[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005073546A1 - Düsenkörper und ventil - Google Patents

Düsenkörper und ventil Download PDF

Info

Publication number
WO2005073546A1
WO2005073546A1 PCT/EP2005/050278 EP2005050278W WO2005073546A1 WO 2005073546 A1 WO2005073546 A1 WO 2005073546A1 EP 2005050278 W EP2005050278 W EP 2005050278W WO 2005073546 A1 WO2005073546 A1 WO 2005073546A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
injection
injection nozzle
fluid
valve
Prior art date
Application number
PCT/EP2005/050278
Other languages
English (en)
French (fr)
Inventor
Wolfgang Bloching
Robert Kuchler
Eberhard Kull
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2005073546A1 publication Critical patent/WO2005073546A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies

Definitions

  • the invention relates to a nozzle body and a valve with a housing in which a valve drive and a nozzle body are arranged.
  • the nozzle body has at least one first injection nozzle and at least one second injection nozzle, a first nozzle needle, which prevents the fluid flow through the at least first injection nozzle in its closed position and enables the fluid flow through the at least first injection nozzle to the other positions.
  • a second nozzle needle is provided, which prevents fluid flow through the at least second injection nozzle in its closed position and releases the fluid flow through the at least second injection nozzle in the other positions.
  • the valve drive is designed such that it acts directly or indirectly on the first and second nozzle needles.
  • register nozzle injection valves have become known, in the nozzle body of which two injection nozzle circuits are formed.
  • the two injection nozzle circuits are assigned first and second nozzle needles.
  • Such a nozzle body and such a valve are known from EP 0 976 649 A2.
  • the valve has a housing in which a valve drive designed as a piezo actuator and a nozzle body are arranged.
  • the nozzle body has a first row of injection holes and axially spaced therefrom a second row of injection holes.
  • a nozzle needle is guided in a recess of the nozzle body and acts via an entraining mechanism on an insert body which forms an inner nozzle needle.
  • the first nozzle needle is arranged in a recess of the valve body in such a way that, in its closed position, it prevents fluid flow through the at least first row of injection holes and in other positions it releases the fluid flow through the at least first row of injection holes.
  • the second nozzle needle prevents fluid flow through the second row of injection holes and, in other positions, releases the fluid flow through the second row of injection holes.
  • combustion processes have become known in which diesel fuel is metered in such a timely manner before top dead center of the respective piston of the cylinder that a largely homogeneous air / fuel mixture is produced.
  • Such combustion processes are used particularly in the part-load range of the internal combustion engine and have the advantage that load range, the soot emissions of the diesel engine are very much reduced.
  • the object of the invention is to provide a nozzle body and a valve which is suitable both for fluid metering for an inhomogeneous gas / fluid mixture and for forming a homogeneous gas / fluid mixture.
  • the invention is characterized by a nozzle body with at least one first injection nozzle and with at least one second injection nozzle, with a first nozzle needle, which in its closed position prevents fluid flow through the at least first injection nozzle and, in other positions, the fluid flow through the at least first injection nozzle releases.
  • a second nozzle needle is provided which prevents fluid flow through the at least second injection nozzle in its closed position and releases the fluid flow through the at least second injection nozzle in other positions.
  • the at least first injection nozzle is designed such that it measures the fluid at a jet cone angle of 120 ° and smaller.
  • the at least second injection nozzle is designed such that it measures the fluid at a jet cone angle of 140 ° and larger.
  • the invention is further characterized by a valve with a housing in which a valve drive and the nozzle body are arranged, the valve drive possibly acting indirectly on the first and second nozzle needles.
  • the jet cone angle is understood to mean that angle which corresponds to the double angle at which the fluid is metered through the at least first or second injection nozzle in relation to the axis of the respective nozzle needle.
  • the at least first injection nozzle is advantageously designed as a first row of injection nozzles.
  • the at least second injection nozzle is advantageously designed as a second row of injection nozzles.
  • the first and second row of injection nozzles are then preferably arranged in such a way that the fluid is metered conically into the respective combustion chamber of the cylinder.
  • the at least second injection nozzle ensures that the fluid can be metered to form an inhomogeneous gas / fluid mixture.
  • Injection nozzle ensures that when the fuel is suitably metered earlier with respect to the top dead center of the piston of the respective cylinder, on the one hand a homogeneous gas / fluid mixture is formed and on the other hand the metered fluid has a penetration depth that is less than that
  • the position of the first nozzle needle can be set independently of the position of the second nozzle needle.
  • the at least first injection nozzle is designed such that the fluid flows through it is measured at a beam cone angle of 90 ° and smaller.
  • the cross section released by the at least second injection nozzle is at least twice as large as the cross section released by the at least first injection nozzle. This then ensures that the amount of fluid which is metered through the at least first injection nozzle when the at least second injection nozzle is released is so significantly lower that in this case it is disadvantageous for the inhomogeneous gas / fluid mixture formation. flow is negligible.
  • the nozzle body is particularly compact if the second nozzle needle is guided coaxially in the first nozzle needle or the first nozzle needle is guided coaxially in the second nozzle needle.
  • FIG. 2 shows a first embodiment of a nozzle body of the valve according to Figure 1 and
  • FIG. 3 shows a second embodiment of the nozzle body of the valve according to FIG. 1.
  • a valve which is preferably designed as an injection valve, in particular for metering diesel fuel into the combustion chamber of a cylinder of an internal combustion engine, comprises an injector housing 1, a nozzle body 2 and an injector body 4.
  • the injector body 4 takes an actuator on, which is preferably designed as a piezo actuator 6.
  • the piezo actuator 6 preferably consists of a stack of piezoelectric elements which expand in relation to the valve in the axial direction when electrical energy is supplied.
  • the piezo actuator 6 acts on a transformer 8, which in turn acts on a servo valve 10.
  • a pressure in a control chamber 12 can be adjusted by means of the servo valve 10 by appropriately controlling fluid in a leakage chamber 11 which is formed in the injector body 4.
  • an outer nozzle needle 13 and / or an inner nozzle needle 14, which are arranged in a recess 16 of the injector body 4 then give a first row of injection nozzles 28 and / or a second row of injection nozzles 30 free or close them.
  • the inner and outer nozzle needles 14, 13 and the drive mechanism assigned to them are designed such that at least the
  • Fuel flow can be controlled by the first row of injectors 28 if at the same time the fuel flow through the second row of injectors 30 is prevented.
  • the inner nozzle needle 14 can also control the fluid flow through the first row of injection nozzles 28 and then the outer nozzle needle 13 can control the fluid flow through the second row of injection nozzles 30.
  • a spring 18 is also preferably provided, which prestresses the outer nozzle needle 13 into its closed position, in which it closes, for example, the first row of injection nozzles 28.
  • the outer nozzle needle 13 has a seat surface 20 which, in the closed position of the outer nozzle needle 13, lies sealingly on a seat area 22 of the nozzle body 2 and thus prevents the fuel flow through the first row of injection nozzles 28.
  • the inner nozzle needle 14 has a seat surface 24, which seals a further seat region 26 of the nozzle body 2 in the closed position of the inner nozzle needle 14 and thus prevents the fuel flow through the second row of injection nozzles 30.
  • the valve also includes the drive mechanism for actuating the inner nozzle needle and also the outer nozzle needle 14, 13.
  • a corresponding driver can be assigned to the inner nozzle needle 14, which is arranged and cooperates with the outer nozzle needle 13 such that after a predetermined stroke of the outer nozzle needle 13 away from its closed position, the inner nozzle needle 14 is carried along by the outer nozzle needle 13 and so also releases the second row of injectors 30.
  • a plurality of servo valves or also a plurality of piezo actuators or other corresponding drive mechanisms for preferably also independently actuating the outer and inner nozzle needles 13, 14 can be provided.
  • the valve further includes a high pressure bore 36 through which fuel is supplied under high pressure, for example 2,000 bar.
  • the first row of injection nozzles 28 is designed such that it measures fuel at a jet cone angle of 120 ° and less.
  • the jet cone angle of the first row of injection nozzles 28 is, for example, 100 °.
  • the second row of injection nozzles 30 is designed such that fuel at a jet cone angle of 140 ° and larger, e.g. 160 ° is measured.
  • the first row of injection nozzles 28 is preferably designed such that only a maximum of half of the fuel is metered through it, which is metered by the latter when the second row of injection nozzles 30 is open at the same time.
  • the jet cone angle of the first row of injection nozzles 28 is selected such that when the first row of injection nozzles 28 is released accordingly early in relation to a crankshaft angle of the internal combustion engine in which the nozzle body and thus the valve are arranged before the top dead center of the cylinder assigned to the valve, it is ensured that the penetration depth of the fuel is such that an existing oil film on the inside wall of the cylinder is not washed off.
  • the fuel can thus be injected much more strongly in the direction of the piston crown of the piston of the cylinder by setting a corresponding jet cone angle and can be evaporated substantially before reaching the piston crown.
  • the fuel jet is essentially mixed with the air in the cylinder before it strikes a part of the piston or the inner wall of the cylinder.
  • the fuel is then preferably already evaporated in the air.
  • a different jet cone angle can thus be best suited for metering the fuel for homogeneous air / fuel mixture formation.
  • tests have shown that a sufficiently good homogeneous air / fuel mixture formation is guaranteed at a jet cone angle of ⁇ 120 ° and that there is still no significant fuel precipitation on the cylinder inner walls or the piston crown.
  • the second row of injection nozzles 30 is preferably designed such that it measures the fuel at a jet cone angle of 140 140 °. As a result, a region of the piston which is favorable for the inhomogeneous air / fuel mixture formation is then hit by the fuel jet.
  • the outer nozzle needle 13 and the inner one are preferred Nozzle needle 14 can be actuated such that at least the first row of injectors can be released separately from the second row of injectors 28, 30 and vice versa.
  • the jet cone angle of the first row of injection nozzles 28 90 90 ° can be selected in a particularly advantageous manner, and a particularly favorable jet cone angle can thus be achieved, under which the path to the cylinder inner wall or the piston is particularly long if the fuel is metered in early and thus a fuel deposit on the piston or the cylinder inner wall can be reliably prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Ventil hat ein Gehäuse, in dem ein Ventilantrieb und ein Düsenkörper angeordnet sind. Der Düsenkörper (2) hat mindestens eine erste Einspritzdüse (28) und mindestens eine zweite Einspritzdüse (30). Er umfasst ferner eine erste Düsennadel (13), die in ihrer Schließposition einen Fluidfluss durch die mindestens erste Einspritzdüse (28) verhindert und in sonstigen Positionen den Fluidfluss durch die mindestens erste Einspritzdüse (28) freigibt. Ferner ist eine zweite Düsennadel (14) vorgesehen, die in ihrer Schließposition einen Fluidfluss durch die mindestens zweite Einspritzdüse verhindert und in sonstigen Positionen den Fluidfluss durch die mindestens zweite Einspritzdüse (30) freigibt. Die mindestens erste Einspritzdüse (28) ist so ausgebildet, dass durch sie das Fluid unter einem Strahlkegelwinkel (α) von 120° und kleiner zugemessen wird. Die mindestens zweite Einspritzdüse (30) ist so ausgebildet, dass durch sie das Fluid unter einem Strahlkegelwinkel (a)von 140° und größer zugemessen wird. Dem Ventil ist ferner ein Ventilantrieb, bevorzugt ein Piezoaktuator, zugeordnet, der auf die erste und zweite (13, 14) Düsennadel einwirkt.

Description

Beschreibung
Düsenkörper und Ventil
Die Erfindung betrifft einen Düsenkörper und ein Ventil mit einem Gehäuse, in dem ein Ventilantrieb und ein Düsenkörper angeordnet sind. Der Düsenkörper hat mindestens eine erste Einspritzdüse und mindestens eine zweite Einspritzdüse, eine erste Düsennadel, die in ihrer Schließposition den Fluidfluss durch die mindestens erste Einspritzdüse verhindert und den sonstigen Positionen den Fluidfluss durch die mindestens erste Einspritzdüse freigibt. Ferner ist eine zweite Düsennadel vorgesehen, die in ihrer Schließposition einen Fluidfluss durch die mindestens zweite Einspritzdüse verhindert und in den sonstigen Positionen den Fluidfluss durch die mindestens zweite Einspritzdüse freigibt. Der Ventilantrieb ist so ausgebildet, dass er mittelbar oder unmittelbar auf die erste und die zweite Düsennadel einwirkt.
Immer strengere gesetzliche Vorschriften bezüglich der zulässigen Schadstoff-Emissionen von Brennkraftmaschinen, die in Kraftfahrzeugen angeordnet sind, machen es erforderlich diverse Maßnahmen vorzunehmen, durch die die Schadsto -Emissionen gesenkt werden. Ein Ansatzpunkt hierbei ist, die von der Brennkraftmaschine erzeugten Schadstoff-Emissionen zu senken. Ein anderer Ansatzpunkt ist die von der Brennkraftmaschine erzeugten Schadsto -Emissionen mittels Abgasnachbehandlungssystemen in unschädliche Stoffe umzuwandeln. Die Bildung von Ruß ist stark abhängig von der Aufbereitung des Luft/Kraftstoff-Gemisches. Um eine entsprechend verbesserte Gemischaufbereitung zu erreichen, wird Kraftstoff zunehmend unter sehr hohem Druck zugemessen. Im Falle von Diesel- Brennkraftmaschinen betragen die Kraftstoffdrücke bis zu 2.000 bar.
Darüber hinaus sind sogenannte Registerdüsen-Einspritzventile bekannt geworden, in deren Düsenkörper zwei Einspritzdüsen- Kreise ausgebildet sind. Den zwei Einspritzdüsen-Kreisen sind erste und zweite Düsennadeln zugeordnet. Aus der EP 0 976 649 A2 ist ein derartiger Düsenkörper und ein derartiges Ventil bekannt. Das Ventil hat ein Gehäuse, in dem ein als Piezoak- tuator ausgebildeter Ventilantrieb und ein Düsenkörper angeordnet sind. Der Düsenkörper hat eine erste Reihe von Einspritzlöchern und axial beabstandet dazu eine zweite Reihe von Einspritzlöchern. In einer Ausnehmung des Düsenkörpers ist eine Düsennadel geführt, die über einen Mitnehmermec a- nismus auf einen Einsatzkörper einwirkt, der eine innere Düsennadel bildet. Die erste Düsennadel ist so in einer Ausnehmung des Ventilkörpers angeordnet, dass sie in ihrer Schließposition einen Fluidfluss durch die mindestens erste Reihe von Einspritzlöchern verhindert und in sonstigen Positionen den Fluidfluss durch die mindestens erste Reihe von Einspritzlöchern freigibt. Die zweite Düsennadel verhindert in ihrer Schließposition einen Fluidfluss durch die zweite Reihe von Einspritzlöchern und gibt in sonstigen Positionen den Fluidfluss durch die zweite Reihe von Einspritzlöchern frei.
Zur weiteren Reduzierung der Schadstoff-Emissionen sind Brennverfahren bekannt geworden, bei denen Diesel-Kraftstoff so rechtzeitig vor dem oberen Totpunkt des jeweiligen Kolbens des Zylinders zugemessen wird, dass ein weitgehend homogenes Luft/Kraftstof -Gemisch entsteht. Dazu ist es erwünscht, dass ein Großteil des Kraftstoffs verdampft. Derartige Brennverfahren finden besonders im Teillastbereich der Brennkraftmaschine Anwendung und haben den Vorteil, dass dann im Teil- lastbereich die Ruß-Emissionen der Diesel-Brennkraftmaschine sehr stark reduziert sind. Für eine maximale Leistung im Vollastbetrieb der Brennkraftmaschine ist es jedoch wünschenswert, den Kraftstoff erst kurz vor dem oberen Totpunkt des Kolbens des Zylinders und zu Beginn der Verbrennung des Luft/Kraftstoff-Gemisches zuzumessen und so ein inhomogenes Gemisch zu erhalten.
Die Aufgabe der Erfindung ist es, einen Düsenkörper und ein Ventil zu schaffen, der bzw. das sowohl für eine Fluidzumes- sung für eine inhomogene Gas/Fluid-Gemisch als auch zum Bilden eines homogenen Gas/Fluid-Gemisches geeignet ist.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung zeichnet sich aus durch einen Düsenkörper mit mindestens einer ersten Einspritzdüse und mit mindestens ei- ner zweiten Einspritzdüse, mit einer ersten Düsennadel, die in ihrer Schließposition einen Fluidfluss durch die mindestens erste Einspritzdüse verhindert und in sonstigen Positionen den Fluidfluss durch die mindestens erste Einspritzdüse freigibt. Eine zweite Düsennadel ist vorgesehen, die in ihrer Schließposition einen Fluidfluss durch die mindestens zweite Einspritzdüse verhindert und in sonstigen Positionen den Fluidfluss durch die mindestens zweite Einspritzdüse freigibt. Die mindestens erste Einspritzdüse ist so ausgebildet, dass durch sie das Fluid unter einem Strahlkegelwinkel von 120° und kleiner zugemessen wird. Die mindestens zweite Einspritzdüse ist so ausgebildet, dass durch sie das Fluid unter einem Strahlkegelwinkel von 140° und größer zugemessen wird. Die Erfindung zeichnet sich ferner aus durch ein Ventil mit einem Gehäuse, in dem ein Ventilantrieb und der Düsenkörper angeordnet sind, wobei der Ventilantrieb auf die erste und die zweite Düsennadel gegebenenfalls mittelbar einwirkt.
Als Strahlkegelwinkel wird im Rahmen der Erfindung derjenige Winkel verstanden, der dem doppelten Winkel entspricht, unter dem das Fluid durch die mindestens erste bzw. zweite Einspritzdüse bezogen auf die Achse der jeweiligen Düsennadel zugemessen wird. Die mindestens erste Einspritzdüse ist vorteilhaft ausgebildet als eine erste Reihe von Einspritzdüsen. Die mindestens zweite Einspritzdüse ist vorteilhaft ausgebildet als eine zweite Reihe von Einspritzdüsen. Die erste und zweite Reihe von Einspritzdüsen sind dann bevorzugt so ange- ordnet, dass das Fluid kegelförmig in den jeweiligen Brennraum des Zylinders zugemessen wird.
Durch die mindestens zweite Einspritzdüse ist gewährleistet, dass das Fluid zum Bilden eines inhomogenen Gas/Fluid-Ge- misches zugemessen werden kann. Durch die mindestens erste
Einspritzdüse ist gewährleistet, dass bei geeignet früher Zu- messung des Kraftstoffs bezogen auf den oberen Totpunkt des Kolbens des jeweiligen Zylinders zum einen eine homogene Gas/Fluid-Gemischbildung erfolgt und zum anderen das zugemes- sene Fluid eine Eindringtiefe hat, die geringer ist als der
Weg zu einer Zylinderinnenwand oder dem Kolben und so gewährleistet werden kann, dass ein dort vorhandener Ölfilm nicht abgewaschen wird.
In einer vorteilhaften Ausgestaltung der Erfindung ist die Position der ersten Düsennadel unabhängig von der Position der zweiten Düsennadel einstellbar. Ferner ist die mindestens erste Einspritzdüse so ausgebildet, dass durch sie das Fluid unter einem Strahlkegelwinkel von 90° und kleiner zugemessen wird. Dadurch kann zum einen für eine homogene Gas/Fluid- Gemischbildung besonders wirksam eine nahezu vollständige Verdampfung des Fluids gewährleistet werden. Andererseits kann durch entsprechendes Verschließen der mindestens ersten Einspritzdüse bei einer gewünschten inhomogenen Gas/Fluid- Gemischbildung sichergestellt werden, dass das Fluid nicht in einen Bereich des Kolbens des jeweiligen Zylinders gespritzt wird, der ungünstig ist für eine Benetzung mit Fluid.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der durch die mindestens zweite Einspritzdüse freigegebene Querschnitt mindestens doppelt so groß, wie der durch die mindestens erste Einspritzdüse freigegebene Querschnitt. Da- durch ist dann gewährleistet, dass die Fluidmenge, die durch die mindestens erste Einspritzdüse zugemessen wird, wenn gleichzeitig die mindestens zweite Einspritzdüse freigegeben ist, so deutlich geringer ist, dass ihr in diesem Fall für eine inhomogene Gas/Fluid-Gemischbildung nachteiliger Ein- fluss vernachlässigbar ist.
Besonders kompakt ist der Düsenkörper ausgebildet, wenn die zweite Düsennadel koaxial in der ersten Düsennadel geführt ist oder die erste Düsennadel koaxial in der zweiten Düsenna- del geführt ist.
Ausführungsbeispiele der Erfindung sind im folgenden anhand der schematischen Zeichnungen erläutert. Es zeigen:
Figur 1 ein Ventil,
Figur 2 eine erste Ausführungsform eines Düsenkörpers des Ventils gemäß Figur 1 und Figur 3 eine zweite Ausführungsform des Düsenkörpers des Ventils gemäß Figur 1.
Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.
Ein Ventil (Figur 1) , das bevorzugt als Einspritzventil, insbesondere zum Zumessen von Diesel-Kraftstoff in den Brennraum eines Zylinders einer Brennkraftmaschine ausgebildet ist, um- fasst ein Injektorgehäuse 1, einen Düsenkörper 2 und einen Injektorkörper 4. Der Injektorkörper 4 nimmt einen Aktuator auf, der bevorzugt als Piezoaktuator 6 ausgebildet ist. Der Piezoaktuator 6 besteht bevorzugt aus einem Stapel an piezo- elektrischen Elementen, die sich beim zuführen von elektrischer Energie in axialer Richtung bezogen auf das Ventil ausdehnen .
Der Piezoaktuator 6 wirkt ein auf einen Übertrager 8, der wiederum auf ein Servoventil 10 einwirkt. Mittels des Servo- ventils 10 ist ein Druck in einem Steuerraum 12 einstellbar durch entsprechendes Absteuern von Fluid in einen Leckageraum 11, der in dem Injektorkörper 4 ausgebildet ist. Abhängig von dem Druck in dem Steuerraum 12 geben dann eine äußere Düsen- nadel 13 und/oder eine innere Düsennadel 14, die in einer Ausnehmung 16 des Injektorkörpers 4 angeordnet sind, eine erste Reihe von Einspritzdüsen 28 und/oder eine zweite Reihe von Einspritzdüsen 30 frei oder verschließen sie. Die innere und äußere Düsennadel 14,13 und der ihnen zugeordnete An- triebsmechanismus sind so ausgebildet, dass zumindest der
Kra stofffluss durch die erste Reihe von Einspritzdüsen 28 gesteuert werden kann, wenn gleichzeitig der Kraftstofffluss durch die zweite Reihe von Einspritzdüsen 30 unterbunden ist. So kann bei entsprechender Ausgestaltung des Antriebsmechanismus auch die innere Düsennadel 14 den Fluidfluss durch die erste Reihe von Einspritzdüsen 28 steuern und dann die äußere Düsennadel 13 den Fluidfluss durch die zweite Reihe von Ein- spritzdüsen 30 steuern.
Bevorzugt ist ferner eine Feder 18 vorgesehen, die die äußere Düsennadel 13 in ihre Schließposition vorspannt, in der sie beispielsweise die erste Reihe von Einspritzdüsen 28 ver- schließt. Die äußere Düsennadel 13 hat eine Sitzfläche 20, die in der Schließstellung der äußeren Düsennadel 13 dichtend auf einem Sitzbereich 22 des Düsenkörpers 2 anliegt und so den Kraftstofffluss durch die erste Reihe von Einspritzdüsen 28 verhindert. Die innere Düsennadel 14 hat eine Sitzfläche 24, die einen weiteren Sitzbereich 26 des Düsenkörpers 2 in der Schließposition der inneren Düsennadel 14 dichtend verschließt und so den Kraftstofffluss durch die zweite Reihe von Einspritzdüsen 30 unterbindet.
Das Ventil umfasst ferner den Antriebsmechanismus zum Betätigen der inneren Düsennadel und auch der äußeren Düsennadel 14,13. So kann beispielsweise der inneren Düsennadel 14 ein entsprechender Mitnehmer zugeordnet sein, der so angeordnet ist und mit der äußeren Düsennadel 13 zusammenwirkt, dass nach einem vorgegebenen Hub der äußeren Düsennadel 13 weg von ihrer Schließposition die innere Düsennadel 14 von der äußeren Düsennadel 13 mitgenommen wird und so auch die zweite Reihe an Einspritzdüsen 30 freigibt. Gegebenenfalls können jedoch auch mehrere Servoventile oder auch mehrere Piezoaktu- atoren oder andere entsprechende Antriebsmechanismen zum bevorzugt auch unabhängig voneinander Betätigen der äußeren und inneren Düsennadel 13, 14 vorgesehen sein. Das Ventil umfasst ferner eine Hochdruckbohrung 36, über die Kraftstoff unter hohem Druck, beispielsweise 2.000 bar zugeführt wird.
Die erste Reihe von Einspritzdüsen 28 ist so ausgebildet, dass durch sie Kraftstoff unter einem Strahlkegelwinkel von 120° und weniger zugemessen wird. Im vorliegenden Ausführungsbeispiel beträgt der Strahlkegelwinkel der ersten Reihe von Einspritzdüsen 28 beispielsweise 100°.
Die zweite Reihe von Einspritzdüsen 30 ist so ausgebildet, dass durch sie Kraftstoff unter einem Strahlkegelwinkel von 140° und größer, so z.B. 160° zugemessen wird.
Bevorzugt ist die erste Reihe von Einspritzdüsen 28 so ausgebildet, dass durch sie lediglich maximal die Hälfte des Kraftstoffs zugemessen wird, der bei gleichzeitig geöffneter zweiter Reihe von Einspritzdüsen 30 durch diese zugemessen wird.
Der Strahlkegelwinkel der ersten Reihe von Einspritzdüsen 28 ist so gewählt, dass bei entsprechend frühem Freigeben der ersten Reihe von Einspritzdüsen 28 bezogen auf einen Kurbelwellenwinkel der Brennkraftmaschine, in der der Düsenkörper und somit das Ventil eingeordnet sind vor dem oberen Totpunkt des dem Ventil zugeordneten Zylinders, sichergestellt ist, dass die Eindringtiefe des Kraftstoffs so ist, dass ein vorhandener Ölfilm an der Zylinderinnenwand des Zylinders nicht abgewaschen wird. Der Kraftstoff kann so durch Einstellen ei- nes entsprechenden Strahlkegelwinkels auch deutlich stärker in Richtung des Kolbenbodens des Kolbens des Zylinders eingespritzt werden und bereits vor dem Erreichen des Kolbenbodens im wesentlichen verdampft sein. Für eine homogene Luft/Kraftstoff-Gemischbildung ist es wesentlich, dass der Kraftstoffstrahl im wesentlichen mit der in dem Zylinder befindlichen Luft vermischt ist, bevor er auf einen Teil des Kolbens oder der Zylinderinnenwand trifft. Bevorzugt ist der Kraftstoff dann auch bereits in der Luft verdampft. Je nach Geometrie des Zylinders und dem Bereich des Kurbelwellenwinkels, währenddessen der Kraftstoff in den Zylinder zugemessen wird, kann somit ein unterschiedlicher Strahlkegelwinkel am besten für die Zumessung des Kraftstoffs zur homogenen Luft/Kraftstoff-Gemischbildung am besten geeignet sein. Versuche haben jedoch ergeben, dass bei einem Strahlkegelwinkel ≤ 120° eine ausreichend gute homogene Luft/Kraftstoff-Gemischbildung gewährleistet ist und dennoch kein nennenswerter Kraftstoffniederschlag an den Zylinderinnenwänden oder dem Kolbenboden entsteht.
Durch das entsprechend kleine Dimensionieren des Querschnitts der ersten Reihe von Einspritzdüsen 28 im Vergleich zu der zweiten Reihe von Einspritzdüsen 30 kann dann gewährleistet werden, dass wenn sowohl die erste Reihe als auch die zweite Reihe der Einspritzdüsen 28, 30 freigegeben sind, kein relevanter Anteil an Kraftstoff in einen Bereich des Kolbens trifft, der ungünstig dafür ist.
Die zweite Reihe an Einspritzdüsen 30 ist bevorzugt so ausgebildet, dass durch sie der Kraftstoff unter einem Strahlkegelwinkel von ≥ 140° zugemessen wird. Dadurch wird dann für die inhomogene Luft/Kraftstoff-Gemischbildung ein dafür güns- tiger Bereich des Kolbens von dem Kraftstoffstrahl getroffen.
In einer weiteren Ausführungsform des Düsenkörpers gemäß Figur 3 sind bevorzugt die äußere Düsennadel 13 und die innere Düsennadel 14 so betätigbar, dass zumindest die erste Reihe von Einspritzdüsen getrennt von der zweiten Reihe von Einspritzdüsen 28, 30 und umgekehrt freigebbar ist. In diesem Fall kann dann besonders vorteilhaft der Strahlkegelwinkel der ersten Reihe von Einspritzdüsen 28 ≤ 90° gewählt werden und so ein besonders günstiger Strahlkegelwinkel erreicht werden, unter dem der Weg hin zu der Zylinderinnenwand oder dem Kolben bei entsprechend frühem Zumessen des Kraftstoffs besonders weit ist und somit ein Kraftstoffniederschlag an dem Kolben oder der Zylinderinnenwand sicher verhindert werden kann. In diesem Fall kann es dann auch unerheblich sein, wie die Querschnitte der ersten Reihe von Einspritzdüsen im Vergleich zu der zweiten Reihe von Einspritzdüsen dimensioniert sind.

Claims

Patentansprüche
1. Düsenkörper mit mindestens einer ersten Einspritzdüse und mit mindestens einer zweiten Einspritzdüse, mit einer ers- ten Düsennadel, die in ihrer Schließposition einen Fluidfluss durch die mindestens erste Einspritzdüse verhindert und in sonstigen Positionen den Fluidfluss durch die mindestens erste Einspritzdüse freigibt, und einer zweiten Düsennadel, die in ihrer Schließposition einen Fluidfluss durch die mindestens zweite Einspritzdüse verhindert und in sonstigen Positionen den Fluidfluss durch die mindestens zweite Einspritzdüse freigibt, wobei die mindestens erste Einspritzdüse so ausgebildet ist, dass durch sie das Fluid unter einem Strahlkegelwinkel (ex) von 120° und klei- ner zugemessen wird, und die mindestens zweite Einspritzdüse so ausgebildet ist, dass durch sie das Fluid unter einem Strahlkegelwinkel (α) von 140" und größer zugemessen wird.
2. Düsenkörper nach Anspruch 1, bei dem die Position der ersten Düsennadel unabhängig von der Position der zweiten Düsennadel einstellbar ist und bei dem die mindestens erste Einspritzdüse so ausgebildet ist, dass durch sie der Kraftstoff unter einem Strahlke- gelwinkel ( ) von 90° und kleiner zugemessen wird.
3. Düsenkörper nach einem der vorstehenden Ansprüche, bei dem der durch die mindestens erste Einspritzdüse freigegebene Querschnitt mindestens doppelt so groß ist, wie der durch die mindestens zweite Einspritzdüse freigegebene Querschnitt .
4. Düsenkörper nach einem der vorstehenden Ansprüche, bei dem die zweite Düsennadel koaxial in der ersten Düsennadel geführt ist oder bei dem die erste Düsennadel koaxial in der zweiten Düsennadel geführt ist.
5. Ventil mit einem Gehäuse (1), in dem ein Ventilantrieb und ein Düsenkörper (2) nach einem der vorstehenden Ansprüche angeordnet sind, wobei der Ventilantrieb auf die erste und die zweite Düsennadel, gegebenen alls mittelbar, einwirkt.
PCT/EP2005/050278 2004-02-02 2005-01-24 Düsenkörper und ventil WO2005073546A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005125 2004-02-02
DE102004005125.9 2004-02-02

Publications (1)

Publication Number Publication Date
WO2005073546A1 true WO2005073546A1 (de) 2005-08-11

Family

ID=34813090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050278 WO2005073546A1 (de) 2004-02-02 2005-01-24 Düsenkörper und ventil

Country Status (1)

Country Link
WO (1) WO2005073546A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018438A1 (en) * 2004-08-18 2006-02-23 Robert Bosch Gmbh Coaxial areal contact dual-resting diameter injector
FR2895025A1 (fr) * 2005-12-21 2007-06-22 Renault Sas Procede d'injection de carburant dans une chambre de combustion d'un moteur

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1293088A (en) * 1969-06-18 1972-10-18 Ffsa Improvements in or relating to fuel injectors
US4197997A (en) * 1978-07-28 1980-04-15 Ford Motor Company Floating ring fuel injector valve
JPS61135979A (ja) * 1984-12-04 1986-06-23 Nissan Motor Co Ltd デイ−ゼル機関の燃料噴射弁
WO1987006308A1 (en) * 1986-04-15 1987-10-22 Voest-Alpine Automotive Gesellschaft M.B.H. Injection valve for internal combustion engines
JPH04140468A (ja) * 1990-09-29 1992-05-14 Mazda Motor Corp 燃料噴射ノズル
DE4210563A1 (de) * 1991-04-15 1992-10-22 Volkswagen Ag Kraftstoffeinspritzduese fuer eine mit vor- und haupteinspritzung arbeitende brennkraftmaschine
JPH09236067A (ja) * 1996-02-28 1997-09-09 Isuzu Motors Ltd 燃料噴射ノズル
JPH09303234A (ja) * 1996-05-10 1997-11-25 Isuzu Motors Ltd 燃料噴射ノズル
DE19642513A1 (de) * 1996-10-15 1998-04-16 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0978649A2 (de) * 1998-08-06 2000-02-09 Siemens Aktiengesellschaft Kraftstoffeinspritzdüse
EP1059437A1 (de) * 1999-06-09 2000-12-13 Delphi Technologies, Inc. Kraftstoffeinspritzventil
US6513487B1 (en) * 1999-04-13 2003-02-04 Daimlerchrysler Ag Method for operating a reciprocating-piston internal combustion engine
US20030094517A1 (en) * 2001-11-16 2003-05-22 Masaaki Kato Fuel injection nozzle
DE10210976A1 (de) * 2002-03-13 2003-09-25 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US20040055562A1 (en) * 2002-09-25 2004-03-25 Chris Stewart Mixed mode fuel injector with individually moveable needle valve members

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1293088A (en) * 1969-06-18 1972-10-18 Ffsa Improvements in or relating to fuel injectors
US4197997A (en) * 1978-07-28 1980-04-15 Ford Motor Company Floating ring fuel injector valve
JPS61135979A (ja) * 1984-12-04 1986-06-23 Nissan Motor Co Ltd デイ−ゼル機関の燃料噴射弁
WO1987006308A1 (en) * 1986-04-15 1987-10-22 Voest-Alpine Automotive Gesellschaft M.B.H. Injection valve for internal combustion engines
JPH04140468A (ja) * 1990-09-29 1992-05-14 Mazda Motor Corp 燃料噴射ノズル
DE4210563A1 (de) * 1991-04-15 1992-10-22 Volkswagen Ag Kraftstoffeinspritzduese fuer eine mit vor- und haupteinspritzung arbeitende brennkraftmaschine
JPH09236067A (ja) * 1996-02-28 1997-09-09 Isuzu Motors Ltd 燃料噴射ノズル
JPH09303234A (ja) * 1996-05-10 1997-11-25 Isuzu Motors Ltd 燃料噴射ノズル
DE19642513A1 (de) * 1996-10-15 1998-04-16 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0978649A2 (de) * 1998-08-06 2000-02-09 Siemens Aktiengesellschaft Kraftstoffeinspritzdüse
US6513487B1 (en) * 1999-04-13 2003-02-04 Daimlerchrysler Ag Method for operating a reciprocating-piston internal combustion engine
EP1059437A1 (de) * 1999-06-09 2000-12-13 Delphi Technologies, Inc. Kraftstoffeinspritzventil
US20030094517A1 (en) * 2001-11-16 2003-05-22 Masaaki Kato Fuel injection nozzle
DE10210976A1 (de) * 2002-03-13 2003-09-25 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US20040055562A1 (en) * 2002-09-25 2004-03-25 Chris Stewart Mixed mode fuel injector with individually moveable needle valve members

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 331 (M - 533) 11 November 1986 (1986-11-11) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 416 (M - 1304) 2 September 1992 (1992-09-02) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01 30 January 1998 (1998-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 03 27 February 1998 (1998-02-27) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018438A1 (en) * 2004-08-18 2006-02-23 Robert Bosch Gmbh Coaxial areal contact dual-resting diameter injector
FR2895025A1 (fr) * 2005-12-21 2007-06-22 Renault Sas Procede d'injection de carburant dans une chambre de combustion d'un moteur

Similar Documents

Publication Publication Date Title
EP2480783B1 (de) Kraftstoff-einspritzventil für eine brennkraftmaschine
DE69508050T2 (de) Einspritzeinrichtung für eine Brennkraftmaschine
WO2003078824A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10353045A1 (de) Kraftstoffeinspritzventil
WO2005073546A1 (de) Düsenkörper und ventil
DE102004041172B3 (de) Einspritzventil
DE102004046191B3 (de) Servoventil und Einspritzventil
DE102004014198B3 (de) Servoventil und Einspritzventil
DE102007013244A1 (de) Rotierende Einspritzstrahlen
EP1481159B1 (de) Brennstoffeinspritzventil
DE102004054589B4 (de) Steuerventil und Einspritzventil
DE102004036367B3 (de) Einspritzventil
DE10042309A1 (de) Zumessventil
DE102004049702B3 (de) Servoventil und Einspritzventil
DE102005025638B4 (de) Schaltventil und Einspritzventil und ein Verfahren zum Steuern eines Einspritzventils
DE102004060180B4 (de) Düsenbaugruppe und Einspritzventil
EP1668240B1 (de) Brennstoffeinspritzventil
DE102009000281A1 (de) Kraftstoff-Injektor
EP1482165A1 (de) Mehrlocheinspritzdüse für Brennkraftmaschinen und Verfahren zum Betreiben einer Mehrlocheinspritzdüse
WO2005075810A1 (de) Einspritzventil
DE102005005713A1 (de) Düsenbaugruppe und Einspritzventil
DE102005022535A1 (de) Einspritzventil und Düsenbaugruppe für ein Einspritzventil
WO2008095743A1 (de) Injektor zum einspritzen von kraftstoff in brennräume von brennstoffmaschinen
DE102005004405A1 (de) Düsenbaugruppe und Einspritzventil
WO2005119045A1 (de) Einspritzventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase