明 細 書 Specification
ブラシレスモータ 技術分野 Brushless motor technical field
本発明は、 機器の駆動源に使用されるブラシレスモー夕に関する。 背景技術 The present invention relates to a brushless motor used as a drive source of a device. Background art
現在、 映像 ·音響機器、 〇 A機器等さまざまな機器に、 駆動源としてモー夕が 用いられている。 特に、 光ディスク装置、 磁気ディスク記憶装置に代表される機 器は、 記憶密度の向上に伴い、 同一サイズのモータでもより回転精度の高いモー 夕が望まれている。 At present, various equipment such as video / audio equipment and 映像 A equipment are used as drive sources. In particular, as the storage density of devices such as optical disk devices and magnetic disk storage devices increases, it is desired that the motors of the same size have higher rotational accuracy.
モータの回転精度を悪化させる要因としては、 モー夕のコアとマグネットの磁 気吸引力の変化に伴って発生するコギングトルクが挙げられる。 コギングトルク の低減を実現する方法に関しては従来から各種の提案がなされている。 例えば、 日本特許出願特開 2 0 0 1— 1 6 8 0 6号公報に開示されている。 A factor that deteriorates the rotation accuracy of the motor is a cogging torque generated by a change in the magnetic attraction force between the motor core and the magnet. Various proposals have been made for a method of reducing the cogging torque. For example, it is disclosed in Japanese Patent Application Laid-Open Publication No. 2001-168806.
図 1 5 A、図 1 5 B、図 1 5 Cは、従来例のモータの磁気回路を示す図である。 コア 3 0の先端に 6極の突極 4 0を備えている。 この従来例のモ一夕のコギング トルク低減技術の概要を説明する。 この従来例のモー夕では、 コアスロット開角 λを調整することにより発生するコギングトルクの周期を基本コギングトルク周 期の 2分の 1にした上で、 この形状をベースとして所定角度ずつずらしたコア形 状を組み合わせる構成としている。 これによりコギングトルクの周期を基本コギ ングトルク周期の 4分の 1以下にし、 コギングトルクの絶対値も大幅に低減する 技術を提案している。 FIGS. 15A, 15B, and 15C are diagrams showing a magnetic circuit of a conventional motor. The core 30 has six salient poles 40 at the tip. An outline of the conventional cogging torque reduction technology of the conventional example will be described. In this conventional mode, the cogging torque period generated by adjusting the core slot opening angle λ was set to half of the basic cogging torque period, and then shifted by a predetermined angle based on this shape. It is configured to combine core shapes. This proposes a technology that makes the cycle of the cogging torque less than one-fourth of the cycle of the basic cogging torque and greatly reduces the absolute value of the cogging torque.
しかしながら、 従来例の構成などでは、 一部の特殊な構成をした界磁を用いた 場合においては、 十分なコギングトルク低減効果が得られない場合があった。
発明の開示 However, in the case of the configuration of the conventional example, a sufficient cogging torque reduction effect may not be obtained when a field having a special configuration is used. Disclosure of the invention
本発明のブラシレスモー夕は、 下記の構成を有する。 The brushless motor of the present invention has the following configuration.
回転方向に N極、 S極を交互に着磁した磁極数 2 mのマグネット体を有する口 —夕と、 このマグネット体とラジアル方向に対向しコイルが巻回された突極数 3 nの突極を設けたコアとを有するブラシレスモータであって、 マグネット体は、 各極の磁束発生部と磁極ピッチとの差を電気角ひとし、 突極の開角を電気角 0と すると、 (式 1 ) の関係を満足するように構成する。 但し、 (式 1 ) における h は 2 mと 3 nとの最小公倍数であり、 kは自然数である。 A mouth with a magnet body with 2 m of magnetic poles alternately magnetized with N poles and S poles in the rotation direction — evening and 3 n salient poles with coils wound around the magnet body in the radial direction A brushless motor having a core provided with poles, wherein a magnet body has a difference between a magnetic flux generating portion of each pole and a magnetic pole pitch equal to an electrical angle, and an open angle of a salient pole is defined as an electrical angle of 0. ). However, h in (Equation 1) is the least common multiple of 2 m and 3 n, and k is a natural number.
更に、 本発明は、 マグネット体が、 各極の磁束発生部と磁極ピッチとの差 (電 気角ひ) が実質的にゼロである構成も含む。 c , 、 - α + 5 (式 1 )
Furthermore, the present invention also includes a configuration in which the difference (electric angle) between the magnetic flux generating portion of each pole and the magnetic pole pitch is substantially zero. c,,-α + 5 (Equation 1)
この構成により、 モー夕のコギングトルクを低減し、 モ一夕の回転精度を向上 できるという特段の効果が得られる。 図面の簡単な説明 With this configuration, it is possible to obtain a special effect that the cogging torque of the motor can be reduced and the rotational accuracy of the motor can be improved. Brief Description of Drawings
図 1は本発明の第 1の実施の形態におけるブラシレスモータの磁気回路構成を 示す説明図 FIG. 1 is an explanatory diagram showing a magnetic circuit configuration of a brushless motor according to a first embodiment of the present invention.
図 2は本発明の第 1の実施の形態における突極開角とコギングトルクの関係を 示す図 FIG. 2 is a diagram showing the relationship between the salient pole opening angle and the cogging torque in the first embodiment of the present invention.
図 3は本発明の第 1の実施の形態における突極でのコギングトルク発生原理を 示す説明図 FIG. 3 is an explanatory diagram showing the principle of generating cogging torque at salient poles according to the first embodiment of the present invention.
図 4 Αは本発明の第 1の実施の形態におけるコギングトルクの波形図 (前側突 極エッジ部 5— 1で発生するトルクの波形図)
図 4 Bは本発明の第 1の実施の形態におけるコギングトルクの波形図 (後側突 極エツジ部 5— 2で発生するトルクの波形図) Fig. 4Α is a waveform diagram of the cogging torque in the first embodiment of the present invention (a waveform diagram of the torque generated at the front salient pole edge 5-1). FIG. 4B is a waveform diagram of the cogging torque according to the first embodiment of the present invention (a waveform diagram of the torque generated in the rear salient pole edge portion 5-2).
図 4 Cは本発明の第 1の実施の形態におけるコギングトルクの波形図 (図 4 A と図 4 Bの合成トルクの波形図) FIG. 4C is a waveform diagram of the cogging torque according to the first embodiment of the present invention (a waveform diagram of the combined torque of FIGS. 4A and 4B).
図 4 Dは本発明の第 1の実施の形態におけるコギングトルクの波形図 (3相合 成トルクの波形図) FIG. 4D is a waveform diagram of cogging torque according to the first embodiment of the present invention (a waveform diagram of three-phase combined torque).
図 5 Aは本発明の第 1の実施の形態における他のブラシレスモ一夕のコア形状 を示す説明図 (突極先端に Rを設ける場合) FIG. 5A is an explanatory view showing a core shape of another brushless motor according to the first embodiment of the present invention (when R is provided at the tip of the salient pole).
図 5 Bは本発明の第 1の実施の形態における他のブラシレスモータのコア形状 を示す説明図 (突極先端に面取りを設ける場合) FIG. 5B is an explanatory view showing a core shape of another brushless motor according to the first embodiment of the present invention (when a chamfer is provided at the tip of the salient pole).
図 5 Cは本発明の第 1の実施の形態における他のブラシレスモ一夕のコア形状 を示す説明図 (突極先端エッジ部にフィレツトを設ける場合) FIG. 5C is an explanatory view showing a core shape of another brushless model according to the first embodiment of the present invention (when a fillet is provided at a salient pole tip edge).
図 6は本発明の第 1の実施の形態における他のブラシレスモータの磁気回路の 構成図 FIG. 6 is a configuration diagram of a magnetic circuit of another brushless motor according to the first embodiment of the present invention.
図 7は本発明の第 1の実施の形態における他のブラシレスモータの磁気回路の 構成図 FIG. 7 is a configuration diagram of a magnetic circuit of another brushless motor according to the first embodiment of the present invention.
図 8は本発明の第 2の実施の形態におけるブラシレスモータの磁気回路の構成 図 FIG. 8 is a configuration of a magnetic circuit of a brushless motor according to a second embodiment of the present invention.
図 9は本発明の第 3の実施の形態におけるブラシレスモ一夕の磁気回路の構成 図 FIG. 9 shows a configuration of a magnetic circuit of a brushless motor according to a third embodiment of the present invention.
図 1 0 A、 図 1 0 Bは本発明の第 3の実施の形態におけるコア形状構成方法の 説明図 FIGS. 10A and 10B are explanatory diagrams of a core shape configuration method according to the third embodiment of the present invention.
図 1 1は本発明の第 3の実施の形態における他のコア形状示す説明図 図 1 2 A、 図 1 2 Bは本発明の第 3の実施の形態におけるコア形状構成方法の 説明図
図 13は本発明の第 3の実施の形態における他のコア形状示す説明図 図 14A、 図 14 Bは本発明の第 3の実施の形態におけるコア形状構成方法の 説明図 FIG. 11 is an explanatory diagram showing another core shape according to the third embodiment of the present invention. FIGS. 12A and 12B are explanatory diagrams of a core shape configuration method according to the third embodiment of the present invention. FIG. 13 is an explanatory diagram showing another core shape according to the third embodiment of the present invention. FIGS. 14A and 14B are explanatory diagrams of a core shape configuration method according to the third embodiment of the present invention.
図 15A、 図 15B、 図 1 5 Cは従来例の説明図 発明を実施するための最良の形態 15A, 15B, and 15C are explanatory diagrams of a conventional example.
以下、 本発明の実施の形態について、 図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第 1の実施の形態) (First Embodiment)
図 1は第 1の実施の形態におけるブラシレスモ一夕の磁気回踡構成を示す説明 図である。 図 1に示す通り、 マグネット体 1は、 円環状のバックヨーク 2内周部 分に、 磁極ピッチ (電気角 180° ) より電気角で α狭い幅の複数の永久磁石が 固定されてロー夕 6を構成している。 またステ一夕 7は、 コア 3のティース部に コイル (図示しない) が巻回され、 ティースの先端には突極 4を備えている。 な お、 以後の角度の記載は、 電気角による説明である。 図面の角度の記載も電気角 である。 図 1においてコア 3の突極 4先端部の開角は電気角で となつている。 ここで、 図 1においては α = 40° の場合を図示している。 FIG. 1 is an explanatory diagram showing a magnetic circuit configuration of a brushless motor according to the first embodiment. As shown in Fig. 1, the magnet body 1 has a plurality of permanent magnets with an electrical angle smaller than the magnetic pole pitch (electrical angle 180 °) fixed to the inner periphery of the annular back yoke 2 by a fixed width. Is composed. In addition, in the stay 7, a coil (not shown) is wound around the teeth of the core 3, and the teeth have salient poles 4 at the tips. The following description of angles is based on electrical angles. The angle in the drawing is also an electrical angle. In FIG. 1, the opening angle of the tip of the salient pole 4 of the core 3 is represented by the following electrical angle. Here, FIG. 1 illustrates the case where α = 40 °.
図 2は図 1において突極先端部の開角 Θを変化させた場合のコギングトルクの 変化を示す図である。図 2において、コギングトルクは電気角 1 1 0° 、 170° 付近で極小となっている。 また、 130° 、 190° 付近でも "Fに突 (凸) な波 形が現れている。 FIG. 2 is a diagram showing a change in cogging torque when the opening angle の of the salient pole tip in FIG. 1 is changed. In FIG. 2, the cogging torque is minimal near the electrical angles of 110 ° and 170 °. Also, at around 130 ° and 190 °, a "convex" wave appears at "F."
図 15 Αに示す従来技術では、 突極 40の開角が 90° 、 1 5 0° 、 2 10° 付近でコギングトルクが最小となることが示されているが、 本第 1の実施の形態 の様な磁極が部分的に途切れている特殊な構成をしたマグネッ卜体の場合には、 コギングトルクが最小となるポイントが大きく異なってくる。 In the prior art shown in FIG. 15 Α, it is shown that the cogging torque is minimized when the salient poles 40 are around 90 °, 150 °, and 210 °. In the case of a magnet body with a special configuration in which the magnetic poles are partially interrupted, the point at which the cogging torque is minimized greatly differs.
以下は、 この理由と、 この様な特殊な構造のマグネット体の場合でも効果的に
コギングトルクを低減する方法を具体的に説明する。 The following is the reason for this, and even with such a specially structured magnet body, A method for reducing the cogging torque will be specifically described.
通常の構成における多極着磁のマグネット体は、 N極(S極)から S極 (N極) への磁極切り替え部分 = S極 (N極) の磁束の立ち上がり部分 = N極 (S極) の 磁極の立ち下がり部分を有する構成であるが、 本実施の形態のように、 磁極間に 隙間を設けると、 S極 (N極) の磁束の立ち上がり部分≠N極 (S極) の磁極の 立ち下がり部分を有する構成となり、 両者を分けて考える必要がある。 Multipole magnetized magnet body in normal configuration: magnetic pole switching part from N pole (S pole) to S pole (N pole) = rising part of magnetic flux of S pole (N pole) = N pole (S pole) However, if a gap is provided between the magnetic poles as in the present embodiment, the rising portion of the magnetic flux of the S pole (N pole) ≠ the magnetic pole of the N pole (S pole) The configuration has a falling part, and it is necessary to consider both separately.
ここで、 コギングトルク発生のメカニズムを説明するために、 その最 J、単位で ある 1つの突極 4で発生するコギングトルクについて考察する。 Here, in order to explain the mechanism of cogging torque generation, the cogging torque generated at one salient pole 4, which is the maximum J, is considered.
図 3は突極でのコギングトルク発生原理の説明図である。 図 3において、 まず 突極 4の前側エッジ部 4 _ 1に磁極の切り替え部分が差し掛かった場合を考える。 図 4 Aは突極前側ェッジ部 4一 1で発生するコギングトルクの説明図である。 図 3において、 磁極の立ち下がり部 5— 1と突極前側エッジ部 4 _ 1がー致する ところを基準として考える。 図 3において、 磁極立ち下がり部 5— 1が突極前側 エッジ部 4一 1を通過する際に、 コギングトルクがほぼゼロとなり、 図 4 Aに示 した様に、 電気角 1 8 0 ° で 1周期の周期性がある波形となる。 FIG. 3 is a diagram illustrating the principle of generating cogging torque at salient poles. In FIG. 3, first, consider a case where a magnetic pole switching portion approaches the front edge portion 4 _ 1 of the salient pole 4. FIG. 4A is an explanatory diagram of the cogging torque generated in the salient-pole front edge portion 411. In Fig. 3, the point where the falling part 5-1 of the magnetic pole and the front edge part 4_1 of the salient pole match is considered as a reference. In FIG. 3, when the falling part 5-1 of the magnetic pole passes through the leading edge 4-1 of the salient pole, the cogging torque becomes almost zero, and as shown in FIG. The waveform has a periodicity.
図 4 Bは、 同様に突極後側エッジ部 4— 2で発生するコギングトルクの説明図 である。 ここで、 図 4 Aのトルク波形と、 図 4 Bのトルク波形を比較すると、 突 極後側エッジ 4 _ 2で発生するコギングトルクは、 突極前側エッジ部 4一 1を磁 極の立ち下がり部 5— 1が通過する時点を基準として考えると、 突極前但 ijエッジ 4 _ 1で発生するコギングトルクと点対称の形をしており、 基準点が θ + αずれ た波形となっていることが分かる。 FIG. 4B is an explanatory diagram of the cogging torque similarly generated at the salient pole rear edge portion 4-2. Here, comparing the torque waveform of Fig. 4A and the torque waveform of Fig. 4B, the cogging torque generated at the rear edge 4_2 of the salient pole is expressed by Considering the time when part 5-1 passes as a reference, it is point-symmetric with the cogging torque generated at the ij edge 4_1 before the salient pole, and the reference point has a waveform shifted by θ + α. I understand that there is.
以上より突極前側ェッジ 4一 1で発生するコギングトルクと、 突極後但 ijェッジ 4 - 2で発生するコギングトルクには規則性があり、 この突極 4の開角 Θを調整 すれば、 コギングトルクの特定成分を除去できることが想像できる。 From the above, the cogging torque generated at the salient pole front side wedge 4-1 and the cogging torque generated after the salient pole ij wedge 4-2 have regularity, and if the opening angle の of this salient pole 4 is adjusted, It can be imagined that a specific component of the cogging torque can be removed.
図 4 Cは、 図 4 Aと図 4 Bとを合成した 1つの突極 4で発生するコギングトル
クの説明図である。 Figure 4C shows the cogging torque generated by one salient pole 4 that combines Figure 4A and Figure 4B. FIG.
ここで、 突極前側エツジ 4— 1を磁極の立ち下がり 5— 1が通過する時点を基 準として、 回転角度を電気角で Xと表すと、 突極前側エッジ 4 _ 1で発生する卜 ルク波形は、 (式 2) の様に表せる。 a X sin(2x) +DX sini"4x) + cx sm(6x) + dx sm(8x) + ex sm(10x) + / x sm( 2;^ Here, if the rotation angle is expressed as X in electrical angle based on the time when the falling edge 5-1 of the magnetic pole passes through the salient pole front edge 4-1, the torque generated at the salient pole front edge 4_1 The waveform can be expressed as (Equation 2). a X sin (2x) + DX sini "4x) + cx sm (6x) + dx sm (8x) + ex sm (10x) + / x sm (2; ^
(式 2) また、 突極後側エッジ 4一 2で発生するトルク波形は、 下記の (式 3) の様に 表すことができる。 (Equation 2) Further, the torque waveform generated at the rear edge 412 of the salient pole can be expressed as the following (Equation 3).
