068 A1 WO 2005098068A1 JP 2005007109 W JP2005007109 W JP 2005007109W WO 2005098068 A1 WO2005098068 A1 WO 2005098068A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
toughness
haz
heat input
temperature toughness
Prior art date
Application number
PCT/JP2005/007109
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Ito
Akihiko Kojima
Masanori Minagawa
Yoichi Tanaka
Toshiei Hasegawa
Jun Otani
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US10/594,660 priority Critical patent/US20070181223A1/en
Priority to EP05730695A priority patent/EP1736562A4/en
Priority to CN2005800121109A priority patent/CN1946862B/en
Publication of WO2005098068A1 publication Critical patent/WO2005098068A1/en
Priority to NO20065095A priority patent/NO20065095L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to a thick high-strength steel sheet excellent in low-temperature toughness of a heat affected zone (hereinafter referred to as HAZ) used for ships, offshore structures, middle-rise buildings, bridges, and the like.
  • HAZ heat affected zone
  • Japanese Patent Publication No. 55-026164 discloses an invention in which a fine Ti nitride is secured in steel to reduce HAZ austenite grains and improve toughness.
  • Japanese Patent Application Laid-Open No. H03-2646414 proposes an invention for improving the toughness of HAZ by utilizing a composite precipitate of Ti nitride and MnS as a transformation nucleus of ferrite.
  • a composite precipitate of Ti nitride and BN is used as a precipitation nucleus of grain boundary ferrite to improve HAZ toughness.
  • An invention has been proposed.
  • the Ti nitride almost completely forms a solid solution in the vicinity of the boundary with the weld metal of the HAZ whose maximum temperature exceeds 140 ° C (hereinafter also referred to as the weld pound).
  • the weld pound whose maximum temperature exceeds 140 ° C
  • the effect of improving toughness is reduced. For this reason, it is difficult for steel materials using Ti nitride as described above to achieve strict requirements for HAZ toughness in recent years and required properties of HAZ toughness in ultra-high heat input welding.
  • steels containing Ti oxide are used in various fields such as thick plates and section steels.
  • Ti oxidation The steel containing the material is very effective in improving the toughness of large heat input welds, and its application to high tensile strength steel is promising.
  • This principle is based on the assumption that Ti oxides, which are stable even at the melting point of steel, are used as precipitation sites, and Ti nitrides, MnS, etc. precipitate during the temperature drop after welding, and they are then added to the site. As a result, fine ferrite is generated, and as a result, the generation of coarse fly harmful to toughness is suppressed, and deterioration of toughness can be prevented.
  • such a Ti oxide has a problem that the number of the Ti oxides dispersed in the steel cannot be sufficiently increased.
  • the cause is the coarsening and aggregation of Ti oxides. If the number of Ti oxides is to be increased, coarse Ti oxides of 5 / m or more, so-called inclusions, will occur. It is thought that it would increase. Inclusions of 5 ⁇ m or more should be avoided because they are harmful because they can be a starting point for structural rupture or cause a decrease in toughness. Therefore, in order to achieve further improvement in HAZ toughness, it was necessary to utilize an oxide which is less likely to be coarsened and aggregated and which is more finely dispersed than a Ti oxide.
  • H06-293939 / Japanese Patent Application Laid-Open No. Hei 10-1028395 states that A1 addition immediately after Ti addition, Alternatively, there is disclosed an invention utilizing a Ti_A1 composite oxide or a composite oxide of Ti, Al, and Ca produced by adding A1 and Ca composites. According to such an invention, large heat input welding HAZ toughness can be greatly improved. Disclosure of the invention
  • the base material strength is increased at a plate thickness of 50 mm or more.
  • the base material strength is increased at a plate thickness of 50 mm or more.
  • MA Martensite—Austenite constituent
  • the base metal strength exceeds 570 MPa in tensile strength, the required HAZ toughness cannot be obtained.
  • the present invention is directed to a welding method using a steel plate having a thickness of 50 to 80 mm and a base metal tensile strength of 49 to 570 MPa, and a welding heat input of 20 to 100 kJ / mm. It is an object of the present invention to provide a thick high-strength steel sheet having excellent low-temperature toughness in the heat affected zone by large heat input welding, which can achieve excellent welding HAZ toughness even when welding is performed.
  • the present inventors have found that the above problems can be advantageously solved by defining the Ni addition amount and Ni / Mn, and completed the present invention only after further study.
  • the gist is as follows.
  • N i and Mn are represented by the formula [1] Thick high-strength steel sheet excellent in low-temperature toughness of the heat affected zone by large heat input welding, characterized by satisfying the above conditions, with the balance being iron and inevitable impurities.
  • mass. /. And B 0.0005 to 0.0005%, characterized in that the low-temperature toughness of the weld heat-affected zone by the large heat input welding according to the above (1) or (2), Excellent high-strength steel sheet.
  • FIG. 1 is a diagram showing a welding heat cycle equivalent to 45 kJ / mm.
  • FIG. 2 is a diagram showing the relationship between Ni / Mn, Ceq, and reproduced HAZ toughness.
  • Figure 3 shows the effect of improving the reproducible HAZ toughness by dispersing fine oxides or using B.
  • the inventors of the present invention need to improve the HAZ toughness when the thickness of the steel, which is required for thick high-strength steel, is as high as 0.36 or more and 0.42 or less.
  • the optimal component system to improve toughness was studied diligently. It has been known that Ni is effective as an element that enhances the toughness of the matrix. However, as in this case, C eq is 0.36 or more and 0.42 or less, and it is difficult to know whether it is effective for improving the toughness of HAZ, and if so, what component conditions are effective. Not been. Therefore, first, the effect of the amount of Ni added was examined. In the study, it was assumed that the amount of Nb that is effective for securing the base metal strength was 0.003% or more.
  • the HAZ toughness was evaluated by the ductility-brittle transition temperature (vT) in the Charpy impact test when a heat cycle equivalent to the electron gas welding (heat input 45 kJ / mm) shown in Fig. 1 was applied. rs)
  • the HAZ toughness can be improved by adding 0.8% or more of Ni, which satisfies the formula [1].
  • the improvement of toughness was studied.
  • the following three methods were studied to improve the HAZ toughness.
  • the cooling time after welding is long, so ferrite generated from austenite grain boundaries becomes coarse, and this coarse grain boundary ferrite may cause a decrease in HAZ toughness. Therefore, it is a method to suppress the grain boundary ferrite from becoming coarse.
  • Patent Document 7 a method for dispersing fine oxides is effective.
  • the amount of dissolved oxygen in molten steel is adjusted by an equilibrium reaction with Si in a deoxidizing step, and then deoxidizing in the order of Ti, Al, and Ca. Then you are.
  • oxides having a particle size of 0.01 to 1.0 ⁇ m are dispersed at 5 ⁇ 10 3 to 1 ⁇ 10 5 particles / mm 2 .
  • the present inventors have found that when C eq is as high as 0.36 or more and 0.42 or less, in a system containing 0.003% of Nb and adding 0.8% or more of Ni. Then, a method for dispersing fine oxides and further improving the HAZ toughness was studied diligently. First, a method of dispersing fine oxides. In such a system, the amount of dissolved oxygen in the molten steel is adjusted to 0.010 to 0.050% in the deoxidation step, and thereafter, First, deoxidation is performed at T i, then deoxidation is performed at A 1, and then at least one of Ca, Mg, and REM is added, so that the equivalent circle diameter is 0.0.
  • Fig. 3 shows the results of a comparison with the HAZ toughness with only proper addition of Ni. Note that the oxide produced is finer as the amount of N i is large, the number becomes large, the 1 weight 1. In the case of more than 5% 1 0 0 0 or mm 2 or more. This is what we found this time.
  • the Si content in the molten steel when the Si content is large, it is difficult to form oxides, so the Si content is ⁇ 0.30% or less, further 0.20% or less. It is clear from this study that I got it.
  • the dissolved oxygen content before Ti deoxidation exceeds 0.050% or the order of the deoxidizing elements is different, the oxides become coarse and fine oxides cannot be obtained sufficiently. The effect of suppressing coarsening of austenite grains is hardly obtained.
  • the number of oxides with an equivalent circle diameter of 0.005 to 0.5 ⁇ was determined by preparing an extraction replica from a steel sheet as a base metal, and using an electron microscope to increase the number of oxides by 100,000.
  • FIG. 3 shows the result of comparing the improvement of HAZ toughness by adding B with the HAZ toughness of only adding Ni properly. It can be seen that the HAZ toughness is further improved by the addition of B. Fig. 3 shows the addition of B The HAZ toughness in the case where the HAZ toughness is shown is shown, but the HAZ toughness is further improved by the fine oxide dispersion and the addition of B. This is probably because the number of oxides serving as BN precipitation sites increased, and the ferrite that nucleated the BN increased, resulting in a finer HAZ structure.
  • the HAZ toughness when Cu, Cr, Mo, and V were added in addition to the above conditions was also examined. As a result, respectively, in the range of 0.1 to 0.4%, 0.1 to 0.5%, 0.01 to 0.2%, 0.005 to 0.050% It was found that the addition of HAZ did not significantly reduce the HAZ toughness.
  • the method for manufacturing the steel sheet of the present invention is not particularly limited, and may be manufactured according to a known method. For example, after the molten steel adjusted to the above preferable composition is formed into a slab by a continuous forming method, it is heated to 100 to 125 ° C. and then hot-rolled.
  • C has a lower limit of 0.03% as an effective component for improving the strength of steel, and an excessive addition generates a large amount of carbides and MA and significantly lowers the HAZ toughness. It was set to 14%.
  • S i is a component necessary for securing the strength of the base material and deoxidizing, etc., but the upper limit is set to 0.30% in order to prevent the toughness from being reduced by the hardening of HAZ. Further, when oxides are used, the upper limit is preferably set to 0.20% or less in order to prevent a decrease in the oxygen concentration in the molten steel.
  • Mn is required to be added in an amount of 0.8% or more as an effective component for securing the strength and toughness of the base metal, but the upper limit is 2.0 as long as the toughness, cracking, etc. of the weld zone is acceptable. %. Further, regarding the upper limit of Mn, it is necessary to satisfy the equation [1] showing the relationship between Ceq, Mn amount, and Ni amount. This is because of the high C eq that was newly discovered in this study. In this case, the increase in Mn causes the formation of a large amount of MA in the HAZ structure, and the effect of Ni to improve the HAZ toughness is lost.
  • N i / M n ⁇ 10 XC eq -3 [1] P is preferably as small as possible, but it costs a lot to reduce it industrially. 0 2 or less.
  • the content of S is preferably as small as possible, but it requires a great deal of cost to reduce it industrially. Therefore, the content range of S is set to 0.05 or less.
  • Ni is an important element in the present invention, and it is necessary to add at least 0.8%. Further, regarding the lower limit of N i, it is necessary to satisfy the equation [1] showing the relationship between C e q, M n amount, and N i amount. The upper limit was set at 4.0% from the viewpoint of manufacturing costs.
  • N b is an element that is effective for improving the strength of the base material by improving the hardenability. Add 3% or more. However, when Nb is added in a large amount, MA is easily generated in HAZ regardless of the Ni / Mn ratio, and when more than 0.040% is added, the major axis in HAZ is 5 ⁇ or more. The upper limit of Nb was set to 0.040% because a large number of coarse MAs may be generated and the HAZ toughness may be significantly reduced. In order to obtain higher toughness, coarse MA with a major axis of 5 ⁇ m or more is hardly generated when the NiZMn ratio satisfies the above equation [1].
  • Nb content it is preferable to suppress the Nb content to less than 10%. In order to obtain higher toughness more stably, in the case of the Ni / Mn ratio satisfying the above equation [1], almost no MA with a major axis of 3 ⁇ m or more is generated. It is preferable to suppress the Nb content to 0% or less.
  • a 1 is an important deoxidizing element, and the lower limit was set to 0.001%. In addition, when A1 is present in a large amount, the surface quality of the piece is deteriorated. Therefore, the upper limit is set to 0.040%.
  • T i is added in an amount of not less than 0.05% in order to generate Ti nitrides and Ti-containing oxides, which are required to suppress coarsening of the reheated austenite grains.
  • an excessive addition increases the amount of solid solution Ti and lowers the HAZ toughness. Therefore, the upper limit is 0.030%.
  • N is added as necessary to form Ti nitride and B nitride in austenite grain boundaries and in grains during cooling after welding.
  • B In order to combine with B to form a B nitride, the addition of 0.010% or more is necessary.However, excessive addition increases the amount of solute N and lowers the HAZ toughness. The upper limit was 0.1%.
  • Ca is added in an amount of 0.0003% or more as necessary to generate a Ca-based oxide serving as pinning particles necessary for suppressing coarsening of the reheated austenite grains.
  • the upper limit was made 0.050%.
  • Mg is added in an amount of 0.0003% or more as necessary to generate Mg-based oxides that become pinning particles necessary for suppressing coarsening of the reheated austenite grains.
  • the upper limit was made 0.050%.
  • REM is added in an amount of 0.001% or more as necessary to generate a REM-based oxide which becomes a pinning particle necessary for suppressing coarsening of the reheated austenite grains.
  • the REMs described here are Ce and La, and the added amount is the total amount of both.
  • B is necessary as a solid solution B to segregate at austenite grain boundaries during cooling after welding to suppress generation of grain boundary ferrite, and to form BN at austenite grain boundaries and intragranular. Therefore, add 0.0005% or more.
  • excessive addition increases the amount of solute B and greatly increases the HAZ hardness, resulting in a decrease in HAZ toughness. Therefore, the upper limit was set to 0.050%.
  • Cu is added in an amount of 0.1% or more as necessary to improve the strength and corrosion resistance of the steel material. Since the effect saturates at 1.0%, the upper limit is set to 1.0.However, if it exceeds 0.4%, MA is likely to be generated and the HAZ toughness is reduced. Is good.
  • Mo is an element effective for improving the strength and corrosion resistance of the base material, and is added at 0.01% or more as necessary. Since the effect saturates at 0.5%, the upper limit is set to 0.5%. However, since excessive addition causes reduction in HAZ toughness due to the formation of MA, the upper limit is preferably 0.2% or less.
  • V is an element effective for improving the strength of the base material, and is added at 0.05% as necessary. Since the effect saturates at 0.10%, the upper limit is set to 0.10% .However, excessive addition causes reduction in the HAZ toughness due to the formation of MA, so it is preferably 0.050%. The following is good.
  • a steel strip was prepared by continuously forming molten steel having the chemical components shown in Table 1.
  • Table 1 For D23 to D34 and D46 to D49, before introducing Ti, adjust the dissolved oxygen of the molten steel to 0.010 to 0% to 0.050% by Si, and then First, deoxidation with T i, and then with A 1, then C a, M g, RE Any of M was added for deacidification.
  • steel plates with a thickness of 50 to 80 mm were manufactured by the following two rolling methods. One is that after rolling at a surface temperature of 750 to 900 ° C, water cooling is performed until the temperature of the sheet surface after reheating reaches a temperature range of 200 to 400 ° C.
  • the other method is hot rolling, water cooling to room temperature, and tempering in the range of 500 to 600 ° C (Table 2).
  • Table 2 shows the manufacturing conditions, thickness, and mechanical properties of the steel sheet.
  • D23 to D34 and D46 to D49 the number of fine oxides with an equivalent circle diameter of 0.05 to 0.5 m, measured at any point on the steel sheet, is also shown. did.
  • an extracted replica was prepared from an arbitrary part of the steel sheet, and it was extracted with an electron microscope at a magnification of 100,000, and a field of view of 100 or more (100,000 ⁇ m in observation area) 2 or more), and particles having a particle size of less than 0.1 ⁇ were observed at an appropriately increased magnification.
  • the steel plates were butt-butted and subjected to one-pass welding using electrogas welding (EGW) or electroslag welding (ESW) with a welding heat input of 20 to 100 kJ Zmm. Then, in the HAZ located at the center of the plate thickness (tZ2), notches were inserted at two locations, HAZ and FL, 1 mm away from FL, and a Charby impact test was performed at 140 ° C. . Table 2 shows the welding conditions and HAZ toughness. This In this Charpy impact test, a JIS No. 2 full-size test piece with a 2 mm V notch was used. Table 2 also shows the prior austenite particle size between FL and HA Z l mm.
  • the former austenite grain size between FL and HAZ 1 mm described here is 2 mm in the thickness direction centered on the center of the thickness and the former austenite included in the plane containing FL to HAZ 1 mm.
  • This is the average particle size of the stenite particles measured by the cross-sectional method.
  • the measurement was performed using the massive ferrite connected in a net shape as the grain boundary of the former austenite grains.
  • D 1 -D49 is the steel of the present invention. Since the chemical composition of the steel is properly controlled, high heat input HAZ toughness at 140 ° C is satisfactory while satisfying the required base metal performance. D23 to D34 and D46 to D49 in which fine oxides are dispersed have a prior austenite particle size of less than 200 ⁇ between FL and HA It is fine grained, and the high heat input at 140 ° C HA has higher toughness. In addition, D20, to which B was added to reduce the size of the HAZ structure, had better HAZ toughness than D19, which did not contain B and had the same amount of added elements other than B, and Large heat input at-40 ° C HAZ toughness also shows high values.
  • the Cl-17 of the comparative steel has a large heat input HAZ toughness because it does not contain enough Ni to satisfy Equation [1] or because the chemical composition of the steel is properly controlled. Is insufficient.
  • Table 2 continued 2 Mother: O (t / 2 part) U oxide number 2) Classification a ) "Manufacturing method Plate thickness (mm) Tensile strength (MPa) Yield stress (Mpa) VcL -40 (J) (pcs / mm 2 )
  • Sheet thickness center position, Y S and T S are the average values of two test pieces, and the Charpy absorbed energy at 140 ° C (VE _ 40) is the average value of three test pieces.
  • E GW Electro-port gas welding
  • ESW Electro-slag welding
  • welding heat input is the average value of the entire welding length, and common welding materials are used for each welding method.
  • the ferrite connected in a net shape is measured as the grain boundary of the former austenite grains.
  • the present invention provides a thick steel plate that satisfies the strict toughness requirements for crushing of ships, marine structures, and middle- and high-rise buildings, and has an extremely large effect in this kind of industrial field. Contribution to society is very large in terms of gender.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

A thick high strength steel plate having excellent low temperature toughness in a welding heat affected zone caused by high heat input welding, which is characterized in that it has a chemical composition, in mass %, that C: 0.03 to 0.14 %, Si: 0.30 % or less, Mn: 0.8 to 2.0 %, P: 0.02 % or less, S: 0.005 % or less, Ni: 0.8 to 4.0 %, Nb: 0.003 to 0.040 %, Al: 0.001 to 0.040 %, N: 0.0010 to 0.0100 %, Ti: 0.005 to 0.030 %, with the proviso that the contents of Ni and Mn satisfy the following formula [1], and the balance: iron and inevitable impurities, Ni/Mn ≥ 10 X Ceq - 3 (0.36 < Ceq < 0.42) wherein Ceq = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15. The use of the above thick high strength steel plate can achieve excellent welding HAZ toughness, even when a welding is carried out with a welding heat input of 20 to 100 kJ/mm on a steel plate having a thickness of 50 to 80 mm and exhibiting a base material tensile strength of about 490 to 570 Mpa.

Description

大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板 技術分野 Thick, high-strength steel sheet with excellent low-temperature toughness in the heat-affected zone by large heat input welding
本発明は、 船舶、 海洋構造物、 中高層ビル、 橋梁などに使用され る溶接熱影響部 (H e a t A f f e c t e d Z o n e , 以後、 HA Z と称す。 ) の低温靭性明に優れた厚手高強度鋼板に関するもの で、 特に、 板厚 5 0 mm以上、 母材引張強度 4 9 0〜 5 7 01^? & 級の鋼板で、 溶接入熱量が 2 0〜 1 0書0 k J /mmの溶接を行った 場合においても優れた溶接継手部を有する鋼板に関するものである  The present invention relates to a thick high-strength steel sheet excellent in low-temperature toughness of a heat affected zone (hereinafter referred to as HAZ) used for ships, offshore structures, middle-rise buildings, bridges, and the like. In particular, for welding with a plate thickness of 50 mm or more and a base metal tensile strength of 49 to 570 1 ^? & Grade, with a welding heat input of 20 to 10 books 0 kJ / mm It also relates to a steel sheet with excellent welded joints
背景技術 Background art
近年、 船舶、 海洋構造物、 中高層ビル、 橋梁などの大型構造物に 使用される溶接用鋼材の材質特性に対する要望は厳しさを増してい る。 特に、 これら構造物の中では、 板厚 5 0 mm超える厚手で母材 の引張強度が 5 7 0 MP a級である鋼板の使用も多くなつている。 また、 溶接の効率化を促進するため、 このよ うな厚手高強度鋼板の 溶接には、 エレク ト口ガス溶接法、 エレク トロスラグ溶接法などに 代表されるよ うな大入熱溶接法による 1パス溶接が検討されており 、 母材そのものの靭性と同様に、 HA Z靭性の要求も厳しさを増し ている。 '  In recent years, the demand for material properties of welding steel used for large structures such as ships, offshore structures, high-rise buildings, bridges, and the like has increased. In particular, among these structures, the use of thick steel plates with a plate thickness of more than 50 mm and a tensile strength of the base material of 570 MPa class is increasing. In addition, in order to promote the efficiency of welding, such thick high-strength steel sheets are welded by one-pass welding using large heat input welding methods such as the electoral gas welding method and the electroslag welding method. The requirements for HAZ toughness, as well as the toughness of the base material itself, are becoming more stringent. '
大入熱溶接法が適用される鋼材の H A Z靭性に注目 した提案は、 これまで数多くなされてきた。 例えば、 特公昭 5 5 - 0 2 6 1 6 4 号公報では、 微細な T i 窒化物を鋼中に確保することによって、 H A Zのオーステナイ ト粒を小さく し、 靭性を向上させる発明が開示 されている。 また、 特開平 0 3— 2 6 4 6 1 4号公報では、 T i 窒 化物と Mn S との複合析出物をフェライ トの変態核と して活用し、 H A Zの靭性を向上させる発明が提案されている。 さ らに、 特開平 0 4— 1 4 3 2 4 6号公報では、 T i 窒化物と B Nとの複合析出物 を粒界フエライ トの析出核と して活用し、 HA Z靭性を向上させる 発明が提案されている。 There have been many proposals focusing on the HAZ toughness of steel materials to which the large heat input welding method is applied. For example, Japanese Patent Publication No. 55-026164 discloses an invention in which a fine Ti nitride is secured in steel to reduce HAZ austenite grains and improve toughness. Has been. Also, Japanese Patent Application Laid-Open No. H03-2646414 proposes an invention for improving the toughness of HAZ by utilizing a composite precipitate of Ti nitride and MnS as a transformation nucleus of ferrite. Have been. Further, in Japanese Patent Application Laid-Open No. 04-1433246, a composite precipitate of Ti nitride and BN is used as a precipitation nucleus of grain boundary ferrite to improve HAZ toughness. An invention has been proposed.
しかしながら、 この T i 窒化物は、 H A Zのうち最高到達温度が 1 4 0 0 °Cを超える溶接金属との境界 (以下、 溶接ポンド部とも称 する。 ) 近傍ではほとんど固溶してしまうので、 靭性向上効果が低 下してしま う という問題がある。 そのため、 上記のよ うな T i 窒化 物を利用した鋼材では、 近年の H A Z靭性に対する厳しい要求や、 超大入熱溶接における H A Z靱性の必要特性を達成することが困難 である。  However, the Ti nitride almost completely forms a solid solution in the vicinity of the boundary with the weld metal of the HAZ whose maximum temperature exceeds 140 ° C (hereinafter also referred to as the weld pound). There is a problem that the effect of improving toughness is reduced. For this reason, it is difficult for steel materials using Ti nitride as described above to achieve strict requirements for HAZ toughness in recent years and required properties of HAZ toughness in ultra-high heat input welding.
この溶接ボン ド部近傍の靭性を改善する方法と して、 T i 酸化物 を含有した鋼が厚板、 形鋼などの様々な分野で使用されている。 例 えば、 厚鋼板の分野では、 特開昭 6 1 — 0 7 9 7 4 5号公報ゃ特開 昭 6 1 — 1 1 7 2 4 5号公報に記載された発明のように、 T i 酸化 物を含有した鋼が大入熱溶接部靭性向上に非常に有効であり、 高張 力鋼への適用が有望である。 この原理は、 鋼の融点においても安定 な T i酸化物を析出サイ ト と して、 溶接後の温度低下途中'に T i 窒 化物、 Mn S等が析出し、 さ らにそれらをサイ ト と して微細フェラ ィ トが生成し、 その結果、 靭性に有害な粗大フ ライ トの生成が抑 制されて、 靭性の劣化が防止できるという ものである。  As a method for improving the toughness in the vicinity of the weld bond, steels containing Ti oxide are used in various fields such as thick plates and section steels. For example, in the field of steel plates, as disclosed in Japanese Patent Application Laid-Open No. 61-079745 / Japanese Patent Application Laid-open No. 61-117245, Ti oxidation The steel containing the material is very effective in improving the toughness of large heat input welds, and its application to high tensile strength steel is promising. This principle is based on the assumption that Ti oxides, which are stable even at the melting point of steel, are used as precipitation sites, and Ti nitrides, MnS, etc. precipitate during the temperature drop after welding, and they are then added to the site. As a result, fine ferrite is generated, and as a result, the generation of coarse fly harmful to toughness is suppressed, and deterioration of toughness can be prevented.
しかしながら、 このよ うな T i酸化物は、 鋼中へ分散される個数 をあま り多くすることができないという問題がある。 その原因は、 T i酸化物の粗大化や凝集合体であり、 T i 酸化物の個数を増加さ せよ う とすれば 5 / m以上の粗大な T i 酸化物、 いわゆる介在物が 増加してしまうためと考えられる。 この 5 μ m以上の介在物は、 構 造物の破壌の起点となったり、 靭性の低下を引き起こしたり して、 有害であるため回避すべきものである。 そのため、 さ らなる H A Z 靭性の向上を達成するためには、 粗大化や凝集合体が起こりにく く 、 T i酸化物よ り も微細に分散する酸化物を活用する必要があった また、 このよ うな T i 酸化物の鋼中への分散方法と しては、 A 1 等の強脱酸元素を実質的に含まない溶鋼中への T i 添加によるもの が多い。 しかしながら、 単に溶鋼中に T i を添加するだけでは鋼中 の T i酸化物の個数、 分散度を制御することは困難であり、 さらに は、 T i N、 M n S等の析出物の個数、 分散度を制御することも困 難である。 そのため、 T i脱酸のみによって T i 酸化物を分散させ た鋼においては、 例えば、 T i酸化物の個数が充分に得られない、 あるいは、 厚板の板厚方向の靭性が変動するといった問題があった このよ うな問題に対して、 特開平 0 6— 2 9 3 9 3 7号公報ゃ特 開平 1 0— 1 8 3 2 9 5号公報では、 T i 添加直後の A 1添加、 あ るいは A 1 、 C a複合添加で、 生成する T i _ A 1複合酸化物や T i 、 A l 、 C aの複合酸化物を活用する発明が開示されている。 こ のよ うな発明によ り、 大入熱溶接 H A Z靱性を大幅に向上させるこ とが可能となった。 発明の開示 However, such a Ti oxide has a problem that the number of the Ti oxides dispersed in the steel cannot be sufficiently increased. The cause is the coarsening and aggregation of Ti oxides.If the number of Ti oxides is to be increased, coarse Ti oxides of 5 / m or more, so-called inclusions, will occur. It is thought that it would increase. Inclusions of 5 μm or more should be avoided because they are harmful because they can be a starting point for structural rupture or cause a decrease in toughness. Therefore, in order to achieve further improvement in HAZ toughness, it was necessary to utilize an oxide which is less likely to be coarsened and aggregated and which is more finely dispersed than a Ti oxide. As a method of dispersing such Ti oxides in steel, there are many methods of adding Ti to molten steel substantially not containing a strong deoxidizing element such as A1. However, it is difficult to control the number of Ti oxides and the degree of dispersion in steel simply by adding Ti to molten steel, and furthermore, the number of precipitates such as TiN and MnS. However, it is also difficult to control the degree of dispersion. Therefore, in a steel in which Ti oxides are dispersed only by Ti deoxidation, for example, the number of Ti oxides cannot be obtained sufficiently, or the toughness of a thick plate in the thickness direction fluctuates. In order to solve such a problem, Japanese Patent Application Laid-Open No. H06-293939 / Japanese Patent Application Laid-Open No. Hei 10-1028395 states that A1 addition immediately after Ti addition, Alternatively, there is disclosed an invention utilizing a Ti_A1 composite oxide or a composite oxide of Ti, Al, and Ca produced by adding A1 and Ca composites. According to such an invention, large heat input welding HAZ toughness can be greatly improved. Disclosure of the invention
