[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005078910A1 - スイッチング電源装置及び携帯機器 - Google Patents

スイッチング電源装置及び携帯機器 Download PDF

Info

Publication number
WO2005078910A1
WO2005078910A1 PCT/JP2005/000637 JP2005000637W WO2005078910A1 WO 2005078910 A1 WO2005078910 A1 WO 2005078910A1 JP 2005000637 W JP2005000637 W JP 2005000637W WO 2005078910 A1 WO2005078910 A1 WO 2005078910A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
output
comparator
switching power
Prior art date
Application number
PCT/JP2005/000637
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Hojo
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to JP2005517913A priority Critical patent/JP4721905B2/ja
Priority to US10/589,163 priority patent/US7321222B2/en
Priority to EP05703865.5A priority patent/EP1715569B1/en
Publication of WO2005078910A1 publication Critical patent/WO2005078910A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a switching power supply that improves efficiency by reducing loss under light load, and particularly employs a current mode that performs switching control by detecting a coil current on the output side.
  • the present invention relates to a switching power supply device and a portable device including the switching power supply device and having reduced power consumption.
  • the switching power supply device that performs the intermittent control includes a comparator that compares a voltage corresponding to the output voltage with a reference voltage Vburst for intermittent control.
  • this comparator when it is confirmed that the voltage corresponding to the output voltage becomes higher than the reference voltage Vburs due to a light load, the switching control operation of the switching element by the driver is stopped. Thereafter, when it is confirmed that the output voltage has been lowered by providing the comparator with the hysteresis characteristic, the switching control operation of the switching element by the driver is restarted. By repeating such an operation at a light load, intermittent control by the intermittent control comparator is performed, and the efficiency can be increased.
  • Patent Document 1 JP-A-6-303766
  • the conventional switching power supply device needs to provide a comparator for intermittent control for intermittently performing the switching operation of the switching element by the driver. There is. In this way, as long as the comparator for intermittent control is provided, In addition to increasing the circuit scale of the switching power supply, it hinders miniaturization of a portable device in which such a switching power supply is installed.
  • an object of the present invention is to provide a switching power supply device that can maintain high efficiency without newly providing a circuit for intermittent control under a light load. .
  • a switching power supply device of the present invention includes a switching element that performs ONZOFF operation, a control circuit that performs ONZOFF control of the switching element, and an amount of current flowing through the switching element.
  • a coil connected to the coil and performing a rectifying operation together with the coil; and an oscillator for outputting an oscillation signal for controlling the switching element to be ON at a predetermined cycle to the control circuit.
  • a current detection unit that detects a current value flowing through the coil, converts the current value into a voltage value, and outputs the voltage value as a current detection voltage in a switching power supply device that outputs an output voltage from a connection node between the capacitor and the coil
  • a voltage source for providing an offset voltage to the current detection voltage from the current detection unit
  • a comparator that compares the current detection voltage to which the offset voltage has been applied and a voltage corresponding to a difference between a voltage corresponding to the output voltage and a reference voltage, wherein the offset voltage is equal to the offset voltage.
  • the comparator by applying an offset voltage to the current detection voltage representing the value of the current flowing through the detected coil, the comparator can be used at no load or light load when the difference between the output voltage and the reference voltage becomes small. However, it is confirmed that the magnitude of the current detection voltage is larger than the difference between the output voltage and the reference voltage. At this time, since the oscillation signal of the oscillator that turns on the switching element can be invalidated, the switching operation of the switching element can be intermittently controlled until the difference between the output voltage and the reference voltage becomes large. Therefore, as before, Since there is no need to add a comparator for intermittent control, it is possible to maintain high efficiency at light load or no load and to reduce the size of the device.
  • FIG. 1 is a block diagram showing an internal configuration of a switching power supply device according to a first embodiment.
  • FIG. 2 is a timing chart illustrating the operation of each unit when the switching power supply device of FIG. 1 is under heavy load.
  • FIG. 3 is a timing chart illustrating the operation of each unit when the switching power supply device of FIG. 1 is under light load or no load.
  • FIG. 4 is a circuit diagram showing an example of a configuration around a current detection circuit in the switching power supply device of FIG. 1.
  • FIG. 5 is a block diagram showing an internal configuration of a switching power supply according to a second embodiment.
  • FIG. 6 is a timing chart illustrating the operation of each unit when the switching power supply device of FIG. 5 is under heavy load.
  • FIG. 7 is a timing chart illustrating the operation of each unit when the switching power supply device of FIG. 5 is under light load or no load.
  • FIG. 8 is a circuit diagram showing an example of a configuration around a current detection circuit in the switching power supply device of FIG.
  • FIG. 9 is a block diagram showing an internal configuration of a switching power supply device according to a third embodiment.
  • FIG. 10 is a timing chart illustrating the operation of each unit when the switching power supply device of FIG. 9 is under heavy load.
  • FIG. 11 is a timing chart illustrating the operation of each unit when the switching power supply device of FIG. 9 is under light load or no load.
  • FIG. 12 is a circuit diagram showing an example of a configuration around a current detection circuit in the switching power supply device of FIG.
  • FIG. 13A is a profile showing an example of a configuration when applied to a step-up switching power supply.
  • FIG. 13B is a block diagram showing an example of a configuration when applied to an inverting type switching power supply device.
  • Trl Tr2 MOS transistor
  • FIG. 1 is a block diagram showing the internal configuration of the switching power supply device of the present embodiment.
  • a signal is supplied to the p-channel MOS transistor Trl and the n-channel MOS transistor Tr2 whose power supply potential and ground potential are applied to the source, respectively, and the gates of the MOS transistors Trl and Tr2.
  • a driver 1 for ONZOFF control a coil L having one end connected to the connection node of the drain of each of the MOS transistors Trl and Tr2, and a capacitor C having one end connected to the other end of the coil L and the other end grounded.
  • resistors R1 and R2 connected in series between the connection node of coil L and capacitor C and the ground potential, and the voltage appearing at the connection node between coil L and capacitor C divided by resistors R1 and R2.
  • Amplifier 2 a level shifter 3 for level shifting the output voltage from error amplifier 2, a voltage from level shifter 3 and coil L
  • a comparator 4 for comparing the output of the comparator 4 with a voltage representing an output current
  • an RS flip-flop 5 in which the output of the comparator 4 is input to a reset terminal
  • an oscillator 6 for inputting a signal to a set terminal of the RS flip-flop 5, Is provided.
  • the driver 1 and the RS flip-flop 5 constitute the control circuit 7, and the voltage source 20 that applies the offset voltage Voff (for example, 30 mV) to the voltage representing the detected current value flowing through the coil L It is configured to be connected to the inverting input terminal of the comparator 4. That is, when the current value IL flowing through the coil L is converted to the voltage value VL and input to the inverting input terminal of the comparator 4, the offset voltage Voff ⁇ from the voltage source 20 is given. Then, in the comparator 4, the voltage value VL given the offset voltage Voff ⁇ is compared with the voltage Vth fed back to its non-inverting input terminal via the differential amplifier 2 and the level shifter 3.
  • Voff for example, 30 mV
  • FIG. 2 shows a transition diagram of the signals of each unit at this time.
  • the output of the RS flip-flop 5 becomes high as shown in FIG.
  • Driver 1 turns on MOS transistor Trl and turns off MOS transistor Tr2.
  • FIG. 2 (a) a current flows from the MOS transistor Trl into the coil L, and the current value IL flowing through the coil L increases, so that the comparator shown in FIG.
  • the voltage VL input to the inverting input terminal 4 decreases.
  • the current value 10 shown in FIG. 2A is an average value of the current value IL flowing through the coil L.
  • the output voltage appearing at the output terminal OUT is divided by the resistors Rl and R2 and fed back to the differential amplifier 2, and the difference between the output voltage and the reference voltage Vref is amplified. A voltage signal indicating an error from the voltage Vref is output. Thereafter, this voltage signal is applied to the level shifter 3 to be level-shifted to the power supply potential side. Therefore, the voltage Vth output from the level shifter 3 increases as the output voltage appearing at the output terminal OUT increases. Since the voltage from 2 decreases, the voltage value increases. Thus, the voltage Vth applied from the level shifter 3 to the non-inverting input terminal of the comparator 4 represents the output voltage appearing at the output terminal OUT.
  • the MOS transistor Trl is OFF and the MOS transistor Tr2 is ON, and no current flows through the coil L as shown in FIG. 3 (a).
  • the voltage VL applied to the input terminal is the offset voltage from the power supply voltage Vcc by the voltage source 20.
  • Vcc—Voff which is the value obtained by dropping the voltage by the voltage Voff.
  • the MOS transistor Trl is turned on by the drive 1 and the MOS transistor Tr2 is turned off, and a current starts to flow through the coil L as shown in FIG. Therefore, the voltage VL input to the inverting input terminal of the comparator 4 drops by the amount of the current IL flowing through the coil L. Then, as the current IL flowing through the coil L increases as shown in FIG. 3A, the voltage VL input to the inverting input terminal of the comparator 4 decreases as shown in FIG. 3B. When the voltage VL becomes lower than the voltage Vth from the level shifter 3 as shown in FIG. 3 (b), as shown in FIG. 3 (e), the signal of the comparator 4 is switched to high. As shown in FIG. 3 (c), the signal from the RS flip-flop 5 goes low.
  • the signal from the RS flip-flop 5 becomes low, the MOS transistor Trl is turned off and the MOS transistor Tr2 is turned on by the driver 1, and the current value IL flowing through the coil L is changed as shown in FIG. reduced as in a).
  • the capacitor C is charged and the output voltage from the output terminal OUT increases, and as shown in FIG. 3 (b), the voltage Vth from the level shifter 3 increases. Will be higher.
  • the capacitor C discharges, the output voltage from the output terminal OUT decreases, and the above operation is repeated.
  • the ON period of the MOS transistor Trl can be made longer than when a heavy load is applied, and the duty ratio representing the period during which the MOS transistor Trl is ON can be made larger than when a heavy load is applied. Can be made smaller. That is, by intermittently performing the switching operation performed every period tb under the heavy load every plural periods, the efficiency at the time of no load or light load can be improved.
  • FIG. 4 shows an example of the configuration of a current detection circuit 10 that detects the amount of current flowing through the coil L and converts it into a voltage value in such a switching power supply device. That is, a p-channel MOS transistor Tra in which the gate and the drain are connected to the gate and the drain of the MOS transistor Trl, respectively, the drain is connected to the source of the MOS transistor Tra, and the source is supplied with the power supply potential and the gate is referenced to the gate.
  • the current detection circuit 10 is configured by the p-channel MOS transistor Trb to which the potential is applied.
  • the MOS transistor Trb operates as a resistor. Then, the same voltage as the voltage applied from the driver 1 to the gate of the MOS transistor Trl is applied to the gate of the MOS transistor Tra, thereby driving the MOS transistor Tra. At this time, the voltage appearing at the connection node between the drains of the MOS transistors Trl and Tr2 is applied to the drain of the MOS transistor Tra, and a current proportional to the current flowing through the MOS transistor Trl flows through the MOS transistors Tra and Trb.