-ax sin( -2x + 2(θ +a))-bx sini— 4x + 4(θ + a)) -ex sin(-6x + 6(θ + a)) -dx sin(-8 + 8(^ +a))-ex sin(-10x + 10(θ +a))-f x sin(-12^ + 12(θ + a)) -ax sin (-2x + 2 (θ + a))-bx sini— 4x + 4 (θ + a)) -ex sin (-6x + 6 (θ + a)) -dx sin (-8 + 8 ( ^ + a))-ex sin (-10x + 10 (θ + a))-fx sin (-12 ^ + 12 (θ + a))
(式 3) ここで 1つの突極 4におけるコギングトルク波形である両者の合成波形は((式 2) + (式 3) ) であり、 これを整理すると、 (式 4) となる。 a X CsinC2x) + sin(2x - 2(θ +a)) + b (sin(4x) + sm(4x - 4(θ + a)) (Equation 3) Here, the combined waveform of both the cogging torque waveforms at one salient pole 4 is ((Equation 2) + (Equation 3)). a X CsinC2x) + sin (2x-2 (θ + a)) + b (sin (4x) + sm (4x-4 (θ + a))
+ cx (sin(bx + sin(6x - 6(6* + )) + dx (sin(8x) + sin(8x - 8(^ + a)) + cx (sin (bx + sin (6x-6 (6 * +))) + dx (sin (8x) + sin (8x-8 (^ + a))
+ ex (sin(10x) + sin(10 一 1 (θ + α)/2) + /χ (sin(12x) + sin(12x一 12(θ + a)) + ex (sin (10x) + sin (10-1 (θ + α) / 2) + / χ (sin (12x) + sin (12x-1 12 (θ + a))
(式 4) (Equation 4)
ここで 0 + αを特定の値にすると、 特定の成分を除去することができる。 具体的には Θ + αを 9 0° 、 1 5 0。 、 2 1 0° (言い換えれば 0 = 9 0— α、 θ = 1 6 0 - , 0 = 2 1 0- 0;) とした場合に、 両エッジで発生するコギング トルクの 3次成分 (s i n (6 x) ) が除去されたトルクとなる。 Here, when 0 + α is set to a specific value, a specific component can be removed. Specifically, Θ + α is 90 °, 150. , 2 1 0 ° (in other words, 0 = 90 0-α, θ = 16 0-, 0 = 2 1 0-0;), the third-order component (sin ( 6 x)) is the removed torque.
図 4Dは、 モ一夕全体としてのコギングトルク波形を示す。 FIG. 4D shows the cogging torque waveform as a whole.
このモータは 3相構造であるので、 図 4 Cに示すトルクのうち 1次、 2次、 4 次、 5次、 7次 · · · (記載省略) · · 'のトルクは、 位相が電気角で 1 20° ずれた、 他の 2相のトルクによりキャンセルされるため、 モ一夕全体としては 3
次、 6次. · · (記載省略) · · 'のトルクが現れる状態となるので、 0 = 9 0Since this motor has a three-phase structure, among the torques shown in Fig. 4C, the primary, secondary, quaternary, quintic, and cubic torques are omitted. At 120 °, the torque is canceled by the other two-phase torque. Next, 6th order. · · (Not shown) · · '' torque appears, so 0 = 90
—ひ、 0 = 1 5 0— α、 θ = 2 1 0— «いずれかとし、 この突極一つあたりで発 生するトルクの 3次成分を抑えることができれば、 モ一夕全体として現れるコギ ングトルクの周期は通常の半分となり、 その振幅も小さく収まる。 —Hi, 0 = 1 5 0— α, θ = 2 1 0— «If any of these can be used to suppress the third-order component of the torque generated per salient pole, the key that appears as a whole The period of the oscillating torque is half of the normal one, and its amplitude is small.
また、 上記実施の形態は、 突極の開角 0が 1 5 0— αでコギングトルクが最小 になることを示したが、 1 5 0— 0;から角度がある程度前後した場合を考えると、 突極の開角を電気角で 140— 0;または 1 60—ひとした場合は、 突極で発生す るコギングトルクの 3次成分は 50 %除去され、 突極の開角を電気角で 145— または 1 5 5—ひとした場合は、 突極で発生するコギングトルクの 3次成分は 74 %除去される状態となり、 実用的な性能を得るためには、 突極で発生するコ ギングトルクの 3次成分が約 4分の 1以下となる 14 5— αより 1 5 5 - αに設 定することにより、 コギングトルクの基本周期成分が大幅に低減され、 コギング 卜ルクを小さく抑えることができる。 Also, the above embodiment has shown that the cogging torque is minimized when the salient pole opening angle 0 is 150-α, but considering that the angle fluctuates to some extent from 150-0-0; If the salient pole opening angle is reduced to an electrical angle of 140-0; or 1-60, the third-order component of the cogging torque generated at the salient pole is removed by 50%, and the salient pole opening angle is reduced to an electrical angle of 145 — Or 1 5 5—In this case, the third-order component of the cogging torque generated at the salient pole is removed by 74%. To obtain practical performance, the cogging torque generated at the salient pole is reduced to 3%. By setting the next component to less than about one-fourth, that is, 14 5-α to 15 5 -α, the fundamental period component of the cogging torque is greatly reduced, and the cogging torque can be reduced.
また、 突極 4先端部の形状が図 5 Αのようにコア半径より小さい R部 4 aで形 成した場合、 あるいは図 5 Bのように面取り部 4 bを設けた場合、 あるいは図 5 Cのようにエッジ部にフィレット部 4 cを設けた場合、 あるいはコアの磁気飽和 等の影響を考慮した場合は、 磁気特性上は突極 4の開角が小さくなった状態に近 い条件となり、 突極 4の開角 0が若干 (電気角にして 5° 前後) 大きい場合にコ ギングトルクが最小となる現象が発生する場合がある。 In addition, when the shape of the tip of the salient pole 4 is formed with an R portion 4a smaller than the core radius as shown in Fig. 5Α, or when a chamfered portion 4b is provided as shown in Fig. 5B, or Fig. 5C When the fillet portion 4c is provided at the edge portion as shown in Fig. 4 or when the effect of magnetic saturation of the core is taken into account, the magnetic characteristics are close to the condition where the opening angle of the salient pole 4 is small. When the opening angle 0 of the salient pole 4 is slightly large (around 5 ° in electrical angle), the phenomenon that the cogging torque is minimized may occur.
従って一般的には、 マグネット体表面は磁極ピッチ (電気角 1 80° ) より実 質電気角ひ狭い範囲 (1 80— 0;) に磁束を発生させる構成であって、 前記突極 に設けられた突極の開角 0が電気角で 8 5 - α<θ<1 0 0 - , 145— aく θ<1 6 20 5— aく Sく 2 2 0— o;のうちいずれかの条件を満足する 範囲に設定することで、 基本コギングトルク周期の 2分の 1の周期のコギングト ルクを発生し、コギングトルクの絶対値も小さいモー夕を提供することができる。
なお上記は、 前側エッジ部 4一 1を磁極の立ち下がり部 5— 1が通過する時点 を基準として考えたが、 同様に前側エッジ部 4一 1を磁極の立ち上がり部 5— 2 が通過する時点を基準として考えた場合、 突極前側エッジ 4一 1と突極後側エツ ジ 4— 2では、 基準点が 0— aずれた点対称波形とも考えることができる。 Therefore, in general, the surface of the magnet body is configured to generate a magnetic flux in a range (180-0;) having a real electric angle narrower than the magnetic pole pitch (electric angle: 180 °), and is provided on the salient pole. The open angle 0 of the salient pole is the electrical angle, which is one of the following: 8 5-α <θ <1 0 0-, 145—a <θ <6 20 5—a <S <2 2 0—o; By setting the value in the range that satisfies the above condition, a cogging torque having a cycle that is one half of the basic cogging torque cycle is generated, and a motor with a small absolute value of the cogging torque can be provided. Note that the above discussion was based on the time when the falling edge 5-1 of the magnetic pole passes through the front edge portion 4-1. Similarly, the time when the rising portion 5-2 of the magnetic pole passes through the front edge portion 4-1. When the reference is used as a reference, the salient-pole front edge 4-1 and the salient-pole rear edge 4-2 can be considered to be point-symmetrical waveforms with the reference point shifted by 0-a.
ここで上記と同じような計算を実施すると S = 3 0 +ひ、 θ = 9 Ο + , θ = 1 5 0 + αいずれかの場合でも、 同様の効果が得られることが分かる。 Here, if the same calculation as described above is performed, it can be seen that the same effect can be obtained in any of S = 30 +, θ = 9Ο +, and θ = 1550 + α.
しかしながら、 前側ェッジ部 4一 1を磁極の立ち上がり部 5— 2が通過する際 の磁気エネルギの変化は、 前側エツジ部 4一 1を磁極の立ち下がり部 5— 1が通 過する際の磁気エネルギ変化より小さい場合が一般的でコギングトルクは極小に ならない場合が多く、 より大きな効果を得る為には上記のように 0 = 9 0— α、 0 = 1 5 0— 0;、 θ = 2 1 0—ひいずれかとすることが望ましい。 However, the change in magnetic energy when the rising portion 5-2 of the magnetic pole passes through the front edge portion 411 is caused by the magnetic energy when the falling portion 5-1 of the magnetic pole passes through the front edge portion 4-1. In general, the cogging torque does not become extremely small when the change is smaller than 0. In order to obtain a larger effect, 0 = 90 0-α, 0 = 150-0; It is desirable to set it to 0—one.
なお上記実施の形態では、 円環状バックヨーク内周部に、 磁極ピッチより小さ い幅の磁石を固定する構成で説明したが、 図 6に示すように、 ラジアル方向と円 周方向に着磁した磁石を交互に貼り合わせたいわゆるハルパッ八配列の磁石構成 の場合、 あるいは図示しないが一体の円筒状磁石を用いた場合でも磁極間に未着 磁部分を設けた構成でも同じ効果がある。 In the above-described embodiment, the configuration in which a magnet having a width smaller than the magnetic pole pitch is fixed to the inner peripheral portion of the annular back yoke has been described, but as shown in FIG. 6, the magnet is magnetized in the radial direction and the circumferential direction. The same effect is obtained in the case of a so-called Halpa-eight array magnet configuration in which magnets are alternately bonded, or in the case of using an integral cylindrical magnet (not shown) or a configuration in which an unmagnetized portion is provided between magnetic poles.
また、 上記ではァウタ一口一夕型の構成を示しているが、 図 7に示すように口 —夕が内周でコアが外周であるインナ一口一夕型構成も可能であることは言うま でもない。 In the above, the configuration of the mouth-to-mouth type is shown, but as shown in Fig. 7, it is needless to say that the mouth-to-night type configuration in which the mouth is the inner circumference and the core is the outer circumference is also possible. Absent.
なお図 7においては、 バックヨーク内に磁極 1極あたり 2個の平板状永久磁石 を揷入したいねゆる磁石埋め込み型の構成であるが、 このように各磁極に複数の 永久磁石を用いた場合、 あるいは磁石埋め込み型の構成の場合でも同じ効果があ る。 Note that Fig. 7 shows an embedded magnet configuration in which two flat permanent magnets are inserted in the back yoke for each magnetic pole.In this case, a plurality of permanent magnets are used for each magnetic pole. The same effect can be obtained even in the case of a magnet-embedded configuration.
(第 2の実施の形態) (Second embodiment)
上記第 1の実施の形態では、磁極数が 8極、突極数が 6 (言い換えれば磁極数:
突極数が 4 : 3) の場合を示しているが、 上記と異なる磁極数と突極数との比の 場合にも適用できる。 In the first embodiment, the number of magnetic poles is 8, and the number of salient poles is 6 (in other words, the number of magnetic poles: The case where the number of salient poles is 4: 3) is shown, but it can be applied to the case where the ratio of the number of magnetic poles to the number of salient poles is different from the above.
図 8は第 2の実施の形態におけるブラシレスモー夕 (^磁気回路構成を示す説明 図である。図 8において口一夕の磁極数は 14極でコア 突極数は 1 2極である。 このブラシレスモ一夕の場合、 基本的なコギングト レク波形は、 モー夕 1回転 にっき 84回の繰り返し波形 (電気角 30° の繰り返し波形) となる。 Fig. 8 is an explanatory diagram showing a brushless motor (^ magnetic circuit configuration) in the second embodiment. In Fig. 8, the number of magnetic poles per mouth is 14 and the number of core salient poles is 12. In the case of brushless mode, the basic cogging tracing waveform is a repetitive waveform of 84 times per mode rotation (repetitive waveform with an electrical angle of 30 °).