しかし、 H A Zのオーステナイ ト粒を小さく したり、 析出物をフ ェライ トの変態核と してフェライ トを生成したりする上記の従来手 段では、 板厚 5 0 m m以上で母材強度を引張強度で 4 9 0 M P a以 上確保するためには、 合金元素を増加させる必要があり、 この場合 、 溶接 HA Zの硬さが上昇すること と ともに、 靭性を劣化させる M A (M a r t e n s i t e — A u s t e n i t e c o n s t i t u e n t ) の生成が顕在化するため、 例えば、 造船分野での Eダレ ー ド (― 2 0 °C保証) のような十分な H A Z靭性を安定して確保す ることができない。 まして母材強度が引張強度で 5 7 0 MP a以上 になると必要な H A Z靭性を得ることができ.ない。 However, in the conventional methods described above, in which HAZ austenite grains are reduced or precipitates are used as transformation nuclei of ferrite to form ferrite, the base material strength is increased at a plate thickness of 50 mm or more. In order to secure a strength of 490 MPa or more, it is necessary to increase the alloying elements. In addition to the increase in the hardness of the welded HAZ, the formation of MA (Martensite—Austenite constituent), which deteriorates the toughness, becomes evident. However, it is not possible to ensure sufficient HAZ toughness in a stable manner. If the base metal strength exceeds 570 MPa in tensile strength, the required HAZ toughness cannot be obtained.
そこで、 本発明は、 板厚 5 0〜 8 0 mm、 母材引張強度 4 9 0〜 5 7 0 MP a級の鋼板で、 溶接入熱量が 2 0 ~ 1 0 0 k J /mmの溶 接を行った場合においても優れた溶接 H A Z靭性を実現できる、 大 入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板を 提供することを目的とするものである。  Therefore, the present invention is directed to a welding method using a steel plate having a thickness of 50 to 80 mm and a base metal tensile strength of 49 to 570 MPa, and a welding heat input of 20 to 100 kJ / mm. It is an object of the present invention to provide a thick high-strength steel sheet having excellent low-temperature toughness in the heat affected zone by large heat input welding, which can achieve excellent welding HAZ toughness even when welding is performed.
本発明者らは、 N i添加量および N i /Mnを規定することによ つて、 上記課題を有利に解決し得るこ とを知見し、 さらに検討を加 えて初めて本発明を完成させたものであり、 その要旨は、 以下の通 りである。  The present inventors have found that the above problems can be advantageously solved by defining the Ni addition amount and Ni / Mn, and completed the present invention only after further study. The gist is as follows.
( 1 ) 質量%で、 C : 0. 0 3〜 0. 1 4 %、 S i : 0. 3 0 % 以下、 Mn : 0. 8〜 2. 0 %、 P : 0. 0 2 %以下、 S : 0. 0 0 5 %以下、 Α 1 ·· 0. 0 0 1〜 0. 0 4 0 %、 Ν : 0. 0 0 1 0 〜 0. 0 1 0 0 %、 N i : 0. 8〜 4. 0 % , T i : 0. 0 0 5〜 0. 0 3 0 %、 N b : 0. 0 0 3〜 0. 0 4 0 %を含有し、 N i と Mnが式 [ 1 ] を満たし、 残部が鉄および不可避不純物であること を特徴とする、 大入熱溶接による溶接熱影響部の低温靭性に優れた 厚手高強度鋼板。  (1) In mass%, C: 0.03 to 0.14%, Si: 0.30% or less, Mn: 0.8 to 2.0%, P: 0.02% or less, S: 0.05% or less, Α 1 ... 0.01 to 0.04 0%, Ν: 0.01 0 to 0.01 0 0%, Ni: 0.8 ~ 4.0%, T i: 0.005 ~ 0.03 30%, Nb: 0.03 ~ 0.040%, and N i and Mn are represented by the formula [1] Thick high-strength steel sheet excellent in low-temperature toughness of the heat affected zone by large heat input welding, characterized by satisfying the above conditions, with the balance being iron and inevitable impurities.
N i /M n≥ 1 0 X C e q - 3 ( 0. 3 6 < C e q < 0. N i / M n ≥ 1 0 X C e q-3 (0.36 <C e q <0.
4 2 ) [ 1 ] 4 2) [1]
但し、 C e q = C + MnZ 6 + (C r +M o +V) / 5 + (N i + C u ) / 1 5 ( 2 ) さらに、 質量0 で、 C a : 0. 0 0 0 3〜 0. 0 0 5 0 % 、 M g : 0. 0 0 0 3〜 0. 0 0 5 0 %、 R EM : 0. 0 0 1〜 0 . 0 3 0 %のうちの 1種または 2種以上を含有し、 かつ、 O : 0. 0 0 1 0〜 0. 0 0 5 0 %を含有し、 円相当径が 0. 0 0 5〜 0. 5 μ mの酸化物を、 1 0 0個 Zmm2 以上含有することを特徴とす る、 上記 ( 1 ) に記載の大入熱溶接による溶接熱影響部の低温靭性 に優れた厚手高強度鋼板。 Where C eq = C + MnZ 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (2) Further, at a mass of 0 , C a: 0.0 003 to 0.0 050%, Mg: 0.0 003 to 0.0 050%, REM: 0. One or two or more of 0.01 to 0.030%, and O: 0.000 to 0.000%, and an equivalent circle diameter of 0 The low-temperature toughness of the heat affected zone by large heat input welding as described in (1) above, characterized by containing 100 to 0.5 μm of oxides of at least 100 Zmm 2 . Excellent high-strength steel sheet.
( 3 ) さらに、 質量。 /。で、 B : 0. 0 0 0 5〜 0. 0 0 5 0 %を 含有することを特徴とする、 上記 ( 1 ) または ( 2 ) に記載の大入 熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。  (3) In addition, mass. /. And B: 0.0005 to 0.0005%, characterized in that the low-temperature toughness of the weld heat-affected zone by the large heat input welding according to the above (1) or (2), Excellent high-strength steel sheet.
( 4 ) さらに、 質量0 /0で、 C r : 0. 1〜 0. 5 %、 M o : 0. 0 1〜 0. 5 %、 V : 0. 0 0 5〜 0. 1 0 %、 C u : 0. ;!〜 1 . 0 %のうちの 1種または 2種以上を含有することを特徴とする、 上記 ( 1 ) ないし ( 3 ) のいずれか 1項に記載の大入熱溶接による 溶接熱影響部の低温靭性に優れた厚手高強度鋼板。 図面の簡単な説明 (4) In addition, the mass 0/0, C r: 0. 1~ 0. 5%, M o: 0. 0 1~ 0. 5%, V: 0. 0 0 5~ 0. 1 0%, Cu: 0.;! Low temperature of the heat affected zone by large heat input welding according to any one of the above (1) to (3), characterized in that it contains one or more of the above-mentioned 1.0% to 1.0%. Thick high-strength steel sheet with excellent toughness. Brief Description of Drawings
図 1は、 4 5 k J /mm相当の溶接熱サイクルを示す図である。 図 2は、 N i /Mn と C e q と再現 HA Z靭性との関係を示す図 である。  FIG. 1 is a diagram showing a welding heat cycle equivalent to 45 kJ / mm. FIG. 2 is a diagram showing the relationship between Ni / Mn, Ceq, and reproduced HAZ toughness.
図 3は、 微細酸化物分散または B活用による再現 HA Z靭性向上 効果を示す図である。 発明を実施するための最良の形態  Figure 3 shows the effect of improving the reproducible HAZ toughness by dispersing fine oxides or using B. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
これまで HA Z靭性の向上手段と して、 前述のとおり、 高温での オーステナイ ト粒の成長を抑制することが考えられてきた。 その手 段と して最も有効な方法は、 分散粒子によ りオーステナイ トの粒界 をピンユングし、 粒界の移動を止める方法である。 これは、 溶接入 熱が 2 0〜: L 0 0 k j /mmと大入熱である場合においても、 HA Zの再加熱オーステナイ ト粒はピンニングによ り極めて有効に細粒 化する。 しかし、 母材強度を高めるために合金添加量を増加させて いき、 鋼材の溶接性と同時に化学成分的な焼入性を示す炭素当量 ( C e q ) が 0. 3 6以上となる鋼材では HA Zの硬さがよ り高くな るため、 再加熱オーステナイ ト粒がピンユングによ り細粒化した場 合であっても十分な H A Z靭性が得られないという問題が新たに生 じた。 このよ うに HA Z部の硬さが高くなる場合では、 地鉄そのも のの靱性を向上させることが必要である。 Until now, as a means of improving the HAZ toughness, as described above, suppression of the growth of austenite grains at high temperatures has been considered. That hand The most effective method for the step is to pin the austenite grain boundaries with dispersed particles and stop the movement of the grain boundaries. This is because the reheated austenite grains of HAZ are extremely effectively refined by pinning even when the welding heat input is as large as 20 to L0 kj / mm. However, in order to increase the strength of the base metal, the amount of alloy added was increased. In steels where the carbon equivalent (C eq), which indicates the chemical hardenability as well as the weldability of the steel, is 0.36 or more, the HA As the hardness of Z becomes higher, a new problem arises that sufficient HAZ toughness cannot be obtained even when the reheated austenite grains are refined by pin jung. When the hardness of the HAZ is high, it is necessary to improve the toughness of the ground steel itself.
そこで、 発明者らは、 課題と している厚手高強度鋼に必要となる 、 じ 6 9が 0. 3 6以上 0. 4 2以下と高い場合での H A Z靭性改 善に、 地鉄そのものの靭性を改善する最適成分系を鋭意検討した。 マ ト リ ックスの靱性を高める元素と しては従来から N i が有効であ ることが知られている。 しかし、 今回のよ うに C e qが 0. 3 6以 上 0. 4 2以下と高い H A Zの靭性改善に有効かどう力 、 また有効 である場合はどのような成分条件であれば有効かは知られていない 。 そこで、 まず、 N i 添加量の影響を検討した。 検討にあたっては 、 母材強度確保に有効な N b量を 0. 0 0 3 %以上添加することを 前提と した。 H A Z靭性の評価には、 図 1で示されるエレク トロガ ス溶接 (入熱 4 5 k J /mm) 相当の熱サイクルを付与した時のシ ャルピ一衝撃試験での延性 · 脆性遷移温度 ( v T r s ) を採用した  Therefore, the inventors of the present invention need to improve the HAZ toughness when the thickness of the steel, which is required for thick high-strength steel, is as high as 0.36 or more and 0.42 or less. The optimal component system to improve toughness was studied diligently. It has been known that Ni is effective as an element that enhances the toughness of the matrix. However, as in this case, C eq is 0.36 or more and 0.42 or less, and it is difficult to know whether it is effective for improving the toughness of HAZ, and if so, what component conditions are effective. Not been. Therefore, first, the effect of the amount of Ni added was examined. In the study, it was assumed that the amount of Nb that is effective for securing the base metal strength was 0.003% or more. The HAZ toughness was evaluated by the ductility-brittle transition temperature (vT) in the Charpy impact test when a heat cycle equivalent to the electron gas welding (heat input 45 kJ / mm) shown in Fig. 1 was applied. rs)
N i 添加量の影響を検討した結果、 まず、 1[ 1 が 0. 8 %よ り少 ない場合では必要な靭性が得られないことが判明した。 また、 N i を 0. 8 %以上添加した場合であっても、 HA Z靭性が改善されな いものと、 逆に HA Z靭性が低下するものも見られた。 そこで、 さ らに他の添加元素や C e q との関係を含め鋭意検討した結果、 この ように C e qが 0. 3 6以上 0. 4 2以下の場合では、 図 2に示す ように、 HA Z靭性は、 C e q と N i /Mnとによって関係付けら れることを見出した。 図 2は、 検討に用いた鋼材の再現 H A Z靭性 ( v T r s ) を、 C e q毎に層別し、 N i /Mn比を横軸と してプ ロ ッ トしたものである。 図 2力 ら、 As a result of examining the effect of the amount of Ni added, it was first found that the required toughness could not be obtained if 1 [1 was less than 0.8%. Also, even when Ni is added at 0.8% or more, the HAZ toughness is not improved. Some steels, on the other hand, had reduced HAZ toughness. Therefore, as a result of intensive studies including the relationship with other added elements and C eq, when C eq is 0.36 or more and 0.42 or less, as shown in FIG. Z toughness was found to be related by C eq and Ni / Mn. Figure 2 shows the HAZ toughness (vT rs) of the steel used in the study, stratified by C eq and plotted with the Ni / Mn ratio as the horizontal axis. Fig. 2
N i /M n≥ 1 0 X C e q - 3 [ 1 ] の関係が成立つ鋼材において、 v T r s で一 1 5 °C以下の良好な靱 性が得られた。 式 [ 1 ] を満たさない鋼材が十分な H A Z靱性が得 られない理由と しては、 N i の添加量が十分ではなくマ ト リ ックス 高靱化効果が小さいため、 あるいは、 N i を多く含む場合であって も M nの過剰添加により HA Z中に MA生成し、 N i の高靭化効果 が消失されるためと考えられる。 なお、 上記検討で用いた鋼材を入 熱 1 0 0 k J /mm相当の熱サイ クルにて同様の検討を行なった結 果、 入熱 1 0 0 k J /mmの場合においても、 式 [ 1 ] の関係にあ る鋼材においては良好な再現 H A Z靱性が得られることを確認して いる。  Good toughness of less than 115 ° C at vTrs was obtained for steels satisfying the relationship of Ni / Mn≥10XCeq-3 (1). Steel materials that do not satisfy equation [1] may not have sufficient HAZ toughness due to insufficient Ni addition and a small matrix toughening effect, or a high Ni content. It is considered that even in the case of containing, MA is generated in HAZ by excessive addition of Mn, and the toughening effect of Ni is lost. In addition, as a result of conducting the same study on the steel material used in the above study in a heat cycle equivalent to a heat input of 100 kJ / mm, the equation [ It has been confirmed that good reproducible HAZ toughness can be obtained for steel materials with the relationship [1].
上述の検討によ り、 HA Z靭性は、 式 [ 1 ] を満たす、 0. 8 % 以上の N i 添加によ り改善されることを見出したが、 さらに発明者 らは、 一層の HA Z靱性改善を検討した。 HA Z靭性を改善させる 方法と して以下の 3つを検討した。 第一に、 大入熱溶接では高温滞 留時間が長期化するためオーステナイ ト粒が粗大化し、 これが HA Z靭性を低下させることから、 高温滞留時のオーステナイ トの粗大 化を抑制させる方法である。 第二に、 大入熱溶接では溶接後の冷却 時間が長いためオーステナイ ト粒界から生成するフェライ 卜の粗大 化し、 この粗大な粒界フェライ トが H A Z靭性低下の原因になるこ とから、 粒界フェライ トの粗大化を抑制する方法である。 第三に、From the above study, it has been found that the HAZ toughness can be improved by adding 0.8% or more of Ni, which satisfies the formula [1]. The improvement of toughness was studied. The following three methods were studied to improve the HAZ toughness. First, in high heat input welding, austenite grains are coarsened due to prolonged high-temperature residence time, which lowers HAZ toughness.This is a method of suppressing coarsening of austenite during high-temperature residence. . Secondly, in large heat input welding, the cooling time after welding is long, so ferrite generated from austenite grain boundaries becomes coarse, and this coarse grain boundary ferrite may cause a decrease in HAZ toughness. Therefore, it is a method to suppress the grain boundary ferrite from becoming coarse. Third,
H A Z組織そのものを微細にさせる方法である。 This is a method for making the HAZ structure itself fine.
第一のオーステナイ ト粒の粗大化を抑制する方法に関しては、 例 えば、 特許文献 7に記载.されているように、 微細酸化物を分散させ る方法が有効である。 特許文献 7では、 微細酸化物の分散に、 脱酸 工程で溶鋼の溶存酸素量を S i との平衡反応で調整し、 さ らにその 後 T i 、 A l 、 C aの順序で脱酸すると している。 そして、 この方 法により、 粒子径が 0. 0 1〜 1. 0 μ mの酸化物を 5 X 1 03 〜 1 X 1 05 個 /mm2 で分散させると している。 Regarding the first method for suppressing austenite grain coarsening, for example, as described in Patent Document 7, a method for dispersing fine oxides is effective. In Patent Document 7, in order to disperse fine oxides, the amount of dissolved oxygen in molten steel is adjusted by an equilibrium reaction with Si in a deoxidizing step, and then deoxidizing in the order of Ti, Al, and Ca. Then you are. According to this method, oxides having a particle size of 0.01 to 1.0 μm are dispersed at 5 × 10 3 to 1 × 10 5 particles / mm 2 .
そこで、 発明者らは、 C e qが 0. 3 6以上 0. 4 2以下と高い 場合で、 N bを 0. 0 0 3 %含み、 かつ N i を 0. 8 %以上添加し た系において、 微細酸化物を分散させ H A Z靭性を更に向上させる 方法を鋭意検討した。 まず、 微細酸化物を分散させる方法であるが 、 このような系においては、 脱酸工程で溶鋼の溶存酸素量を 0. 0 0 1 0〜 0. 0 0 5 0 %に調整し、 その後、 まず T i で脱酸し、 引 き続き A 1 で脱酸した後、 さ らに、 C a、 M g、 R EMのうち 1種 類以上添加するこ とで、 円相当径が 0. 0 0 5〜 0. 5 111の微細 酸化物を 1 0 0個/ mm2 以上分散させることが可能であることを 見出した。 また、 この微細酸化物分散によ り、 溶接での高温滞留時 のオーステナイ ト粒粗大化が抑制され H A Z靭性を更に改善させる ことできた。 一例と して、 N i を適正添加したのみの H A Z靱性と 比較した結果を図 3に示す。 なお、 生成される酸化物は、 N i の量 が多いほど細かく、 個数も多く なり、 1量が 1 . 5 %以上の場合 では 1 0 0 0個 mm2 以上となる。 これは今回見出したものである 。 さ らに、 溶鋼中の S i量については、 S i量が多い場合では酸化 物ができにく くなるため、 S i 量は◦ . 3 0 %以下、 さらには 0. 2 0 %以下とすることが好ましいことが今回の検討から明らかとな つた。 他方、 T i脱酸の前の溶存酸素量が 0. 0 0 5 0 %を越える 場合や脱酸元素の順番が異なる場合では、 酸化物が粗大化し微細酸 化物が十分に得られないため、 オーステナイ ト粒の粗大化の抑制効 果は殆ど得られない。 なお、 円相当径 0. 0 0 5〜 0. 5 μ ιηの酸 化物の個数は、 母材となる鋼板から抽出レプリカを作製し、 それを 電子顕微鏡にて 1 0 0 0 0倍で 1 0 0視野以上 (観察面積にして 1 ◦ Ο Ο Ο μ ΐη2 以上) を観察し、 0. 1 μ m未満の粒子に関しては 適宜倍率を高めて観察した。 観察された 0. 0 0 5〜 0. 5 μ πι径 の各粒子において元素分析を行い、 酸化物であるものカウント した 次に、 発明者らは、 HA Ζ靭性向上方法と して、 上述で第二の方 法、 および、 第三の方法として記した、 粒界フヱライ トの粗大化抑 制、 および、 H A Ζ組織の微細化を鋭意検討した。 その結果、 C e qが 0. 3 6以上 0. 4 2以下と高い場合で、 かつ N i を 0. 8 % 以上添加した系で、 特に今回のよ うな 2 0〜 1 0 0 k J /mm相当 の大入熱溶接をする場合においては、 Bの添加が有効であることが 判明した。 その理由は、 粒界フェライ トの粗大化抑制の点では、 再 加熱オーステナイ ト粒界に固溶 Bが偏析することにより粒界フ ェラ イ トの生成が抑制されるためである。 また、 HA Z組織の微細化の 点では、 今回のような大入熱溶接で冷却速度が遅い場合では、 B添 加によ りオーステナイ ト粒界、 および、 オーステナイ ト粒内の介在 物に B窒化物が析出し、 それを核とする数 / mの微細なフェライ ト がオーステナイ ト粒界および粒内に多数生成することにより HA Z 組織が微細化されるためである。 B添加による HA Z靭性の改善を 、 N i を適正添加したのみの HA Z靭性と比較した結果を図 3に示 す。 B添加によ り H A Z靭性がさ らに向上していることが判る。 さ らに、 図 3には、 上述の微細酸化物を分散させる方法に加え B添加 させた場合での HA Z靭性を示しているが、 微細酸化物分散と B添 加によ り HA Z靭性が一層向上している。 これは、 B Nの析出サイ トとなる酸化物が増えたことによって、 その B Nを核するフェライ トが増え H A Z組織がよ り微細化したためと考えられる。 Therefore, the present inventors have found that when C eq is as high as 0.36 or more and 0.42 or less, in a system containing 0.003% of Nb and adding 0.8% or more of Ni. Then, a method for dispersing fine oxides and further improving the HAZ toughness was studied diligently. First, a method of dispersing fine oxides. In such a system, the amount of dissolved oxygen in the molten steel is adjusted to 0.010 to 0.050% in the deoxidation step, and thereafter, First, deoxidation is performed at T i, then deoxidation is performed at A 1, and then at least one of Ca, Mg, and REM is added, so that the equivalent circle diameter is 0.0. It has been found that fine oxides of 0.5 to 0.5111 can be dispersed at a rate of 100 / mm 2 or more. In addition, due to the dispersion of the fine oxide, coarsening of austenite grains during high-temperature stagnation during welding was suppressed, and the HAZ toughness could be further improved. As an example, Fig. 3 shows the results of a comparison with the HAZ toughness with only proper addition of Ni. Note that the oxide produced is finer as the amount of N i is large, the number becomes large, the 1 weight 1. In the case of more than 5% 1 0 0 0 or mm 2 or more. This is what we found this time. Furthermore, as for the Si content in the molten steel, when the Si content is large, it is difficult to form oxides, so the Si content is ◦0.30% or less, further 0.20% or less. It is clear from this study that I got it. On the other hand, if the dissolved oxygen content before Ti deoxidation exceeds 0.050% or the order of the deoxidizing elements is different, the oxides become coarse and fine oxides cannot be obtained sufficiently. The effect of suppressing coarsening of austenite grains is hardly obtained. The number of oxides with an equivalent circle diameter of 0.005 to 0.5 μιη was determined by preparing an extraction replica from a steel sheet as a base metal, and using an electron microscope to increase the number of oxides by 100,000. Observation was made from 0 visual fields or more (observed area is 1 Ο Ο Ο Ο μ ΐ η 2 or more). Particles smaller than 0.1 μm were observed at an appropriately increased magnification. Elemental analysis was performed on each of the observed particles having a diameter of 0.05 to 0.5 μππι, and the particles that were oxides were counted.Then, as a method for improving HA toughness, the inventors described above. The second method and the third method, which were described as the suppression of grain boundary fly coarsening and the finer HA HA structure, were studied diligently. As a result, when C eq is as high as 0.36 or more and 0.42 or less, and in a system in which Ni is added at 0.8% or more, especially in the case of 20 to 100 kJ / mm as in this case, It has been found that the addition of B is effective for welding with a large heat input. The reason is that, in terms of suppressing grain boundary ferrite coarsening, segregation of solid solution B at the reheated austenite grain boundary suppresses generation of grain boundary ferrite. In addition, in terms of the refinement of the HAZ structure, when the cooling rate is low in large heat input welding as in this case, the addition of B causes the austenite grain boundaries and inclusions in the austenite grains to contain B. This is because the HAZ structure is refined due to the precipitation of nitrides and the formation of a large number of fine ferrite of several m / m with the nuclei at the austenite grain boundaries and in the grains. FIG. 3 shows the result of comparing the improvement of HAZ toughness by adding B with the HAZ toughness of only adding Ni properly. It can be seen that the HAZ toughness is further improved by the addition of B. Fig. 3 shows the addition of B The HAZ toughness in the case where the HAZ toughness is shown is shown, but the HAZ toughness is further improved by the fine oxide dispersion and the addition of B. This is probably because the number of oxides serving as BN precipitation sites increased, and the ferrite that nucleated the BN increased, resulting in a finer HAZ structure.
また、 強度確保や耐食性の向上の観点から、 上記条件に加え、 C u、 C r、 M o、 Vを添加した場合での HA Z靭性も検討した。 そ の結果、 それぞれ、 0. 1 ~ 0. 4 %、 0. 1〜 0. 5 %、 0. 0 1〜 0. 2 %、 0. 0 0 5〜 0. 0 5 0 %の範囲での添加であれば 、 H A Z靭性を大きく低下しないことが判明した。  From the viewpoint of securing strength and improving corrosion resistance, the HAZ toughness when Cu, Cr, Mo, and V were added in addition to the above conditions was also examined. As a result, respectively, in the range of 0.1 to 0.4%, 0.1 to 0.5%, 0.01 to 0.2%, 0.005 to 0.050% It was found that the addition of HAZ did not significantly reduce the HAZ toughness.
なお、 この発明の鋼板の製造方法は、 特に制限されることはなく 、 公知の方法に従って製造すれば良い。 例えば、 上記の好適成分組 成に調整した溶鋼を連続铸造法でスラブと したのち、 1 0 0 0〜 1 2 5 0 °Cに加熱してから、 熱間圧延を施せばよい。  The method for manufacturing the steel sheet of the present invention is not particularly limited, and may be manufactured according to a known method. For example, after the molten steel adjusted to the above preferable composition is formed into a slab by a continuous forming method, it is heated to 100 to 125 ° C. and then hot-rolled.
次に、 本発明で使用する鋼素材の成分組成の限定理由について説 明する。 以下、 組成における質量%は単に%で記す。  Next, the reasons for limiting the component composition of the steel material used in the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.
Cは、 鋼の強度を向上させる有効な成分と して下限を 0. 0 3 % とし、 また過剰の添加は、 炭化物や MAを多量に生成し H A Z靱性 を著しく低下させるので、 上限を 0. 1 4 %とした。  C has a lower limit of 0.03% as an effective component for improving the strength of steel, and an excessive addition generates a large amount of carbides and MA and significantly lowers the HAZ toughness. It was set to 14%.
S i は、 母材の強度確保、 脱酸などに必要な成分であるが、 HA Zの硬化によ り靭性が低下するのを防止するため上限を 0. 3 0 % と した。 さ らに酸化物を利用する場合では溶鋼中の酸素濃度の減少 を防ぐために上限を 0. 2 0 %以下とするのが好ましい。  S i is a component necessary for securing the strength of the base material and deoxidizing, etc., but the upper limit is set to 0.30% in order to prevent the toughness from being reduced by the hardening of HAZ. Further, when oxides are used, the upper limit is preferably set to 0.20% or less in order to prevent a decrease in the oxygen concentration in the molten steel.
Mnは、 母材の強度、 靭性の確保に有効な成分と して 0. 8 %以 上の添加が必要であるが、 溶接部の靭性、 割れ性などの許容できる 範囲で上限を 2. 0 %と した。 さ らに、 M nに上限に関しては、 C e q、 Mn量、 および N i量との関係を示す式 [ 1 ] を満たす必要 がある。 これは、 今回の検討で新たに見出された、 C e qが高い場 合で M nの増加が HA Z組織中に MAを多量に生成させる原因とな り N i による HA Z靭性の向上効果を消失させるという ことに基づ <。 Mn is required to be added in an amount of 0.8% or more as an effective component for securing the strength and toughness of the base metal, but the upper limit is 2.0 as long as the toughness, cracking, etc. of the weld zone is acceptable. %. Further, regarding the upper limit of Mn, it is necessary to satisfy the equation [1] showing the relationship between Ceq, Mn amount, and Ni amount. This is because of the high C eq that was newly discovered in this study. In this case, the increase in Mn causes the formation of a large amount of MA in the HAZ structure, and the effect of Ni to improve the HAZ toughness is lost.
N i /M n ≥ 1 0 X C e q - 3 [ 1 ] Pは、 含有量が少ないほど望ましいが、 これを工業的に低減させ るためには多大なコス トがかかることから、 含有範囲を 0 . 0 2以 下と した。  N i / M n ≥10 XC eq -3 [1] P is preferably as small as possible, but it costs a lot to reduce it industrially. 0 2 or less.
Sは、 含有量が少ないほど望ましいが、 これを工業的に低減させ るためには多大なコス トがかかることから、 含有範囲を 0 . 0 0 5 以下と した。  The content of S is preferably as small as possible, but it requires a great deal of cost to reduce it industrially. Therefore, the content range of S is set to 0.05 or less.
N i は、 本発明で重要な元素であり、 少なく とも 0 . 8 %の添加 が必要である。 さらに、 N i に下限に関しては、 C e q、 M n量、 および N i量との関係を示す式 [ 1 ] を満たす必要がある。 上限に 関しては、 製造コス トの観点から 4 . 0 %と した。  Ni is an important element in the present invention, and it is necessary to add at least 0.8%. Further, regarding the lower limit of N i, it is necessary to satisfy the equation [1] showing the relationship between C e q, M n amount, and N i amount. The upper limit was set at 4.0% from the viewpoint of manufacturing costs.
N i /M n ≥ 1 0 X C e q - 3 [ 1 ] N bは、 焼き入れ性を向上させることによ り母材の強度を向上さ せるために有効な元素であることから 0 . 0 0 3 %以上添加する。 しかし、 N bを多く添加すると N i /M n比に関係なく H A Z中に MAが生成しやすくなり、 0 . 0 4 0 %よ り多く添加した場合では H A Z中に長径が 5 μ πι以上の粗大な MAが多数生成し H A Z靱性 を大きく低下させることがあることから N bの上限を 0 . 0 4 0 % と した。 なお、 よ り高い靱性を得るためには、 上述の式 [ 1 ] を満 たす N i ZM n比の場合で長径が 5 μ m以上の粗大な M Aが殆ど生 成しない 0 . 0 2 0 %以下に Nb量を抑えることが好ましい。 さらに よ り高い靭性をよ り安定的に得るためには、 上述の式 [ 1 ] を満た す N i /M n比の場合で長径が 3 μ m以上の MAが殆ど生じない 0 . 0 1 0 %以下に Nb量を抑えることが好ましい。 A 1 は、 重要な脱酸元素であり、 下限値を 0. 0 0 1 %と した。 また、 A 1 が多量に存在すると、 铸片の表面品位が劣化するため、 上限を 0. 0 4 0 %と した。 N i / M n ≥10 XC eq -3 [1] N b is an element that is effective for improving the strength of the base material by improving the hardenability. Add 3% or more. However, when Nb is added in a large amount, MA is easily generated in HAZ regardless of the Ni / Mn ratio, and when more than 0.040% is added, the major axis in HAZ is 5 μπι or more. The upper limit of Nb was set to 0.040% because a large number of coarse MAs may be generated and the HAZ toughness may be significantly reduced. In order to obtain higher toughness, coarse MA with a major axis of 5 μm or more is hardly generated when the NiZMn ratio satisfies the above equation [1]. It is preferable to suppress the Nb content to less than 10%. In order to obtain higher toughness more stably, in the case of the Ni / Mn ratio satisfying the above equation [1], almost no MA with a major axis of 3 μm or more is generated. It is preferable to suppress the Nb content to 0% or less. A 1 is an important deoxidizing element, and the lower limit was set to 0.001%. In addition, when A1 is present in a large amount, the surface quality of the piece is deteriorated. Therefore, the upper limit is set to 0.040%.
T i は、 再加熱オーステナイ ト粒の粗大化抑制のために必要なピ ンユング粒子となる T i窒化物や T i含有酸化物を生成させるため 、 0. 0 0 5 %以上添加する。 しかし、 過剰の添加は固溶 T i量を 増加させ H A Z靭性の低下を招く ことから、 0. 0 3 0 %を上限と した。  T i is added in an amount of not less than 0.05% in order to generate Ti nitrides and Ti-containing oxides, which are required to suppress coarsening of the reheated austenite grains. However, an excessive addition increases the amount of solid solution Ti and lowers the HAZ toughness. Therefore, the upper limit is 0.030%.
Nは、 溶接後の冷却中にオーステナイ ト粒界および粒内に T i 窒 化物や B窒化物を生成させるために必要に応じて添加量を調整する 。 Bと結合して B窒化物を形成させるためには 0. 0 0 1 0 %以上 添加が必要であるが、 過剰の添加は固溶 N量を増大させ H A Z靭性 の低下を招く ことから、 0. 0 1 0 0 %を上限と した。  N is added as necessary to form Ti nitride and B nitride in austenite grain boundaries and in grains during cooling after welding. In order to combine with B to form a B nitride, the addition of 0.010% or more is necessary.However, excessive addition increases the amount of solute N and lowers the HAZ toughness. The upper limit was 0.1%.
C aは、 再加熱オーステナイ ト粒の粗大化抑制のために必要なピ ンニング粒子となる C a系酸化物を生成させるために必要に応じて 0. 0 0 0 3 %以上の添加する。 しかし、 過剰の添加は粗大介在物 を生成させることから、 0. 0 0 5 0 %を上限と した。  Ca is added in an amount of 0.0003% or more as necessary to generate a Ca-based oxide serving as pinning particles necessary for suppressing coarsening of the reheated austenite grains. However, excessive addition causes coarse inclusions to be formed, so the upper limit was made 0.050%.
M gは、 再加熱オーステナイ ト粒の粗大化抑制のために必要なピ ンニング粒子となる M g系酸化物を生成させるために必要に応じて 0. 0 0 0 3 %以上の添加する。 しかし、 過剰の添加は粗大介在物 を生成させることから、 0. 0 0 5 0 %を上限と した。  Mg is added in an amount of 0.0003% or more as necessary to generate Mg-based oxides that become pinning particles necessary for suppressing coarsening of the reheated austenite grains. However, excessive addition causes coarse inclusions to be formed, so the upper limit was made 0.050%.
R EMは、 再加熱オーステナイ ト粒の粗大化抑制のために必要な 'ピンニング粒子となる R EM系酸化物を生成させるために必要に応 じて 0. 0 0 1 %以上の添加する。 しかし、 過剰の添加は粗大介在 物を生成させることから、 0. 0 3 0 %を上限と した。 また、 こ こ で述べる R EMとは、 C eおよび L aであり、 添加量は両者の総量 である。 Bは、 固溶 B として溶接後の冷却中にオーステナイ ト粒界に偏析 させ粒界フェライ トの生成を抑制するため、 また、 オーステナイ ト 粒界や粒内で BNを生成させるために、 必要に応じて 0. 0 0 0 5 %以上添加する。 しかし、 過剰の添加は固溶 B量を増大させ、 HA Z硬さを大きく上昇させて H A Z靱性の低下を招く ことから、 0. 0 0 5 0 %を上限と した。 REM is added in an amount of 0.001% or more as necessary to generate a REM-based oxide which becomes a pinning particle necessary for suppressing coarsening of the reheated austenite grains. However, an excessive addition generates coarse inclusions, so the upper limit was 0.030%. The REMs described here are Ce and La, and the added amount is the total amount of both. B is necessary as a solid solution B to segregate at austenite grain boundaries during cooling after welding to suppress generation of grain boundary ferrite, and to form BN at austenite grain boundaries and intragranular. Therefore, add 0.0005% or more. However, excessive addition increases the amount of solute B and greatly increases the HAZ hardness, resulting in a decrease in HAZ toughness. Therefore, the upper limit was set to 0.050%.
C uは、 鋼材の強度および耐食性を向上させるために必要に応じ て 0. 1 %以上添加する。 その効果は、 1 . 0 %で飽和するので上 限を 1. 0 と したが、 0. 4 %を越えると MAが生成しやすくなり H A Z靱性が低下することから、 好ましく は 0. 4 %以下が良い。  Cu is added in an amount of 0.1% or more as necessary to improve the strength and corrosion resistance of the steel material. Since the effect saturates at 1.0%, the upper limit is set to 1.0.However, if it exceeds 0.4%, MA is likely to be generated and the HAZ toughness is reduced. Is good.
C r は、 鋼材の耐食性を向上させるために必要に応じて 0. 1 % 以上添加するが、 過剰の添加は M A生成による H A Z靭性の低下を 招く ことから、 0. 5 %を上限とした。  Cr is added in an amount of 0.1% or more as necessary in order to improve the corrosion resistance of the steel material. However, an excessive addition causes a decrease in the HAZ toughness due to the generation of MA, so the upper limit is 0.5%.
M oは、 母材の強度および耐食性を向上させるために有効な元素 であり必要に応じて 0. 0 1 %以上添加する。 その効果は、 0. 5 %で飽和するので上限を 0. 5 %と したが、 過剰の添加は MA生成 による H A Z靱性の低下を招く ことから、 好ましくは 0. 2 %以下 が良い。  Mo is an element effective for improving the strength and corrosion resistance of the base material, and is added at 0.01% or more as necessary. Since the effect saturates at 0.5%, the upper limit is set to 0.5%. However, since excessive addition causes reduction in HAZ toughness due to the formation of MA, the upper limit is preferably 0.2% or less.
Vは、 母材の強度を向上させるために有効な元素であり必要に応 じて 0. 0 0 5 %添加する。 その効果は、 0. 1 0 %で飽和するの で上限を 0. 1 0 %と したが、 過剰の添加は MA生成による HA Z 靭性の低下を招く ことから、 好ましく は 0. 0 5 0 %以下が良い。 実施例 1  V is an element effective for improving the strength of the base material, and is added at 0.05% as necessary. Since the effect saturates at 0.10%, the upper limit is set to 0.10% .However, excessive addition causes reduction in the HAZ toughness due to the formation of MA, so it is preferably 0.050%. The following is good. Example 1
表 1 に示した化学成分の溶鋼を連続錶造して綱片を作製した。 D 2 3〜D 3 4、 D 4 6〜D 4 9に関しては T i投入前に溶鋼の溶存 酸素を S i で 0. 0 0 1 0 %〜 0. 0 0 5 0 %に調整し、 その後、 まず T i で脱酸し、 引き続き A 1 で脱酸した後、 C a、 M g , R E Mのいずれかを添加し脱酸した。 これらを 1 1 0 0〜 1 2 5 0 °Cで 再加熱したあと、 以下の 2種類の圧延方法により板厚 5 0〜 8 0 m mの鋼板を製造した。 一つは、 表面温度が 7 5 0〜 9 0 0 °Cの温度 範囲で圧延したあと、 復熱後の板表面の温度が 2 0 0〜 4 0 0 °Cの 温度範囲になるまで水冷する方法 (表 2では TMC P と記载) であ り、 もう 1つは、 熱間圧延したのち室温まで水冷し、 5 0 0〜 6 0 0 °Cの範囲で焼戻す製造方法 (表 2では D Q— Tと記载) である。 表 2に鋼板の製造条件、 板厚、 機械的性質を示す。 また、 D 2 3 〜D 3 4、 D 4 6〜D 4 9に関しては、 鋼板の任意の箇所において 測定した、 円相当径 0. 0 0 5〜 0. 5 mの微細酸化物の個数を 併記した。 酸化物の個数は、 鋼板の任意の箇所から抽出レプリ カを 作製し、 それを電子顕微鏡にて 1 0 0 0 0倍で 1 0 0視野以上 (観 察面積にして 1 0 0 0 0 μ m 2 以上) を観察し、 0. 1 μιη未満の 粒子に関しては適宜倍率を高めて観察した。 観察される 0. 0 0 5 〜 0. 5 μ m径の各粒子において元素分析を行い、 酸化物であるも のカウントすることによ り求めた。 D 2 3〜D 3 1、 D 4 6〜D 4 9のどの鋼材も、 円相当径で 0. 0 1〜 0. 5 i mの微細酸化物が 本発明範囲の 1 0 0個 Zmm 2 以上分散させている。 なお、 S i 以 外の元素がほぼ同等である D 4 6、 D 4 7および D 4 8、 D 4 9の 比較から、 ≤ 1量は 0. 2 0 %以下と少ない方が酸化物の量が多い ことが分かる。 A steel strip was prepared by continuously forming molten steel having the chemical components shown in Table 1. For D23 to D34 and D46 to D49, before introducing Ti, adjust the dissolved oxygen of the molten steel to 0.010 to 0% to 0.050% by Si, and then First, deoxidation with T i, and then with A 1, then C a, M g, RE Any of M was added for deacidification. After reheating these at 110 to 125 ° C, steel plates with a thickness of 50 to 80 mm were manufactured by the following two rolling methods. One is that after rolling at a surface temperature of 750 to 900 ° C, water cooling is performed until the temperature of the sheet surface after reheating reaches a temperature range of 200 to 400 ° C. The other method is hot rolling, water cooling to room temperature, and tempering in the range of 500 to 600 ° C (Table 2). DQ—T and 载). Table 2 shows the manufacturing conditions, thickness, and mechanical properties of the steel sheet. For D23 to D34 and D46 to D49, the number of fine oxides with an equivalent circle diameter of 0.05 to 0.5 m, measured at any point on the steel sheet, is also shown. did. For the number of oxides, an extracted replica was prepared from an arbitrary part of the steel sheet, and it was extracted with an electron microscope at a magnification of 100,000, and a field of view of 100 or more (100,000 μm in observation area) 2 or more), and particles having a particle size of less than 0.1 μιη were observed at an appropriately increased magnification. Elemental analysis was performed on each of the observed particles with a diameter of 0.05 to 0.5 μm, and the values were determined by counting oxides. D 2 3~D 3 1, D 4 6~D 4 9 throat steel also, a circle equivalent diameter 0.0 1-1 fine oxide of 0. 5 im is of the range of the present invention 0 0 ZMM 2 more dispersed Let me. From the comparison of D46, D47 and D48, D49, in which the elements other than Si are almost the same, the amount of ≤ 1 is less than 0.20%, and the smaller is the amount of oxide. It turns out that there are many.
これら鋼板に、 溶接入熱量が 2 0〜 1 O O k j Zmmであるエレ ク トロガス溶接 (E GW) あるいはエレク トロスラグ溶接 (E S W ) を用いて、 鋼板を突き合せて立て向き 1パス溶接を行った。 そし て、 板厚中央部 ( t Z2) に位置する HA Zにおいて、 F Lから 1 mm離れた HA Z と F Lの 2箇所にノ ツチを入れ、 一 4 0 °Cでシャ ルビー衝撃試験を行った。 表 2に溶接条件と H A Z靭性を示す。 こ こでのシャルピー衝擊試験では、 J I S 4号の 2 mmVノ ッチのフ ルサイズ試験片を用いた。 また、 表 2には、 F L〜HA Z l mm間 の旧オーステナイ ト粒径を併記した。 ここで記載している F L〜H A Z 1 mm間の旧オーステナイ ト粒径は、 板厚中央部を中心と した 板厚方向 2 mmと、 F L〜HA Z 1 mmを含む面に含まれる旧ォー ステナイ ト粒の粒径を断面法により測定した平均粒径である。 なお 、 ここではネッ ト状につながっている塊状フェライ トを旧オーステ ナイ ト粒の粒界として測定を行なった。 The steel plates were butt-butted and subjected to one-pass welding using electrogas welding (EGW) or electroslag welding (ESW) with a welding heat input of 20 to 100 kJ Zmm. Then, in the HAZ located at the center of the plate thickness (tZ2), notches were inserted at two locations, HAZ and FL, 1 mm away from FL, and a Charby impact test was performed at 140 ° C. . Table 2 shows the welding conditions and HAZ toughness. This In this Charpy impact test, a JIS No. 2 full-size test piece with a 2 mm V notch was used. Table 2 also shows the prior austenite particle size between FL and HA Z l mm. The former austenite grain size between FL and HAZ 1 mm described here is 2 mm in the thickness direction centered on the center of the thickness and the former austenite included in the plane containing FL to HAZ 1 mm. This is the average particle size of the stenite particles measured by the cross-sectional method. Here, the measurement was performed using the massive ferrite connected in a net shape as the grain boundary of the former austenite grains.
D 1 -D4 9は本発明鋼である。 鋼の化学成分が適正に制御され ているために、 所定の母材性能を満たしつつ、 一 4 0 °Cでの大入熱 HA Z靱性が良好である。 また、 微細酸化物を分散させた D 2 3〜 D 3 4、 D 4 6〜D 4 9は F L〜HA Z 1 mm間の旧オーステナイ ト粒径が 2 0 0 μ πι以下と他のものより細粒になっており、 一 4 0 °Cでの大入熱 HA Ζ靱性が一層高くなつている。 また、 Bの添加し H A Z組織の微細化を図った D 2 0は、 Bを添加していない、 B以 外の添加元素が同量である D 1 9に比べて H A Z靱性が良好であり 、 - 4 0 °Cでの大入熱 H A Z靱性も高い値を示している。  D 1 -D49 is the steel of the present invention. Since the chemical composition of the steel is properly controlled, high heat input HAZ toughness at 140 ° C is satisfactory while satisfying the required base metal performance. D23 to D34 and D46 to D49 in which fine oxides are dispersed have a prior austenite particle size of less than 200 μππι between FL and HA It is fine grained, and the high heat input at 140 ° C HA has higher toughness. In addition, D20, to which B was added to reduce the size of the HAZ structure, had better HAZ toughness than D19, which did not contain B and had the same amount of added elements other than B, and Large heat input at-40 ° C HAZ toughness also shows high values.
一方、 比較鋼の C l〜 17は、 式 [ 1 ] を満たすための十分な N i が含まれていない、 もしくは、 鋼の化学成分が適正に制御されて いるために、 大入熱 H A Z靭性が不充分である。 On the other hand, the Cl-17 of the comparative steel has a large heat input HAZ toughness because it does not contain enough Ni to satisfy Equation [1] or because the chemical composition of the steel is properly controlled. Is insufficient.
/vu 6ミ/ -ooisld/ O 890860sosAV / vu 6mi / -ooisld / O 890860sosAV
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000019_0001
/ OM60sos 8908VD/&Id oosos / OM60sos 8908VD / & Id oosos
Figure imgf000020_0001
Figure imgf000020_0001
1つづき 3 Continue 1
Figure imgf000021_0001
Figure imgf000021_0001
* N i /M n≥ 1 O X C e q— 3 を満たす場合は〇、 満たさない ものは Xを記す。 * If N i / M n ≥ 1 OXC eq—3 is satisfied, mark 〇. If not, mark X.
2 2
Figure imgf000022_0001
Figure imgf000022_0001
2つづき 1 突き合せ 1ハ'ス溶接条件 3) FL~ HAZImmの 4) HAZ靭性 5) 区分 溶接方法 入熱 (kJ/mm) 平均 r粒径( m) FL/vE— 40 (J) FL+1mm/vE_40 (J) 2 Continuation 1 Butting 1 Haus welding condition 3 ) FL ~ HAZImm 4) HAZ toughness 5 ) Category Welding method Heat input (kJ / mm) Average r grain size (m) FL / vE— 40 (J) FL + 1mm / vE_ 40 (J)
EGW 39 480 140 128 EGW 39 480 140 128
EGW 42 520 135 124EGW 42 520 135 124
ESW 85 770 116 106ESW 85 770 116 106
ESW 73 660 123 113ESW 73 660 123 113
ESW 67 605 127 117ESW 67 605 127 117
EGW 42 520 135 124EGW 42 520 135 124
ESW 85 770 116 106ESW 85 770 116 106
EGW 51 640 124 114EGW 51 640 124 114
EGW 39 480 140 128EGW 39 480 140 128
ESW 79 715 119 109ESW 79 715 119 109
EGW 48 600 128 117EGW 48 600 128 117
EGW 51 640 124 114EGW 51 640 124 114
EGW 35 440 144 132EGW 35 440 144 132
ESW 79 715 119 109ESW 79 715 119 109
ESW 85 770 116 106ESW 85 770 116 106
EGW 42 520 135 124EGW 42 520 135 124
■¾s日 S綱 EGW 45 560 131 120 ■ ¾s day S class EGW 45 560 131 120
EGW 48 600 128 117 EGW 48 600 128 117
EGW 45 560 131 120EGW 45 560 131 120
EGW 45 560 171 156EGW 45 560 171 156
ES 85 770 116 106ES 85 770 116 106
EGW 45 560 184 180EGW 45 560 184 180
ESW 79 180 207 189ESW 79 180 207 189
EGW 39 165 214 196EGW 39 165 214 196
EGW 45 152 221 203EGW 45 152 221 203
EGW 51 185 204 18フ EGW 51 185 204 18
EGW 45 180 207 189 EGW 45 180 207 189
ESW 79 167 213 195ESW 79 167 213 195
EGW 39 184 205 188EGW 39 184 205 188
EGW 42 165 214 196EGW 42 165 214 196
EGW 39 184 205 188EGW 39 184 205 188
EGW 45 180 207 189EGW 45 180 207 189
EGW 42 164 214 197EGW 42 164 214 197
ESW 98 180 196 180ESW 98 180 196 180
ESW 85 660 123 113 ESW 85 660 123 113
表 2つづき 2 母:ォ (t/2部) U 酸化物数 2) 区分 a己" 製造方法 板厚 (mm) 引張強度 (MPa) 降伏応力 (Mpa) VcL-40 (J) (個/ mm2)Table 2 continued 2 Mother: O (t / 2 part) U oxide number 2) Classification a ) "Manufacturing method Plate thickness (mm) Tensile strength (MPa) Yield stress (Mpa) VcL -40 (J) (pcs / mm 2 )
D36 DQ-T 70 584 464 215 D36 DQ-T 70 584 464 215
D37 TMCP 65 578 478 214  D37 TMCP 65 578 478 214
D38 TMGP 60 581 481 226  D38 TMGP 60 581 481 226
D39 TMCP 70 571 471 208  D39 TMCP 70 571 471 208
D40 DQ-T 80 570 450 203  D40 DQ-T 80 570 450 203
D41 TMCP 70 565 465 214  D41 TMCP 70 565 465 214
D42 TMCP 65 576 476 216  D42 TMCP 65 576 476 216
発明鋼  Invention steel
D43 TMCP 60 589 489 217  D43 TMCP 60 589 489 217
D44 TMGP 65 577 477 215  D44 TMGP 65 577 477 215
D45 DQ-T 60 605 485 221  D45 DQ-T 60 605 485 221
D46 TMCP 70 553 465 217 900 D46 TMCP 70 553 465 217 900
D47 TMCP 70 579 481 21 7 400D47 TMCP 70 579 481 21 7 400
D48 TMCP 60 578 485 221 2300D48 TMCP 60 578 485 221 2300
D49 TMCP 60 592 485 221 1500D49 TMCP 60 592 485 221 1500
C1 TMCP 70 556 456 225 C1 TMCP 70 556 456 225
C2 DQ-T 60 595 475 233  C2 DQ-T 60 595 475 233
C3 TMCP 75 544 444 224  C3 TMCP 75 544 444 224
C4 TMCP 60 574 474 234  C4 TMCP 60 574 474 234
C5 TMCP 60 576 476 232  C5 TMCP 60 576 476 232
C6 TMCP 55 586 486 236  C6 TMCP 55 586 486 236
C7 DQ-T 60 601 481 226  C7 DQ-T 60 601 481 226
C8 TMCP 60 580 480 227  C8 TMCP 60 580 480 227
比較鋼 C9 TMGP 60 581 481 226  Comparative steel C9 TMGP 60 581 481 226
C10 TMCP 60 580 480 227  C10 TMCP 60 580 480 227
C1 1 DQ-T 70 585 465 214  C1 1 DQ-T 70 585 465 214
C12 TMCP 60 585 485 221  C12 TMCP 60 585 485 221
C13 TMCP 70 564 464 215  C13 TMCP 70 564 464 215
C14 TMCP 65 575 475 218  C14 TMCP 65 575 475 218
C15 TMCP 55 598 498 222  C15 TMCP 55 598 498 222
C16 DQ-T 65 588 468 226  C16 DQ-T 65 588 468 226
C17 TMCP 60 581 481 226 C17 TMCP 60 581 481 226
2つづき 3 Continued 2 3
Figure imgf000025_0001
Figure imgf000025_0001
1 ) 板厚中心位置、 Y S と T Sは試験片 2本の平均値、 一 4 0 °C でのシャルピー吸収エネルギー ( V E _ 4 0 ) は試験片 3本 の平均値。  1) Sheet thickness center position, Y S and T S are the average values of two test pieces, and the Charpy absorbed energy at 140 ° C (VE _ 40) is the average value of three test pieces.
2 ) 鋼板の任意の箇所よ り抽出レプリカを作。 電子顕微鏡にて 1 0 0 0 0倍で 1 0 0視野以上 (観察面積にして 1 0 0 0 0 μ m2 以上) を観察。 2) Make an extraction replica from any part of the steel plate. Observed with a scanning electron microscope at a magnification of 100,000 or more (100,000 μm 2 or more in observation area).
但し、 0. 1 μ m未満の粒子に関しては適宜倍率を高めて観 察  However, for particles smaller than 0.1 μm, observe the sample by appropriately increasing the magnification.
円相当径 0. 0 0 5〜 0. 5 μ mの粒子う ち元素分析で酸化 を含むものをカウントして l mm 2 あたりの個数に換算。 3 ) E GW : エレク ト口ガス溶接、 E S W : エレク ト ロスラグ溶 接、 溶接入熱量は溶接全長での平均値、 各溶接法で共通の溶 接材料を使用。 Elemental analysis of particles with an equivalent circle diameter of 0.005 to 0.5 μm, which includes oxidation, was counted and converted to the number per l mm 2 . 3) E GW: Electro-port gas welding, ESW: Electro-slag welding, welding heat input is the average value of the entire welding length, and common welding materials are used for each welding method.
4 ) 板厚中央部を中心とした板厚方向 2 mmと、 F L〜HA Z 1 mmを含む面に含まれる旧オーステナイ トの平均粒径。  4) Average grain size of old austenite included in the plane containing 2 mm in the thickness direction centered on the center of the thickness and 1 mm from FL to HAZ.
断面法により測定。 ネッ ト状につながつているフェライ トを 旧オーステナイ ト粒の粒界と して測定。  Measured by section method. The ferrite connected in a net shape is measured as the grain boundary of the former austenite grains.
5 ) F Lノ ッチは WMと H A Zが等分になるように鄞書き、 各ノ ッチ位置での v E— 4 0—は試験片 3本の平均値。  5) The FL notch is drawn so that WM and HAZ are equally divided, and vE—40—at each notch position is the average value of three test pieces.
産業上の利用可能性 Industrial applicability
本発明は、 船舶、 海洋構造物、 中高層ビルなどの破壌に対する厳 しい靭性要求を満足する厚手鋼板を供給するものであり、 この種の 産業分野にもたらす効果は極めて大きく、 さらに構造物の安全性の 意味から社会に対する貢献も非常に大きい。  The present invention provides a thick steel plate that satisfies the strict toughness requirements for crushing of ships, marine structures, and middle- and high-rise buildings, and has an extremely large effect in this kind of industrial field. Contribution to society is very large in terms of gender.

Claims

請 求 の 範 囲 The scope of the claims
1. 質量%で、 1. In mass%,
C : 0. 0 3〜 0. 1 4 %、 C: 0.03 to 0.14%,
S i : 0. 3 0 %以下、 S i: 0.30% or less,
M n : 0. 8〜 2. 0 %、 Mn: 0.8 to 2.0%,
P : 0. 0 2 %以下、 P: 0.02% or less,
S : 0. 0 0 5 %以下、 S: 0.005% or less,
A 1 : 0. 0 0 1〜 0. 0 4 0 %、 A 1: 0.00001 to 0.040%,
N : 0. 0 0 1 0〜 0. 0 1 0 0 %、 N: 0.00.01 0 to 0.0100.0%,
N i : 0. 8〜 4. 0 %、 Ni: 0.8 to 4.0%,
T i : 0. 0 0 5〜 0. 0 3 0 %、 T i: 0.005 to 0.030%,
N b : 0. 0 0 3〜 0. 0 4 0 % Nb: 0.03 to 0.04 0%
を含有し、 と!^!!が式 [ 1 ] を満たし、 残部が鉄および不可避 不純物であることを特徴とする、 大入熱溶接による溶接熱影響部の 低温靱性に優れた厚手高強度鋼板。 Containing, and! ^! ! Satisfies the formula [1], and the balance is iron and unavoidable impurities. A thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by large heat input welding.
N i ZMn≥ 1 0 X C e q— 3 ( 0. 3 6 く C e q く 0. N i ZMn ≥ 1 0 X C e q — 3 (0.36
4 2 ) [ 1 ] 4 2) [1]
但し、 C e q = C + Mn / 6 + (C r +M o + V) / 5 + (N i + C u ) / 1 5  Where C e q = C + Mn / 6 + (C r + M o + V) / 5 + (N i + C u) / 15
2. さ らに、 質量%で、  2. In addition, in mass%,
C a : 0. 0 0 0 3〜 0. 0 0 5 0 %、 C a: 0.00 0 3 to 0.0 0 5 0%,
g : 0. 0 0 0 3〜 0. 0 0 5 0 %、  g: 0.0 0 0 3 to 0.0 0 5 0%,
R EM : 0. 0 0 1〜 0. 0 3 0 % R EM: 0.000-1 to 0.030%
のうちの 1種または 2種以上を含有し、 かつ Contains one or more of the above, and
O : 0. 0 0 1 0〜 0. 0 0 5 0 % O: 0.00.01 0 ~ 0.00.050%
を含有し、 円相当径が 0. 0 0 5〜 0. 5 μ πιの酸化物を、 1 0 0 個/ mm2 以上含有することを特徴とする、 請求項 1 に記載の大入 熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。 And an oxide having a circle equivalent diameter of 0.05 to 0.5 μπι The thick high-strength steel sheet according to claim 1, wherein the high-heat-input welded zone has excellent low-temperature toughness at a low temperature toughness, characterized in that the steel sheet contains at least 1 piece / mm 2 .
3. さ らに、 質量0 /0で、 To 3. of al, the mass 0/0,
B : 0. 0 0 0 5〜 0. 0 0 5 0 %  B: 0.0 0 0 5 to 0.0 0 5 0%
を含有することを特徴とする、 請求項 1 または請求項 2に記載の大 入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。 3. The thick high-strength steel sheet according to claim 1 or 2, wherein the high heat input welded zone has excellent low-temperature toughness at low temperature toughness.
4. さ らに、 質量%で、  4. In addition, in mass%,
C r : 0. 1〜 0. 5 %、 C r: 0.1 to 0.5%,
M o : 0. 0 1〜 0. 5 %、 M o: 0.01 to 0.5%,
V : 0. 0 0 5〜 0. 1 0 %、  V: 0.005-0.10%,
C u : 0. :!〜 1 . 0 % Cu: 0 .:! ~ 1.0%
のう ちの 1種または 2種以上を含有することを特徴とする、 請求項 1ないし請求項 3のいずれか 1項に記載の大入熱溶接による溶接熱 影響部の低温靭性に優れた厚手高強度鋼板。 4.A thick wall having excellent low-temperature toughness of a heat affected zone by large heat input welding according to claim 1, characterized by containing one or more of the above. Strength steel plate.
PCT/JP2005/007109 2004-04-07 2005-04-06 Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding WO2005098068A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/594,660 US20070181223A1 (en) 2004-04-07 2005-04-06 High-strength thick steel plate excellent in low temperature toughness at heat affected zone resulting from large heat input welding
EP05730695A EP1736562A4 (en) 2004-04-07 2005-04-06 Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
CN2005800121109A CN1946862B (en) 2004-04-07 2005-04-06 Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
NO20065095A NO20065095L (en) 2004-04-07 2006-11-03 Hoyfast thick steel plate excellent at low-temperature toughness in heat-treated zone resulting from welding with high heat supply

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004113278 2004-04-07
JP2004-113278 2004-04-07
JP2005102041A JP4660250B2 (en) 2004-04-07 2005-03-31 Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP2005-102041 2005-03-31

Publications (1)

Publication Number Publication Date
WO2005098068A1 true WO2005098068A1 (en) 2005-10-20

Family

ID=35125101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007109 WO2005098068A1 (en) 2004-04-07 2005-04-06 Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding

Country Status (8)

Country Link
US (1) US20070181223A1 (en)
EP (1) EP1736562A4 (en)
JP (1) JP4660250B2 (en)
KR (1) KR100839262B1 (en)
NO (1) NO20065095L (en)
SG (1) SG151274A1 (en)
TW (1) TWI295693B (en)
WO (1) WO2005098068A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901262B2 (en) * 2006-03-29 2012-03-21 新日本製鐵株式会社 Thick steel plate with excellent toughness of heat affected zone
JP4891836B2 (en) * 2007-05-09 2012-03-07 株式会社神戸製鋼所 Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JP5096088B2 (en) * 2007-09-13 2012-12-12 株式会社神戸製鋼所 Welded joints with excellent toughness and fatigue cracking suppression properties
KR100951296B1 (en) * 2007-12-04 2010-04-02 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
KR101018159B1 (en) * 2008-05-15 2011-02-28 주식회사 포스코 High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
US8647564B2 (en) 2007-12-04 2014-02-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
EP2218800B1 (en) * 2007-12-07 2012-05-16 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
TWI468529B (en) * 2009-04-27 2015-01-11 China Steel Corp High strength steels and components thereof for high welding heat welding
BR122017016259B1 (en) 2009-05-19 2020-11-10 Nippon Steel Corporation steel for welded structure
TWI365915B (en) * 2009-05-21 2012-06-11 Nippon Steel Corp Steel for welded structure and producing method thereof
JP5177325B2 (en) * 2010-11-22 2013-04-03 新日鐵住金株式会社 Electron beam welded joint, steel plate for electron beam welded joint, and manufacturing method thereof
JP5273301B2 (en) * 2010-11-22 2013-08-28 新日鐵住金株式会社 Electron beam welding joint and steel for electron beam welding
KR20120075274A (en) 2010-12-28 2012-07-06 주식회사 포스코 High strength steel sheet having ultra low temperature toughness and method for manufacturing the same
JP5612532B2 (en) * 2011-04-26 2014-10-22 株式会社神戸製鋼所 Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
JP5811044B2 (en) * 2012-06-13 2015-11-11 新日鐵住金株式会社 Thick high-strength steel sheet excellent in weldability and weld heat-affected zone toughness and method for producing the same
WO2014199488A1 (en) * 2013-06-13 2014-12-18 新日鐵住金株式会社 Ultrahigh-tensile-strength steel plate for welding
JP5713135B1 (en) 2013-11-19 2015-05-07 新日鐵住金株式会社 steel sheet
CN103898418B (en) * 2014-03-07 2016-05-04 舞阳钢铁有限责任公司 Large thickness Ni is low-temperature (low temperature) vessel steel plate and production method thereof
CN103938065B (en) * 2014-04-22 2015-10-28 钢铁研究总院 In a kind of high input energy welding steel, compound adds the method for magnesium titanium
CN105039865B (en) * 2015-08-26 2017-07-14 江苏省沙钢钢铁研究院有限公司 High-strength high-toughness steel plate and manufacturing method thereof
JP7260779B2 (en) * 2019-06-17 2023-04-19 日本製鉄株式会社 High strength steel plate for high heat input welding
JP7260780B2 (en) * 2019-06-17 2023-04-19 日本製鉄株式会社 High strength steel plate for high heat input welding
CN113186466B (en) * 2021-04-27 2022-05-17 江苏省沙钢钢铁研究院有限公司 Low-temperature steel bar and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093597A (en) * 1995-06-21 1997-01-07 Nippon Steel Corp Steel for low temperature use excellent in toughness of weld heat affected zone and its production
JP2003313628A (en) * 2002-04-22 2003-11-06 Nippon Steel Corp Steel product superior in toughness of weld heat- affected zone

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760713B2 (en) * 1992-09-24 1998-06-04 新日本製鐵株式会社 Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3749616B2 (en) * 1998-03-26 2006-03-01 新日本製鐵株式会社 High-strength steel for welding with excellent toughness of heat affected zone
JPH11293383A (en) * 1998-04-09 1999-10-26 Nippon Steel Corp Thick steel plate minimal in hydrogen induced defect, and its production
EP1221493B1 (en) * 2000-05-09 2005-01-12 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093597A (en) * 1995-06-21 1997-01-07 Nippon Steel Corp Steel for low temperature use excellent in toughness of weld heat affected zone and its production
JP2003313628A (en) * 2002-04-22 2003-11-06 Nippon Steel Corp Steel product superior in toughness of weld heat- affected zone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736562A4 *

Also Published As

Publication number Publication date
NO20065095L (en) 2007-01-03
JP2005320624A (en) 2005-11-17
EP1736562A1 (en) 2006-12-27
JP4660250B2 (en) 2011-03-30
KR100839262B1 (en) 2008-06-17
TWI295693B (en) 2008-04-11
TW200538561A (en) 2005-12-01
KR20060130700A (en) 2006-12-19
US20070181223A1 (en) 2007-08-09
SG151274A1 (en) 2009-04-30
EP1736562A4 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
WO2005098068A1 (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
JP5397363B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP5076658B2 (en) Steel material for large heat input welding
WO2010134220A1 (en) Steel material for high heat input welding
JP4897126B2 (en) Thick steel plate manufacturing method
JP4515430B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP6149776B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
US20190352749A1 (en) Steel material for high heat input welding
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
WO2013088715A1 (en) Steel material for high-heat-input welding
JP5321766B1 (en) Steel for welding
JP2007177327A (en) Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP2004323917A (en) High strength high toughness steel sheet
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness
JP4261968B2 (en) Steel material excellent in weld heat-affected zone toughness and manufacturing method thereof
EP4265795A1 (en) Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same
JP3502842B2 (en) 600MPa class steel with excellent low YR characteristics and super high heat input weld joint toughness

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10594660

Country of ref document: US

Ref document number: 2005730695

Country of ref document: EP

Ref document number: 2007181223

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067020353

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580012110.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067020353

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005730695

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594660

Country of ref document: US