[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005085299A1 - Method for producing coagulated particles from emulsion polymerization latex - Google Patents

Method for producing coagulated particles from emulsion polymerization latex Download PDF

Info

Publication number
WO2005085299A1
WO2005085299A1 PCT/JP2004/019823 JP2004019823W WO2005085299A1 WO 2005085299 A1 WO2005085299 A1 WO 2005085299A1 JP 2004019823 W JP2004019823 W JP 2004019823W WO 2005085299 A1 WO2005085299 A1 WO 2005085299A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polymer
parts
monomer
latex
Prior art date
Application number
PCT/JP2004/019823
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Ueda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006510616A priority Critical patent/JP4747090B2/en
Priority to EP04808173A priority patent/EP1739102A1/en
Priority to CA002559129A priority patent/CA2559129A1/en
Priority to US10/598,653 priority patent/US20070219294A1/en
Publication of WO2005085299A1 publication Critical patent/WO2005085299A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate

Definitions

  • the present invention relates to a method for producing emulsion polymerization latex particles. More specifically, the present invention relates to a method for producing polymer-encapsulated particles having a volume average particle size of 50 to 500 ⁇ from a lactic acid polymerization latex. Background art
  • Emulsion-polymerized polymers include Shiojiri Bier resin, styrene resin, and methyl methacrylate resin.
  • a granulation operation for aggregating and recovering the latex is necessary.
  • This granulation operation has a great effect not only on the powder characteristics (particle size distribution, fine powder amount, coarse particle amount, etc.) of the recovered particles, but also on post-processing productivity such as dehydration and drying characteristics.
  • water is added to latex to adjust the concentration of the polymer per solid to 10% by weight or less.
  • a coagulant is introduced at a temperature sufficiently lower than the softening temperature of the polymer to form polymer agglomerated particles, which are then heated to a temperature higher than the softening temperature of the polymer to form a slurry, which is recovered as powder particles through dehydration and drying.
  • the standing shape becomes indefinite and contains a considerable amount of fine powder, so that the working environment is degraded due to frequent trapping in the process or generation of dust.
  • a coagulant is added at a temperature sufficiently lower than the polymer softening (usually at a much lower temperature than the polymerization temperature). ), It is necessary to perform heat treatment again at a high temperature, resulting in poor energy efficiency.
  • Solid content concentration during normal polymerization A large amount of water is used to adjust the solid content concentration from 30 to 40% by weight to 10% by weight or less, thereby increasing the load of wastewater treatment.
  • a method using a polymer agent has been proposed as a new granulation method (for example, see Patent Document 3).
  • anionic polyacrylamide which is a polymer fiber agent
  • an inorganic salt are added to the emulsion polymerization latex and granulated.
  • the latex is diluted with a large amount of water after polymerization to adjust the solid content concentration to 10% by weight or less in order to obtain good coagulated particles. It was not a thing.
  • regardless of the properties of the emulsion polymerization latex regardless of the properties of the emulsion polymerization latex
  • the granulation operation could be performed only at a relatively high temperature of 80 ° C or higher, and the energy consumption was not satisfactory.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 52-62882
  • Patent Document 2 Japanese Patent Application Laid-Open No. 60-217172
  • Patent Document 3 Japanese Patent Application Laid-Open No. Sho 59-8492 2 Disclosure of the Invention
  • the present invention provides: (a) a small amount of fine powder having a body average particle diameter of less than 50 m; (mouth) a low water consumption due to a water content; and (c) a polymer softening temperature. (2) Solid concentration of 10% by weight. /. It is an object of the present invention to propose a new method capable of performing the above treatment and reducing the load of wastewater treatment.
  • the present invention adjusts the temperature of the emulsion polymerization latex (polymer solid content of 100 parts by weight) so that (A) the polymer softening temperature (Tm) falls within a range of Tm ⁇ 15 ° C.
  • the present invention relates to a method for producing emulsion-polymerized latex aggregated particles, wherein the temperature of a suspension is adjusted to Tm or higher.
  • a nonionic surfactant selected from other than polyethylene oxide is used.
  • a preferred embodiment relates to any one of the above-mentioned production methods, wherein the emulsion-polymerized latex has a polymer having a volume average particle diameter of 0.05 to 0.5 ⁇ .
  • a preferred embodiment relates to the production method according to any one of the above, wherein the polymer solid content concentration of the emulsion polymerization latetus is in the range of 10 to 35% by weight / 0 .
  • a preferred embodiment relates to the production method according to any one of the above, wherein the emulsion polymerization latex is adjusted within a temperature range of Tm ⁇ 10 ° C. with respect to the polymer softening temperature (Tm).
  • polyethylene oxide having a viscosity average molecular weight of 600,000 to 800,000 is used in an aqueous solution having a concentration of from 0,001 to 0: 0% by weight based on 100 parts by weight of the polymer solid content.
  • a nonionic surfactant selected from other than polyethylene oxide is added to a polymer solid content of 100 parts by weight at a concentration of 0.01 to 10% by weight at a water content of 0.00% by weight.
  • a preferred embodiment relates to the production method according to any of the above, wherein the coagulant is an aqueous solution of a monovalent or divalent inorganic salt and / or an inorganic acid.
  • the polymer latex produced by widow polymerization is made up of acrylic acid ester 50-: L 0 weight 0 aromatic aromatic monomer 0- 40 weight 0, and a vinyl monomer copolymerizable with these 0-: L 0 weight % And a polyfunctional monomer of 0 to 5% by weight / 0 and a methacrylic acid ester of 10 to 1 ° C in a solid content of 50 to 95 parts by weight of a rubber latex having a glass transition temperature of 0 ° C. or less.
  • the present invention relates to any one of the above-mentioned production methods, which is obtained by graft polymerization of 5 to 50 parts by weight of a monomer mixture composed of 0 to 20% by weight of a natural monomer.
  • the polymer latex produced by emulsion polymerization is butadiene.
  • the method for producing the emulsion-polymerized latex fiber particles of the present invention is as follows: (a)-The amount of fine powder having a particle diameter of less than 50 ⁇ m is smaller than that of the conventional difficult method such as salting out. Low energy consumption, (c) Good energy efficiency due to granulation operation near the polymer softening temperature (near polymerization), (2) Treatment at solid content concentration of 10% by weight or more Therefore, a granulation operation having excellent effects such as reduction of the load of wastewater treatment can be realized.
  • the polymer particles of the emulsion polymerization latettas according to the present invention are not particularly limited. Force (1) ataryl acid ester 50-: L 0 wt. 0 aromatic ball monomer 0- 40 wt. polymerizable Bulle monomers 0-1 0% by weight and a polyfunctional mono mer 0-5 wt 0/0 becomes polymerized, the solid form of the following rubber latex glass transition temperature of 0 ° C min 5 0 - 9 5 In terms of parts by weight, methacrylic acid ester 10 ⁇ : L 0 weight 0 % Aromatic vinylinole monomer 0 ⁇ 90% by weight, cyanated butyl monomer 0 ⁇ 25% by weight, if methacrylic acid ester, aromatic vinyl monomer and Shian vinyl monomer copolymerizable with vinyl monomers 0-2 0 weight 0/0 consists monomer mixture 5-5 0 parts by weight polymer latex obtained by graft-polymerizing a (2) methyl methacryl
  • JP-A Japanese Patent Application Laid-Open
  • 2-269755 and 8-21878 This is described in detail in Japanese Patent Publication No. 17 However, it is not limited to this.
  • the polymer particles of the above (1) to (3) are preferably used is that they are widely used as a quality improver of a thermoplastic resin, and even when recovered as the polymer particles of the present invention, This is because it is possible to express various quality improving effects of those.
  • the polymer particles of the emulsion polymerization latex that can be used in the present invention are not limited to these, and for example, a single particle mainly composed of one or more monomers selected from the following monomer group: Latex polymer particles composed of insects or a mixture of polymer particles obtained by copolymerizing or graft-polymerizing the monomer composition can be used.
  • Examples of the above-mentioned monomer group include (1) alkyl having a alkyl tomb having 10 or less carbon atoms, such as methyl phthalate, ethyl phthalate, butyl acrylate, 2-ethylhexyl acrylate, and the like. Acrylates, (2) alkyl methacrylates having an alkyl group having 10 or less carbon atoms, such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and (3) styrene , Vinylinoaleanes such as ⁇ -methinolestyrene, monochlorostyrene and dichlorostyrene,
  • vinyl carboxylic acids such as atarilic acid and methacrylic acid
  • vinyl cyanes such as acrylonitrile and methacrylonitrile
  • vinyl halides such as vinyl chloride, butyl bromide and chloroprene
  • alkenes such as ethylene, propylene, butylene, butadiene, isobutylene, etc.
  • aryl methacrylate, diaryl phthalate, triaryl cyanurate monoethylene glycol dimethacrylate, tetraethylene glycol dimethyl
  • polyfunctional monomers such as tatalylate, divinylbenzene, and glycidyl methacrylate.
  • the average particle size of the polymer particles is not particularly limited, but polymer particles having a volume average particle size of 0.05 to 0.5 ⁇ m obtained by ordinary emulsion polymerization can be suitably used.
  • the volume average particle diameter of the polymer particles can be measured by using, for example, MIC ROTRAC UPA (Nikkiso Co., Ltd .: fc).
  • the solid concentration of the emulsion polymerization latex used in the present invention is not particularly limited as long as the object of the present invention is achieved, but is usually preferably from 10 to 35% by weight, and more preferably from 12 to 30% by weight. / 0 is more preferred.
  • the solid content concentration of the emulsion polymerization latex is lower than 10% by weight, the solid content concentration is reduced to 10% by weight from the solid content concentration of 30 to 40% by weight during normal polymerization. A large amount of water is required to adjust to less than%, and the drainage load increases.
  • the solid concentration of the emulsion polymerization latex is higher than 35% by weight, the viscosity of the system when polyethylene oxide is added becomes extremely high, and the stirring and mixing operation may be difficult.
  • To measure the solid content of the latex 0.5 g of latex was placed in a hot air convection dryer at 120 ° C for 3 hours to evaporate water, and the weight of latex before drying and the weight of polymer after drying were measured. Or It can be performed by calculating the solid content concentration of the latex from the above.
  • the temperature of the emulsion polymerization latex it is preferable to control the temperature of the emulsion polymerization latex so that it falls within a range of Tm ⁇ 15 ° C. with respect to a polymer softening temperature (hereinafter, also referred to as Tm). It is more preferable to adjust the temperature so that it is within the range of ° C! /. If the temperature of the emulsion polymerization latex is lower than (Tm_15) ° C, it is not preferable because aggregated particles having a particle diameter of less than 50 ⁇ m may frequently occur.
  • the polymer softening temperature means that when an aqueous suspension of polymer-coated particles obtained by salting out is heated, the water content in the polymer-coated particles is reduced by 5% by weight or more from the water content before heating. Means temperature.
  • the polymer softening temperature was measured by placing the emulsion polymerization latex in a dialysis tube, tying both ends, immersing it in a 5% by weight calcium chloride aqueous solution for 5 hours, completely stopping coagulation, and forming a tube-like solidified solid.
  • the solidified tube obtained here was immersed in warm water for 10 minutes in increments of 5 ° C from 30 ° C to 99 ° C, and heat-treated, and the solidified tube obtained at each temperature was obtained. Water is evaporated using a hot air convection dryer, and the water content is determined from the weight of the tube coagulate before drying and the weight of the tube coagulate after drying, and the water content is higher than the water content before heating.
  • the rate at which the rate decreased by 5% by weight or more is defined as the polymer softening temperature (Tm).
  • polyethylene oxide can be added to the emulsion polymerization latex in a neat state such as an aqueous solution or a powder, but it is usually preferable to add an aqueous solution as an aqueous solution because operation is simple.
  • Polyethylene O carboxymethyl no particular restriction on the concentration of the de-aqueous, but usually, it is preferably 0. 0 1 to 1 0 weight 0/0. If the concentration of water and strong night is lower than 0.01% by weight, it is necessary to use a large amount of aqueous solution to add a predetermined amount of polyethylene oxide. If it is higher, the viscosity of the aqueous polyethylene oxide solution will be high, and handling V tends to be difficult.
  • the molecular weight of the polyethylene oxide used in the present invention is not particularly limited, but the viscosity average molecular weight is preferably from 600,000 to 800,000, and more preferably from 1,500,000 to 500,000. Is more preferred.
  • the viscosity average molecular weight is lower than 600,000, even if the emulsion polymerization latex is added with polyethylene oxide, a soft aggregation state is not formed, and the object of the present invention may not be achieved.
  • the viscosity-average molecular weight is higher than 800,000, the viscosity increases when polyethylene oxide is added to the emulsion polymerization latex, which may make the stirring and mixing operation difficult.
  • the soft state of the emulsion polymerization latex refers to a state in which the viscosity of the system has increased due to, for example, the cross-linking of polyethylene oxide molecular chains between the latex particles, and the polymerization state before addition of polyethylene oxide. This means that the viscosity of the system is at least twice as high as that of the latex.
  • the viscosity average molecular weight of polyethylene oxide can be measured under the conditions of a benzene solvent and 20 ° C.
  • the polyethylene oxide used in the present invention may be a polymer compound having an ethylene oxide unit obtained by polymerizing ethylene oxide.
  • examples thereof include polyethylene oxide, a higher alcohol ethylene oxide adduct, and alkyl phenol.
  • An additive such as ethylenoxide can be used.
  • the method for adding the polyethylene oxide is not particularly limited, and a predetermined amount can be added to the latex at a stretch, divided admission ports, or added continuously.
  • the addition amount ti of polyethylene oxide is preferably from 0.03 to 3.0 parts by weight (300 to 300 ppm) with respect to 100 parts by weight of the solid content of the emulsion-polymerized polymer. 0 to 2 parts by weight are more preferred. If the amount of polyethylene oxide added is less than 0.3 parts by weight, the formation of a phase separation state between the soft polymer component and water tends to be difficult to occur, and the subsequent addition of a coagulant tends to reduce coarse particles. Frequent formation may occur, or in the worst case, the system may clump, and the object of the present invention may not be achieved. On the other hand, when the amount of polyethylene oxide added is more than 3.0 parts by weight, the subsequent granulation behavior and the like are not significantly affected! / 0.03 to 3.0 It is not preferable because there is not much difference from the case where it is added in the range of parts by weight, and the production cost rises.
  • a soft state of three components of the emulsion-polymerized polymer particles, polyethylene oxide and water is formed during or after the addition of the polyethylene oxide to the emulsion polymerization latex.
  • the coagulant (C) when stirring is continued at the same temperature or when 0 to 1.5 parts by weight of the coagulant (C) is added, water starts to separate from the soft and difficult-to-form polymer component. It becomes a phase separation state.
  • (D) 0.2 to 10 parts by weight of the coagulant is added, separation of water from the soft polymer component further proceeds, and finally, a water suspension of polymer particles is formed.
  • water is separated from the soft agglomerated polymer component and added to form a phase separation state of the soft polymer component and water.
  • the coagulant is added in an amount of from 0 to 1.5 parts by weight. .
  • the formation of this phase-separated state depends on the average particle diameter of the polymerized latex, and when the volume average particle diameter is 0.1 m or less, (C) the coagulant is used in an amount of 0.2 to 1.2. It is preferable to add about 5 parts by weight, and when the volume average particle diameter is 0.1 ⁇ m or more, it is preferable to add 0 to about 1.0 part by weight.
  • the coagulant is added to form an aqueous suspension of polymer particles from the phase separation state of the soft agglomerated polymer component and water.
  • the amount of the coagulant (D) is less than 0.2 part by weight, the soft component remains, which is not preferable because the subsequent dehydration operation becomes difficult. If the amount of the coagulant (D) is more than 10 parts by weight, the amount of the residual metal salt in the aggregated polymer particles after collection increases, which is unfavorable for heat resistance and other qualities.
  • the coagulant (C) or (D) that can be used in the present invention includes an aqueous solution of an inorganic acid (salt) and Z or an organic acid (salt) having a property of coagulating and coagulating the emulsion polymerization latex.
  • Aqueous solutions of inorganic salts such as aluminum sulfate, potassium sulfate and iron bread, aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic acids such as acetic acid and formic acid; and aqueous solutions of sodium acetate
  • Water of organic acid salts such as calcium acetate, sodium formate and calcium formate can be used alone or in combination of two or more.
  • monovalent or divalent inorganic salts or inorganic acids such as sodium salt sodium chloride, potassium chloride, sodium sulfate, sodium salt ammonium salt, canoledium chloride, magnesium chloride, magnesium sulfate, barium chloride, hydrochloric acid, sulfuric acid, etc. Puddle night can be suitably used.
  • the method of adding the coagulant and the coagulant can be added all at once, in portions, or continuously.
  • the nonionic surfactant selected from other than poly (ethylene oxide) is used in an amount of 0.01 to 3.0 parts by weight, preferably 0.1 to 100 parts by weight of the polymer solid content of the emulsion polymerization latex.
  • the coagulation operation of the emulsion polymer is preferably carried out in the coexistence of 0.5 to 2.0 parts by weight.
  • Nonionic surfactants selected from other than polyethylene oxide include starch
  • Gelatin Partially saponified polyvinyl alcohol, Partially saponified polymethyl methacrylate, Polyacrylic acid and its salts, Cellulose, Methylcenorellose, Hydroxymethylsenorellose, Hydroxyethenoresenorelose, Polyvinylinolepyrrolidone, Polyvinylinoleimi Natural products such as dazole and sulfonidani polystyrene and synthetic high-molecular nonionic surfactants can be used as a mixture of two or more kinds of insects.
  • partially saponified polyvinylinolenoreco nore, cenorellose, methylose 7 reloose, hydroxymethylinoresenoleose, and hydroxyethyl cellulose are preferable, and in order to achieve the object of the present invention more efficiently.
  • partial Ken-Dai polyvinyl alcohol is more preferred! / ,.
  • the main purpose of coexisting a nonionic surfactant in the emulsion polymerization polymer fiber is to suppress the generation of coarse particles.
  • coarse aggregated particles are easily formed. This is the case when the flocculation operation is performed in a region where the polymer solids concentration of the seasoning polymerization lattetus is high.
  • polymer solids concentration of the emulsion polymerization latex to perform operations in the range of 2 0-3 5 weight 0/0.
  • the amount of the nonionic surfactant added is more than 3.0 parts, the amount of the nonionic surfactant remaining in the polymer agglomerated particles after the recovery increases, and the quality such as heat resistance increases. It is not preferable because it has an adverse effect.
  • the order of adding the nonionic surfactant is not particularly limited, but it is preferable to add the (D) coagulant to the system before adding the coagulant to the system, since the desired effect is more easily obtained.
  • the (D) coagulant can be added to the emulsion polymerization latex before adjusting the temperature, or after adjusting the temperature of the emulsion polymerization latex, or in the system before, during or after the addition of polyethylene oxide.
  • a nonionic surfactant may be added after the addition of the coagulant (C).
  • the state at the time of adding the nonionic surfactant is not particularly limited, and it can be prepared in a neat state such as an aqueous solution or a powder. Above all, it is preferable to squeeze with an aqueous solution because of its simple operation.
  • the concentration of the nonionic surfactant aqueous solution is not particularly limited, it is usually preferably 0.01 to 10% by weight. If the concentration of the aqueous solution is lower than 0.01% by weight, it is necessary to use a large amount of the aqueous solution to add a predetermined amount of the nonionic surfactant.
  • the concentration of the aqueous solution is higher than 10% by weight, the viscosity of the nonionic surfactant in the water at night becomes high, and handling may be difficult.
  • the method of adding the nonionic surfactant is not particularly limited, but it can be added all at once, dividedly added, or added continuously.
  • the volume average particle diameter of the polymer particles obtained by the present invention is preferably 50 to 500 ⁇ m. If the volume average particle size is less than 50 m, fine powder will flow into the dewatered wastewater Is not preferable because it becomes remarkable. On the other hand, when the average particle diameter (including multi-stage aggregation of the target polymer ⁇ particles) is larger than 500 im, the water content after dehydration becomes high and the time required for drying becomes long, which is not preferable.
  • the particle size of the polymer aggregated particles tends to be smaller as the temperature is lower or the stirring and mixing are more severe, but within the scope of the present invention, polymer aggregated particles having the target particle size can be obtained. Adjust them so they can be used.
  • the volume average particle diameter of the polymer particles can be measured by using MICRO TRAC F RA-S VR SC (Nikkiso Co., Ltd.).
  • an aqueous suspension of polymer ⁇ * particles is obtained.
  • the temperature of the aqueous suspension of the polymer aggregated particles is adjusted to a temperature equal to or higher than the polymer softening temperature (Tm), and heat treatment promotes fusion between the polymer particles in the hard particles.
  • Tm polymer softening temperature
  • the temperature of the heat treatment is not particularly limited, it is preferable that the temperature is usually 120 ° C. or lower because of the simplicity of the operation, which increases the mechanical strength of the polymer particles and increases the polymer particles.
  • the granulation operation is performed at a temperature equal to or higher than the polymer softening temperature (Tm) in this invention, it is considered that the temperature has already been adjusted. Therefore, there is no need to perform this step.
  • a known inter-particle fusion prevention treatment may be performed in order to suppress coagulation between particles during (after) drying during heating.
  • Comparative Example 100 g of the fiber particle suspension obtained in Reference Example (solid concentration: (5 to 38% by weight) was suction-filtered with an aspirator for 3 minutes, and the dehydrated resin was recovered. The resin was put in a hot air convection dryer at 100 ° C for 12 hours to remove moisture, and the resin weight immediately after dehydration before drying was obtained. , And the weight of the resin after drying was Wd.
  • the particle size distribution of the particle suspension obtained in Examples, Comparative Examples and Reference Examples was measured with a micro truck (Nikkiso Co., Ltd. ⁇ MMI CROTRAC FRA-SVRSC), and the cumulative frequency% of particles less than 50 ⁇ Asked from.
  • Dialysis tubing which connects one end (Funakoshi Co., Ltd. scan Bae click Tiger Biotech Men shake down Z pore 1. l, MWCO8000, 16 mm) placed in the emulsion polymerization latex 10 g, tied the other end so that the sausage, 2 It was immersed in 3000 g of a 5% by weight calcium chloride aqueous solution at o ° C for 5 hours to completely complete coagulation, thereby obtaining a tube-shaped coagulated body.
  • the solidified tube obtained here was immersed in warm water for 10 minutes at 5 ° C intervals from 30 ° C to 99 ° C for heat treatment.
  • the tube coagulate obtained at each temperature is put in a hot air convection dryer at 100 ° C for 12 hours to evaporate water, and the weight of the tube coagulate before drying is Wa and the weight of the tube coagulate after drying is Wb
  • the water content was determined from the following formula 3, and the temperature at which the water content decreased by 5% by weight or more from the water content before heating was defined as the polymer softening temperature (Tm).
  • Water content (%) [(Wa-Wb) / Wa] XI 00 (Equation 3).
  • examples, parts and percentages used in the comparative examples and reference examples each represent a weight 0/0 and Contact parts.
  • the average particle diameter used in Examples, Comparative Examples and Reference Examples indicates the volume average particle diameter.
  • a glass reactor equipped with a thermometer, stirrer, reflux condenser, nitrogen inlet, and monomer and emulsifier addition equipment was charged with 124 parts of distilled water and 0.035 parts of sodium lauryl sulfate, and stirred in a nitrogen stream. While heating, the temperature was raised to 50 ° C. Next, 11.20 parts of butyl acrylate (hereafter, BA), 2.25 parts of 2-ethylhexyl acrylate (hereafter, 2-EHA).
  • AMA acryl methacrylate
  • cumene hydrate A mixture of 0.01 part of a peroxide, 10 minutes later, and a mixture of 0.2 part of sodium fo / remaldehyde sulfoxylate dissolved in 5 parts of distilled water, and a small ethylene diamine latexate
  • a mixed solution was prepared by dissolving 0.01 parts of acid 2Na salt and 0.005 part of ferrous sulfate 7 ⁇ salt in 5 parts of distilled water.
  • a mixture of 10.45 parts of methinolemethacrylate (hereinafter referred to as ⁇ ), 0.55 parts of ⁇ 0.51 parts, and 0.01 parts of cumene hydroperoxide as a graft monomer component was added to the attaryl-based crosslinked rubber polymer at 50 ° C. C was added continuously over 1 hour. After the addition is completed, 0.01 parts of cumene hydroperoxide is added, and stirring is further continued for 2 hours to complete the polymerization.
  • the volume average particle diameter is 0.175 ⁇
  • the polymer solid content concentration is 40%
  • the polymer softening temperature is 40 °.
  • An emulsion polymerization latex A of C was prepared.
  • Emulsion polymerization latex A (volume average particle diameter 0.175 / im, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained in the same manner as in Example 1.
  • emulsion polymerization latex A (body average particle diameter: 0.175 m, polymer solid content: 40%, polymer softening temperature: 40.C) was obtained.
  • the mixture was continuously added over 17 hours, and subsequently 15 g (0.75 parts) of 15% sodium sulfate sulfate was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. Thereto, 15 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain an aqueous suspension of polymer aggregated particles. To prevent fusion between the polymer aggregated particles, 60 g (1.0 part) of a 5% aqueous solution of potassium palmitate was added, and the mixture was heated to 80 ° C. to perform a heat treatment operation.
  • Nikadan polymerization latex A (volume average particle size 0.175 ⁇ m, polymer solid concentration 40%, polymer softening temperature 40 ° C.) was obtained.
  • Example 2 In the same manner as in Example 1, an emulsion polymerization latex A (mean average particle diameter: 0.175 m, polymer solid content: 40, polymer softening temperature: 40 ° C) was obtained.
  • emulsion polymerization latex A (volume average particle size 0.175 ⁇ m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • Nikadan polymerization latex A (volume average particle size 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • the system was in a two-phase separation state between the soft polymer component and water. Then, 15.5 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added, and the polymer particles were added. Water suspension was obtained. To prevent fusion between the polymer aggregated particles, 62 g (1.0 parts) of a 5% aqueous potassium palmitate solution was added, and the mixture was heated to 80 ° C. to perform a heat treatment operation.
  • Nikadan polymerization latex A (volume average particle size 0.175 ⁇ ⁇ , polymer solid content concentration 40%, polymer softening temperature 40.C) was obtained.
  • emulsion polymerization latex A (volume average particle diameter: 0.175 ⁇ , polymer solid content: 40%, polymer softening temperature: 40 ° C.) was obtained.
  • Example 2 In the same manner as in Example 1, an emulsion polymerization latex A (volume average particle diameter 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • Nikadan Polymerization Latex A (volume average particle size 0.175 ⁇ , polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • emulsion polymerization latex A (volume average particle size 0.175 ⁇ , polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • Example 2 In the same manner as in Example 1, an emulsion polymerization latex A (volume average particle diameter 0.175 ⁇ polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • emulsion polymerization latex A volume average particle diameter 0.175 ⁇ polymer solid content concentration 40%, polymer softening temperature 40 ° C
  • a reactor equipped with a stirrer was charged with 200 parts of deionized water, 0.08 parts of potassium palmitate, and 0.01 parts of sodium sulfate, and heated to 70 ° C after purging with nitrogen. To this was added 1 part of potassium persulfate, and the mixture was stirred for 30 minutes. Then, a monomer mixture consisting of 80 parts of methyl methacrylate and 20 parts of butyl acrylate was continuously added over 4 hours. During that time, 0.4 part of potassium palmitate was added at 30, 60, 90, and 120 minutes from the start of the monomer mixture addition.
  • a reactor equipped with a stirrer was charged with 200 parts of deionized water, 0.3 part of potassium hydroxide, 0.3 parts of potassium remitate, and 0.01 parts of sodium sulfate. After replacing with nitrogen, the temperature was raised to 70 ° C. To this, 0.1 part of potassium persulfate was added and stirred for 30 minutes, and then a monomer mixture consisting of 80 parts of methyl methacrylate and 20 parts of butyl phthalate was continuously added over 4 hours. Meanwhile, 0.4 part of potassium palmitate was taken into account at 30, 60, 90 and 120 minutes from the start of the monomer mixture addition.
  • the mixture was kept for 1.5 hours to complete the polymerization, and the polymerization polymerization latex C (volume average particle diameter 0.072 ⁇ m, polymer / solid content 32%, polymer softening temperature 70 ° C) Got.
  • the volume average particle diameter of the polymer particles in the obtained innermost layer crosslinked methacrylic polymer latex was 0.160 ⁇ m, and the polymerization conversion rate (polymerization amount Z monomer charged amount X100) was 98%.
  • the above crosslinked methacrylic polymer latex was subjected to 80 in a nitrogen stream. After maintaining the temperature at 0.1C and adding 0.1 part of potassium persulfate, a monomer mixture of 41 parts of butyl acrylate, 9 parts of styrene, and 1 part of aryl methacrylate was continuously treated over 5 hours. During this time, 0.1 part of potassium oleate was added in three portions.
  • Emulsion polymerized latex D having a multilayer structure with a volume average particle size of 0.250 ⁇ m (volume average particle size 0.250 m, polymer solids concentration 33%, poly Mer softening 3 ⁇ 475 ° C).
  • emulsion polymerization latex A (volume average particle diameter: 0.117 m, polymer solid content: 40%, polymer softening temperature: 40 ° C.) was obtained.
  • Nikadan polymerization latex A (volume average particle size 0.175 ⁇ , polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • EO_8 Z viscosity average molecular weight: 1.7 million to 2.2 million
  • Water 60 g (0.2 parts) of hot water continuously for 5 minutes
  • G-20M polyvinyl alcohol
  • emulsion polymerization latex A (volume average particle size 0.175 tm, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • Nikado Polymerized Latex A (average particle size 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • Nikadan polymerization latex A (volume average particle size 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • Nikado Polymerization Latex A (volume average particle size 0.175 ⁇ polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • emulsion polymerization latex A (volume average particle size 0.175 / m, polymer solid content concentration 40%, polymer car culture temperature 40 ° C) was obtained.
  • emulsion polymerization latex A (volume average particle size 0.175 / im, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
  • the measurement results of the polymer softening and agTm of the chemically polymerized latexes A to D are shown.
  • the values other than the last row in Table 1 are the water content at a given temperature. Processing temperature 20.
  • Row C represents the water content before heating.
  • the polymer softening temperature Tm of the emulsion polymerization latex A was 40 ° C
  • the polymer softening ⁇ Tm of the cured polymerization latexes B and C was 70 ° C
  • the polymer softening temperature Tm of the% polymerization latex D was 75 ° C.
  • Table 2 shows the emulsion polymerization latex species, the polymer softening temperature Tm, the latex particle diameter, the solid content concentration at the time, and the temperature at the time of Example 1 to L8, Comparative Examples 1 to 5, and the reference example, respectively.
  • Emulsion polymerization e. Mar-soft Latec Solidification at the time of agglomeration Facification temperature Temperature of particle size
  • Example 1 A 40 0. 1 75 20 40
  • Example 2 A 40 0. 1 75 1 0 40
  • Example 3 A 40 0. 1 75 30 40
  • Example 4 A 40 0. 1 75 3 5 40
  • Example 5 A 40 0.175 20 25
  • Example 6 A 40 0.17 75 20 5 5
  • Example 7 A 40 0.1 0.1 75 3 1 40
  • Example 8 A 40 0.1 0.1 75 20 40
  • Example 9 A 40 0.1 75 20 40
  • Example 1 0 40 0. 1 75 20 40
  • Example 1 2 A. 40 0. 1 75 20.
  • Example 1 3 A 40 0.1 75 20 40 Example 1 4 B 70 0.1 38 1 6 75 Example 15 5 C 70 0.0 72.1 6 75 Example 16 D 75 0.250 20 80 Example 1 7 A 40 0.1 75 3 0 40 Example 18 A 40 0.1 0.1 75 30 40 Comparative Example 1 A 40 .0.1 75 20 20 Comparative Example 2 A 40 0.1 75 20 60 Comparative Example 3 A 40 0.1 75 75 40 Comparative example 4 A 40 0.175 75 4 Comparative example 5.A 40 0.175 30 40 Reference example A 40 0.175 8 5 Table 3 shows the viscosity average molecular weights of polyethylene oxides of Examples 1 to 18, Comparative Examples 1 to 5, and Reference Example, the number of parts used for polyethylene oxide, the type and amount of nonionic surfactant, The type of coagulant and the number of coagulants used are shown. Table 3
  • Table 4 shows the water content and the average particle size of the emulsion polymerized polymer particles obtained in Examples 1 to 18, Comparative Examples 1 to 5, and Reference Example. The percentage of coarse particles and the percentage of fine powder having a volume average particle diameter of less than 50- ⁇ m were shown.
  • Example 1 • A 28.3 1 9 7 0.5.2.8 Example 2 A 34.2 202 0.1.1.2 Example 3 A 24 0 2 72 7. 8 4.2 Example 4 A 22. 1 26 8 8.3 5.7 Example 5 A 2 7. 9 1 54 0.1 3.9 Example 6 A 32. 1 28 7 6.2 0 Example 7 A 30. 6 25 5 1 0.9.3.8 Example 8 A 3 1. 9 1 50 0.6.5.0 Example 9 A 28.7 1 72 0.1 6.
  • Example 10 A 29.6 20 1 0.7 3.8 Example 1 1 A 27.6 23 1 0.1 2.6 Example 1 2A 28.6 1 8 6 0.1 3.1 Example 1 3 A 26.2 7 6 0 .4 1.1 Example 14 B 28.2 2 1 9 2.9 3.3 Example 15 C 29.8 1 64 2.7 2.9 Example 1 6 D 3 6. 0 2 78 0.5 0 9 Example 1 7 A 23. 4 25 2 1. 8 5.6 Example 18 A 22. 8 2 77 3. 8 3.8 Comparative example 1 A 46 0 1 2 0 9 9.9 Comparative Example 2 A 3 7.2 40 7 29.1 0.1
  • Comparative example 3 A 34. 2 3 5 0 8.2 1 1.7 Comparative example 4 'A Filtration difficulty' 1 ⁇ ⁇ Comparative example 5 A 48. 5 28 7 22. 3 4.6 Reference example A 45. 5 22 1 1 8.9 1 0.8 From the above results, in the method for producing emulsion-polymerized latex fiber particles of the present invention, (a) the amount of fine powder having a particle diameter of less than 50 ⁇ m is smaller than that of the conventional method of salting out and coagulation. (Mouth) Agglomerated particles with low water content and low energy consumption during drying. (C) Good energy efficiency because granulation operation near the polymer softening temperature (near the polymerization temperature) is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A method for producing coagulated particles from an emulsion polymerization latex, characterized in that it comprises (A) adjusting the temperature of the emulsion polymerization latex to the range of Tm±15°C, wherein Tm represents a softening temperature of the polymer in the latex, (B) adding polyethylene oxide to the latex, (C) adding a coagulating agent so as to form a state wherein the phases of a polymer component and water are separated, (D) further adding a coagulating agent to thereby form a water suspension of coagulated polymer particles having a volume average particle diameter of 50 to 500 μm, and thereafter, (E) adjusting the temperature of the suspension to be higher than Tm. The above method provides coagulated particles being reduced in the amount of a fine powder and having a low water content, and allows the operation for forming particles to be carried out at a temperature being near to a softening temperature of the polymer.

Description

明細書  Specification
乳化重合ラテックス凝集粒子の製造方法 技術分野  Manufacturing method of emulsion polymerization latex aggregated particles
-本発明は、 乳化重合ラテックス^ ¾粒子の製造方法に関する。 さらに詳しくは、 本 発明は、 乳ィ匕重合ラテックスから体積平均粒子径が 5 0〜 5 0 0 μ πιのポリマー纏 粒子を製造する方法に関する。 背景技術  -The present invention relates to a method for producing emulsion polymerization latex particles. More specifically, the present invention relates to a method for producing polymer-encapsulated particles having a volume average particle size of 50 to 500 μπι from a lactic acid polymerization latex. Background art
乳化重合ポリマーは、 塩ィ匕ビエル樹脂、 スチレン樹脂、 メチルメタタリレート樹脂 Emulsion-polymerized polymers include Shiojiri Bier resin, styrene resin, and methyl methacrylate resin.
、 ポリカーボネート樹脂等の硬質プラスチックに少量添加し、 加工性や成形体品質を 向上させる樹脂改質剤として広く角いられている。 It is widely used as a resin modifier that is added to hard plastics such as polycarbonate resin in small amounts to improve processability and molded product quality.
通常、 乳化重合ラテックスから目的のグラフト共重合体を回収するためには、 ラテ ックスを凝集させて回収する造粒操作が必要である。 この造粒操作は、 回収粒子の粉 体特性 (粒子径分布、 微粉量、 粗粒量等) だけでなく、 脱水性や乾燥特性等、 後処理 時の生産性にも大きな影響を与える。 従来、 乳ィ匕重合により製造された高分子ラテツ タスから樹脂粒子状重合体を回収する場合、 一般には、 ラテックスに水を加えポリマ 一固形分濃度を 1 0重量%以下に調整した後、 ポリマーの軟化温度よりも十分に低い 温度で凝固剤を投入し、 ポリマー凝集粒子を形成させ、 その後ポリマーの軟化温度以 上に加熱してスラリ一状にし、 脱水乾燥を経て粉粒として回収される。  Usually, in order to recover the target graft copolymer from the emulsion polymerization latex, a granulation operation for aggregating and recovering the latex is necessary. This granulation operation has a great effect not only on the powder characteristics (particle size distribution, fine powder amount, coarse particle amount, etc.) of the recovered particles, but also on post-processing productivity such as dehydration and drying characteristics. Conventionally, when recovering a resin particulate polymer from a polymer latex produced by Nin-Dani polymerization, generally, water is added to latex to adjust the concentration of the polymer per solid to 10% by weight or less. A coagulant is introduced at a temperature sufficiently lower than the softening temperature of the polymer to form polymer agglomerated particles, which are then heated to a temperature higher than the softening temperature of the polymer to form a slurry, which is recovered as powder particles through dehydration and drying.
しかしながら、 この方法では、 (ィ) 立の形状は不定形となり、 相当の微粉末が 含まれるため、 工程上のトラプノレの頻発、 或いは粉塵発生により作業環境が謝匕する 、 (口) 得られる 粒子の含水率が高いため後の乾燥工程でのエネルギー消費量が 多大となる、 ' (ハ) 通常、 ポリマー軟化 よりも十分に低い温度で凝固剤を添加 ( 通常、 重合温度よりも大幅に低温側) した後、 再度高温で熱処理操作を実施する必要 があるためエネルギー効率が悪い、 (二) 通常の重合時の固形分濃度である 3 0〜4 0重量%から固形分濃度を 1 0重量%以下に調整するために多量の水が使用 され、 排水処理の負荷が増大する、 等の課題があった。 そのため、 気相凝固法 (例え ば、 特許文献 1参照。 ) や緩凝析法 (例えば、 特許文献 2参照。 ) 等の新規雜法が 提案されるなど、 様々な改良検討がなされてきた。 しかしながら、 そのような多大な 努力にもかかわらず、設備コスト、 省エネノレギー、 あるいは排水量軽減の面で依然と して満足とは言い難く、 新たな造粒法の開発が望まれていた。 However, according to this method, (a) the standing shape becomes indefinite and contains a considerable amount of fine powder, so that the working environment is degraded due to frequent trapping in the process or generation of dust. (3) Usually, a coagulant is added at a temperature sufficiently lower than the polymer softening (usually at a much lower temperature than the polymerization temperature). ), It is necessary to perform heat treatment again at a high temperature, resulting in poor energy efficiency. (2) Solid content concentration during normal polymerization A large amount of water is used to adjust the solid content concentration from 30 to 40% by weight to 10% by weight or less, thereby increasing the load of wastewater treatment. For this reason, various improvements have been studied, for example, a new hybrid method such as a gas phase solidification method (for example, see Patent Document 1) and a mild coagulation method (for example, see Patent Document 2) have been proposed. However, despite such great efforts, it was still less than satisfactory in terms of equipment costs, energy savings, or reduction of wastewater, and the development of new granulation methods was desired.
さらに、 このような状況を改善する目的で、 新たな造粒法として高分子^ 剤を用 いる方法が提案されている (例えば、 特許文献 3参照。 ) 。 この方法は、 乳化重合ラ テックスに高分子纖剤であるァニオン性ポリアクリルアミドと無機塩を加え造粒す る手法である。 しかし、 この場合においても、 良好な凝固粒子を得るため、 重合後ラ テックスを多量の水で希釈し固形分濃度が 1 0重量%以下に調整されることから、 排 τ負荷の面で満足できるものではなかつた。 また乳化重合ラテックスの性状によらず Further, for the purpose of improving such a situation, a method using a polymer agent has been proposed as a new granulation method (for example, see Patent Document 3). In this method, anionic polyacrylamide, which is a polymer fiber agent, and an inorganic salt are added to the emulsion polymerization latex and granulated. However, even in this case, the latex is diluted with a large amount of water after polymerization to adjust the solid content concentration to 10% by weight or less in order to obtain good coagulated particles. It was not a thing. Also, regardless of the properties of the emulsion polymerization latex
8 0 °C以上という比較的高温でのみ造粒操作が実施可能であり、 エネルギー消費量の 面でも満足できるものではなかった。 The granulation operation could be performed only at a relatively high temperature of 80 ° C or higher, and the energy consumption was not satisfactory.
〔特許文献 1〕 特開昭 5 2— 6 8 2 8 5号公報  [Patent Document 1] Japanese Patent Application Laid-Open No. 52-62882
〔特許文献 2〕 特開昭 6 0 - 2 1 7 2 2 4号公報  (Patent Document 2) Japanese Patent Application Laid-Open No. 60-217172
〔特許文献 3〕 特開昭 5 9 - 8 4 9 2 2号公報 発明の開示  [Patent Document 3] Japanese Patent Application Laid-Open No. Sho 59-8492 2 Disclosure of the Invention
本発明は上記の点に解決を与えるため、 (ィ) 體平均粒子径 5 0 m未満の微粉 量が少なく、 (口) 水率で乾燥時のエネルギー消費量が小さく、 (ハ) ポリマー 軟化温度の近傍 (重合温度近傍) での造粒操作が可能であるためエネルギー効率が良 • 好であり、 (二) 固形分濃度 1 0重量。 /。以上での処理が可能であり排水処理の負荷が 軽減する、 新規の 方法を提案することを課題とする。 上記のような現状に鑑み、 本発明者は鋭意検討を重ねた結果、 乳化重合ラテックス を特定の温度範囲に調整し、 撹拌下にポリエチレンォキシドを加えた後、 必要に応じ て凝固剤を加え、 ポリマー成分と水の相分離状態を形成させ、 さらに凝固剤を加えて ポリマー凝集粒子の水懸濁液を形成し、 懸濁液の温度をポリマー軟化温度以上に調整 することにより劾率よく乳化重合ラテツクス凝集粒子を製造できることを見出し、 本 発明を完成するに至った。 In order to solve the above problems, the present invention provides: (a) a small amount of fine powder having a body average particle diameter of less than 50 m; (mouth) a low water consumption due to a water content; and (c) a polymer softening temperature. (2) Solid concentration of 10% by weight. /. It is an object of the present invention to propose a new method capable of performing the above treatment and reducing the load of wastewater treatment. In view of the current situation as described above, the present inventors have made intensive studies and found that emulsion polymerization latex Is adjusted to a specific temperature range, polyethylene oxide is added with stirring, a coagulant is added if necessary, a phase separation state of the polymer component and water is formed, and the coagulant is further added to the polymer aggregated particles. It has been found that by forming an aqueous suspension of the above and adjusting the temperature of the suspension to a temperature equal to or higher than the softening temperature of the polymer, it is possible to produce emulsion-polymerized latex aggregated particles with a good imputation rate, and completed the present invention.
即ち、 本発明は、 乳化重合ラテックス (ポリマー固形分 1 0 0重量部) を、 (A) ポリマー軟化温度 (Tm) に対し Tm± 1 5 °Cの範囲内となるように温度調整し、 That is, the present invention adjusts the temperature of the emulsion polymerization latex (polymer solid content of 100 parts by weight) so that (A) the polymer softening temperature (Tm) falls within a range of Tm ± 15 ° C.
(B) 撹拌下にポリエチレンォキシドを 0 . 0 3〜3 . 0重量部加えた後、 (C) 0 〜1 . 5重量部の凝固剤を加えてポリマー成分と水の相分離状態を形成させ、 (D) さらに 0 . 2〜1 0重量部の凝固剤を加え体積平均粒子径が 5 0〜5 0 0 ^ mのポリ マー凝集粒子の水懸濁液を形成し、 (E) 懸濁液の温度を Tm以上に調整することを 特徴とする、 乳化重合ラテックス凝集粒子の製造方法に関する。 (B) After adding 0.33 to 3.0 parts by weight of polyethylene oxide with stirring, (C) adding 0 to 1.5 parts by weight of a coagulant to form a phase separation state of the polymer component and water. (D) An additional 0.2 to 10 parts by weight of a coagulant is added to form an aqueous suspension of polymer aggregated particles having a volume average particle diameter of 50 to 500 ^ m. The present invention relates to a method for producing emulsion-polymerized latex aggregated particles, wherein the temperature of a suspension is adjusted to Tm or higher.
好ましい実施態様は、 ポリマー固形分 1 0 0重量部に対し、 ポリエチレンォキシド 以外から選ばれた非イオン性界面活性剤 0. 0 1〜3. 0重量部を、 少なくとも  In a preferred embodiment, based on 100 parts by weight of the polymer solid content, at least 0.01 to 3.0 parts by weight of a nonionic surfactant selected from other than polyethylene oxide is used.
(D) の凝固剤を加える前に添加することを特徴とする、 前記の製造方法に関する。 好ましい実施態様は、 乳化重合ラテックスのポリマーの体積平均粒子径が 0 . 0 5 〜0. 5 μ πιであることを特徴とする、 前記いずれかに記載の製造方法に関する。 好ましい実施態様は、 乳化重合ラテツタスのポリマー固形分濃度が 1 0〜 3 5重量 °/0の範囲内であることを特徴とする、 前記いずれかに記載の製造方法に関する。 The method according to the above, wherein the coagulant (D) is added before the coagulant is added. A preferred embodiment relates to any one of the above-mentioned production methods, wherein the emulsion-polymerized latex has a polymer having a volume average particle diameter of 0.05 to 0.5 μπι. A preferred embodiment relates to the production method according to any one of the above, wherein the polymer solid content concentration of the emulsion polymerization latetus is in the range of 10 to 35% by weight / 0 .
好ましい実施態様は、 乳化重合ラテックスをポリマー軟ィ匕温度 (Tm) に対し Tm ± 1 0 °Cの温度範囲内に調整することを特徴とする、 前記いずれかに記載の製造方法 に関する。  A preferred embodiment relates to the production method according to any one of the above, wherein the emulsion polymerization latex is adjusted within a temperature range of Tm ± 10 ° C. with respect to the polymer softening temperature (Tm).
好ましい実施態様は、 ポリマー固形分 1 0 0重量部に対し、 粘度平均分子量が 6 0 万〜 8 0 0万のポリエチレンォキシドを 0. 0 1〜: L 0重量%濃度の水溶液で、 0 . 0 5〜2 . 0重量部加えることを特徴とする、 前記いずれかに記載の製造方法に 関する。 .好ましい実施態様は、 ポリマー固形分 1 0 0重量部に対し、 ポリエチレンォキシド 以外から選ばれた非ィオン性界面活性剤を 0. 0 1 - 1 0重量%濃度の水額夜で 0 . 0 5〜2 . 0重量部加えることを特徴とする、 前記いずれかに記載の製造方法に 関する。 In a preferred embodiment, polyethylene oxide having a viscosity average molecular weight of 600,000 to 800,000 is used in an aqueous solution having a concentration of from 0,001 to 0: 0% by weight based on 100 parts by weight of the polymer solid content. The method according to any one of the above, further comprising adding 0.5 to 2.0 parts by weight. In a preferred embodiment, a nonionic surfactant selected from other than polyethylene oxide is added to a polymer solid content of 100 parts by weight at a concentration of 0.01 to 10% by weight at a water content of 0.00% by weight. The method according to any one of the above, wherein 5 to 2.0 parts by weight is added.
好ましい実施態様は、 凝固剤が、 一価若しくは二価の無機塩および/または無機酸 の水溶液であることを特徴とする、 前記いずれかに記載の製造方法に関する。  A preferred embodiment relates to the production method according to any of the above, wherein the coagulant is an aqueous solution of a monovalent or divalent inorganic salt and / or an inorganic acid.
好ましい実施態様は、 ? w匕重合により製造した重合体ラテックスが、 アクリル酸ェ ステノレ 5 0〜: L 0 0重量0ん 芳香族ビエルモノマー 0〜 4 0重量0ん これらと共重合 可能なビュルモノマー 0〜: L 0重量%ならびに多官能性モノマー 0〜 5重量 °/0を重合 してなり、 ガラス転移温度が 0 °C以下のゴムラテックスの固形分 5 0〜9 5重量部に 、 メタクリル酸エステル 1 0〜1◦ 0重量0 /0、 芳香族ビュルモノマー 0〜 9 0重量% 、 シアンィヒビエルモノマー 0〜2 5重量0 /0ならびにメタクリノレ酸エステル、 芳香族ビ ニルモノマーおよぴシァン化ビエルモノマーと共重合可能なビュルモノマー 0〜 2 0 重量%からなる単量体混合物 5〜 5 0重量部をグラフト重合することにより得られる ことを特徴とする、 前記いずれかに記載の製造方法に関する。 A preferred embodiment is? The polymer latex produced by widow polymerization is made up of acrylic acid ester 50-: L 0 weight 0 aromatic aromatic monomer 0- 40 weight 0, and a vinyl monomer copolymerizable with these 0-: L 0 weight % And a polyfunctional monomer of 0 to 5% by weight / 0 and a methacrylic acid ester of 10 to 1 ° C in a solid content of 50 to 95 parts by weight of a rubber latex having a glass transition temperature of 0 ° C. or less. 0 weight 0/0, the aromatic Bulle monomer 0-9 0% by weight, cyan I crack El monomers 0-2 5 weight 0/0 and Metakurinore esters, aromatic Zokubi Nirumonoma Oyopi Shian of Biel monomers copolymerizable with The present invention relates to any one of the above-mentioned production methods, which is obtained by graft polymerization of 5 to 50 parts by weight of a monomer mixture composed of 0 to 20% by weight of a natural monomer.
好ましい実施態様は、 乳化重合により製造した重合体ラテックス力 メタクリル酸 メチル 5 0〜 9 5重量0ん 炭素数 2〜 8のアルキル基を有するメタクリル酸エステル 5〜 5 0重量0ん およびこれらと共重合可能なビュルモノマー 0〜 2 0重量0 /0との混 合物 6 0〜 9 5重量部をまず轧化重合し、 その生成重合体ラテックスの存在下に、 メ タクリル酸メチル 2 0〜 8 0重量%、 ァクリル酸エステルおょぴメタタリル酸メチル を除くメタタリル酸エステルより選ばれた 1種以上の単量体 2 0〜 8 0重量0 /0および これらと共重合可能なビュルモノマー 0〜 2 0重量%との混合物 5〜 4 0重量部を、 合計量が 1 0 0重量部になるように重合することにより得られることを特徴とする、 前記いずれかに記載の製造方法に関する。 Preferred embodiments methacrylate 5-5 0 weight 0 I and their copolymerized with alkyl groups of the polymer latex force methacrylate 5 0-9 5 weight 0 I carbon number 2-8 prepared by emulsion polymerization possible first轧化polymerized mixed compound 6 0-9 5 parts by weight of the Bulle monomer 0-2 0 weight 0/0, the presence of the produced polymer latex, methyl main methacrylic acid 2 0-8 0 wt%, Akuriru ester Contact Yopi Metatariru least one monomer selected from Metatariru ester except methyl 2 0-8 0 weight 0/0 and copolymerizable with these Bulle monomers 0-2 0 A method according to any one of the preceding claims, characterized by being obtained by polymerizing 5 to 40 parts by weight of a mixture with 5% by weight of the mixture so that the total amount becomes 100 parts by weight.
好ましい実施態様は、 乳化重合により製造した重合体ラテックスが、 ブタジエン In a preferred embodiment, the polymer latex produced by emulsion polymerization is butadiene.
5 0〜: L 0 0重量0 /0、 芳香族ビニルモノマー 0〜 4 0重量0ん ブタジェンぉよぴ芳香 族ビエルモノマーと共重合可能なビニルモノマー 0〜 1 0重量0 /0ならぴに多官能性モ ノマー 0〜 5重量%を重合してなり、 ガラス転移温度が 0 °C以下のゴムラテックスの 固形分 5 0 - 9 5重量部に、 メタクリル酸エステル 1 0〜; L 0 0重量0 /0、 芳香族ビ- ルモノマー 0〜 9 0重量0 /0、 シァン化ビ二/レモノマー 0〜 2 5重量%ならびにメタク リル酸エステル、 芳香族ビエルモノマーおよぴシァン化ビュルモノマーと共重合可能 なビュルモノマー 0〜2 0重量%からなる単量体混合物 5〜 5 0重量部をグラフト重 合することによりより得られることを特徴とする、 前記いずれかに記載の製造方法に 関する。 本発明の乳化重合ラテックス纖粒子の製造方法は、 従来の塩析等による難方法 に比べ、 (ィ) -粒子径 5 0 μ m未満の微粉量が少なく、 (口) 水率で乾燥時のェ ネルギー消費量が小さく、 (ハ) ポリマー軟化温度近傍 (重合 近傍) での造粒操 作が可能であるためエネルギー効率が良好であり、 (二) 固形分濃度 1 0重量%以上 での処理が可能であるため排水処理の負荷を軽減できる、 等の優れた効果を有する造 粒操作が実現できる。 発明を実施するための最良の形態 5 0 to: L 0 0 Weight 0/0, the aromatic vinyl monomer 0-4 0 weight 0 I Butajenoyopi aromatic It is by polymerizing a polyfunctional mode Nomar 0-5 wt% to the family Biel monomer copolymerizable with vinyl monomers 0-1 0 weight 0/0 of Rapi, solid glass transition temperature of below 0 ° C the rubber latex min 5 0 - 9 to 5 parts by weight, methacrylic acid ester 1 0 to; L 0 0 weight 0/0, the aromatic Zokubi - Rumonoma 0-9 0 weight 0/0, Shian mold two / Remonoma 0-2 5 weight %, And 5 to 50 parts by weight of a monomer mixture comprising 0 to 20% by weight of a butyl monomer copolymerizable with a methacrylate ester, an aromatic biel monomer and a cyanated butyl monomer. A method according to any of the preceding claims, characterized in that the method is obtained. The method for producing the emulsion-polymerized latex fiber particles of the present invention is as follows: (a)-The amount of fine powder having a particle diameter of less than 50 μm is smaller than that of the conventional difficult method such as salting out. Low energy consumption, (c) Good energy efficiency due to granulation operation near the polymer softening temperature (near polymerization), (2) Treatment at solid content concentration of 10% by weight or more Therefore, a granulation operation having excellent effects such as reduction of the load of wastewater treatment can be realized. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における乳化重合ラテッタスの重合体粒子は、 特に制限されるものではない 力 ( 1 ) アタリル酸エステル 5 0〜: L 0 0重量0ん 芳香族ビュルモノマー 0〜 4 0 重量%、 これらと共重合可能なビュルモノマー 0〜 1 0重量%ならびに多官能性モノ マー 0〜 5重量0 /0を重合してなり、 ガラス転移温度が 0 °C以下のゴムラテックスの固 形分 5 0 - 9 5重量部に、 メタタリル酸エステル 1 0〜: L 0 0重量0ん 芳香族ビニノレ モノマー 0 ~ 9 0重量%、 シァン化ビュルモノマー 0〜 2 5重量%ならぴにメタタリ ル酸エステル、 芳香族ビニルモノマーおよびシァン化ビニルモノマーと共重合可能な ビニルモノマー 0〜2 0重量0 /0からなる単量体混合物 5〜 5 0重量部をグラフト重合 することにより得られる重合体ラテックス、 (2 ) メタクリル酸メチル 5 0〜9 5 重量0ん 炭素数 2〜 8のアルキル基を有するメタクリル酸エステル 5〜 5 0重量0ん およびこれらと共重合可能なビュルモノマー 0〜2 0重量0 /0との混合物 6 0〜9 5重 量部をまず乳化重合し、 その生成重合体ラテックスの存在下に、 メタクリル酸メチル 2 0〜 8 0重量0ん アタリル酸エステルおよぴメタクリル酸メチルを除くメタクリル 酸エステルより選ばれた 1種以上の単量体 2 0〜8 0重量0 /0およびこれらと共重合可 能なビ-ルモノマー 0〜 2 0重量%との混合物 5〜 4 0重量部を、 合計量が 1 0 0重 量部になるように重合することにより得られる重合体ラテックス、 (3 ) ブタジエン 5 0〜 1 0 0重量0 /0、 芳香族ビュルモノマー 0〜 4 0重量0 /0、 ブタジェンぉよぴ芳香 族ビエルモノマーと共重合可能なビニルモノマー 0〜: L 0重量0 /0ならぴに多官能性モ ノマー 0〜 5重量0 /0を重合してなり、 ガラス転移? ½が 0 °C以下のゴムラテックスの 固形分 5 0 - 9 5重量部に、 メタクリル酸エステル 1 0〜 1 0 0重量0 /0、 芳香族ビ- . ルモノマー 0〜 9 0重量0 /0、 シアン化ビニルモノマー 0〜 2 5重量0 /0ならびにメタク リル酸エステル、 芳香族ビュルモノマーおよぴシァン化ビュルモノマーと共重合可能 なビュルモノマー 0〜2 0重量%からなる単量体混合物 5〜5 0重量部をグラフト重 合することにより得られる重合体ラテックス、 の何れかが、 後述する理由により好適 に使用され得る。 The polymer particles of the emulsion polymerization latettas according to the present invention are not particularly limited. Force (1) ataryl acid ester 50-: L 0 wt. 0 aromatic ball monomer 0- 40 wt. polymerizable Bulle monomers 0-1 0% by weight and a polyfunctional mono mer 0-5 wt 0/0 becomes polymerized, the solid form of the following rubber latex glass transition temperature of 0 ° C min 5 0 - 9 5 In terms of parts by weight, methacrylic acid ester 10 ~: L 0 weight 0 % Aromatic vinylinole monomer 0 ~ 90% by weight, cyanated butyl monomer 0 ~ 25% by weight, if methacrylic acid ester, aromatic vinyl monomer and Shian vinyl monomer copolymerizable with vinyl monomers 0-2 0 weight 0/0 consists monomer mixture 5-5 0 parts by weight polymer latex obtained by graft-polymerizing a (2) methyl methacrylate 5 0-9 5 Weight 0 I mixture 6 0-9 5 by weight of methacrylic acid esters 5-5 0 weight 0 I and copolymerizable with these Bulle monomers 0-2 0 weight 0/0 having an alkyl group with carbon number 2-8 Part first emulsion polymerization, in the presence of the produced polymer latex, one or more selected from methacrylic acid esters with the exception of methyl methacrylate 2 0-8 0 weight 0 I Atariru ester Contact Yopi methyl methacrylate monomer 2 0-8 0 weight 0/0 and their copolymerized Friendly Nonabi - the mixture 5-4 0 parts by weight of the Rumonoma 0-2 0% by weight, the total amount of the 1 0 0 by weight part polymer latex obtained by polymerizing so, (3) a butadiene 5 0-1 0 0 wt 0/0, the aromatic Bulle monomer 0-4 0 weight 0/0, and Butajenoyopi aromatic Biel monomer copolymerizable vinyl monomer 0: multifunctionally L 0 weight 0/0 of Rapi Nomar 0-5 wt 0/0 becomes polymerized, solid 5 0 glass transition ½ is below 0 ° C in rubber latex -? 9 5 parts by weight, methacrylic acid ester 1 0-1 0 0 Weight 0 / 0, the aromatic Zokubi -. Rumonoma 0-9 0 weight 0/0, a vinyl cyanide monomer 0-2 5 weight 0/0 and Metaku acrylic acid esters, aromatic Bulle monomer Oyopi Shian of Bulle monomers copolymerizable with Any of polymer latexes obtained by graft-polymerizing 5 to 50 parts by weight of a monomer mixture composed of 0 to 20% by weight of a natural monomer can be suitably used for the reasons described below.
上記 (1 ) 〜 (3 ) に記載した乳化重合ラテックスの重合体粒子の一般的な製造方 法は、 例えば、 特開平 2 _ 2 6 9 7 5 5号公報、 特開平 8— 2 1 7 8 1 7号公報に詳 細に記述されている。 しかしながら、 これに限定されるものではない。  General methods for producing the polymer particles of the emulsion polymerization latex described in the above (1) to (3) are described in, for example, Japanese Patent Application Laid-Open (JP-A) Nos. 2-269755 and 8-21878. This is described in detail in Japanese Patent Publication No. 17 However, it is not limited to this.
上記 ( 1 ) 〜 (3 ) の重合体粒子が好適に使用される理由は、 熱可塑性樹脂の品質 改良剤として広範に用いられており、 本発明の重合体粒子として回収した場合におい ても、 それらの有する様々な品質向上効果を発現させることが可能となるためである 。 しかしながら、 本発明で用いることのできる乳化重合ラテックスの重合体粒子は、 これらに限定されるものではなく、 例えば、 次のモノマー群から選ばれた 1種または 2種以上のモノマーを主とする単量体組成物を共重合またはグラフト重合させた重合 体粒子の ?虫または混合物からなるラテックス重合体粒子を用いることができる。 上記モノマー群としては、 例えば、 ( 1 ) メチルァタリレート、 ェチルァタリレート 、 プチルァクリレート、 2—ェチルへキシルァクリレート等の炭素数が 1 0以下のァ ルキル墓を有するアルキルァクリレート類、 (2 ) メチルメタタリレート、 ェチルメ タクリレート、 プチルメタタリレート、 2—ェチルへキシルメタタリレート等の炭素 数が 1 0以下のアルキル基を有するアルキルメタクリレート類、 (3 ) スチレン、 α ーメチノレスチレン、 モノクロロスチレン、 ジクロロスチレン等のビニノレアレーン類、The reason why the polymer particles of the above (1) to (3) are preferably used is that they are widely used as a quality improver of a thermoplastic resin, and even when recovered as the polymer particles of the present invention, This is because it is possible to express various quality improving effects of those. However, the polymer particles of the emulsion polymerization latex that can be used in the present invention are not limited to these, and for example, a single particle mainly composed of one or more monomers selected from the following monomer group: Latex polymer particles composed of insects or a mixture of polymer particles obtained by copolymerizing or graft-polymerizing the monomer composition can be used. Examples of the above-mentioned monomer group include (1) alkyl having a alkyl tomb having 10 or less carbon atoms, such as methyl phthalate, ethyl phthalate, butyl acrylate, 2-ethylhexyl acrylate, and the like. Acrylates, (2) alkyl methacrylates having an alkyl group having 10 or less carbon atoms, such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and (3) styrene , Vinylinoaleanes such as α-methinolestyrene, monochlorostyrene and dichlorostyrene,
( 4 ) アタリル酸、 メタクリル酸等のビニルカルボン酸類、 ( 5 ) アクリロニトリル 、 メタクリロニトリノレ等のビニルシアン類、 ( 6 ) 塩化ビニル、 臭化ビュル、 クロ口 プレン等のハロゲン化ビニル類、 (7 ) 酢酸ビニル、 (8 ) エチレン、 プロピレン、 プチレン、 ブタジエン、 イソブチレン等のアルケン類、 (9 ) ァリルメタクリレート 、 ジァリルフタレート、 トリァリルシアヌレート、 モノエチレングリコールジメタク リレート、 テトラエチレングリコールジメタタリレート、 ジビニルベンゼン、 グリシ ジルメタクリレート等の多官能性モノマーが例示される。 (4) vinyl carboxylic acids such as atarilic acid and methacrylic acid, (5) vinyl cyanes such as acrylonitrile and methacrylonitrile, (6) vinyl halides such as vinyl chloride, butyl bromide and chloroprene, ( 7) vinyl acetate, (8) alkenes such as ethylene, propylene, butylene, butadiene, isobutylene, etc., (9) aryl methacrylate, diaryl phthalate, triaryl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethyl Examples include polyfunctional monomers such as tatalylate, divinylbenzene, and glycidyl methacrylate.
前記重合体粒子の平均粒子径には特に制限はないが、 通常の乳化重合で得られる体 積平均粒子径 0. 0 5〜 0 . 5 μ mの重合体粒子を好適に用いることができる。 なお 、 前記重合体粒子の体積平均粒子径は、 例えば、 M I C ROTRAC U P A (日機 装株式会ネ: fc ) を用いることにより測定することができる。  The average particle size of the polymer particles is not particularly limited, but polymer particles having a volume average particle size of 0.05 to 0.5 μm obtained by ordinary emulsion polymerization can be suitably used. The volume average particle diameter of the polymer particles can be measured by using, for example, MIC ROTRAC UPA (Nikkiso Co., Ltd .: fc).
本楽明で用いる乳化重合ラテックスの固形分濃度は、 本発明の目的が達成される限 り特に制限はないが、 通常 1 0〜 3 5重量%が好ましく、 1 2〜 3 0重量。 /0がより好 ましい。 乳化重合ラテックスの固形分濃度が、 · 1 0重量%よりも低レ、場合は、 通常の 乳ィ匕重合時の固形分濃度である 3 0〜4 0重量%から固形分濃度を 1 0重量%以下に 調整するために多量の水が必要となり、 排水負荷が増大する。 一方、 乳化重合ラテツ クスの固形分濃度が 3 5重量%よりも高い場合は、 ポリエチレンォキシドを添加した 際の系の粘度が極度に高くなり、 撹拌混合操作等が困難となる場合がある。 なお、 ラ テックスの固形分濃度の測定は、 ラテックス 0 . 5 gを 1 2 0 °Cの熱風対流型乾燥機 に 3時間入れて水分を蒸発させ、 乾燥前のラテックス重量と乾燥後のポリマー重量か らラテックスの固形分濃度を算出することにより行うことができる。 The solid concentration of the emulsion polymerization latex used in the present invention is not particularly limited as long as the object of the present invention is achieved, but is usually preferably from 10 to 35% by weight, and more preferably from 12 to 30% by weight. / 0 is more preferred. When the solid content concentration of the emulsion polymerization latex is lower than 10% by weight, the solid content concentration is reduced to 10% by weight from the solid content concentration of 30 to 40% by weight during normal polymerization. A large amount of water is required to adjust to less than%, and the drainage load increases. On the other hand, when the solid concentration of the emulsion polymerization latex is higher than 35% by weight, the viscosity of the system when polyethylene oxide is added becomes extremely high, and the stirring and mixing operation may be difficult. To measure the solid content of the latex, 0.5 g of latex was placed in a hot air convection dryer at 120 ° C for 3 hours to evaporate water, and the weight of latex before drying and the weight of polymer after drying were measured. Or It can be performed by calculating the solid content concentration of the latex from the above.
本発明では、 乳化重合ラテックスの温度が、 ポリマー軟化温度 (以下、 Tmともい う。 ) に対し Tm± 1 5 °Cの範囲内となるように温度調整することが好ま 'しく、 Tm ± 1 0 °Cの範囲内となるように温度調整することがより好まし!/、。 乳化重合ラテック スの温度が (Tm_ 1 5 ) °Cより低い場合は、 粒子径 5 0 μ m未満の凝集粒子の生成 が頻発する場合があるため好ましくない。 一方、 乳化重合ラテックスの が (Tm + 1 5 ) °Cより高い場合は、 目的とする粒子径から大きく外れた粗大粒子の生成が頻 発する場合があるため好ましくない。 ここでポリマー軟化温度とは、 塩析により得た ポリマー纏粒子の水懸濁液を加熱した際に、 ポリマー纏粒子内の含水率が、 加温 前の含水率よりも 5重量%以上低下する温度を意味する。 本努明におけるポリマー軟 化温度の測定は、 乳化重合ラテックスを透析チューブに入れ両端を結び、 2 の 5 - 重量%塩化カルシウム水溶液に 5時間浸漬し、 完全に凝固を終了させチューブ状の凝 固体を得、 ここで得たチューブ凝固体を 3 0 °C〜 9 9 °Cまで 5 °C刻みで各温水中に 1 0分間浸漬し加熱処理を実施し、 各温度で得られたチューブ凝固体を熱風対流型乾燥 機を用いて水分を蒸発させ、 率乞燥前のチューブ凝固体重量と乾燥後のチューブ凝固体 重量から含水率を求めることにより実施し、 加温前の含水率よりも含水率が 5重量% 以上低下した をポリマー軟化温度 (Tm) とすることとする。  In the present invention, it is preferable to control the temperature of the emulsion polymerization latex so that it falls within a range of Tm ± 15 ° C. with respect to a polymer softening temperature (hereinafter, also referred to as Tm). It is more preferable to adjust the temperature so that it is within the range of ° C! /. If the temperature of the emulsion polymerization latex is lower than (Tm_15) ° C, it is not preferable because aggregated particles having a particle diameter of less than 50 μm may frequently occur. On the other hand, when the emulsion polymerization latex has a temperature higher than (Tm + 15) ° C., it is not preferable because coarse particles greatly deviating from the intended particle diameter may frequently occur. Here, the polymer softening temperature means that when an aqueous suspension of polymer-coated particles obtained by salting out is heated, the water content in the polymer-coated particles is reduced by 5% by weight or more from the water content before heating. Means temperature. In this effort, the polymer softening temperature was measured by placing the emulsion polymerization latex in a dialysis tube, tying both ends, immersing it in a 5% by weight calcium chloride aqueous solution for 5 hours, completely stopping coagulation, and forming a tube-like solidified solid. The solidified tube obtained here was immersed in warm water for 10 minutes in increments of 5 ° C from 30 ° C to 99 ° C, and heat-treated, and the solidified tube obtained at each temperature was obtained. Water is evaporated using a hot air convection dryer, and the water content is determined from the weight of the tube coagulate before drying and the weight of the tube coagulate after drying, and the water content is higher than the water content before heating. The rate at which the rate decreased by 5% by weight or more is defined as the polymer softening temperature (Tm).
本発明では、 乳化重合ラテックスにポリエチレンォキシドを水溶液あるいは粉体等 のニート状態で加えることができるが、 通常水溶液で加えるのが操作上簡便であるこ とから好ましい。 ポリエチレンォキシド水溶液の濃度には特に制限はないが、 通常、 0. 0 1〜1 0重量0 /0であることが好ましい。 水、激夜濃度が、 0. 0 1重量%よりも 低い場合は所定量のポリエチレンォキシドを加えるために多量の水溶液を使用する必 要があり、 逆に水激夜濃度が 1 0重量%よりも高い場合は、 ポリエチレンォキシド水 溶液の粘度が高くなるため取り扱 V、が困難となる傾向がある。 In the present invention, polyethylene oxide can be added to the emulsion polymerization latex in a neat state such as an aqueous solution or a powder, but it is usually preferable to add an aqueous solution as an aqueous solution because operation is simple. Polyethylene O carboxymethyl no particular restriction on the concentration of the de-aqueous, but usually, it is preferably 0. 0 1 to 1 0 weight 0/0. If the concentration of water and strong night is lower than 0.01% by weight, it is necessary to use a large amount of aqueous solution to add a predetermined amount of polyethylene oxide. If it is higher, the viscosity of the aqueous polyethylene oxide solution will be high, and handling V tends to be difficult.
本楽明で用いるポリエチレンォキシドの分子量は特に制限されないが、 粘度平均分 子量が 6 0万〜 8 0 0万であること好ましく、 更には 1 5 0万〜 5 0 0万であること がより好ましい。 粘度平均分子量が 6 0万よりも低い場合は、 乳化重合ラテックスに ポリエチレンォキシドを添卩しても軟凝集状態が形成されず、 本発明の目的を達成で きない場合がある。 一方、 粘度平均分子量が 8 0 0万よりも高い^^は、 乳化重合ラ テックスにポリエチレンォキシドを添加した時の粘度上昇が激しくなり、 撹拌混合操 作が困難となる場合がある。 ここで、 乳化重合ラテックスの軟 状態とは、 例えば ポリエチレンォキシド分子鎖がラテックス粒子間を架橋することにより系の粘度が上 昇した状態であり、 ポリエチレンォキシドを添加する前の乳ィ匕重合ラテックスの粘度 よりも 2倍以上系の粘度が上昇した状態を意味する。 なお、 ポリエチレンォキシドの 粘度平均分子量は、 ベンゼン溶媒、 2 0 °Cの条件で測定することができる。 The molecular weight of the polyethylene oxide used in the present invention is not particularly limited, but the viscosity average molecular weight is preferably from 600,000 to 800,000, and more preferably from 1,500,000 to 500,000. Is more preferred. When the viscosity average molecular weight is lower than 600,000, even if the emulsion polymerization latex is added with polyethylene oxide, a soft aggregation state is not formed, and the object of the present invention may not be achieved. On the other hand, if the viscosity-average molecular weight is higher than 800,000, the viscosity increases when polyethylene oxide is added to the emulsion polymerization latex, which may make the stirring and mixing operation difficult. Here, the soft state of the emulsion polymerization latex refers to a state in which the viscosity of the system has increased due to, for example, the cross-linking of polyethylene oxide molecular chains between the latex particles, and the polymerization state before addition of polyethylene oxide. This means that the viscosity of the system is at least twice as high as that of the latex. The viscosity average molecular weight of polyethylene oxide can be measured under the conditions of a benzene solvent and 20 ° C.
本発明で用いるポリエチレンォキシドは、 エチレンォキシドを重合して得られるェ チレンォキシド単位を有する高分子化合物であればよく、 例えば、 ポリエチレンォキ シド、 高級アルコールエチレンォキシド付加物、 アルキルフェノ一ノレエチレンォキシ ド付加物、 脂肪酸エチレンォキシド付加物、 多価アルコール脂肪酸エステルエチレン ォキシド付加物、 高級アルキルアミンエチレンォキシド付加物、 脂肪酸アミ ドエチレ ンォキシド付加物、 油脂のエチレンォキシド付加物、 ポリプロピレングリコールェチ レンォキシド付 ¾物などを用いることができる。  The polyethylene oxide used in the present invention may be a polymer compound having an ethylene oxide unit obtained by polymerizing ethylene oxide. Examples thereof include polyethylene oxide, a higher alcohol ethylene oxide adduct, and alkyl phenol. Ethylene oxide adduct, fatty acid ethylene oxide adduct, polyhydric alcohol fatty acid ester ethylene oxide adduct, higher alkylamine ethylene oxide adduct, fatty acid amide ethylene oxide adduct, fat ethylene oxide adduct, polypropylene glycol An additive such as ethylenoxide can be used.
また、 ポリエチレンォキシドの添加方法には特に制限はなく、 所定量をラテックス に一気に添加、 分割勸口、 あるいは連続的に添口することができる。  The method for adding the polyethylene oxide is not particularly limited, and a predetermined amount can be added to the latex at a stretch, divided admission ports, or added continuously.
ポリエチレンォキシドの添力 ti量は、 乳化重合ポリマー固形分 1 0 0重量部に対し、 0 . 0 3〜3 . 0重量部 (3 0 0〜3 0 0 0 0 p p m) が好ましく、 0. 0 5〜2重 量部がより好ましい。 ポリエチレンォキシドの添加量が 0 . 0 3重量部よりも少ない 場合は、 軟 状のポリマー成分と水の相分離状態の形成が起こりにくくなる傾向に あり、 その後の凝固剤の添加で粗大粒子の形成が頻努する、 あるいは最悪の場合系が 塊状ィ匕し、 本発明の目的を達成できなくなる場合がある。 一方、 ポリエチレンォキシ ドの添加量が 3. 0重量部よりも多い場合は、 その後の造粒挙動等には大きな影響は 少な!/、が、 7率化や微粉量削減効果はポリエチレンォキシドを 0. 0 3〜 3. 0 重量部の範囲で添加した場合と大差がないこと、 また製造コストの高騰の面でも好ま しくない。 The addition amount ti of polyethylene oxide is preferably from 0.03 to 3.0 parts by weight (300 to 300 ppm) with respect to 100 parts by weight of the solid content of the emulsion-polymerized polymer. 0 to 2 parts by weight are more preferred. If the amount of polyethylene oxide added is less than 0.3 parts by weight, the formation of a phase separation state between the soft polymer component and water tends to be difficult to occur, and the subsequent addition of a coagulant tends to reduce coarse particles. Frequent formation may occur, or in the worst case, the system may clump, and the object of the present invention may not be achieved. On the other hand, when the amount of polyethylene oxide added is more than 3.0 parts by weight, the subsequent granulation behavior and the like are not significantly affected! / 0.03 to 3.0 It is not preferable because there is not much difference from the case where it is added in the range of parts by weight, and the production cost rises.
本発明では、 乳化重合ラテックスにポリエチレンォキシドを添加している途中ある いは添加終了後に、 乳化重合ポリマー粒子、 ポリエチレンォキシド、 および水の 3成 分の軟 状態が形成される。 その後、 同温で撹拌を継続する、 あるいは (C) 凝固 剤を 0〜1 . 5重量部加えると、 軟難状ポリマー成分から水が分離し始め、 系は、 軟凝集状ポリマー成分と水の相分離状態となる。 さらに、 (D) 凝固剤を 0 . 2〜 1 0重量部添加すると、 軟 状ポリマー成分からの水の分離がさらに進行し、 最終 的にポリマー 粒子の水懸濁液が形成される。  In the present invention, a soft state of three components of the emulsion-polymerized polymer particles, polyethylene oxide and water is formed during or after the addition of the polyethylene oxide to the emulsion polymerization latex. After that, when stirring is continued at the same temperature or when 0 to 1.5 parts by weight of the coagulant (C) is added, water starts to separate from the soft and difficult-to-form polymer component. It becomes a phase separation state. Further, when (D) 0.2 to 10 parts by weight of the coagulant is added, separation of water from the soft polymer component further proceeds, and finally, a water suspension of polymer particles is formed.
本発明において、 軟凝集状ポリマー成分から水を分離させ、 軟 状ポリマー成分 と水の相分離状態を形成するために加える (C) 凝固剤は、 0〜1 . -5重量部力 S好ま しい。 この相分離状態の形成は、 乳ィ匕重合ラテックスの ί«平均粒子径に依存し、 体 積平均粒子径が 0 . 1 m以下の場合には (C) 凝固剤を 0 . 2〜 1 . 5重量部程度 加えるのが好ましく、 体積平均粒子径が 0 . 1 μ m以上の場合は 0〜: 1 · 0重量部程 度加えるのが好ましい。  In the present invention, water is separated from the soft agglomerated polymer component and added to form a phase separation state of the soft polymer component and water. (C) The coagulant is added in an amount of from 0 to 1.5 parts by weight. . The formation of this phase-separated state depends on the average particle diameter of the polymerized latex, and when the volume average particle diameter is 0.1 m or less, (C) the coagulant is used in an amount of 0.2 to 1.2. It is preferable to add about 5 parts by weight, and when the volume average particle diameter is 0.1 μm or more, it is preferable to add 0 to about 1.0 part by weight.
さらに本発明にお 、て、 軟凝集状ポリマー成分と水の相分離状態からポリマー 粒子の水懸濁液を形成させるために加える (D) 凝固剤は 0 . 2〜: L 0重量部である ことが好ましい。 ここでの (D) 凝固剤の添加量が 0 . 2重量部より少ない場合は、 軟 状成分が残存し、 その後の脱水操作が困難となるため好ましくない。 また、 こ こでの (D) 凝固剤が 1 0重量部より多い場合は回収後のポリマー凝集粒子中の残留 金属塩量が増え、 耐熱性等の品質に悪影響を及ぼすため好ましくない。  Further, in the present invention, (D) the coagulant is added to form an aqueous suspension of polymer particles from the phase separation state of the soft agglomerated polymer component and water. Is preferred. If the amount of the coagulant (D) is less than 0.2 part by weight, the soft component remains, which is not preferable because the subsequent dehydration operation becomes difficult. If the amount of the coagulant (D) is more than 10 parts by weight, the amount of the residual metal salt in the aggregated polymer particles after collection increases, which is unfavorable for heat resistance and other qualities.
本発明に用いることのできる (C) 若しくは (D) 凝固剤としては、 該乳化重合ラ テックスを凝析'凝固し得る性質を有する無機酸 (塩) および Zまたは有機酸 (塩) の水溶液であれば良いが、 例えば、 塩化ナトリウム、 塩化カリウム、 塩化リチウム、 臭化ナトリウム、 臭化カリウム、 臭ィ匕リチウム、 ヨウ化カリウム、 ヨウ化ナトリウム 、 硫酸カリウム、 硫酸ナトリウム、 硫酸アンモニゥム、 塩化アンモユウム、 確酸ナト リウム、 硝酸カリウム、 塩ィ匕カノレシゥム、 硫酸第一鉄、 硫酸マグネシウム、 硫酸亜鉛The coagulant (C) or (D) that can be used in the present invention includes an aqueous solution of an inorganic acid (salt) and Z or an organic acid (salt) having a property of coagulating and coagulating the emulsion polymerization latex. It is good, but for example, sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide, potassium iodide, sodium iodide, potassium sulfate, sodium sulfate, ammonium sulfate, ammonium chloride, certain Acid nato Lium, Potassium nitrate, Shio-Dani Canolesum, Ferrous sulfate, Magnesium sulfate, Zinc sulfate
、 硫 i同、 塩ィ匕ノ リウム、 塩化第一鉄、 塩化第二鉄、 塩ィ匕マグネシウム、 硫酸第二鉄, Sulfate, ferric chloride, ferrous chloride, ferric chloride, magnesium chloride, ferric sulfate
、 硫酸アルミニウム、 カリウムミヨウパン、 鉄ミヨゥパン等の無機塩類の水溶液、 塩 酸、 硫酸、 硝酸、 リン酸等の無機酸類の水溶液、 酢酸、 ギ酸等の有機酸類おょぴそれ らの水溶液、 酢酸ナトリウム、 酢酸カルシウム、 ギ酸ナトリウム、 ギ酸カルシウム等 の有機酸塩類の水? 夜を単独または 2種以上を混合して用いることができる。 これら の中でも、 塩ィ匕ナトリウム、 塩化カリウム、 硫酸ナトリウム、 塩ィ匕アンモニゥム、 塩 化カノレシゥム、 塩化マグネシウム、 硫酸マグネシウム、 塩化バリウム、 塩酸、 硫酸等 の一価若しくは二価の無機塩あるいは無機酸の水溜夜が好適に使用できる。 前記凝固 剤の添加方法には特に制限は無く、 一気に添加、 分割添加、 あるいは連続的に添加す ることができる。 Aqueous solutions of inorganic salts such as aluminum sulfate, potassium sulfate and iron bread, aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic acids such as acetic acid and formic acid; and aqueous solutions of sodium acetate Water of organic acid salts such as calcium acetate, sodium formate and calcium formate can be used alone or in combination of two or more. Among these, monovalent or divalent inorganic salts or inorganic acids such as sodium salt sodium chloride, potassium chloride, sodium sulfate, sodium salt ammonium salt, canoledium chloride, magnesium chloride, magnesium sulfate, barium chloride, hydrochloric acid, sulfuric acid, etc. Puddle night can be suitably used. There is no particular limitation on the method of adding the coagulant, and the coagulant can be added all at once, in portions, or continuously.
さらに本発明では、 乳化重合ラテックスのポリマー固形分 1 0 0重量部に対し、 ポ リエチレンォキシド以外から選ばれた非ィオン性界面活性剤 0. 0 1〜 3 . 0重量部 、 好ましくは 0 . 0 5〜 2. 0重量部の共存下で乳化重合ポリマーの凝集操作を実施 するのが好ましい。  Further, in the present invention, the nonionic surfactant selected from other than poly (ethylene oxide) is used in an amount of 0.01 to 3.0 parts by weight, preferably 0.1 to 100 parts by weight of the polymer solid content of the emulsion polymerization latex. The coagulation operation of the emulsion polymer is preferably carried out in the coexistence of 0.5 to 2.0 parts by weight.
ポリエチレンォキシド以外から選ばれた非イオン性界面活性剤としては、 でんぷん Nonionic surfactants selected from other than polyethylene oxide include starch
、 ゼラチン、 部分ケン化ポリビニルアルコール、 部分ケン化ポリメタクリル酸メチル 、 ポリアクリル酸およぴその塩、 セルロース、 メチルセノレロース、 ヒドロキシメチル セノレロース、 ヒドロキシェチノレセノレロース、 ポリビニノレピロリ ドン、 ポリビニノレイミ ダゾール、 スルホンィ匕ポリスチレン等の天然物および合成高分子非ィオン性界面活性 剤を聘虫または 2種以上を混合して用いることができる。 これらの中でも、 部分ケン 化ポリビニノレアノレコーノレ、 セノレロース、 メチレセ 7レロース、 ヒ ドロキシメチノレセノレ口 ース、 ヒドロキシェチルセルロースが好ましく、 さらに本発明の目的をより効率的に 達成する上では部分ケンィ匕ポリビニルアルコールがより好まし!/、。 , Gelatin, Partially saponified polyvinyl alcohol, Partially saponified polymethyl methacrylate, Polyacrylic acid and its salts, Cellulose, Methylcenorellose, Hydroxymethylsenorellose, Hydroxyethenoresenorelose, Polyvinylinolepyrrolidone, Polyvinylinoleimi Natural products such as dazole and sulfonidani polystyrene and synthetic high-molecular nonionic surfactants can be used as a mixture of two or more kinds of insects. Among these, partially saponified polyvinylinolenoreco nore, cenorellose, methylose 7 reloose, hydroxymethylinoresenoleose, and hydroxyethyl cellulose are preferable, and in order to achieve the object of the present invention more efficiently. Then partial Ken-Dai polyvinyl alcohol is more preferred! / ,.
乳化重合ポリマーの纖時に非イオン性界面活性剤を共存させる主な目的は、 粗大 粒子の生成を抑制するためである。 本発明において、 粗大凝集粒子が生成し易く なるのは、.季し化重合ラテッタスのポリマー固形分濃度が高 ヽ領域で凝集操作を実施す る場合である。 特に乳化重合ラテックスのポリマー固形分濃度が 2 0〜3 5重量0 /0の 範囲で 操作を実施する 、.非イオン性界面活性剤を共存させることで、 上記効 果が得られ易くなる。 非イオン性界面活性剤の添加量が 0 . 0 1部よりも少ない場合 は粗大? «粒子の生成抑制効果が得られにくくなる傾向がある。 一方、 非イオン性界 面活性剤の添加量が 3 . 0部よりも多い場合は、 回収後のポリマー凝集粒子中の非ィ オン性界面活性剤残存量が多くなり、 耐熱性等の品質に悪影響を及ぼすため好ましく ない。 The main purpose of coexisting a nonionic surfactant in the emulsion polymerization polymer fiber is to suppress the generation of coarse particles. In the present invention, coarse aggregated particles are easily formed. This is the case when the flocculation operation is performed in a region where the polymer solids concentration of the seasoning polymerization lattetus is high. Especially polymer solids concentration of the emulsion polymerization latex to perform operations in the range of 2 0-3 5 weight 0/0. By the coexistence of a nonionic surfactant, easily the effect can not be obtained. If the amount of nonionic surfactant added is less than 0.01 part, is it coarse? «There is a tendency that the effect of suppressing generation of particles is hardly obtained. On the other hand, when the amount of the nonionic surfactant added is more than 3.0 parts, the amount of the nonionic surfactant remaining in the polymer agglomerated particles after the recovery increases, and the quality such as heat resistance increases. It is not preferable because it has an adverse effect.
非ィオン性界面活性剤の添加順序には特に制限はないが、 目的の効果がより得られ やすくなる点から、 系中に (D) 凝固剤を添加する前に添加することが好ましく、 例 えば、 温度調整する前の乳化重合ラテックスに、 若しくは乳化重合ラテックスを温度- 調整した後に、 またはポリエチレンォキシドの添加前、 添加中若しくは添加後の系中 に加えることができる。 更には、 (C) の凝固剤の添加後に非イオン性界面活性剤を 加えても良い。 これらの中でも、 ポリエチレンォキシド添 ¾後の系中に加えるのが、 粗大 粒子の生成抑制効果を得られやすい点から、 特に好ましい。  The order of adding the nonionic surfactant is not particularly limited, but it is preferable to add the (D) coagulant to the system before adding the coagulant to the system, since the desired effect is more easily obtained. For example, It can be added to the emulsion polymerization latex before adjusting the temperature, or after adjusting the temperature of the emulsion polymerization latex, or in the system before, during or after the addition of polyethylene oxide. Further, a nonionic surfactant may be added after the addition of the coagulant (C). Among these, it is particularly preferable to add them to the system after the addition of polyethylene oxide, since the effect of suppressing the formation of coarse particles can be easily obtained.
非ィオン性界面活性剤の添加時の状態は特に限定されず、 水溶液あるいは粉体等の ニート状態でカ卩えることができる。 中でも、 通常水溶液でカ卩えるのが、 操作上簡便で あることから好ましい。 非イオン性界面活性剤水溶液の濃度には特に制限はないが、 通常、 0 . 0 1〜 1 0重量%であることが好ましい。 水溶液濃度が、 0. 0 1重量% よりも低い場合は所定量の非ィオン性界面活性剤を加えるために多量の水溶液を使用 する必要がある。 逆に水溶液濃度が 1 0重量%よりも高い場合は、 非イオン性界面活 性剤水激夜の粘度が高くなり取り扱いが困難となる場合がある。 非イオン性界面活性 剤の添加方法には、 特に制限はないが、 一気に添加、 分割添加、 あるいは連続的に添 加することができる。  The state at the time of adding the nonionic surfactant is not particularly limited, and it can be prepared in a neat state such as an aqueous solution or a powder. Above all, it is preferable to squeeze with an aqueous solution because of its simple operation. Although the concentration of the nonionic surfactant aqueous solution is not particularly limited, it is usually preferably 0.01 to 10% by weight. If the concentration of the aqueous solution is lower than 0.01% by weight, it is necessary to use a large amount of the aqueous solution to add a predetermined amount of the nonionic surfactant. On the other hand, when the concentration of the aqueous solution is higher than 10% by weight, the viscosity of the nonionic surfactant in the water at night becomes high, and handling may be difficult. The method of adding the nonionic surfactant is not particularly limited, but it can be added all at once, dividedly added, or added continuously.
本発明により得られるポリマー纏粒子の体積平均粒子径は 5 0〜 5 0 0 μ mが好 ましい。 体積平均粒子径が 5 0 mよりも小さい場合は、 脱水排水中への微粉の流出 が顕著となるため好ましくない。 一方、 平均粒子径 (目的ポリマー ^^粒子の多 段凝集を含む) が 5 0 0 i mよりも大きい場合は、 脱水後含水率が高くなり、 乾燥に 要する時間が長くなるため好ましくない。 ポリマー凝集粒子の粒子径は、 本努明の範 囲内において、 温度が低いほど、 あるいは撹拌混合が激しいほど小さくなる傾向にあ るが、 本発明の範囲内で目的粒子径のポリマー凝集粒子が得られるよう、 それらを調 整すればょレヽ。 なお、 ポリマー 粒子の体積平均粒子径は、 M I C RO T RAC F RA- S VR S C (日機装株式会 を用いることにより測定することができる 本発明では、 ポリマー^ *粒子の水懸濁液が得られた段階で、 (E) ポリマー凝集 粒子の水懸濁液の温度をポリマー軟化温度 (Tm) 以上に調整し、 熱処理により難 粒子内のポリマー粒子間の融着を促進させることが好ましレヽ。 熱処理の温度は特に上一 限はないが、 通常、 1 2 0 °C以下であることが、 操作上簡便であるため、 好ましい。 これにより、 ポリマー ^^粒子の機械的強度が増すとともにポリマー 粒子の含水 率が低下する。 なお、 本発.明において、 この (E) の操作は、 造粒操作をポリマー軟 化温度 (Tm) 以上で行った場合は、 既に温度調整されているとみなすことができる ため、 特に実施しなくてもよい。 また、 加熱処理を実施するにあたり、 加熱中おょぴ 乾燥時 (後) の粒子間凝集を抑制するため公知の粒子間融着防止処理を実施しても良 レ、。 The volume average particle diameter of the polymer particles obtained by the present invention is preferably 50 to 500 μm. If the volume average particle size is less than 50 m, fine powder will flow into the dewatered wastewater Is not preferable because it becomes remarkable. On the other hand, when the average particle diameter (including multi-stage aggregation of the target polymer ^^ particles) is larger than 500 im, the water content after dehydration becomes high and the time required for drying becomes long, which is not preferable. Within the scope of the present invention, the particle size of the polymer aggregated particles tends to be smaller as the temperature is lower or the stirring and mixing are more severe, but within the scope of the present invention, polymer aggregated particles having the target particle size can be obtained. Adjust them so they can be used. The volume average particle diameter of the polymer particles can be measured by using MICRO TRAC F RA-S VR SC (Nikkiso Co., Ltd.). In the present invention, an aqueous suspension of polymer ^ * particles is obtained. (E) Preferably, the temperature of the aqueous suspension of the polymer aggregated particles is adjusted to a temperature equal to or higher than the polymer softening temperature (Tm), and heat treatment promotes fusion between the polymer particles in the hard particles. Although the temperature of the heat treatment is not particularly limited, it is preferable that the temperature is usually 120 ° C. or lower because of the simplicity of the operation, which increases the mechanical strength of the polymer particles and increases the polymer particles. In the present invention, if the granulation operation is performed at a temperature equal to or higher than the polymer softening temperature (Tm) in this invention, it is considered that the temperature has already been adjusted. Therefore, there is no need to perform this step. In performing the heat treatment, a known inter-particle fusion prevention treatment may be performed in order to suppress coagulation between particles during (after) drying during heating.
その後、 常法に従って、 脱水および乾燥操作を行えば本発明による乳化重合ラテツ タスのポリマー凝集粒子が回収できる。  Thereafter, by performing dehydration and drying operations according to a conventional method, polymer aggregated particles of the emulsion polymerization latex according to the present invention can be recovered.
〔実施例〕 〔Example〕
次に本発明を実施例に基づいて更に詳細に説明するが、 本発明はかかる実施例のみ に限定されるものではない。  Next, the present invention will be described in more detail based on examples, but the present invention is not limited to only these examples.
(脱水後含水率の測定)  (Measurement of moisture content after dehydration)
実施例、 比較例おょぴ参考例で得られた纖粒子懸濁液 1 0 0 g (固形分濃度: 5〜38重量%) をァスピレーターで 3分間吸引ろ過した後、 脱水樹脂を回収し、 1 00°C熱風対流型乾燥機に 12時間入れて水分を蒸癸させ、 乾燥前の脱水直後樹脂重 量を Ww、 乾燥後樹脂重量を Wdとし、 下記式 1から求めた。 Example, Comparative Example 100 g of the fiber particle suspension obtained in Reference Example (solid concentration: (5 to 38% by weight) was suction-filtered with an aspirator for 3 minutes, and the dehydrated resin was recovered. The resin was put in a hot air convection dryer at 100 ° C for 12 hours to remove moisture, and the resin weight immediately after dehydration before drying was obtained. , And the weight of the resin after drying was Wd.
脱水後含水率 (%) = [ (Ww-Wd) /Ww] X 100 (式 1) Water content after dehydration (%) = [(Ww-Wd) / Ww] X 100 (Equation 1)
(微粒子ポリマー成^^量の測定)  (Measurement of the amount of fine polymer component)
実施例、 比較例および参考例で得られた纏粒子懸濁液の粒子径分布を、 マイクロ トラック (日機装株式会ネ ±MMI CROTRAC FRA-SVRSC) で測定し、 50 μηι未満の粒子の累積頻度%から求めた。  The particle size distribution of the particle suspension obtained in Examples, Comparative Examples and Reference Examples was measured with a micro truck (Nikkiso Co., Ltd. ± MMI CROTRAC FRA-SVRSC), and the cumulative frequency% of particles less than 50 μηι Asked from.
(粗大ポリマー? «粒子含量の測定)  (Coarse polymer? «Measurement of particle content)
実施例、 比較例および参考例で得られた凝集粒子懸濁液 1000 g (固形分濃度: 8〜38重量0 /0) をァスピレーターで吸引ろ過した後、 脱水樹脂を回収し、 50°C熱 風対流型乾燥機に 24時間入れて水分を蒸発させ、 得られた乾燥粒子を 16メッシュ の篩で分級し、 16メッシュ篩上に残った乾燥粒子重量を Wl、 16メッシュ篩を通 過した乾燥粒子重量を W 2とし、 下記式 2から求めた。 Examples, Comparative Examples and the aggregated particles suspension 1000 obtained in Reference Example g (solid content concentration: 8-38 wt 0/0) was filtered off with suction at Asupireta and dehydrated resin was recovered, 50 ° C heat The water was evaporated in a convection dryer for 24 hours to evaporate the water.The obtained dried particles were classified by a 16-mesh sieve, and the weight of the dry particles remaining on the 16-mesh sieve was dried by passing through Wl and a 16-mesh sieve. The particle weight was W 2, and was determined from the following equation 2.
粗大ポリマー凝集粒子含量 (%) = [ (Wl) / (W1+W2) ] X 100 (式 2) (ポリマー軟化温度 Tmの測定) Content of coarse polymer agglomerated particles (%) = [(Wl) / (W1 + W2)] X 100 (Equation 2) (Measurement of polymer softening temperature Tm)
片端を結んだ透析チューブ (フナコシ株式会社製スぺクトラバイオテックメンブレ ン Zポア 1. l、 MWCO8000、 16 mm) に乳化重合ラテックス 10 gを入れ 、 ソーセージ状になるようにもう一端を結び、 2 o°Cの 5重量%塩化カルシウム水溶 液 3000 gに 5時間浸漬し完全に凝固を終了させ、 チューブ状の凝固体を得た。 こ こで得られたチューブ凝固体を、 30°C〜99°Cまで 5°C刻みで各温水中に 10分間 浸漬し加熱処理を実施した。 各温度で得られたチューブ凝固体を 100°C熱風対流型 乾燥機に 12時間入れて水分を蒸努させ、 乾燥前のチューブ凝固体重量を W a、 乾燥 後のチューブ凝固体重量を Wbとして、 下記式 3から含水率を求め、 含水率が加温前 の含水率よりも 5重量%以上低下した温度をポリマー軟化温度 (Tm) とした。 Dialysis tubing which connects one end (Funakoshi Co., Ltd. scan Bae click Tiger Biotech Men shake down Z pore 1. l, MWCO8000, 16 mm) placed in the emulsion polymerization latex 10 g, tied the other end so that the sausage, 2 It was immersed in 3000 g of a 5% by weight calcium chloride aqueous solution at o ° C for 5 hours to completely complete coagulation, thereby obtaining a tube-shaped coagulated body. The solidified tube obtained here was immersed in warm water for 10 minutes at 5 ° C intervals from 30 ° C to 99 ° C for heat treatment. The tube coagulate obtained at each temperature is put in a hot air convection dryer at 100 ° C for 12 hours to evaporate water, and the weight of the tube coagulate before drying is Wa and the weight of the tube coagulate after drying is Wb The water content was determined from the following formula 3, and the temperature at which the water content decreased by 5% by weight or more from the water content before heating was defined as the polymer softening temperature (Tm).
含水率 (%) = [ (Wa-Wb) /Wa] XI 00 (式 3). 以下、 実施例、 比較例および参考例の中で用いる部および%は、 それぞれ重量部お よび重量0 /0を示す。 また、 実施例、 比較例おょぴ参考例の中で用いる平均粒子径は体 積平均粒子径を示す。 Water content (%) = [(Wa-Wb) / Wa] XI 00 (Equation 3). Hereinafter, examples, parts and percentages used in the comparative examples and reference examples, each represent a weight 0/0 and Contact parts. The average particle diameter used in Examples, Comparative Examples and Reference Examples indicates the volume average particle diameter.
(実施例 1)  (Example 1)
温度計、 攪拌機、 還流冷却器、 窒素流入口、 単量体と乳化剤の添加装置を有するガ ラス反応器に、 蒸留水 124部、 ラウリル硫酸ナトリウム 0. 035部を仕込み、 窒 素気流中で攪拌しながら 50°Cに昇温した。 次にプチルアタリレート (以下、 BA) 11. 20部、 2 _ェチルへキシルアタリレート (以下、 2— EHA). 1. 25部、 ァリルメタクリレート (以下、 AMA) 0. 06部およびクメンハイド口パーォキサ イド 0. 01部の混合物を仕込み、 その 10分後にホ /レムアルデヒドスルホキシル酸 ナトリウム 0. -2部を蒸留水 5部に溶解した混合液、.およびエチレンジァミンテ小ラ ァセティックアシッド · 2Na塩 0. 01部と硫酸第一鉄 · 7τΚ塩 0. 005部を蒸 留水 5部に溶解した混合液を仕込んだ。 1時間攪拌後、 そこに BA68. 51部、 2 -EHA7. 61部、 AMA0. 38部およびクメンハイド口パーオキサイド 0. 1 部からなる単量体の混合物を、 4時間を要して滴下した。 また、 前記の単量体混合物 の添加と同時に、 1部のラウリル硫酸ナトリウムを 5 %水溶液にしたものを 4時間に わたり連続的に した。 単量体混合物 ¾)Π終了後、 1. 5時間攪拌を続け、 アタリ ル系架橋ゴム重合体を得た。 このアタリル系架橋ゴム重合体に、 グラフト単量体成分 として、 メチノレメタクリレート (以下、 ΜΜΑ) 10. 45部、 ΒΑ0. 55部なら びにクメンハイドロパーォキサイド 0. 01部の混合物を 50°Cで 1時間にわたって 連続的に添加した。 添加終了後クメンハイドロパーォキサイド 0. 01部を添 し、 さらに 2時間攪拌を続けて重合を完結させ、 体積平均粒子径 0. 175μΐη、 ポリマ 一固形分濃度 40 %、 ポリマー軟化温度 40 °Cの乳化重合ラテックス Aを作成した。  A glass reactor equipped with a thermometer, stirrer, reflux condenser, nitrogen inlet, and monomer and emulsifier addition equipment was charged with 124 parts of distilled water and 0.035 parts of sodium lauryl sulfate, and stirred in a nitrogen stream. While heating, the temperature was raised to 50 ° C. Next, 11.20 parts of butyl acrylate (hereafter, BA), 2.25 parts of 2-ethylhexyl acrylate (hereafter, 2-EHA). 1.25 parts, 0.06 parts of acryl methacrylate (hereafter, AMA) and cumene hydrate A mixture of 0.01 part of a peroxide, 10 minutes later, and a mixture of 0.2 part of sodium fo / remaldehyde sulfoxylate dissolved in 5 parts of distilled water, and a small ethylene diamine latexate A mixed solution was prepared by dissolving 0.01 parts of acid 2Na salt and 0.005 part of ferrous sulfate 7τΚ salt in 5 parts of distilled water. After stirring for 1 hour, a mixture of monomers consisting of 51.68 parts of BA68, 7.61 parts of 2-EHA, 0.38 parts of AMA, and 0.1 part of peroxide at the cumenehydride port was added dropwise thereto over 4 hours. Simultaneously with the addition of the monomer mixture, 1 part of a 5% aqueous solution of sodium lauryl sulfate was continuously maintained for 4 hours. After completion of the monomer mixture i), stirring was continued for 1.5 hours to obtain an acryl-based crosslinked rubber polymer. A mixture of 10.45 parts of methinolemethacrylate (hereinafter referred to as に), 0.55 parts of ア 0.51 parts, and 0.01 parts of cumene hydroperoxide as a graft monomer component was added to the attaryl-based crosslinked rubber polymer at 50 ° C. C was added continuously over 1 hour. After the addition is completed, 0.01 parts of cumene hydroperoxide is added, and stirring is further continued for 2 hours to complete the polymerization.The volume average particle diameter is 0.175 μΐη, the polymer solid content concentration is 40%, and the polymer softening temperature is 40 °. An emulsion polymerization latex A of C was prepared.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 PEO— 8Z、 粘度平均分子量 170万〜 220万) 水溶液 40 g (0. 2部) を 3 分間かけて連続添加し、 続いて 15 %硫酸ナトリゥム水溶液 10 g (0. 75部) を 添加した。 この時、 系は軟 状ポリマー成分と水の 2相分離状態となった。 そこへ 、 15%塩化カルシウム水溶液 10 g (0. 75部) を加え、 ポリマー藤粒子の水 懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%パルミチン酸力リウ ム水溶液 40 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を実施した。 In a 2 L separable flask, 500 g of emulsion polymerization latex A (polymer solid content: 100 parts) was taken, 500 g of deionized water was added, and the mixture was adjusted to 40 ° C (polymer solid content concentration: 20%). There, 1% polyethylene oxide (Sumitomo Seika Co., Ltd. 40 g (0.2 parts) of an aqueous solution of PEO-8Z, viscosity average molecular weight 1.7 million to 2.2 million) were continuously added over 3 minutes, followed by 10 g (0.75 parts) of a 15% aqueous sodium sulfate solution. At this time, the system was in a two-phase separation state between the soft polymer component and water. Thereto, 10 g (0.75 parts) of a 15% calcium chloride aqueous solution was added to obtain an aqueous suspension of polymer rattan particles. In order to prevent fusion between the polymer aggregated particles, 40 g (1.0 parts) of a 5% aqueous solution of palmitic acid in lithium was added, and the mixture was heated to 80 ° C. to perform a heat treatment operation.
(実施例 2)  (Example 2)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0· 175/im、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  Emulsion polymerization latex A (volume average particle diameter 0.175 / im, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained in the same manner as in Example 1.
2 Lのセパラプルフラスコに、 ¾化重合ラテックス A250 g (ポリマー固形分 l OOf ) を採り、 脱イオン水 750 gを加え、 40°Cに調整した (ポリマー固形分 濃度 10%) 。 そこへ、 撐拌下で 1%ポリエチレンォキシド (住友精化株式会社製 PEO— 8 Z、 粘度平均分子量 170万〜 220万) 水溶液 20 g (0. 2部) を 1. 5分間かけて連続添加し、 続いて 15 %硫酸ナトリウム水溶液 5 g (0. 75部 ) を勸口した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態となった。 そ こへ、 15%塩化カルシウム水溶液 5 g (0. 75部) を加え、 ポリマー凝集粒子の 水懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%パルミチン酸カリ ゥム水溶液 20 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を実施した (実施例 3)  In a 2 L separable flask, 250 g of the cured polymerization latex A (polymer solid content lOOf) was taken, 750 g of deionized water was added, and the temperature was adjusted to 40 ° C (polymer solid content concentration 10%). Then, under stirring, 20 g (0.2 parts) of 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) aqueous solution was continuously applied over 1.5 minutes. 5 g (0.75 parts) of a 15% aqueous solution of sodium sulfate was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. To this was added 5 g (0.75 parts) of a 15% aqueous solution of calcium chloride to obtain an aqueous suspension of polymer aggregated particles. To prevent fusion between the polymer aggregated particles, 20 g (1.0 parts) of a 5% aqueous solution of potassium palmitate was added, followed by heating to 80 ° C to perform a heat treatment operation (Example 3).
実施例 1と同様に、 乳化重合ラテックス A (體平均粒子径 0· 175^m、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40。C) を得た。  In the same manner as in Example 1, emulsion polymerization latex A (body average particle diameter: 0.175 m, polymer solid content: 40%, polymer softening temperature: 40.C) was obtained.
2 Lのセパラプルフラスコに、 乳化重合ラテックス A 750 g (ポリマー固形分 100部) を採り、 脱イオン水 250 gをカ卩え、 40°Cに調整した (ポリマー固形分 濃度 30%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会ネ環 P EO_8Z、 粘度平均分子量 170万〜 220万) 水激夜 60 g (0. 2部) を 5分 2004/019823 In a 2 L separable flask, 750 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, 250 g of deionized water was added, and the temperature was adjusted to 40 ° C (polymer solid concentration: 30%). There, under stirring, 1% polyethylene oxide (Sumitomo Seika Co., Ltd. N-ring PEO_8Z, viscosity average molecular weight 1.7 million to 2.2 million) 2004/019823
17 間かけて連続添加し、 続いて 15 %硫酸ナトリゥム水灘 15 g ( 0. 75部) を添 加した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態となった。 そこへ、 15%塩化カルシウム水溶液 15 g (0. 75部) を加え、 ポリマー凝集粒子の水懸 液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%パルミチン酸カリウム 水溶液 60 g (1. 0部) を力 Πえた後、 80°Cに加熱して熱処理操作を実施した。 The mixture was continuously added over 17 hours, and subsequently 15 g (0.75 parts) of 15% sodium sulfate sulfate was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. Thereto, 15 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain an aqueous suspension of polymer aggregated particles. To prevent fusion between the polymer aggregated particles, 60 g (1.0 part) of a 5% aqueous solution of potassium palmitate was added, and the mixture was heated to 80 ° C. to perform a heat treatment operation.
(実施例 4)  (Example 4)
実施例 1と同様に、 乳ィ匕重合ラテックス A (体積平均粒子径 0. 175 μ m, ポリ マし固形分濃度 40 %、 ポリ マー軟化温度 40 °C) を得た。  In the same manner as in Example 1, Nikadan polymerization latex A (volume average particle size 0.175 μm, polymer solid concentration 40%, polymer softening temperature 40 ° C.) was obtained.
2 Lのセノ ラブノレフラスコに、 乳化重合ラテックス A875 g (ポリマー固形分 100部) を採り、 脱イオン水 125 gを加え、 40。Cに調整した (ポリマー固形分 濃度 35%) 。 そこへ 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 PEO— 8 Z、 粘度平均分子量 170万〜 220万) 7J溶液 70 g (0. 2部) を 7 分間かけて連続添加し、 続レ、て 15 %硫酸ナトリウム水溶液 17· 5 g (0. 75部 ) を添加した。 この時、 系は軟^ 状ポリマー成分と水の 2相分離状態と'なった。 そ こへ、 15%塩化カノレシゥム水?額夜 17. 5 g (0. 75部) を加え、 ポリマー画 粒子の水懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%パルミチン 酸カリウム水溶液 70 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を実 施した。  Take 875 g of the emulsion-polymerized latex A (100 parts of polymer solids) into a 2 L senolab flask and add 125 g of deionized water. C (polymer solids concentration 35%). While stirring, 70 g (0.2 parts) of 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) 7J solution was added continuously over 7 minutes, Subsequently, 17.5 g (0.75 parts) of a 15% aqueous sodium sulfate solution was added. At this time, the system was in a state of two-phase separation of the soft polymer component and water. To the mixture, 17.5 g (0.75 parts) of 15% aqueous solution of canolecidium chloride was added to obtain an aqueous suspension of polymer particles. In order to prevent fusion between the polymer aggregated particles, 70 g (1.0 parts) of a 5% aqueous potassium palmitate solution was added, and the mixture was heated to 80 ° C to perform a heat treatment operation.
(実施例 5)  (Example 5)
実施例 1と同様に、 乳化重合ラテックス A (機平均粒子径 0 · 175 m、 ポリ マー固形分濃度 40。ん ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, an emulsion polymerization latex A (mean average particle diameter: 0.175 m, polymer solid content: 40, polymer softening temperature: 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A 500 g (ポリマー固形分 In a 2 L separable flask, 500 g of emulsion polymerization latex A (polymer solid content
100部) を採り、 脱イオン水 500 gを加え、 25 °Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 PEO— 8 Z、 粘度平均分子量 170万〜 220万) 7溶液 40 g (0. 2部) を 3 分間かけて連続添加し、 続いて 15 %硫酸ナトリゥム水溶液 10 g ( 0 · 75部) を 添加した。 この時、 系は軟 状ポリマー成分と水の 2相分離状態となった。 そこへ 、 15%塩化カルシウム水^ ί夜 10 g (0. 75部) を加え、 ポリマー^ ft粒子の水 懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5 %パルミチン酸力リゥ ム水激夜 40 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を実施した。' (実施例 6 ) 100 parts), 500 g of deionized water was added, and the mixture was adjusted to 25 ° C (polymer solid concentration: 20%). There, 40 g (0.2 parts) of 7% solution was continuously added over 3 minutes while stirring with 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million). Then, add 10 g (0.75 parts) of 15% aqueous sodium sulfate solution. Added. At this time, the system was in a two-phase separation state between the soft polymer component and water. Thereto, 10 g (0.75 parts) of 15% aqueous calcium chloride solution was added to obtain an aqueous suspension of polymer ft particles. In order to prevent fusion between the polymer aggregated particles, 40 g (1.0 parts) of 5% palmitic acid-based real water was added and heated to 80 ° C. to perform a heat treatment operation. '' (Example 6)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0. 175 μ m, ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, emulsion polymerization latex A (volume average particle size 0.175 μm, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A'500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 55。Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 PEO— 8 Z、 粘度平均分子量 170万〜 220万) 水溶液 40 g (0. 2部) を 3 分間かけて連続添加し、 続いて 15 %硫酸ナトリゥム水溶液 10 g ( 0. 75部) を 添加した。 この時、 系は軟 状ポリマー成分と水の 2相分離状態となった。 そこへ 、 15 %塩化カルシゥム水激夜 10 g ( 0. 75部) を加え、 ポリマー凝集粒子の水 懸濁液を得た。 ポリマー?纖粒子間の融着を防止するため、 5%パルミチン酸力リウ ム水溶液 40 g (1. 0部) を加えた後、 55 °Cで 5分間撹拌した。  In a 2 L separable flask, transfer 500 g of emulsion polymerization latex A '(polymer solid content: 100 parts) and add 500 g of deionized water. It was adjusted to C (polymer solid content concentration 20%). Under stirring, 40 g (0.2 parts) of an aqueous solution of 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) was added continuously over 3 minutes. Then, 10 g (0.75 parts) of a 15% aqueous sodium sulfate solution was added. At this time, the system was in a two-phase separation state between the soft polymer component and water. Thereto, 10 g (0.75 parts) of 15% calcium chloride water was added intensely to obtain an aqueous suspension of polymer aggregated particles. To prevent fusion between the polymer and the fiber particles, 40 g (1.0 part) of a 5% aqueous solution of potassium palmitate was added, followed by stirring at 55 ° C for 5 minutes.
(実施例 7)  (Example 7)
実施例 1と同様に、 乳ィ匕重合ラテックス A (体積平均粒子径 0. 175 m, ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, Nikadan polymerization latex A (volume average particle size 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラプルフラスコに、 乳化重合ラテックス A775 g (ポリマー固形分 100部) を採り、 脱イオン水 225 gを加え、 40°Cに調整した (ポリマー固形分 濃度 31%) 。 そこへ 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO—3Z、 粘度平均分子量 60万〜 110万) 7溶液 93 g (0. 3部) を 9分間 かけて連続添加し、 続いて 15%硫酸ナトリウム水溶液 15. 5 g (0. 75部) を 添加した。 この時、 系は軟»状ポリマー成分と水の 2相分離状態となった。 そこへ 、 15%塩化カルシウム水溶液 15. 5 g (0. 75部) を加え、 ポリマー謹粒子 の水懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%パルミチン酸力 リウム水溶液 62 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を実施し た。 In a 2 L separable flask, 775 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, 225 g of deionized water was added, and the temperature was adjusted to 40 ° C (polymer solid content concentration: 31%). Under stirring, 93 g (0.3 parts) of a 1% polyethylene oxide (PEO-3Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight: 600,000-1.1 million) was added continuously over 9 minutes. Subsequently, 15.5 g (0.75 parts) of a 15% aqueous sodium sulfate solution was added. At this time, the system was in a two-phase separation state between the soft polymer component and water. Then, 15.5 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added, and the polymer particles were added. Water suspension was obtained. To prevent fusion between the polymer aggregated particles, 62 g (1.0 parts) of a 5% aqueous potassium palmitate solution was added, and the mixture was heated to 80 ° C. to perform a heat treatment operation.
(実施例 8)  (Example 8)
実施例 1と同様に、 乳ィ匕重合ラテックス A (体積平均粒子径 0. 175^ηι、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40。C) を得た。  In the same manner as in Example 1, Nikadan polymerization latex A (volume average particle size 0.175 ^ ηι, polymer solid content concentration 40%, polymer softening temperature 40.C) was obtained.
2 Lのセパラブ/レフラスコに、 乳化重合ラテックス A 500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20 %) 。 そこへ、 撹拌下で 0. 5 %ポリエチレンォキシド (住友精化株式会社 製 PEO—18 Z、 粘度平均分子量 430万〜 480万) 水?薪夜 20 g (0. 05部 ) を 1 · 5分間かけて連続添加し、 続いて 15 %硫酸ナトリウム水溶液 10 g  500 g of emulsion polymerization latex A (100 parts of polymer solid content) was placed in a 2 L separab / re flask, and 500 g of deionized water was added to adjust the temperature to 40 ° C (polymer solid concentration: 20%). There, 0.5% polyethylene oxide (PEO-18Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 4.3 million to 4.8 million) with stirring, water and firewood 20 g (0.05 parts) 1.5 times Over a period of 15 minutes, followed by 10 g of 15% aqueous sodium sulfate solution
(0. 75部) を添加した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態 となった。 そこへ、 15%塩化カルシウム水溶液 10 g (0. 75部) を加え、 ポリ マー凝集粒子の水懸濁液を得た。 ポリマー ^^粒子間の融着を防止するため、 5%パ ルミチン酸カリウム水溶液 40 g (1. 0部) を加えた後、 80°Cに加熱して熱処理 操作を実施した。  (0.75 parts) was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. To this was added 10 g (0.75 parts) of a 15% aqueous solution of calcium chloride to obtain an aqueous suspension of polymer aggregated particles. In order to prevent fusion between the polymer ^^ particles, 40 g (1.0 parts) of a 5% aqueous potassium palmitate solution was added, and the mixture was heated to 80 ° C and heat-treated.
(実施例 9)  (Example 9)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0· 175μπι、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, emulsion polymerization latex A (volume average particle diameter: 0.175 μπι, polymer solid content: 40%, polymer softening temperature: 40 ° C.) was obtained.
2 Lのセパラプルフラスコに、 乳化重合ラテックス A500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 0. 5%ポリエチレンォキシド (住友精化株式会社 製 PEO— 27、 粘度平均分子量 600万〜 800万) 7J ^薪夜 20 g (0. 05部) を 1. 5分間かけて連続添加し、 続いて 15 %硫酸ナトリゥム水赚 10 g  In a 2 L separable flask, 500 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, 500 g of deionized water was added, and the mixture was adjusted to 40 ° C (polymer solid content concentration: 20%). There, 0.5% polyethylene oxide (PEO-27 manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 6,000,000 to 8,000,000) with stirring 7J ^ 20 g of firewood night (0.05 parts) for 1.5 minutes And then added continuously, followed by 10 g of 15% aqueous sodium sulfate
(0. 75部) を添加した。 この時、 系は軟纏状ポリマー成分と水の 2相分離状態 となった。 そこへ、 15%塩化カルシウム水溶液 10 g (0. 75部) を加え、 ポリ マー凝集粒子の水懸濁液を得た。 ポリマー 粒子間の融着を防止するため、 5%パ ルミチン酸カリウム水溶液 40 g (1. 0部) を加えた後、 80°Cに加熱して熱処理 操作を実施した。 (0.75 parts) was added. At this time, the system was in a two-phase separation state with the soft polymer component and water. To this, add 10 g (0.75 parts) of 15% aqueous calcium chloride solution, An aqueous suspension of mer aggregated particles was obtained. To prevent fusion between the polymer particles, 40 g (1.0 parts) of a 5% aqueous potassium palmitate solution was added, and the mixture was heated to 80 ° C to perform a heat treatment operation.
(実施例 10)  (Example 10)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0. 175 ^ m, ポリ マー固形分濃度 40 %、 ポリマー軟化温度 40 °C) を得た。  In the same manner as in Example 1, an emulsion polymerization latex A (volume average particle diameter 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラブノレフラスコに、 乳化重合ラテックス A500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P £0—82、 粘度平均分子量170万〜220万) 水?薪夜6008 (3. 0部) を 30分間かけて連続添加し、 続いて 15%硫酸ナトリゥム水溶液 10 g (0 · 75部 ) を、添加した。 この時、 系は軟^^状ポリマー成分と水の 2相分離状態となった。 そ こへ、 15%塩化カルシウム水溶液 40 g (3. 0部) を加え、 ポリマー凝集粒子の 水懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%ノ、。ルミチン酸カリ ゥム水溶液 40 g (1. 0部) をカロえた後、 80°Cに加熱して熱処理操作を実施した 500 g of emulsion polymerization latex A (100 parts of polymer solids) was placed in a 2 L separabunolé flask, and 500 g of deionized water was added to adjust the temperature to 40 ° C (polymer solids concentration: 20%). There, with stirring, 1% polyethylene oxide (Sumitomo Seika Co., Ltd. P £ 0-82, viscosity average molecular weight 1.7 million to 2.2 million) Water and firewood 600 8 (3.0 parts) over 30 minutes Continuous addition was performed, and then 10 g (0.775 parts) of a 15% aqueous sodium sulfate solution was added. At this time, the system became a two-phase separated state of the soft polymer component and water. To this was added 40 g (3.0 parts) of a 15% calcium chloride aqueous solution to obtain an aqueous suspension of polymer aggregated particles. 5% to prevent fusion between the polymer aggregated particles. After heating 40 g (1.0 parts) of potassium luminate aqueous solution, it was heated to 80 ° C and heat treated.
(実施例 11) (Example 11)
実施例 1と同様に、 乳ィ匕重合ラテックス A (体積平均粒子径 0. 175μπι、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, Nikadan Polymerization Latex A (volume average particle size 0.175 μπι, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2Lのセパラブルフラスコに、 乳化重合ラテックス A 500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO— 8Z、 粘度平均分子量 170万〜 220万) 水潲夜 40 g (0. 2部) を 3分 間かけて連続添加した。 この時、 系は軟纖状ポリマー成分と水の 2相分離状態とな つた。 そこへ、 15%塩化カルシウム水溶液 10 g (0. 75部) を加え、 ポリマー ^^粒子の水懸濁液を得た。 ポリマー 粒子間の融着を防止するため、 5%ノ、0ルミチン酸カリウム水激夜 40 g (1. 0部) を加えた後、 80°Cに加熱して 熱処理操作を実施した。 In a 2 L separable flask, 500 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, 500 g of deionized water was added, and the temperature was adjusted to 40 ° C (polymer solid content concentration: 20%). There, 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) with stirring Water 40 g (0.2 parts) per night continuously for 3 minutes Was added. At this time, the system became a two-phase separated state of the soft fiber polymer component and water. Thereto, 10 g (0.75 parts) of a 15% calcium chloride aqueous solution was added to obtain an aqueous suspension of polymer ^^ particles. To prevent fusion between polymer particles, 5% Bruno, 0 palmitic acid aqueous potassium discount night 40 g was added to (1.0 parts) and heat-treated operated and heated to 80 ° C.
(実施例 12)  (Example 12)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0. 175μπι、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, emulsion polymerization latex A (volume average particle size 0.175 μπι, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO_8Z、 粘度平均分子量 170万〜 220万) 7J溶液 40 g (0. 2部) を 3分 間かけて連続添加した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態とな つた。 そこへ、 15%塩化カルシウム水溶液 4 g (0. 30部) を加え、 ポリマー凝 集粒子の水懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%パノレミチ ン酸カリウム水溶液 40 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を 実施した。 ' In a 2 L separable flask, 500 g of emulsion polymerization latex A (polymer solid content: 100 parts) was taken, 500 g of deionized water was added, and the mixture was adjusted to 40 ° C (polymer solid content concentration: 20%). Under stirring, 40 g (0.2 parts) of 7 % solution of 1% polyethylene oxide (PEO_8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) was continuously added over 3 minutes. . At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. Thereto, 4 g (0.30 parts) of a 15% calcium chloride aqueous solution was added to obtain an aqueous suspension of aggregated polymer particles. To prevent fusion between the polymer aggregated particles, 40 g (1.0 parts) of a 5% aqueous solution of potassium panolemitinate was added, and the mixture was heated to 80 ° C. to perform a heat treatment operation. '
(実施例 13)  (Example 13)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0· 175 πι ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, an emulsion polymerization latex A (volume average particle diameter 0.175 πι polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A 500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ 撹拌下で 1%ポリエチレンォキシド (住友精化株式会據; P EO—8 Z、 粘度平均分子量 170万〜 220万) 水激夜 40 g (0. 2部) を 3分 間かけて連続添 した。 この時、 系は軟 状ポリマー成分と水の 2相分離状態とな つた。 そこへ、 15%塩化カノレシゥム水溶液 133 g (10部) を加え、 ポリマー凝 集粒子の水懸濁液を得た。 ポリマー 粒子間の融着を防止するため、 5%ノ、。ルミチ ン酸カリウム水溶液 40 g (1. 0部) をカ卩えた後、 80°Cに加熱して熱処理操作を 実施した。 2004/019823 In a 2 L separable flask, 500 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, and 500 g of deionized water was added to adjust the temperature to 40 ° C (polymer solid concentration: 20%). There 1% polyethylene oxide under stirring (based on Sumitomo Seika Chemical Co., Ltd .; PEO-8Z, viscosity-average molecular weight 1.7 million to 2.2 million) It was added continuously. At this time, the system became a two-phase separated state of the soft polymer component and water. To this was added 133 g (10 parts) of a 15% aqueous solution of canolecidium chloride to obtain an aqueous suspension of aggregated polymer particles. 5% to prevent fusion between polymer particles. After 40 g (1.0 parts) of an aqueous solution of potassium luminite was removed, the mixture was heated to 80 ° C and heat-treated. 2004/019823
22  twenty two
(実施例 14) (Example 14)
撹拌機付反応器に脱イオン水 200部、 パルミチン酸カリウム 0. 08部、 および 硫酸ナトリウム 0. 01部を仕込み、 窒素置換後、 70°Cに昇温した。 これに過硫酸 カリウム 1部を加え 30分間撹拌した後、 メチルメタクリレート 80部、 プチル アタリレート 20部よりなるモノマー混合物を 4時間に渡って連続追 ¾1した。 その間 、 モノマー混合物添加開始から、 30分、 60分、 90分、 および 120分目にパル ミチン酸カリウム 0. 4部を追加した。 モノマー添加終了後、 同温度で 1. 5時間保 持し重合を完結させ、 乳化重合ラテックス B (体積平均粒子径 0. 138 μ m、 ポリ マー固形分濃度 32%、 ポリマー軟化温度 70°C) を得た。  A reactor equipped with a stirrer was charged with 200 parts of deionized water, 0.08 parts of potassium palmitate, and 0.01 parts of sodium sulfate, and heated to 70 ° C after purging with nitrogen. To this was added 1 part of potassium persulfate, and the mixture was stirred for 30 minutes. Then, a monomer mixture consisting of 80 parts of methyl methacrylate and 20 parts of butyl acrylate was continuously added over 4 hours. During that time, 0.4 part of potassium palmitate was added at 30, 60, 90, and 120 minutes from the start of the monomer mixture addition. After addition of the monomer, the mixture was kept at the same temperature for 1.5 hours to complete the polymerization.Emulsion polymerization latex B (volume average particle size 0.138 μm, polymer solid content 32%, polymer softening temperature 70 ° C) Got.
2 Lのセパラブルフラスコに、 乳化重合ラテックス B 500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 7- 5 °Cに調整した (ポリマー固形分 濃度 16%) 。 そこへ 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO— 8 Z、 粘度平均分子量 170万〜 220万) 水?薪夜 32 g (0. 2部) を 3分 間かけて連続添 Λ口した。 この時、 系は軟^^状ポリマー成分と水の 2相分離状態とな つた。 そこへ、 15%塩化カルシウム水?鎌 8 g (0. 75部) を加え、 ポリマー凝 集粒子の水懸濁液を得た。 その後、 95 °Cに加熱して熱処理操作を実施した。  In a 2 L separable flask, 500 g of emulsion polymerization latex B (100 parts of polymer solid content) was taken, 500 g of deionized water was added, and the mixture was adjusted to 7-5 ° C (polymer solid concentration: 16%). There 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) with stirring, 32 g (0.2 parts) of water and firewood over 3 minutes It was added continuously. At this time, the system became a two-phase separated state of the soft ^^ polymer component and water. Thereto, 8 g (0.75 parts) of 15% aqueous calcium chloride solution was added to obtain an aqueous suspension of aggregated polymer particles. After that, heat treatment was performed by heating to 95 ° C.
(実施例 15)  (Example 15)
撹拌機付反応器に脱イオン水 200部、 ノ、レミチン酸カリウム 0. 3部、 およぴ硫 酸ナトリウム 0. 01部を仕込み、 窒素置換後、 70°Cに昇温した。 これに過硫酸力 リウム 0. 1部を加え 30分間撹拌した後、 メチルメタクリレート 80部、 プチルァ タリレート 20部よりなるモノマー混合物を 4時間に渡つて連続追加した。 その間、 モノマー混合物添加開始から、 30分、 60分、 90分、 および 120分目にパルミ チン酸カリウム 0. 4部を勘口した。 モノマー添加終了後、 同 で 1. 5時間保持 し重合を完結させ、 乳ィ匕重合ラテックス C (体積平均粒子径 0. 072 μ m, ポリマ 一固形分濃度 32 %、 ポリマー軟化温度 70 °C) を得た。  A reactor equipped with a stirrer was charged with 200 parts of deionized water, 0.3 part of potassium hydroxide, 0.3 parts of potassium remitate, and 0.01 parts of sodium sulfate. After replacing with nitrogen, the temperature was raised to 70 ° C. To this, 0.1 part of potassium persulfate was added and stirred for 30 minutes, and then a monomer mixture consisting of 80 parts of methyl methacrylate and 20 parts of butyl phthalate was continuously added over 4 hours. Meanwhile, 0.4 part of potassium palmitate was taken into account at 30, 60, 90 and 120 minutes from the start of the monomer mixture addition. After the addition of the monomers, the mixture was kept for 1.5 hours to complete the polymerization, and the polymerization polymerization latex C (volume average particle diameter 0.072 μm, polymer / solid content 32%, polymer softening temperature 70 ° C) Got.
2 Lのセパラブルフラスコに、 乳化重合ラテックス C 500 g (ポリマー固形分 1 0 0部) を採り、 脱ィオン水 5 0 0 gを加え、 7 5 °Cに調整した (ポリマー固形分 濃度 1 6 %) 。 そこへ、 撹拌下で 1 %ポリエチレンォキシド (住友精化株式会社製 P E O— 8 Z、 粘度平均分子量 1 7 0万〜 2 2 0万) 7_K激夜 3 2 g ( 0 . 2部) を 3分 間かけて連続添加し、 続レ、て 1 5 %硫酸ナトリウム水?鎌 8 g ( 0 · 7 5部) を添 Λ口 した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態となった。 そこへ、 1 5 %塩化カルシウム水溶液 8 g ( 0. 7 5部) を加え、 ポリマー凝集粒子の水懸濁 液を得た。 その後、 9 5 °Cに加熱して熱処理操作を実施した。 In a 2 L separable flask, add 500 g of emulsion polymerization latex C (solid polymer content). 100 parts), 500 g of deionized water was added, and the mixture was adjusted to 75 ° C (polymer solid content concentration: 16%). There, 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 200000) with stirring 7_K The mixture was continuously added over a period of time, and 8 g (0.75 parts) of a 15% aqueous sodium sulfate solution was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. Thereto, 8 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain an aqueous suspension of polymer aggregated particles. Thereafter, a heat treatment operation was performed by heating to 95 ° C.
(実施例 1 6 )  (Example 16)
撹拌機付反応器に脱イオン水 2 2 0部、 ほう酸 0. 3部、 炭酸ナトリウム 0 · 0 3 部、 N—ラウロイルサルコシン酸ナトリウム 0. 0 9部、 ホルムアルデヒドスルホキ シル酸ナトリウム 0. 0 9部、 エチレンジァミン四酢酸ナトリウム 0 . 0 0 6部、 お よび硫酸第一鉄 7水塩 0. 0 0 2部を仕込み、 窒素置換後、 8 0°Cに昇温した。 これ にメチルメタタリレート 2 5部、 ァリルメタタリレート 0. 1部、 t—プチルハイド 口パーォキサイド 0. 1部よりなるモノマー混合物のうち 2 5 %を一括して仕込み、 4 5分間重合を行つた。 続レ、てこの混合液の残り 7 5 %を 1時間に渡つて連続追加し た。 i ¾口終了後、 同 で 2時間保持し重合を完結させた。 また、 この間に 0. 2部 の N—ラウロイルサルコシン酸ナトリウムを激口した。 得られた最内層架橋メタクリ ル系重合体ラテックス中の重合体粒子の体積平均粒子径は、 0. 1 6 0 μ mであり、 重合転化率 (重合生成量 Zモノマー仕込量 X 1 0 0 ) は 9 8 %であった。 続いて、 上 記架橋メタクリル系重合体ラテックスを窒素気流中で 8 0。Cに保ち、 過硫酸カリ'ゥム 0 . 1部を添加した後、 プチルァクリレート 4 1部、 スチレン 9部、 ァリルメタタリ レート 1部のモノマー混合液を 5時間に渡つて連続 i raした。 この間にォレイン酸カ リウム 0. 1部を 3回に分けて添加した。 モノマー混合液の ϋΛπ終了後、 重合を完結 させるためにさらに過硫酸カリウムを 0. 0 5部添 Λ口し 2時間保持した。 得られた重 合体の体積平均粒子径は 0 · 2 3 0 μ mであり、 重合転化率は 9 9 %であった。 続い て、 得られた上記ゴム状重合体ラテックスを 8 0 °Cに保ち、 過硫酸カリウム 0. 0 2 部を添加した後メチルメタクリレート 24部、 ブチノレアクリレート 1部、 t一ドデシ ルメルカブタン 0. 1部の混合液を 1時間に渡つて連続 ϋ¾πした。 モノマー混合液の ϋ¾Π終了後 1時間保持し、 体積平均粒子径が 0. 250 μ mの多層構造を持つ乳化重 合ラテックス D (体積平均粒子径 0. 250 m、 ポリマー固形分濃度 33 %、 ポリ マー軟化 ¾ 75°C) を得た。 In a reactor equipped with a stirrer, 220 parts of deionized water, 0.3 parts of boric acid, 0.3 parts of sodium carbonate, 0.09 parts of sodium N-lauroyl sarcosine, 0.09 parts of sodium formaldehyde sulfoxylate 0.09 Parts, 0.006 parts of sodium ethylenediaminetetraacetate, and 0.002 parts of ferrous sulfate heptahydrate, and the temperature was raised to 80 ° C. after purging with nitrogen. To this, 25% of a monomer mixture consisting of 25 parts of methyl methacrylate, 0.1 part of acryl methacrylate, and 0.1 part of t-butylhydroxide peroxide was charged at a time and polymerization was carried out for 45 minutes. I got it. The remaining 75% of the leverage mixture was continuously added over 1 hour. i After completion of the mouth, the mixture was maintained for 2 hours in the same manner to complete the polymerization. During this period, 0.2 parts of sodium N-lauroylsarcosinate was intensively spouted. The volume average particle diameter of the polymer particles in the obtained innermost layer crosslinked methacrylic polymer latex was 0.160 μm, and the polymerization conversion rate (polymerization amount Z monomer charged amount X100) Was 98%. Subsequently, the above crosslinked methacrylic polymer latex was subjected to 80 in a nitrogen stream. After maintaining the temperature at 0.1C and adding 0.1 part of potassium persulfate, a monomer mixture of 41 parts of butyl acrylate, 9 parts of styrene, and 1 part of aryl methacrylate was continuously treated over 5 hours. During this time, 0.1 part of potassium oleate was added in three portions. After the completion of the polymerization of the monomer mixture, 0.05 parts of potassium persulfate was further added and the mixture was held for 2 hours in order to complete the polymerization. The volume average particle diameter of the obtained polymer was 0.223 μm, and the polymerization conversion was 99%. Subsequently, the obtained rubbery polymer latex was kept at 80 ° C., and potassium persulfate 0.02 Then, a mixture of 24 parts of methyl methacrylate, 1 part of butynoleacrylate, and 0.1 part of t-dodecylmercaptan was continuously subjected to π over 1 hour. Emulsion polymerized latex D having a multilayer structure with a volume average particle size of 0.250 μm (volume average particle size 0.250 m, polymer solids concentration 33%, poly Mer softening ¾75 ° C).
2 Lのセパラブルフラスコに、 乳化重合ラテックス D 606 g (ポリマー固形分 100部) を採り、 脱イオン水 394 gを加え、 80°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO— 8Z、 粘度平均分子量 170万〜 220万) 水?辯夜 20 g (0. 1部) を 3分 間かけて連続添加した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態とな つた。 そこへ、 15%塩化カルシウム水溶液 10 g (0. 75部) を加え、 ポリマー 凝集粒子の水懸濁液を得た。 その後、 95 °Cに加熱して熱処理操作を実施した。 In a 2 L separable flask, 606 g of emulsion polymerization latex D (polymer solid content: 100 parts) was added, and 394 g of deionized water was added to adjust the temperature to 80 ° C (polymer solid content concentration: 20%). Then, under stirring, 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity-average molecular weight 1.7 million to 2.2 million) 20 g (0.1 part) of water and water for 3 minutes It was added continuously. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. Thereto, 10 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain an aqueous suspension of polymer aggregated particles. After that, heat treatment was performed by heating to 95 ° C.
(実施例 17)  (Example 17)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0 · 175 m、 ポリ マー固形分濃度 40 %、 ポリマー軟化温度 40 °C) を得た。  In the same manner as in Example 1, emulsion polymerization latex A (volume average particle diameter: 0.117 m, polymer solid content: 40%, polymer softening temperature: 40 ° C.) was obtained.
2 Lのセパラブノレフラスコに、 乳化重合ラテックス A750 g (ポリマー固形分 100部) を採り、 脱イオン水 250 gを加え、 40°Cに調整した (ポリマー固形分 濃度 30%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO— 8 Z、 粘度平均分子量 170万〜 220万) τ ^ί夜 60 g (0. 2部) を 5分 間かけて連続添加し、 3 %—ポリビエルアルコール (日本合成化学ネ環 GH— 20 M) 7溶液 25 g (0 · 25部) を加え、 続いて 15 %硫酸ナトリゥム水溶液 15 g (0. 75部) を添 Λ口した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態 となった。 そこへ、 15%塩化カルシウム水溶液 15 g (0. 75部) を加え、 ポリ マー纖粒子の水懸濁液を得た。 ポリマー皿粒子間の融着を防止するため、 5%パ ルミチン酸カリウム水溶液 60 g (1. 0部) を加えた後、 80°Cに加熱して熱処理 操作を実施した。 4019823 In a 2 L separabunolé flask, 750 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, 250 g of deionized water was added, and the mixture was adjusted to 40 ° C (polymer solid content concentration: 30%). There, 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) τ ^ ί 60 g (0.2 parts) per night under stirring for 5 minutes And add 25 g (0.25 parts) of 3% -polyvinyl alcohol (Nippon Synthetic Chemical NeNe GH-20M) 7 solution, followed by 15 g of a 15% aqueous sodium sulfate solution (0.75 parts) Was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. Thereto, 15 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain an aqueous suspension of polymer fiber particles. To prevent fusion between the polymer dish particles, 60 g (1.0 parts) of a 5% aqueous potassium palmitate solution was added, and the mixture was heated to 80 ° C and heat-treated. 4019823
25  twenty five
(実施例 18) (Example 18)
実施例 1と同様に、 乳ィ匕重合ラテックス A (体積平均粒子径 0. 1 75 πι、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, Nikadan polymerization latex A (volume average particle size 0.175 πι, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセハ。ラブノレフラスコに、 乳化重合ラテックス A 750 g (ポリマー固形分 100部) を採り、 脱イオン水 25◦ gを加え、 40°Cに調整した (ポリマー固形分 濃度 30%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会 ? EO_8 Z、 粘度平均分子量 1 70万〜 220万) 水、溜夜 60 g (0. 2部) を 5分 間かけて連続添加し、 3 %-ポリビニルアルコール (日本合成化学社製 GH— 20M) 水溶液 5 g (0. 05部) を力 Pえ、 続いて 1 5 %硫酸ナトリゥム水溶液 1 5 g  2 L Serra. 750 g of emulsion polymerization latex A (100 parts of polymer solid content) was placed in a Labnolle flask, and 25 ° g of deionized water was added thereto, and the mixture was adjusted to 40 ° C (polymer solid content concentration: 30%). Then, under stirring, 1% polyethylene oxide (Sumitomo Seika Co., Ltd.? EO_8 Z, viscosity average molecular weight: 1.7 million to 2.2 million) Water, 60 g (0.2 parts) of hot water continuously for 5 minutes Add 5 g (0.05 parts) of a 3% aqueous solution of polyvinyl alcohol (GH-20M, manufactured by Nippon Synthetic Chemical Industry), and then add 15 g of a 15% aqueous sodium sulfate solution to 15 g.
(0. 75部) を添加した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態 となった。 そこへ、 1 5%塩化カルシウム水溶液 15 g (0. 75部) を加え、 ポリ マー謹粒子の水懸濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%パ /レミチン酸カリウム水溶液 60 g (1. 0部) を加えた後、 80°Cに加熱して熱処理 操作を実施した。 '  (0.75 parts) was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. Thereto, 15 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain an aqueous suspension of polymer particles. In order to prevent fusion between the polymer aggregated particles, 60 g (1.0 part) of a 5% aqueous potassium / remitate solution was added, followed by heating to 80 ° C. to perform a heat treatment operation. '
(比較例 1)  (Comparative Example 1)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0. 1 75 t m, ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, emulsion polymerization latex A (volume average particle size 0.175 tm, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A 500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 20°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ 撹拌下で 1%ポリエチレンォキシド (住友精化株式会ネ環 P EO— 8 Z、 粘度平均分子量 170万〜 220万) 水?薪夜 40 g (0. 2部) を 3分 間かけて連続添加し、 続いて 1 50/。硫酸ナトリゥム水溶液 1 0 g ( 0. 75部) を添 加した。 この時、 系は軟 状ポリマー成分と水の 2相分離状態となった。 そこへ、 15%塩化カルシウム水灘 10 g (0. 75部) を加えると、 クリーム状の微粒子 ポリマー聽粒子の水懸濁液が形成された。 In a 2 L separable flask, 500 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, 500 g of deionized water was added, and the mixture was adjusted to 20 ° C (polymer solid content concentration: 20%). There 1% polyethylene oxide (Sumitomo Seika Chemicals Co., Ltd. N-ring P EO-8Z, viscosity average molecular weight 1.7 million-2,200,000) with water and firewood 40 g (0.2 parts) under stirring for 3 minutes Continuous addition, followed by 150 /. 10 g (0.75 parts) of an aqueous sodium sulfate solution was added. At this time, the system was in a two-phase separation state between the soft polymer component and water. When 10 g (0.75 parts) of 15% calcium chloride water was added thereto, a water suspension of creamy fine particles and polymer particles was formed.
(比較例 2) P T/JP2004/019823 (Comparative Example 2) PT / JP2004 / 019823
26 実施例 1と同様に、 乳ィ匕重合ラテックス A ( ¾平均粒子径 0. 175 m、 ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  26 In the same manner as in Example 1, Nikado Polymerized Latex A (average particle size 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A 500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gを加え、 60°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO— 8 Z、 粘度平均分子量 170万〜 220万) 7激夜 40 g (0. 2部) を 3分 間かけて連続添加し、 続いて 15%硫酸ナトリウム水?鎌 10 g (0. 75部) を添 加した。 この時、 系は軟凝集状ポリマー成分と水の 2相分離状態となった。 そこへ、 15%塩化カルシウム水溶液 10 g (0. 75部) をカロえ、 ポリマー讓粒子の水懸 濁液を得た。 ポリマー凝集粒子間の融着を防止するため、 5%ノルミチン酸カリウム 水溶液 40 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を実施した。  In a 2 L separable flask, 500 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, and 500 g of deionized water was added to adjust the temperature to 60 ° C (polymer solid content concentration: 20%). There, 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) under stirring 7 g 40 g (0.2 parts) over 3 minutes Continuous addition was performed, and then 10 g (0.75 parts) of 15% aqueous sodium sulfate was added. At this time, the system became a two-phase separated state of the soft-agglomerated polymer component and water. There, 10 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain a water suspension of polymer particles. In order to prevent fusion between the polymer aggregated particles, 40 g (1.0 parts) of a 5% aqueous potassium normitate solution was added, and the mixture was heated to 80 ° C. to perform a heat treatment operation.
(比較例 3)  (Comparative Example 3)
実施例 1と同様に、 乳ィ匕重合ラテックス A (体積平均粒子径 0. 175 m, ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, Nikadan polymerization latex A (volume average particle size 0.175 m, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラプルフラスコに、 乳化重合ラテックス A500 g (ポリマー固形分 100部) を採り、 脱イオン水 500 gをカ卩え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO— 8 Z、 粘度平均分子量 170万〜 220万) 7_K溶液 5. 0 g (0. 025部) を 0. 5分間かけて連続添加した。 この時、 系は増粘状態となった。 そこへ、 15% 塩化カルシウム水激夜 20 g (1. 5部) を加え、 ポリマー凝集粒子の水懸濁液を得 た。 ポリマー ^^粒子間の融着を防止するため、 5%ノルミチン酸カリウム水溶液 40 g (1. 0部) を加えた後、 80°Cに加熱して熱処理操作を実施した。  In a 2 L separable flask, 500 g of emulsion polymerization latex A (100 parts of polymer solid content) was taken, 500 g of deionized water was washed, and the temperature was adjusted to 40 ° C (polymer solid concentration: 20%). Then, under stirring, 1 g polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) 5.0 g (0.025 parts) of 7_K solution for 0.5 minutes And added continuously. At this time, the system became thickened. 20 g (1.5 parts) of a 15% aqueous solution of calcium chloride was added thereto to obtain an aqueous suspension of polymer aggregated particles. To prevent fusion between the polymer ^^ particles, a 5% aqueous solution of potassium normitate (40 g, 1.0 part) was added, followed by heat treatment at 80 ° C.
(比較例 4)  (Comparative Example 4)
実施例 1と同様に、 乳ィ匕重合ラテックス A (体積平均粒子径 0. 175 πι ポリ マー固形分濃度 40%、 ポリマー軟化温度 40°C) を得た。  In the same manner as in Example 1, Nikado Polymerization Latex A (volume average particle size 0.175 πι polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A 500 g (ポリマー固形分 2004/019823 In a 2 L separable flask, 500 g of emulsion polymerization latex A (polymer solid content 2004/019823
27 27
100部) を採り、 脱イオン水 500 gを加え、 40°Cに調整した (ポリマー固形分 濃度 20%) 。 そこへ、 撹拌下で 1%ポリエチレンォキシド (住友精化株式会社製 P EO— 8Z、 粘度平均分子量 170万〜 220万) 水^!夜 40 g (0. 2部) を 3分 間かけて連続添加した。 この時、 系は軟^ *状ポリマー成分と水の 2相分離状態とな つた。 そこへ、 15%塩化カルシウム水嶽夜 1. 3 g (0. 10部) を加え、 ポリマ 一凝集粒子と軟^ ft状ポリマー成分の水懸濁液を得た。 ポリマー «粒子間の融着を 防止するため、 5%パルミチン酸カリウム水溶液 40 g (1. 0部) を加えた後、 80°Cにカロ熱して熱処理操作を実施した。 100 parts), 500 g of deionized water was added, and the temperature was adjusted to 40 ° C (polymer solid concentration: 20%). There, under stirring, 1% polyethylene oxide (PEO-8Z, manufactured by Sumitomo Seika Co., Ltd., viscosity average molecular weight 1.7 million to 2.2 million) water ^! 40 g (0.2 parts) of nighttime over 3 minutes It was added continuously. At this time, the system became a two-phase separated state of the soft polymer component and water. Thereto, 1.3 g (0.10 parts) of 15% calcium chloride hydrous water was added to obtain an aqueous suspension of polymer coagulated particles and a soft ft-like polymer component. To prevent fusion between the polymer and the particles, 40 g (1.0 parts) of a 5% aqueous potassium palmitate solution was added, and a heat treatment operation was performed by calorie heating to 80 ° C.
(比較例 5 )  (Comparative Example 5)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0. 175/ m、 ポリ マー固形分濃度 40 %、 ポリマ 車文化温度 40 °C) ·を得た。  In the same manner as in Example 1, emulsion polymerization latex A (volume average particle size 0.175 / m, polymer solid content concentration 40%, polymer car culture temperature 40 ° C) was obtained.
2 Lのセパラブルフラスコに、 乳化重合ラテックス A 750 g (ポリマー固形分 100部) を採り、 脱イオン水 250 gを加え、 40°Cに調整した (ポリマー固形分 濃度 30%) そこへ、 撹拌下で 3%-ポリビュルアルコール (日本合成化学ネ: fcSGH -2 OM) 7 im 25 g ( 0. 25部) を加え、 続いて 15 %硫酸ナトリゥム水溶液 15 g (0. 75部) を添加した。 そこへ、 15%塩化カルシウム水溶液 15 g (0. 75部) を加え、 ポリマー凝集粒子の水懸濁液を得た。 ポリマー凝集粒子間の 融着を防止するため、 5%パルミチン酸カリウム水?薪夜 60 g (1. 0部) を加えた 後、 80°Cに加熱して熱処理操作を実施した。 In a 2 L separable flask, 750 g of emulsion polymerization latex A (100 parts of polymer solids) was added, 250 g of deionized water was added, and the mixture was adjusted to 40 ° C (polymer solids concentration: 30%). 3% -polyvinyl alcohol (Nippon Synthetic Chemical Industry: fcSGH-2OM) 7 im 25 g (0.25 parts) was added below, followed by 15% sodium sulfate aqueous solution 15 g (0.75 parts). . Thereto, 15 g (0.75 parts) of a 15% aqueous solution of calcium chloride was added to obtain an aqueous suspension of polymer aggregated particles. In order to prevent fusion between the polymer aggregated particles, 60 g (1.0 parts) of 5% potassium palmitate water / wood was added, followed by heat treatment at 80 ° C.
(参考例)  (Reference example)
実施例 1と同様に、 乳化重合ラテックス A (体積平均粒子径 0. 175/im、 ポリ マー固形分濃度 40 %、 ポリマー軟化温度 40 °C) を得た。  As in Example 1, emulsion polymerization latex A (volume average particle size 0.175 / im, polymer solid content concentration 40%, polymer softening temperature 40 ° C) was obtained.
2 Lのセノ ラプノレフラスコに、 乳化重合ラテックス A 200 g (ポリマー固形分 100部) を採り、 脱イオン水 800 gを加え、 5。Cに調整した (ポリマー固形分濃 度 8%) 。 そこへ、 撹拌下で 15%塩化カルシウム水溶液 32 g (6. 0部) を加え 、 ポリマー?纖粒子の水懸濁液を得た。 ポリマー纏粒子間の融着を防止するため、 5%パルミチン酸カリウム水溶液 16 g (1. 0部) を加えた後、 80。Cに加熱して 熱処理操作を実施した。 4. Take 200 g of emulsion polymerization latex A (100 parts polymer solids) in a 2 L seno-rapnole flask, add 800 g of deionized water, and C (polymer solids concentration 8%). Thereto, 32 g (6.0 parts) of a 15% calcium chloride aqueous solution was added under stirring to obtain an aqueous suspension of polymer and fiber particles. In order to prevent fusion between the polymer particles, Add 16 g (1.0 parts) of 5% aqueous potassium palmitate solution. Heating operation was performed by heating to C.
表 1の最後の行に、 化重合ラテックス A〜Dのポリマー軟化? agTmの測定結果 を示した。 また表 1の最後の行以外の数値は、 所定の温度での含水率である。 処理温 度 20。Cの行は加温前の含水率を表す。 乳化重合ラテックス Aのポリマー軟化温度 Tmは 40°C、 し化重合ラテックス Bおよび Cのポリマー軟化 ¾¾Tmは 70°C、 % 化重合ラテツクス Dのポリマー軟化温度 Tmは 75 °Cであった。  In the last row of Table 1, the measurement results of the polymer softening and agTm of the chemically polymerized latexes A to D are shown. The values other than the last row in Table 1 are the water content at a given temperature. Processing temperature 20. Row C represents the water content before heating. The polymer softening temperature Tm of the emulsion polymerization latex A was 40 ° C, the polymer softening ΔTm of the cured polymerization latexes B and C was 70 ° C, and the polymer softening temperature Tm of the% polymerization latex D was 75 ° C.
表 1 table 1
熱処理温度ラテックスラテックスラテックスラテックス  Heat treatment temperature latex latex latex latex
(°C) A B C D  (° C) A B C D
20 51. 2 60.. 9 60. 0 62. 0 20 51. 2 60 .. 9 60. 0 62. 0
25 51. 2 25 51. 2
30 50. 7  30 50. 7
35 49. 4  35 49. 4
40 45. 7 61. 8 58. 4 61. 8 40 45. 7 61. 8 58. 4 61. 8
45 43. 2 61. 5 59. 5 61. 245 43. 2 61. 5 59. 5 61. 2
50 41. 4 62. 0 58. 6 60. 450 41. 4 62. 0 58. 6 60. 4
55 38. 2 61. 0 57. 5 6.1. 055 38. 2 61. 0 57. 5 6.1. 0
60 36. 9 5.8. 8 58. 6 61. 4 60 36. 9 5.8. 8 58. 6 61. 4
65 35. 1 57. 9 57. 5 60. 1 65 35. 1 57. 9 57. 5 60. 1
70 33. 9 40. 3 36. 5 59. 170 33. 9 40. 3 36. 5 59. 1
75 33. 2 39. 8 37. 5 56. 575 33. 2 39. 8 37. 5 56. 5
8.0 32. 5 39. 6 35. 4 46. 58.0 32. 5 39. 6 35. 4 46. 5
85 40. 2 36. 5 45. 585 40.2 36.5 45.5
90 40. 5 36. 5 44. 4 90 40.5 36.5 44.4
95 40. 1 37. 5 44. 6 95 40.1 37.5 44.6
99 40. 3 37. 8 44. 8 ホ°リマー軟化 99 40.3 37.8 44.8
温度 Tm  Temperature Tm
(°C) 40 70 70 75 表 2には、 実施例 1〜: L 8、 比較例 1〜5、 および参考例の乳化重合ラテックス種 、 ポリマー軟化温度 Tm、 ラテックス粒子径、 時の固形分濃度、 «時の温度を それぞれ示した。 (° C) 40 70 70 75 Table 2 shows the emulsion polymerization latex species, the polymer softening temperature Tm, the latex particle diameter, the solid content concentration at the time, and the temperature at the time of Example 1 to L8, Comparative Examples 1 to 5, and the reference example, respectively. Was.
表 2 Table 2
.乳化重合 ホ。 マ—軟 ラテック 凝集時の固 凝集時 ファック 化温度 ス粒子径 形分濃度 の温度  Emulsion polymerization e. Mar-soft Latec Solidification at the time of agglomeration Facification temperature Temperature of particle size
Tm °C % °C  Tm ° C% ° C
実施例 1 A 40 0. 1 75 20 40 実施例 2 A 40 0. 1 75 1 0 40 実施例 3 A 40 0. 1 75 30 40 実施例 4 A 40 0. 1 75 3 5 40 実施例 5 A 40 0. 1 75 20 25 実施例 6 A 40 0. 1 75 20 5 5 実施例 7 A 40 0. 1 75 3 1 40 実施例 8 A 40 0. 1 75 20 40 実施例 9 A 40 0. 1 75 20 40 実施例 1 0 A 40 0. 1 75 20 40 実施例 1 1 A 40 0. 1 75 20 40 実施例 1 2 A . 40 0. 1 75 20. 40 実施例 1 3 A 40 0. 1 75 20 40 実施例 1 4 B 70 0. 1 38 1 6 75 実施例 1 5 C 70 0. 0 72 .1 6 75 実施例 1 6 D 75 0. 250 20 80 実施例 1 7 A 40 0. 1 75 3 0 40 実施例 1 8 A 40 0. 1 75 30 40 比較例 1 A 40 . 0. 1 75 20 20 比較例 2 A 40 0. 1 75 20 60 比較例 3 A 40 0. 1 75 20 40 比較例 4 A 40 0. 1 75 20 4Ό 比較例 5. A 40 0. 1 75 30 40 参考例 . A 40 0. 1 75 8 5 表 3には、 例 1〜 1 8、 比較例 1〜 5、 および参考例のポリエチレンォキシド 粘度平均分子量、 ポリェチレンォキシド使用部数、 非ィオン性界面活性剤の種類およ ぴ添加量、 凝固剤種、 および凝固剤使用部数をそれぞれ示した。 表 3 Example 1 A 40 0. 1 75 20 40 Example 2 A 40 0. 1 75 1 0 40 Example 3 A 40 0. 1 75 30 40 Example 4 A 40 0. 1 75 3 5 40 Example 5 A 40 0.175 20 25 Example 6 A 40 0.17 75 20 5 5 Example 7 A 40 0.1 0.1 75 3 1 40 Example 8 A 40 0.1 0.1 75 20 40 Example 9 A 40 0.1 75 20 40 Example 1 0 A 40 0. 1 75 20 40 Example 1 1 A 40 0. 1 75 20 40 Example 1 2 A. 40 0. 1 75 20. 40 Example 1 3 A 40 0.1 75 20 40 Example 1 4 B 70 0.1 38 1 6 75 Example 15 5 C 70 0.0 72.1 6 75 Example 16 D 75 0.250 20 80 Example 1 7 A 40 0.1 75 3 0 40 Example 18 A 40 0.1 0.1 75 30 40 Comparative Example 1 A 40 .0.1 75 20 20 Comparative Example 2 A 40 0.1 75 20 60 Comparative Example 3 A 40 0.1 75 75 40 Comparative example 4 A 40 0.175 75 4 Comparative example 5.A 40 0.175 30 40 Reference example A 40 0.175 8 5 Table 3 shows the viscosity average molecular weights of polyethylene oxides of Examples 1 to 18, Comparative Examples 1 to 5, and Reference Example, the number of parts used for polyethylene oxide, the type and amount of nonionic surfactant, The type of coagulant and the number of coagulants used are shown. Table 3
Figure imgf000031_0001
表 4には、 実施例 1~18, 比較例 1〜 5、 およぴ参考例で得られた乳化重合ポリ マー纏粒子の、 含水率、 平均粒子径.、 16'メッシュ篩上に残った粗粒量%、 お ょぴ体積平均粒子径 50-μ m未満の微粉量%を示した。
Figure imgf000031_0001
Table 4 shows the water content and the average particle size of the emulsion polymerized polymer particles obtained in Examples 1 to 18, Comparative Examples 1 to 5, and Reference Example. The percentage of coarse particles and the percentage of fine powder having a volume average particle diameter of less than 50-μm were shown.
表 4 Table 4
¾化重合 集粒子平  Chemical polymerization
ファック 含水率 凝  Fuck moisture content
.均粒子径 粗粒量 微粉量 % μ m % % 実施例 1 • A 28. 3 1 9 7 0. 5 2. 8 実施例 2 A 34. 2 202 0. 1 1. 2 実施例 3 A 24. 0 2 72 7. 8 4. 2 実施例 4 A 22. 1 26 8 8. 3 5. 7 実施例 5 A 2 7. 9 1 54 0. 1 3. 9 実施例 6 A 32. 1 28 7 6. 2 0 実施例 7 A 30. 6 25 5 1 0. 9 3. 8 実施例 8 A 3 1. 9 1 50 0. 6 5. 0 実施例 9 A 28. 7 1 72 0. 1 6. 2 実施例 10 A 29. 6 20 1 0. 7 3. 8 実施例 1 1 A 27. 6 23 1 0. 1 2. 6 実施例 1 ·2 A 28. 6 1 8 6 0. 1 3. 1 実施例 1 3 A 26. 2 7 6 0. 4 1. 1 実施例 14 B 28. 2 2 1 9 2. 9 3. 3 実施例 15 C 29. 8 1 64 2. 7 2. 9 実施例 1 6 D 3 6. 0 2 78 0. 5 0. 9 実施例 1 7 A 23. 4 25 2 1. 8 5. 6 実施例 18 A 22. 8 2 77 3. 8 3. 8 比較例 1 A 46. 0 1 2 0 9 9. 9 比較例 2 A 3 7. 2 40 7 29. 1 0. 1 .Equivalent particle size Coarse particle amount Fine particle amount% μm%% Example 1 • A 28.3 1 9 7 0.5.2.8 Example 2 A 34.2 202 0.1.1.2 Example 3 A 24 0 2 72 7. 8 4.2 Example 4 A 22. 1 26 8 8.3 5.7 Example 5 A 2 7. 9 1 54 0.1 3.9 Example 6 A 32. 1 28 7 6.2 0 Example 7 A 30. 6 25 5 1 0.9.3.8 Example 8 A 3 1. 9 1 50 0.6.5.0 Example 9 A 28.7 1 72 0.1 6. 2 Example 10 A 29.6 20 1 0.7 3.8 Example 1 1 A 27.6 23 1 0.1 2.6 Example 1 2A 28.6 1 8 6 0.1 3.1 Example 1 3 A 26.2 7 6 0 .4 1.1 Example 14 B 28.2 2 1 9 2.9 3.3 Example 15 C 29.8 1 64 2.7 2.9 Example 1 6 D 3 6. 0 2 78 0.5 0 9 Example 1 7 A 23. 4 25 2 1. 8 5.6 Example 18 A 22. 8 2 77 3. 8 3.8 Comparative example 1 A 46 0 1 2 0 9 9.9 Comparative Example 2 A 3 7.2 40 7 29.1 0.1
.比較例 3 A 34. 2 3 5 0 8. 2 1 1. 7 比較例 4' A ろ過困難 ' 一 ― ― 比較例 5 A 48. 5 28 7 22. 3 4. 6 参考例 A 45. 5 22 1 1 8. 9 1 0. 8 以上の結果より、 本発明の乳化重合ラテックス?纖粒子の製造方法では、 従来の塩 析 ·凝析等による! ^方法に比べ、 (ィ ) 粒子径が 5 0 μ m未満の微粉量が少なく、 (口) 低含水率で乾燥時のエネルギー消費量が小さな凝集粒子となっており、 (ハ) ポリマー軟化温度近傍 (重合温度近傍) での造粒操作が可能であるためエネルギー効 率が良好であり、 (二) 固形分濃度 1 0重量%以上での処理が可能であるため排水処 理の負荷を軽減できることがわかる。 また、 実施例 3と実施例 1 7 , 1 8の比較から 、 本発明の範囲内で 化重合ラテックスのポリマー固形分濃度が高い場合、 ポリェチ レンォキシド以外から選ばれた非イオン性界面活性剤を共存させることで、 生成 粒子中の粗粒量を大幅に削減できることがわかる。 Comparative example 3 A 34. 2 3 5 0 8.2 1 1.7 Comparative example 4 'A Filtration difficulty' 1 ― ― Comparative example 5 A 48. 5 28 7 22. 3 4.6 Reference example A 45. 5 22 1 1 8.9 1 0.8 From the above results, in the method for producing emulsion-polymerized latex fiber particles of the present invention, (a) the amount of fine powder having a particle diameter of less than 50 μm is smaller than that of the conventional method of salting out and coagulation. (Mouth) Agglomerated particles with low water content and low energy consumption during drying. (C) Good energy efficiency because granulation operation near the polymer softening temperature (near the polymerization temperature) is possible. (2) It can be seen that the treatment at a solid concentration of 10% by weight or more is possible, so that the load on the wastewater treatment can be reduced. Further, from the comparison between Example 3 and Examples 17 and 18, it was found that when the polymer solid content concentration of the chemically polymerized latex is high within the scope of the present invention, a nonionic surfactant selected from other than polyethylene oxide coexists. This indicates that the amount of coarse particles in the produced particles can be significantly reduced.

Claims

請求の範囲 The scope of the claims
1. 乳化重合ラテックス (ポリマー固形分 100重量部) を、 (A) ポリマー軟化 温度 (Tm) に対し Tm± 15。Cの範囲内となるように温度調整し、 (B) 撹拌下に ポリエチレンォキシドを 0. 03〜3. 0重量部加えた後、 (C) 0〜1. 5重量部 の凝固剤を加えてポリ 一成分と水の相分離状態を形成させ、 (D) さらに 0. 2〜 10重量部の凝固剤を加え体積平均粒子径が 50〜500μπιのポリマー凝集粒子の 水懸濁液を形成し、 (Ε) 懸濁液の温度を Tm以上に調整することを特徴とする、 乳 化重合ラテックス凝集粒子の製造方法。  1. Emulsion polymerization latex (100 parts by weight of polymer solid content) is Tm ± 15 with respect to (A) polymer softening temperature (Tm). Adjust the temperature so that it is within the range of C. (B) Add 0.03 to 3.0 parts by weight of polyethylene oxide with stirring, and (C) Add 0 to 1.5 parts by weight of a coagulant. (D) Further, 0.2 to 10 parts by weight of a coagulant is added to form a water suspension of polymer aggregated particles having a volume average particle diameter of 50 to 500 μπι. (I) A method for producing emulsion-polymerized latex aggregated particles, wherein the temperature of the suspension is adjusted to Tm or higher.
2. ポリマー固形分 100重量部に対し、 ポリエチレンォキシド以外から選ばれた 非ィオン性界面活性剤 0. 01〜 3. 0重量部を、 少なくとも (D) の凝固剤を加え る前に添加することを特徴とする、 請求の範囲第 1項に記載の製造方法。  2. To 100 parts by weight of polymer solids, add 0.01 to 3.0 parts by weight of nonionic surfactant selected from other than polyethylene oxide before adding at least (D) coagulant The manufacturing method according to claim 1, wherein:
3. 孚 L化重合ラテックスのポリマーの体積平均粒子径が 0. 05〜0· 5μηιであ ることを特徴とする、 請求の範囲第 1項又は第 2項に記載の製造方法。  3. The production method according to claim 1, wherein the volume average particle diameter of the polymer of the polymerized latex is from 0.05 to 0.5 μηι.
4. 乳化重合ラテックスのポリマー固形分濃度が 10〜35重量%の範囲内である ことを特徴とする、 請求の範囲第 1項乃至第 3項のいずれか一項に記載の製造方法。 4. The method according to any one of claims 1 to 3, wherein a polymer solid content concentration of the emulsion polymerization latex is in a range of 10 to 35% by weight.
5. 乳化重合ラテックスをポリマー軟化温度 (Tm) に対し Tm± 10 °Cの温度範 囲内に調整することを特徴とする、 請求の範囲第 1項乃至第 4項のいずれか一項に記 載の製造方法。 5. The method according to any one of claims 1 to 4, wherein the emulsion polymerization latex is adjusted within a temperature range of Tm ± 10 ° C with respect to a polymer softening temperature (Tm). Manufacturing method.
6. ポリマー固形分 100重量部に対し、 粘度平均分子量が 60万〜 800万のポ リエチレンォキシドを 0. 01〜: L 0重量%濃度の水溶液で、 0. 05〜 2. 0重量 部加えることを特徴とする、 請求の範囲第 1項乃至第 5項のいずれか一項に記載の製 造方法。  6. To 100 parts by weight of polymer solids, add 0.01 to 2.0 parts by weight of a poly (ethylene oxide) having a viscosity average molecular weight of 600,000 to 8 million as an aqueous solution with a concentration of 0% by weight of L. The method according to any one of claims 1 to 5, characterized in that:
7. ポリマー固形分 100重量部に対し、 ポリエチレンォキシド以外から選ばれた 非ィオン性界面活性剤を 0 · 01〜 10重量0 /。濃度の水溶液で 0 · 05〜 2 · 0重量 部加えることを特徴とする、 請求の範囲第 2項乃至第 6項の 、ずれ力一項に記載の製 造方法。 7. polymer solids per 100 parts by weight of polyethylene O carboxymethyl non Ion surfactant selected from non de 0 · 01 to 10 weight 0 /. 7. The method according to claim 2, wherein 0.05 to 2.0 parts by weight of a concentrated aqueous solution is added.
8. 凝固剤が、 一価若しくは二価の無機塩および Zまたは無機酸の水辯夜であるこ とを特徴とする、 請求の範囲第 1項乃至第 7項のいずれ力—項に記載の製造方法。8. The manufacturing method according to any one of claims 1 to 7, wherein the coagulant is a monovalent or divalent inorganic salt and water or a Z or inorganic acid. Method.
9 . 乳化重合により製造した重合体ラテックスが、 アタリル酸エステル 5 0〜9. The polymer latex produced by emulsion polymerization is
1 0 0重量0ん 芳香族ビュルモノマー 0〜 4 0重量0ん これらと共重合可能なビニル モノマー 0〜 1 0重量%ならぴに多官能性モノマー 0〜 5重量%を重合してなり、 ガ ラス転移温度が 0 °C以下のゴムラテックスの固形分 5 0〜9 5重量部に、 メタクリル 酸エステル 1 0〜 1 0 0重量0 /0、 芳香族ビニルモノマー 0〜 9 0重量0 /0、 シァン化ビ ニルモノマー 0〜 2 5重量0 /0ならぴにメタクリル酸エステル、 芳香族ビエルモノマー およびシァン化ビュルモノマーと共重合可能なビュルモノマー 0〜 2 0重量%からな る単量体混合物 5〜5 0重量部をグラフト重合することにより得られることを特徴と - する、 請求の範囲第 1項乃至第 8項のいずれ力一項に記載の製造方法。 -1 0 0 weight 0 I aromatic Bulle monomer 0-4 0 weight 0 I will by polymerizing a 5% by weight polyfunctional monomer 0 to these copolymerizable vinyl monomers 0 1 0 wt% of Rapi, moth solids 5 0-9 5 parts by weight of the glass transition temperature of below 0 ° C in rubber latex, methacrylic acid ester 1 0-1 0 0 wt 0/0, the aromatic vinyl monomer 0-9 0 weight 0/0, Shian mold Nirumonoma 0-2 5 weight 0/0 of Rapi methacrylic acid esters, aromatic Biel monomer and Shian of Bulle monomer copolymerizable with Bulle monomers 0-2 0 wt% Tona Ru monomer mixture 5 9. The production method according to claim 1, wherein the production method is obtained by graft polymerization of 50 parts by weight. -
1 0. 乳化重合により製造した重合体ラテツタスが、 メタクリル酸メチノレ 5 0〜 9 5重量0 /0、 炭素数 2〜 8のアルキル基を有するメタクリル酸エステル 5〜 5 0重量 %、 およびこれらと共重合可能なビュルモノマー 0〜 2 0重量%との混合物 6 0〜 9 5重量部をまず季し化重合し、 その生成重合体ラテツタスの存在下に、 メタタリル酸 メチル 2 0〜 8 0重量%、 アタリル酸エステルおよぴメタクリル酸メチルを除くメタ クリル酸エステルより選ばれた 1種以上の単量体 2 0〜8 0重量%およびこれらと共 重合可能なビュルモノマー 0〜 2 0重量%との混合物 5〜 4 0重量部を、 合計量が 1 0 0重量部になるように重合することにより得られることを特徴とする、 請求の範 囲第 1項乃至第 8項の!/、ずれか一項に記載の製造方法。 1 0. polymer Ratetsutasu prepared by emulsion polymerization, methacrylic acid Mechinore 5 0-9 5 weight 0/0, methacrylic acid ester 5-5 0% by weight having an alkyl group of 2-8 carbon atoms, and their co 60 to 95 parts by weight of a mixture with 0 to 20% by weight of a polymerizable bullet monomer is first seasoned and polymerized, and in the presence of the resulting polymer latetus, 20 to 80% by weight of methyl methacrylate, At least one monomer selected from the group consisting of acrylate esters and methacrylate esters other than methyl methacrylate, in an amount of 20 to 80% by weight, and 0 to 20% by weight of a monomer capable of being copolymerized therewith; Claims 1 to 8, characterized in that the mixture is obtained by polymerizing 5 to 40 parts by weight of the mixture so that the total amount becomes 100 parts by weight. The production method according to claim 1.
1 1 . 乳化重合により製造した重合体ラテッタスが、 ブタジエン 5 0〜: L 0 0重量 %、 芳香族ビエルモノマー 0〜4 0重量0 /0、 ブタジエンおよび芳香族ビ-ルモノマー と共重合可能なビニルモノマー 0〜: L 0重量%ならぴに多官能性モノマー 0〜 5重量 %を重合してなり、 ガラス転移温度が 0 °C以下のゴムラテックスの固形分 5 0〜 9 5 重量部に、 メタタリノレ酸エステル 1 0〜 1 0 0重量0 /0、 芳香族ビュルモノマー 0〜 9 0重量0 /0、 シァン化ビニルモノマー 0〜 2 5重量%ならびにメタタリル酸エステル 、 芳香族ビュルモノマーおよぴシァン化ビエルモノマーと共重合可能なビュルモノマ 一 0〜 2 0重量%からなる単量体混合物 5〜 5 0重量部をグラフト重合することによ りより得られることを特徴とする、 請求の範囲第 1項乃至第 8項のいずれか一項に記 載の製造方法。 . 1 1 polymer Ratettasu prepared by emulsion polymerization, butadiene 5 0 to: L 0 0 wt%, aromatic Biel monomer 0-4 0 weight 0/0, butadiene and aromatic Zokubi - Rumonoma and copolymerizable vinyl Monomer 0-: L is 0% by weight and the polyfunctional monomer is polymerized from 0 to 5% by weight. The solid content of rubber latex having a glass transition temperature of 0 ° C or less is 50 to 95 parts by weight. ester 1 0-1 0 0 wt 0/0, the aromatic Bulle monomer 0-9 0 weight 0/0, Shian vinyl monomers 0-2 5 wt% and Metatariru esters, aromatic Bulle monomer Oyopi Shian of 2. The method according to claim 1, wherein said monomer is obtained by graft-polymerizing 5 to 50 parts by weight of a monomer mixture composed of 10 to 20% by weight of a vinyl monomer copolymerizable with a beer monomer. Any one of clauses 8 to 8 Serial mounting method of manufacturing to.
PCT/JP2004/019823 2004-03-08 2004-12-27 Method for producing coagulated particles from emulsion polymerization latex WO2005085299A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006510616A JP4747090B2 (en) 2004-03-08 2004-12-27 Method for producing emulsion polymerization latex agglomerated particles
EP04808173A EP1739102A1 (en) 2004-03-08 2004-12-27 Method for producing coagulated particles from emulsion polymerization latex
CA002559129A CA2559129A1 (en) 2004-03-08 2004-12-27 Method for manufacturing coagulated particles from latex prepared by emulsion polymerization
US10/598,653 US20070219294A1 (en) 2004-03-08 2004-12-27 Method for manufacturing coagulated particles from latex prepared by emulsion polymerization

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004063707 2004-03-08
JP2004-063707 2004-03-08
JP2004232225 2004-08-09
JP2004-232225 2004-08-09

Publications (1)

Publication Number Publication Date
WO2005085299A1 true WO2005085299A1 (en) 2005-09-15

Family

ID=34921715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019823 WO2005085299A1 (en) 2004-03-08 2004-12-27 Method for producing coagulated particles from emulsion polymerization latex

Country Status (8)

Country Link
US (1) US20070219294A1 (en)
EP (1) EP1739102A1 (en)
JP (1) JP4747090B2 (en)
KR (1) KR20070004784A (en)
CA (1) CA2559129A1 (en)
MY (1) MY137685A (en)
TW (1) TW200602366A (en)
WO (1) WO2005085299A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013318A (en) * 2007-07-06 2009-01-22 Sumitomo Chemical Co Ltd Method for producing multistage polymer
JP2012503069A (en) * 2008-09-18 2012-02-02 デュポン パフォーマンス エラストマーズ エルエルシー Coagulation method of fluoroelastomer
WO2015146549A1 (en) * 2014-03-26 2015-10-01 株式会社カネカ Method for producing emulsion-polymerized latex aggregate particles, emulsion-polymerized latex aggregates, and emulsion-polymerized latex aggregate particles
JP2017061646A (en) * 2015-09-25 2017-03-30 株式会社カネカ Method for producing coagulated latex particles
WO2018079786A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Method for producing acrylic rubber
WO2018079783A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Acrylic rubber and crosslinked rubber
WO2018079787A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Acrylic rubber and crosslinked rubber product
WO2019208813A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Production of acrylic rubber and obtained acrylic rubber
JP2019189835A (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Process for producing acrylic rubber, and acrylic rubber obtained by said production process
JP2019189838A (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Process for producing acrylic rubber, and acrylic rubber, rubber composition and rubber cross-linked product obtained by said production process
JP2019194325A (en) * 2018-04-27 2019-11-07 日本ゼオン株式会社 Production of acrylic rubber and obtained acrylic rubber
JP2019194326A (en) * 2018-04-27 2019-11-07 日本ゼオン株式会社 Production of acrylic rubber and obtained acrylic rubber

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104114593B (en) 2012-02-07 2018-01-23 株式会社钟化 Curable resin toughness modifying agent and hardening resin composition
CN105738402B (en) * 2014-12-11 2019-05-07 中国石油天然气股份有限公司 Method for measuring glass transition temperature of rubber latex
MX2018003064A (en) * 2015-09-18 2018-05-07 Dow Global Technologies Llc High performance anti-dripping agent used in greenhouse film.
KR102290712B1 (en) * 2017-11-08 2021-08-19 주식회사 엘지화학 Apparatus and method for preparing of polymer latex
KR102332341B1 (en) * 2017-11-28 2021-11-30 주식회사 엘지화학 Method for preparing graft copolymer and graft copolymer prepared by the same
CN113121727B (en) * 2021-04-13 2023-03-14 长春工业大学 Method for flocculating and demulsifying ABS (acrylonitrile butadiene styrene) graft copolymer
EP4357378A4 (en) * 2021-09-30 2024-10-23 Lg Chemical Ltd Method for preparing graft polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274908A (en) * 1985-09-28 1987-04-06 Japan Synthetic Rubber Co Ltd Production of rubber-like polymer
JPS63117006A (en) * 1986-11-04 1988-05-21 Ube Saikon Kk Coagulation of polymer latex
JPH04258618A (en) * 1991-02-13 1992-09-14 Hitachi Chem Co Ltd Production of thermoplastic resin powder
JPH07138314A (en) * 1993-11-12 1995-05-30 Japan Synthetic Rubber Co Ltd Method for coagulating polymeric latex
JPH08120172A (en) * 1994-06-13 1996-05-14 General Electric Co <Ge> Flocculant latex having combined poly(ethylene oxide)
JPH10279640A (en) * 1997-04-09 1998-10-20 Ube Cycon Ltd Method for recovering rubber-containing polymer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653810B2 (en) * 1985-08-21 1994-07-20 三菱レイヨン株式会社 Granular polymer and method for producing the same
WO1994005722A1 (en) * 1992-08-31 1994-03-17 Mitsubishi Rayon Co., Ltd. Process for producing powdery thermoplastic copolymer
ATE192466T1 (en) * 1993-02-16 2000-05-15 Mitsubishi Rayon Co METHOD FOR PRODUCING POWDER AND GRANULAR POLYMERS
JPH07173217A (en) * 1993-12-17 1995-07-11 Kanegafuchi Chem Ind Co Ltd Production of resin powder
JP3505870B2 (en) * 1995-08-28 2004-03-15 Jsr株式会社 Spherical polymer particles
JPH09255717A (en) * 1996-03-22 1997-09-30 Japan Synthetic Rubber Co Ltd Method for improving powder characteristic of coagulated particle
JPH09286815A (en) * 1996-04-22 1997-11-04 Japan Synthetic Rubber Co Ltd Method for recovering polymer from latex
GB9726890D0 (en) * 1997-12-20 1998-02-18 Ici Plc Polymerisation method
JP4080076B2 (en) * 1998-10-19 2008-04-23 株式会社クラレ Acrylic polymer coagulum and method for producing the same
EP1275685B1 (en) * 1999-09-22 2006-07-05 Kaneka Corporation Foamable vinyl chloride-base resin compositions
DE60028711T2 (en) * 1999-12-23 2007-05-24 Rohm And Haas Co. Additives for plastics, manufacturing and blends
US6632531B2 (en) * 2001-02-15 2003-10-14 Rohm And Haas Company Porous particles, their aqueous dispersions, and method of preparation
US7045271B2 (en) * 2004-05-10 2006-05-16 Eastman Kodak Company On press developable imageable element
JP5020450B2 (en) * 2001-09-28 2012-09-05 ローム アンド ハース カンパニー Method for producing powder linear polymer with excellent powder properties
WO2003093353A1 (en) * 2002-04-30 2003-11-13 Kaneka Corporation Polymer particles and process for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274908A (en) * 1985-09-28 1987-04-06 Japan Synthetic Rubber Co Ltd Production of rubber-like polymer
JPS63117006A (en) * 1986-11-04 1988-05-21 Ube Saikon Kk Coagulation of polymer latex
JPH04258618A (en) * 1991-02-13 1992-09-14 Hitachi Chem Co Ltd Production of thermoplastic resin powder
JPH07138314A (en) * 1993-11-12 1995-05-30 Japan Synthetic Rubber Co Ltd Method for coagulating polymeric latex
JPH08120172A (en) * 1994-06-13 1996-05-14 General Electric Co <Ge> Flocculant latex having combined poly(ethylene oxide)
JPH10279640A (en) * 1997-04-09 1998-10-20 Ube Cycon Ltd Method for recovering rubber-containing polymer

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013318A (en) * 2007-07-06 2009-01-22 Sumitomo Chemical Co Ltd Method for producing multistage polymer
JP2012503069A (en) * 2008-09-18 2012-02-02 デュポン パフォーマンス エラストマーズ エルエルシー Coagulation method of fluoroelastomer
US10392477B2 (en) 2014-03-26 2019-08-27 Kaneka Corporation Method for manufacturing coagulated particles from latex prepared by emulsion polymerization, aggregates from latex prepared by emulsion polymerization, and coagulated particles from latex prepared by emulsion polymerization
WO2015146549A1 (en) * 2014-03-26 2015-10-01 株式会社カネカ Method for producing emulsion-polymerized latex aggregate particles, emulsion-polymerized latex aggregates, and emulsion-polymerized latex aggregate particles
JPWO2015146549A1 (en) * 2014-03-26 2017-04-13 株式会社カネカ Method for producing emulsion polymerization latex aggregated particles, emulsion polymerization latex aggregates, and emulsion polymerization latex aggregated particles
JP2017061646A (en) * 2015-09-25 2017-03-30 株式会社カネカ Method for producing coagulated latex particles
WO2018079786A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Method for producing acrylic rubber
JP2020097754A (en) * 2016-10-31 2020-06-25 日本ゼオン株式会社 Method for producing acrylic rubber
JP6394834B1 (en) * 2016-10-31 2018-09-26 日本ゼオン株式会社 Acrylic rubber manufacturing method
JP2019031672A (en) * 2016-10-31 2019-02-28 日本ゼオン株式会社 Method for producing acrylic rubber
WO2018079783A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Acrylic rubber and crosslinked rubber
JPWO2018079783A1 (en) * 2016-10-31 2019-09-19 日本ゼオン株式会社 Acrylic rubber and rubber cross-linked product
JPWO2018079787A1 (en) * 2016-10-31 2019-09-19 日本ゼオン株式会社 Acrylic rubber and rubber cross-linked product
WO2018079787A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Acrylic rubber and crosslinked rubber product
JP7010318B2 (en) 2016-10-31 2022-01-26 日本ゼオン株式会社 Acrylic rubber manufacturing method
WO2019208813A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Production of acrylic rubber and obtained acrylic rubber
JP2019194325A (en) * 2018-04-27 2019-11-07 日本ゼオン株式会社 Production of acrylic rubber and obtained acrylic rubber
JP2019194324A (en) * 2018-04-27 2019-11-07 日本ゼオン株式会社 Production of acrylic rubber and obtained acrylic rubber
JP2019194326A (en) * 2018-04-27 2019-11-07 日本ゼオン株式会社 Production of acrylic rubber and obtained acrylic rubber
JP2019189838A (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Process for producing acrylic rubber, and acrylic rubber, rubber composition and rubber cross-linked product obtained by said production process
JP2019189835A (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Process for producing acrylic rubber, and acrylic rubber obtained by said production process

Also Published As

Publication number Publication date
EP1739102A1 (en) 2007-01-03
MY137685A (en) 2009-02-27
JPWO2005085299A1 (en) 2008-02-21
KR20070004784A (en) 2007-01-09
CA2559129A1 (en) 2005-09-15
TW200602366A (en) 2006-01-16
US20070219294A1 (en) 2007-09-20
JP4747090B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
WO2005085299A1 (en) Method for producing coagulated particles from emulsion polymerization latex
US20140364541A1 (en) Functional mbs impact modifiers for use in engineering resins
KR20170087922A (en) Process of manufacturing a multistage polymer, its composition, its use and composition comprising it
JP2017538814A5 (en)
JPWO2006092898A1 (en) Method for producing coagulated latex particles
JP2017535658A (en) Multistage polymer, composition thereof, process for its preparation, use thereof and composition comprising it
JP5020450B2 (en) Method for producing powder linear polymer with excellent powder properties
JP4663521B2 (en) Polymer particle composition and method for producing the same
KR100848023B1 (en) Polymer particles and process for production thereof
CN111655742B (en) Acrylic polymer coagulum
EP3129417A1 (en) Multistage polymer powder composition, its method of preparation and use
JP6616639B2 (en) Method for producing coagulated latex particles
JP2596953B2 (en) Method for producing powdery graft polymer
KR20090016457A (en) Thermoplastic resin composition and process for production thereof
JP4073243B2 (en) Polymer particles
JP2003321549A (en) Method of producing polymer particle
JPWO2009060819A1 (en) Coagulated latex particles and method for producing the same
JPH07157513A (en) Production of polymer flocculate
JPH06263819A (en) Method for separating polymer from latex
JPH0397703A (en) Production of heat-resistant resin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200480041987.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006510616

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004808173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10598653

Country of ref document: US

Ref document number: 2007219294

Country of ref document: US

Ref document number: 2559129

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067019987

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004808173

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019987

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10598653

Country of ref document: US