これは、 上述の (式 4) で示した 1つの突極で発生するトルク波形において、 6次成分 (s i n ( 1 2 x) 成分) より次数の低いトリレクは他の突極で発生する トルクによりキャンセルされるため、 モータ全体としてはコギングトルクとして 現れないことを示している。 再度 (式 4) を下記に示す。 a X (sin(2 ) + sm(2x - 2(θ + a)) + bx (sin(4x) + sin(4x― 4(θ + α)) This is because, in the torque waveform generated by one salient pole shown in (Equation 4) above, the trilec whose order is lower than the sixth-order component (sin (1 2 x) component) is due to the torque generated by the other salient poles. This indicates that the motor does not appear as cogging torque as a whole because it is canceled. (Equation 4) is shown below again. a X (sin (2) + sm (2x-2 (θ + a)) + bx (sin (4x) + sin (4x-4 (θ + α))
+ cx (sin(6x) + sin(6z - 6(θ + a)) + dx (sin(8x) + sin(8x - 8(θ + a)) + cx (sin (6x) + sin (6z-6 (θ + a)) + dx (sin (8x) + sin (8x-8 (θ + a))
+ ex (sin(10x) + sin(10x - 1Ό(Θ + a) 12) + f x (sin(12 ) 4- sin(12x -12(θ+α)) + ex (sin (10x) + sin (10x-1Ό (Θ + a) 12) + f x (sin (12) 4-sin (12x -12 (θ + α))
(式 4) ここで、 上記第 1の実施の形態では 0の値を調整し、 一つの突極で発生するト ルクの 3次成分 (s i n (6 x) 成分) を除去するようにしたが、 本第 2の実施 の形態の場合 0の値を調整し、 一つの突極で発生する卜ルクの 6次成分 (s i n (1 2 x) 成分) を除去すれば、 コギングトルクの基 周期成分が除去され絶対 値も小さくすることができることが分かる。 (Equation 4) Here, in the first embodiment, the value of 0 is adjusted to remove the third-order component (sin (6 x) component) of the torque generated by one salient pole. In the case of the second embodiment, if the value of 0 is adjusted and the sixth-order component (sin (1 2 x) component) of torque generated by one salient pole is removed, the fundamental component of the cogging torque can be obtained. It can be seen that is eliminated and the absolute value can be reduced.
具体的には 0 = 1 6 5 0:、 又は 0 = 1 95— α、 ^:は 0 = 2 2 5— 0;、 又は 0 = 2 5 5— αに設定することでコギングトルクを最 /Jヽ化することができる。 ここで、 コギングトルクが最小となる 0 = 1 9 5— c¾からある程度前後した場 合を考えると、 0 = 1 9 0— α、 又は 0 = 2 00— ο;とした場合は、 1つの突極 で発生するコギングトルクの 6次成分は 50 %除去され、 突極の開角を電気角で 1 9 2. 5— または 1 9 7. 5— αとした場合は、 突極で発生するコギングト
ルクの 6次成分は 7 4 %除去される状態となり、 実用的な性能を得るためには、 突極で発生するコギングトルクの 6次成分が約 4分の 1以下となる 1 9 2 . 5— αより 1 9 7 . 5— Q!に設定することにより、 コギングトルクの基本周期成分が 大幅に低減され、 コギングトルクを小さく抑えることができる。 Specifically, by setting 0 = 165-0: or 0 = 195-α, ^: 0 = 225-0; or 0 = 255-α, the cogging torque can be minimized. It can be J ヽ. Here, considering the case where the cogging torque goes to some extent from 0 = 195-c¾, where the cogging torque becomes the minimum, if 0 = 190-α or 0 = 200-ο; The 6th-order component of the cogging torque generated at the pole is removed by 50%, and when the opening angle of the salient pole is set to 19.2. The 6th-order component of luk is removed by 74%, and in order to obtain practical performance, the 6th-order component of the cogging torque generated by salient poles is reduced to about 1/4 or less. — By setting α to 197.5—Q !, the fundamental period component of the cogging torque is greatly reduced, and the cogging torque can be kept small.
なお図 5 A、 図 5 B、 図 5 Cに示したような突極先端部を非同心円形状にした 場合、 あるいは、 コアの磁気飽和等の影響を考慮した場合は、 磁気特性上は突極 の開角が狭まった状態に近い条件となり、突極の開角 0が若干 (電気角にして 5 ° 前後) 大きい場合にコギングトルクが最小となる現象が発生する場合がある。 し たがって一般的には突極の開角 0を 1 9 2 . 5— αより 2 0 2 . 5— αの間にす ることによりコギングトルクを小さく抑えることができる。 When the salient pole tip is made non-concentric as shown in Fig.5A, Fig.5B and Fig.5C, or when the effect of magnetic saturation of the core is considered, the salient pole is When the opening angle of the salient pole is slightly larger (around 5 degrees in electrical angle), the cogging torque may be minimized. Therefore, in general, the cogging torque can be suppressed to a small value by setting the salient pole opening angle 0 to 202.5-α from 192.5-α.
また、 同様の考え方を他の磁極数:スロット数の場合についても考えることが できる。 表 1は磁極数:スロット数とコギングトルクを最小化する突極開角の関 係を示す一覧表である。 突極の開角 0を表 1に示した角度範囲に設定することに よりコギングトルクを小さく抑えることができる。
The same idea can be considered for other magnetic pole numbers: slot numbers. Table 1 shows the relationship between the number of magnetic poles: the number of slots and the salient pole opening angle that minimizes cogging torque. By setting the salient pole opening angle 0 to the angle range shown in Table 1, the cogging torque can be reduced.
【表 1】 【table 1】
磁極数:突植数 コギングトルクを最小化する突棰開:^ Number of magnetic poles: Number of prongs Protrusion that minimizes cogging torque: ^
85— α< θ< 1 ΟΟ— 85— α <θ <1 ΟΟ—
4: 3 1 45— ff<0< 1 60- - Of 他 4: 3 1 45—ff <0 <1 60--Of others
205— α<θ<220- - or 205— α <θ <220--or
1 28. 33— or<0< 1 36. 66― a 1 28. 33— or <0 <1 36. 66— a
1 8. 33— α<θ< 1 56. 66―な 1 8.33—α <θ <1 56.66
8: 9 1 68. 33— Qf<0< 1 7 β. 67—— Ot 他 8: 9 1 68. 33— Qf <0 <1 7 β. 67—— Ot and others
1 88. 33— α<θ< 1 96. 67— or 1 88. 33— α <θ <1 96. 67— or
2 Ο 8. 33— (Χ<θ<Ζ 1 6. 67― a 2 Ο 8.33— (Χ <θ <Ζ 1 6.67― a
228. 33— α<θ<236. 67— or 228. 33— α <θ <236. 67— or
1 48. 33— α<θ< 1 56. 67—な 1 48. 33— α <θ <1 56. 67—
1 68. 33— α<θ< 1 76. 67— or 1 68. 33— α <θ <1 76. 67— or
1 O : 9 1 88. 33— α<0< 1 Θ 6. 67— oc 他 1 O: 9 1 88.33—α <0 <1 Θ 6.67—oc
2 Ο 8. 33— α<θ<21 6. 67一 2 Ο 8.33—α <θ <21 6.67
228. 33— α<θ<236. 67— a 228. 33— α <θ <236. 67— a
248. 33— α<θ<256. 67一 a 248. 33— α <θ <256. 67
1 Ο 2 . 5— α<θ<1 1 2. 5— cr 1 Ο 2.5—α <θ <1 12.5—cr
1 32 . 5— ΟΓ<0< 1 2. 5— 1 32 .5— ΟΓ <0 <12.5—
1 o: Λ 2 1 62 . 5— α<θ< 1 72. 5— or 他 1 o: Λ 2 162.5-α <θ <172.5-or other
1 92 . 5— α<0<2 Ο 2. S— cx 1 92. 5— α <0 <2 Ο 2. S— cx
222 . 5— 0Γ<θ<232. 5— Of 222. 5— 0Γ <θ <232. 5— Of
1 32 , 5— ατ<θ< 1 2. 5-or 1 32, 5— ατ <θ <1 2.5-or
1 62 . 5— α<0< 1 72. 5— or 1 62. 5— α <0 <1 72.5 — or
1 : 1 2 1 92 . 5— α<0<202. 5— of 他 1: 1 2 1 92.5—α <0 <202.5—of other
222. 5— α<θ<232. 5— Of 222. 5— α <θ <232. 5— Of
252 . 5— ΟΤ<0<262. 5— Of 252. 5— ΟΤ <0 <262. 5— Of
表 1を具体的に説明する。 回転方向に N極、 S極を交互に奢磁した磁極数 2 m のマグネット体を有する口一夕と、 このマグネット体とラジアル方向に対向しコ ィルが巻回された突極数 3 nの突極を設けたコアとを有する。 マグネット体は、 各極の磁束発生部と磁極ピッチとの差を電気角ひとし、 即ち、 マグネット体表面 は磁極ピッチより実質電気角 α狭い範囲に磁束を発生させる饞成としている。 ま
た突極の開角を電気角 Θとすると、 (式 1)の関係を満足する構 β5とする。但し、 (式 1) における hは 2 mと 3 ηとの最小公倍数であり、 kは自然数である。 , . λ (式 1)
Table 1 is specifically described. A mouth with a magnet body with 2 m of magnetic poles alternately magnetized with N and S poles in the rotation direction, and a salient pole 3 n with a coil wound radially opposite to this magnet body And a core provided with salient poles. In the magnet body, the difference between the magnetic flux generating portion of each pole and the magnetic pole pitch is reduced to an electrical angle, that is, the magnet body surface is configured to generate magnetic flux in a range substantially smaller than the magnetic pole pitch by an electrical angle α. Ma If the opening angle of the salient poles is an electrical angle Θ, a structure β5 that satisfies the relationship of (Equation 1) is obtained. Where h in (Equation 1) is the least common multiple of 2 m and 3 η, and k is a natural number. , .λ (Equation 1)
これによりコギングトルクを小さく抑えたモータを提供できる。 As a result, a motor with reduced cogging torque can be provided.
なお、 上記では、 マグネット体表面は磁極ピッチより実質電 角ひ狭い範囲に 磁束を発生させる構成であつたが、 磁極を隙間無く設けた場合 it、 (式 1) およ び表 1において α=0として、 (式 5) の関係を満足する様に檸成することによ り同様にコギングトルクを小さく抑えたモータを提供できる。 In the above description, the magnet body surface is configured to generate magnetic flux in a range substantially smaller than the magnetic pole pitch by an electrical angle. However, when the magnetic poles are provided without gaps, it is assumed that α = By setting the value to 0 so as to satisfy the relationship of (Equation 5), it is possible to provide a motor in which the cogging torque is similarly reduced.
(第 3の実施の形態) (Third embodiment)
図 9は、 第 3の実施の形態のブラシレスモータにおける磁気 nr路構成を示す説 明図である。 FIG. 9 is an explanatory diagram illustrating a configuration of a magnetic nr path in the brushless motor according to the third embodiment.
図 9に示す通り、 コア 3の突極 4先端部の開角は 170° であり、 突極先端部 のピッチが電気角で 225° と 255° のピッチで交互に繰り返す構成になって いるところが特徴点である。 As shown in Fig. 9, the opening angle of the salient pole 4 tip of the core 3 is 170 °, and the pitch of the salient pole tip alternates between 225 ° and 255 ° in electrical angle. It is a feature point.
従来技術との相違点は、 口一夕の各磁極の永久磁石が、 電気角 40° ずつ隙間 を空けて固定されており、 電気角 140° の範囲で部分的に磁^を発生する構造 になっていること、 そして基本形状のコアの突極開角が電気角で 170° となつ ているところである。 The difference from the conventional technology is that the permanent magnets of the magnetic poles are fixed with a gap of 40 electrical degrees between them, and the magnetic field is partially generated within the electrical angle of 140 degrees. And the salient pole opening angle of the core of the basic shape is 170 ° in electrical angle.
具体的には、図 10八、図10Bに示すように同一形状で角度力 S電気角で 1 5° ずれた 2つのコア 3— 1、 3-2の形状の斜線部分を組み合わ ¾~ることにより構 成されている。 Specifically, as shown in Fig. 108 and Fig. 10B, the two cores 3-1 and 3-2 with the same shape and angular force S shifted by 15 ° in electrical angle should be combined with the shaded portions. It is composed of
このように本実施の形態は、 第 1の実施の形態の構成において突極の開角を電
気角で 1 7 0 ° とし、 コギングトルク基本周期の 2分 0 1の周期のコギングトル クを発生する形状をべ一スとし、 コギングトルクの基 周期の 4分の 1である電 気角 1 5 ° 分ずらした 2つのコア形状を組み合わせる櫸成である。 この構成によ り、 基本コギングトルク周期の 4分の 1の周期で絶対直も極めて小さく回転精度 が高いモータを提供できる。 As described above, in the present embodiment, in the configuration of the first embodiment, the opening angle of the salient pole is An electric angle of 170 ° is assumed, and a shape that generates a cogging torque having a period of 2/01 of the basic period of the cogging torque is used as a base, and an electric angle of 1/4 of the basic period of the cogging torque is 15 ° Combines two core shapes shifted by minutes. With this configuration, it is possible to provide a motor with extremely small absolute linearity and high rotational accuracy in a cycle that is one-fourth of the basic cogging torque cycle.
また、 図 1 2 A; 図 1 2 Bに示す様に 2つのコア形 ¾ ^の斜線部分を組み合わせ て構成すると図 1 1に示すような、 突極の開角が左右で異なるような形状も構成 できる。 In addition, as shown in Fig. 12A and Fig. 12B, when the two cores are configured by combining the shaded portions of 形 ^, the shape in which the opening angle of the salient poles differs on the left and right as shown in Fig. 11 can be obtained. Can be configured.
更に上記図 9、 図 1 1は磁極数が 8極で突極数が 6 C»場合を示しているが、 そ の他の磁極数、 突極数の場合でも同様に構成できることは言うまでも無い。 磁極数が 1 4極で、 突極数が 1 2の場合の一例を図 1 3に示す。 図 1 3に示す コア形状は、 図 1 4 A、 図 1 4 Bに示す 2つのコア形^^の斜線部分を組み合わせ て構成している。 Further, FIGS. 9 and 11 show the case where the number of magnetic poles is 8 and the number of salient poles is 6 C. However, it is needless to say that the same configuration can be applied to other magnetic poles and salient poles. There is no. Fig. 13 shows an example when the number of magnetic poles is 14 and the number of salient poles is 12. The core shape shown in FIG. 13 is configured by combining the shaded portions of the two core shapes ^^ shown in FIGS. 14A and 14B.
ここで図 1 4 A、 図 1 4 Bに示すコアは突極先端の鬪角 0を調整し、 コギング トルク基本周期の 2分の 1の周期のコギングトルクを 生するように構成されて いる。 更にコギングトルク基本周期の 4分の 1の周期である電気角 7 . 5 ° ずら した形状を組み合わせることによりコギングトルク基;^:周期の 4分の 1の波形 ( 1回転に 3 3 6回の繰り返し波形) を発生させ、 コギングトルクの絶対値も極 めて小さい値となる。 Here, the cores shown in FIGS. 14A and 14B are configured so as to adjust the angle of struggle 0 at the tip of the salient pole and generate a cogging torque having a half cycle of the basic cycle of the cogging torque. Furthermore, by combining the shapes shifted by an electrical angle of 7.5 °, which is a quarter of the basic cycle of the cogging torque, the cogging torque base; ^: A quarter of the cycle (3 3 6 times per rotation) And the absolute value of the cogging torque becomes extremely small.
同様に一般的には、 回転方向に N極、 S極を交互に奢磁した磁極数 2 mのマグ ネット体を有するロータと、 このマグネット体とラジ ル方向に対向しコイルが 巻回された突極数 3 nの突極を設けたコアとを有し、 グネット体は、 各極の磁 束発生部と磁極ピッチとの差を電気角 αとし、 即ち、 グネット体表面は磁極ピ ツチより実質電気角 α狭い範囲に磁束を発生させる構 としている。 また突極の 開角を電気角 0とすると、 (式 1 ) の関係を満足する構成としている。 この (式
1) の関係を満足する基本形状をベースとして、 回転方向に基本コギング周期の 2 j分の 1の角度ずつずらした j個のコア基本形状を適時組み合わせた形状に構 成することで、 発生するコギングトルクが基本コギングトルク周期の 4分の 1以 下の周期となり、 絶対値も極めて小さくすることができ、 回転精度が高いモ一夕 を提供できる。 なお、 (式 1) の hは 2mと 3 nとの最小公倍数、 kは自然数で ある。 -a (式 1)
Similarly, in general, a rotor having a magnet body with 2 m of magnetic poles, alternately magnetized with N and S poles in the rotation direction, and a coil wound around this magnet body in the radial direction The gnet body has a core provided with salient poles having 3 n salient poles, and the difference between the magnetic flux generating portion of each pole and the magnetic pole pitch is defined as an electrical angle α. The magnetic flux is generated in a narrow range of the real electrical angle α. Assuming that the opening angle of the salient pole is 0 electrical angle, the configuration satisfies the relationship of (Equation 1). This (expression Based on the basic shape that satisfies the relationship of (1), it is generated by composing a timely combination of j core basic shapes shifted by an angle of 1/2 j of the basic cogging cycle in the rotation direction. The cogging torque is less than one-fourth of the basic cogging torque cycle, the absolute value can be extremely small, and a motor with high rotation accuracy can be provided. In Equation 1, h is the least common multiple of 2m and 3n, and k is a natural number. -a (Equation 1)
上記では、 マグネット体表面は磁極ピッチより実質電気角 α狭い範囲に磁束を 発生させる構成であつたが、 磁極を隙間無く設けた場合は、 (式 1) において α In the above description, the magnetic body surface is configured to generate magnetic flux in a range substantially smaller than the magnetic pole pitch by an electrical angle α. However, if the magnetic poles are provided without gaps, the expression
=0として、 = 0,
360m , 1 1 \ n 360m /. 1 1 \ c 360m, 1 1 \ n 360m /. 1 1 \ c
-\k \<θ < -\k—— +—— +5 (式 5) h \ 2 12) h \ 2 12 ) -\ k \ <θ <-\ k—— + —— +5 (Equation 5) h \ 2 12) h \ 2 12)
の関係を満足する基本形状をべ一スとして、 回転方向に基本コギング周期の 2 j 分の 1の角度ずつずらした j個のコア基本形状を適時組み合わせた形状に構成す ることで、 発生するコギングトルクが基本コギングトルク周期の 4分の 1以下の 周期となり、 絶対値も極めて小さくすることができ、 回転精度が高いモー夕を提 供できる。 産業上の利用可能性 The basic shape that satisfies the relationship is used as a base, and it is generated by appropriately combining j core basic shapes that are shifted by an angle of 1/2 j of the basic cogging cycle in the rotation direction. The cogging torque is less than one-fourth of the basic cogging torque period, the absolute value can be extremely small, and a motor with high rotation accuracy can be provided. Industrial applicability
本発明のブラシレスモータは、 モータのコギングトルクを低減し、 モー夕の回 転精度を向上できるという有利な効果が得られる。 例えば、 映像 ·音響機器、 0 A機器等さまざまな機器の駆動源としてのモー夕に有用である。
ADVANTAGE OF THE INVENTION The brushless motor of this invention has the advantageous effect that the cogging torque of a motor can be reduced and the rotational accuracy of a motor can be improved. For example, it is useful for mobile devices as a drive source for various devices such as video / audio devices and 0 A devices.