[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005088962A1 - Tracking device and motion capture device - Google Patents

Tracking device and motion capture device Download PDF

Info

Publication number
WO2005088962A1
WO2005088962A1 PCT/JP2005/004176 JP2005004176W WO2005088962A1 WO 2005088962 A1 WO2005088962 A1 WO 2005088962A1 JP 2005004176 W JP2005004176 W JP 2005004176W WO 2005088962 A1 WO2005088962 A1 WO 2005088962A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
data
subject
tracking
image data
Prior art date
Application number
PCT/JP2005/004176
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Arisawa
Kazunori Sakaki
Original Assignee
Hiroshi Arisawa
Kazunori Sakaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshi Arisawa, Kazunori Sakaki filed Critical Hiroshi Arisawa
Publication of WO2005088962A1 publication Critical patent/WO2005088962A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders

Definitions

  • the present invention relates to a motion photographer, and more particularly to a tracking device for automatically tracking an object and a motion photographer provided with the tracking device.
  • motion canopy As a method of capturing such an object in the real world on a computer, a method called motion canopy has been known. This motion capture simulates the movement of a person or other moving body.
  • motion cameras For example, mechanical, magnetic or optical motion cameras are known as motion cameras.
  • an angle detector or pressure sensor is attached to the performer's body, and the movement of the performer is detected by detecting the bending angle of the joints.
  • a magnetic sensor exists by attaching a magnetic sensor to each part of the person's body, moving the performer in an artificially generated magnetic field, and detecting the density and angle of magnetic field lines with the magnetic sensor. The position is derived to detect the actor's movement.
  • a marker is attached to a place where it is desired to measure the movement of the performer's body, and this marker is imaged by a camera to measure the movement of each part of the marker.
  • Non-patent documents 1 and 2 are examples of methods for matching such multi-viewpoint video with a model.
  • a posture is estimated by overlaying and evaluating a three-dimensional model and a silhouette image in which only a subject is cut out in each image.
  • Non-Patent Document 2 the difference between the current image and the next image is obtained, and the difference is used to determine the posture.
  • Conventional motion cameras have a problem that the range for capturing the motion of the subject is narrow, and a wide-area motion camera capable of capturing a subject in a wide range is required.
  • An automatic tracking system can be considered as a method for reducing the burden on camera operation.
  • the subject In the wide area motion camera, the subject is as large as possible on the screen of the imaging camera. It is often required to be projected to the center of the screen. In addition, since the accuracy of motion acquisition is determined by the image obtained from the imaging camera to be tracked, the control as accurate as possible is required.
  • FIG. 15 is a view for explaining an object image projected on a screen in a wide area motion camera.
  • the distance between the subject and the camera changes with the movement of the subject, so for example, as shown in FIG.
  • the image may be projected at a position out of the center of the screen, the size of the image may be too small with respect to the screen, or only a part of the subject may be missing.
  • the image of the subject is displayed at the center of the screen as shown in (b) and (d), and the motion of the subject is captured. It is required that the desired part be projected as large as possible.
  • an automatic tracking system processing is not performed while the camera is operating, and frame differences are taken while the camera is stopped, an object with motion is extracted, and the camera is controlled so that the object is at the center of the screen.
  • subject information can not be acquired unless the camera is stopped, so there is a problem that it takes time to acquire information and tracking can not be performed.
  • the control of the zoom is performed only with the size of the detected subject area.
  • Non-Patent Document 7 A method has also been proposed that uses human skin color to control a subject area on an image so that that area is the center of the screen. Although it can be used under conditions, the part that can be grasped is a limited part such as the face and hands, so it is not suitable for photographing the whole body.
  • Patent Documents 1 and 2 disclose a patent application relating to a motion cap.
  • Non-Patent Document 1 Journal of the Institute of Electronics, Information and Communication Engineers D-II Vol. J 82-D-II No. 10 pp. 17 39-1749 October 1999 "Determination of posture of a person by movement and formation model"
  • Non-Patent Document 2 Transactions of the Institute of Electronics, Information and Communication Engineers D-II Vol. J80-D-II No. 6 pp. 158 1-1589 June 1997
  • Non Patent Literature 3 Masahiko Horiguchi, Yoshinori Takeuchi, Noboru Onishi "Smooth Pan-Tilt Moving Object Tracking", IEICE Technical Report IE, Image Engineering Vol. 99 Num. 610 pp. 43-48 (2000.02)
  • Non Patent Literature 4 Toshihiko Morita "Detection and tracking of motion by local correlation operation", Technical report of IEICE Technical Conference PRUM, Pattern recognition 'Media understanding' Vol. 100 Num. 44 pp. 55-62 (2000.05)
  • Non-Patent Document 5 Naoya Hada, Tetsuo Miyake "Tracking of Moving Objects with Active Vision System", The Journal of the Institute of Electronics, Information and Communication Engineers D-II Vol. J84-D-II No. (2001.1)
  • Non Patent Literature 6 Takashi Matsuyama, Toshikazu Wada, Tobu Obabe "Real-time target detection 'tracking using fixed viewpoint pan-tilt-zoom ( ⁇ Special feature> Image recognition'understanding)", IPSJ Journal Vol. 40 No. 8 pp. 3169-3178 (1999. 08)
  • Non-Patent Document 7 Kazuyuki Mitsuka, Keiichi Yamamura, Tokui Yamanaka “Development of Intelligence Robot Camera", Technical Report of the Institute of Television Engineers of Japan Vol. 17 No. 51 pp. 33- 37 (1993.09)
  • Patent Document 1 Japanese Patent Application No. 2002-379536
  • Patent Literature 2 # 112003-116631
  • the conventional method is to track the subject only with the information obtained by the tracking camera.
  • the obtained information is limited to the position of the center of gravity of the subject area on the image and the size of the area. Since the subject area has a bias, even if the area force also determines the center of gravity, the subject is not centered on the actual screen, and tracking can not be performed if the subject is off the screen. There is a big problem as a tracking system.
  • the present invention solves the above-mentioned conventional problems, and aims to automatically track a moving subject, and projects the subject largely on the screen of the imaging camera to be tracked, and in the center of the screen.
  • the purpose is to project.
  • the present invention uses a range finder and a fixed camera to obtain a two-dimensional absolute position of a subject from distance data and angle data that can also be obtained from a range finder, and the size of the subject using image data obtained from fixed camera power.
  • a tracking imaging camera (hereinafter referred to as a tracking camera) forms a force melanometer for tracking the subject.
  • the tracking camera is controlled in accordance with the movement of the subject by controlling the pan and tilt of the tracking camera.
  • the subject is photographed in the center of the screen displayed by the tracking camera, and the zoom of the tracking camera is controlled to make the subject large on the screen, and the focus of the tracking camera is controlled. Focus on.
  • the present invention can be embodied as a tracking device, a tracking method, and a motion capture device including the tracking device.
  • the form of the tracking device of the present invention is a tracking device for causing a tracking camera to track an object, and a range finder for measuring the distance and angle from a fixed position of an object within a predetermined area, and A subject camera for forming subject information for determining a subject area by using a fixed camera for obtaining image data of the area, and distance data and angle data obtained by the range finder and image data obtained by the fixed camera;
  • Each means of the camera parameter formation means for forming the camera parameters of the tracking camera using object information and distance data is provided, and the range finder and the fixed camera are fixed and arranged in a predetermined area.
  • the range finder is a measuring means for detecting the distance to the subject and the angle, and for example, a laser-one range finder can be used.
  • the laser range finder is a device that scans in the horizontal direction while changing the irradiation angle of the laser and measures the distance and angle to the subject by detecting the reflection of the subject's force. By fixing the range finder at a predetermined position, it is possible to detect a two-dimensional absolute position of the subject in a predetermined area. In addition, the fixed camera captures an image of a predetermined area and acquires image data of the area.
  • Image data captured by the fixed camera includes subject data and background data.
  • Background data is image data which does not change regardless of the movement of the subject within a predetermined area.
  • subject data changes as the subject moves within a predetermined area.
  • a subject area where the subject is present is determined from image data captured by a fixed camera, and subject information of the position and size of the subject is acquired from this subject area.
  • the subject information forming means uses background data from image data.
  • the subject area is acquired from the difference image data obtained by subtracting the data.
  • the processing time takes a long time. Therefore, according to the present invention, high-speed processing is performed by performing difference processing only on the candidate area formed by the candidate area forming means.
  • the candidate area forming means forms a candidate area for performing image difference out of the whole area using the distance data and angle data acquired by the range finder.
  • the present invention also includes a differencer that subtracts background data from image data.
  • the differencer is a hardware configuration that acquires background image processing that subtracts image data and background data only in the candidate area to acquire difference image data, and is not processing by software, so that difference processing can be performed with high-speed processing.
  • the subtractor may have a circuit configuration that performs, for each pixel, differential processing between image data sequentially input from the fixed camera and background data acquired in advance.
  • the differential image data can be output at the same speed as the image data input from the fixed camera by sequentially differential processing the image data input serially as the fixed camera power for each pixel, and for real time tracking. It is possible to form camera parameters and to track the subject in real time.
  • the subject information forming means obtains the size of the subject from the difference image data obtained by the difference processing. Further, the distance data force obtained by the range finder also obtains the position of the subject.
  • a focus value for focusing the camera on the subject a pan value and tilt value for aligning the subject on the subject, and the subject at the center of the screen, and There is a zoom value that determines the size of the image.
  • the camera parameter formation means also forms a focus value as the distance data force, forms a position force pan value and a tilt value of the subject of the subject information, and forms a zoom value from the size of the subject of the subject information.
  • the camera parameter formation means forms camera parameters of each tracking camera based on calibration data of the plurality of tracking cameras. Thereby, even if the tracking camera is disposed at an arbitrary position, it is possible to form camera parameters suitable for each tracking camera. it can.
  • Each of the formed camera parameters is transmitted to the corresponding tracking camera, and controls a drive provided in the tracking camera.
  • the driving device drives the tracking camera according to the transmitted camera parameters, controls pan and tilt to center the tracking camera on the center of the subject, and controls the zoom to adjust the size of the image so that it is projected on the screen. , Focus control by controlling.
  • the tracking device of the present invention is characterized by the arrangement configuration of the range finder and the fixed camera.
  • One embodiment of a tracking device is a tracking device for causing a tracking camera to track an object, comprising: a range finder for measuring a distance and an angle from a fixed position of an object within a predetermined area; A configuration that includes a fixed camera that acquires image data of a region, and position information of a range finder and the reference position of the fixed camera, and acquires distance data, angle data, and image data based on the reference position. Do.
  • Another embodiment of the tracking device is a tracking device for causing a tracking camera to track an object, and a range finder for measuring the distance and angle from a fixed position of an object within a predetermined area. And a fixed camera for acquiring image data of a predetermined area, and the range finder and the fixed camera are vertically overlapped and arranged on the same plane position, and distance data and angle data based on the same position. And acquire image data.
  • the fixed camera includes a plurality of imaging cameras arranged with different horizontal orientations, and the range finder is configured to arrange at least one above and Z or below the imaging cameras.
  • two range finders can be arranged in the vertical direction.
  • the measurement range in the horizontal direction of the range finder includes the imaging range in the horizontal direction of the fixed camera, or the imaging range in the horizontal direction obtained by combining image data of a plurality of fixed cameras.
  • image data of a plurality of fixed cameras By combining image data of a plurality of fixed cameras, a wide imaging range in the horizontal direction can be obtained. Note that the image data of multiple tracking cameras is horizontally overlapped Thus, the omission of image data can be prevented.
  • the present invention is also in the form of a motion capture device provided with the tracking device of the present invention.
  • the motion capture device of the present invention comprises at least one tracking camera and image data processing means for synchronously acquiring and storing imaging data of the tracking camera, and the tracking device is formed Drive control of each tracking camera based on the selected camera parameters to acquire tracking image data of the subject.
  • the form of the tracking method according to the present invention is a tracking method for causing a tracking camera to track an object, which comprises: measuring a distance and an angle from a fixed position of an object within a predetermined area; Step of acquiring image data of a region, step of forming object information which determines object region using distance data and angle data and image data, camera parameters of tracking camera using object information and the distance data Each step of the steps of forming Thereby, distance data, angle data, and the image data are acquired at a fixed position with respect to a predetermined area.
  • the step of forming subject information includes a step of determining a subject area from difference image data obtained by subtracting background data from image data force, and a step of acquiring subject information of the position and size of the subject.
  • the step of forming the subject information more specifically, the step of forming a candidate area for performing image difference from the distance data and the angle data, and the process from the image data to the background only in the candidate area.
  • a moving subject can be automatically tracked.
  • FIG. 1 is a view for explaining an outline of a motion photographer.
  • FIG. 2 is a view for explaining an outline of a motion capture device provided with the tracking device and the tracking device of the present invention.
  • FIG. 3 is a diagram for describing an outline of a flow of tracking processing according to the present invention.
  • FIG. 4 is a block diagram for explaining one configuration example of a tracking device of the present invention.
  • FIG. 5 is a flowchart for explaining the tracking process of the present invention.
  • FIG. 6 is a diagram for explaining setting of candidate areas according to the present invention.
  • FIG. 7 is a view for explaining a first mode of formation of a subject area according to the present invention.
  • FIG. 8 is a view for explaining a second mode of formation of a subject area according to the present invention.
  • FIG. 9 is a view for explaining background difference processing of the present invention.
  • FIG. 10 is a view for explaining the formation of pan and tilt of the present invention.
  • FIG. 11 is a view for explaining the configuration of the tracking device of the present invention.
  • FIG. 12 is a view for explaining data obtained by a plurality of fixed cameras and a plurality of range finders of the present invention.
  • FIG. 13 is a diagram for explaining processing when a plurality of range finders of the present invention form one subject.
  • FIG. 14 is a view for explaining an example of the system configuration of the motion capture device of the present invention.
  • FIG. 15 is a view for explaining an object image projected on a screen in a wide area motion scanner.
  • FIG. 1 is a view for explaining an outline of a motion photographer.
  • the motion of the subject is acquired in a two-step procedure.
  • FIG. 1 (a) shows the first step, in the initial frame, the position and orientation of each camera 4A-4D in a unified coordinate system such as the world coordinate system, a calibration board or a check pattern.
  • the initial state is determined using a reference object 101 such as.
  • FIG. 1 (b) shows the second step, in which the behavior of each camera 4A-4D at each time point is acquired using the data processing apparatus 100 which acquires and records in synchronization with the video camera image in the next frame, , The positions of pan, tilt, zoom, and focus at each point are recorded, the state displacement from the initial state is acquired, and the calibration is dynamically changed.
  • the subject moving in the wide area space is imaged while shaking the head of the camera, and the motion of the subject 111 is acquired by model analysis or the like.
  • FIG. 2 is a view for explaining an outline of a motion capture device provided with the tracking device and the tracking device of the present invention.
  • the motion capture device captures the motion of the subject 11 in the predetermined area 200 with a plurality of imaging cameras 4 (4A to 4D), and the data processing means 100 analyzes the subject 111 by model analysis or the like. Get the action.
  • the imaging camera 4 (A4-4D) is provided with a driving device for changing the pan, tilt, zoom, focus, etc. of the camera, and the tracking camera (hereinafter referred to as tracking camera 4A-4D).
  • tracking camera 4A-4D the tracking camera
  • tracking cameras 4A to 4D are shown.
  • the number of force tracking cameras is not limited to four, and one or a plurality of optional tracking cameras can be used.
  • the present invention is provided with a tracking device for causing the tracking camera 4 to track the subject 11.
  • the tracking device includes control means 1, range finder 2 (2 A, 2 B), and fixed camera 3.
  • the range finder 2A, 2B and the fixed camera 3 are fixed at a predetermined position P with respect to the predetermined area 200, and the range finders 2A, 2B measure the distance and angle between the predetermined position P and the subject 11.
  • the fixed camera 3 captures a background and an object 11 as viewed from the predetermined position P, and acquires camera image data.
  • FIG. 2 an example of a configuration in which the range finder 2 and the fixed camera 3 are installed at the same two-dimensional position, and the range finder 2 A and the range finder 2 B are arranged at the upper limit position sandwiching the fixed camera 3. Is shown.
  • Fixed camera 3 outputs image data in which the entire predetermined area 200 is imprinted. Further, the range finder 2 outputs, on a plane in the predetermined area 200, data of the distance from the position force subject 11 where the range finder 2 is installed and the angle from the reference position. As shown in FIG. 2, when the two range finders 2A and 2B are arranged in the vertical direction, the distance data and angle data to the subject 11 in different planes in the predetermined area 200 are output.
  • the plane scanned by the range finder 2 may be limited to a horizontal plane, and may be installed at a predetermined elevation angle.
  • the control means 1 forms camera parameters of each tracking camera 4 based on data acquired by the range finders 2 A and 2 B and the fixed camera 3, and sends these camera parameters to the respective tracking cameras 4.
  • the camera parameters are formed in real time each time the subject 11 moves.
  • the drive device provided in the tracking camera 4A-4D automatically tracks the subject 11 by controlling pan, tilt, zoom and focus based on the camera parameters sent from the control means 1, The subject 11 is enlarged to the center of the screen of each camera.
  • FIG. 3 is a diagram for describing an outline of a flow of tracking processing of the present invention.
  • camera parameters for causing each tracking camera to track the subject are formed based on the data obtained from the range finder and the fixed camera, and the camera camera uses the camera parameters to track the tracking camera. Control.
  • the range finder measures distance data r and angle data ⁇ to obtain a two-dimensional absolute position of the subject in a predetermined area.
  • the fixed camera captures an image in a predetermined area, and acquires image data including background data and subject data.
  • a pan for controlling the horizontal swing of the tracking camera a tilt for controlling the vertical swing, and a size for determining the size of the subject displayed on the screen of the tracking camera. There is a focus to focus the camera of the camera.
  • pan, tilt, and zoom are formed based on subject information including position information and size information of the subject, and focus is formed based on the distance between the tracking camera and the subject. Do. Note that the position of the subject can be set to any position on the subject. Since the normal subject is displayed at the center of the screen, it is appropriate to set the center of the subject.
  • pan, tilt, and zoom formation processing will be described. As described above, pan, tilt and zoom camera parameters are obtained from object information.
  • pan, tilt and zoom are camera parameters for making the tracking camera follow the subject and for capturing the subject's image as large as possible in the center of the camera's screen, and the screen is usually rectangular in shape. This is because it is sufficient if it is possible to grasp a rectangular area including the subject inside, and even the minute shape of the subject is unnecessary.
  • the subject region representing the subject information is obtained based on distance data and angle data obtained from the range finder, and image data obtained also for the fixed camera power.
  • the subject area can be obtained from subject data included in the image data, and the image data strength can also be determined by background subtraction processing that subtracts the background data captured in advance.
  • the image captured by the fixed camera includes a background part that does not change even when the subject moves, and a subject part that changes with the movement of the subject. Background subtraction processing of the background part is used to acquire tracking data. Is an unnecessary process, and it is sufficient that only subject data related to the movement of the subject required for acquisition of tracking data is acquired.
  • the tracking processing of the present invention narrows down the area where the subject data may exist, and reduces the amount of data to be subjected to difference processing by performing background difference processing not on the entire area but only on a partial area. To increase processing speed.
  • the tracking process of the present invention narrows the processing area based on the distance data and angle data obtained by the range finder. Hereinafter, this narrowed processing area is referred to as a candidate area.
  • subject data is acquired by subtracting background data from image data only for candidate areas in image data captured by a fixed camera.
  • Pan and tilt are represented by the world coordinates V among the subject information represented by the subject area, and the position of the subject (the center position when the subject is photographed at the center of the tracking camera screen), Calculated by coordinate conversion to camera coordinates. Further, in the zoom, the focal length is obtained from the size of the subject in the subject information represented by the subject area, and the zoom value is obtained from the correspondence relationship between the focal length and the zoom value obtained in advance.
  • the turtle in focus The parameter is obtained from subject information formed based on the distance between the tracking camera and the subject.
  • the correspondence relationship between the distance and the focus can be obtained in advance, and the focus can be obtained by reading out the focus corresponding to the distance data obtained by the range finder.
  • the tracking device includes a range finder 2 fixed to a predetermined area, a fixed camera 3 similarly fixed to the predetermined area, distance data and angle data obtained by measurement with the range finder 2, and a fixed camera There is provided a control means 1 which inputs image data obtained by imaging in 3 and forms camera parameters for causing each tracking camera 4 to track an object, and transmits the camera parameters to each tracking camera 4.
  • Control means 1 includes serial board la, candidate area forming means lb, video frame buffer 1c, background data Id, difference unit le, memory If, object information forming means lg, camera parameter forming means lh, transmitting means Have li.
  • the range finder 2 is a measuring means for detecting the distance to the subject and the angle, and for example, a laser range finder can be used.
  • the laser range finder scans horizontally while changing the irradiation angle of the laser, acquires angle data based on the irradiation angle of each laser, irradiates the laser at the irradiation angle, and then reflects from the subject.
  • the distance data to the subject is acquired by the time difference until the signal is detected.
  • the distance data is the distance between the installation position of the range finder and the subject.
  • a signal in the absence of the subject is obtained in advance, and the area where the subject is present is grasped by comparing the background data with the measurement data. And the distance between this area and the position where the range finder is installed.
  • the scanning angle when scanning in the horizontal direction The angle data at which the subject exists is acquired from.
  • a plurality of range finders 2 can be installed at the same position on the plane, and the detection height can be changed by making the installation heights different. A subject can be detected. Also, if one range finder can not cover the entire area of a given area, two-dimensional position data can be acquired by installing it at multiple locations.
  • the fixed camera 3 captures an image of a predetermined area to obtain image data of the area.
  • the area captured by the fixed camera 3 is always the same regardless of the movement of the subject.
  • the distance data and angle data acquired by the range finder 2 are input to the candidate area forming means lb via the serial board la as the range data recorded in the memory If.
  • the candidate area forming means lb finds the area where the subject is present, and narrows down the area where the background difference processing is performed.
  • the range data recorded in the memory If is a range image.
  • Range Finder The obtained range data is a signal obtained by scanning and is a range image represented by a scanning angle and signal intensity at the scanning angle.
  • the image data captured by the fixed camera 3 is stored in the video frame buffer lc, and the image data corresponding to the area of the candidate area is read out from the video frame buffer lc by the candidate area forming means lb and the difference unit Perform background difference processing with background data Id stored in advance by le.
  • the background difference processing the image data of the same pixel in the candidate area is read for each pixel from the video frame buffer lc and the background data Id, and the difference processor le performs difference processing for each pixel.
  • This differencing device le can be configured by hardware.
  • This background difference processing is performed by performing difference processing for each pixel and configuring a difference unit with nodeware.
  • the speed can be increased and differential images can be acquired in real time.
  • the acquired difference image is recorded in the memory if.
  • This difference image is used to form a subject area for forming a finder parameter together with the range image.
  • the image data of the video frame buffer lc is recorded as a real image in the memory If, and is used for fine correction processing in formation of a subject area. This is because when performing subtraction based on color information in background subtraction processing, if the subject color is close to the background color, subject data can not be acquired correctly because the subject part is removed as the background. In order to eliminate this problem, the actual image is used to correct this scraped portion.
  • Object information (object region) forming means lg inputs a range image, a difference image, and an actual image from the memory If.
  • the input difference image is finely corrected using the real image, and a rectangular area including the corrected difference image is formed as a subject area. If fine correction with a real image is not necessary, the subject area may be formed directly from the difference image which does not need to be finely corrected the difference image.
  • the subject information (subject region) forming means lg obtains the position of the subject as well as the range image power. At this time, as described above, it is usually appropriate to find the center of the subject. 1S You may set another part as the position of the subject if necessary.
  • the camera parameter formation means lh receives information of the size of the subject and the position of the subject from the subject information formation means lg, forms the camera parameters of each tracking camera as described above, and forms the formed camera parameters. Transmit to each tracking camera 4.
  • FIG. 5 a flowchart for explaining the tracking process shown in FIG. 5, a diagram for explaining the setting of the candidate area shown in FIG. 6, and a first embodiment of the formation of the subject area shown in FIG.
  • FIG. 8 is a diagram for explaining the second mode of formation of the subject region
  • FIG. 9 is a diagram for explaining the background difference processing
  • FIG. 10 is a diagram for explaining the formation of pan and tilt This will be described using The procedure of the tracking process is indicated by the number attached to (Step S) shown in the flowchart of FIG.
  • FIG. 6 (a) schematically shows the detection state of the subject by the range finder, O indicates the reference point of the range finder, and A indicates the distance to the detection point as well. . Since the range finder scans in the horizontal direction, the locus shown in A Contains distance data. When there is no subject, the position on the locus A can be regarded as a wall surface, and has a fan-like shape. When there is a subject, the distance from the reference point O is detected as a short area. For example, B is a region where the distance is rl and the angle is ⁇ 1, and B is a region where the distance is r 2 and the angle is ⁇ 2. The distance and angle of this area can be represented by an average value because the subject has a large width. In the subsequent background difference processing, this area is used to narrow the range in which the background difference processing is performed.
  • the first form of narrowing down of candidate areas is to narrow down candidate areas by extracting points connected to the area from image data.
  • FIG. 6 (b) shows the relationship between the range data and the image data, and when the subject 11A, 11B is present in the image data, the range data corresponding to the subject 11A, 11B is placed in the range data. Data is detected. Since the range finder detects a subject on a plane, the range data 20 is represented by areas 21A and 21B on the line 22 shown by broken lines in FIGS. 6 (b) and 6 (c). Ru. FIG. 6 (d) shows the image data corresponding to FIG. 6 (c), and the subjects 31A and 31B are displayed. (Step S1)
  • FIG. 7 is a diagram for explaining this process.
  • FIG. 7 (a) shows the subject 31 in the image data 30, and FIG. 7 (b) shows the line 22 and the area 21 in the range data 20.
  • the subject 31 can be viewed as a collection of points continuously connected from the area 21. Therefore, a group of points (pixels) connected to the area 21 is sequentially determined (Fig. 7 (c), (d), (e)), and a rectangular area D obtained thereby is set as a candidate area (Fig. 7 (f)). Difference processing is performed, and a pixel whose value obtained as the difference is equal to or more than a threshold value is set as a subject. (Step S2)
  • a virtual subject space in a three-dimensional space is a candidate area, and this space is projected on the screen of a fixed camera, and the space is projected.
  • the background difference processing is performed only for the pixels, and the pixels having the value obtained by the difference and the threshold value or more are set as the subject.
  • FIG. 8 shows a state in which a virtual subject space in a three-dimensional space is projected on the screen of a fixed camera.
  • Range data is a value of two-dimensional coordinates, which is one plane of the world coordinate system Can be converted as a point (XY plane) of This means that the subject (the center of the subject) exists somewhere on a straight line (this straight line is 1) extending in the direction perpendicular to the plane from that point.
  • one straight line (this straight line is assumed to be m) is determined in the three-dimensional world coordinate system as one point on the two-dimensional image. .
  • the projection is performed on the world coordinate system, and the minimum distance between the straight line 1 and the straight line m is calculated. Since the approximate center of the subject is present somewhere on the straight line 1, background subtraction processing is performed only for objects within a certain range of the calculated distance, and pixels with this difference are taken as the subject.
  • FIG. 9 is a diagram for describing the narrowing down of the candidate area and the background difference.
  • FIG. 9 (a) shows the image data 30, and FIG. 9 (b) shows the background data.
  • the image data 30 contains data of the subject 31 and the background 41, and the background data 40 contains data of the background 41. In each data, the data of the range of the candidate area is taken out.
  • FIG. 9 (c) shows image data in the candidate area 50, and
  • FIG. 9 (d) shows background data in the candidate area 50.
  • FIG. A difference image is obtained by performing background difference processing on the image data and background data in these candidate areas (Fig. 9 (e)).
  • the data strength of the difference image The subject information can be calculated, for example, as follows. For all pixels considered to be subject areas, calculate the three-dimensional coordinates of two points on straight line 1 and straight line m that constitute the minimum distance for the pixels with differences, and calculate the Z coordinates of the points on straight line 1 Calculate the minimum and maximum values. Two-dimensional coordinates (xy coordinates) and (maximum value minimum value in the world coordinate system converted from the range finder by using (maximum value-minimum value) as the size of the object using the minimum value and maximum value thus determined ) The three-dimensional coordinates plus Z2 + minimum value is the position of the subject.
  • Step S2 the distance force between the origin coordinate and the point of the camera coordinate of the tracking camera in the world coordinate system is acquired.
  • the subject area determined from the background difference data is finely corrected using the actual image as described above (step S3), the camera parameters are determined (step S4), and the determined camera parameters are determined.
  • the tracking camera is controlled based on it (step S5). Repeat this process Tep S6).
  • the tracking camera obtains the correspondence between the world coordinate system and the camera coordinate system by calibration.
  • a point P on the world coordinate system can be imprinted at the center of the image by the line passing through the point P overlapping the Z axis of the camera coordinate system which is the optical axis.
  • FIG. 10 shows this positional relationship.
  • the angular force between the straight line and the XY plane of the camera coordinate system is determined, and the angular force between the straight line and the YZ plane of the camera coordinate system is also determined as the tilt movement angle.
  • the zoom can be controlled by the focal length of the tracking camera.
  • the focus value can be obtained by acquiring the distance from the lens to the subject from the distance data of the range finder. Note that by finding the correspondence between the distance and the pulse value for control, it is possible to calculate a pulse value for performing focus control of the distance force tracking camera.
  • the tracking device of the present invention is a tracking device for causing the tracking camera to track an object, and is characterized in the arrangement configuration of the range finder and the fixed camera, and the range finder and the fixed power camera are overlapped in the vertical direction. Arrange on the same plane position and acquire distance data, angle data and image data based on the same position.
  • FIG. 11 (a) shows an example of the configuration of the tracking device of the present invention.
  • range finders 2A and 2B are provided above and below the fixed camera 3.
  • the range finder 2A, 2B and the fixed camera 3 are mounted on a vertically erected support and placed on the same plane in the same position. By this, distance data, angle data and image data based on the same position are obtained. Get the
  • FIG. 11 (b) shows another form of the configuration of the tracking device of the present invention. This form is configured to include a plurality of fixed cameras 3.
  • the fixed cameras 3A, 3B, 3C are arranged with different horizontal orientations, and the range finder 2
  • At least one of A and 2B is disposed above and Z or below fixed cameras 3A, 3B and 3C. Further, the range finders 2A and 2B can be configured to arrange two in the vertical direction.
  • the measurement range in the horizontal direction of the range finder 2A, 2B is the horizontal imaging range obtained by combining the horizontal imaging range of the fixed cameras 3A, 3B, 3C or the image data of a plurality of tracking cameras. Include range.
  • a wide imaging range in the horizontal direction can be obtained.
  • FIG. 12 is a diagram for explaining data obtained by a plurality of fixed cameras and a plurality of range finders. Here, the line 22 of the range data is shown superimposed on the image data 30.
  • FIG. 12 (a) is an example of image data and range data when one fixed camera and one range finder are combined.
  • the subject 31 is formed only when it is present in the image data 30 at a position overlapping the line 22 of the range data.
  • FIG. 12 (b) is an example of image data and range data when three fixed cameras and one range finder are combined.
  • the image data 30 can be formed by connecting image data 30A, 30B and 30C obtained from three fixed cameras.
  • the image data 30A, 30B, and 30C can be prevented from missing portions of the image by capturing with overlapping portions.
  • FIG. 12 (c) is an example of image data and range data when three fixed cameras and two range finders are combined, and the range finder is arranged in the vertical direction. Obtain range data at different heights.
  • Image data 30 includes image data 30A, 30B, and 30C obtained from three fixed cameras. It can be formed by unifying, and two range data lines 22A, 22B by two range finders can be obtained for this image.
  • the plurality of range finders can acquire range data at different heights, and therefore, subjects 31a present at low positions and subjects 31c present at high positions can also be detected.
  • one range subject may be detected by a plurality of range finders.
  • the subject area can be formed as one subject by applying a process called a so-called exudation method.
  • FIG. 13 is a diagram for explaining processing when the plurality of range finders form one object.
  • FIG. 13 (a) shows the relationship between the subject 31 and the two range data lines 22A and 22B.
  • areas 21a, 21b, 21c of range data for detecting an object at a plurality of places are obtained.
  • each range data can not distinguish whether a different subject or a single subject is detected.
  • the pixels connected to each of the areas 21a, 21b and 2lc are extracted (FIGS. 13 (c), (d), (e) )) It is determined whether or not the connection between these pixels is generated, and this determination is made to distinguish whether it is a different subject or a single subject.
  • FIG. 14 is a diagram for explaining an example of the system configuration of the motion capture device.
  • the imaging cameras 4A to 4D which are tracking cameras, are synchronized by the synchronization signal from the external synchronization signal generator 10.
  • data of pan, tilt, zoom, and focus of each imaging camera 4A-4D is also collected by the data collector 6 in synchronization.
  • the data collector 6 receives the frame count from the frame counter 5 to obtain data synchronization between frames.
  • the data control device 7 synchronizes the data of the camera parameters and the image data of the imaging camera 4A-4D in a synchronized manner, and accumulates them in the video data storage device 8.
  • the host control unit 9 stores data stored in the video data storage unit 8 and a camera parameter storage unit. Data can be input and simulation can be performed.
  • the present invention can be applied to various fields such as analysis of exercise and application to rehabilitation, application to sports broadcasting, and application to an environment in which a person can not operate a camera.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Studio Devices (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

[PROBLEMS] To track a moving object automatically and display the object on a screen of a tracking imaging camera, where the display is on a large scale and at the center of the screen. [MEANS FOR SOLVING PROBLEMS] A tracking device is a device for making a tracking camera track an object. The tracking device has a range finder (2) for measuring in a predetermined range the distance and angle from the position where an object is fixed, a fixed camera (3) for acquiring image data in the predetermined range, object information forming means for forming object information determining an object region, the forming made by using the distance data and angle data acquired by the range finder and the image data acquired by the fixed camera, and camera parameter forming means for forming camera parameter of the tracking camera by using the object information and the distance data. The range finder and the fixed camera are arranged in a fixed manner in the predetermined range.

Description

明 細 書  Specification
追尾装置、及びモーションキヤプチヤ装置  Tracking device and motion capture device
技術分野  Technical field
[0001] 本発明は、モーションキヤプチヤに関し、特に被写体を自動追尾する追尾装置及び 追尾装置を備えるモーションキヤプチヤに関する。  TECHNICAL FIELD [0001] The present invention relates to a motion photographer, and more particularly to a tracking device for automatically tracking an object and a motion photographer provided with the tracking device.
背景技術  Background art
[0002] 工業、医学の他、スポーツなど種々の分野において、現実の世界にある物体を計 算機上に取り込み、計算機上で種々の処理を行うことが試みられている。例えば、人 や物の移動あるいは物体の形状の情報を取得して、人や物の移動解析や、仮想空 間の形成等に利用される。  In various fields such as industry, medicine, and sports, it has been attempted to take objects in the real world onto a computer and perform various processes on the computer. For example, information on the movement of a person or object or the shape of an object is acquired and used for analysis of movement of a person or object, formation of a virtual space, and the like.
[0003] しかし、実際に評価したい人や物体は様々な環境下で作業を行うため、必ずしもこ れら情報を取得するに適した場所ではない。また、現実世界を行われている事象を そのまま計算機上に取り込むには、人や物体等の対象物やその周辺環境に時間を とらせず、作業に支障が生じな 、ことが必要である。  However, because people and objects that want to be evaluated actually work under various environments, they are not necessarily suitable places for acquiring such information. In addition, in order to capture events that are being performed in the real world directly on a computer, it is necessary that work be performed without causing time to be taken by objects such as people or objects and their surrounding environment.
[0004] 従来、このような現実の世界にある物体を計算機上に取り込む手法として、モーショ ンキヤプチヤと呼ばれるものが知られている。このモーションキヤプチャは、人などの 動体の動きをシミュレートするものである。  Heretofore, as a method of capturing such an object in the real world on a computer, a method called motion canopy has been known. This motion capture simulates the movement of a person or other moving body.
[0005] モーションキヤプチヤとして、例えば機械式、磁気式、光学式が知られて 、る。機械 式のモーションキヤプチヤでは、演技者の体に角度検出器や感圧器を取り付け、関 節部の折れ曲がり角度を検出することにより演技者の動きを検出し、磁気式のモーシ ヨンキヤプチャでは、演技者の身体の各部に磁気センサを取り付け、人工的に生成さ れた磁場の中で演技者を動かして、磁力線の密度と角度を磁気センサによって検出 することにより、磁気センサが存在する絶対的な位置を導出して演技者の動きを検出 する。  For example, mechanical, magnetic or optical motion cameras are known as motion cameras. In mechanical motion cameras, an angle detector or pressure sensor is attached to the performer's body, and the movement of the performer is detected by detecting the bending angle of the joints. A magnetic sensor exists by attaching a magnetic sensor to each part of the person's body, moving the performer in an artificially generated magnetic field, and detecting the density and angle of magnetic field lines with the magnetic sensor. The position is derived to detect the actor's movement.
[0006] また、光学式のモーションキヤプチヤでは、演技者の体の動きを計測したい場所に マーカを取り付け、このマーカをカメラで撮像することにより、マーカの位置力も各部 の動きを計測する。 [0007] 何れの方式においても被験者に検出器やセンサあるいはマーカを取り付ける必要 があり、被験者の負担となっている。高精度が得られる光学式のモーションキヤプチ ャにおいても、人体全体の動きを取得するには数十個のマーカを装着する必要があ り、その用途が限定される。 Further, in the case of an optical motion camera, a marker is attached to a place where it is desired to measure the movement of the performer's body, and this marker is imaged by a camera to measure the movement of each part of the marker. [0007] In any method, it is necessary to attach a detector, sensor or marker to the subject, which is a burden on the subject. Even in the case of an optical motion capture camera that can obtain high accuracy, it is necessary to mount several tens of markers in order to obtain the movement of the entire human body, and its application is limited.
[0008] これに対して、被験者に対して負担の力からないモーションキヤプチャも提案されて いる。このモーションキヤプチャは、多視点カメラの画像を用いて、仮想の 3次元人体 モデルとの対応をとることにより、非接触により人体の動きを取り込む。このような多視 点映像とモデルとのマッチングを行う方法として、例えば、非特許文献 1, 2がある。非 特許文献 1では、各画像において被験者にみを切り出したシルエット画像と、 3次元 モデルとを重ね合わせて評価することにより姿勢を推定する。また、非特許文献 2で は、現在の画像と次の画像との差分を求め、この差分を用いて姿勢を決定する方法 である。  [0008] On the other hand, there is also proposed a motion capture that is not burdensome for the subject. This motion capture captures the movement of the human body in a non-contact manner by using the images of a multi-viewpoint camera and taking correspondence with a virtual three-dimensional human body model. Non-patent documents 1 and 2 are examples of methods for matching such multi-viewpoint video with a model. In Non-Patent Document 1, a posture is estimated by overlaying and evaluating a three-dimensional model and a silhouette image in which only a subject is cut out in each image. In Non-Patent Document 2, the difference between the current image and the next image is obtained, and the difference is used to determine the posture.
[0009] 従来のモーションキヤプチヤでは、被写体の動きをとらえる範囲が狭いという問題が あり、広い範囲で被写体をとらえることができる広域モーションキヤプチヤが求められ ている。  Conventional motion cameras have a problem that the range for capturing the motion of the subject is narrow, and a wide-area motion camera capable of capturing a subject in a wide range is required.
[0010] この広域モーションキヤプチヤでは、複数台のカメラによって被写体をとらえるシス テムが提案されている。この広域モーションキヤプチヤでは、各カメラのセンサデータ (パン,チルト、ファーカスなど)を正確に計測し、複数台のカメラのセンサデータと非 圧縮画像を同期して蓄積する構成が提案されている。この構成では、被写体を撮影 する際に、カメラの首振りやズームを変えることにより空間的な制約を抑える。  In this wide area motion camera, a system has been proposed in which an object is captured by a plurality of cameras. In this wide-range motion camera, a configuration has been proposed that measures sensor data (such as pan, tilt, and furkas) of each camera accurately, and stores sensor data of multiple cameras and uncompressed images in synchronization. . In this configuration, when shooting an object, spatial constraints are reduced by changing the camera shake and zoom.
[0011] し力しながら、広域モーションキヤプチヤで、カメラの首振りやズーム変化等の操作 を複数台のカメラで行うために、カメラの台数と同数以上の人が必要となる。この複数 人のカメラ操作者を要する点、広域モーションキヤプチャを実現する上で大きな負担 である。  [0011] In order to perform operations such as camera shake and zoom change with a plurality of cameras in a wide area motion camera while being powerful, more people than the number of cameras are required. The need for multiple camera operators is a major burden in achieving wide area motion capture.
[0012] カメラ操作上の負担を軽減させる方法として自動追尾システムが考えられる。とくに 、広域モーションキヤプチヤに用いる自動追尾では、被写体情報を安定して正確に 把握し、カメラ制御に適したデータが得られることが求められる。  An automatic tracking system can be considered as a method for reducing the burden on camera operation. In particular, in automatic tracking used for wide area motion cameras, it is required that subject information be stably and accurately grasped, and data suitable for camera control be obtained.
[0013] 広域モーションキヤプチヤでは、撮像カメラの画面上には、被写体ができるだけ大き ぐまた画面の中央に映し出されることが多く求められる。また、追尾する撮像カメラか ら得られる画像によって動作取得の精度が決まるため、できるだけ正確な制御が要 求される。 In the wide area motion camera, the subject is as large as possible on the screen of the imaging camera. It is often required to be projected to the center of the screen. In addition, since the accuracy of motion acquisition is determined by the image obtained from the imaging camera to be tracked, the control as accurate as possible is required.
[0014] また、追尾の際、被写体にマーカやセンサを取り付けるなどいつた新たな負担を課 すことはできない。  In addition, at the time of tracking, it is impossible to impose new burdens such as attaching markers and sensors to the subject.
[0015] 図 15は、広域モーションキヤプチヤにおいて画面上に写し出される被写体画像を 説明するための図である。  FIG. 15 is a view for explaining an object image projected on a screen in a wide area motion camera.
[0016] 被写体が撮像範囲となるように単に追尾を行うのみでは、被写体とカメラとの距離が 被写体の移動と共に変化するため、撮像カメラで映し出される画面上には、例えば図 15 (a) , (c)のように画面の中央力 外れた位置に映し出されたり画面に対して像の 大きさが小さすぎたり、あるいは、被写体の一部のみが欠けるといったことが生じる場 合がある。  If only tracking is performed so that the subject is in the imaging range, the distance between the subject and the camera changes with the movement of the subject, so for example, as shown in FIG. As shown in (c), the image may be projected at a position out of the center of the screen, the size of the image may be too small with respect to the screen, or only a part of the subject may be missing.
[0017] 広域モーションキヤプチヤでは、被写体とカメラとの距離にかかわらず、図 15 (b) , ( d)のように、被写体の像が画面の中央に映し出され、また被写体の動作をとりたい部 分ができるだけ大きく映し出されることが求められる。  In the wide area motion camera, regardless of the distance between the subject and the camera, the image of the subject is displayed at the center of the screen as shown in (b) and (d), and the motion of the subject is captured. It is required that the desired part be projected as large as possible.
[0018] 従来、自動追尾システムとして、カメラ動作中は処理を行わず、停止中にフレーム 間差分をとり、動きのある物体を抽出し、その物体が画面の中央になるようにカメラを 制御する方法があるが、この方法ではカメラが停止しなければ被写体情報を取得す ることができないため、情報の取得に時間が力かって追尾ができなくなるという問題が あり、また、フレーム間差分で得られる画像では、被写体に動きがない場合に検出で きな 、こと、ズームの制御は検出された被写体領域の大きさだけで行って 、るため正 確さに欠けると 、う問題がある。  Conventionally, as an automatic tracking system, processing is not performed while the camera is operating, and frame differences are taken while the camera is stopped, an object with motion is extracted, and the camera is controlled so that the object is at the center of the screen. There is a method, but with this method, subject information can not be acquired unless the camera is stopped, so there is a problem that it takes time to acquire information and tracking can not be performed. In the case of images, if the subject is not moving, it can not be detected, and the control of the zoom is performed only with the size of the detected subject area.
[0019] これに対して、追尾カメラの動作中でもフレーム間差分できる方法として、カメラの 雲台の動きを計測したり、画像力 動きベクトルを求めることによってパン,チルト量を 算出し、前フレームをその分だけ移動させる方法が提案されている (非特許文献 3, 4 ) oこの方法は、ズーム処理が差分のあった領域の大きさで制御していることや、被写 体の動きがな!、場合には検出できな 、、速 、動きに対する追従性の点で問題がある [0020] また、カメラの動作中に、被写体が静止した場合にも、被写体の抽出ができる方法 として、カメラ移動範囲の背景を予め取得し、パン、チルト量力 その時点の背景領 域を切り出し、その画像で差分処理を行うものが提案されている(非特許文献 5, 6)。 On the other hand, as a method capable of performing inter-frame subtraction even during operation of the tracking camera, pan and tilt amounts are calculated by measuring the motion of the camera's pan or calculating the image strength motion vector. A method for moving the image by the amount has been proposed (Non-Patent Documents 3 and 4) o This method controls that the zoom processing is based on the size of the area where there is a difference, and the movement of the subject is not !, If it can not be detected, there is a problem in terms of the ability to follow the speed, movement In addition, as a method of extracting the subject even when the subject is stationary while the camera is in operation, the background of the camera movement range is acquired in advance, and the pan and tilt amount points are cut out of the background area at that time. It has been proposed that the difference processing is performed on the image (Non-Patent Documents 5 and 6).
[0021] この方法においても、速い動きの際に、被写体が画面力 外れたり、追尾ができな くなるといった問題があり、ズーム制御も領域の大きさでの制御であるため、正確さに 欠けるという問題がある。  Also in this method, there is a problem that the subject loses the screen power or can not be tracked when moving fast, and the zoom control is also control with the size of the area, so the accuracy is not good. There is a problem of
[0022] また、人間の肌色を利用し、画像上で被写体領域を作りその領域を画面の中心と するように制御する方法が提案されているが(非特許文献 7)、顔のアップなど特定条 件では使用できるが、把握できる部分が、顔や手などの限られた部分であるため、全 身を撮影する場合に不適である。  [0022] A method has also been proposed that uses human skin color to control a subject area on an image so that that area is the center of the screen (Non-Patent Document 7). Although it can be used under conditions, the part that can be grasped is a limited part such as the face and hands, so it is not suitable for photographing the whole body.
[0023] また、出願人は、モーションキヤプチヤに関して先に特許出願を行って 、る(特許文 献 1, 2参照)。  In addition, the applicant has previously filed a patent application relating to a motion cap (see Patent Documents 1 and 2).
[0024] 非特許文献 1 :電子情報通信学会論文誌 D - II Vol. J82 - D - II No. 10 pp. 17 39-1749 1999年 10月「動きと形成モデルによる人物の姿勢決定」  [0024] Non-Patent Document 1: Journal of the Institute of Electronics, Information and Communication Engineers D-II Vol. J 82-D-II No. 10 pp. 17 39-1749 October 1999 "Determination of posture of a person by movement and formation model"
非特許文献 2 :電子情報通信学会論文誌 D - II Vol. J80-D-II No. 6 pp. 158 1-1589 1997年 6月  Non-Patent Document 2: Transactions of the Institute of Electronics, Information and Communication Engineers D-II Vol. J80-D-II No. 6 pp. 158 1-1589 June 1997
非特許文献 3 :堀口昌彦、竹内義則、大西昇"滑らかなパンチルトによる移動物体追 跡"、電子情報通信学会技術研究報告 IE、画像工学 Vol. 99 Num.610pp.43-48 ( 2000.02)  Non Patent Literature 3: Masahiko Horiguchi, Yoshinori Takeuchi, Noboru Onishi "Smooth Pan-Tilt Moving Object Tracking", IEICE Technical Report IE, Image Engineering Vol. 99 Num. 610 pp. 43-48 (2000.02)
非特許文献 4:森田俊彦"局所相関演算による動きの検知と追跡"、電子情報通信学 会技術研究報告 PRUM,パターン認識 'メディア理解 Vol. 100 Num.44pp.55-62 ( 2000.05)  Non Patent Literature 4: Toshihiko Morita "Detection and tracking of motion by local correlation operation", Technical report of IEICE Technical Conference PRUM, Pattern recognition 'Media understanding' Vol. 100 Num. 44 pp. 55-62 (2000.05)
非特許文献 5:波田尚哉、三宅哲夫"アクティブビジョンシステムによる遮ヘ 、を伴う 移動物体の追跡"、電子情報通信学会論文誌 D - II Vol. J84-D-II No.l pp.93- 101 (2001.1)  Non-Patent Document 5: Naoya Hada, Tetsuo Miyake "Tracking of Moving Objects with Active Vision System", The Journal of the Institute of Electronics, Information and Communication Engineers D-II Vol. J84-D-II No. (2001.1)
非特許文献 6 :松山隆司、和田俊和、物部祐亮"視点固定型パン ·チルト ·ズームを用 いた実時間対象検出'追跡(〈特集〉画像の認識'理解) "、情報処理会論文誌 Vol. 40 No.8 pp.3169- 3178 (1999.08) 非特許文献 7 :三塚和幸、山村恵一、山中徳唯 "インテリジェンスロボットカメラの開 発"、テレビジョン学会技術報告 Vol. 17 No.51 pp.33- 37 (1993.09) Non Patent Literature 6: Takashi Matsuyama, Toshikazu Wada, Tobu Obabe "Real-time target detection 'tracking using fixed viewpoint pan-tilt-zoom (<Special feature> Image recognition'understanding)", IPSJ Journal Vol. 40 No. 8 pp. 3169-3178 (1999. 08) Non-Patent Document 7: Kazuyuki Mitsuka, Keiichi Yamamura, Tokui Yamanaka "Development of Intelligence Robot Camera", Technical Report of the Institute of Television Engineers of Japan Vol. 17 No. 51 pp. 33- 37 (1993.09)
特許文献 1:特願 2002 - 379536  Patent Document 1: Japanese Patent Application No. 2002-379536
特許文献 2: #112003-116631  Patent Literature 2: # 112003-116631
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0025] 従来の方法は、追尾カメラで得られる情報だけで被写体を追尾するものである。こ れ力 得られ情報は、画像上における被写体領域の重心の位置や、領域の大きさと いったものに限られる。被写体領域には偏りがあるため、領域力も重心を求めたとし ても、実際の画面上で被写体が中心にくるとは限らす、また、画面から被写体が外れ た場合には追尾ができなくなるという追尾システムとしては大きな問題がある。  The conventional method is to track the subject only with the information obtained by the tracking camera. The obtained information is limited to the position of the center of gravity of the subject area on the image and the size of the area. Since the subject area has a bias, even if the area force also determines the center of gravity, the subject is not centered on the actual screen, and tracking can not be performed if the subject is off the screen. There is a big problem as a tracking system.
[0026] このように、従来提案されて!、るモーションキヤプチヤでは、移動する被写体を自動 で追尾し、追尾する撮像カメラの画面上において被写体を大きぐまた、画面の中央 に映し出すといった要求を満たすものは発明者が見地する範囲においては知られて いない。  As described above, in the conventionally proposed motion camera, there is a demand for automatically tracking the moving subject and enlarging the subject on the screen of the imaging camera to be tracked and for projecting the subject in the center of the screen. The ones that satisfy the above are not known to the extent of the inventor.
[0027] そこで、本発明は前記した従来の問題点を解決し、移動する被写体を自動で追尾 することを目的とし、追尾する撮像カメラの画面上において被写体を大きく写し出し、 また、画面の中央に映し出すことを目的とする。  Therefore, the present invention solves the above-mentioned conventional problems, and aims to automatically track a moving subject, and projects the subject largely on the screen of the imaging camera to be tracked, and in the center of the screen. The purpose is to project.
課題を解決するための手段  Means to solve the problem
[0028] 本発明は、レンジファインダと固定カメラを用い、レンジファインダカも得られる距離 データと角度データにより被写体の 2次元の絶対位置を取得し、固定カメラ力 得ら れる画像データにより被写体の大きさ、被写体の中心を取得し、これらを組み合わせ ることにより、追尾する撮像カメラ(以下、追尾カメラという)が被写体を追尾するため の力メラノ ラメータを形成する。  The present invention uses a range finder and a fixed camera to obtain a two-dimensional absolute position of a subject from distance data and angle data that can also be obtained from a range finder, and the size of the subject using image data obtained from fixed camera power. By acquiring the center of the subject and combining them, a tracking imaging camera (hereinafter referred to as a tracking camera) forms a force melanometer for tracking the subject.
[0029] 本発明では、被写体の 2次元の位置と、被写体の大きさ、被写体の中心が得ること により、追尾カメラのパン、チルトを制御して追尾カメラを被写体の移動に合わせて追 従させると共に追尾カメラが映し出す画面の中央に被写体を写し、追尾カメラのズー ムを制御して画面上に被写体を大きく写す、また、追尾カメラのフォーカスを制御して 焦点合わせを行う。 In the present invention, by obtaining the two-dimensional position of the subject, the size of the subject, and the center of the subject, the tracking camera is controlled in accordance with the movement of the subject by controlling the pan and tilt of the tracking camera. At the same time, the subject is photographed in the center of the screen displayed by the tracking camera, and the zoom of the tracking camera is controlled to make the subject large on the screen, and the focus of the tracking camera is controlled. Focus on.
[0030] 本発明は、追尾装置、追尾方法、及び追尾装置を備えるモーションキヤプチャ装置 の各形態とすることができる。  The present invention can be embodied as a tracking device, a tracking method, and a motion capture device including the tracking device.
[0031] 本発明の追尾装置の形態は、追尾カメラに被写体の追尾させるための追尾装置で あって、所定領域内において対象物の固定位置からの距離及び角度を測定するレ ンジファインダと、所定領域の画像データを取得する固定カメラと、レンジファインダ で取得した距離データ及び角度データと固定カメラで取得した画像データとを用い て、被写体領域を決定する被写体情報を形成する被写体情報形成手段と、被写体 情報及び距離データを用いて追尾カメラのカメラパラメータを形成するカメラパラメ一 タ形成手段の各手段を備え、レンジファインダ及び固定カメラを所定領域に対して固 定して配置する。  The form of the tracking device of the present invention is a tracking device for causing a tracking camera to track an object, and a range finder for measuring the distance and angle from a fixed position of an object within a predetermined area, and A subject camera for forming subject information for determining a subject area by using a fixed camera for obtaining image data of the area, and distance data and angle data obtained by the range finder and image data obtained by the fixed camera; Each means of the camera parameter formation means for forming the camera parameters of the tracking camera using object information and distance data is provided, and the range finder and the fixed camera are fixed and arranged in a predetermined area.
[0032] レンジファインダは、被写体までの距離と角度を検出する測定手段であり、例えばレ 一ザ一レンジファインダを用いることができる。レーザーレンジファインダは、レーザー の照射角度を変えながら水平方向に走査し、被写体力 の反射を検出することによ つて、被写体までの距離と角度を測定する装置である。このレンジファインダを所定 位置に固定することにより、所定領域内の被写体の 2次元の絶対位置を検出すること ができる。また、固定カメラは、所定領域を撮像して当該領域の画像データを取得す る。  The range finder is a measuring means for detecting the distance to the subject and the angle, and for example, a laser-one range finder can be used. The laser range finder is a device that scans in the horizontal direction while changing the irradiation angle of the laser and measures the distance and angle to the subject by detecting the reflection of the subject's force. By fixing the range finder at a predetermined position, it is possible to detect a two-dimensional absolute position of the subject in a predetermined area. In addition, the fixed camera captures an image of a predetermined area and acquires image data of the area.
[0033] レンジファインダと固定カメラを所定領域に対して固定しておくことにより、両測定 手段力も得られるデータ間の位置関係を対応付けすることができる。例えば、レンジ ファインダと固定カメラを同位置に固定することにより、レンジファインダで得られた距 離及び角度データと固定カメラで得られた画像データとの対応付けが容易となる。  By fixing the range finder and the fixed camera with respect to a predetermined area, it is possible to associate the positional relationship between data from which both measurement means can be obtained. For example, fixing the range finder and the fixed camera at the same position makes it easy to associate the distance and angle data obtained by the range finder with the image data obtained by the fixed camera.
[0034] 固定カメラが撮像する画像データには、被写体データと背景データとが含まれてい る。背景データは所定領域内で被写体の動きにかかわらず変化しな 、画像データで ある。一方、被写体データは、被写体が所定領域内で移動することにより変化する。  Image data captured by the fixed camera includes subject data and background data. Background data is image data which does not change regardless of the movement of the subject within a predetermined area. On the other hand, subject data changes as the subject moves within a predetermined area.
[0035] 本発明は、被写体の位置や大きさを知るために、固定カメラが撮像する画像データ から被写体が存在する被写体領域を求め、この被写体領域から被写体の位置及び 大きさの被写体情報を取得する。被写体情報形成手段は、画像データから背景デー タを差し引いて得られる差分画像データにより被写体領域を取得する。 According to the present invention, in order to know the position and size of a subject, a subject area where the subject is present is determined from image data captured by a fixed camera, and subject information of the position and size of the subject is acquired from this subject area. Do. The subject information forming means uses background data from image data. The subject area is acquired from the difference image data obtained by subtracting the data.
[0036] ここで、固定カメラが撮像する全画像データ力も背景データを差し引く場合には、 処理時間が長くかかる。そこで、本発明は、候補領域形成手段で形成した候補領域 のみについて差分処理を行うことで高速処理を行う。候補領域形成手段は、レンジフ アインダで取得した距離データ及び角度データを用いて、全領域の中から画像差分 を行う候補領域を形成する。  Here, when the background data is subtracted from the total image data force captured by the fixed camera, the processing time takes a long time. Therefore, according to the present invention, high-speed processing is performed by performing difference processing only on the candidate area formed by the candidate area forming means. The candidate area forming means forms a candidate area for performing image difference out of the whole area using the distance data and angle data acquired by the range finder.
[0037] また、本発明は、画像データから背景データを差し引く差分器を備える。差分器は 、候補領域のみにおいて画像データ力 背景データを差し引く背景差分処理を行つ て差分画像データを取得するハードウェア構成であり、ソフトウェアによる処理でない ため、差分処理を高速処理で行うことができる。差分器は、固定カメラから逐次入力さ れる画像データと予め取得された背景データとの差分処理を 1ピクセル毎に行う回路 構成とすることができる。固定カメラ力もシリアルで入力される画像データを 1ピクセル 毎に順次差分処理することにより、差分画像データは固定カメラから入力される画像 データと等速度で出力することができ、リアルタイムで追尾のためのカメラパラメータ を形成することができ、リアルタイムで被写体を追尾することが可能となる。  The present invention also includes a differencer that subtracts background data from image data. The differencer is a hardware configuration that acquires background image processing that subtracts image data and background data only in the candidate area to acquire difference image data, and is not processing by software, so that difference processing can be performed with high-speed processing. . The subtractor may have a circuit configuration that performs, for each pixel, differential processing between image data sequentially input from the fixed camera and background data acquired in advance. The differential image data can be output at the same speed as the image data input from the fixed camera by sequentially differential processing the image data input serially as the fixed camera power for each pixel, and for real time tracking. It is possible to form camera parameters and to track the subject in real time.
[0038] 被写体情報形成手段は、差分処理で得た差分画像データから被写体の大きさを 取得する。また、レンジファインダで得た距離データ力も被写体の位置を取得する。  The subject information forming means obtains the size of the subject from the difference image data obtained by the difference processing. Further, the distance data force obtained by the range finder also obtains the position of the subject.
[0039] 追尾カメラに被写体を自動追尾させるには、追尾カメラのカメラパラメータを制御し て追尾カメラに設けた駆動装置を駆動させる必要がある。  In order to cause the tracking camera to automatically track the subject, it is necessary to control the camera parameters of the tracking camera and drive a drive device provided in the tracking camera.
[0040] このカメラパラメータとして、被写体にカメラの焦点を合わせるフォーカス値、被写体 にカメラの向きを合わせ、画面の中央に被写体を合わせるパン値及びチルト値、カメ ラの画面内に被写体を大きく写すために像の大きさを定めるズーム値がある。  As the camera parameters, a focus value for focusing the camera on the subject, a pan value and tilt value for aligning the subject on the subject, and the subject at the center of the screen, and There is a zoom value that determines the size of the image.
[0041] カメラパラメータ形成手段は、距離データ力もフォーカス値を形成し、被写体情報の 被写体の位置力 パン値及びチルト値を形成し、被写体情報の被写体の大きさから ズーム値を形成する。  The camera parameter formation means also forms a focus value as the distance data force, forms a position force pan value and a tilt value of the subject of the subject information, and forms a zoom value from the size of the subject of the subject information.
[0042] また、カメラパラメータ形成手段は、複数の追尾カメラの各キャリブレーションデータ に基づいて各追尾カメラのカメラパラメータを形成する。これにより、追尾カメラが任意 の位置に配置されて 、ても、各追尾カメラに適したカメラパラメータを形成することが できる。形成された各カメラパラメータは対応する追尾カメラに送信され、追尾カメラ が備える駆動装置を制御する。駆動装置は送信されたカメラパラメータに従って追尾 カメラを駆動し、パン、チルトを制御して追尾カメラを被写体の中心に合わせ、ズーム を制御して画面内に大きく写し出されるように像の大きさを合わせ、フォーカスを制御 して焦点合わせを行う。 The camera parameter formation means forms camera parameters of each tracking camera based on calibration data of the plurality of tracking cameras. Thereby, even if the tracking camera is disposed at an arbitrary position, it is possible to form camera parameters suitable for each tracking camera. it can. Each of the formed camera parameters is transmitted to the corresponding tracking camera, and controls a drive provided in the tracking camera. The driving device drives the tracking camera according to the transmitted camera parameters, controls pan and tilt to center the tracking camera on the center of the subject, and controls the zoom to adjust the size of the image so that it is projected on the screen. , Focus control by controlling.
[0043] また、追尾カメラの所定領域に対する位置が取得できる場合には、この位置データ に基づ!/、てキャリブレーションを逐次行うことによって、追尾カメラ自体が移動しても 移動する被写体を追尾することができる。  In addition, when the position of the tracking camera relative to the predetermined area can be acquired, calibration is sequentially performed based on the position data to track the moving subject even if the tracking camera itself moves. can do.
[0044] また、本発明の追尾装置は、レンジファインダと固定カメラとの配置構成に特徴を備 える。  The tracking device of the present invention is characterized by the arrangement configuration of the range finder and the fixed camera.
[0045] 本発明の追尾装置の一形態は、追尾カメラに被写体の追尾させるための追尾装置 であって、所定領域内において対象物の固定位置からの距離及び角度を測定する レンジファインダと、所定領域の画像データを取得する固定カメラと、レンジファインダ 及び前記固定カメラの基準位置力ゝらの位置情報とを備えた構成とし、基準位置を基 準とする距離データ、角度データ及び画像データを取得する。  One embodiment of a tracking device according to the present invention is a tracking device for causing a tracking camera to track an object, comprising: a range finder for measuring a distance and an angle from a fixed position of an object within a predetermined area; A configuration that includes a fixed camera that acquires image data of a region, and position information of a range finder and the reference position of the fixed camera, and acquires distance data, angle data, and image data based on the reference position. Do.
[0046] また、本発明の追尾装置の他の形態は、追尾カメラに被写体の追尾させるための 追尾装置であって、所定領域内において対象物の固定位置からの距離及び角度を 測定するレンジファインダと、所定領域の画像データを取得する固定カメラとを備えた 構成とし、レンジファインダ及び固定カメラを垂直方向に重ねて同一平面位置上に配 置し、同一位置を基準とする距離データ、角度データ及び画像データを取得する。  Another embodiment of the tracking device according to the present invention is a tracking device for causing a tracking camera to track an object, and a range finder for measuring the distance and angle from a fixed position of an object within a predetermined area. And a fixed camera for acquiring image data of a predetermined area, and the range finder and the fixed camera are vertically overlapped and arranged on the same plane position, and distance data and angle data based on the same position. And acquire image data.
[0047] また、固定カメラは水平方向の向きを異ならせて配置した複数の撮像カメラを含み 、レンジファインダは、撮像カメラの上方及び Z又は下方に少なくとも一つを配置する 構成とする。また、レンジファインダは、上下方向に二つを配置する構成とすることが できる。  The fixed camera includes a plurality of imaging cameras arranged with different horizontal orientations, and the range finder is configured to arrange at least one above and Z or below the imaging cameras. In addition, two range finders can be arranged in the vertical direction.
[0048] レンジファインダの水平方向の測定範囲は、固定カメラの水平方向の撮像範囲、又 は、複数の固定カメラの画像データを合成して得られる水平方向の撮像範囲を含む 。複数の固定カメラの画像データを合成することにより、水平方向に広い撮像範囲を 得ることができる。なお、複数の追尾カメラの画像データに水平方向に重なりを設ける ことにより、画像データの抜けを防ぐことができる。 The measurement range in the horizontal direction of the range finder includes the imaging range in the horizontal direction of the fixed camera, or the imaging range in the horizontal direction obtained by combining image data of a plurality of fixed cameras. By combining image data of a plurality of fixed cameras, a wide imaging range in the horizontal direction can be obtained. Note that the image data of multiple tracking cameras is horizontally overlapped Thus, the omission of image data can be prevented.
[0049] また、本発明は、本発明の追尾装置を備えたモーションキヤプチャ装置の形態とす ることちでさる。  The present invention is also in the form of a motion capture device provided with the tracking device of the present invention.
[0050] 本発明のモーションキヤプチャ装置は、少なくとも一台の追尾カメラと、追尾カメラの 撮像データを同期して取得し蓄積する画像データ処理手段とを備えた構成とし、追 尾装置は、形成したカメラパラメータにより各追尾カメラを駆動制御し、被写体の追尾 画像データを取得する。  The motion capture device of the present invention comprises at least one tracking camera and image data processing means for synchronously acquiring and storing imaging data of the tracking camera, and the tracking device is formed Drive control of each tracking camera based on the selected camera parameters to acquire tracking image data of the subject.
[0051] また、本発明の追尾方法の形態は、追尾カメラに被写体の追尾させるための追尾 方法であって、所定領域内において対象物の固定位置からの距離及び角度を測定 するステップと、所定領域の画像データを取得するステップと、距離データ及び角度 データと画像データとを用いて被写体領域を決定する被写体情報を形成するステツ プと、被写体情報及び前記距離データを用いて追尾カメラのカメラパラメータを形成 するステップの各ステップを備える。これにより、距離データ及び角度データと前記画 像データは、所定領域に対して固定位置にお 、て取得する。  The form of the tracking method according to the present invention is a tracking method for causing a tracking camera to track an object, which comprises: measuring a distance and an angle from a fixed position of an object within a predetermined area; Step of acquiring image data of a region, step of forming object information which determines object region using distance data and angle data and image data, camera parameters of tracking camera using object information and the distance data Each step of the steps of forming Thereby, distance data, angle data, and the image data are acquired at a fixed position with respect to a predetermined area.
[0052] また、被写体情報を形成するステップは、画像データ力も背景データを差し引いた 差分画像データから被写体領域を定めるステップと、被写体の位置及び大きさの被 写体情報を取得するステップを備える。  Further, the step of forming subject information includes a step of determining a subject area from difference image data obtained by subtracting background data from image data force, and a step of acquiring subject information of the position and size of the subject.
[0053] また、被写体情報を形成するステップは、さらに詳細には、距離データ及び角度デ ータから画像差分を行う候補領域を形成するステップと、前記候補領域のみにぉ 、 て画像データから背景データを差し引く背景差分処理を行って差分画像データを取 得して被写体領域を定めるステップと、当該差分画像データから被写体の大きさを取 得するステップと、距離データ力も被写体の位置を取得するステップを備える。 発明の効果  Further, in the step of forming the subject information, more specifically, the step of forming a candidate area for performing image difference from the distance data and the angle data, and the process from the image data to the background only in the candidate area. There are the steps of performing background subtraction processing to subtract data and obtaining difference image data to determine a subject area, obtaining a size of a subject from the difference image data, and obtaining a position of the subject as well as distance data strength. Prepare. Effect of the invention
[0054] 本発明によれば、移動する被写体を自動で追尾することができる。また、追尾する 撮像カメラの画面上において被写体を大きく写し出すことができ、また、画面の中央 に映し出すことができる。  According to the present invention, a moving subject can be automatically tracked. In addition, it is possible to project the subject largely on the screen of the imaging camera to be tracked and also to project it at the center of the screen.
図面の簡単な説明  Brief description of the drawings
[0055] [図 1]モーションキヤプチヤの概略を説明するための図である。 [図 2]本発明の追尾装置及び追尾装置を備えたモーションキヤプチャ装置の概要を 説明するための図である。 FIG. 1 is a view for explaining an outline of a motion photographer. FIG. 2 is a view for explaining an outline of a motion capture device provided with the tracking device and the tracking device of the present invention.
[図 3]本発明の追尾処理のフローの概要を説明するための図である。  FIG. 3 is a diagram for describing an outline of a flow of tracking processing according to the present invention.
[図 4]本発明の追尾装置の一構成例を説明するためのブロック図である。  FIG. 4 is a block diagram for explaining one configuration example of a tracking device of the present invention.
[図 5]本発明の追尾処理を説明するためのフローチャートである。  FIG. 5 is a flowchart for explaining the tracking process of the present invention.
[図 6]本発明の候補領域の設定を説明するための図である。  FIG. 6 is a diagram for explaining setting of candidate areas according to the present invention.
[図 7]本発明の被写体領域の形成の第 1の形態を説明するための図である。  FIG. 7 is a view for explaining a first mode of formation of a subject area according to the present invention.
[図 8]本発明の被写体領域の形成の第 2の形態を説明するための図である。  FIG. 8 is a view for explaining a second mode of formation of a subject area according to the present invention.
[図 9]本発明の背景差分処理を説明するための図である。  FIG. 9 is a view for explaining background difference processing of the present invention.
[図 10]本発明のパン、チルトの形成を説明するための図である。  FIG. 10 is a view for explaining the formation of pan and tilt of the present invention.
[図 11]本発明の追尾装置の構成の形態を説明するための図である。  FIG. 11 is a view for explaining the configuration of the tracking device of the present invention.
[図 12]本発明の複数台の固定カメラ、及び複数台のレンジファインダにより得られる データを説明するための図である。  FIG. 12 is a view for explaining data obtained by a plurality of fixed cameras and a plurality of range finders of the present invention.
[図 13]本発明の複数のレンジファインダが一つの被写体を形成する際の処理を説明 するための図である。  FIG. 13 is a diagram for explaining processing when a plurality of range finders of the present invention form one subject.
[図 14]本発明のモーションキヤプチャ装置のシステム構成例を説明するための図で ある。  FIG. 14 is a view for explaining an example of the system configuration of the motion capture device of the present invention.
[図 15]広域モーションキヤプチヤにおいて画面上に写し出される被写体画像を説明 するための図である。  FIG. 15 is a view for explaining an object image projected on a screen in a wide area motion scanner.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0056] 以下、本発明の実施の形態について参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0057] 図 1はモーションキヤプチヤの概略を説明するための図である。広域モーションキヤ プチヤでは、 2段階の手順により被写体の動作を取得する。 FIG. 1 is a view for explaining an outline of a motion photographer. In a wide area motion camera, the motion of the subject is acquired in a two-step procedure.
[0058] 図 1 (a)は第 1段階を示し、初期フレームにおいて、世界座標系などの統一座標系 にお!/、て各カメラ 4A— 4Dの位置姿勢を、キャリブレーションボードやチェックパター ン等の基準物体 101を用いて初期状態を求める。 [0058] FIG. 1 (a) shows the first step, in the initial frame, the position and orientation of each camera 4A-4D in a unified coordinate system such as the world coordinate system, a calibration board or a check pattern. The initial state is determined using a reference object 101 such as.
[0059] 図 1 (b)は第 2段階を示し、次フレームにおいて、ビデオカメラ映像と同期して取得 し記録するデータ処理装置 100を用いて、各カメラ 4A— 4Dの各時点の振る舞 、を、 各時点のパン、チルト、ズーム、フォーカスの位置を記録し、初期状態からの状態変 位を取得してキャリブレーションを動的に変化させる。これによつて、広域空間を移動 する被写体を、カメラの首を振りながら撮像し、モデル解析等によって被写体 111の 動作を取得する。 FIG. 1 (b) shows the second step, in which the behavior of each camera 4A-4D at each time point is acquired using the data processing apparatus 100 which acquires and records in synchronization with the video camera image in the next frame, , The positions of pan, tilt, zoom, and focus at each point are recorded, the state displacement from the initial state is acquired, and the calibration is dynamically changed. As a result, the subject moving in the wide area space is imaged while shaking the head of the camera, and the motion of the subject 111 is acquired by model analysis or the like.
[0060] 図 2は、本発明の追尾装置及び追尾装置を備えたモーションキヤプチャ装置の概 要を説明するための図である。  FIG. 2 is a view for explaining an outline of a motion capture device provided with the tracking device and the tracking device of the present invention.
[0061] 図 2において、モーションキヤプチャ装置は、所定領域 200内の被写体 11の動きを 複数の撮像カメラ 4 (4A— 4D)により撮像し、データ処理手段 100においてモデル解 析等によって被写体 111の動作を取得する。 In FIG. 2, the motion capture device captures the motion of the subject 11 in the predetermined area 200 with a plurality of imaging cameras 4 (4A to 4D), and the data processing means 100 analyzes the subject 111 by model analysis or the like. Get the action.
[0062] 本発明は、撮像カメラ 4 (A4— 4D)に、カメラのパン、チルト、ズーム、フォーカス等 を変える駆動装置を設けて追尾カメラ (以下、追尾カメラ 4A— 4Dで表記する)。なおAccording to the present invention, the imaging camera 4 (A4-4D) is provided with a driving device for changing the pan, tilt, zoom, focus, etc. of the camera, and the tracking camera (hereinafter referred to as tracking camera 4A-4D). Note
、ここでは、追尾カメラを 4A— 4Dの 4台とする例を示している力 追尾カメラは 4台に 限らず、 1台あるいは任意の複数台とすることができる。 In this example, four tracking cameras 4A to 4D are shown. The number of force tracking cameras is not limited to four, and one or a plurality of optional tracking cameras can be used.
[0063] 本発明は、追尾カメラ 4に被写体 11を追尾させるための追尾装置を備える。追尾装 置は、制御手段 1、レンジファインダ 2 (2A, 2B)、及び固定カメラ 3を備える。レンジフ アインダ 2A, 2B及び固定カメラ 3は、所定領域 200に対して所定位置 Pに固定して 設けられ、レンジファインダ 2A, 2Bは、所定位置 Pと被写体 11との間の距離と角度を 計測する。また、固定カメラ 3は、所定位置 Pから見た背景及び被写体 11を撮像し、 カメラ画像データを取得する。 The present invention is provided with a tracking device for causing the tracking camera 4 to track the subject 11. The tracking device includes control means 1, range finder 2 (2 A, 2 B), and fixed camera 3. The range finder 2A, 2B and the fixed camera 3 are fixed at a predetermined position P with respect to the predetermined area 200, and the range finders 2A, 2B measure the distance and angle between the predetermined position P and the subject 11. . Also, the fixed camera 3 captures a background and an object 11 as viewed from the predetermined position P, and acquires camera image data.
[0064] なお、図 2では、二次元の同一位置にレンジファインダ 2と固定カメラ 3を設置し、固 定カメラ 3を挟んで上限の位置にレンジファインダ 2A、レンジファインダ 2Bを配置す る構成例を示している。 In FIG. 2, an example of a configuration in which the range finder 2 and the fixed camera 3 are installed at the same two-dimensional position, and the range finder 2 A and the range finder 2 B are arranged at the upper limit position sandwiching the fixed camera 3. Is shown.
[0065] 固定カメラ 3は所定領域 200の全体を写し込んだ画像データを出力する。また、レ ンジファインダ 2は、所定領域 200内の平面において、レンジファインダ 2が設置され た位置力 被写体 11までの距離と基準位置からの角度のデータを出力する。図 2に 示すように、上下方向に 2つのレンジファインダ 2A, 2Bを配置した場合には、所定領 域 200内の異なる平面での被写体 11までの距離データと角度のデータを出力する。  Fixed camera 3 outputs image data in which the entire predetermined area 200 is imprinted. Further, the range finder 2 outputs, on a plane in the predetermined area 200, data of the distance from the position force subject 11 where the range finder 2 is installed and the angle from the reference position. As shown in FIG. 2, when the two range finders 2A and 2B are arranged in the vertical direction, the distance data and angle data to the subject 11 in different planes in the predetermined area 200 are output.
[0066] レンジファインダ 2A, 2Bの設置高さを異ならせることによって、距離データと角度デ ータを取得する平面の高さを変えることができる。なお、レンジファインダ 2が走査する 面は水平面に限るものではなぐ所定の仰角で設置するようにしてもよい。 By setting the installation heights of the range finders 2A and 2B to be different, distance data and angle data can be obtained. You can change the height of the plane to get the data. The plane scanned by the range finder 2 may be limited to a horizontal plane, and may be installed at a predetermined elevation angle.
[0067] 制御手段 1は、レンジファインダ 2A, 2B及び固定カメラ 3で取得したデータに基づ Vヽて各追尾カメラ 4のカメラパラメータを形成し、これらカメラパラメータをそれぞれの 追尾カメラ 4に送る。カメラパラメータは、被写体 11が移動する毎にリアルタイムで形 成される。 The control means 1 forms camera parameters of each tracking camera 4 based on data acquired by the range finders 2 A and 2 B and the fixed camera 3, and sends these camera parameters to the respective tracking cameras 4. The camera parameters are formed in real time each time the subject 11 moves.
[0068] 追尾カメラ 4A— 4Dに設けられた駆動装置は、制御手段 1から送られたカメラパラメ ータに基づいてパン、チルト、ズーム、フォーカスを制御することによって被写体 11を 自動で追尾し、各カメラの画面上の中央に被写体 11を大きく写し込む。  The drive device provided in the tracking camera 4A-4D automatically tracks the subject 11 by controlling pan, tilt, zoom and focus based on the camera parameters sent from the control means 1, The subject 11 is enlarged to the center of the screen of each camera.
[0069] 図 3は、本発明の追尾処理のフローの概要を説明するための図である。図 3におい て、本発明の追尾処理は、レンジファインダと固定カメラから取得したデータに基づ Vヽて各追尾カメラに被写体を追尾させるためのカメラパラメータを形成し、このカメラ ノ ラメータによって追尾カメラを制御する。  FIG. 3 is a diagram for describing an outline of a flow of tracking processing of the present invention. In FIG. 3, according to the tracking processing of the present invention, camera parameters for causing each tracking camera to track the subject are formed based on the data obtained from the range finder and the fixed camera, and the camera camera uses the camera parameters to track the tracking camera. Control.
[0070] レンジファインダは、距離データ r及び角度データ Φを測定して所定領域内の被写 体の二次元の絶対位置を取得する。また、固定カメラは所定領域内を撮像し、背景 データ及び被写体データを含む画像データを取得する。  The range finder measures distance data r and angle data Φ to obtain a two-dimensional absolute position of the subject in a predetermined area. In addition, the fixed camera captures an image in a predetermined area, and acquires image data including background data and subject data.
[0071] カメラパラメータとして、追尾カメラの横方向の首振りを制御するパンと、縦方向の首 振りを制御するチルトと、追尾カメラの画面上に映し出される被写体の大きさを決める ズームと、追尾カメラのカメラ焦点を合わせるフォーカスがある。  [0071] As camera parameters, a pan for controlling the horizontal swing of the tracking camera, a tilt for controlling the vertical swing, and a size for determining the size of the subject displayed on the screen of the tracking camera. There is a focus to focus the camera of the camera.
[0072] これらカメラパラメータの内で、パン、チルト及びズームは、被写体の位置情報及び 大きさ情報を含む被写体情報に基づ 、て形成し、フォーカスは追尾カメラと被写体と の距離に基づいて形成する。なお、被写体の位置は被写体上の任意の位置とするこ とができる力 通常被写体は画面の中央に表示されることから被写体の中央とするの が適当である。  Among these camera parameters, pan, tilt, and zoom are formed based on subject information including position information and size information of the subject, and focus is formed based on the distance between the tracking camera and the subject. Do. Note that the position of the subject can be set to any position on the subject. Since the normal subject is displayed at the center of the screen, it is appropriate to set the center of the subject.
[0073] はじめに、パン、チルト及びズームの形成処理にっ 、て説明する。前記したように、 パン、チルト及びズームのカメラパラメータは、被写体情報から求める。  [0073] First, pan, tilt, and zoom formation processing will be described. As described above, pan, tilt and zoom camera parameters are obtained from object information.
[0074] ここで、被写体情報を、被写体を内部に含む矩形状の領域 (以下、被写体領域とい う)によって表すことによって、パン、チルト及びズームの形成処理が容易となる。これ は、パン、チルト及びズームは、追尾カメラに被写体を追尾させ、被写体の像を追尾 カメラの画面の中央にできるだけ大きく写すためのカメラパラメータであり、通常、画 面の形状は矩形であることから、被写体を内部に含む矩形領域が把握されれば十分 であり、被写体の微細な形状までは不要であるからである。 Here, the process of forming pan, tilt and zoom is facilitated by representing the subject information by a rectangular area (hereinafter referred to as a subject area) including the subject inside. this The pan, tilt, and zoom are camera parameters for making the tracking camera follow the subject and for capturing the subject's image as large as possible in the center of the camera's screen, and the screen is usually rectangular in shape. This is because it is sufficient if it is possible to grasp a rectangular area including the subject inside, and even the minute shape of the subject is unnecessary.
[0075] 本発明の追尾処理では、この被写体情報を表す被写体領域をレンジファインダか ら得た距離データと角度データ、及び固定カメラ力も得た画像データに基づいて取 得する。この被写体領域は、画像データ中に含まれる被写体データから取得すること ができ、画像データ力も予め撮像しておいた背景データを差し引く背景差分処理に より求めることができる。 In the tracking process of the present invention, the subject region representing the subject information is obtained based on distance data and angle data obtained from the range finder, and image data obtained also for the fixed camera power. The subject area can be obtained from subject data included in the image data, and the image data strength can also be determined by background subtraction processing that subtracts the background data captured in advance.
[0076] この背景差分処理を、固定カメラが撮像するフレームの全領域に対して行う場合に は、処理時間が長くかかり、追尾をリアルタイムで行うことが困難となる。固定カメラが 撮像する画像には、被写体が移動しても変化しない背景部分と、被写体の移動と共 に変化する被写体部分が含まれており、背景部分の背景差分処理は追尾データを 取得するには不要な処理であり、追尾データの取得に要する被写体の移動に関わる 被写体データのみが取得されれば十分である。  When this background difference processing is performed on the entire area of a frame captured by a fixed camera, the processing time is long, and it is difficult to perform tracking in real time. The image captured by the fixed camera includes a background part that does not change even when the subject moves, and a subject part that changes with the movement of the subject. Background subtraction processing of the background part is used to acquire tracking data. Is an unnecessary process, and it is sufficient that only subject data related to the movement of the subject required for acquisition of tracking data is acquired.
[0077] 本発明の追尾処理は、この被写体データが存在する可能性がある領域を絞り込み 、全領域ではなく一部の領域のみについて背景差分処理を行うことによって差分処 理を行うデータ量を低減して処理速度を高める。本発明の追尾処理は、レンジフアイ ンダで得た距離データ及び角度データに基づ!/、て処理領域の絞り込みを行う。以下 、この絞り込んだ処理領域を候補領域という。背景差分処理は、固定カメラが撮像し た画像データの内の候補領域のみにっ ヽて画像データから背景データを差分し、被 写体データを取得する。  The tracking processing of the present invention narrows down the area where the subject data may exist, and reduces the amount of data to be subjected to difference processing by performing background difference processing not on the entire area but only on a partial area. To increase processing speed. The tracking process of the present invention narrows the processing area based on the distance data and angle data obtained by the range finder. Hereinafter, this narrowed processing area is referred to as a candidate area. In the background subtraction processing, subject data is acquired by subtracting background data from image data only for candidate areas in image data captured by a fixed camera.
[0078] パン及びチルトは、被写体領域で表される被写体情報の内、世界座標で表されて V、る被写体の位置 (被写体を追尾カメラの画面の中心に写す場合には中心位置)を 、カメラ座標に座標変換することによって求める。また、ズームは、被写体領域で表さ れる被写体情報の内、被写体の大きさから焦点距離を求め、予め求めておいた焦点 距離とズーム値との対応関係からズーム値を求める。  Pan and tilt are represented by the world coordinates V among the subject information represented by the subject area, and the position of the subject (the center position when the subject is photographed at the center of the tracking camera screen), Calculated by coordinate conversion to camera coordinates. Further, in the zoom, the focal length is obtained from the size of the subject in the subject information represented by the subject area, and the zoom value is obtained from the correspondence relationship between the focal length and the zoom value obtained in advance.
[0079] 次に、フォーカスの形成処理にっ 、て説明する。前記したように、フォーカスのカメ ラパラメータは、追尾カメラと被写体との距離に基づ ヽて形成する被写体情報から求 める。ここで、予め距離とフォーカスとの対応関係を求めておき、レンジファインダで 得られた距離データに対応するフォーカスを読み出すことで求めることができる。 [0079] Next, focus formation processing will be described. As mentioned above, the turtle in focus The parameter is obtained from subject information formed based on the distance between the tracking camera and the subject. Here, the correspondence relationship between the distance and the focus can be obtained in advance, and the focus can be obtained by reading out the focus corresponding to the distance data obtained by the range finder.
[0080] なお、このカメラパラメータの形成では、予め求めておいたレンジファインダと固定 カメラと追尾カメラとのキャリブレーションデータを用いて、所定領域に対して様々な 位置に設置された追尾カメラのキャリブレーションを行い、各追尾カメラに対応した力 メラノラメータを形成する。  In the formation of the camera parameters, calibration of tracking cameras installed at various positions with respect to a predetermined area is performed using calibration data of a range finder, a fixed camera, and a tracking camera which are obtained in advance. To create force melanometers corresponding to each tracking camera.
[0081] ここで、追尾カメラ自体の位置データが逐次得られる場合には、この位置データに 基づいてキャリブレーションを行うことで、移動する追尾カメラによって移動する被写 体を追尾することができる。  Here, when the position data of the tracking camera itself can be sequentially obtained, calibration can be performed based on the position data, so that the moving subject can be tracked by the moving tracking camera.
[0082] 次に、本発明の追尾装置の一構成例について図 4のブロック図を用いて説明する。  Next, one configuration example of the tracking device of the present invention will be described using the block diagram of FIG.
追尾装置は、所定領域に対して固定されたレンジファインダ 2と、同じく所定領域に 対して固定された固定カメラ 3と、レンジファインダ 2で測定して得られた距離データ 及び角度データと、固定カメラ 3で撮像して得られた画像データとを入力し、各追尾 カメラ 4に被写体を追尾させるためのカメラパラメータを形成して、各追尾カメラ 4に送 信する制御手段 1を備える。  The tracking device includes a range finder 2 fixed to a predetermined area, a fixed camera 3 similarly fixed to the predetermined area, distance data and angle data obtained by measurement with the range finder 2, and a fixed camera There is provided a control means 1 which inputs image data obtained by imaging in 3 and forms camera parameters for causing each tracking camera 4 to track an object, and transmits the camera parameters to each tracking camera 4.
[0083] 制御手段 1は、シリアルボード la,候補領域形成手段 lb,ビデオフレームバッファ 1 c,背景データ Id,差分器 le,メモリ If,被写体情報形成手段 lg、カメラパラメータ形 成手段 lh,送信手段 liを備える。  Control means 1 includes serial board la, candidate area forming means lb, video frame buffer 1c, background data Id, difference unit le, memory If, object information forming means lg, camera parameter forming means lh, transmitting means Have li.
[0084] レンジファインダ 2は、被写体までの距離と角度を検出する測定手段であり、例えば レーザーレンジファインダを用いることができる。レーザーレンジファインダは、レーザ 一の照射角度を変えながら水平方向に走査し、各レーザーの照射角度により角度デ ータを取得し、その照射角にお 、てレーザーを照射してから被写体からの反射信号 を検出するまでの時間差により被写体までの距離データを取得する。距離データは 、レンジファインダの設置位置と被写体との間の距離であり、被写体が存在しない状 態での信号を予め求めて背景データと測定データとを比較することで被写体が存在 する領域を把握し、この領域とレンジファインダが設置される位置の間の距離力 被 写体が存在する距離とデータを取得する。また、水平方向に走査する際の走査角度 から被写体が存在する角度データを取得する。このレンジファインダを所定位置に固 定することにより、所定領域内の被写体の 2次元の絶対位置を検出することができる The range finder 2 is a measuring means for detecting the distance to the subject and the angle, and for example, a laser range finder can be used. The laser range finder scans horizontally while changing the irradiation angle of the laser, acquires angle data based on the irradiation angle of each laser, irradiates the laser at the irradiation angle, and then reflects from the subject. The distance data to the subject is acquired by the time difference until the signal is detected. The distance data is the distance between the installation position of the range finder and the subject. A signal in the absence of the subject is obtained in advance, and the area where the subject is present is grasped by comparing the background data with the measurement data. And the distance between this area and the position where the range finder is installed. Also, the scanning angle when scanning in the horizontal direction The angle data at which the subject exists is acquired from. By fixing the range finder at a predetermined position, it is possible to detect the two-dimensional absolute position of the subject within the predetermined area.
[0085] レンジファインダ 2は、平面上の同一位置に複数台設置することができ、その設置 高さを異ならせることによって検出高さを変更することができ、高い位置にある被写体 と低い位置にある被写体を検出することができる。また、一つのレンジファインダで所 定領域の全域をカバーできない場合に、複数の箇所に設置することで全域の二次元 に位置データを取得することができる。 [0085] A plurality of range finders 2 can be installed at the same position on the plane, and the detection height can be changed by making the installation heights different. A subject can be detected. Also, if one range finder can not cover the entire area of a given area, two-dimensional position data can be acquired by installing it at multiple locations.
[0086] また、固定カメラ 3は、所定領域を撮像して当該領域の画像データを取得する。この 固定カメラ 3が撮像する領域は、被写体の移動にかかわらず常に同一である。カメラ レンジファインダと固定カメラを所定領域に対して固定しておくことにより、両測定手 段力も得られるデータ間の位置関係を対応付けすることができる。例えば、レンジファ インダと固定カメラを同位置に固定することにより、レンジファインダで得られた距離 及び角度データと固定カメラで得られた画像データとの対応付けが容易となる。  The fixed camera 3 captures an image of a predetermined area to obtain image data of the area. The area captured by the fixed camera 3 is always the same regardless of the movement of the subject. By fixing the camera range finder and the fixed camera with respect to a predetermined area, it is possible to associate the positional relationship between data from which both measurement means can be obtained. For example, fixing the range finder and the fixed camera at the same position makes it easy to associate the distance and angle data obtained by the range finder with the image data obtained by the fixed camera.
[0087] レンジファインダ 2が取得した距離データ及び角度データは、シリアルボード laを介 して、メモリ Ifにレンジデータとして記録されるほ力、候補領域形成手段 lbに入力さ れる。候補領域形成手段 lbは、被写体が存在する領域を求め、背景差分処理を行う 領域の絞り込みを行う。なお、メモリ Ifに記録されるレンジデータは、レンジイメージで ある。レンジファインダカ 得られるレンジデータは、走査により得られる信号であって 、走査角度とその走査角度における信号強度で表されるレンジイメージである。  The distance data and angle data acquired by the range finder 2 are input to the candidate area forming means lb via the serial board la as the range data recorded in the memory If. The candidate area forming means lb finds the area where the subject is present, and narrows down the area where the background difference processing is performed. The range data recorded in the memory If is a range image. Range Finder The obtained range data is a signal obtained by scanning and is a range image represented by a scanning angle and signal intensity at the scanning angle.
[0088] 固定カメラ 3で撮像された画像データはビデオフレームバッファ lcに格納され、この ビデオフレームバッファ lcから候補領域形成手段 lbで形成して候補領域の領域に 該当する画像データを読み出し、差分器 leによって予め格納されている背景データ Idとの背景差分処理を行う。背景差分処理は、ビデオフレームバッファ lc及び背景 データ Idから候補領域中の同一ピクセルの画像データを 1ピクセル毎に読み出し、 差分器 leによって 1ピクセル毎に差分処理を行う。  The image data captured by the fixed camera 3 is stored in the video frame buffer lc, and the image data corresponding to the area of the candidate area is read out from the video frame buffer lc by the candidate area forming means lb and the difference unit Perform background difference processing with background data Id stored in advance by le. In the background difference processing, the image data of the same pixel in the candidate area is read for each pixel from the video frame buffer lc and the background data Id, and the difference processor le performs difference processing for each pixel.
[0089] この差分器 leは、ハードウェアで構成することができる。この背景差分処理は、 1ピ クセル毎に差分処理を行うことと、差分器をノヽードウエアで構成することによって処理 速度を速めることができ、リアルタイムで差分画像を取得することができる。取得した 差分画像は、メモリ ifに記録される。この差分画像は、レンジイメージと共にファイン ダカメラパラメータを形成するための被写体領域の形成に用いられる。 This differencing device le can be configured by hardware. This background difference processing is performed by performing difference processing for each pixel and configuring a difference unit with nodeware. The speed can be increased and differential images can be acquired in real time. The acquired difference image is recorded in the memory if. This difference image is used to form a subject area for forming a finder parameter together with the range image.
[0090] また、ビデオフレームバッファ lcの画像データは、メモリ Ifに実画像として記録され 、被写体領域の形成において微修正処理に用いられる。これは、背景差分処理にお いて色情報により差分を行う際に、被写体の色が背景の色に近い場合には、被写体 部分が背景として削られることにより被写体データが正確に取得できなくなるといった 事態を解消するために、実画像によりこの削れられた部分を修正するものである。  Further, the image data of the video frame buffer lc is recorded as a real image in the memory If, and is used for fine correction processing in formation of a subject area. This is because when performing subtraction based on color information in background subtraction processing, if the subject color is close to the background color, subject data can not be acquired correctly because the subject part is removed as the background. In order to eliminate this problem, the actual image is used to correct this scraped portion.
[0091] 被写体情報 (被写体領域)形成手段 lgは、メモリ Ifからレンジイメージと差分画像、 及び実画像を入力する。前記したように、入力した差分画像を実画像を用いて微修 正し、この修正した差分画像を含む矩形領域を被写体領域として形成する。なお、実 画像による微修正が不要である場合には、差分画像を微修正することなぐ差分画 像から被写体領域を直接形成してもよ ヽ。  Object information (object region) forming means lg inputs a range image, a difference image, and an actual image from the memory If. As described above, the input difference image is finely corrected using the real image, and a rectangular area including the corrected difference image is formed as a subject area. If fine correction with a real image is not necessary, the subject area may be formed directly from the difference image which does not need to be finely corrected the difference image.
[0092] また、被写体情報 (被写体領域)形成手段 lgは、レンジイメージ力も被写体の位置 を求める。このとき、前記したように、通常は被写体の中心を求めることが適当である 1S 必要に応じて別の部分を被写体の位置として設定してもよ 、。  Further, the subject information (subject region) forming means lg obtains the position of the subject as well as the range image power. At this time, as described above, it is usually appropriate to find the center of the subject. 1S You may set another part as the position of the subject if necessary.
[0093] カメラパラメータ形成手段 lhは、被写体情報形成手段 lgから被写体の大きさと被 写体の位置の情報を入力し、前記したように各追尾カメラのカメラパラメータを形成し 、形成したカメラパラメータを各追尾カメラ 4に送信する。  The camera parameter formation means lh receives information of the size of the subject and the position of the subject from the subject information formation means lg, forms the camera parameters of each tracking camera as described above, and forms the formed camera parameters. Transmit to each tracking camera 4.
[0094] 以下、図 5に示す追尾処理を説明するためのフローチャート、図 6に示す候補領域 の設定を説明するための図、図 7に示す被写体領域の形成の第 1の形態を説明する ための図、図 8に示す被写体領域の形成の第 2の形態を説明するための図、図 9の 背景差分処理を説明するための図、図 10のパン、チルトの形成を説明するための図 を用いて説明する。なお、追尾処理の手順は図 5のフローチャートに示す (ステップ S )に付した番号で示している。  Hereinafter, a flowchart for explaining the tracking process shown in FIG. 5, a diagram for explaining the setting of the candidate area shown in FIG. 6, and a first embodiment of the formation of the subject area shown in FIG. , FIG. 8 is a diagram for explaining the second mode of formation of the subject region, FIG. 9 is a diagram for explaining the background difference processing, and FIG. 10 is a diagram for explaining the formation of pan and tilt This will be described using The procedure of the tracking process is indicated by the number attached to (Step S) shown in the flowchart of FIG.
[0095] 図 6 (a)は、レンジファインダによる被写体の検出状態を模式的に表しており、 Oは レンジファインダの基準点を示し、 Aはこの基準点力も検出点までの距離を示してい る。レンジファインダは水平方向に走査しているため、 Aに示す軌跡は、角度データと 距離データを含んでいる。被写体が存在しない場合には、軌跡 Aに位置は壁面と見 なすことができ、扇状の形状となる。被写体がある場合には、基準点 Oからの距離が 短い領域として検出される。例えば、 Bは距離が rlで角度が θ 1の領域であり、 ま 距離が r2で角度が Θ 2の領域である。なお、この領域の距離及び角度は、被写体に 大きさい幅があるため平均値により表すことができる。以後の背景差分処理では、こ の領域を利用して背景差分処理を行う範囲の絞り込みを行う。 FIG. 6 (a) schematically shows the detection state of the subject by the range finder, O indicates the reference point of the range finder, and A indicates the distance to the detection point as well. . Since the range finder scans in the horizontal direction, the locus shown in A Contains distance data. When there is no subject, the position on the locus A can be regarded as a wall surface, and has a fan-like shape. When there is a subject, the distance from the reference point O is detected as a short area. For example, B is a region where the distance is rl and the angle is θ 1, and B is a region where the distance is r 2 and the angle is Θ2. The distance and angle of this area can be represented by an average value because the subject has a large width. In the subsequent background difference processing, this area is used to narrow the range in which the background difference processing is performed.
[0096] 候補領域の絞り込みの第 1の形態は、画像データの中から領域につながる点を抽 出して候補領域を絞り込むものである。  The first form of narrowing down of candidate areas is to narrow down candidate areas by extracting points connected to the area from image data.
[0097] 図 6 (b)は、レンジデータと画像データとの関係を表しており、画像データ中に被写 体 11A, 11Bが存在する場合、この被写体 11A, 11Bに対応して位置にレンジデー タが検出される。レンジファインダは、一平面上のある被写体を検出するものであるた め、レンジデータ 20において、図 6 (b) , (c)中の破線で示すライン 22上において領 域 21A, 21Bで表される。なお、図 6 (d)は、図 6 (c)に対応する画像データを示し、 被写体 31 A, 31Bが表示される。(ステップ S1)  FIG. 6 (b) shows the relationship between the range data and the image data, and when the subject 11A, 11B is present in the image data, the range data corresponding to the subject 11A, 11B is placed in the range data. Data is detected. Since the range finder detects a subject on a plane, the range data 20 is represented by areas 21A and 21B on the line 22 shown by broken lines in FIGS. 6 (b) and 6 (c). Ru. FIG. 6 (d) shows the image data corresponding to FIG. 6 (c), and the subjects 31A and 31B are displayed. (Step S1)
[0098] この形態では、候補領域を絞り込むと共に、背景差分を行って被写体領域を決定 する。図 7はこの処理を説明するための図である。  In this mode, while narrowing down the candidate area, the background difference is performed to determine the subject area. FIG. 7 is a diagram for explaining this process.
[0099] 図 7 (a)は画像データ 30中の被写体 31を示し、図 7 (b)はレンジデータ 20中のライ ン 22及び領域 21を示している。ここで、被写体 31は、領域 21から連続的につながる 点の集まりとして見ることができる。そこで、領域 21につながる点(ピクセル)の集まり を順に求め(図 7 (c) , (d) , (e) )、これにより得られる矩形領域 Dを候補領域 (図 7 (f) )として背景差分処理を行い、差分で得た値があるしきい値以上である画素を被写体 とするものである。(ステップ S2)  FIG. 7 (a) shows the subject 31 in the image data 30, and FIG. 7 (b) shows the line 22 and the area 21 in the range data 20. FIG. Here, the subject 31 can be viewed as a collection of points continuously connected from the area 21. Therefore, a group of points (pixels) connected to the area 21 is sequentially determined (Fig. 7 (c), (d), (e)), and a rectangular area D obtained thereby is set as a candidate area (Fig. 7 (f)). Difference processing is performed, and a pixel whose value obtained as the difference is equal to or more than a threshold value is set as a subject. (Step S2)
[0100] また、候補領域の絞り込みの第 2の形態は、 3次元空間上で仮想的な被写体空間 を候補領域とし、この空間を固定カメラの画面に投影し、その空間内が投影されてい る画素だけ背景差分処理を行 ヽ、差分で得た値があるしき!ヽ値以上である画素を被 写体とするものである。  In the second form of narrowing down candidate areas, a virtual subject space in a three-dimensional space is a candidate area, and this space is projected on the screen of a fixed camera, and the space is projected. The background difference processing is performed only for the pixels, and the pixels having the value obtained by the difference and the threshold value or more are set as the subject.
[0101] 図 8は、 3次元空間上の仮想的な被写体空間を固定カメラの画面に投影した状態 を示している。レンジデータは、 2次元座標の値であり、これを世界座標系の 1平面上 の点 (XY平面)として変換することができる。これは、被写体 (被写体の中心)がその 点から平面に垂直な方向に伸ばした直線 (この直線を 1とする)上のどこかに存在する ことを意味している。 FIG. 8 shows a state in which a virtual subject space in a three-dimensional space is projected on the screen of a fixed camera. Range data is a value of two-dimensional coordinates, which is one plane of the world coordinate system Can be converted as a point (XY plane) of This means that the subject (the center of the subject) exists somewhere on a straight line (this straight line is 1) extending in the direction perpendicular to the plane from that point.
[0102] 一方、固定カメラの画像データを世界座標系に変換すると、 2次元の画像上の一点 は、 3次元の世界座標系に 1本の直線 (この直線を mとする)が決定される。  On the other hand, when the image data of the fixed camera is converted to the world coordinate system, one straight line (this straight line is assumed to be m) is determined in the three-dimensional world coordinate system as one point on the two-dimensional image. .
[0103] 固定カメラの画像すベてのピクセルにつ 、て、世界座標系に投影し、直線 1と直線 mの最小となる距離を算出する。被写体のほぼ中心が、直線 1上にいずれかに存在 するから、算出した距離がある一定の範囲に入るものだけを背景差分処理し、この差 分のあるピクセルを被写体とする。  For each pixel of the fixed camera, the projection is performed on the world coordinate system, and the minimum distance between the straight line 1 and the straight line m is calculated. Since the approximate center of the subject is present somewhere on the straight line 1, background subtraction processing is performed only for objects within a certain range of the calculated distance, and pixels with this difference are taken as the subject.
[0104] 図 9は、候補領域の絞り込みとは背景差分とを説明するための図である。図 9 (a)は 、画像データ 30を示し、図 9 (b)は背景データを示している。画像データ 30中には被 写体 31と背景 41のデータが含まれ、背景データ 40中には背景 41のデータが含ま れる。各データにおいて、候補領域の範囲のデータを取り出す。図 9 (c)は候補領域 50内の画像データを示し、図 9 (d)は候補領域 50内の背景データを示している。こ れら候補領域内の画像データと背景データについて背景差分処理を行うことで差分 画像を取得する(図 9 (e) )。  FIG. 9 is a diagram for describing the narrowing down of the candidate area and the background difference. FIG. 9 (a) shows the image data 30, and FIG. 9 (b) shows the background data. The image data 30 contains data of the subject 31 and the background 41, and the background data 40 contains data of the background 41. In each data, the data of the range of the candidate area is taken out. FIG. 9 (c) shows image data in the candidate area 50, and FIG. 9 (d) shows background data in the candidate area 50. FIG. A difference image is obtained by performing background difference processing on the image data and background data in these candidate areas (Fig. 9 (e)).
[0105] 差分画像のデータ力 被写体情報の算出は、例えば、以下のようにして行うことが できる。被写体領域とされるすべてのピクセルにおいて、差分のあるピクセルについ て、最小となる距離を構成する直線 1、直線 m上の 2点の 3次元座標を算出し、直線 1 上の点の Z座標の最小値、最大値を算出する。求めた最小値、最大値を用いて、(最 大値ー最小値)を被写体の大きさとし、レンジファインダカゝら変換した世界座標系での 2次元座標 (xy座標)と (最大値 最小値) Z2 +最小値を加えた 3次元座標を被写体 の位置とする。  The data strength of the difference image The subject information can be calculated, for example, as follows. For all pixels considered to be subject areas, calculate the three-dimensional coordinates of two points on straight line 1 and straight line m that constitute the minimum distance for the pixels with differences, and calculate the Z coordinates of the points on straight line 1 Calculate the minimum and maximum values. Two-dimensional coordinates (xy coordinates) and (maximum value minimum value in the world coordinate system converted from the range finder by using (maximum value-minimum value) as the size of the object using the minimum value and maximum value thus determined ) The three-dimensional coordinates plus Z2 + minimum value is the position of the subject.
[0106] また、被写体までの距離は、世界座標系における追尾カメラのカメラ座標の原点座 標と点間の距離力 取得する。(ステップ S2)  In addition, for the distance to the subject, the distance force between the origin coordinate and the point of the camera coordinate of the tracking camera in the world coordinate system is acquired. (Step S2)
[0107] 背景差分データから決定した被写体領域にっ 、て、前記したように実画像を用い て微修正を行い (ステップ S3)、カメラパラメータを決定し (ステップ S4)、決定したカメ ラパラメータに基づいて追尾カメラを制御する (ステップ S5)。この処理を繰り返す (ス テツプ S6)。 The subject area determined from the background difference data is finely corrected using the actual image as described above (step S3), the camera parameters are determined (step S4), and the determined camera parameters are determined. The tracking camera is controlled based on it (step S5). Repeat this process Tep S6).
[0108] カメラパラメータの形成において、追尾カメラは、キャリブレーションによって世界座 標系とカメラ座標系との対応関係が得られている。このとき、世界座標系上の一点 P は、この点 Pを通る直線が光軸であるカメラ座標系の Z軸と重なることにより、画像の 中心に写し込むことができる。図 10はこの位置関係を示す図である。このとき、直線と カメラ座標系の XY平面との角度力 パンの移動すべき角度が求まり、直線とカメラ座 標系の YZ平面との角度力もチルトの移動すべき角度が求まる。  In the formation of the camera parameters, the tracking camera obtains the correspondence between the world coordinate system and the camera coordinate system by calibration. At this time, a point P on the world coordinate system can be imprinted at the center of the image by the line passing through the point P overlapping the Z axis of the camera coordinate system which is the optical axis. FIG. 10 shows this positional relationship. At this time, the angular force between the straight line and the XY plane of the camera coordinate system is determined, and the angular force between the straight line and the YZ plane of the camera coordinate system is also determined as the tilt movement angle.
[0109] また、ズームは、追尾カメラの焦点距離により制御することができる。この焦点距離 f は、 f = (レンズから被写体までの距離) X (イメージサイズ) Z被写体の高さ(幅)によ り求めることができる。イメージサイズはカメラ仕様力も既知となることから、レンズから 被写体までの距離をレンジファインダの距離データ力 取得し、被写体の高さ(幅)を 被写体情報から取得することによって、ズーム値を得ることができる。なお、焦点距離 と制御用のパルス値との対応関係を求めておくことによって、焦点距離力 追尾カメ ラのズーム制御を行うパルス値を算出することができる。  Also, the zoom can be controlled by the focal length of the tracking camera. The focal length f can be obtained by f = (distance from lens to subject) X (image size) Z height (width) of subject. Since the camera specification power is also known as the image size, the zoom data can be obtained by acquiring the distance data power of the range finder from the lens to the object and acquiring the height (width) of the object from the object information. it can. Note that, by obtaining the correspondence between the focal length and the pulse value for control, it is possible to calculate the pulse value for performing zoom control of the focal length force tracking camera.
[0110] また、フォーカスは、レンズの仕様によるレンズから被写体までの距離に関係するた め、レンズから被写体までの距離をレンジファインダの距離データから取得することに よってフォーカス値を得ることができる。なお、距離と制御用のパルス値との対応関係 を求めておくことによって、距離力 追尾カメラのフォーカス制御を行うパルス値を算 出することができる。  Further, since the focus is related to the distance from the lens to the subject according to the specification of the lens, the focus value can be obtained by acquiring the distance from the lens to the subject from the distance data of the range finder. Note that by finding the correspondence between the distance and the pulse value for control, it is possible to calculate a pulse value for performing focus control of the distance force tracking camera.
[0111] 次に、追尾装置の構成例について説明する。  Next, a configuration example of the tracking device will be described.
[0112] 本発明の追尾装置は追尾カメラに被写体の追尾させるための追尾装置であり、レ ンジファインダと固定カメラとの配置構成に特徴を備え、レンジファインダ及び固定力 メラを垂直方向に重ねて同一平面位置上に配置し、同一位置を基準とする距離デー タ、角度データ及び画像データを取得する。  The tracking device of the present invention is a tracking device for causing the tracking camera to track an object, and is characterized in the arrangement configuration of the range finder and the fixed camera, and the range finder and the fixed power camera are overlapped in the vertical direction. Arrange on the same plane position and acquire distance data, angle data and image data based on the same position.
[0113] 図 11 (a)は本発明の追尾装置の構成の一形態を示している。この形態では、固定 カメラ 3を挟んで上下にレンジファインダ 2A, 2Bを備える。レンジファインダ 2A, 2B 及び固定カメラ 3は、垂直に立てられた支持体に取り付けられ、平面に同一位置上に 配置さる。これにより、同一位置を基準とする距離データ、角度データ及び画像デー タを取得する。 FIG. 11 (a) shows an example of the configuration of the tracking device of the present invention. In this embodiment, range finders 2A and 2B are provided above and below the fixed camera 3. The range finder 2A, 2B and the fixed camera 3 are mounted on a vertically erected support and placed on the same plane in the same position. By this, distance data, angle data and image data based on the same position are obtained. Get the
[0114] 図 11 (b)は本発明の追尾装置の構成の他の形態を示している。この形態は、固定 カメラ 3を複数台備える構成である。  FIG. 11 (b) shows another form of the configuration of the tracking device of the present invention. This form is configured to include a plurality of fixed cameras 3.
[0115] 固定カメラ 3A, 3B, 3Cは水平方向の向きを異ならせて配置し、レンジファインダ 2The fixed cameras 3A, 3B, 3C are arranged with different horizontal orientations, and the range finder 2
A, 2Bは、固定カメラ 3A, 3B, 3Cの上方及び Z又は下方に少なくとも一つを配置す る構成とする。また、レンジファインダ 2A, 2Bは、上下方向に二つを配置する構成と することができる。 At least one of A and 2B is disposed above and Z or below fixed cameras 3A, 3B and 3C. Further, the range finders 2A and 2B can be configured to arrange two in the vertical direction.
[0116] レンジファインダ 2A, 2Bの水平方向の測定範囲は、固定カメラ 3A, 3B, 3Cの水 平方向の撮像範囲、又は、複数の追尾カメラの画像データを合成して得られる水平 方向の撮像範囲を含む。複数の固定カメラ 3A, 3B, 3Cの画像データを合成するこ とにより、水平方向に広い撮像範囲を得ることができる。なお、複数の固定カメラの画 像データに水平方向に重なりを設けることにより、画像データの抜けを防ぐことができ る。  The measurement range in the horizontal direction of the range finder 2A, 2B is the horizontal imaging range obtained by combining the horizontal imaging range of the fixed cameras 3A, 3B, 3C or the image data of a plurality of tracking cameras. Include range. By combining the image data of the plurality of fixed cameras 3A, 3B, 3C, a wide imaging range in the horizontal direction can be obtained. By providing an overlap in the horizontal direction to the image data of a plurality of fixed cameras, omission of the image data can be prevented.
[0117] 図 12は、複数台の固定カメラ、及び複数台のレンジファインダにより得られるデータ を説明するための図である。ここでは、画像データ 30内にレンジデータのライン 22を 重ねて示している。  FIG. 12 is a diagram for explaining data obtained by a plurality of fixed cameras and a plurality of range finders. Here, the line 22 of the range data is shown superimposed on the image data 30.
[0118] 図 12 (a)は、 1台の固定カメラと 1台のレンジファインダとを組み合わせたときの画像 データ及びレンジデータの一例である。被写体 31は、画像データ 30において、レン ジデータのライン 22と重なる位置に存在するときにのみ形成される。  FIG. 12 (a) is an example of image data and range data when one fixed camera and one range finder are combined. The subject 31 is formed only when it is present in the image data 30 at a position overlapping the line 22 of the range data.
[0119] また、図 12 (b)は、 3台の固定カメラと 1台のレンジファインダとを組み合わせたとき の画像データ及びレンジデータの一例である。画像データ 30は、 3台の固定カメラか ら得られる画像データ 30A, 30B, 30Cをつなぎ合わせることによって形成すること ができる。なお、画像データ 30A, 30B, 30Cは重なり部分を有して撮像することによ り、画像の欠如部分を防ぐことができる。  FIG. 12 (b) is an example of image data and range data when three fixed cameras and one range finder are combined. The image data 30 can be formed by connecting image data 30A, 30B and 30C obtained from three fixed cameras. The image data 30A, 30B, and 30C can be prevented from missing portions of the image by capturing with overlapping portions.
[0120] また、図 12 (c)は、 3台の固定カメラと 2台のレンジファインダとを組み合わせたとき の画像データ及びレンジデータの一例であり、レンジファインダは上下方向に配置す ることで異なる高さでのレンジデータを取得する。  Further, FIG. 12 (c) is an example of image data and range data when three fixed cameras and two range finders are combined, and the range finder is arranged in the vertical direction. Obtain range data at different heights.
[0121] 画像データ 30は、 3台の固定カメラから得られる画像データ 30A, 30B, 30Cをつ なぎ合わせることによって形成することができ、この画像に対して 2台のレンジファイン ダによる 2本のレンジデータのライン 22A, 22Bが得られる。 Image data 30 includes image data 30A, 30B, and 30C obtained from three fixed cameras. It can be formed by unifying, and two range data lines 22A, 22B by two range finders can be obtained for this image.
[0122] 複数のレンジファインダは異なる高さにおけるレンジデータを取得することができる ため、低い位置に存在する被写体 31aや、高い位置に存在する被写体 31cについて も、検出することができる。 The plurality of range finders can acquire range data at different heights, and therefore, subjects 31a present at low positions and subjects 31c present at high positions can also be detected.
[0123] 図 12 (c)の構成のように、複数のレンジファインダを備える構成では、一つの被写 体を複数のレンジファインダが検出する場合がある。このような場合の被写体領域の 決定は、所謂しみ出し法と呼ばれる処理を適用することによって、一つの被写体とし て被写体領域を形成することができる。 In the configuration provided with a plurality of range finders as shown in FIG. 12 (c), one range subject may be detected by a plurality of range finders. In such a case of determining the subject area, the subject area can be formed as one subject by applying a process called a so-called exudation method.
[0124] 図 13はこの複数のレンジファインダが一つの被写体を形成する際の処理を説明す るための図である。 FIG. 13 is a diagram for explaining processing when the plurality of range finders form one object.
[0125] 図 13 (a)は、被写体 31と二本のレンジデータライン 22A, 22Bとの関係を示してい る。この状態では、図 13 (b)に示すように、複数の箇所で被写体を検出するレンジデ ータの領域 21a, 21b, 21cが得られる。このままでは、各レンジデータは異なる被写 体を検出したのか一つの被写体を検出したのかを区別することができない。  FIG. 13 (a) shows the relationship between the subject 31 and the two range data lines 22A and 22B. In this state, as shown in FIG. 13 (b), areas 21a, 21b, 21c of range data for detecting an object at a plurality of places are obtained. Under this condition, each range data can not distinguish whether a different subject or a single subject is detected.
[0126] そこで、前記被写体領域の形成の第 1の形態で示したように、各領域 21a, 21b, 2 lcとつながっているピクセルを抽出し(図 13 (c) , (d) , (e) )、これらのピクセル間に つながりが生じる力否かを判定し、この判定によって、異なる被写体であるか一つの 被写体であるかを区別する。  Therefore, as shown in the first form of formation of the subject area, the pixels connected to each of the areas 21a, 21b and 2lc are extracted (FIGS. 13 (c), (d), (e) )) It is determined whether or not the connection between these pixels is generated, and this determination is made to distinguish whether it is a different subject or a single subject.
[0127] 図 14は、モーションキヤプチャ装置のシステム構成例を説明するための図である。  FIG. 14 is a diagram for explaining an example of the system configuration of the motion capture device.
図 14において、追尾カメラとなる撮像カメラ 4A— 4Dは、外部の同期信号発生装置 1 0からの同期信号によって同期がとられている。また、各撮像カメラ 4A— 4Dのパン, チルト,ズーム,フォーカスのデータも同期をとつてデータ収集機 6に収集される。ま た、データ収集機 6は、フレームカウンタ 5からフレームカウントを入力してフレーム間 のデータ同期もとられる。  In FIG. 14, the imaging cameras 4A to 4D, which are tracking cameras, are synchronized by the synchronization signal from the external synchronization signal generator 10. In addition, data of pan, tilt, zoom, and focus of each imaging camera 4A-4D is also collected by the data collector 6 in synchronization. Also, the data collector 6 receives the frame count from the frame counter 5 to obtain data synchronization between frames.
[0128] データ制御装置 7は、これらカメラパラメータのデータと撮像カメラ 4A— 4D力 の 画像データとを同期を合わせてまとめ、映像データ記憶装置 8に蓄積する。ホスト制 御装置 9は、映像データ記憶装置 8の蓄積するデータ、及びカメラパラメータ記憶装 置のデータを入力し、シミュレーションを行うことができる。 The data control device 7 synchronizes the data of the camera parameters and the image data of the imaging camera 4A-4D in a synchronized manner, and accumulates them in the video data storage device 8. The host control unit 9 stores data stored in the video data storage unit 8 and a camera parameter storage unit. Data can be input and simulation can be performed.
産業上の利用可能性 Industrial applicability
本発明は、運動の解析やリハビリテーションへの適用、スポーツ中継への適用、人 によるカメラ操作ができない環境への適用とう、様々な分野に適用することができる。  The present invention can be applied to various fields such as analysis of exercise and application to rehabilitation, application to sports broadcasting, and application to an environment in which a person can not operate a camera.

Claims

請求の範囲 The scope of the claims
[1] 追尾カメラに被写体の追尾させるための追尾装置であって、  [1] A tracking device for causing a tracking camera to track an object,
所定領域内において対象物の固定位置からの距離及び角度を測定するレンジファ インダと、  A range finder that measures the distance and angle from the fixed position of the object within a predetermined area;
前記所定領域の画像データを取得する固定カメラと、  A fixed camera for acquiring image data of the predetermined area;
前記レンジファインダで取得した距離データ及び角度データと、前記固定カメラで 取得した画像データとを用いて、被写体領域を決定する被写体情報を形成する被写 体情報形成手段と、  Subject information forming means for forming subject information for determining a subject area using distance data and angle data acquired by the range finder and image data acquired by the fixed camera;
前記被写体情報及び前記距離データを用いて追尾カメラのカメラパラメータを形成 するカメラパラメータ形成手段とを備え、  Camera parameter forming means for forming camera parameters of a tracking camera using the subject information and the distance data;
前記レンジファインダ及び前記固定カメラは所定領域に対して固定されることを特 徴とする追尾装置。  A tracking device characterized in that the range finder and the fixed camera are fixed with respect to a predetermined area.
[2] 追尾カメラに被写体の追尾をさせるための追尾装置であって、  [2] A tracking device for causing a tracking camera to track an object,
所定領域内において対象物の固定位置からの距離及び角度を測定するレンジファ インダと、  A range finder that measures the distance and angle from the fixed position of the object within a predetermined area;
前記所定領域の画像データを取得する固定カメラと、  A fixed camera for acquiring image data of the predetermined area;
前記レンジファインダで取得した距離データ及び角度データを元に、前記固定カメ ラで取得した画像データの中から被写体の処理領域を絞り込み、当該絞り込みにより 狭めた候補領域を画像解析することによって、被写体領域を決定する被写体情報を 形成する被写体情報形成手段と、  Based on the distance data and angle data acquired by the range finder, the processing area of the subject is narrowed down from the image data acquired by the fixed camera, and the candidate area narrowed by the narrowing-down is subjected to image analysis. Subject information forming means for forming subject information for determining
前記被写体情報及び前記距離データを用いて追尾カメラのカメラパラメータを形成 するカメラパラメータ形成手段とを備え、  Camera parameter forming means for forming camera parameters of a tracking camera using the subject information and the distance data;
前記レンジファインダ及び前記固定カメラは所定領域に対して固定されることを特 徴とする追尾装置。  A tracking device characterized in that the range finder and the fixed camera are fixed with respect to a predetermined area.
[3] 前記被写体情報形成手段は、前記画像データから背景データを差し引いた差分 画像データ力 被写体領域を定め、被写体の位置及び大きさの被写体情報を取得 することを特徴とする請求項 1又は 2に記載の追尾装置。  [3] The subject information forming means determines a subject area by subtracting image data from background data from the image data, and acquires subject information of the position and size of the subject. The tracking device described in.
[4] 前記レンジファインダで取得した距離データ及び角度データから画像差分を行う候 補領域を形成する候補領域形成手段と、 [4] A candidate for performing image difference from distance data and angle data acquired by the range finder Candidate area forming means for forming a complementary area;
前記画像データから背景データを差し引く差分器とを備え、  And a differencer for subtracting background data from the image data,
前記差分器は、前記候補領域のみにおいて画像データから背景データを差し引く 背景差分処理を行って差分画像データを取得し、  The differencer performs background difference processing to subtract background data from image data only in the candidate area to obtain difference image data.
前記被写体情報形成手段は、当該差分画像データから被写体の大きさを取得し、 前記距離データ力 被写体の位置を取得することを特徴とする請求項 1又は 2に記 載の追尾装置。  The tracking device according to claim 1 or 2, wherein the subject information forming means obtains the size of the subject from the difference image data, and obtains the position of the subject with the distance data force.
[5] 前記カメラパラメータはフォーカス値、パン値、チルト値、及びズーム値であり、 前記カメラパラメータ形成手段は、前記距離データからフォーカス値を形成し、前記 被写体の位置力 パン値及びチルト値を形成し、前記被写体の大きさからズーム値 を形成することを特徴とする請求項 1乃至 4のいずれかに記載の追尾装置。  [5] The camera parameters are a focus value, a pan value, a tilt value, and a zoom value, and the camera parameter forming unit forms a focus value from the distance data, and calculates a position force pan value and a tilt value of the object. The tracking device according to any one of claims 1 to 4, wherein the zoom value is formed based on the size of the subject.
[6] 前記カメラパラメータ形成手段は、複数の追尾カメラの各キャリブレーションデータ に基づ!/、て各追尾カメラのカメラパラメータを形成することを特徴とする請求項 5に記 載の追尾装置。 [6] The tracking device according to claim 5, wherein the camera parameter forming means forms camera parameters of each tracking camera based on calibration data of a plurality of tracking cameras.
[7] 前記差分器は、前記固定カメラから逐次入力される画像データと予め取得された背 景データとの差分処理を 1ピクセル毎に行う回路構成を備えることを特徴とする請求 項 4に記載の追尾装置。  [7] The subtracter according to claim 4, wherein the subtracter has a circuit configuration that performs, for each pixel, differential processing between image data sequentially input from the fixed camera and background data acquired in advance. Tracking device.
[8] 追尾カメラに被写体の追尾させるための追尾装置であって、  [8] A tracking device for causing a tracking camera to track an object,
所定領域内において対象物の固定位置からの距離及び角度を測定するレンジファ インダと、  A range finder that measures the distance and angle from the fixed position of the object within a predetermined area;
前記所定領域の画像データを取得する固定カメラと、  A fixed camera for acquiring image data of the predetermined area;
前記レンジファインダ及び前記固定カメラの基準位置力 の位置情報とを備え、 前記基準位置を基準とする距離データ、角度データ及び画像データを取得するこ とを特徴とする追尾装置。  A tracking device comprising: position information of a reference position force of the range finder and the fixed camera; and acquiring distance data, angle data, and image data based on the reference position.
[9] 追尾カメラに被写体の追尾させるための追尾装置であって、 [9] A tracking device for causing a tracking camera to track an object,
所定領域内において対象物の固定位置からの距離及び角度を測定するレンジファ インダと、  A range finder that measures the distance and angle from the fixed position of the object within a predetermined area;
前記所定領域の画像データを取得する固定カメラとを備え、 前記レンジファインダ及び前記固定カメラを垂直方向に重ねて一つの共通位置に 配置し、当該共通位置を基準とする距離データ、角度データ及び画像データを取得 することを特徴とする追尾装置。 A fixed camera for acquiring image data of the predetermined area; A tracking device, wherein the range finder and the fixed camera are vertically overlapped and disposed at one common position, and distance data, angle data, and image data based on the common position are acquired.
[10] 前記固定カメラは水平方向の向きを異ならせて配置した複数の追尾カメラを含み、 前記レンジファインダは、前記追尾カメラの上方及び Z又は下方に少なくとも一つ を配置することを特徴とする請求項 2又は 9に記載の追尾装置。  [10] The fixed camera includes a plurality of tracking cameras arranged with different horizontal orientations, and the range finder is characterized in that at least one is arranged above and Z or below the tracking cameras. A tracking device according to claim 2 or 9.
[11] 前記レンジファインダは、上下方向に二つを配置することを特徴とする請求項 2又 は 9に記載の追尾装置。 11. The tracking device according to claim 2, wherein two range finders are arranged in the vertical direction.
[12] 前記レンジファインダの水平方向の測定範囲は、前記固定カメラの水平方向の撮 像範囲、又は、前記複数の追尾カメラの画像データを合成して得られる水平方向の 撮像範囲を含むことを特徴とする請求項 1、 2、 8、 9、 10又は 11のいずれかに記載 の追尾装置。 [12] The measurement range in the horizontal direction of the range finder includes an imaging range in the horizontal direction of the fixed camera or an imaging range in the horizontal direction obtained by combining the image data of the plurality of tracking cameras. The tracking device according to any one of claims 1, 2, 8, 9, 10 or 11, which is characterized.
[13] 前記請求項 1乃至 12のいずれかに記載の追尾装置と、  [13] The tracking device according to any one of claims 1 to 12,
少なくとも一台の追尾カメラと、  At least one tracking camera,
前記追尾カメラの撮像データを同期して取得し蓄積する画像データ処理手段とを 備え、  Image data processing means for synchronously acquiring and accumulating imaging data of the tracking camera;
前記追尾装置は、形成したカメラパラメータにより各追尾カメラを駆動制御し、被写 体の追尾画像データを取得することを特徴とするモーションキヤプチャ装置。  A motion capture device characterized in that the tracking device drives and controls each tracking camera according to a formed camera parameter to acquire tracking image data of a subject.
[14] 追尾カメラに被写体の追尾させるための追尾方法であって、  [14] A tracking method for causing a tracking camera to track an object,
所定領域内において対象物の固定位置からの距離及び角度を測定するステップと 前記所定領域の画像データを取得するステップと、  Measuring a distance and an angle from a fixed position of the object in a predetermined area; acquiring image data of the predetermined area;
前記距離データ及び角度データと前記画像データとを用いて、被写体領域を決定 する被写体情報を形成するステップと、  Forming subject information for determining a subject area using the distance data and angle data and the image data;
前記被写体情報及び前記距離データを用いて追尾カメラのカメラパラメータを形成 するステップとを備え、  Forming camera parameters of a tracking camera using the subject information and the distance data;
前記距離データ及び角度データと前記画像データは、所定領域に対して固定位 置において取得することを特徴とする追尾方法。 The tracking method, wherein the distance data, the angle data, and the image data are acquired at a fixed position with respect to a predetermined area.
[15] 追尾カメラに被写体の追尾をさせるための追尾方法であって、 [15] A tracking method for causing a tracking camera to track an object,
所定領域内において対象物の固定位置からの距離及び角度を測定するステップと 前記所定領域の画像データを取得するステップと、  Measuring a distance and an angle from a fixed position of the object in a predetermined area; acquiring image data of the predetermined area;
前記レンジファインダで取得した距離データ及び角度データを元に、前記固定カメ ラで取得した画像データの中から被写体の処理領域を絞り込み、当該絞り込みにより 狭めた候補領域を画像解析することによって、被写体領域を決定する被写体情報を 形成するステップと、  Based on the distance data and angle data acquired by the range finder, the processing area of the subject is narrowed down from the image data acquired by the fixed camera, and the candidate area narrowed by the narrowing-down is subjected to image analysis. Forming subject information to determine
前記被写体情報及び前記距離データを用いて追尾カメラのカメラパラメータを形成 するステップとを備え、  Forming camera parameters of a tracking camera using the subject information and the distance data;
前記距離データ及び角度データと前記画像データは、所定領域に対して固定位 置において取得することを特徴とする追尾方法。  The tracking method, wherein the distance data, the angle data, and the image data are acquired at a fixed position with respect to a predetermined area.
[16] 前記被写体情報を形成するステップは、 [16] The step of forming the subject information includes:
前記画像データ力 背景データを差し引いた差分画像データ力 被写体領域を定 めるステップと、  The step of determining the image data area and the subject area by subtracting the image data and background data;
被写体の位置及び大きさの被写体情報を取得するステップを備えることを特徴とす る請求項 14又は 15に記載の追尾方法。  The tracking method according to claim 14 or 15, further comprising the step of acquiring subject information of the position and size of the subject.
[17] 前記被写体情報を形成するステップは、 [17] The step of forming the subject information includes:
前記距離データ及び角度データから画像差分を行う候補領域を形成するステップ と、  Forming a candidate area for performing image difference from the distance data and the angle data;
前記候補領域のみにおいて画像データ力 背景データを差し引く背景差分処理を 行って 差分画像データを取得して被写体領域を定めるステップと、  Performing background subtraction processing to subtract image data strength background data only in the candidate area to acquire difference image data and determine a subject area;
当該差分画像データから被写体の大きさを取得するステップと、  Acquiring the size of the subject from the difference image data;
前記距離データから被写体の位置を取得するステップを備えることを特徴とする請 求項 14又は 15に記載の追尾方法。  The tracking method according to claim 14 or 15, further comprising the step of acquiring the position of a subject from the distance data.
PCT/JP2005/004176 2004-03-16 2005-03-10 Tracking device and motion capture device WO2005088962A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-075232 2004-03-16
JP2004075232 2004-03-16

Publications (1)

Publication Number Publication Date
WO2005088962A1 true WO2005088962A1 (en) 2005-09-22

Family

ID=34975972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004176 WO2005088962A1 (en) 2004-03-16 2005-03-10 Tracking device and motion capture device

Country Status (1)

Country Link
WO (1) WO2005088962A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278528A1 (en) * 2009-07-13 2011-01-26 Toshiba TEC Kabushiki Kaisha Flow line recognition system
GB2569654A (en) * 2017-12-22 2019-06-26 Create Tech Limited Apparatusses, systems and methods for object tracking
CN110830707A (en) * 2018-08-10 2020-02-21 华为技术有限公司 Lens control method and device and terminal
JP2020160568A (en) * 2019-03-25 2020-10-01 日本電信電話株式会社 Image synchronization device, image synchronization method, and program
CN115135554A (en) * 2019-12-30 2022-09-30 伟摩有限责任公司 Perimeter sensor housing
US11887378B2 (en) 2019-12-30 2024-01-30 Waymo Llc Close-in sensing camera system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294890A (en) * 1997-04-21 1998-11-04 Nippon Hoso Kyokai <Nhk> Automatic/manual photographic camera system
JP3143291B2 (en) * 1993-11-11 2001-03-07 三菱電機株式会社 Image target detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143291B2 (en) * 1993-11-11 2001-03-07 三菱電機株式会社 Image target detection device
JPH10294890A (en) * 1997-04-21 1998-11-04 Nippon Hoso Kyokai <Nhk> Automatic/manual photographic camera system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564659B2 (en) 2009-07-13 2013-10-22 Toshiba Tec Kabushiki Kaisha Flow line recognition system
EP2278528A1 (en) * 2009-07-13 2011-01-26 Toshiba TEC Kabushiki Kaisha Flow line recognition system
GB2569654B (en) * 2017-12-22 2022-09-07 Sportlight Tech Ltd Apparatusses, systems and methods for object tracking
GB2569654A (en) * 2017-12-22 2019-06-26 Create Tech Limited Apparatusses, systems and methods for object tracking
WO2019122922A1 (en) * 2017-12-22 2019-06-27 Sportlight Technology Ltd Object tracking
US11624825B2 (en) 2017-12-22 2023-04-11 Sportlight Technology Ltd. Object tracking
CN110830707A (en) * 2018-08-10 2020-02-21 华为技术有限公司 Lens control method and device and terminal
CN110830707B (en) * 2018-08-10 2022-01-14 华为技术有限公司 Lens control method and device and terminal
US11375097B2 (en) 2018-08-10 2022-06-28 Huawei Technologies Co., Ltd. Lens control method and apparatus and terminal
JP7067513B2 (en) 2019-03-25 2022-05-16 日本電信電話株式会社 Video synchronization device, video synchronization method, program
WO2020195815A1 (en) * 2019-03-25 2020-10-01 日本電信電話株式会社 Image synchronization device, image synchronization method, and program
JP2020160568A (en) * 2019-03-25 2020-10-01 日本電信電話株式会社 Image synchronization device, image synchronization method, and program
CN115135554A (en) * 2019-12-30 2022-09-30 伟摩有限责任公司 Perimeter sensor housing
US11880200B2 (en) 2019-12-30 2024-01-23 Waymo Llc Perimeter sensor housings
US11887378B2 (en) 2019-12-30 2024-01-30 Waymo Llc Close-in sensing camera system
CN115135554B (en) * 2019-12-30 2024-03-29 伟摩有限责任公司 Perimeter sensor housing

Similar Documents

Publication Publication Date Title
CN109658457B (en) Method for calibrating arbitrary relative pose relationship between laser and camera
US8848035B2 (en) Device for generating three dimensional surface models of moving objects
KR101600769B1 (en) System and method for multiframe surface measurement of the shape of objects
JP4010753B2 (en) Shape measuring system, imaging device, shape measuring method, and recording medium
JP5603663B2 (en) Moving object locus display device and moving object locus display program
KR101768958B1 (en) Hybird motion capture system for manufacturing high quality contents
JP2543505B2 (en) Signal processing device and measuring device using space-time differential method
JP3700707B2 (en) Measuring system
JP2016177640A (en) Video monitoring system
JPH09214945A (en) Image characteristic tracing device and image characteristic tracing method
JP3988574B2 (en) Image processing device
JPH1169342A (en) Image processing system for tracking intruding object
JPH07181024A (en) Method and apparatus for measuring three-dimensional profile
WO2005088962A1 (en) Tracking device and motion capture device
JP2017147689A (en) Video editing device, video editing method, and computer program for editing video
JPH1023465A (en) Image pickup method and its device
JP3388833B2 (en) Measuring device for moving objects
JP2006033188A (en) Supervisory apparatus and supervisory method
JPH09145368A (en) Moving and tracing method for object by stereoscopic image
JP2006173872A (en) Camera controller
CN113421286A (en) Motion capture system and method
JP4892793B2 (en) Measuring apparatus and measuring method
JP2009027437A (en) Image processor, image processing method and imaging device
JP4892792B2 (en) Measuring apparatus and measuring method
JP4779491B2 (en) Multiple image composition method and imaging apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP