[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005090248A1 - Optical fiber preform processing method and optical fiber preform - Google Patents

Optical fiber preform processing method and optical fiber preform Download PDF

Info

Publication number
WO2005090248A1
WO2005090248A1 PCT/JP2005/004445 JP2005004445W WO2005090248A1 WO 2005090248 A1 WO2005090248 A1 WO 2005090248A1 JP 2005004445 W JP2005004445 W JP 2005004445W WO 2005090248 A1 WO2005090248 A1 WO 2005090248A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber preform
flame
processing
flame polishing
Prior art date
Application number
PCT/JP2005/004445
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Fujii
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2005090248A1 publication Critical patent/WO2005090248A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K97/00Accessories for angling
    • A01K97/22Platforms or seat-boxes specially adapted for angling, e.g. tackle boxes for use as seats
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01237Removal of preform material to modify the diameter by heat-polishing, e.g. fire-polishing
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/002Chair or stool bases
    • A47C7/008Chair or stool bases for uneven surfaces

Definitions

  • the present invention relates to a method for stretching a large diameter optical fiber preform to a predetermined diameter by reducing the diameter of the optical fiber preform to a predetermined diameter, suppressing the adhesion of impurities to the surface of the preform, and obtaining an optical fiber preform at a high yield.
  • the present invention relates to a method for processing an optical fiber preform and an optical fiber preform.
  • Scratches or impurities on the surface of an optical fiber preform may cause a reduction in yield during drawing. Also, if the optical fiber preform has a bend and a diameter variation, it is difficult to set the optical fiber in the drawing machine, or the optical fiber having a uniform diameter may be obtained.
  • An optical fiber preform is required to have a smooth surface, no bending force, and no impurities. Therefore, in general, a series of steps are performed in the order of bending correction, stretching, and flame polishing by a burner flame using a chain hydrocarbon or hydrogen as a combustion gas using a glass lathe. Thus, the optical fiber preform is processed.
  • the processing of the optical fiber preform is performed in a clean room or an environment similar thereto, and is performed in an atmosphere in which impurities do not adhere to the optical fiber preform as much as possible.
  • impurities May be discovered.
  • the operation of fusing and removing the impurity-attached portion is performed, and the yield is greatly reduced.
  • the length may be short, and the entire base material may have to be discarded.
  • Patent Document 1 JP-A-56-9231
  • An object of the present invention is to provide a method for processing an optical fiber preform in which impurities do not adhere to the surface of the optical fiber preform, and an optical fiber preform.
  • the optical fiber preform is heated and processed by a burner flame while rotating an optical fiber preform supported at both ends by a holding member, for example, a chuck.
  • a flame polishing step is performed prior to a stretching step of reducing the diameter of a material to a predetermined diameter.
  • the flame polishing step and the stretching step may be performed in the same apparatus. This makes it possible to perform the stretching process without moving the optical fiber preform to another device and without any time delay, thereby reducing the adhesion of new foreign matter after flame polishing. Furthermore, the working time can be reduced.
  • the stretching step is preferably performed continuously. Further, after the stretching step, the flame polishing step may be further continuously performed.
  • the surface of the optical fiber preform is heated at a higher temperature than in the flame polishing step.
  • the surface temperature of the optical fiber preform in the flame polishing step is 1800 ° C or more and less than 2200 ° C
  • the surface temperature of the optical fiber preform in the drawing step is 2000 ° C or more and less than 2500 ° C. Is done.
  • the entire optical fiber preform is flame-polished. As a result, foreign substances and impurities attached to the optical fiber preform can be removed.
  • the burner flame is a combustion flame using hydrogen and Z or a chain hydrocarbon as a combustion gas.
  • the optical fiber preform may be flame polished, followed by further flame polishing of the entire optical fiber preform. Thereby, the strain generated in the optical fiber preform due to the partially applied flame polishing can be appropriately removed.
  • optical fiber preform of the present invention has been subjected to flame polishing and stretching using the above-described method for processing an optical fiber preform.
  • the method for processing an optical fiber preform according to the present invention by performing the flame polishing step and the stretching step continuously, adhesion of impurities to the surface of the optical fiber preform is suppressed, and the optical fiber base material can be produced at a high yield. Material can be obtained.
  • FIG. 1 is a schematic explanatory view illustrating a method for processing an optical fiber preform according to the present invention.
  • the present inventor has conducted a flame polishing step and a stretching step on the optical fiber preform continuously, instead of the conventional method, thereby forming the optical fiber preform.
  • the present inventors have found that the adhesion of impurities to the surface of the base material is suppressed during processing, and have accomplished the present invention.
  • the method for processing an optical fiber preform of the present invention is performed as shown in FIG.
  • the optical fiber preform 1 has a fixed chuck 2 and a movable chuck 3 whose both ends are gripping members. , And rotated by the motor 4.
  • the flame polishing is performed by heating the optical fiber preform with the burner 5 to a temperature of 1800 ° C. or more and less than 2200 ° C. and moving the optical fiber preform 1 along the optical fiber preform 1.
  • the optical fiber preform is further heated by a burner 5 to a temperature of 2,000 ° C. or more and less than 2500 ° C., and the movable chuck 3 is pulled in accordance with the degree of softness of the preform. 1 is stretched to a predetermined diameter.
  • the moving means of the burner 5, the pulling means and the adjustment control means of the movable chuck 3, the outer diameter measuring means, and the like are not shown.
  • the example shown in FIG. 1 is a method in which the optical fiber preform is horizontally supported and processed.
  • the force may be performed while the optical fiber preform is vertically supported.
  • Flame polishing is a method for removing impurities such as silica fine particles adhering to the surface, because a surface layer having a force of several microns and several tens of microns is melted and polished by heating at a relatively low temperature. It is heavily used. Further, this step is usually used in the final finishing step, because the distortion can be removed by removing the impurities attached to the surface. After flame polishing, the surface condition becomes smooth and it is difficult for new impurities to adhere.
  • the temperature at which the flame polishing force is applied is a force at which the surface temperature of the optical fiber preform is 1800 ° C or more and less than 2200 ° C, preferably 1900 ° C or more and less than 2100 ° C. . At a temperature of 2200 ° C. or higher, it becomes difficult to remove impurities and diffusion into the inside proceeds.
  • the subsequent stretching process is performed by heating to a higher temperature than the flame polishing, and therefore has a high ability to polish the surface with a flame.
  • impurities are attached, stress is applied by the flame.
  • the impurities are buried in the surface of the base material before being polished, and gradually diffuse inside.
  • the drawing step is performed without a pause, so that the preform is added. It is possible to suppress the attachment of impurities in the film.
  • the temperature at which the stretching process is performed is a force at which the surface temperature of the optical fiber preform is 2000 ° C or higher and lower than 2500 ° C, preferably 2200 ° C or higher and lower than 2500 ° C. If the temperature is lower than 2000 ° C, soft tension is insufficient, and a high tension is required for stretching, which increases the load on equipment.
  • An optical fiber preform having an average diameter of 65 mm was set on a glass lathe equipped with a hydrogen flame burner having an oxygen nozzle for supplying oxygen as a supporting gas by connecting dummy rods to both ends.
  • the flame was polished with 250 L (liter) Zmin of hydrogen and 150 LZmin of oxygen.
  • the surface temperature at this time was 2050 ° C.
  • the film was stretched by a flame of 240 LZmin of hydrogen and 1 LOOLZmin of oxygen so that the surface temperature became 2200 ° C, so that the diameter became 60 mm.
  • a series of 100 operations of performing flame polishing with 250 LZmin of hydrogen and 150 LZmin of oxygen were performed, and the finished surface was inspected. As a result, two of the 100 lines were found to have impurities exhibiting brown on the surface. The incidence was 2%.
  • Dummy bars were connected to both ends of an optical fiber preform having an average diameter of 55 mm, and the optical fiber preform was set on a glass lathe.
  • flame polishing was performed with 270 LZmin of hydrogen and 170 LZmin of oxygen.
  • the surface temperature at this time was 2100 ° C.
  • the film was stretched with a flame of 260 LZ min of hydrogen and 150 LZ min of oxygen so that the surface temperature became 2400 ° C., so that the diameter became 50 mm.
  • a series of 100 operations of performing flame polishing with 250 LZmin of hydrogen and 150 LZmin of oxygen were performed, and when the finished surface was inspected, one of the 100 lines showed a brown color on the surface with an incidence of 1%. Impurities were found.
  • the adhesion of impurities to the preform surface can be suppressed, and the optical fiber preform can be obtained with a high yield, which contributes to a reduction in manufacturing cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

An optical fiber preform processing method in which no impurities adhere to the surface of an optical fiber matrix and an optical fiber preform are provided. The method for processing an optical fiber preform (1) supported at both ends by holding members while rotating the optical fiber matrix (1) and heating it by a burner flame is characterized in that prior to a drawing step for reducing the diameter of the optical fiber preform to a predetermined one, a flame polishing step is carried out. After the drawing step, another flame polishing step may be subsequently carried out. Further, the flame polishing step and the drawing step can be carried out in the same apparatus.

Description

明 細 書  Specification
光ファイバ母材の加工方法及び光ファイバ母材  Processing method of optical fiber preform and optical fiber preform
技術分野  Technical field
[0001] 本発明は、太径の光ファイバ母材を所定の径に縮径延伸する方法に係り、母材表 面への不純物の付着を抑制し、高 、歩留まりで光ファイバ母材を得ることを特徴とす る、光ファイバ母材の加工方法及び光ファイバ母材に関する。また本出願は、下記の 日本特許出願に関連する。文献の参照による組み込みが認められる指定国につい ては、下記の出願に記載された内容を参照により本出願に組み込み、本出願の記載 の一部とする。  The present invention relates to a method for stretching a large diameter optical fiber preform to a predetermined diameter by reducing the diameter of the optical fiber preform to a predetermined diameter, suppressing the adhesion of impurities to the surface of the preform, and obtaining an optical fiber preform at a high yield. The present invention relates to a method for processing an optical fiber preform and an optical fiber preform. This application is related to the following Japanese patent application. For those designated countries that are allowed to be incorporated by reference to the literature, the contents described in the following application are incorporated into this application by reference and are incorporated as a part of the description of this application.
特願 2004— 078156 出願曰 2004年 3月 18曰  Patent Application 2004— 078156 Application filed March 18, 2004 filed
背景技術  Background art
[0002] 光ファイバ母材の表面に傷や不純物があると、線引き時における歩留まり低下の原 因を誘発する。また、光ファイバ母材に曲がりゃ径変動があると、線引き機にセットす るのが困難であったり、径の均一な光ファイバが得られな力つたりする。  [0002] Scratches or impurities on the surface of an optical fiber preform may cause a reduction in yield during drawing. Also, if the optical fiber preform has a bend and a diameter variation, it is difficult to set the optical fiber in the drawing machine, or the optical fiber having a uniform diameter may be obtained.
[0003] 光ファイバ母材としては、表面が平滑で曲力^が無くかつ不純物のないものが求め られる。そのため一般にガラス旋盤を用いて、鎖状炭化水素または水素を燃焼ガスと するバーナー火炎により、曲がり修正、延伸、火炎研磨という順番で、一連の工程が 行なわれる。これにより、光ファイバ母材の加工が行なわれる。  [0003] An optical fiber preform is required to have a smooth surface, no bending force, and no impurities. Therefore, in general, a series of steps are performed in the order of bending correction, stretching, and flame polishing by a burner flame using a chain hydrocarbon or hydrogen as a combustion gas using a glass lathe. Thus, the optical fiber preform is processed.
[0004] 光ファイバ母材は、線引機に合わせて所定の径に縮径する延伸工程を経た後に、 ダミーガラス棒が溶着され、火炎研磨後、線引機に装着され、加熱'溶融されて光フ アイバ状に線引される。このとき光ファイバ母材の寸法精度が線引きして得られる光フ アイバの寸法精度に影響を与えるため、延伸中、外径をネックダウン部とその直近の 2点で測定し、これに基づいて延伸速度を調節制御することにより、寸法精度の高い 光ファイバ母材を得る方法が知られて ヽる。(特許文献 1参照)  [0004] After passing through a stretching step of reducing the diameter of the optical fiber preform to a predetermined diameter in accordance with the drawing machine, a dummy glass rod is welded, flame polished, mounted on the drawing machine, and heated and melted. It is drawn in the shape of an optical fiber. At this time, since the dimensional accuracy of the optical fiber preform affects the dimensional accuracy of the optical fiber obtained by drawing, the outer diameter is measured at the neck-down part and two points immediately near the neck down during stretching, and based on this, There is known a method of obtaining an optical fiber preform having high dimensional accuracy by adjusting and controlling the stretching speed. (See Patent Document 1)
[0005] 一般に、光ファイバ母材の加工は、クリーンルーム、もしくはそれに準ずる環境でな され、極力不純物が光ファイバ母材に付着しないような雰囲気中でなされている。し かし、最終工程である火炎研磨工程終了後、もしくは火炎研磨中に表面に不純物が 発見されることがある。その際には、不純物付着部を溶断し除去する作業を行うこと になり、歩留まりが大きく低下する。また、その付着位置によっては短くなつてしまい、 その母材全体を廃棄せざるを得な 、こともある。 [0005] In general, the processing of the optical fiber preform is performed in a clean room or an environment similar thereto, and is performed in an atmosphere in which impurities do not adhere to the optical fiber preform as much as possible. However, after finishing the flame polishing step, which is the final step, or during flame polishing, impurities May be discovered. In that case, the operation of fusing and removing the impurity-attached portion is performed, and the yield is greatly reduced. Also, depending on the location of the attachment, the length may be short, and the entire base material may have to be discarded.
よって、光ファイバ母材の表面に不純物が付着しない、光ファイバ母材の加工方法 が望まれている。  Therefore, a method for processing an optical fiber preform that does not cause impurities to adhere to the surface of the optical fiber preform is desired.
[0006] 特許文献 1 :特開昭 56— 9231号公報  Patent Document 1: JP-A-56-9231
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の目的は、光ファイバ母材の表面に不純物が付着しない光ファイバ母材の 加工方法及び光ファイバ母材を提供することにある。 [0007] An object of the present invention is to provide a method for processing an optical fiber preform in which impurities do not adhere to the surface of the optical fiber preform, and an optical fiber preform.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の光ファイバ母材の加工方法は、両端が把持部材、例えば、チャックにより 支持された光ファイバ母材を、回転させながらバーナー火炎で加熱し加工する方法 において、該光ファイバ母材を所定の径に縮径する延伸工程に先立ち、火炎研磨ェ 程を行うことを特徴として 、る。 [0008] In the method for processing an optical fiber preform according to the present invention, the optical fiber preform is heated and processed by a burner flame while rotating an optical fiber preform supported at both ends by a holding member, for example, a chuck. A flame polishing step is performed prior to a stretching step of reducing the diameter of a material to a predetermined diameter.
[0009] この場合、火炎研磨工程と延伸工程とを、同一の装置内で行ってよい。これにより、 光ファイバ母材を別の装置へと移動させる必要が無ぐまた時間を置かずに延伸ェ 程を行うことができるので、火炎研磨後の新たな異物の付着を低減できる。更には、 作業時間も短縮できる。 In this case, the flame polishing step and the stretching step may be performed in the same apparatus. This makes it possible to perform the stretching process without moving the optical fiber preform to another device and without any time delay, thereby reducing the adhesion of new foreign matter after flame polishing. Furthermore, the working time can be reduced.
[0010] 火炎研磨工程を行なった後、連続して延伸工程を行うのが好ましぐまた、延伸ェ 程を行なった後、さらに連続して火炎研磨工程を行ってもよい。 [0010] After the flame polishing step, the stretching step is preferably performed continuously. Further, after the stretching step, the flame polishing step may be further continuously performed.
[0011] また、延伸工程は、火炎研磨工程よりも高い温度で、光ファイバ母材の表面を加熱 する。具体的には、火炎研磨工程における光ファイバ母材の表面温度は 1800°C以 上 2200°C未満、延伸工程における光ファイバ母材の表面温度は 2000°C以上 250 0°C未満の温度とされる。この火炎研磨工程においては、光ファイバ母材全体を火炎 研磨する。これにより、光ファイバ母材に付着した異物や不純物を除去できる。なお、 バーナー火炎は、水素及び Z又は鎖状炭化水素を燃焼ガスとする燃焼火炎である。  [0011] In the stretching step, the surface of the optical fiber preform is heated at a higher temperature than in the flame polishing step. Specifically, the surface temperature of the optical fiber preform in the flame polishing step is 1800 ° C or more and less than 2200 ° C, and the surface temperature of the optical fiber preform in the drawing step is 2000 ° C or more and less than 2500 ° C. Is done. In this flame polishing step, the entire optical fiber preform is flame-polished. As a result, foreign substances and impurities attached to the optical fiber preform can be removed. The burner flame is a combustion flame using hydrogen and Z or a chain hydrocarbon as a combustion gas.
[0012] 或いは、火炎研磨工程の他の形態としては、光ファイバ母材に付着した異物を除 去するために、光ファイバ母材の少なくとも一部を火炎研磨し、その後に、光ファイバ 母材全体を更に火炎研磨してもよい。これにより、部分的に施された火炎研磨によつ て光ファイバ母材に生じた歪を、適切に取り除くことができる。 [0012] Alternatively, as another mode of the flame polishing step, foreign matter adhering to the optical fiber preform is removed. To remove, at least a portion of the optical fiber preform may be flame polished, followed by further flame polishing of the entire optical fiber preform. Thereby, the strain generated in the optical fiber preform due to the partially applied flame polishing can be appropriately removed.
[0013] 本発明の光ファイバ母材は、上記光ファイバ母材の加工方法を用いて、火炎研磨 加工及び延伸加工されたものである。  [0013] The optical fiber preform of the present invention has been subjected to flame polishing and stretching using the above-described method for processing an optical fiber preform.
発明の効果  The invention's effect
[0014] 本発明の光ファイバ母材の加工方法は、火炎研磨工程と延伸工程を連続して行う ことにより、光ファイバ母材表面への不純物の付着が抑制され、高い歩留まりで光フ アイバ母材を得ることができる。  In the method for processing an optical fiber preform according to the present invention, by performing the flame polishing step and the stretching step continuously, adhesion of impurities to the surface of the optical fiber preform is suppressed, and the optical fiber base material can be produced at a high yield. Material can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の光ファイバ母材の加工方法を説明する概略説明図である。 FIG. 1 is a schematic explanatory view illustrating a method for processing an optical fiber preform according to the present invention.
符号の説明  Explanation of symbols
[0016] 1 光ファイバ母材、 [0016] 1 optical fiber preform,
2 固定チャック、  2 Fixed chuck,
3 可動チャック、  3 movable chuck,
1 ~~々■ ~~ Mo 1 ~~~~~~
5 ノ ーナー。  5 Norner.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、発明の実施形態を通じて本発明を説明するが、以下の実施形態は請求の範 囲に係る発明を限定するものではなぐまた実施形態の中で説明されている特徴の 組み合わせの全てが発明の解決手段に必須であるとは限らな!/、。  Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the invention according to the scope of the claims, and all combinations of features described in the embodiments are described. Is not necessarily essential to the solution of the invention! / ,.
[0018] 本発明者は、鋭意検討を重ねた結果、従来の方法に代えて、光ファイバ母材に対 して、火炎研磨工程と延伸工程を連続して行うことにより、光ファイバ母材の加工中、 母材表面への不純物の付着が抑えられることを知見し、本発明をなすに至ったもの である。  [0018] As a result of intensive studies, the present inventor has conducted a flame polishing step and a stretching step on the optical fiber preform continuously, instead of the conventional method, thereby forming the optical fiber preform. The present inventors have found that the adhesion of impurities to the surface of the base material is suppressed during processing, and have accomplished the present invention.
[0019] 本発明の光ファイバ母材の加工方法は、図 1に示すように行なわれる。  The method for processing an optical fiber preform of the present invention is performed as shown in FIG.
光ファイバ母材 1は、その両端が把持部材である固定チャック 2及び可動チャック 3 により支持され、モーター 4により回転される。火炎研磨は、バーナー 5で光ファイバ 母材を 1800°C以上、 2200°C未満の温度に加熱し、光ファイバ母材 1に沿って移動 させること〖こより行なわれる。 The optical fiber preform 1 has a fixed chuck 2 and a movable chuck 3 whose both ends are gripping members. , And rotated by the motor 4. The flame polishing is performed by heating the optical fiber preform with the burner 5 to a temperature of 1800 ° C. or more and less than 2200 ° C. and moving the optical fiber preform 1 along the optical fiber preform 1.
[0020] 火炎研磨終了後、さらにバーナー 5で 2000°C以上、 2500°C未満の温度に加熱し 、母材の軟ィ匕度に合わせて可動チャック 3を牽引することにより、光ファイバ母材 1は 所定の径に延伸される。なお、図中、バーナー 5の移動手段、可動チャック 3の牽引 手段及び調整制御手段、外径測定手段等は、図示を省略されている。  After completion of the flame polishing, the optical fiber preform is further heated by a burner 5 to a temperature of 2,000 ° C. or more and less than 2500 ° C., and the movable chuck 3 is pulled in accordance with the degree of softness of the preform. 1 is stretched to a predetermined diameter. In the drawings, the moving means of the burner 5, the pulling means and the adjustment control means of the movable chuck 3, the outer diameter measuring means, and the like are not shown.
図 1に示した例は、光ファイバ母材を水平に支持して加工する方法である力 これ に代えて光ファイバ母材を垂直に支持して行なってもよい。  The example shown in FIG. 1 is a method in which the optical fiber preform is horizontally supported and processed. Alternatively, the force may be performed while the optical fiber preform is vertically supported.
[0021] 光ファイバ母材の加工中に母材表面に付着する不純物を調べてみると、鉄、クロム 、ニッケルといった、金属材料が原因と考えられるものがその大部分を占めている。こ れらの母材表面に付着する不純物は、数百ミクロン力も数ミリの大きさである力 実際 には数ミクロン力 数十ミクロンレベルの金属粒子が付着し、ガラス中に拡散して、大 きく見える。しかし、これらの粒子を作業環境力 消滅させるのは極めて困難である。  When examining impurities adhering to the surface of the preform during processing of the optical fiber preform, most of them are considered to be caused by metal materials such as iron, chromium, and nickel. Impurities adhering to the surface of these base materials have a force of several hundred microns or even a few millimeters. Actually, metal particles having a force of several microns or several tens of microns adhere and diffuse into the glass. Looks sharp. However, it is extremely difficult to extinguish these particles in the working environment.
[0022] 火炎研磨は、比較的低温での加熱により、数ミクロン力 数十ミクロンの表面層が溶 融 '研磨されるため、表面に付着したシリカ微粒子などの不純物の除去方法の一つと して多用されている。さらに、表面に付着した不純物の除去にカ卩えて、歪も除去する ことができるため、通常、この工程は、最終の仕上げ工程に用いられる。火炎研磨後 は、表面状態が滑らかになり新たな不純物が付着しにくい状態になる。  [0022] Flame polishing is a method for removing impurities such as silica fine particles adhering to the surface, because a surface layer having a force of several microns and several tens of microns is melted and polished by heating at a relatively low temperature. It is heavily used. Further, this step is usually used in the final finishing step, because the distortion can be removed by removing the impurities attached to the surface. After flame polishing, the surface condition becomes smooth and it is difficult for new impurities to adhere.
[0023] 火炎研磨力卩ェが行なわれる温度は、光ファイバ母材の表面温度が 1800°C以上、 2 200°C未満の温度である力 好ましくは 1900°C以上、 2100°C未満である。 2200°C 以上の温度になると、不純物が除去され難くなるとともに、内部への拡散が進む。  [0023] The temperature at which the flame polishing force is applied is a force at which the surface temperature of the optical fiber preform is 1800 ° C or more and less than 2200 ° C, preferably 1900 ° C or more and less than 2100 ° C. . At a temperature of 2200 ° C. or higher, it becomes difficult to remove impurities and diffusion into the inside proceeds.
[0024] 続いて行われる延伸加工は、火炎研磨よりも高温に加熱されて行なわれるため、火 炎で表面を研磨する能力は高いが、不純物が付着していると、火炎で応力をかけら れることにより、不純物が研磨されるより先に母材表面に埋め込まれ、徐々に内部に 拡散して行く。  [0024] The subsequent stretching process is performed by heating to a higher temperature than the flame polishing, and therefore has a high ability to polish the surface with a flame. However, if impurities are attached, stress is applied by the flame. As a result, the impurities are buried in the surface of the base material before being polished, and gradually diffuse inside.
よって、火炎研磨工程で、光ファイバ母材の表面に不純物が無くかつ不純物の付 着しにくい状態とした後に続けて、間を置かずに延伸工程を行うことにより、母材の加 ェ中における不純物の付着を抑制することができる。 Therefore, in the flame polishing step, after the surface of the optical fiber preform is made to be free of impurities and hardly adhered to the impurities, the drawing step is performed without a pause, so that the preform is added. It is possible to suppress the attachment of impurities in the film.
[0025] 延伸加工が行なわれる温度は、光ファイバ母材の表面温度が 2000°C以上、 2500 °C未満の温度で行われる力 好ましくは 2200°C以上、 2500°C未満である。 2000°C より低い温度では軟ィ匕が不充分で、延伸するには強い張力が必要とされ、機器への 負担が大きくなる。  [0025] The temperature at which the stretching process is performed is a force at which the surface temperature of the optical fiber preform is 2000 ° C or higher and lower than 2500 ° C, preferably 2200 ° C or higher and lower than 2500 ° C. If the temperature is lower than 2000 ° C, soft tension is insufficient, and a high tension is required for stretching, which increases the load on equipment.
[0026] 以上のような条件で、火炎研磨工程と延伸工程を連続して行うことにより、光フアイ バ母材の加工中における母材表面への不純物の付着を抑え、高い歩留まりで光ファ ィバ母材を得ることが可能となる。  [0026] By performing the flame polishing step and the stretching step continuously under the above conditions, adhesion of impurities to the surface of the optical fiber base material during processing of the optical fiber base material is suppressed, and the optical fiber is produced at a high yield. A base material can be obtained.
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実 施例に限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
実施例 1  Example 1
[0027] 支燃ガスとしての酸素を供給する酸素ノズルを有する水素火炎バーナーを備えた ガラス旋盤に、平均径が φ 65mmの光ファイバ母材を両端にダミー棒を接続してセッ トした。  [0027] An optical fiber preform having an average diameter of 65 mm was set on a glass lathe equipped with a hydrogen flame burner having an oxygen nozzle for supplying oxygen as a supporting gas by connecting dummy rods to both ends.
始めに、水素 250L (リットル) Zmin、酸素 150LZminにて火炎研磨を行った。こ のときの表面温度は 2050°Cであった。引き続き、表面温度が 2200°Cになるよう、水 素 240LZmin、酸素 lOOLZminの火炎にて φ 60mmになるよう延伸を行った。続 いて水素 250LZmin、酸素 150LZminにて火炎研磨を行うという一連の操作を 10 0本行い、仕上がり表面を検査したところ、 100本のうち 2本に、表面に褐色を呈する 不純物が確認された。発生率は 2%であった。  First, the flame was polished with 250 L (liter) Zmin of hydrogen and 150 LZmin of oxygen. The surface temperature at this time was 2050 ° C. Subsequently, the film was stretched by a flame of 240 LZmin of hydrogen and 1 LOOLZmin of oxygen so that the surface temperature became 2200 ° C, so that the diameter became 60 mm. Subsequently, a series of 100 operations of performing flame polishing with 250 LZmin of hydrogen and 150 LZmin of oxygen were performed, and the finished surface was inspected. As a result, two of the 100 lines were found to have impurities exhibiting brown on the surface. The incidence was 2%.
実施例 2  Example 2
[0028] 平均径が φ 55mmの光ファイバ母材の両端にダミー棒を接続し、ガラス旋盤にセッ トした。  [0028] Dummy bars were connected to both ends of an optical fiber preform having an average diameter of 55 mm, and the optical fiber preform was set on a glass lathe.
始めに、水素 270LZmin、酸素 170LZminにて火炎研磨を行った。このときの表 面温度は 2100°Cであった。引き続き、表面温度が 2400°Cになるよう、水素 260LZ min、酸素 150LZminの火炎にて φ 50mmになるよう延伸を行った。続いて水素 2 50LZmin、酸素 150LZminにて火炎研磨を行うという一連の操作を 100本行い、 仕上がり表面を検査したところ、 100本のうち 1本に、発生率 1%で、表面に褐色を呈 する不純物が確認された。 First, flame polishing was performed with 270 LZmin of hydrogen and 170 LZmin of oxygen. The surface temperature at this time was 2100 ° C. Subsequently, the film was stretched with a flame of 260 LZ min of hydrogen and 150 LZ min of oxygen so that the surface temperature became 2400 ° C., so that the diameter became 50 mm. Subsequently, a series of 100 operations of performing flame polishing with 250 LZmin of hydrogen and 150 LZmin of oxygen were performed, and when the finished surface was inspected, one of the 100 lines showed a brown color on the surface with an incidence of 1%. Impurities were found.
[0029] (比較例 1)  (Comparative Example 1)
延伸加工を行う前に火炎研磨を行わない以外は、実施例 1に従い、 100本の加工 を行い、仕上がり表面を検査したところ、 100本のうち 10本に、発生率 10%で、表面 に褐色を呈する不純物が確認された。  Except that flame polishing was not performed before stretching, 100 pieces were processed and the finished surface was inspected according to Example 1, and out of 100 pieces, 10 out of 100 pieces had an incidence of 10% and the surface had brown color. Was observed.
[0030] (比較例 2) (Comparative Example 2)
延伸加工を行う前に火炎研磨を行わない以外は、実施例 2に従い、 100本の加工 を行い、仕上がり表面を検査したところ、 100本のうち 9本に、発生率 9%で、表面に 褐色を呈する不純物が確認された。  Except for not performing flame polishing before stretching, 100 pieces were processed and the finished surface was inspected according to Example 2, and 9 out of 100 pieces had an incidence rate of 9% and had a brown surface. Was observed.
産業上の利用可能性  Industrial applicability
[0031] 本発明の光ファイバ母材の加工方法によれば、母材表面への不純物の付着を抑 制し、高い歩留まりで光ファイバ母材を得ることができ、製造コストの低減に寄与する According to the optical fiber preform processing method of the present invention, the adhesion of impurities to the preform surface can be suppressed, and the optical fiber preform can be obtained with a high yield, which contributes to a reduction in manufacturing cost.

Claims

請求の範囲 The scope of the claims
[1] 両端が把持部材により支持された光ファイバ母材を、回転させながらバーナー火炎 で加熱し加工する方法にお!ヽて、該光ファイバ母材を所定の径に縮径する延伸工程 に先立ち、火炎研磨工程を行うことを特徴とする光ファイバ母材の加工方法。  [1] A method in which an optical fiber preform whose both ends are supported by gripping members is heated and processed with a burner flame while rotating! A method for processing an optical fiber preform, wherein a flame polishing step is performed prior to a stretching step of reducing the diameter of the optical fiber preform to a predetermined diameter.
[2] 火炎研磨工程を行なった後、連続して延伸工程を行う請求項 1に記載の光ファイバ 母材の加工方法。  2. The method for processing an optical fiber preform according to claim 1, wherein after the flame polishing step, the drawing step is performed continuously.
[3] 前記火炎研磨工程と前記延伸工程とを、同一の装置内で行うことを特徴とする請求 項 2に記載の光ファイバ母材の加工方法。  3. The method for processing an optical fiber preform according to claim 2, wherein the flame polishing step and the stretching step are performed in the same apparatus.
[4] 延伸工程を行なった後、さらに連続して火炎研磨工程を行う請求項 1乃至 3のいずれ かに記載の光ファイバ母材の加工方法。 [4] The method for processing an optical fiber preform according to any one of [1] to [3], wherein after the drawing step, the flame polishing step is further continuously performed.
[5] 前記延伸工程は、前記火炎研磨工程よりも高い温度で、前記光ファイバ母材の表面 を加熱することを特徴とする請求項 1乃至 4に記載の光ファイバ母材の加工方法。 5. The optical fiber preform processing method according to claim 1, wherein the stretching step heats a surface of the optical fiber preform at a higher temperature than the flame polishing step.
[6] 火炎研磨工程における光ファイバ母材の表面温度が 1800°C以上 2200°C未満、延 伸工程における光ファイバ母材の表面温度が 2000°C以上 2500°C未満の温度であ る請求項 1乃至 5のいずれかに記載の光ファイバ母材の加工方法。 [6] The claim that the surface temperature of the optical fiber preform in the flame polishing step is 1800 ° C or more and less than 2200 ° C, and the surface temperature of the optical fiber preform in the drawing step is a temperature of 2000 ° C or more and less than 2500 ° C. Item 6. The method for processing an optical fiber preform according to any one of Items 1 to 5.
[7] 火炎研磨工程において、光ファイバ母材全体を火炎研磨する請求項 1乃至 6のいず れかに記載の光ファイバ母材の加工方法。 [7] The method for processing an optical fiber preform according to any one of claims 1 to 6, wherein in the flame polishing step, the entire optical fiber preform is flame-polished.
[8] 火炎研磨工程において、光ファイバ母材の少なくとも一部を火炎研磨した後に、当該 光ファイバ母材全体を更に火炎研磨する請求項 1乃至 6のいずれかに記載の光ファ ィバ母材の加工方法。 [8] The optical fiber preform according to any one of claims 1 to 6, wherein in the flame polishing step, after at least a part of the optical fiber preform is flame-polished, the entire optical fiber preform is further flame-polished. Processing method.
[9] バーナー火炎が、水素及び Z又は鎖状炭化水素を燃焼ガスとする燃焼火炎である 請求項 1乃至 8のいずれかに記載の光ファイバ母材の加工方法。  [9] The method for processing an optical fiber preform according to any one of claims 1 to 8, wherein the burner flame is a combustion flame using hydrogen and Z or a chain hydrocarbon as a combustion gas.
[10] 請求項 1乃至 9のいずれかに記載の光ファイバ母材の加工方法を用いて、火炎研磨 加工及び延伸加工されたものであることを特徴とする光ファイバ母材。  [10] An optical fiber preform which has been subjected to flame polishing and stretching using the method for processing an optical fiber preform according to any one of claims 1 to 9.
PCT/JP2005/004445 2004-03-18 2005-03-14 Optical fiber preform processing method and optical fiber preform WO2005090248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004078156A JP2005263556A (en) 2004-03-18 2004-03-18 Method of working optical fiber preform and optical fiber preform
JP2004-078156 2004-03-18

Publications (1)

Publication Number Publication Date
WO2005090248A1 true WO2005090248A1 (en) 2005-09-29

Family

ID=34993595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004445 WO2005090248A1 (en) 2004-03-18 2005-03-14 Optical fiber preform processing method and optical fiber preform

Country Status (4)

Country Link
JP (1) JP2005263556A (en)
KR (1) KR20050093706A (en)
TW (1) TW200533617A (en)
WO (1) WO2005090248A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152045A (en) * 2013-02-05 2014-08-25 Fujikura Ltd Method for manufacturing base material for multi-core fiber and multi-core fiber
CN105621878A (en) * 2014-11-20 2016-06-01 信越化学工业株式会社 Optical fiber base material drawing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319031A (en) * 1999-05-10 2000-11-21 Shin Etsu Chem Co Ltd Flame polishing method for optical fiber reform
JP2001039727A (en) * 1999-07-28 2001-02-13 Shin Etsu Chem Co Ltd Optical fiber preform and method or processing preform for optical fiber
JP2001122635A (en) * 1999-10-22 2001-05-08 Shin Etsu Chem Co Ltd Method for manufacturing optical fiber, method for manufacturing preform and apparatus for manufacturing the preform
JP2001247327A (en) * 2000-03-06 2001-09-11 Shin Etsu Chem Co Ltd Method for thermal processing of optical fiber preform
JP2003095687A (en) * 2001-07-17 2003-04-03 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber preform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319031A (en) * 1999-05-10 2000-11-21 Shin Etsu Chem Co Ltd Flame polishing method for optical fiber reform
JP2001039727A (en) * 1999-07-28 2001-02-13 Shin Etsu Chem Co Ltd Optical fiber preform and method or processing preform for optical fiber
JP2001122635A (en) * 1999-10-22 2001-05-08 Shin Etsu Chem Co Ltd Method for manufacturing optical fiber, method for manufacturing preform and apparatus for manufacturing the preform
JP2001247327A (en) * 2000-03-06 2001-09-11 Shin Etsu Chem Co Ltd Method for thermal processing of optical fiber preform
JP2003095687A (en) * 2001-07-17 2003-04-03 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152045A (en) * 2013-02-05 2014-08-25 Fujikura Ltd Method for manufacturing base material for multi-core fiber and multi-core fiber
US9586852B2 (en) 2013-02-05 2017-03-07 Fujikura Ltd. Method of manufacturing preform for multicore fiber and method of manufacturing multicore fiber
CN105621878A (en) * 2014-11-20 2016-06-01 信越化学工业株式会社 Optical fiber base material drawing method

Also Published As

Publication number Publication date
TW200533617A (en) 2005-10-16
KR20050093706A (en) 2005-09-23
JP2005263556A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
KR20000035266A (en) Optical fiber manufacture method, preform manufacture method, and preform manufacture apparatus
WO1994003404A1 (en) Quartz glass plate large in size and high in purity, and method and device for making said plate
WO2005090248A1 (en) Optical fiber preform processing method and optical fiber preform
JP2003327440A (en) Method for manufacturing preform for optical fiber
JP3489345B2 (en) Optical fiber manufacturing method
US20070169515A1 (en) Processing method and processing apparatus of glass base material for optical fiber
JP6351175B2 (en) Optical fiber preform processing method
JP5528488B2 (en) Optical fiber preform drawing method
JP2003146687A (en) Method for manufacturing optical fiber preform
JPH1171125A (en) Production of preform for optical fiber
JP4377483B2 (en) Optical fiber preform and method for processing optical fiber preform
WO2006064608A1 (en) Method for drawing parent material of optical fiber and quartz dummy rod
JP4509283B2 (en) Thermal processing method for optical fiber preform
JP3437484B2 (en) Method and apparatus for manufacturing optical fiber preform
JP2014221691A (en) Dummy rod integrated optical fiber preform and preparation method thereof
JP2002053336A (en) Method for processing glass preform
JP2960716B2 (en) Drawing method and drawing apparatus for optical fiber preform
JP2004123439A (en) Process for manufacturing optical glass
JP2009107859A (en) Flame polishing method of glass preform
JP3066962B2 (en) Method and apparatus for stretching glass base material
JPS5934139B2 (en) Optical fiber manufacturing method
JP6283597B2 (en) Drawing method for optical fiber preform
JP2001039726A (en) Method for processing optical fiber preform and processing device therefor
JP2000290033A (en) Optical fiber preform and production of optical fiber preform
JP2004035369A (en) Method of manufacturing optical fiber preform

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase