[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005073425A1 - Ferrous layer for a sliding surface, in particular for cylinder running surfaces on engine blocks, applied by means of thermal spraying - Google Patents

Ferrous layer for a sliding surface, in particular for cylinder running surfaces on engine blocks, applied by means of thermal spraying Download PDF

Info

Publication number
WO2005073425A1
WO2005073425A1 PCT/EP2005/050357 EP2005050357W WO2005073425A1 WO 2005073425 A1 WO2005073425 A1 WO 2005073425A1 EP 2005050357 W EP2005050357 W EP 2005050357W WO 2005073425 A1 WO2005073425 A1 WO 2005073425A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
containing layer
heat input
metal carbides
metal
Prior art date
Application number
PCT/EP2005/050357
Other languages
German (de)
French (fr)
Inventor
Clemens Verpoort
Maik Broda
Tobias Abeln
Gerhard Flores
Original Assignee
Ford Global Technologies, Llc, Subsidiary Of Ford Motor Company
Gehring Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies, Llc, Subsidiary Of Ford Motor Company, Gehring Gmbh & Co. Kg filed Critical Ford Global Technologies, Llc, Subsidiary Of Ford Motor Company
Priority to DE502005009857T priority Critical patent/DE502005009857D1/en
Priority to EP05707873A priority patent/EP1711642B1/en
Priority to AT05707873T priority patent/ATE473311T1/en
Publication of WO2005073425A1 publication Critical patent/WO2005073425A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Definitions

  • Iron-containing layer of a sliding surface applied by thermal spraying in particular for cylinder running surfaces of engine blocks
  • the invention relates to an iron-containing layer of a sliding surface applied by thermal spraying, in particular for cylinder running surfaces of engine blocks, according to the preamble of claim 1 and to a method for producing and using this layer.
  • WO 03/106718 a generic iron-containing layer is known, which is applied by thermal spraying and which has an amorphous structure with finely divided, nano-crystalline metal bonds and / or metal carbides.
  • a layer is well suited as a sliding surface due to its high hardness.
  • the layer in the area of the sliding surfaces is applied to the machine parts to be coated by thermal spraying.
  • the resulting surface of the sprayed-on layer is relatively rough and, in order to serve as a sliding surface, must be smoothed by surface treatment.
  • Such machining is preferably carried out by honing, but other machining and non-machining methods of surface machining are also possible.
  • the sprayed-on layer must be partially removed. In order for this to be possible, compromises between strength and machinability must be found in the formation of the sprayed-on layer, above all with regard to the total manufacturing effort and the associated manufacturing costs. As a result, the sliding surface formed does not always have the best possible properties with regard to wear resistance and / or sliding friction, especially in connection with a lubricant, which it could have due to the superior properties of the iron-containing layer.
  • the iron-containing layer thus has further nano-crystalline metal borides and / or metal carbides which have arisen after the application of the iron-containing layer and a subsequent surface treatment by selective heat input into the iron-containing layer.
  • Another advantage is that the surface treatment is carried out after the iron-containing layer has been applied.
  • the surface of the iron-containing layer can thus be finished as far as possible after the application, so that the final surface roughness and / or the final layer thickness is achieved.
  • the layer is applied in such a way that a favorable surface treatment, e.g. B. in terms of accuracy and / or costs.
  • the subsequent heat input causes a change in the properties of the layer, e.g. B. greater hardness, better wear behavior and / or better sliding friction behavior in the area of heat input.
  • the post-processing of the surface that may be necessary to z. B.
  • removing burrs or achieving a lower surface roughness can then be limited to a minimum.
  • heat e.g. B. with laser light
  • no roughening the Surface noticeable. All in all, this enables high-precision production of a sliding surface with the best possible wear and friction behavior at low production costs.
  • the surface treatment can be a mechanical finishing of the iron-containing layer. These are e.g. B. honing, grinding or polishing. These tried and tested methods allow the surface of a sliding layer to be produced inexpensively and precisely. So that the sliding surface can be essentially finished, that is, a subsequent processing after the heat input is no longer necessary or is limited to a small amount of post-processing to z. B. to remove burrs caused by heat input.
  • finely divided nanocrystalline metal borides and / or metal carbides are advantageously eliminated from the amorphous structure of the iron-containing layer.
  • the iron-containing layer can thus have a relatively high proportion of crystalline and / or partially crystalline structure when applied. This allows the cheap mechanical processing.
  • the heat input creates additional nanocrystalline metal borides and / or metal carbides, which significantly increases the strength of the iron-containing layer in the area of the heat input.
  • the iron-containing layer preferably has a hardness of 1000 to 1250 HV 0.05 in the area of the heat input, but the hardness can easily be set in the range between 800 HV 0.05 and 1500 HV 0.05 by appropriate process parameters and material composition.
  • Such hardness is currently z. B. in hard metal tools based on tungsten carbide / cobalt, and can now also be used for sliding surfaces over a large area. Due to the high hardness, the iron-containing layer is extremely wear-resistant.
  • the metal borides or metal carbides preferably have a size of 60 to 130 nm. Due to the small size, the friction is reduced and the hardness increased.
  • the selective heat input advantageously has the shape of geometric figures, regular patterns and / or irregular patterns.
  • FIGS. 1-10 can be made by continuously introducing heat, in that a selective heat source is guided over the iron-containing layer in accordance with the shape of the figures and patterns.
  • the heat input can also be carried out discontinuously, for. B. to create a dot pattern.
  • adjacent areas can be created on the sliding surfaces, each of which has different properties.
  • the iron-containing layer has ablutions that have arisen from the selective heat input. This can e.g. B. done by removing material on the surface of the layer by evaporation. The removals can again be in the form of figures or patterns, as previously described. Such abrasion on sliding surfaces in the form of lubrication pockets, oil collecting grooves, or the like can improve the sliding friction properties.
  • Finely distributed nanocrystalline metal borides and / or metal carbides are preferably precipitated from the amorphous matrix of the iron-containing layer at the edge of the removal. So that the wear resistance of the edge, for. B. a lubrication pocket, significantly increased and it is ensured that the function of the lubrication pocket, etc. is reliably performed even after a long period of operation.
  • the removal preferably takes the form of local depressions.
  • Such depressions are known from EP1275864.
  • the disclosure content of this document is incorporated into the disclosure of this application by reference.
  • the depressions have a maximum extension of less than 2 mm. It has proven to be advantageous dimensions for lubrication pockets if the depressions have a maximum length of 2 mm, a maximum width of 70 ⁇ m and a maximum depth of 40 ⁇ m. This represents a good compromise between the tribological properties and the manufacturing costs of the lubrication pockets. Because of these dimensions, individually or in combination, the optimal function of the recesses as lubrication pockets of the sliding surface is guaranteed. These dimensions are not to be understood as restrictive. These dimensions can also be larger or smaller for certain applications. In particular, there is no particular dimensional ratio of the depressions to be observed. Rather, each of the dimensions length, width and depth can be adapted to the requirements of the respective recess.
  • the heat is preferably introduced by means of laser light and / or electron beams.
  • These energy sources can selectively selectively introduce heat or energy into the iron-containing layer in a small area, as z. B. is required to produce the wells described above.
  • these energy sources in a confined space, such as. B. within a cylinder race of an internal combustion engine or a hydraulic cylinder can be used to produce the inventive iron-containing layer.
  • inventive iron-containing layer can be produced in any suitable combination with the method for producing an iron-containing layer, and conversely the inventive method can also be used for producing an iron-containing layer.
  • the inventive iron-containing layer is used in the production of sliding surfaces on machine parts, in particular connecting rod bearings, crankshaft bearings, piston rings, cylinder running surfaces and pistons.
  • machine parts in particular connecting rod bearings, crankshaft bearings, piston rings, cylinder running surfaces and pistons.
  • this includes all machines where such machine components are located, e.g. B. hydraulic cylinders, gears, shaft bearings.
  • Preferred applications are highly loaded cylinder running surfaces of supercharged diesel and petrol engines. Due to the high mechanical bracing of the Layer with the base material, the coating is particularly suitable for thermal shock-stressed motors. Thermal shock occurs when, during a cold start at low ambient temperatures, the engine revs quickly to maximum speed under load. Since the iron-containing layer has an amorphous structure with finely divided, nano-crystalline metal bonds and / or metal carbides, the sliding surface is highly resilient, since a layer with extremely high hardness is created due to the nano-crystalline precipitates of the metal borides and metal carbides. Furthermore, the borides lead to a very low coefficient of friction, so that this layer also has excellent sliding properties.
  • a preferred use of the iron-containing layer according to the invention can be used in the repair of worn sliding surfaces.
  • the layer has an excellent mechanical connection or clinging to the base material due to the amorphous solidification and is therefore able to be applied subsequently.
  • the layer can be applied to a reworked, cleaned and / or blasted surface. This allows the layer to be used flexibly for any repair work on sliding surfaces. Due to the high hardness and strength of the layer, any weakening of the base material due to wear or subsequent removal is compensated for, so that the original strength of the base material can almost be restored.
  • Application example is the critical land area between cylinder bores of an engine block.
  • FIG. 1 shows a schematic section through an iron-containing layer
  • Fig. 2 is a microscope image of an iron-containing layer in the area of heat input.
  • Figure 1 shows a base material 1, on which an iron-containing layer 2 is applied.
  • Layer 2 is already finely machined on surface 3 and has reached its final surface finish as a sliding surface.
  • a laser beam 4 is used to introduce heat into the layer 2 with a high energy density, thereby creating a region 5 of the heat input which is approximately limited by the boundary line 6.
  • the material of layer 2 partially evaporates and the recess 7 is formed, which preferably extends in the form of a lubrication pocket over layer 2.
  • a width b of up to 70 ⁇ m and a depth t of up to 40 ⁇ m have proven to be advantageous dimensions.
  • the longitudinal extent is not shown here, but a maximum length of not more than 2 mm has proven advantageous here.
  • FIG. 2 shows a microscope image of an iron-containing layer in the area of the heat input.
  • Such a material structure results, for example, in an area which is marked with the detail 8 in FIG. 1.
  • the iron-containing layer 2 applied has an area 5 of the heat input. This was created in that the recess 7 was produced by material evaporation due to heat input by means of a laser beam, not shown.
  • the area 5 shows, especially in the edge zone 9 of the recess 7, an increased density of finely divided nano-crystalline metal bonds 10 and metal carbides 10 compared to the base material of the layer 2, where no heat treatment was carried out.
  • the edge zone 9 in the region 5 of the heat treatment thus has an even greater hardness than the non-heat-treated layer 2 itself.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Sliding-Contact Bearings (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

The invention relates to a ferrous layer on a sliding surface, applied by thermal spraying and a method for production thereof. The ferrous layer comprises further metallic, metalloid and/or non-metallic elements and has an amorphous structure with finely-distributed, nano-crystalline metal borides and/or metal carbides. The invention is characterised in that the ferrous layer comprises further nanocrystalline metal borides and/or metal carbides which can be generated by point heat introduction into the ferrous layer, after application of the ferrous layer and a subsequent surface treatment, in particular, honing. A sliding surface with high wear resistance, reduced friction, low production complexity and high dimensional accuracy can be generated by means of the point heat introduction. Said layer is particularly suitable for the cylinder running surfaces of internal combustion engines.

Description

Durch thermisches Spritzen aufgebrachte eisenhaltige Schicht einer Gleitfläche, insbesondere für Zylinderlaufflächen von Motorblöcken Iron-containing layer of a sliding surface applied by thermal spraying, in particular for cylinder running surfaces of engine blocks
Die Erfindung betrifft eine durch thermisches Spritzen aufgebrachte eisenhaltige Schicht einer Gleitfläche, insbesondere für Zylinderlaufflächen von Motorblöcken nach dem Oberbegriff des Anspruches 1 und ein Verfahren zur Herstellung sowie die Verwendung dieser Schicht.The invention relates to an iron-containing layer of a sliding surface applied by thermal spraying, in particular for cylinder running surfaces of engine blocks, according to the preamble of claim 1 and to a method for producing and using this layer.
Aus der WO 03/106718 ist eine gattungsbildende eisenhaltige Schicht bekannt, die durch thermisches Spritzen aufgetragen wird und die eine amorphe Struktur mit feinverteilten, nano-kristallinen Metallbonden und/oder Metallkarbiden aufweist. Eine solche Schicht ist aufgrund der hohen Härte gut als Gleitfläche geeignet. Dazu wird die Schicht im Bereich der Gleitflächen auf die zu beschichtenden Maschinenteile durch thermisches Spritzen aufgetragen. Die sich ergebende Oberfläche der aufgespritzten Schicht ist relativ rauh und muß, um als Gleitfläche dienen zu können, durch eine Oberflächenbearbeitung geglättet werden. Bevorzugt erfolgt eine solche Bearbeitung durch Honen, es sind aber auch andere spanabhebende und nichtspanende Verfahren der Oberflächenbearbeitung möglich.From WO 03/106718 a generic iron-containing layer is known, which is applied by thermal spraying and which has an amorphous structure with finely divided, nano-crystalline metal bonds and / or metal carbides. Such a layer is well suited as a sliding surface due to its high hardness. For this purpose, the layer in the area of the sliding surfaces is applied to the machine parts to be coated by thermal spraying. The resulting surface of the sprayed-on layer is relatively rough and, in order to serve as a sliding surface, must be smoothed by surface treatment. Such machining is preferably carried out by honing, but other machining and non-machining methods of surface machining are also possible.
Durch die Oberflächenbearbeitung muß die aufgespritzte Schicht teilweise abgetragen werden. Damit dies möglich ist, müssen bei der Bildung der aufgespritzten Schicht Kompromisse zwischen Festigkeit und Bearbeitbarkeit gefunden werden, vor allem auch hinsichtlich des gesamten Fertigungsaufwandes und der damit verbundenen Herstellungskosten. Dadurch weist die gebildete Gleitfläche nicht immer die bestmöglichen Eigenschaften hinsichtlich Verschleißfestigkeit und/oder Gleitreibung, vor allem auch in Verbindung mit einem Schmiermittel, auf, die sie aufgrund der überlegenen Eigenschaften der eisenhaltigen Schicht haben könnte.Due to the surface treatment, the sprayed-on layer must be partially removed. In order for this to be possible, compromises between strength and machinability must be found in the formation of the sprayed-on layer, above all with regard to the total manufacturing effort and the associated manufacturing costs. As a result, the sliding surface formed does not always have the best possible properties with regard to wear resistance and / or sliding friction, especially in connection with a lubricant, which it could have due to the superior properties of the iron-containing layer.
Demgemäß ist es die Aufgabe der Erfindung, eine eisenhaltige Schicht so zu verbessern, daß sie insbesondere bei der Verwendung als Gleitfläche höhere Verschleißfestigkeit und/oder bessere Gleitreibungseigenschaften aufweist und möglichst kostengünstig gefertigt werden kann.Accordingly, it is the object of the invention to improve an iron-containing layer so that it has greater wear resistance and / or better sliding friction properties, particularly when used as a sliding surface, and can be manufactured as inexpensively as possible.
Gelöst wird diese Aufgabe mit den Merkmalen des Anspruches 1 bzw. 10.This object is achieved with the features of claims 1 and 10, respectively.
Erfindungsgemäß weist die eisenhaltige Schicht damit weitere nano-kristalline Metallboride und/oder Metallkarbide auf, die nach dem Auftrag der eisenhaltigen Schicht und einer anschließenden Oberflächenbearbeitung durch punktuellen Wärmeeintrag in die eisenhaltige Schicht entstanden sind.According to the invention, the iron-containing layer thus has further nano-crystalline metal borides and / or metal carbides which have arisen after the application of the iron-containing layer and a subsequent surface treatment by selective heat input into the iron-containing layer.
Indem nach dem Auftrag der eisenhaltigen Schicht und einer anschließenden Oberflächenbearbeitung durch punktuellen Wärmeeintrag in die eisenhaltige Schicht weitere nano-kristalline Metallboride und / oder Metallkarbide entstehen, können in ausgewählten Bereichen der Gleitfläche, z. B. im hochbelasteten oberen und unteren Umkehrpunkt einer Zylinderlaufbahn, zusätzliche harte Bereiche erzeugt werden. Der punktuelle Wärmeeintrag erlaubt es auch, kleine lokale Stellen mit größerer Härte und/oder geänderten Oberflächeneigenschaften zu erzeugen. Dabei kann die Ausdehnung des punktuellen Wärmeeintrages wesentlich geringer als die gesamte Ausdehnung der Gleitfläche sein.By the fact that after the application of the iron-containing layer and a subsequent surface treatment by selective heat input into the iron-containing layer, further nano-crystalline metal borides and / or metal carbides are formed, in selected areas of the sliding surface, e.g. B. in the highly loaded upper and lower reversal point of a cylinder barrel, additional hard areas are generated. The selective heat input also makes it possible to create small local spots with greater hardness and / or changed surface properties. The expansion of the selective heat input can be significantly less than the total expansion of the sliding surface.
Ein weiterer Vorteil ist, daß die Oberflächenbearbeitung nach dem Auftrag der eisenhaltigen Schicht erfolgt. Damit kann die Oberfläche der eisenhaltigen Schicht nach dem Auftrag soweit wie möglich fertigbearbeitet werden, so daß die endgültige Oberflächenrauhigkeit und/oder die endgültige Schichtdicke erreicht wird. Da die eisenhaltige Schicht nach dem Auftragen noch nicht ihre endgültigen Eigenschaften aufweisen muß, wird die Schicht so aufgetragen, daß eine günstige Oberflächenbearbeitung, z. B. hinsichtlich Genauigkeit und/oder Kosten, möglich ist. Der nachfolgende Wärmeintrag bewirkt eine Änderung der Eigenschaften der Schicht, z. B. größere Härte, besseres Verschleißverhalten und/oder besseres Gleitreibungsverhalten im Bereich des Wärmeeintrags. Die dann noch ggf. erforderliche Nachbearbeitung der Oberfläche, um z. B. Grate abzutragen oder eine geringere Rauhtiefe zu erreichen, kann dann auf ein Minimum beschränkt werden. In der Regel ist bei Wärmeeintrag, z. B. mit Laserlicht, keine Aufrauhung der Oberfläche feststellbar. Damit wird insgesamt eine hochgenaue Fertigung einer Gleitfläche mit bestmöglichen Verschleiß- und Reibungsverhalten bei geringen Fertigungskosten ermöglicht.Another advantage is that the surface treatment is carried out after the iron-containing layer has been applied. The surface of the iron-containing layer can thus be finished as far as possible after the application, so that the final surface roughness and / or the final layer thickness is achieved. Since the iron-containing layer does not have to have its final properties after application, the layer is applied in such a way that a favorable surface treatment, e.g. B. in terms of accuracy and / or costs. The subsequent heat input causes a change in the properties of the layer, e.g. B. greater hardness, better wear behavior and / or better sliding friction behavior in the area of heat input. The post-processing of the surface that may be necessary to z. B. removing burrs or achieving a lower surface roughness can then be limited to a minimum. In general, when heat is introduced, e.g. B. with laser light, no roughening the Surface noticeable. All in all, this enables high-precision production of a sliding surface with the best possible wear and friction behavior at low production costs.
Dabei kann die Oberflächenbearbeitung eine mechanische Feinbearbeitung der eisenhaltigen Schicht sein. Dies sind z. B. Honen, Schleifen oder Polieren. Diese erprobten Verfahren erlauben ein kostengünstiges und genaues Herstellen der Oberfläche einer Gleitschicht. Damit kann die Gleitfläche im wesentlichen fertigbearbeitet werden, daß heißt eine nachträgliche Bearbeitung nach dem Wärmeeintrag ist nicht mehr notwendig bzw. beschränkt sich auf eine geringe Nachbearbeitung, um z. B. beim Wärmeeintrag entstandene Grate zu entfernen.The surface treatment can be a mechanical finishing of the iron-containing layer. These are e.g. B. honing, grinding or polishing. These tried and tested methods allow the surface of a sliding layer to be produced inexpensively and precisely. So that the sliding surface can be essentially finished, that is, a subsequent processing after the heat input is no longer necessary or is limited to a small amount of post-processing to z. B. to remove burrs caused by heat input.
Vorteilhaft werden im Bereich des Wärmeeintrags feinverteilte nanokristalline Metallboride und/oder Metallkarbide aus der amorphen Struktur der eisenhaltigen Schicht ausgeschieden. Damit kann die eisenhaltige Schicht beim Auftragen einen relativ hohen Anteil an kristalliner und/oder teilkristalliner Struktur aufweisen. Dies erlaubt die günstige mechanische Bearbeitung. Durch den Wärmeeintrag entstehen zusätzliche nanokristalline Metallboride und/oder Metallkarbide, die die Festigkeit der eisenhaltigen Schicht im Bereich des Wärmeeintrags wesentlich erhöht.In the area of heat input, finely divided nanocrystalline metal borides and / or metal carbides are advantageously eliminated from the amorphous structure of the iron-containing layer. The iron-containing layer can thus have a relatively high proportion of crystalline and / or partially crystalline structure when applied. This allows the cheap mechanical processing. The heat input creates additional nanocrystalline metal borides and / or metal carbides, which significantly increases the strength of the iron-containing layer in the area of the heat input.
Bevorzugt weist die eisenhaltige Schicht im Bereich des Wärmeeintrags eine Härte von 1000 bis 1250 HV 0,05 auf, jedoch kann die Härte durch entsprechende Prozeßparameter und Materialzusammensetzung ohne weiteres im Bereich zwischen 800 HV 0,05 und 1500 HV 0,05 eingestellt werden. Eine solche Härte ist bisher z. B. bei Hartmetallwerkzeugen auf Basis von Wolfram-Karbid / Kobalt bekannt, und kann jetzt auch für Gleitflächen großflächig angewendet werden. Aufgrund der hohen Härte ist die eisenhaltige Schicht extrem verschleißfest. Die Metallboride bzw. Metallkarbide weisen bevorzugt eine Größe von 60 bis 130 nm auf. Aufgrund der geringen Größe wird die Reibung reduziert und die Härte gesteigert. Vorteilhaft weist der punktuelle Wärmeeintrag die Form von geometrischen Figuren, regelmäßigen Mustern und/oder unregelmäßigen Mustern auf. Diese Figuren oder Muster können durch kontinuierlichen Wärmeintrag erfolgen, indem eine punktuelle Wärmequelle über die eisenhaltige Schicht hinweg entsprechend der Form der Figuren und Muster geführt wird. Der Wärmeeintrag kann auch diskontinuierlich erfolgen, z. B. um ein Punktmuster zu erzeugen. Mittels dieser Figuren und Muster können benachbarte Bereiche auf den Gleitflächen erzeugt werden, die jeweils andere Eigenschaften aufweisen.The iron-containing layer preferably has a hardness of 1000 to 1250 HV 0.05 in the area of the heat input, but the hardness can easily be set in the range between 800 HV 0.05 and 1500 HV 0.05 by appropriate process parameters and material composition. Such hardness is currently z. B. in hard metal tools based on tungsten carbide / cobalt, and can now also be used for sliding surfaces over a large area. Due to the high hardness, the iron-containing layer is extremely wear-resistant. The metal borides or metal carbides preferably have a size of 60 to 130 nm. Due to the small size, the friction is reduced and the hardness increased. The selective heat input advantageously has the shape of geometric figures, regular patterns and / or irregular patterns. These figures or patterns can be made by continuously introducing heat, in that a selective heat source is guided over the iron-containing layer in accordance with the shape of the figures and patterns. The heat input can also be carried out discontinuously, for. B. to create a dot pattern. Using these figures and patterns, adjacent areas can be created on the sliding surfaces, each of which has different properties.
In einer bevorzugten Ausführung weist die eisenhaltige Schicht Abtragungen auf, die durch den punktuellen Wärmeeintrag entstanden sind. Dies kann z. B. dadurch erfolgen, daß Material and der Oberfläche der Schicht durch Verdampfen entfernt wird. Dabei können die Abtragungen wieder die Form von Figuren oder Mustern, wie vorher beschreiben, aufweisen. Solche Abtragungen auf Gleitflächen in Form von Schmiertaschen, Ölsammelnuten, o. ä. können die Gleitreibungseigenschaften verbessern.In a preferred embodiment, the iron-containing layer has ablutions that have arisen from the selective heat input. This can e.g. B. done by removing material on the surface of the layer by evaporation. The removals can again be in the form of figures or patterns, as previously described. Such abrasion on sliding surfaces in the form of lubrication pockets, oil collecting grooves, or the like can improve the sliding friction properties.
Bevorzugt sind am Rand der Abtragungen feinverteilte nanokristalline Metallboride und/oder Metallkarbide aus der amorphen Matrix der eisenhaltigen Schicht ausgeschieden sind. Damit wird die Verschleißfestigkeit des Randes, z. B. einer Schmiertasche, wesentlich erhöht und es ist gewährleistet, daß auch nach längerer Betriebszeit der Gleitfläche die Funktion der Schmiertasche etc. sicher erfüllt wird.Finely distributed nanocrystalline metal borides and / or metal carbides are preferably precipitated from the amorphous matrix of the iron-containing layer at the edge of the removal. So that the wear resistance of the edge, for. B. a lubrication pocket, significantly increased and it is ensured that the function of the lubrication pocket, etc. is reliably performed even after a long period of operation.
Bevorzugt weist die Abtragung die Form von lokalen Vertiefungen auf. Derartige Vertiefungen sind aus der EP1275864 bekannt. Der Offenbarungsgehalt dieses Dokumentes wird in die Offenbarung dieser Anmeldung durch Referenz einbezogen. Beispielsweise weisen dabei die Vertiefungen eine maximale Ausdehnung von kleiner 2 mm auf. Als günstige Abmessungen für Schmiertaschen hat sich erwiesen, wenn die Vertiefungen eine maximale Länge von 2 mm, eine maximale Breite von 70 μm und eine maximale Tiefe von 40 μm aufweisen. Dies stellt einen guten Kompromiß zwischen tribologischen Eigenschaften und Fertigungsaufwand der Schmiertaschen dar. Aufgrund dieser Abmessungen, einzeln oder in Kombination, ist die optimale Funktion der Vertiefungen als Schmiertaschen der Gleitfläche gewährleistet. Diese Abmessungen nicht einschränkend zu verstehen. Für bestimmte Anwendungen können diese Abmessungen auch größer oder kleiner sein. Insbesondere ist dabei kein bestimmtes Abmessungsverhältnis der Vertiefungen einzuhalten. Vielmehr kann jede der Abmessungen Länge, Breite und Tiefe an die Erfordernisse der jeweiligen Vertiefung angepaßt werden.The removal preferably takes the form of local depressions. Such depressions are known from EP1275864. The disclosure content of this document is incorporated into the disclosure of this application by reference. For example, the depressions have a maximum extension of less than 2 mm. It has proven to be advantageous dimensions for lubrication pockets if the depressions have a maximum length of 2 mm, a maximum width of 70 μm and a maximum depth of 40 μm. This represents a good compromise between the tribological properties and the manufacturing costs of the lubrication pockets. Because of these dimensions, individually or in combination, the optimal function of the recesses as lubrication pockets of the sliding surface is guaranteed. These dimensions are not to be understood as restrictive. These dimensions can also be larger or smaller for certain applications. In particular, there is no particular dimensional ratio of the depressions to be observed. Rather, each of the dimensions length, width and depth can be adapted to the requirements of the respective recess.
Bevorzugt erfolgt der Wärmeeintrag mittels Laserlicht und/oder Elektronenstrahlen. Diese Energiequellen können in einem kleinen Bereich gezielt punktuell Wärme bzw. Energie in die eisenhaltige Schicht einbringen, wie es z. B. zur Herstellung der vorher beschriebenen Vertiefungen erforderlich ist. Außerdem können diese Energiequellen auf engem Raum, wie z. B. innerhalb einer Zylinderlaufbahn eines Verbrennungsmotors oder eines Hydraulikzylinders, eingesetzt werden, um die erfinderische eisenhaltige Schicht zu erzeugen. Es sind jedoch auch alle anderen geeigneten Energiequellen verwendbar, die den Wärmeeintrag zur Erzeugung der erfinderischen eisenhaltigen Schicht erlauben.The heat is preferably introduced by means of laser light and / or electron beams. These energy sources can selectively selectively introduce heat or energy into the iron-containing layer in a small area, as z. B. is required to produce the wells described above. In addition, these energy sources in a confined space, such as. B. within a cylinder race of an internal combustion engine or a hydraulic cylinder can be used to produce the inventive iron-containing layer. However, it is also possible to use all other suitable energy sources which allow the heat input to produce the inventive iron-containing layer.
Die Ausführung der Erfindung ist nicht auf die vorliegenden Bespiele beschränkt. Es versteht sich von selbst, daß insbesondere die erfinderische eisenhaltige Schicht in beliebiger geeigneter Kombination mit dem Verfahren zur Herstellung einer eisenhaltigen Schicht erzeugt werden kann, wie auch umgekehrt das erfinderische Verfahren zur Herstellung benutzt werden kann, eine eisenhaltige Schicht zu erzeugen.The implementation of the invention is not limited to the present examples. It goes without saying that, in particular, the inventive iron-containing layer can be produced in any suitable combination with the method for producing an iron-containing layer, and conversely the inventive method can also be used for producing an iron-containing layer.
Verwendung findet die erfinderische eisenhaltige Schicht bei der Herstellung von Gleitflächen an Maschinenteilen, insbesondere von Pleuellagern, Kurbelwellenlagern, Kolbenringen, Zylinderlaufflächen und Kolben. Dies schließt neben Verbrennungsmotoren alle Maschinen ein, wo sich derartige Maschinenbauteile befinden, z. B. Hydraulikzylinder, Getriebe, Wellenlagerungen.The inventive iron-containing layer is used in the production of sliding surfaces on machine parts, in particular connecting rod bearings, crankshaft bearings, piston rings, cylinder running surfaces and pistons. In addition to internal combustion engines, this includes all machines where such machine components are located, e.g. B. hydraulic cylinders, gears, shaft bearings.
Bevorzugte Anwendung sind hochbelastete Zylinderlaufflächen von aufgeladenen Diesel- und Benzinmotoren. Aufgrund der hohen mechanischen Verklammerung der Schicht mit dem Grundmaterial eignet sich die Beschichtung insbesondere auch für Thermoschock beanspruchte Motoren. Thermoschock tritt auf, wenn beim Kaltstart bei niedrigen Umgebungstemperaturen Motoren schnell unter Last auf Höchstdrehzahl hochdrehen. Indem die eisenhaltige Schicht eine amorphe Struktur mit feinverteilten, nano-kristallinen Metallbonden und / oder Metallkarbiden aufweist, ist die Gleitfläche hochbelastbar, da aufgrund der nano-kristallinen Ausscheidungen der Metallboride und Metallkarbide eine Schicht mit extrem hoher Härte entsteht. Weiterhin führen die Boride zu einem sehr geringen Reibungskoeffizient, so daß diese Schicht auch hervorragende Gleiteigenschaften aufweist.Preferred applications are highly loaded cylinder running surfaces of supercharged diesel and petrol engines. Due to the high mechanical bracing of the Layer with the base material, the coating is particularly suitable for thermal shock-stressed motors. Thermal shock occurs when, during a cold start at low ambient temperatures, the engine revs quickly to maximum speed under load. Since the iron-containing layer has an amorphous structure with finely divided, nano-crystalline metal bonds and / or metal carbides, the sliding surface is highly resilient, since a layer with extremely high hardness is created due to the nano-crystalline precipitates of the metal borides and metal carbides. Furthermore, the borides lead to a very low coefficient of friction, so that this layer also has excellent sliding properties.
Eine bevorzugte Verwendung der erfindungsgemäßen eisenhaltigen Schicht kann bei der Reparatur verschlissener Gleitflächen erfolgen. Die Schicht besitzt eine ausgezeichnete mechanische Verbindung bzw. Verklammerung zum Grundmaterial aufgrund der amorphen Erstarrung und ist damit in der Lage, nachträglich auf aufgetragen zu werden. Dabei kann der Auftrag der Schicht auf eine nachbearbeitete, gesäuberte und / oder gestrahlte Oberfläche erfolgen. Dies erlaubt den flexiblen Einsatz der Schicht bei jedweden Reparaturarbeiten an Gleitflächen. Aufgrund der hohen Härte und Festigkeiten der Schicht wird auch eine evt. Schwächung des Grundmaterials durch Verschleiß oder nachträglichen Abtrag ausgeglichen, so daß die ursprüngliche Festigkeit des Grundmaterials nahezu wieder erreicht werden kann. Anwendungsbeispiel ist der kritische Stegbereich zwischen Zylinderbohrungen eines Motorblocks.A preferred use of the iron-containing layer according to the invention can be used in the repair of worn sliding surfaces. The layer has an excellent mechanical connection or clinging to the base material due to the amorphous solidification and is therefore able to be applied subsequently. The layer can be applied to a reworked, cleaned and / or blasted surface. This allows the layer to be used flexibly for any repair work on sliding surfaces. Due to the high hardness and strength of the layer, any weakening of the base material due to wear or subsequent removal is compensated for, so that the original strength of the base material can almost be restored. Application example is the critical land area between cylinder bores of an engine block.
Selbstverständlich sind die hier beschriebenen Schichten und Verfahren nicht auf die beschriebenen Ausführungsbeispiele begrenzt. Vielmehr können die Schichten und/oder die Verfahren in jeder geeigneten Kombination der hier beschriebenen Merkmalen Verwendung finden.Of course, the layers and methods described here are not limited to the exemplary embodiments described. Rather, the layers and / or the methods can be used in any suitable combination of the features described here.
Weitere Einzelheiten der Erfindung sind in den Abbildungen zu sehen. Es zeigen: Fig. 1 einen schematischen Schnitt durch eine eisenhaltige Schicht; und Fig. 2 ein Mikroskopaufnahme einer eisenhaltigen Schicht im Bereich des Wärmeeintrages.Further details of the invention can be seen in the figures. 1 shows a schematic section through an iron-containing layer; and Fig. 2 is a microscope image of an iron-containing layer in the area of heat input.
Figur 1 zeigt ein Grundmaterial 1 , auf das eine eisenhaltige Schicht 2 aufgetragen ist. An der Oberfläche 3 ist die Schicht 2 bereits feinbearbeitet und hat ihre endgültige Oberflächenbeschaffenheit als Gleitfläche erreicht. Mittels eines Laserstrahls 4 wird mit hoher Energiedichte Wärme in die Schicht 2 örtlich begrenzt eingebracht, wodurch ein Bereich 5 des Wärmeeintrags entsteht, der ungefähr durch die Grenzlinie 6 begrenzt wird. Dabei verdampft das Material der Schicht 2 teilweise, und es entsteht die Vertiefung 7, die vorzugsweise in Form einer Schmiertasche sich über die Schicht 2 erstreckt. Wenn die Vertiefung als Schmiertasche ausgebildet ist, haben sich als vorteilhafte Abmessungen eine Breite b von bis zu 70 μm und eine Tiefe t von bis zu 40 μm erwiesen. Die Längserstreckung ist hier nicht dargestellt, doch hat sich hier eine maximale Länge von nicht mehr als 2 mm als vorteilhaft herausgestellt.Figure 1 shows a base material 1, on which an iron-containing layer 2 is applied. Layer 2 is already finely machined on surface 3 and has reached its final surface finish as a sliding surface. A laser beam 4 is used to introduce heat into the layer 2 with a high energy density, thereby creating a region 5 of the heat input which is approximately limited by the boundary line 6. In this case, the material of layer 2 partially evaporates and the recess 7 is formed, which preferably extends in the form of a lubrication pocket over layer 2. If the depression is designed as a lubrication pocket, a width b of up to 70 μm and a depth t of up to 40 μm have proven to be advantageous dimensions. The longitudinal extent is not shown here, but a maximum length of not more than 2 mm has proven advantageous here.
In Figur 2 ist eine Mikroskopaufnahme einer eisenhaltigen Schicht im Bereich des Wärmeeintrages gezeigt. Eine solche Werkstoffstruktur ergibt sich beispielsweise in einem Bereich, der in Figur 1 mit dem Ausschnitt 8 gekennzeichnet ist. Die aufgebrachte eisenhaltige Schicht 2 weist dabei einen Bereich 5 des Wärmeintrages auf. Dieser ist entstanden, indem die Vertiefung 7 durch Materialverdampfung aufgrund Wärmeeintrages durch einen nicht dargestellten Laserstrahl hergestellt wurde. Der Bereich 5 zeigt, insbesondere in der Randzone 9 der Vertiefung 7, eine erhöhte Dichte an feinverteilten nano-kristallinen Metallbonden 10 und Metallkarbiden 10 gegenüber dem Grundmaterial der Schicht 2, wo keine Wärmebehandlung durchgeführt wurde. Damit weist die Randzone 9 im Bereich 5 der Wärmebehandlung eine noch größere Härte auf als die nicht wärmebehandelte Schicht 2 selbst. FIG. 2 shows a microscope image of an iron-containing layer in the area of the heat input. Such a material structure results, for example, in an area which is marked with the detail 8 in FIG. 1. The iron-containing layer 2 applied has an area 5 of the heat input. This was created in that the recess 7 was produced by material evaporation due to heat input by means of a laser beam, not shown. The area 5 shows, especially in the edge zone 9 of the recess 7, an increased density of finely divided nano-crystalline metal bonds 10 and metal carbides 10 compared to the base material of the layer 2, where no heat treatment was carried out. The edge zone 9 in the region 5 of the heat treatment thus has an even greater hardness than the non-heat-treated layer 2 itself.

Claims

PATENTANSPRUCHE PATENT CLAIMS
1. Durch thermisches Spritzen aufgebrachte eisenhaltige Schicht (2) einer Gleitfläche, insbesondere für Zylinderlaufflächen von Motorblöcken, wobei die eisenhaltige Schicht (2) weitere metallische, metalloide und/oder nichtmetallische Elemente beinhaltet, die eisenhaltige Schicht (2) eine amorphe Struktur mit feinverteilten, nano-kristallinen Metallboriden und/oder Metallkarbiden aufweist, dadurch gekennzeichnet, daß die eisenhaltige Schicht (2) weitere nano-kristalline Metallboride (10) und/oder Metallkarbide (10) aufweist, die nach dem Auftrag der eisenhaltigen Schicht (2) und einer anschließenden Oberflächenbearbeitung durch punktuellen Wärmeeintrag in die eisenhaltige Schicht (2) entstanden sind.1. The iron-containing layer (2) of a sliding surface applied by thermal spraying, in particular for cylinder running surfaces of engine blocks, the iron-containing layer (2) containing further metallic, metalloid and / or non-metallic elements, the iron-containing layer (2) having an amorphous structure with finely divided, Has nano-crystalline metal borides and / or metal carbides, characterized in that the iron-containing layer (2) has further nano-crystalline metal borides (10) and / or metal carbides (10), which are applied after the iron-containing layer (2) and a subsequent one Surface processing is caused by selective heat input into the ferrous layer (2).
2. Eisenhaltige Schicht nach Anspruch 1 , dadurch gekennzeichnet, daß im Bereich (5) des Wärmeeintrags feinverteilte nanokristalline Metallboride (10) und/oder Metallkarbide (10) aus der amorphen Struktur der eisenhaltigen Schicht (2) ausgeschieden sind.2. Iron-containing layer according to claim 1, characterized in that in the region (5) of the heat input finely divided nanocrystalline metal borides (10) and / or metal carbides (10) are excreted from the amorphous structure of the iron-containing layer (2).
3. Eisenhaltige Schicht nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der punktuelle Wärmeeintrag die Form von geometrischen Figuren, regelmäßigen Mustern und/oder unregelmäßigen Mustern aufweist.3. Iron-containing layer according to claim 1 or 2, characterized in that the selective heat input has the shape of geometric figures, regular patterns and / or irregular patterns.
4. Eisenhaltige Schicht nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die eisenhaltige Schicht (2) Abtragungen aufweist, die durch den punktuellen Wärmeeintrag entstanden sind. 4. Iron-containing layer according to one of the preceding claims, characterized in that the iron-containing layer (2) has removals which have arisen from the selective heat input.
Eisenhaltige Schicht nach Anspruch 4, dadurch gekennzeichnet, daß am Rand (9) der Abtragungen feinverteilte nanokristalline Metallboride (10) und/oder Metallkarbide (10) aus der amorphen Matrix der eisenhaltigen Schicht (2) ausgeschieden sind. Iron-containing layer according to Claim 4, characterized in that finely divided nanocrystalline metal borides (10) and / or metal carbides (10) are precipitated from the amorphous matrix of the iron-containing layer (2) at the edge (9) of the removals.
Eisenhaltige Schicht nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Abtragung die Form von lokalen Vertiefungen (7) aufweist.Iron-containing layer according to claim 4 or 5, characterized in that the removal has the shape of local depressions (7).
7. Verfahren zur Herstellung einer eisenhaltigen Schicht (2) einer Gleitfläche, wobei die eisenhaltige Schicht (2) durch thermisches Spritzen aufgebracht wird, sie weitere metallische, metalloide und/oder nicht-metallische Elemente beinhaltet und sie eine amorphe Struktur mit feinverteilten, nano-kristallinen Metallbonden und/oder Metallkarbiden aufweist, dadurch gekennzeichnet, daß nach dem Auftrag der eisenhaltigen Schicht (2) und einer anschließenden Oberflächenbearbeitung durch punktuellen Wärmeeintrag in die eisenhaltige Schicht (2) weitere nano-kristalline Metallboride (10) und/oder Metallkarbide (10) entstehen.7. A process for producing an iron-containing layer (2) of a sliding surface, the iron-containing layer (2) being applied by thermal spraying, it contains further metallic, metalloid and / or non-metallic elements and it has an amorphous structure with finely divided, nano- Has crystalline metal bonds and / or metal carbides, characterized in that after the application of the iron-containing layer (2) and a subsequent surface treatment by selective heat input into the iron-containing layer (2), further nano-crystalline metal borides (10) and / or metal carbides (10) arise.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Oberflächenbearbeitung eine mechanische Feinbearbeitung der eisenhaltigen Schicht (2) ist, insbesondere ein Honen, Schleifen oder Polieren.8. The method according to claim 7, characterized in that the surface processing is a mechanical finishing of the iron-containing layer (2), in particular honing, grinding or polishing.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß im Bereich (5) des Wärmeeintrags feinverteilte nanokristalline Metallboride (10) und/oder Metallkarbide (10) aus der amorphen Matrix der eisenhaltigen Schicht (2) ausgeschieden werden. 9. The method according to claim 7 or 8, characterized in that in the region (5) of the heat input finely divided nanocrystalline metal borides (10) and / or metal carbides (10) are excreted from the amorphous matrix of the iron-containing layer (2).
10. Verfahren nach einem der Ansprüche 7, 8 oder 9, dadurch gekennzeichnet, daß der punktuelle Wärmeeintrag in Form von geometrischen Figuren, regelmäßigen Mustern und/oder unregelmäßigen Mustern erfolgt.10. The method according to any one of claims 7, 8 or 9, characterized in that the selective heat input takes the form of geometric figures, regular patterns and / or irregular patterns.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß durch den punktuellen Wärmeeintrag Material in der eisenhaltigen Schicht (2) abgetragen wird.11. The method according to any one of claims 7 to 10, characterized in that material is removed in the iron-containing layer (2) by the selective heat input.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, daß am Rand (9) der Abtragungen feinverteilte nanokristalline Metallboride (10) und/oder Metallkarbide (10) aus der amorphen Struktur der eisenhaltigen Schicht (2) ausgeschieden werden.12. The method according to claim 11, characterized in that at the edge (9) of the removal finely divided nanocrystalline metal borides (10) and / or metal carbides (10) from the amorphous structure of the iron-containing layer (2) are excreted.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß das Material in der eisenhaltigen Schicht (2) in Form von lokalen Vertiefungen (7) abgetragen wird.13. The method according to claim 11 or 12, characterized in that the material in the iron-containing layer (2) in the form of local depressions (7) is removed.
14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß der Wärmeeintrag mittels Laserlicht (4) und/oder Elektronenstrahlen erfolgt.14. The method according to any one of claims 7 to 13, characterized in that the heat input takes place by means of laser light (4) and / or electron beams.
15. Eisenhaltigen Schicht nach einem der Ansprüche 1 bis 6, die mittels eines Verfahrens der Ansprüche 7 bis 14 hergestellt ist. 15. Iron-containing layer according to one of claims 1 to 6, which is produced by means of a method of claims 7 to 14.
16. Verwendung einer eisenhaltigen Schicht nach einem der vorherigen Ansprüche zur Herstellung von Gleitflächen an Maschinenteilen, insbesondere von Pleuellagern, Kurbelwellenlagern, Kolbenringen, Zylinderlaufflächen und Kolben.16. Use of an iron-containing layer according to one of the preceding claims for the production of sliding surfaces on machine parts, in particular connecting rod bearings, crankshaft bearings, piston rings, cylinder running surfaces and pistons.
17. Verwendung einer eisenhaltigen Schicht nach einem der vorherigen Ansprüche zur Reparatur verschlissener Gleitflächen. 17. Use of an iron-containing layer according to one of the preceding claims for repairing worn sliding surfaces.
PCT/EP2005/050357 2004-01-28 2005-01-28 Ferrous layer for a sliding surface, in particular for cylinder running surfaces on engine blocks, applied by means of thermal spraying WO2005073425A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502005009857T DE502005009857D1 (en) 2004-01-28 2005-01-28 THROUGH THERMAL SPRAYING OF IRONED LAYER OF A SLIDING SURFACE, IN PARTICULAR FOR CYLINDERS OF ENGINE BLOCKS
EP05707873A EP1711642B1 (en) 2004-01-28 2005-01-28 Ferrous layer for a sliding surface, in particular for cylinder running surfaces on engine blocks, applied by means of thermal spraying
AT05707873T ATE473311T1 (en) 2004-01-28 2005-01-28 IRON-CONTAINING LAYER OF A SLIDING SURFACE APPLIED BY THERMAL SPRAYING, ESPECIALLY FOR CYLINDER RUNNING SURFACES OF ENGINE BLOCKS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004004457 2004-01-28
DE102004004457.0 2004-01-28

Publications (1)

Publication Number Publication Date
WO2005073425A1 true WO2005073425A1 (en) 2005-08-11

Family

ID=34638796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050357 WO2005073425A1 (en) 2004-01-28 2005-01-28 Ferrous layer for a sliding surface, in particular for cylinder running surfaces on engine blocks, applied by means of thermal spraying

Country Status (4)

Country Link
EP (4) EP1559807A1 (en)
AT (1) ATE473311T1 (en)
DE (1) DE502005009857D1 (en)
WO (1) WO2005073425A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8726874B2 (en) 2012-05-01 2014-05-20 Ford Global Technologies, Llc Cylinder bore with selective surface treatment and method of making the same
US8752256B2 (en) 2008-04-21 2014-06-17 Ford Global Technologies, Llc Method for preparing a surface for applying a thermally sprayed layer
US20150328680A1 (en) * 2014-05-16 2015-11-19 The Nanosteel Company, Inc. Layered Construction of Metallic Materials
US10221806B2 (en) 2012-05-01 2019-03-05 Ford Global Technologies, Llc Cylindrical engine bore
US10220453B2 (en) 2015-10-30 2019-03-05 Ford Motor Company Milling tool with insert compensation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005063123B3 (en) * 2005-12-30 2007-05-31 Federal-Mogul Burscheid Gmbh Piston ring for sealing chamber in cylinder has running-in layer containing hydrogen and nanocrystalline carbide phases
DE102008014800B3 (en) 2008-03-18 2009-08-20 Federal-Mogul Burscheid Gmbh Method and apparatus for producing a dispersion-hardened article containing carbide nanoparticles
DE102011086803A1 (en) * 2011-11-22 2013-05-23 Ford Global Technologies, Llc Repair method of a cylinder surface by means of plasma spraying
DE102013200912B4 (en) 2012-02-02 2018-05-30 Ford Global Technologies, Llc crankcase
DE102012002766B4 (en) * 2012-02-11 2014-05-22 Daimler Ag Thermally coated component having a friction optimized raceway surface and method of component coating surface simulation of a thermally coated component
US9079213B2 (en) 2012-06-29 2015-07-14 Ford Global Technologies, Llc Method of determining coating uniformity of a coated surface
US9382868B2 (en) 2014-04-14 2016-07-05 Ford Global Technologies, Llc Cylinder bore surface profile and process
DE102019130506A1 (en) * 2019-11-12 2021-05-12 Te Connectivity Germany Gmbh Electromechanical component with integrated lubrication and method for producing such an electromechanical component
WO2024160525A1 (en) 2023-02-01 2024-08-08 Sew-Eurodrive Gmbh & Co. Kg Electric motor
DE102024000135A1 (en) 2023-02-01 2024-08-01 Sew-Eurodrive Gmbh & Co Kg Electric motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267241A (en) * 1978-09-15 1981-05-12 Metal Leve S.A. Industria E Comercio Method of preparing steel-backed antifriction alloy, composite strips and products therefrom
US4746540A (en) * 1985-08-13 1988-05-24 Toyota Jidosha Kabushiki Kaisha Method for forming alloy layer upon aluminum alloy substrate by irradiating with a CO2 laser, on substrate surface, alloy powder containing substance for alloying and silicon or bismuth
US4774393A (en) * 1986-04-28 1988-09-27 Mazda Motor Corporation Slide contacting member and production method therefor
WO1989010434A1 (en) * 1988-04-23 1989-11-02 Glyco-Metall-Werke Daelen & Loos Gmbh Laminated material or workpiece with a functional layer, in particular a sliding layer having the structure of a solid but fusible dispersion, provided on a support layer
JPH05288274A (en) * 1992-04-10 1993-11-02 Mitsubishi Heavy Ind Ltd Steel cylinder liner and its manufacture
DE19708402C1 (en) * 1997-03-01 1998-08-27 Daimler Benz Aerospace Ag Wear resistant layer containing nanocrystalline hard material particles
US6258185B1 (en) * 1999-05-25 2001-07-10 Bechtel Bwxt Idaho, Llc Methods of forming steel
US20020182444A1 (en) * 1997-12-05 2002-12-05 Kuo David S. Media with recesses for texturing features and processes for forming the media
WO2003106718A1 (en) * 2002-06-13 2003-12-24 Bechtel Bwxt Idaho, Llc Hard metallic materials, hard metallic coatings, methods of processing metallic materials and methods of producing metallic coatings

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822247C3 (en) * 1978-05-22 1982-02-25 Goetze Ag, 5093 Burscheid Machine part subjected to sliding friction with a thermally sprayed wear protection layer on the running surface
US4430360A (en) * 1981-03-11 1984-02-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of fabricating an abradable gas path seal
US4457948A (en) * 1982-07-26 1984-07-03 United Technologies Corporation Quench-cracked ceramic thermal barrier coatings
JPS61147878A (en) * 1984-12-20 1986-07-05 Toshiba Corp Surface treatment of sliding part
CA1287245C (en) * 1985-12-20 1991-08-06 Union Carbide Corporation Wear-resistant laser-engraved metallic carbide surfaces for friction rolls for working elongate members, methods for producing same andmethods for working elongate members
CH670103A5 (en) * 1986-02-04 1989-05-12 Castolin Sa
JPS63109151A (en) * 1986-10-27 1988-05-13 Hitachi Ltd High hardness composite material
DE3715325A1 (en) * 1987-05-08 1988-11-24 Castolin Sa METHOD FOR PRODUCING SLIDING SURFACES ON PARTS OF VEHICLE ENGINES
JP2659825B2 (en) * 1989-10-26 1997-09-30 三菱重工業株式会社 Wear-resistant alloy powder and components
DE19628786A1 (en) * 1996-07-17 1998-04-30 Volkswagen Ag Sliding surface production
JP3340335B2 (en) * 1997-01-22 2002-11-05 日本パーカライジング株式会社 Multi-layer plain bearing
DE19733306C1 (en) * 1997-08-01 1999-05-06 Juergen Dr Ing Roethig Iron-based additive material is used for thermal coating of components exposed to friction
US6607614B1 (en) * 1997-10-20 2003-08-19 Techmetals, Inc. Amorphous non-laminar phosphorous alloys
JPH11236976A (en) * 1998-02-24 1999-08-31 Eagle Ind Co Ltd Sliding material
US6258402B1 (en) * 1999-10-12 2001-07-10 Nakhleh Hussary Method for repairing spray-formed steel tooling
WO2002027066A2 (en) * 2000-08-17 2002-04-04 Siemens Westinghouse Power Corporation Thermal barrier coating resistant to sintering

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267241A (en) * 1978-09-15 1981-05-12 Metal Leve S.A. Industria E Comercio Method of preparing steel-backed antifriction alloy, composite strips and products therefrom
US4746540A (en) * 1985-08-13 1988-05-24 Toyota Jidosha Kabushiki Kaisha Method for forming alloy layer upon aluminum alloy substrate by irradiating with a CO2 laser, on substrate surface, alloy powder containing substance for alloying and silicon or bismuth
US4774393A (en) * 1986-04-28 1988-09-27 Mazda Motor Corporation Slide contacting member and production method therefor
WO1989010434A1 (en) * 1988-04-23 1989-11-02 Glyco-Metall-Werke Daelen & Loos Gmbh Laminated material or workpiece with a functional layer, in particular a sliding layer having the structure of a solid but fusible dispersion, provided on a support layer
JPH05288274A (en) * 1992-04-10 1993-11-02 Mitsubishi Heavy Ind Ltd Steel cylinder liner and its manufacture
DE19708402C1 (en) * 1997-03-01 1998-08-27 Daimler Benz Aerospace Ag Wear resistant layer containing nanocrystalline hard material particles
US20020182444A1 (en) * 1997-12-05 2002-12-05 Kuo David S. Media with recesses for texturing features and processes for forming the media
US6258185B1 (en) * 1999-05-25 2001-07-10 Bechtel Bwxt Idaho, Llc Methods of forming steel
WO2003106718A1 (en) * 2002-06-13 2003-12-24 Bechtel Bwxt Idaho, Llc Hard metallic materials, hard metallic coatings, methods of processing metallic materials and methods of producing metallic coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 076 (M - 1556) 8 February 1994 (1994-02-08) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8752256B2 (en) 2008-04-21 2014-06-17 Ford Global Technologies, Llc Method for preparing a surface for applying a thermally sprayed layer
US8726874B2 (en) 2012-05-01 2014-05-20 Ford Global Technologies, Llc Cylinder bore with selective surface treatment and method of making the same
US10221806B2 (en) 2012-05-01 2019-03-05 Ford Global Technologies, Llc Cylindrical engine bore
US20150328680A1 (en) * 2014-05-16 2015-11-19 The Nanosteel Company, Inc. Layered Construction of Metallic Materials
US10654100B2 (en) * 2014-05-16 2020-05-19 The Nanosteel Company, Inc. Layered construction of metallic materials
US10220453B2 (en) 2015-10-30 2019-03-05 Ford Motor Company Milling tool with insert compensation

Also Published As

Publication number Publication date
EP1559807A1 (en) 2005-08-03
DE502005009857D1 (en) 2010-08-19
EP1559808A1 (en) 2005-08-03
EP1711642A1 (en) 2006-10-18
EP1559806A1 (en) 2005-08-03
EP1711642B1 (en) 2010-07-07
ATE473311T1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
DE10312227B4 (en) Cylinder liner whose inner surface is formed with a surface-treated layer, and methods for processing the surface-treated layer
EP1711642B1 (en) Ferrous layer for a sliding surface, in particular for cylinder running surfaces on engine blocks, applied by means of thermal spraying
DE102006040362B4 (en) Abrasion resistant combination of aluminum piston and aluminum cylinder bore and method of making same
EP2165001B1 (en) Method and apparatus for increasing the strength of a part
DE102012010756B4 (en) Method for producing an oil scraper piston ring
WO2007031160A1 (en) Bearing arrangement
DE10235957B4 (en) Process for finishing crankshafts for motor vehicle engines
EP0770698B1 (en) Process for manufacture of a sliding surface on a metallic workpiece
DE10355685B4 (en) Workpiece with a tribologically stressable surface designed as a cylinder and method for the production thereof
EP2814636B1 (en) Method for increasing the strength of shafts, in particular of crankshafts
EP2755794B1 (en) Method for improving the quality of the surfaces of crankshafts
DE102007017977B4 (en) Process for fine machining of cylindrical inner surfaces of holes in a workpiece and workpiece
DE102017215335B4 (en) Cylinder bore with piston kinematically variable bore surface, and method for producing the cylinder bore
DE102009020674B4 (en) Method of manufacturing a component and coated component
DE102009010791B4 (en) Cylinder bore of a reciprocating engine
DE10230542A1 (en) Surface of a body on which another body in a preferred sliding direction against each other can be slidably arranged
DE102017116480A1 (en) Piston ring with shot-blasted inlet layer and method of manufacture
DE102012201342A1 (en) Method for producing inner surface of cylinder bore with local different roughness structures of reciprocating piston-internal combustion engine, involves fine drilling or pre-honing hole inner surface, and completely honing inner surface
DE102005018277B4 (en) Process for honing hard-particle-reinforced surfaces and honing tool
DE10237923A1 (en) Bearing arrangement and a process intended for its manufacture
DE102007063766B3 (en) Process for fine machining of cylindrical inner surfaces of holes in a workpiece and workpiece
DE102011116918B4 (en) Tool with a geometrically determined cutting edge for machining a finish on a workpiece surface, tool edge geometry, process and workpiece with a finished functional surface
DE10135618C1 (en) Production of cylinder faces comprises carrying out a mechanical boundary layer reinforcing step before or during at least one fine-machining step
EP2406037A1 (en) Method for fine processing of boreholes, processing tool and processing machine for same and work piece
DE102011009598A1 (en) Highly loaded running surface for use in internal combustion engine, is nitrided and laser-structured, and is formed as cylindrical track or slide bearing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005707873

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005707873

Country of ref document: EP