  • the voltage drop caused by the ON resistance of the MOS transistor Trb appears as a value proportional to the current value proportional to the current flowing through the MOS transistor Trl, that is, a value proportional to the current value flowing through the coil L.
  • the voltage dropped by the ON resistance of the MOS transistor Trb appears as the detection current value of the coil L at the connection node between the source of the MOS transistor Tra and the drain of the MOS transistor Trb, 4 Inverted input terminal.
  • the source of the MOS transistor Tra and the MOS transistor Trb The other end of the resistor Ra whose one end is connected to the inverting input terminal of the comparator 4 is connected to the connection node with the drain of the comparator 4, and the constant current source 11 that supplies a constant current to the inverting input terminal of the comparator 4 is connected. Is done. The other end of the constant current source 11 is grounded.
  • a voltage drop of the resistor Ra generated by flowing a constant current ⁇ 3 ⁇ 4 by the constant current source 11 to the resistor Ra is given as an offset voltage Voff. . That is, the resistor Ra and the constant current source 10 operate as the voltage source 20.
  • the power supply voltage is set to Vcc
  • the ON resistance of the MOS transistor Trb is set to Rx
  • the MOS transistor Tra A voltage Vcc Rx XAX IL appears at the connection node between the source and the drain of the MOS transistor Trb.
  • this voltage Vcc RxXA XIL is output as the output of the current detection circuit 10 and given to one end of the resistor Ra
  • the offset due to the voltage drop of the resistor Ra is applied to the inverting input terminal of the comparator 4 as the voltage VL.
  • FIG. 5 is a block diagram showing the internal configuration of the switching power supply device of the present embodiment.
  • elements and portions used for the same purpose as in the switching power supply device of FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the switching power supply device of FIG. 5 includes a voltage source 20a for providing an offset voltage Vxoff ⁇ switched according to the output of the comparator 4, instead of the voltage source 20 in the switching power supply device of FIG. That is, when the current value IL flowing through the coil L is converted into the voltage value VL and input to the inverting input terminal of the comparator 4, the offset voltage Vxoff ⁇ from the voltage source 20a is given. At this time, when the output of the comparator 4 becomes high, the value of the offset voltage Vx off from the voltage source 20a becomes Vhoff (for example, 30 mV), and when the output of the comparator 4 becomes low, the voltage from the voltage source 20a becomes low. The value of the offset voltage Vxoff becomes Vloff (for example, 20 mV). The relationship between the offset voltages Vhoff and Vloff is Vhoff> VloiTC.
  • FIG. 6 shows a transition diagram of signals of each unit of the switching power supply device of the present embodiment.
  • FIG. 6A when a current flows from the MOS transistor Trl into the coil L and the current IL flowing through the coil L increases, as shown in FIG.
  • the voltage VL input to the inverting input terminal of the comparator 4 becomes low.
  • this voltage VL is applied from the level shifter 3 to the non-inverting input terminal of the comparator 4 as shown in FIG.
  • the comparator 4 When the voltage becomes lower than the input voltage Vth, a high signal is output from the comparator 4 as shown in FIG.
  • the voltage obtained by detecting the current IL flowing through the coil L is supplied from the voltage source 20 as in the first embodiment.
  • the cut-off voltage Vxoffl is sufficiently higher than this. That is, the voltage values Vhoff and Vloff given as the offset voltage Vxoff do not need to consider the influence on the voltage VL input to the inverting input terminal of the comparator 4. Is done.
  • the resistor Ra for giving the offset voltage Voff ⁇ is a variable resistor Rb whose resistance value is switched by the output of the comparator 4. That is, the voltage source 21a is configured by the variable resistor Rb and the constant current source 11.
  • the other configuration is the same as the configuration in FIG.
  • the offset voltage applied to the voltage value representing the detection current of the coil L is switched in accordance with the output of the comparator 4 to give hysteresis, whereby the first Compared with the embodiment, the comparator 4 can also output the clock signal more reliably, and can prevent malfunction of the RS flip-flop 5.
  • FIG. 9 is a block diagram showing the internal configuration of the switching power supply device of the present embodiment.
  • elements and portions used for the same purpose as in the switching power supply device of FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the switching power supply device of FIG. 9 differs from the switching power supply device of FIG. 1 in that the oscillator 6 outputs a slope compensation signal having a cycle tb for performing slope compensation, and outputs the slope compensation signal as the slope compensation signal.
  • a voltage source 21 whose voltage value changes according to the voltage is provided between the inverting input terminal of the comparator 4 and the voltage source 20. Therefore, when the current value IL flowing through the coil L is converted to the voltage value VL and input to the inverting input terminal of the comparator 4, the offset voltage Voff and the slope compensation voltage Vslope are added.
  • the voltage value VL applied to the inverting input terminal of the comparator 4 is different, and other operations are the same as those of the first embodiment. Therefore, in the following, the relationship between the voltage value VL applied to the inverting input terminal of the comparator 4 and the slope compensation voltage Vslope will be described, and for the other portions, the description in the first embodiment will be referred to. Shall be.
  • This switching power supply device performs the same operation as the switching power supply device of the first embodiment (FIG. 1) except that it changes according to the value slope compensation voltage V slope of the voltage VL. That is, the slope compensation voltage Vslope from the voltage source 21 and the offset voltage Voff from the voltage source 20 changing as shown in FIG. 10 (f) were obtained from the detection current IL of the coil L as shown in FIG. 10 ( a ). By subtracting from the voltage value, the voltage VL as shown in FIG. 10 (b) is input to the inverting input terminal of the comparator 4.
  • the oscillator 6 outputs a clock signal that goes high every cycle tb as shown in FIG. 10D, and also outputs a slope compensation signal having the same cycle tb as this clock signal. . Therefore, the slope compensation voltage Vslope from the voltage source 21 is equal to the period t as shown in FIG. During b, the value gradually increases and reaches a maximum value VSmax (for example, 20 mV), and then reaches a minimum value of 0.
  • the clock signal is output from the oscillator 6 after the slope compensation voltage Vslope has shifted from the maximum value VSmax to the minimum value 0 as shown in FIGS. In this way, the slope compensation voltage Vslope from the voltage source 21 changes in value almost in the form of a triangular wave at every cycle tb, as shown in FIG. 10 (f).
  • the operation when the load connected to the output terminal OUT is no load or light load will be described below with reference to FIG.
  • the same operation as that of the switching power supply device of the first embodiment (FIG. 1) is performed except that the value of the voltage VL is changed by the slope compensation voltage Vslope. That is, the slope compensation voltage Vslope from the voltage source 21 and the offset voltage Voff from the voltage source 20 changing as shown in FIG. 11 (f)) were obtained from the coil L detection current IL as shown in FIG. 11 (a).
  • the voltage VL as shown in FIG. 11B is input to the inverting input terminal of the comparator 4 by being subtracted from the voltage value.
  • the slope compensation voltage Vslope from the voltage source 21 shown in FIG. 11 (f) changes in the same manner as in FIG. 10 (f).
  • the slope compensation voltage Vslope from the voltage source 21 is changed from the maximum value VSmax to the minimum value 0 as shown in FIG. 11 (f).
  • the voltage Vth output from the level shifter 3 becomes lower than the voltage VL as shown in FIG. 11 (b). That is, as shown in FIG. 11 (b), when the value of the voltage VL applied to the inverting input terminal of the comparator 4 increases from Vcc—Voff—VSmax to Vcc—Voff, the voltage Vth becomes higher than the voltage Vcc. — Lower than Voff.
  • FIG. 12 an n-channel MOS transistor Trx having a drain connected to a connection node between the resistor Ra and the constant current source 11, and a gate and a drain connected to the gate of the MOS transistor Trx MOS transistor Try, MOS transistor Trz with drain connected to the source of MOS transistor Try, resistor Rc connected to source of MOS transistor Trx, capacitor C1 connected to source of MOS transistor Try, MOS transistor
  • the current source 21 is configured by including the constant current source 12 in the drain of Trx.
  • the other configuration is the same as the configuration in FIG.
  • the power supply potential is applied to the constant current source 12, and the other ends of the capacitor C1 and the resistor Rc are grounded. Then, the clock signal from the oscillator 6 is input to the gate of the MOS transistor Trz. At this time, the voltage Vslope by the current source 21 is generated by the voltage drop amount Ra X Islope of the resistor Ra due to the current Islope flowing through the MOS transistor Trx. Similarly to the first embodiment, the voltage Voff ⁇ is generated by the current source 20 from the voltage Ioff of the resistor Ra caused by the current Ioff flowing through the constant current source 11.
  • the duty ratio at which the MOS transistor Trl is turned on when a heavy load is applied is large.
  • the variation in the current in the coil L when it is disconnected can be reduced, and the frequency division oscillation can be suppressed.
  • the output of four comparators can be made low in synchronization with the application of the clock signal, and the efficiency is higher than that of the first embodiment. Can work well.
  • a constant offset voltage V 0 ff3 ⁇ 4S is provided by the voltage source 20.
  • the comparator 4 It may be provided with a voltage source 20a that switches the offset voltage Vxo according to the output. In this manner, by providing the voltage source 20a and switching the offset voltage Vxoff ⁇ to provide hysteresis, the comparator 4 can output the clock signal more reliably as in the second embodiment, and the RS flip-flop 5 Can be prevented from malfunctioning.
  • the step-down switching power supply device is used.
  • a step-up switching power supply device having a configuration as shown in FIG. 13A or an inverting switching power supply device having a configuration as shown in FIG. 13B is provided. It may be a device. 13A and 13B show the configuration when the step-up type and inversion type switching power supply devices are applied to the switching power supply device of the first embodiment.
  • the present invention can also be applied to a switching power supply device in the form.
  • the power supply potential is applied to one end.
  • a capacitor C having one end connected to the power source of the diode D.
  • an inverting type switching power supply device as shown in FIG. 13B has a coil having one end grounded, a drain connected to the other end of the coil L, and a p-channel MOS controlled by a driver lb. It comprises a transistor Trp, a diode D having a power source connected to the drain of the MOS transistor Trp, and a capacitor C having one end connected to the anode of the diode D. Then, the current flowing through the coil L or the MOS transistor Trp is fed back to the inverting input terminal of the comparator 4 as a voltage value. At this time, the offset voltage Voff is given by the voltage source 20.
  • each block operates based on the power supply potential, but each block may operate based on the ground potential. At this time, it is sufficient if the respective blocks are configured to have the opposite polarities, and the basic configuration of each block can be realized by being the same as the configuration in each of the above-described embodiments.
  • the output from the differential amplifier is assumed to be input to the comparator via the level shifter. The output of the differential amplifier is directly input to the comparator without solving the level shifter. It does not matter if it is done.
  • the switching power supply device of the present invention can be applied to mobile devices such as mobile phones and mobile terminal devices.
  • the portable device operates as a switching power supply device that transforms the voltage from the secondary battery and supplies the voltage to other circuit devices. Therefore, with the configuration according to the present invention, the switching power supply device can be operated with high efficiency when the other circuit devices of the portable device are turned off and a light load or no load occurs, and the power supply is switched off. Power consumption can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 コイルLを流れる電流値を検出した後、電圧値に変換して比較器4の反転入力端子に入力し、帰還された出力電圧値と基準電圧との差を表す電圧と比較される。この比較器4の反転入力端子に入力される電圧値に対してオフセット電圧が与えられるように、電圧源20が比較器4の反転入力端子に設けられる。

Description

明 細 書
スイッチング電源装置及び携帯機器
技術分野
[0001] 本発明は、軽負荷時の損失を低減して効率を改善するスイッチング電源装置に関 するもので、特に、出力側のコイル電流を検出してスイッチング制御を行うカレントモ ードを採用したスイッチング電源装置、及び、当該スイッチング電源装置を備えた消 費電力が低減される携帯機器に関する。
背景技術
[0002] 内部に備えたスイッチング素子の ONZOFF制御によって負荷に供給する電力量 を制御するスイッチング電源装置において、従来は、スイッチング電源装置の軽負荷 時の損失を低減するために、スイッチング素子のスイッチング動作を停止する期間を 有する間欠スイッチング動作に切り換えられる間欠制御が行われて 、る(特許文献 1 参照)。この間欠制御を行うスイッチング電源装置において、出力電圧に応じた電圧 を間欠制御するための基準電圧 Vburstと比較する比較器を備える。
[0003] そして、この比較器において、軽負荷となって出力電圧に応じた電圧が基準電圧 V burs り高くなつたことが確認されると、ドライバによるスイッチング素子のスイッチング 制御動作が停止される。その後、この比較器にヒステリシス特性を備えることにより、 出力電圧が低くなつたことが確認されると、ドライバによるスイッチング素子のスィッチ ング制御動作が再開される。軽負荷時において、このような動作が繰り返されることに よって、間欠制御用の比較器による間欠制御が行われ、その効率を高くすることがで きる。
特許文献 1:特開平 6— 303766号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、この従来のスイッチング電源装置は、軽負荷時の効率を高くするため に、ドライバによるスイッチング素子のスイッチング動作を間欠的に行うための間欠制 御用の比較器を設ける必要がある。このように間欠制御用の比較器を備える分だけ、 スイッチング電源装置を構成する回路規模を増大させるとともに、このようなスィッチ ング電源装置が設置される携帯機器の小型化の妨げとなる。
[0005] このような問題を鑑みて、本発明は、軽負荷時における間欠制御用の回路を新た に設けることなぐ高効率を維持することができるスイッチング電源装置を提供するこ とを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明のスイッチング電源装置は、 ONZOFF動作 を行うスイッチング素子と、該スイッチング素子の ONZOFF制御を行う制御回路と、 前記スイッチング素子によって流れる電流量が制御されるコイルと、該コイルと接続さ れるとともに該コイルとともに整流動作を行うコンデンサと、一定の周期毎に前記スィ ツチング素子を ONと制御するための発振信号を前記制御回路に出力する発振器と 、を備えるとともに、前記コンデンサと前記コイルとの接続ノードより出力電圧を出力 するスイッチング電源装置にぉ ヽて、前記コイルを流れる電流値を検出して電圧値 に変換して電流検出電圧として出力する電流検出部と、前記電流検出部からの前記 電流検出電圧にオフセット電圧を与える電圧源と、前記電圧源で前記オフセット電圧 が与えられた前記電流検出電圧と、前記出力電圧に応じた電圧と基準電圧との差に 応じた電圧と、を比較する比較器と、を備え、前記比較器において、前記オフセット 電圧が与えられた前記電流検出電圧の大きさが前記出力電圧に応じた電圧と前記 基準電圧との差に応じた電圧よりも大き!/、ことが確認されたとき、前記発振器からの 前記発振信号を無効とするとともに、前記スイッチング素子を OFFとすることを特徴と する。
発明の効果
[0007] 本発明によると、検出したコイルを流れる電流値を表す電流検出電圧にオフセット 電圧を与えることによって、出力電圧と基準電圧との差が小さくなる無負荷又は軽負 荷時において、比較器が、電流検出電圧の大きさが出力電圧と基準電圧との差より 大きいことが確認される。このとき、スイッチング素子を ONとする発振器の発振信号 を無効とすることができるため、出力電圧と基準電圧との差が大きくなるまで、スイツ チング素子のスイッチング動作を間欠制御することができる。よって、従来のように、 間欠制御するための比較器を付加する構成とする必要がなくなるため、軽負荷又は 無負荷時における高い効率を維持するとともに装置の小型化を図ることができる。 図面の簡単な説明
[図 1]は、第 1の実施形態のスイッチング電源装置の内部構成を示すブロック図であ る。
[図 2]は、図 1のスイッチング電源装置の重負荷時における各部の動作を説明するタ イミングチャートである。
[図 3]は、図 1のスイッチング電源装置の軽負荷又は無負荷時における各部の動作を 説明するタイミングチャートである。
[図 4]は、図 1のスイッチング電源装置における電流検出回路周辺の構成の一例を示 す回路図である。
[図 5]は、第 2の実施形態のスイッチング電源装置の内部構成を示すブロック図であ る。
[図 6]は、図 5のスイッチング電源装置の重負荷時における各部の動作を説明するタ イミングチャートである。
[図 7]は、図 5のスイッチング電源装置の軽負荷又は無負荷時における各部の動作を 説明するタイミングチャートである。
[図 8]は、図 5のスイッチング電源装置における電流検出回路周辺の構成の一例を示 す回路図である。
[図 9]は、第 3の実施形態のスイッチング電源装置の内部構成を示すブロック図であ る。
[図 10]は、図 9のスイッチング電源装置の重負荷時における各部の動作を説明するタ イミングチャートである。
[図 11]は、図 9のスイッチング電源装置の軽負荷又は無負荷時における各部の動作 を説明するタイミングチャートである。
[図 12]は、図 9のスイッチング電源装置における電流検出回路周辺の構成の一例を 示す回路図である。
[図 13A]は、昇圧型のスイッチング電源装置に適用したときの構成の一例を示すプロ ック図である。
[図 13B]は、反転型のスイッチング電源装置に適用したときの構成の一例を示すプロ ック図である。
符号の説明
[0009] 1 ドライバ
2 差動増幅器
3 レべノレシフタ
4 比較器
5 RSフリップフロップ
6 発振器
20, 20a, 21 電圧源
Trl, Tr2 MOSトランジスタ
L コイル
C コンデンサ
Rl, R2 抵抗
発明を実施するための最良の形態
[0010] <第 1の実施形態 >
本発明の第 1の実施形態について、図面を参照して説明する。図 1は、本実施形態 のスイッチング電源装置の内部構成を示すブロック図である。
[0011] 図 1のスイッチング電源装置は、電源電位及び接地電位がそれぞれソースに印加 された pチャネルの MOSトランジスタ Trl及び nチャネルの MOSトランジスタ Tr2と、 MOSトランジスタ Trl , Tr2のゲートに信号を与えて ONZOFF制御するドライバ 1と 、 MOSトランジスタ Trl, Tr2それぞれのドレインの接続ノードに一端が接続されたコ ィル Lと、コイル Lの他端に一端が接続されるとともに他端が接地されたコンデンサ C と、コイル L及びコンデンサ Cの接続ノードと接地電位との間に直列に接続される抵抗 Rl, R2と、コイル Lとコンデンサ Cとの接続ノードに現れる電圧を抵抗 Rl, R2で分圧 した電圧と基準電圧 Vrefとが入力される差動増幅器 2と、エラーアンプ 2からの出力 電圧をレベルシフトするレベルシフタ 3と、レベルシフタ 3からの電圧とコイル Lを流れ る電流を表す電圧とを比較する比較器 4と、比較器 4力 の出力がリセット端子に入 力される RSフリップフロップ 5と、 RSフリップフロップ 5のセット端子に信号を入力する 発振器 6と、を備える。
[0012] そして、ドライバ 1及び RSフリップフロップ 5によって制御回路 7が構成されるとともに 、検出されたコイル Lを流れる電流値を表す電圧にオフセット電圧 Voff (例えば、 30m V)を与える電圧源 20が比較器 4の反転入力端子に接続された構成とされる。即ち、 コイル Lを流れる電流値 ILが電圧値 VLに変換されて比較器 4の反転入力端子に入 力される際、電圧源 20からのオフセット電圧 Voff^与えられる。そして、比較器 4にお いて、オフセット電圧 Voff^与えられた電圧値 VLが、差動増幅器 2及びレベルシフタ 3を介してその非反転入力端子に帰還される電圧 Vthと比較される。
このように構成されたスイッチング電源装置において、コイル Lとコンデンサ Cとの接 続ノードである出力端子 OUTに重負荷が接続されたとき、従来のスイッチング電源 装置と同様の動作を行う。このときの各部の信号の遷移図を図 2に示す。図 2 (d)のよ うに、発振器 6よりハイとなるクロック信号力 ¾Sフリップフロップ 5のセット端子に与えら れると、図 2 (c)のように、 RSフリップフロップ 5の出力がハイとなり、ドライバ 1が、 MO Sトランジスタ Trlを ONとするとともに MOSトランジスタ Tr2を OFFとする。
[0013] よって、図 2 (a)のように、 MOSトランジスタ Trlからコイル Lに電流が流れ込み、コ ィル Lに流れる電流値 ILが増加するため、図 2 (b)のように、比較器 4の反転入力端 子に入力される電圧 VLが低くなる。尚、図 2 (a)に示す電流値 10は、コイル Lを流れ る電流値 ILの平均値である。そして、発振器 6よりハイとなるクロック信号が与えられて 力も時間 taが経過したときに、図 2 (b)のように、レベルシフタ 3より比較器 4の非反転 入力端子に入力される電圧 Vthより低くなると、図 2 (e)のように、比較器 4からハイと なる信号が出力される。
[0014] 尚、出力端子 OUTに現れる出力電圧が抵抗 Rl, R2で分圧されて差動増幅器 2に 帰還され、基準電圧 Vrefとの差分値が増幅されて、出力電圧を表す帰還電圧と基準 電圧 Vrefとの誤差を表す電圧信号が出力される。その後、この電圧信号がレベルシ フタ 3に与えられて電源電位側にレベルシフトされる。そのため、レベルシフタ 3から 出力される電圧 Vthは、出力端子 OUTに現れる出力電圧が高くなると、差動増幅器 2からの電圧が低くなるため、その電圧値が高くなる。このように、レベルシフタ 3から 比較器 4の非反転入力端子に与えられる電圧 Vthが出力端子 OUTに現れる出力電 圧を表す。
[0015] そして、比較器 4からハイとなる信号力 Sフリップフロップ 5のリセット端子に入力さ れるため、 RSフリップフロップ 4の出力が図 2 (c)のようにローとなり、ドライバ 1が、 M OSトランジスタ Trlを OFFとするとともに、 MOSトランジスタ Tr2を ONとする。よって 、図 2 (a)のように、コイル Lを流れる電流値 ILが減少し、コイル Lから MOSトランジス タ Tr2に電流が流れるようになる。よって、図 2 (b)のように、比較器 4の反転入力端子 に入力される電圧 VLが高くなる。その後、発振器 6よりハイとなるクロック信号が与え られてから時間 tbが経過すると、図 2 (d)のように、次の周期のクロック信号が発振器 6より出力され、上述した動作が繰り返される。
[0016] このような動作を繰り返すことによって、出力端子 OUTよりほぼ一定となる直流電圧 を負荷に出力する。即ち、発振器 6から出力されるクロック信号の周期 tbに対する M OSトランジスタ Trlを ONとする期間 taの長さを、コイル Lを流れる電流値と出力端子 OUTの出力電圧との比較結果により調整することで、出力端子 OUTの出力電圧を 一定に保持することができる。尚、このように重負荷が接続されたとき、コイル Lを流れ る電流 ILが検出されて得られた電圧力 電圧源 20からのオフセット電圧 Voffに比べ て十分に大きい。即ち、オフセット電圧 Voffは、比較器 4の反転入力端子に入力され る電圧 VLに対して与える影響について考慮しなくても良い範囲の電圧値とされる。
[0017] 又、出力端子 OUTに接続される負荷が無負荷又は軽負荷であるときの動作につ いて、以下に図 3を参照して説明する。このとき、出力端子 OUTに現れる出力電圧 が高くなつて、抵抗 Rl, R2の分圧電圧と基準電圧 Vrefとの誤差が小さくなるため、 差動増幅器 2からの電圧が低くなる。よって、図 3 (b)のように、レベルシフタ 3から出 力される電圧 Vthの電圧値が高くなる。このように、レベルシフタ 3から比較器 4の非 反転入力端子に与えられる電圧 Vthが出力端子 OUTに現れる出力電圧を表す。
[0018] このとき、 MOSトランジスタ Trlが OFFであるとともに MOSトランジスタ Tr2が ONで あり、図 3 (a)のように、コイル Lに電流が流れていない状態であるため、比較器 4の反 転入力端子に与えられる電圧 VLは、電源電圧 Vccから電圧源 20によるオフセット電 圧 Voff分だけ電圧降下させた値 Vcc— Voffとなる。そして、図 3 (b)のように、レベルシ フタ 3から出力される電圧 Vthが電圧 VL (=Vcc-Voff)よりも高いとき、比較器 4よりハ ィとなる信号が出力される。
[0019] そのため、図 3 (d)のように、発振器 6より周期 tb毎にハイとなるクロック信号が出力 されても、図 3 (e)のように、比較器 4力も RSフリップフロップ 5のリセット端子にハイと なる信号が入力されるため、図 3 (c)のように、 RSフリップフロップ 5からの出力信号は ローのままである。よって、ドライブ 1によって、 MOSトランジスタ Trlが OFFに保持さ れるとともに MOSトランジスタ Tr2が ONに保持される。
[0020] 又、このとき、コンデンサ Cが放電されるため、出力端子 OUTにおける出力電圧が 低くなる。そのため、図 3 (b)のように、レベルシフタ 3から出力される電圧 Vthの電圧 値が徐々に低くなる。そして、レベルシフタ 3から出力される電圧 Vthが電圧 VL (=V cc Voff)よりも低くなると、図 3 (e)のように、比較器 4よりローとなる信号が出力される 。このように、比較器 4力もの信号がローに切りかわった後に、図 3 (d)のように、発振 器 6よりハイとなるクロック信号が出力されると、図 3 (c)のように、 RSフリップフロップ 5 力 の信号がハイに切りかわる。
[0021] よって、ドライブ 1によって MOSトランジスタ Trlが ONとされるとともに MOSトランジ スタ Tr2が OFFとされ、図 3 (a)のように、コイル Lに電流が流れ始める。よって、このコ ィル Lに流れる電流 IL分だけ、比較器 4の反転入力端子に入力される電圧 VLが電 圧降下する。そして、図 3 (a)のようなコイル Lに流れる電流 ILの増加に伴って、図 3 ( b)のように、比較器 4の反転入力端子に入力される電圧 VLが低くなる。そして、図 3 ( b)のように、この電圧 VLがレベルシフタ 3からの電圧 Vthよりも低くなつたとき、図 3 (e )のように、比較器 4力もの信号がハイに切りかわるため、図 3 (c)のように、 RSフリップ フロップ 5からの信号がローとなる。
[0022] このように RSフリップフロップ 5からの信号がローとなり、ドライバ 1によって、 MOSト ランジスタ Trlが OFFとされるとともに MOSトランジスタ Tr2が ONとされ、コイル Lを 流れる電流値 ILが図 3 (a)のように減少する。このとき、コイル Lに保持されたェネル ギ一が放出されるため、コンデンサ Cが充電されて出力端子 OUTからの出力電圧が 高くなり、図 3 (b)のように、レベルシフタ 3からの電圧 Vthが高くなる。その後、再び、 コンデンサ Cが放電することで出力端子 OUTからの出力電圧が低くなり、上述の動 作が繰り返される。
[0023] このような動作を繰り返すことによって、出力端子 OUTからの電圧が所定の電圧よ り高い間は、 RSフリップフロップ 5のリセット端子にハイとなる信号を与えて、発振器 6 力ものクロック信号を間引くことができる。そのため、 MOSトランジスタ Trlの ONとす る周期を重負荷を与えたときに比べて長くすることができるとともに、 MOSトランジス タ Trlを ONとする期間を表すデューティ比を重負荷を与えたときに比べて小さくする ことができる。即ち、重負荷において周期 tb毎に行われるスイッチング動作を複数周 期毎に間欠することにより、無負荷又は軽負荷時の効率を改善することができる。
[0024] このようなスイッチング電源装置において、コイル Lを流れる電流量を検出して電圧 値に変換する電流検出回路 10の構成の一例を図 4に示す。即ち、 MOSトランジスタ Trlのゲート及びドレインそれぞれにゲート及びドレインそれぞれが接続された pチヤ ネルの MOSトランジスタ Traと、 MOSトランジスタ Traのソースにドレインが接続され るとともにソースに電源電位が与えられゲートに基準電位が与えられた pチャネルの MOSトランジスタ Trbと、によって、電流検出回路 10が構成される。
[0025] このとき、 MOSトランジスタ Trbは抵抗として動作する。そして、ドライバ 1から MOS トランジスタ Trlのゲートに与えられる電圧と同一の電圧が、 MOSトランジスタ Traの ゲートに与えられることによって、 MOSトランジスタ Traを駆動する。このとき、 MOSト ランジスタ Trl, Tr2のドレインの接続ノードに現れる電圧が、 MOSトランジスタ Tra のドレインに与えられ、 MOSトランジスタ Trlを流れる電流に比例した電流が MOSト ランジスタ Tra, Trbを流れる。
[0026] そして、 MOSトランジスタ Trbの ON抵抗によって電圧降下された電圧力 MOSト ランジスタ Trlを流れる電流に比例した電流値に比例した値、即ち、コイル Lを流れる 電流値に比例した値として現れる。このように、 MOSトランジスタ Trbの ON抵抗によ つて電圧降下された電圧が、コイル Lの検出電流値として、 MOSトランジスタ Traのソ ースと MOSトランジスタ Trbのドレインとの接続ノードに現れ、比較器 4の反転入力端 子に与えられる。
[0027] 更に、図 4に示すように、この MOSトランジスタ Traのソースと MOSトランジスタ Trb のドレインとの接続ノードに、一端が比較器 4の反転入力端子に接続された抵抗 Ra の他端が接続されるとともに、比較器 4の反転入力端子に定電流を流す定電流源 11 が接続される。この定電流源 11の他端が接地される。このように、抵抗 Ra及び定電 流源 11が接続されることによって、抵抗 Raに定電流源 11による定電流 Ιοί¾流すこ とで発生する抵抗 Raの電圧降下 Ra X Io晚オフセット電圧 Voffとして与える。即ち、 抵抗 Ra及び定電流原 10が電圧源 20として動作する。
[0028] よって、電源電圧を Vccとするとともに、 MOSトランジスタ Trbの ON抵抗を Rxとし、 コイル Lの電流値 ILに対して MOSトランジスタ Traを流れる電流値が AX ILとなるとき 、 MOSトランジスタ Traのソースと MOSトランジスタ Trbのドレインとの接続ノードに、 Vcc Rx XAX ILとなる電圧が現れる。この電圧 Vcc RxXA X ILが、電流検出回路 10の出力として出力されて抵抗 Raの一端に与えられるとき、比較器 4の反転入力端 子には、電圧 VLとして、抵抗 Raの電圧降下によるオフセットが与えられた電圧 Vcc— RxXA X IL Ra X Ioff ( = Vcc— Rx X A X IL— Voff)が与えられる。
[0029] <第 2の実施形態 >
本発明の第 2の実施形態について、図面を参照して説明する。図 5は、本実施形態 のスイッチング電源装置の内部構成を示すブロック図である。図 5のスイッチング電源 装置において、図 1のスイッチング電源装置と同一の目的で使用する素子及び部分 については、同一の符号を付してその詳細な説明は省略する。
[0030] 図 5のスイッチング電源装置は、図 1のスイッチング電源装置における電圧源 20の 代わりに、比較器 4の出力に応じて切り換えられるオフセット電圧 Vxoff^与える電圧 源 20aを備える。即ち、コイル Lを流れる電流値 ILが電圧値 VLに変換されて比較器 4 の反転入力端子に入力される際、電圧源 20aからのオフセット電圧 Vxoff ^与えられ る。このとき、比較器 4の出力がハイとなるとき、電圧源 20aからのオフセット電圧 Vx offの値が Vhoff (例えば、 30mV)となり、比較器 4の出力がローとなるとき、電圧源 20 aからのオフセット電圧 Vxoffの値が Vloff (例えば、 20mV)となる。このオフセット電圧 Vhoff, Vloffの関係は、 Vhoff >VloiTCある。
[0031] このように構成されたスイッチング電源装置において、まず、コイル Lとコンデンサ C との接続ノードである出力端子 OUTに重負荷が接続されたときの動作について、以 下に説明する。このスイッチング電源装置は、比較器 4の出力によって電圧源 20aか らのオフセット電圧 Vxoffの値が切りかわることにより電圧 VLの値が切りかわること以 外は、第 1の実施形態のスイッチング電源装置(図 1)と同様の動作を行う。よって、以 下において、比較器 4の出力が切りかわるときの動作について説明し、他の部分の動 作については、第 1の実施形態における説明を参照するものとする。
[0032] 本実施形態のスイッチング電源装置各部の信号の遷移図を図 6に示す。第 1の実 施形態と同様、図 6 (a)のように、 MOSトランジスタ Trlからコイル Lに電流が流れ込 み、コイル Lに流れる電流値 ILが増加すると、図 6 (b)のように、比較器 4の反転入力 端子に入力される電圧 VLが低くなる。そして、発振器 6よりハイとなるクロック信号が 与えられてから時間 taが経過したときに、この電圧 VLが、図 6 (b)のように、レベルシ フタ 3より比較器 4の非反転入力端子に入力される電圧 Vthより低くなると、図 6 (e)の ように、比較器 4からハイとなる信号が出力される。
[0033] よって、電圧源 20aからのオフセット電圧 Vxoff¾電圧値 Vloffi^ら電圧値 Vhofflこ切 りかわるため、比較器 4の反転入力端子に入力される電圧 VLの電圧値が、図 6 (b) のように、 Vhoff— Vloff分だけ低くなる。又、図 6 (c)のように、 RSフリップフロップ 5から の信号がローとなり、ドライバ 1によって MOSトランジスタ Trlが OFFとされるとともに MOSトランジスタ Tr2が ONとされる。よって、コイル Lを流れる電流値 ILが図 6 (a)の ように減少するとともに、図 6 (b)のように、比較器 4の反転入力端子に入力される電 圧 VLが高くなる。
[0034] その後、この電圧 VLが、図 6 (b)のように、レベルシフタ 3より比較器 4の非反転入 力端子に入力される電圧 Vthより高くなると、図 6 (e)のように、比較器 4力もローとなる 信号が出力される。よって、電圧源 20aからのオフセット電圧 Vxoff^電圧値 Vhoff¾ ら電圧値 Vlofflこ切りかわるため、比較器 4の反転入力端子に入力される電圧 VLの 電圧値が、図 6 (b)のように、 Vhoff-Vloff分だけ高くなる。このように、電圧源 20aの オフセット電圧 Vxoffの切換動作力 比較器 4からの信号が切りかわるたびに行われ る。
[0035] 尚、本実施形態においても、このように重負荷が接続されたとき、第 1の実施形態と 同様、コイル Lを流れる電流 ILが検出されて得られた電圧が、電圧源 20からのオフセ ット電圧 Vxofflこ比べて十分に大きい。即ち、オフセット電圧 Vxoffとして与えられる電 圧値 Vhoff, Vloffは、比較器 4の反転入力端子に入力される電圧 VLに対して与える 影響につ 、て考慮しなくても良 、範囲の電圧値とされる。
[0036] 同様に、出力端子 OUTに接続される負荷が無負荷又は軽負荷であるときの動作 について、以下に図 7を参照して説明する。このときも、比較器 4の出力によって電圧 源 20aからのオフセット電圧 Vxoffの値が切りかわることにより電圧 VLの値が切りかわ ること以外は、第 1の実施形態のスイッチング電源装置(図 1)と同様の動作を行う。よ つて、以下において、比較器 4の出力が切りかわるときの動作について説明し、他の 部分の動作については、第 1の実施形態における説明を参照するものとする。
[0037] 第 1の実施形態と同様、図 7 (e)のように比較器 4の出力がハイであるとき、 MOSト ランジスタ Trlが OFFであるとともに MOSトランジスタ Tr2が ONであり、図 7 (a)のよ うにコイル Lに電流が流れない。よって、電圧源 20aからのオフセット電圧 Vxoffの値 が Vhoffとなり、図 7 (b)のように、比較器 4の反転入力端子に与えられる電圧 VLは、 電源電圧 Vccからオフセット電圧 Vhoff分だけ電圧降下させた値 Vcc— Vhoffとなる。こ のとき、図 7 (b)のように、レベルシフタ 3から出力される電圧 Vthが電圧 VL (=Vcc— Vhoff)よりも高い。
[0038] そのため、図 7 (d)のように、発振器 6より周期 tb毎にハイとなるクロック信号が出力 されても、図 7 (e)のように、比較器 4力も RSフリップフロップ 5のリセット端子にハイと なる信号が入力されるため、図 7 (c)のように、 RSフリップフロップ 5からの出力信号は ローのままである。そして、出力端子 OUTにおける出力電圧が低くなり、図 7 (b)のよ うに、レベルシフタ 3から出力される電圧 Vthの電圧値が徐々に低くなり、レベルシフ タ 3から出力される電圧 Vthが電圧 VL (=Vcc-Vhoff)よりも低くなる。
[0039] このとき、図 7 (e)のように、比較器 4よりローとなる信号が出力される。よって、電圧 源 20aからのオフセット電圧 Vxoffの値が Vloffとなり、図 7 (b)のように、比較器 4の反 転入力端子に与えられる電圧 VLは、電源電圧 Vccカゝらオフセット電圧 Vloff分だけ電 圧降下させた値 Vcc— Vloffとなる。このように、比較器 4からの信号がローに切りかわ つた後に、図 7 (d)のように、発振器 6よりハイとなるクロック信号が出力されると、図 7 ( c)のように、 RSフリップフロップ 5からの信号がハイに切りかわる。 [0040] よって、図 7 (a)のように、コイル Lに電流が流れ始めるため、このコイル Lに流れる 電流 IL分だけ、図 7 (b)のように、比較器 4の反転入力端子に入力される電圧 VLが 電圧降下する。そして、図 7 (b)のように、この電圧 VLがレベルシフタ 3からの電圧 V thよりも低くなつたとき、図 7 (e)のように、比較器 4からの信号カ 、ィに切りかわるため 、図 7 (c)のように、 RSフリップフロップ 5からの信号がローとなる。又、電圧源 20aから のオフセット電圧 Vxoffの値が Vhoff〖こ切り換えられるため、比較器 4の反転入力端子 に入力される電圧 VLが Vhoff— Vloff分だけ低くなる。
[0041] このように RSフリップフロップ 5からの信号がローとなるため、コイル Lを流れる電流 値 ILが図 7 (a)のように減少するため、図 7 (b)のように、電圧 VLが高くなり Vcc— Vh offとなる。このとき、コイル Lに保持されたエネルギーが放出されるため、コンデンサ C が充電されて出力端子 OUTからの出力電圧が高くなり、図 7 (b)のように、レベルシ フタ 3からの電圧 Vthが高くなる。その後、再び、コンデンサ Cが放電することで出力 端子 OUTからの出力電圧が低くなり、上述の動作が繰り返される。
[0042] このようなスイッチング電源装置において、第 1の実施形態における図 4と同様の構 成の電流検出回路 10が設置されるとき、比較器 4との接続関係が図 8のように示され る。このとき、図 8に示すように、オフセット電圧 Voff^与えるための抵抗 Raが、比較器 4の出力によって抵抗値が切り換えられる可変抵抗 Rbとされる。即ち、可変抵抗 Rbと 定電流源 11とによって電圧源 21aが構成される。他の構成については、図 4の構成 と同一の構成となる。
[0043] このように構成されるとき、可変抵抗 Rbは、比較器 4の出力がノ、ィとなるときの抵抗 値が比較器 4の出力がローとなるときの抵抗値と比べて大きくなるように、比較器 4の 出力に応じてその抵抗値が切り換えられる。よって、この可変抵抗 Rbの電圧降下に よって現れるオフセット電圧 Vxoff¾ 比較器 4の出力に応じて切りかわる。この可変 抵抗 Rbによる抵抗値の切換動作以外の動作については、第 1の実施形態と同様と なるので、その詳細な説明については、第 1の実施形態を参照するものとして省略す る。
[0044] 本実施形態のように、コイル Lの検出電流を表す電圧値に対して与えるオフセット 電圧に、比較器 4の出力に応じて切り換えてヒステリシスを与えることによって、第 1の 実施形態と比べて、比較器 4力もクロック信号をより確実に出力させることができ、 RS フリップフロップ 5における誤動作を防ぐことができる。
[0045] <第 3の実施形態 >
本発明の第 3の実施形態について、図面を参照して説明する。図 9は、本実施形態 のスイッチング電源装置の内部構成を示すブロック図である。図 9のスイッチング電源 装置において、図 1のスイッチング電源装置と同一の目的で使用する素子及び部分 については、同一の符号を付してその詳細な説明は省略する。
[0046] 図 9のスイッチング電源装置は、図 1のスイッチング電源装置と異なり、発振器 6より スロープ補償を行うための周期 tbとなるスロープ補償用信号が出力されるとともに、こ のスロープ補償用信号に応じて電圧値が変化する電圧源 21を比較器 4の反転入力 端子と電圧源 20の間に備える。そのため、コイル Lを流れる電流値 ILが電圧値 VLに 変換されて比較器 4の反転入力端子に入力される際、オフセット電圧 Voff及びスロー プ補償電圧 Vslopeが付加される。このように、比較器 4の反転入力端子に与えられる 電圧値 VLが異なるのみで、他の動作については第 1の実施形態と同様である。よつ て、以下において、比較器 4の反転入力端子に与えられる電圧値 VLとスロープ補償 電圧 Vslopeとの関係について説明し、他の部分については、第 1の実施形態におけ る説明を参照するものとする。
[0047] このように構成されたスイッチング電源装置にぉ 、て、まず、コイル Lとコンデンサ C との接続ノードである出力端子 OUTに重負荷が接続されたときの動作について、以 下に説明する。このスイッチング電源装置は、電圧 VLの値力スロープ補償電圧 V slopeによって変化すること以外は、第 1の実施形態のスイッチング電源装置(図 1)と 同様の動作を行う。即ち、図 10 (f)のように変化する電圧源 21からのスロープ補償電 圧 Vslope及び電圧源 20からのオフセット電圧 Voff¾ 図 10 (a)のようなコイル Lの検 出電流 ILより得られた電圧値より減算されることで、図 10 (b)のような電圧 VLが比較 器 4の反転入力端子に入力される。
[0048] このとき、発振器 6より、図 10 (d)のように周期 tb毎にハイとなるクロック信号が出力 されるとともに、このクロック信号と同様の周期 tbを備えるスロープ補償信号が出力さ れる。よって、電圧源 21からのスロープ補償電圧 Vslopeが、図 10 (f)のように、周期 t bの間に、その値が徐々に大きくなつて最大値 VSmax (例えば、 20mV)に達した後に 、最小値である 0となる。尚、図 10 (c)、(f)のように、スロープ補償電圧 Vslopeが最大 値 VSmaxから最小値 0に変位した後に、発振器 6よりクロック信号が出力される。この ように、電圧源 21からのスロープ補償電圧 Vslopeが、図 10 (f)のように、周期 tb毎に ほぼ三角波形状に近!、値で変化する。
[0049] 図 10 (f)のように、電圧源 21からのスロープ補償電圧 Vslopeが変化するため、図 1 0 (c)のように RSフリップフロップ 5からの出力がハイとなるとき、図 10 (b)のように、電 圧 VLの変化率が、第 1の実施形態と比べて大きくなり、又、図 10 (c)のように RSフリ ップフロップ 5からの出力がローとなるとき、図 10 (b)のように、電圧 VLの変化率が、 第 1の実施形態と比べて小さくなる。そして、図 10 (d)のように発振器 6からのクロック 信号が出力されて、図 10 (c)のように RSフリップフロップ 5からの出力がロー力もハイ に切りかわるとき、電圧源 21からのスロープ補償電圧 Vslopeの値が図 10 (f)のように VSmaxから 0に変化するため、電圧 VLが図 10 (b)のように電圧値 VSmax分だけ高く なる。
[0050] 同様に、出力端子 OUTに接続される負荷が無負荷又は軽負荷であるときの動作 について、以下に図 11を参照して説明する。このときも、電圧 VLの値がスロープ補 償電圧 Vslopeによって変化すること以外は、第 1の実施形態のスイッチング電源装置 (図 1)と同様の動作を行う。即ち、図 11 (f)のように変化する電圧源 21からのスロー プ補償電圧 Vslope及び電圧源 20からのオフセット電圧 Voff¾ 図 11 (a)のようなコィ ル Lの検出電流 ILより得られた電圧値より減算されることで、図 11 (b)のような電圧 V Lが比較器 4の反転入力端子に入力される。又、図 11 (f)に示す電圧源 21からのス ロープ補償電圧 Vslopeは、上述の図 10 (f)と同様の変化を行う。
[0051] よって、第 1の実施形態と同様、図 11 (e)のように比較器 4の出力がハイであるとき、 MOSトランジスタ Trlが OFFであるとともに MOSトランジスタ Tr2が ONであり、図 11 (a)のようにコイル Lに電流が流れない。よって、図 11 (b)のように、比較器 4の反転 入力端子に与えられる電圧 VLは、電圧源 20からのオフセット電圧 Voff分と電圧源 2 1からの図 11 (f)のようなスロープ補償電圧 Vslope分とを電源電圧 Vccから電圧降下 させた値 Vcc— Voff— Vslopeとなる。このとき、図 11 (b)のように、レベルシフタ 3から出 力される電圧 Vthが電圧 VL ( = Vcc— Voff— Vslope)よりも高!ヽ。
[0052] そのため、図 11 (d)のように、発振器 6より周期 tb毎にハイとなるクロック信号が出力 されても、図 11 (e)のように、比較器 4力も RSフリップフロップ 5のリセット端子にハイと なる信号が入力されるため、図 11 (c)のように、 RSフリップフロップ 5からの出力信号 はローのままである。そして、出力端子 OUTにおける出力電圧が低くなり、図 11 (b) のように、レベルシフタ 3から出力される電圧 Vthの電圧値が徐々に低くなる。
[0053] そして、図 11 (c)のように発振器 5からクロックが出力される直前に、図 11 (f)のよう に電圧源 21からのスロープ補償電圧 Vslopeが最大値 VSmaxから最小値 0に変位す るとき、図 11 (b)のように、レベルシフタ 3から出力される電圧 Vthが電圧 VLよりも低く なる。即ち、図 11 (b)のように、比較器 4の反転入力端子に与えられる電圧 VLの値が 、 Vcc— Voff— VSmaxから Vcc— Voffに変位して高くなるとき、電圧 Vthが電圧値 Vcc— Voffよりも低くなる。
[0054] このとき、図 11 (e)のように、比較器 4よりローとなる信号が出力される。そして、スロ ープ補償電圧 Vslopeが最大値 VSmaxから最小値 0に変位した直後に、図 7 (d)のよう に、発振器 6よりハイとなるクロック信号が出力される。そのため、 RSフリップフロップ 5 のリセット端子がローとなる信号が入力された後に、セット端子にハイとなる信号が入 力されて、図 11 (c)のように、 RSフリップフロップ 5からの信号がハイに切りかわる。又 、スロープ補償電圧 Vslopeが最低値 0となった後、図 11 (f)のように、再びその値が 徐々に高くなる。そのため、図 11 (b)のように、スロープ補償電圧 Vslopeの増加に応 じて、比較器 4の反転入力端子に与えられる電圧 VLが低くなる。
[0055] このとき、 RSフリップフロップ 5からの信号がハイとなるため、図 11 (a)のように、コィ ル Lに電流が流れ始め、このコイル Lに流れる電流 IL分だけ、図 11 (b)のように、比 較器 4の反転入力端子に入力される電圧 VLが電圧降下する。そして、図 11 (b)のよ うに、この電圧 VLがレベルシフタ 3からの電圧 Vthよりも低くなつたとき、図 11 (e)のよ うに、比較器 4からの信号がハイに切りかわるため、図 11 (c)のように、 RSフリップフロ ップ 5からの信号がローとなる。
[0056] このように RSフリップフロップ 5からの信号がローとなるため、コイル Lを流れる電流 値 ILが図 11 (a)のように減少するため、図 11 (b)のように、電圧 VLが高くなり Vcc— V off— Vslopeとなる。このとき、コイル Lに保持されたエネルギーが放出されるため、コン デンサ Cが充電されて出力端子 OUTからの出力電圧が高くなり、図 11 (b)のように、 レベルシフタ 3からの電圧 Vthが高くなる。その後、再び、コンデンサ Cが放電すること で出力端子 OUTからの出力電圧が低くなり、上述の動作が繰り返される。
[0057] このようなスイッチング電源装置において、第 1の実施形態における図 4と同様の構 成の電流検出回路 10が設置されるとき、比較器 4との接続関係が図 12のように示さ れる。このとき、図 12に示すように、抵抗 Raと定電流源 11との接続ノードにドレインが 接続された nチャネルの MOSトランジスタ Trxと、 MOSトランジスタ Trxのゲートにゲ ート及びドレインが接続された MOSトランジスタ Tryと、 MOSトランジスタ Tryのソー スにドレインが接続された MOSトランジスタ Trzと、 MOSトランジスタ Trxのソースに 接続された抵抗 Rcと、 MOSトランジスタ Tryのソースに接続されたコンデンサ C1と、 MOSトランジスタ Trxのドレインに定電流源 12と、を備えることで、電流源 21が構成 される。他の構成については、図 4の構成と同一の構成となる。
[0058] このように構成されるとき、定電流源 12に電源電位が印加されるとともに、コンデン サ C1及び抵抗 Rcそれぞれの他端が接地される。そして、 MOSトランジスタ Trzのゲ ートに発振器 6からのクロック信号が入力される。このとき、 MOSトランジスタ Trxを流 れる電流 Islopeによる抵抗 Raの電圧降下量 Ra X Islopeにより、電流源 21による電圧 Vslopeが生成される。又、第 1の実施形態と同様、定電流源 11を流れる電流 Ioff〖こよ る抵抗 Raの電圧降下量 Ra X Ioff〖こより、電流源 20による電圧 Voff^生成される。
[0059] 即ち、ハイとなるクロック信号が MOSトランジスタ Trzのゲートに入力されると、 MO Sトランジスタ Trzが ONとなるため、コンデンサ C1が放電され、 MOSトランジスタ Try のソース電圧が低くなつて、 MOSトランジスタ Trx, Tryのゲート電圧が低くなる。よつ て、 MOSトランジスタ Trxに流れる電流値 Islopeが減少し、 MOSトランジスタ Trxを流 れる電流 Islopeによる抵抗 Raにおける電圧降下量 Vslope (=Ra X Islope)が小さくな る。
[0060] その後、発振器 6からの信号がローとなると、 MOSトランジスタ Trzが OFFとなるた め、コンデンサ C1が充電され、 MOSトランジスタ Tryのソース電圧が徐々に高くなつ て、 MOSトランジスタ Trx, Tryのゲート電圧が徐々に高くなる。よって、 MOSトラン ジスタ Trxに流れる電流値 Islopeが徐々〖こ増カロし、 MOSトランジスタ Trxを流れる電 流 Islopeによる抵抗 Raにおける電圧降下量 Vslope (=Ra X Islope)が大きくなる。
[0061] このように、抵抗 Raにスロープ補償電圧 Vslopeが現れることによって、このスロープ 補償電圧 Vslopeが比較器 4の反転入力端子に入力される電圧 VLに付加される。即 ち、電源電圧 Vccとするとともに、 MOSトランジスタ Trbの ON抵抗を Rxとし、コイル L の電流値 ILに対して MOSトランジスタ Traを流れる電流値が AX ILとなるとき、比較 4 の反転入力端子に、電圧 VLとして、抵抗 Raの電圧降下によるオフセットが与えられ た電圧 Vcc— Rx X A X IL— (Ioff + Islope) X Ra ( = Vcc— Rx X A X IL—Voff— Vslope) が与えられる。
[0062] 本実施形態のように、コイル Lの検出電流を表す電圧値に対してスロープ補償電圧 を与えることによって、重負荷が与えられたときには、 MOSトランジスタ Trlが ONとな るデューティ比が大きくなつたときのコイル Lにおける電流バラツキを小さくすることが でき、分周発振を抑制することができる。又、軽負荷又は無負荷が与えられるときに は、クロック信号が与えられるときに同期して、比較器 4力もの出力をローとさせること ができ、第 1の実施形態と比べて、より効率よく動作させることができる。
[0063] 尚、本実施形態において、第 1の実施形態と同様、電圧源 20により一定のオフセッ ト電圧 V0ff¾S与えられるものとしたが、第 2の実施形態と同様に、比較器 4の出力に応 じてオフセット電圧 Vxo晚切り換える電圧源 20aを備えるものとしても構わな ヽ。この ように、電圧源 20aを備えてオフセット電圧 Vxoff^切り換えてヒステリシスを与えること で、第 2の実施形態と同様、比較器 4力 クロック信号をより確実に出力させることが でき、 RSフリップフロップ 5における誤動作を防ぐことができる。
[0064] 又、上述の各実施形態において、降圧型のスイッチング電源装置としたが、図 13A のような構成の昇圧型のスイッチング電源装置、又は、図 13Bのような構成の反転型 のスイッチング電源装置としても構わない。尚、図 13A及び図 13Bは、昇圧型及び反 転型のスイッチング電源装置を第 1の実施形態のスイッチング電源装置に適用したと きの構成を示すものであるが、第 2又は第 3の実施形態におけるスイッチング電源装 置に適用することもできる。
[0065] 即ち、図 13Aのような昇圧型のスイッチング電源装置は、電源電位が一端に印加さ れたコイル Lと、コイル Lの他端にドレインが接続されるとともにドライバ laによって制 御される nチャネルの MOSトランジスタ Trnと、 MOSトランジスタ Trnのドレインにァノ ードが接続されるダイオード Dと、ダイオード Dの力ソードに一端が接続されたコンデ ンサ Cと、を備える。そして、コイル L又は MOSトランジスタ Trnを流れる電流が電圧 値として比較器 4の反転入力端子に帰還される。このとき、オフセット電圧 Voff¾S電圧 源 20によって与えられる。
[0066] 又、図 13Bのような反転型のスイッチング電源装置は、一端が接地されたコイルしと 、コイル Lの他端にドレインが接続されるとともにドライバ lbによって制御される pチヤ ネルの MOSトランジスタ Trpと、 MOSトランジスタ Trpのドレインに力ソードが接続さ れるダイオード Dと、ダイオード Dのアノードに一端が接続されたコンデンサ Cと、を備 える。そして、コイル L又は MOSトランジスタ Trpを流れる電流が電圧値として比較器 4の反転入力端子に帰還される。このとき、オフセット電圧 Voff^電圧源 20によって 与えられる。
[0067] 更に、上述の各実施形態において、電源電位を基準にして各ブロックが動作するも のとしたが、接地電位を基準にして各ブロックが動作するものとしても構わない。この とき、各ブロックがそれぞれ逆の極性となるように構成すれば良ぐ各ブロックの基本 的な構成は上述の各実施形態における構成と同様とすることで実現可能である。更 に、上述の各実施形態において、差動増幅器からの出力がレベルシフタを介して比 較器に入力されるものとした力 レベルシフタを解することなく差動増幅器力もの出力 が比較器に直接入力されるものとしても構わない。
産業上の利用可能性
[0068] 本発明のスイッチング電源装置は、携帯電話や携帯端末装置などの携帯機器に適 用することが可能である。このとき、携帯機器において、 2次電池からの電圧を変圧し て他の回路装置に電圧供給するスイッチング電源装置として動作する。よって、本発 明のように構成することで、携帯機器の他の回路装置を OFFとして軽負荷又は無負 荷状態となったとき、スイッチング電源装置を高効率で動作させることができ、その消 費電力を抑制することができる。

Claims

請求の範囲
[1] ONZOFF動作を行うスイッチング素子と、該スイッチング素子の ONZOFF制御 を行う制御回路と、前記スイッチング素子によって流れる電流量が制御されるコイルと 、該コイルと接続されるとともに該コイルとともに整流動作を行うコンデンサと、一定の 周期毎に前記スイッチング素子を ONと制御するための発振信号を前記制御回路に 出力する発振器と、を備えるとともに、前記コンデンサと前記コイルとの接続ノードより 出力電圧を出力するスイッチング電源装置において、
前記コイルを流れる電流値を検出して電圧値に変換して電流検出電圧として出力 する電流検出部と、
前記電流検出部力 の前記電流検出電圧にオフセット電圧を与える電圧源と、 前記電圧源で前記オフセット電圧が与えられた前記電流検出電圧と、前記出力電 圧に応じた電圧と基準電圧との差に応じた電圧と、を比較する比較器と、
を備え、
前記比較器において、前記オフセット電圧が与えられた前記電流検出電圧の大き さが前記出力電圧に応じた電圧と前記基準電圧との差に応じた電圧よりも大きいこと が確認されたとき、前記発振器力ゝらの前記発振信号を無効とするとともに、前記スイツ チング素子を OFFとすることを特徴とするスイッチング電源装置。
[2] 前記比較器に与えられる前記電流検出電圧に対してスロープ補償波形が重畳され ることを特徴とする請求項 1に記載のスイッチング電源装置。
[3] 前記スロープ補償波形による周期が、前記発振器からの前記発振信号と同一の周 期であることを特徴とする請求項 2に記載のスイッチング電源装置。
[4] 前記電圧源力 与えられる前記オフセット電圧力 前記比較器の比較結果に応じ て変化することを特徴とする請求項 1に記載のスイッチング電源装置。
[5] 前記出力電圧に応じた電圧と前記基準電圧とが入力される差動増幅器を備えると ともに、該差動増幅器力 出力される前記出力電圧に応じた電圧と前記基準電圧と の差に応じた電圧が前記比較器に与えられることを特徴とする請求項 1に記載のスィ ツチング電源装置。
[6] 前記差動増幅器から出力される電圧のレベル変換を行うレベルシフタを備えること を特徴とする請求項 5に記載のスイッチング電源装置。
[7] 前記制御回路が、
前記発振器力もの前記発振信号がセット端子に入力されるとともに、前記比較器か らの出力がリセット端子に入力されるフリップフロップ回路と、
該フリップフロップ回路からの出力に応じて前記スイッチング素子の ONZOFFを 制御するドライバと、
を備えることを特徴とする請求項 1に記載のスイッチング電源装置。
[8] 前記電流検出部が、
前記スイッチング素子の出力側と第 1電極が接続されるとともに、前記制御回路から 前記スイッチング素子に与える信号が制御電極に入力される検出用トランジスタと、 該検出用トランジスタの第 2電極に一端が接続されるとともに他端に直流電圧が印 加された抵抗と、
を備え、
前記検出用トランジスタの第 2電極に現れる電圧が、前記電流検出電圧となること を特徴とする請求項 1に記載のスイッチング電源装置。
[9] 請求項 1一請求項 8の 、ずれか〖こ記載のスイッチング電源装置を備えることを特徴 とする携帯機器。
PCT/JP2005/000637 2004-02-13 2005-01-20 スイッチング電源装置及び携帯機器 WO2005078910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005517913A JP4721905B2 (ja) 2004-02-13 2005-01-20 スイッチング電源装置及び携帯機器
US10/589,163 US7321222B2 (en) 2004-02-13 2005-01-20 Switching regulator with DC offset (bias) in controller
EP05703865.5A EP1715569B1 (en) 2004-02-13 2005-01-20 Switching power supply apparatus and mobile device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004036770 2004-02-13
JP2004-036770 2004-02-13

Publications (1)

Publication Number Publication Date
WO2005078910A1 true WO2005078910A1 (ja) 2005-08-25

Family

ID=34857728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000637 WO2005078910A1 (ja) 2004-02-13 2005-01-20 スイッチング電源装置及び携帯機器

Country Status (7)

Country Link
US (1) US7321222B2 (ja)
EP (1) EP1715569B1 (ja)
JP (1) JP4721905B2 (ja)
KR (1) KR20060110363A (ja)
CN (1) CN100499333C (ja)
TW (1) TWI360938B (ja)
WO (1) WO2005078910A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215391A (ja) * 2005-11-08 2007-08-23 Renesas Technology Corp スイッチング電源装置と半導体集積回路装置及び電源装置
JP2009512405A (ja) * 2005-10-09 2009-03-19 システム ジェネラル コーポレイション オフ時間変調を有して一次側制御電源の効率を改善するスイッチング制御回路
US7576527B1 (en) * 2006-07-20 2009-08-18 Marvell International Ltd. Low power DC-DC converter with improved load regulation
JP2009195022A (ja) * 2008-02-14 2009-08-27 Mitsumi Electric Co Ltd Dc−dcコンバータおよび電源制御用半導体集積回路
JP2009284709A (ja) * 2008-05-23 2009-12-03 Rohm Co Ltd スイッチング電源装置および携帯機器
CN102035409A (zh) * 2010-12-13 2011-04-27 成都成电硅海科技股份有限公司 开关电源控制芯片
EP2424095A2 (en) 2010-08-30 2012-02-29 Fujitsu Limited Switching device compensation circuit
JP2013143831A (ja) * 2012-01-11 2013-07-22 Rohm Co Ltd スイッチングレギュレータ及びその制御方法
JP2014027719A (ja) * 2012-07-24 2014-02-06 Toshiba Tec Corp 電子機器およびプリンタ
JP2015033200A (ja) * 2013-08-01 2015-02-16 ローム株式会社 スイッチング電源制御回路
US9444336B2 (en) 2014-04-01 2016-09-13 Rohm Co., Ltd. Switching regulator
JP2017011931A (ja) * 2015-06-24 2017-01-12 ローム株式会社 スイッチング電源装置
US10158289B2 (en) 2016-11-07 2018-12-18 Rohm Co., Ltd. DC/DC converter
JP2020202709A (ja) * 2019-06-13 2020-12-17 株式会社明電舎 絶縁性dc/dcコンバータの動作監視装置
JP2021045046A (ja) * 2015-09-08 2021-03-18 ローム株式会社 Dc/dcコンバータ、スイッチング電源装置
JP2021197746A (ja) * 2020-06-09 2021-12-27 三菱電機株式会社 半導体光源点灯装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686745B2 (ja) * 2006-06-05 2011-05-25 トレックス・セミコンダクター株式会社 スイッチング電源回路
US8278889B2 (en) * 2007-05-30 2012-10-02 Texas Instruments Incorporated Adaptive rectifier architecture and method for switching regulators
US7609069B2 (en) * 2007-10-31 2009-10-27 Kelsey-Hayes Company Method to detect shorted solenoid coils
US7804345B2 (en) * 2008-01-15 2010-09-28 Omnivision Technologies, Inc. Hybrid on-chip regulator for limited output high voltage
US8068356B2 (en) * 2008-05-28 2011-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Low power one-shot boost circuit
JP5151830B2 (ja) * 2008-09-08 2013-02-27 株式会社リコー 電流モード制御型dc−dcコンバータ
JP5405891B2 (ja) * 2009-05-08 2014-02-05 スパンション エルエルシー 電源装置、制御回路、電源装置の制御方法
US8080986B2 (en) * 2009-08-26 2011-12-20 National Taipei University Technology Driving control device and method for power converting system
US7956651B2 (en) * 2009-09-10 2011-06-07 Semiconductor Components Industries, Llc Method for detecting a current and compensating for an offset voltage and circuit
JP5703671B2 (ja) * 2010-10-05 2015-04-22 富士通セミコンダクター株式会社 電源コントローラ、および電子機器
TW201218631A (en) * 2010-10-19 2012-05-01 Analog Integrations Corp Bootstrap circuit without a regulator and a diode
TW201240341A (en) * 2011-03-17 2012-10-01 Anpec Electronics Corp Zero current detecting circuit and related synchronous switching power converter
JP5902401B2 (ja) * 2011-05-31 2016-04-13 サイプレス セミコンダクター コーポレーション 電源装置、制御回路、電子機器及び電源の制御方法
FR2996700B1 (fr) * 2012-10-05 2015-12-04 Technoboost Convertisseur courant continu/courant continu pour un vehicule
US9099924B2 (en) * 2012-12-11 2015-08-04 Analog Devices, Inc. Target voltage generator for a DC to DC converter, a combination of a target voltage generator and a DC to DC converter, and a method of operating a DC to DC converter
US8988059B2 (en) 2013-01-28 2015-03-24 Qualcomm Incorporated Dynamic switch scaling for switched-mode power converters
TWI559111B (zh) * 2014-06-26 2016-11-21 群聯電子股份有限公司 切換式穩壓器控制電路及穩定輸出電氣訊號方法
US9780648B2 (en) 2014-08-30 2017-10-03 Ixys Corporation Synchronous sensing of inductor current in a buck converter control circuit
TWI560984B (en) * 2015-04-16 2016-12-01 Anpec Electronics Corp Zero current detecting circuit and related synchronous switching power converter and method
KR102697926B1 (ko) * 2016-08-26 2024-08-22 삼성전자주식회사 스위칭 레귤레이터 및 그것의 제어 회로
JP7000804B2 (ja) * 2017-11-13 2022-01-19 Tdk株式会社 電源装置
CN118451642A (zh) 2022-12-06 2024-08-06 瑞萨设计(英国)有限公司 调节器电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284733A (ja) * 1993-03-26 1994-10-07 Fujitsu Denso Ltd 力率改善平滑回路
JPH1175367A (ja) * 1997-08-29 1999-03-16 Toyota Autom Loom Works Ltd Dc/dcコンバータ
JP2000299978A (ja) * 1999-02-12 2000-10-24 Analog Devices Inc <Adi> 電圧レギュレータの負荷過渡応答を改善し出力コンデンサ・サイズを最小化する方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672518A (en) * 1986-07-30 1987-06-09 American Telephone And Telegraph Co., At&T Bell Labs Current mode control arrangement with load dependent ramp signal added to sensed current waveform
US4837495A (en) * 1987-10-13 1989-06-06 Astec U.S.A. (Hk) Limited Current mode converter with controlled slope compensation
US5481178A (en) * 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
JPH10313572A (ja) * 1997-05-09 1998-11-24 Toyota Autom Loom Works Ltd スイッチングレギュレータ制御方式

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284733A (ja) * 1993-03-26 1994-10-07 Fujitsu Denso Ltd 力率改善平滑回路
JPH1175367A (ja) * 1997-08-29 1999-03-16 Toyota Autom Loom Works Ltd Dc/dcコンバータ
JP2000299978A (ja) * 1999-02-12 2000-10-24 Analog Devices Inc <Adi> 電圧レギュレータの負荷過渡応答を改善し出力コンデンサ・サイズを最小化する方法および装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512405A (ja) * 2005-10-09 2009-03-19 システム ジェネラル コーポレイション オフ時間変調を有して一次側制御電源の効率を改善するスイッチング制御回路
JP4763055B2 (ja) * 2005-10-09 2011-08-31 システム ジェネラル コーポレイション オフ時間変調を有して一次側制御電源の効率を改善するスイッチング制御回路
JP2007215391A (ja) * 2005-11-08 2007-08-23 Renesas Technology Corp スイッチング電源装置と半導体集積回路装置及び電源装置
US7576527B1 (en) * 2006-07-20 2009-08-18 Marvell International Ltd. Low power DC-DC converter with improved load regulation
US7990126B1 (en) 2006-07-20 2011-08-02 Marvell International, Ltd. Low power DC-DC converter with improved load regulation
JP2009195022A (ja) * 2008-02-14 2009-08-27 Mitsumi Electric Co Ltd Dc−dcコンバータおよび電源制御用半導体集積回路
JP2009284709A (ja) * 2008-05-23 2009-12-03 Rohm Co Ltd スイッチング電源装置および携帯機器
US8106634B2 (en) 2008-05-23 2012-01-31 Rohm Co., Ltd. Switching power supply and portable device
US8513934B2 (en) 2010-08-30 2013-08-20 Fujitsu Limited Switching device compensation circuit
EP2424095A2 (en) 2010-08-30 2012-02-29 Fujitsu Limited Switching device compensation circuit
CN102035409B (zh) * 2010-12-13 2013-03-20 成都成电硅海科技股份有限公司 开关电源控制芯片
CN102035409A (zh) * 2010-12-13 2011-04-27 成都成电硅海科技股份有限公司 开关电源控制芯片
JP2013143831A (ja) * 2012-01-11 2013-07-22 Rohm Co Ltd スイッチングレギュレータ及びその制御方法
JP2014027719A (ja) * 2012-07-24 2014-02-06 Toshiba Tec Corp 電子機器およびプリンタ
JP2015033200A (ja) * 2013-08-01 2015-02-16 ローム株式会社 スイッチング電源制御回路
US9444336B2 (en) 2014-04-01 2016-09-13 Rohm Co., Ltd. Switching regulator
JP2017011931A (ja) * 2015-06-24 2017-01-12 ローム株式会社 スイッチング電源装置
JP2021045046A (ja) * 2015-09-08 2021-03-18 ローム株式会社 Dc/dcコンバータ、スイッチング電源装置
JP7091431B2 (ja) 2015-09-08 2022-06-27 ローム株式会社 Dc/dcコンバータ、スイッチング電源装置
US10158289B2 (en) 2016-11-07 2018-12-18 Rohm Co., Ltd. DC/DC converter
JP2020202709A (ja) * 2019-06-13 2020-12-17 株式会社明電舎 絶縁性dc/dcコンバータの動作監視装置
JP7103308B2 (ja) 2019-06-13 2022-07-20 株式会社明電舎 絶縁性dc/dcコンバータの動作監視装置
JP2021197746A (ja) * 2020-06-09 2021-12-27 三菱電機株式会社 半導体光源点灯装置

Also Published As

Publication number Publication date
CN1918777A (zh) 2007-02-21
EP1715569B1 (en) 2019-06-19
EP1715569A4 (en) 2009-07-15
EP1715569A1 (en) 2006-10-25
JPWO2005078910A1 (ja) 2007-10-18
CN100499333C (zh) 2009-06-10
TWI360938B (en) 2012-03-21
US7321222B2 (en) 2008-01-22
TW200527806A (en) 2005-08-16
KR20060110363A (ko) 2006-10-24
US20070170904A1 (en) 2007-07-26
JP4721905B2 (ja) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2005078910A1 (ja) スイッチング電源装置及び携帯機器
JP4902390B2 (ja) カレント検出回路及び電流モード型スイッチングレギュレータ
KR101131262B1 (ko) 전류 모드 제어형 스위칭 레귤레이터
JP5211959B2 (ja) Dc−dcコンバータ
KR101012443B1 (ko) 전원 장치
JP5287030B2 (ja) Dc−dcコンバータおよび制御方法
JP5877074B2 (ja) コンパレータ、それを用いたオシレータ、dc/dcコンバータの制御回路、dc/dcコンバータ、電子機器
JP5151830B2 (ja) 電流モード制御型dc−dcコンバータ
US20090160416A1 (en) Dc-dc converter
US8493042B2 (en) Switching regulator
KR20090028498A (ko) 스위칭 레귤레이터 및 그 제어 방법
US8093939B2 (en) Level shift circuit and switching circuit including the same
JP4366335B2 (ja) 昇圧コンバータ
JP4487649B2 (ja) 昇降圧型dc−dcコンバータの制御装置
US8653803B2 (en) Voltage generation circuit
JP2010245675A (ja) 発振回路およびそれを用いたスイッチング電源装置
US8786162B2 (en) Device for driving a piezoelectric element
JP5104336B2 (ja) 可変容量回路、誤差増幅回路、およびスイッチング電源
JP2006238062A (ja) 増幅回路
JP2006353007A (ja) チャージポンプ式ledドライバおよびチャージポンプ回路の制御方法
JP5864193B2 (ja) スイッチング電源回路
JP2006067481A (ja) デジタル・アナログ変換回路
KR101162951B1 (ko) 부스트 컨버터의 슬로프 보상 회로
JP2006149174A (ja) チャージポンプ型昇圧回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580004596.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517913

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005703865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007170904

Country of ref document: US

Ref document number: 10589163

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067016244

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005703865

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10589163

Country of ref document: US