樹皮抽出物 Bark extract
技術分野 Technical field
本発明は、 樹皮抽出物に関し、 より詳細には、 樹齢 1 0 0年未満の樹木の 樹皮から得られる樹皮抽出物に関する。 The present invention relates to bark extracts, and more particularly to bark extracts obtained from the bark of trees less than 100 years old.
明 田 Akita
背景技術 Background art
ポリフエノール、 特にプロアントシァニジンは、 活性酸素を除去する強い 抗酸化作用を有する。 プロアントシァニジンは、 化学処理 (例えば酸処理) をすればアントシァニジンを生じる化合物であり、 フラバン一 3—オール誘 導体を構成単位とする縮重合体からなる化合物群である。 Polyphenols, especially proanthocyanidins, have a strong antioxidant action to scavenge active oxygen. Proanthocyanidins are compounds that generate anthocyanidins when subjected to chemical treatment (for example, acid treatment), and are a group of compounds composed of polycondensates having a flavan-1-ol derivative as a constituent unit.
このようなプロアントシァ-ジンは、 例えば、 種々の植物に含まれている ことが知られている。 したがって、 プロアントシァニジンを多く含む抽出物 の製造方法が検討されている (例えば、 特開昭 6 4— 4 2 4 7 9号公報およ び特開平 1 1— 8 0 1 4 8号公報) 。 しかし、 これらの植物の抽出物が有す る抗酸化作用などの生理活性の有効性は、 上記プロアントシァニジンの含有 量のみによって決定されるわけではなく、 プロアントシァニジンの構造、 植 物中に含有される他の成分との阻害作用または相乗作用などの種々の要因が 関連している。 It is known that such proanthocyanins are contained, for example, in various plants. Therefore, a method for producing an extract containing a large amount of proanthocyanidins has been studied (for example, Japanese Patent Application Laid-Open Nos. Sho 644-42479 and Hei 11-180148). ). However, the effectiveness of physiological activities such as antioxidant activity of these plant extracts is not determined solely by the proanthocyanidin content, but rather by the structure of the proanthocyanidin and the plant. Various factors are involved, such as inhibitory or synergistic effects with other components contained therein.
特開 2 0 0 1— 1 5 8 7 3 9号公報は、 生物学的に活性なオリゴマー性ポ リフエノールを高含有する抽出物を得る目的で、 植物の熱水抽出物に無機塩 を添加し、 タンニンを沈澱させ、 沈殿物を濾別し、 得られる濾液を酢酸ェチ ルで処理 '濃縮し、 水に置換し、 さらに溶媒で洗浄し、 溶媒を除去し、 この 水相濃縮物を乾燥する調製方法を記載している。 しかし、 抗酸化作用などの
生理活性に優れた植物抽出物を得るための検討は依然十分とはいえない。 さらに、 この樹皮抽出物は、 水に対して溶解性が低く、 そのため、 例えば、 樹皮抽出物を液状の化粧品または飲料の材料として利用する場合、 沈殿また は白濁を生じるといった問題が生じる。 このような問題は、 製品の外観上好 ましくなく、 あるいは沈殿または白濁の原因であるプロアントシァニジンな どの成分の体内への吸収を阻害する。 Japanese Patent Application Laid-Open Publication No. 2001-1588739 discloses that an inorganic salt is added to a hot water extract of a plant in order to obtain an extract having a high content of a biologically active oligomeric porifenol. The tannin is precipitated, the precipitate is filtered off, the resulting filtrate is treated with ethyl acetate, concentrated, replaced with water, washed with solvent, the solvent is removed, and the aqueous phase concentrate is dried. Preparation methods are described. However, such as antioxidant action Examination for obtaining a plant extract having excellent physiological activity is still not sufficient. In addition, the bark extract has low solubility in water, which causes problems such as precipitation or cloudiness when the bark extract is used as a liquid cosmetic or beverage material. Such problems are undesirable in the appearance of the product or impede the absorption of components such as proanthocyanidins into the body which cause precipitation or cloudiness.
樹皮抽出物の溶解性を高めるために種々の方法が検討されている。 例えば、 特開 2 0 0 3— 2 8 4 5 2 5号公報には、 ポリフエノール含量が高い榭皮抽 出物と、 所定量の糖質とを水溶液中に含有させることによって、 ポリフエノ —ルの水に対する溶解性を向上させ、 結果として、 樹皮抽出物の水に対する 溶解性を高める方法が記載されている。 し力 し、 上記方法は、 糖質を添加す ることが必須であるため、 事前に糖質を水に溶解させる工程が必要となる。 この工程の追加により、 製造工程が複雑となり、 さらに糖質の追加は、 特に 食品 (飲料) に用いる場合に摂取カロリーの増加につながるため、 好ましく ない。 発明の開示 Various methods have been studied to enhance the solubility of bark extracts. For example, Japanese Patent Application Laid-Open No. 2003-284549 discloses a polyphenol by adding a skin extract having a high polyphenol content and a predetermined amount of a saccharide to an aqueous solution. It describes a method for improving the solubility of bark extract in water, and consequently the solubility of bark extract in water. However, in the above method, since it is essential to add a saccharide, a step of dissolving the saccharide in water is required in advance. The addition of this step complicates the manufacturing process, and the addition of carbohydrates is not preferable because it leads to an increase in calorie intake, especially when used in foods (drinks). Disclosure of the invention
本発明の目的は、 抗酸化作用に優れた植物抽出物を提供することにある。 本発明者らは、 抗酸化作用に優れた植物の抽出物について鋭意検討した結 果、 樹齢 1 0 0年未満の樹木の樹皮から得られる樹皮抽出物がオリゴメリッ クプロアントシァニジン (以下、 O P Cという) を高い割合で含有し、 かつ 優れた抗酸ィヒ活性を有することを見出した。 さらにこの特定の樹皮を、 水、 極性溶媒、 またはその混合溶媒で抽出することによって、 上記抗酸化活性に 優れた樹皮抽出物が高い収率で得られることを見出して本発明を完成するに 至った。 An object of the present invention is to provide a plant extract having an excellent antioxidant effect. The present inventors have conducted intensive studies on plant extracts having excellent antioxidant activity. As a result, the bark extract obtained from the bark of a tree less than 100 years old was obtained from oligomeric proanthocyanidin (hereinafter referred to as OPC). ) At a high ratio and have excellent antiacid activity. Furthermore, it has been found that by extracting this specific bark with water, a polar solvent, or a mixed solvent thereof, a bark extract having excellent antioxidant activity can be obtained in a high yield, and the present invention has been completed. Was.
すなわち、 本発明の樹皮抽出物は、 榭齢 1 0 0年未満の樹木の樹皮から水、
極性溶媒およびこれらの混合溶媒からなる群より選択される少なくとも 1種 の溶媒で抽出して得られる。 That is, the bark extract of the present invention is obtained from bark of a tree less than 100 years old, It is obtained by extraction with at least one solvent selected from the group consisting of polar solvents and mixed solvents thereof.
好ましい実施態様においては、 上記樹木が、 樹齢 2 0年〜 8 0年の樹木で あ 。 In a preferred embodiment, the tree is a tree of 20 to 80 years of age.
本発明は、 また、 榭齢 1 0 0年未満の樹木の榭皮から水、 極性溶媒および これらの混合溶媒からなる群より選択される少なくとも 1種の溶媒で抽出す る工程を含む、 樹皮抽出物の製造方法を提供する。 The present invention also provides a bark extraction method comprising the step of extracting from the bark of a tree younger than 100 years with at least one solvent selected from the group consisting of water, a polar solvent and a mixed solvent thereof. Provided is a method for manufacturing a product.
樹齢 1 0 0年未満の榭木の樹皮を用いることにより、 樹齢 1 0 0年超の樹 木の樹皮を用いる場合よりも、 樹皮抽出物中の固形分濃度が約 1 . 5〜2倍 以上高く、 かつ固形分中の O P Cを含むプロアントシァ-ジン量の絶対量も 増加した樹皮抽出液が得られる。 さらにこの榭皮抽出液を精製することによ り、 フラパン一 3—オール誘導体の 2量体〜 4量体の化合物である O P Cと フラバン一 3—オール誘導体の 5量体以上の化合物である高分子プロアント シァニジンとを高い濃度で含有する樹皮抽出物が得られる。 すなわち、 さら に、 全プロアントシァニジンの 2 5質量%以上が O P Cである樹皮抽出物を 得ることができる。 この樹皮抽出物は、 水に対して優れた溶解性を有するた め、 水溶液中の白濁および沈殿の発生が少なく、 すばやく体内に吸収され、 優れた抗酸化活性 (特に、 スーパーォキシドジスムターゼ活性) を有する。 したがって、 この樹皮抽出物を飲料、 液状の化粧品などに利用することが容 易となる。 図面の簡単な説明 By using the bark of a tree less than 100 years old, the solid concentration in the bark extract is about 1.5 to 2 times or more than when using the bark of a tree older than 100 years. A bark extract is obtained that is high and has an increased absolute amount of proanthocyanin containing OPC in the solid content. Further, by purifying the skin extract, OPC, which is a dimer to tetramer compound of a flapan-13-ol derivative, and a pentamer or higher compound which is a flavan-13-ol derivative, are obtained. A bark extract containing the molecule proanthocyanidin at a high concentration is obtained. That is, a bark extract in which 25% by mass or more of all proanthocyanidins is OPC can be obtained. Since the bark extract has excellent solubility in water, it does not cause turbidity and precipitation in aqueous solution, is quickly absorbed into the body, and has excellent antioxidant activity (particularly, superoxide dismutase activity). Having. Therefore, it is easy to use the bark extract for beverages, liquid cosmetics, and the like. Brief Description of Drawings
図 1は、 松樹皮抽出液 Aを種々の画分に分離した図である。 FIG. 1 is a diagram showing pine bark extract A separated into various fractions.
図 2は、 ラットに試験液を投与した場合の S O D活性増加率の経時的変化 を示すグラフである。
発明を実施するための最良の形態 FIG. 2 is a graph showing the change over time in the rate of increase in SOD activity when a test solution was administered to rats. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の榭皮抽出物は、 樹齢 1 0 0年未満の樹木の樹皮から水おょぴ極性 溶媒の少なくとも 1種以上の溶媒で抽出する工程を含む方法で得られる。 本 発明の樹皮抽出物の原料である樹木は、 榭齢 1 0 0年未満であれば特に制限 はないが、 好ましくは 8 0年以下、 より好ましくは 2 0年〜 8 0年、 さらに 好ましくは 2 0年〜 6 0年の樹木である。 樹齢 1 0 0年以上の樹木は、 樹皮 が厚く、 1本の樹木から原料としての樹皮を多量に得ることが可能であるが、 含有されるプロアントシァ-ジンなどのポリフエノール量が乏しく、 特に O P c含有量が低いため、 好ましくない。 本明細書においては、 このようにプ 口アントシァニジンを重合度によって分類する。 すなわちフラバン一 3—ォ ール誘導体の 2量体〜 4量体の化合物を O P Cと、 5量体以上の化合物を高 分子プロアントシァニジンとする。 フラバン一 3—オール誘導体は、 フラバ ン一 3—オールを基本骨格とする化合物であり、 例えば、 フラバン一 3—ォ 一ノレ、 フラパン一 3, 4一ジォーノレ、 フラバン一 3 , 4—ジォーノレ誘導体、 カテキン類 (ポリヒ ドロキシフラパン一 3—オールの総称) などが挙げられ る。 O P Cは、 プロアントシァニジンの中でも特に優れた生理活性を有する。 なお、 榭木の樹齢は、 例えば、 放射性炭素測定法、 あるいは倒木後に年輪を カウントするなどの方法によって測定される。 The bark extract of the present invention is obtained by a method comprising a step of extracting from the bark of a tree less than 100 years old with at least one water-polar solvent. The tree that is the raw material of the bark extract of the present invention is not particularly limited as long as it is less than 100 years old, but is preferably 80 years or less, more preferably 20 to 80 years, and still more preferably. It is a tree from 20 to 60 years. Trees over 100 years old have a thick bark, and it is possible to obtain a large amount of bark as a raw material from a single tree.However, the amount of polyphenols such as proanthocyanin contained in the tree is poor. Unfavorable due to low c content. In the present specification, the anthocyanidins are classified according to the degree of polymerization. That is, a dimer to tetramer compound of a flavan-13-ole derivative is defined as OPC, and a pentamer or higher compound is defined as high molecular weight proanthocyanidin. A flavan-13-ol derivative is a compound having a flavan-13-ol as a basic skeleton. Examples of the flavan-13-ol include a flavan-13-ol, a flavan-13,4-diolone, a flavan-1,3,4-diolone derivative, Catechins (generic term for polyhydroxyflapan-1-ol). OPC has particularly excellent bioactivity among proanthocyanidins. The age of the 齢 tree is measured, for example, by a radiocarbon measurement method or by counting annual rings after falling.
上記樹木としては、 例えば、 針葉樹および広葉樹のいずれでもよい。 具体 的にいえば、 マツ目に属する樹木、 樫、 山祧、 モリシマアカシア、 アカシア マンギゥム、 ャナギ目に属する樹木、 ヒバ、 ラジア一タパインなどが挙げら れる。 これらの樹皮には、 一般に、 多くのプロアントシァニジンが含まれる。 O P C含有量が高い点から、 マツ目に属する樹木の樹皮が好ましい。 The tree may be, for example, either a conifer or a hardwood. Specifically, there are trees belonging to the order Pinaceae, oaks, yamazaki, morisima acacia, acacia mangium, trees belonging to the order willow, hiba, radia-tapain, and the like. These barks generally contain many proanthocyanidins. The bark of a tree belonging to the order Poniferae is preferred because of its high OPC content.
マツ目に属する樹木としては、 フランス海岸松 (Pinus Martima) 、 べィ マツ、 北洋ェゾマツ、 ニュージランドマツ、 カラマツ、 クロマツ、 了力マツ、 ヒメコマッ、 ゴヨウマツ、 チョウセンマツ、 ノヽィマツ、 リュウキユウマツ、
ゥックシマツ、 ダイォゥマツ、 シロマツ、 カナダのケベック地方のァネダな どが挙げられる。 フランス海岸松、 べィマツ、 北洋ェゾマツ、 ニュージーラ ンドマツ、 ァカマツが好まし!/ヽ。 Trees belonging to the order Pinaceae include French pine (Pinus Martima), Japanese pine, Japanese pine, Japanese larch, Japanese larch, Japanese black pine, Japanese pine, Japanese pine, Japanese pine, Korean pine, Nojimatsu, Ryukyu pine, Peck Shimatsu, Daiomatsu, Shiromatsu, and Aneda in Quebec, Canada. French coastal pine, bay pine, northern ezo pine, new Zealand pine, and akamatsu are preferred! / ヽ.
本努明の樹皮抽出物は、 上記オリゴメリックプロアントシァ-ジン (O P C ) を樹皮抽出物中の固形分に対して 2 5質量%以上、 好ましくは 3 0質 量。 /0以上、 より好ましくは 3 5質量。 /0以上、 さらに好ましくは 4 0質量%以 上、 最も好ましくは 4 0質量%〜6 0質量。 /。含有する。 O P Cの含有量が高 い方が、 樹皮抽出物の水に対する溶解性は大きくなるという傾向がある。 上記樹皮抽出物は、 水に対する溶解性が高い。 そのため、 水溶液の白濁お ょぴ沈殿の発生が抑制される。 具体的には、 樹皮抽出物の溶解率が 9 0 %以 上、 好ましくは 9 5 %以上、 より好ましくは 9 9 %以上、 さらに好ましくは 9 9 . 5 %以上、 最も好ましくは 9 9 . 7 %以上である。 なお、 「溶解率」 とは、 樹皮抽出物が 1質量 Z体積%となるように蒸留水に懸濁させ、 ボルテ ッタスで攪拌した後、 室温 (約 2 5 °C) で 6 0分間放置した場合に濾滓とし て検出されない固形分の割合をいい、 以下の式 1で示される。 r ヽ The bark extract of the present invention contains the oligomeric proanthocyanin (OPC) in an amount of 25% by mass or more, preferably 30 mass%, based on the solid content in the bark extract. / 0 or more, more preferably 35 mass. / 0 or more, more preferably 40% by mass or more, most preferably 40% by mass to 60% by mass. /. contains. The higher the OPC content, the greater the water solubility of the bark extract tends to be. The bark extract has high solubility in water. Therefore, the generation of cloudiness and precipitation of the aqueous solution is suppressed. Specifically, the dissolution rate of the bark extract is 90% or more, preferably 95% or more, more preferably 99% or more, still more preferably 99.5% or more, and most preferably 99.7% or more. % Or more. The “dissolution rate” means that the bark extract was suspended in distilled water so as to have a concentration of 1% by mass, Z, and stirred with a vortex, then allowed to stand at room temperature (about 25 ° C) for 60 minutes. In this case, it refers to the percentage of solids that are not detected as filter cake, and is expressed by the following equation 1. r ヽ
溶解率(%) = フ] ζ溶液 _中の;:|滓の乾燥質量 (g) . Dissolution rate (%) = f] ζin solution _ ;: | dry mass of residue (g).
1 X I 00 式 1 添加した樹皮抽出物の乾燥質量 (g) 1 X I 00 Formula 1 Dry mass of bark extract added (g)
(樹皮抽出物の製造方法) (Method for producing bark extract)
本発明の樹皮抽出物を得るには、 まず、 樹齢 1 0 0年未満の樹木の樹皮か ら水および極性溶媒の少なくとも 1種以上の溶媒で抽出する工程が含まれる。 好ましくは (a ) 粗抽出工程、 さらに精製工程を包含する方法が採用される。 精製工程は、 具体的には、 (b ) 高分子プロアントシァニジン (高分子 P C ) 減少工程および (c ) プロアントシァニジン濃縮工程である。 (b ) の
高分子 P C減少工程は、 前工程で得られた処理物 (例えば、 粗抽出物) から 高分子 P Cを減少させる工程であり、 (c ) のプロアントシァェジン濃縮ェ 程は、 前工程で得られた処理物 (例えば、 高分子 P C減少処理物) から、 糖 類、 有機酸、 脂溶性成分などの夾雑物を除去し、 かつ溶媒を減少させる工程 である。 (b ) 高分子 P C減少工程および (c ) プロアントシァニジン濃縮 工程の順序は逆であってもよい。 本明細書においては、 まず、 本発明の樹皮 抽出物を得るための製造方法 (上記 (a ) 〜 (c ) 工程) について説明し、 次いで本努明の樹皮抽出物について説明する。 なお、 以下に説明する構成は、 本発明を限定するものでなく、 本発明の趣旨の範囲内で種々改変することが できることは当業者に明らかである。 To obtain the bark extract of the present invention, first, a step of extracting the bark of a tree less than 100 years old with at least one solvent of water and a polar solvent is included. Preferably, a method including (a) a crude extraction step and a purification step is employed. The purification step is, specifically, (b) a step of reducing high molecular weight proanthocyanidin (high molecular weight PC) and (c) a step of enriching proanthocyanidin. (B) of The high molecular weight PC reduction step is a step of reducing high molecular weight PC from the processed product (for example, crude extract) obtained in the previous step, and the proanthocyanin concentration step (c) is performed in the previous step. This is a step of removing contaminants such as saccharides, organic acids, and fat-soluble components from the obtained processed product (for example, a high-molecular PC reduced product) and reducing the solvent. The order of the (b) polymer PC reduction step and (c) proanthocyanidin concentration step may be reversed. In the present specification, first, the production method (the above steps (a) to (c)) for obtaining the bark extract of the present invention will be described, and then the bark extract of the present invention will be described. The configuration described below does not limit the present invention, and it is apparent to those skilled in the art that various modifications can be made within the scope of the present invention.
( a ) 粗抽出工程 (a) Crude extraction process
粗抽出工程は、 具体的には、 樹齢 1 0 0年未満の樹木の樹皮を水および極 性溶媒の少なくとも 1種以上の溶媒に浸漬し、 必要に応じて、 所定温度で保 持することによって行われる。 . The rough extraction step is, specifically, by immersing the bark of a tree less than 100 years old in at least one solvent of water and a polar solvent, and maintaining it at a predetermined temperature as necessary. Done. .
上記樹皮は、 体積当たりの表面積を大きくするために適当な大きさに破碎 することが、 抽出効率の点から好ましい。 破碎には、 例えば、 カッター、 ス ライサー、 ミキサー、 ジューサー、 プレンダー、 マスコ口イダーなどが用い られる。 樹皮破砕物の大きさは、 特に限定されないが、 好ましくは 0 . 1〜 1 0 c m、 より好ましくは 0 . l〜5 c mの細片である。 なお、 破碎時にお いては、 破碎効率を上げるために、 水、 あるいはエタノール、 メタノール、 酢酸ェチルなどの極性溶媒、 もしくは水と極性溶媒との混合溶媒を加えても よい。 The bark is preferably crushed to an appropriate size in order to increase the surface area per volume, from the viewpoint of extraction efficiency. For the crushing, for example, a cutter, a slicer, a mixer, a juicer, a blender, and a masco mouth lider are used. The size of the bark crushed product is not particularly limited, but is preferably 0.1 to 10 cm, more preferably 0.1 to 5 cm. At the time of crushing, water or a polar solvent such as ethanol, methanol, or ethyl acetate, or a mixed solvent of water and a polar solvent may be added to increase the crushing efficiency.
本発明の樹皮抽出物を得るために用いられる溶媒は、 水、 極性溶媒、 また はこれらの混合溶媒である。 極性溶媒としては、 例えば、 メタノール、 エタ ノール、 1ープロノくノール、 2—プロパノール. 1ーブタノール、 2—プタ
ノール、 アセトン、 へキサン、 シク口へキサン、 プロピレングリコーノレ、 含 水エタノール、 含水プロピレングリコール、 ェチルメチルケトン、 グリセリ ン、 酢酸メチノレ、 酢酸ェチノレ、 ジェチノレエ一テル、 ジクロロメタン、 食用油 脂、 1 , 1 , 1 , 2—テトラフルォロェタン、 および 1, 1 , 2—トリクロ ロェテンが挙げられる。 混合溶媒としては、 上記極性溶媒を 1種以上と水と を混合して得られる溶媒およぴ上記極性溶媒を 2種以上混合して得られる溶 媒が挙げられる。 The solvent used to obtain the bark extract of the present invention is water, a polar solvent, or a mixed solvent thereof. Polar solvents include, for example, methanol, ethanol, 1-propanol, 2-propanol. 1-butanol, 2-butanol. Nol, Acetone, Hexane, Hexane Hexane, Propylene Glyconore, Hydrous Ethanol, Hydrous Propylene Glycol, Ethyl Methyl Ketone, Glycerin, Methynolacetate, Etinole Acetate, Getinoreether, Dichloromethane, Edible Oil, 1, 1,1,2-Tetrafluoroethane and 1,1,2-trichloroethane. Examples of the mixed solvent include a solvent obtained by mixing one or more of the above polar solvents and water, and a solvent obtained by mixing two or more of the above polar solvents.
溶媒の選択は、 例えば、 次のような事項を踏まえて決定すればよい。 まず、 製造時の廃液処理の観点、 または、 金属塩などを添加 (後述する) するとい う観点からは、 水を用いることが好ましい。 また、 比較的低い温度で短時間 に濃縮を行う場合、 水よりも沸点の低い極性溶媒 (例えば、 エタノール) 、 または水よりも沸点の低い極性溶媒と水との混合溶媒を用いればよい。 この ような極性溶媒は、 濃縮時に容易に除去することができ、 効率よく樹皮抽出 物を得ることができる。 本発明の樹皮抽出物を食品または医薬品として使用 する場合、 その使用の安全性を考慮すれば、 エタノール、 またはエタノール と水との混合溶媒を用いることが好ましレ、。 The selection of the solvent may be determined based on, for example, the following items. First, it is preferable to use water from the viewpoint of waste liquid treatment during production or from the viewpoint of adding a metal salt or the like (described later). When concentration is performed at a relatively low temperature in a short time, a polar solvent having a lower boiling point than water (eg, ethanol) or a mixed solvent of a polar solvent having a lower boiling point than water and water may be used. Such a polar solvent can be easily removed at the time of concentration, and a bark extract can be efficiently obtained. When the bark extract of the present invention is used as food or medicine, it is preferable to use ethanol or a mixed solvent of ethanol and water in consideration of the safety of its use.
溶媒の量は、 樹皮抽出液中のプロアントシァニジン濃度または抽出効率を 考慮して設定すればよい。 例えば、 水を抽出溶媒として使用する場合は、 樹 皮と水との比が質量比で 1 : 5〜1 : 1 0 0、 好ましくは 1 : 1 0〜1 : 5 0である。 水および/または極性溶媒を添カロして破碎した場合は、 破砕に使 用した量を考慮し、 添加する抽出溶媒の量を調整すればよい。 The amount of the solvent may be set in consideration of the concentration of proanthocyanidin in the bark extract or the extraction efficiency. For example, when water is used as the extraction solvent, the ratio of bark to water is 1: 5 to 1: 100, preferably 1:10 to 1:50 by mass. When crushing by adding water and / or a polar solvent, the amount of extraction solvent to be added may be adjusted in consideration of the amount used for crushing.
抽出温度は、 抽出効率を考慮すれば、 高めの温度に設定することが好まし い。 例えば、 水を用いる場合、 5 0〜: 1 2 0 °C、 好ましくは 7 0〜: L O O で熱水抽出する。 この場合、 樹皮 (または樹皮破碎物) に熱水を加えてもよ く、 樹皮 (または樹皮破枠物) に水を加えた後に加熱してもよい。 しかし、 プロアントシァニジンの熱変性を防止するためには、 比較的低温の水で抽出
することが好ましい。 The extraction temperature is preferably set to a higher temperature in consideration of extraction efficiency. For example, when water is used, hot water extraction is performed at 50 to 120 ° C, preferably at 70 to LOO. In this case, hot water may be added to the bark (or bark crushed product), or water may be added to the bark (or bark broken frame) and then heated. However, to prevent thermal denaturation of proanthocyanidins, extract with relatively low temperature water. It is preferable to do.
抽出時間は、 用いる樹皮 (または樹皮破辟物) の大きさ、 抽出温度などの 抽出条件と抽出効率とを考慮して決定すればよいが、 一般的には、 1 0分間 〜2 4時間である。 The extraction time may be determined in consideration of the extraction conditions such as the size of the bark (or bark rubbish) to be used and the extraction temperature, and the extraction efficiency. In general, the extraction time is 10 minutes to 24 hours. is there.
次に、 具体的な抽出方法について説明する。 抽出方法としては、 加温抽出 法または超臨界流体抽出法を用いることができる。 Next, a specific extraction method will be described. As an extraction method, a warm extraction method or a supercritical fluid extraction method can be used.
加温抽出法としては、 加温した溶媒を樹皮に加える方法、 または、 溶媒中 に樹皮を添加して、 その溶媒を加温する方法が用いられる。 例えば、 水とェ タノールとの質量比が 1 : 1〜: L : 9の水一エタノール混合溶媒と、 粉砕し た榭皮とを用いて、 7 0〜7 5 °Cで還流させながら、 0 . 5時間〜 6時間攪 拌する方法が挙げられる。 なお、 この方法を用いる場合、 溶媒の量は、 樹皮 の 1倍〜 2 0倍量とすればよい。 As the warm extraction method, a method of adding a heated solvent to bark, or a method of adding bark to a solvent and heating the solvent is used. For example, using a mixed solvent of water and ethanol having a mass ratio of water to ethanol of 1: 1 to: L: 9 and pulverized leather, the mixture is refluxed at 70 to 75 ° C. to obtain a mixture. A method of stirring for 5 to 6 hours can be used. When this method is used, the amount of the solvent may be 1 to 20 times the amount of the bark.
ところで、 溶媒を還流させる温度まで昇温せずに一度加温抽出した後、 濾 過などにより上清を回収し、 さらに残った残渣に再度溶媒を加えて同様に加 温抽出する工程を採用することによつても、 高い抽出効率が得られる。 なお、 極性溶媒を使用する場合の抽出温度は、 その極性溶媒の沸点以下に設定する 必要がある。 By the way, a process is adopted in which the solvent is once extracted without heating to the temperature at which the solvent is refluxed, the supernatant is collected by filtration, etc., and the solvent is again added to the remaining residue, followed by similar heating and extraction. As a result, high extraction efficiency can be obtained. When a polar solvent is used, the extraction temperature must be set to a value equal to or lower than the boiling point of the polar solvent.
超臨界流体抽出法は、 物質の気液の臨界点 (臨界温度、 臨界圧力) を超え た状態の流体である超臨界流体を用いて目的成分を抽出する方法である。 超 臨界流体としては、 二酸化炭素、 エチレン、 プロパン、 亜酸化窒素 (笑気ガ ス) などが用いられ、 二酸ィ匕炭素が好ましく用いられる。 The supercritical fluid extraction method is a method of extracting a target component using a supercritical fluid, which is a fluid that has exceeded the critical point (critical temperature, critical pressure) of a substance's gas-liquid. As the supercritical fluid, carbon dioxide, ethylene, propane, nitrous oxide (laugh gas) and the like are used, and dioxide carbon is preferably used.
超臨界流体抽出法は、 目的成分を超臨界流体によって抽出する抽出工程お よび目的成分と超臨界流体とを分離する分離工程からなる。 分離工程では、 圧力変化による抽出分離、 温度変化による抽出分離、 または吸着剤,吸収剤 を用いた抽出分離のいずれを行ってもよい。 The supercritical fluid extraction method includes an extraction step of extracting a target component with a supercritical fluid, and a separation step of separating the target component from the supercritical fluid. In the separation step, either extraction separation by pressure change, extraction separation by temperature change, or extraction separation using an adsorbent or absorbent may be performed.
また、 ェントレーナー添加法による超臨界流体抽出を行ってもよい。 この
方法は、 超臨界流体に、 例えば、 エタノール、 プロパノール、 n—へキサン、 アセトン、 トルエン、 その他の脂肪族低級アルコール類、 脂肪族炭化水素類、 芳香族炭化水素類、 またはケトン類を 2〜 2 0 WZV%程度添カ卩し、 得られ た抽出流体で超臨界流体抽出を行うことによって、 O P C、 カテキン類 (後 述) などの目的とする被抽出物の抽出流体に対する溶解度を飛躍的に上昇さ せる、 あるいは分離の選択性を増強させる方法であり、 プロアントシァニジ ンを効率的に抽出する方法である。 Further, supercritical fluid extraction by an entrainer addition method may be performed. this The method is as follows. For example, ethanol, propanol, n-hexane, acetone, toluene, other aliphatic lower alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, or ketones are added to a supercritical fluid. 0 By adding WZV% and adding supercritical fluid with the obtained extraction fluid, the solubility of OPC, catechins (described below), etc., in the target extraction target fluid in the extraction fluid is dramatically increased. This is a method to increase the selectivity of separation and to extract proanthocyanin efficiently.
抽出には、 例えば、 回分式、 半連続式、 または連続式などのいずれの抽出 装置を用いてもよい。 For the extraction, for example, any of a batch type, a semi-continuous type, and a continuous type may be used.
得られた粗抽出物は、 そのまま樹皮抽出物として用いることができるが、 さらに精製される。 精製することによって、 さらに抗酸ィ匕作用に優れた樹皮 抽出物を得ることができる。 具体的には、 (b ) 高分子 P C減少工程または ( c ) プロアントシァニジン濃縮工程に供される。 The obtained crude extract can be used as it is as a bark extract, but is further purified. By purifying, it is possible to obtain a bark extract that is more excellent in antioxidant action. Specifically, it is subjected to (b) a step of reducing high molecular weight PC or (c) a step of concentrating proanthocyanidins.
上記粗抽出物を、 (b ) 高分子 P C減少工程または (c ) プロアントシァ 二ジン濃縮工程に供する前に、 予め粗抽出物から溶媒を減少させる濃縮処理 を行うことが好ましい。 粗抽出物から溶媒を減少させることによって、 その 後の工程、 特に (b ) 高分子 P C減少工程で有利な効果が得られる。 例えば、 ( b ) 高分子 P C減少工程として塩処理を行う場合、 塩の使用量を減少させ ることができる。 その結果、 重合度の高いプロアントシァニジン (高分子 P C) を効率よく除去することが可能となる。 また、 粗抽出物に有機溶媒が含 まれる場合は、 濃縮によって有機溶媒を除去して、 水に置換することが可能 である。 水に置換することにより溶液中の塩の電離が高くなり、 塩と高分子 P Cとが結合して沈澱等が生じ易くなる。 したがって、 効率よく高分子 P C を除去することができる。 置換する水の量は、 置換後の濃縮物の体積が、 濃 縮前の粗抽出物の体積の多くとも 2倍以下となるように調整され得る。 なお、 濃縮処理を行う場合は、 予め濾過などにより不溶物を除去することが好まし
い。 このような粗抽出液を利用すれば、 不溶物が除去されているので、 濃縮 を均一に行うことができ、 さらに、 濃縮率の調整が容易になる。 Prior to subjecting the crude extract to (b) the step of reducing high molecular PC or (c) the step of concentrating proanthocyanidin, it is preferable to carry out a concentration treatment for reducing the solvent from the crude extract in advance. By reducing the solvent from the crude extract, advantageous effects can be obtained in the subsequent steps, especially in the step (b) for reducing the high molecular weight PC. For example, (b) when a salt treatment is performed as the polymer PC reduction step, the amount of salt used can be reduced. As a result, it is possible to efficiently remove proanthocyanidins (polymer PC) having a high degree of polymerization. When the crude extract contains an organic solvent, the organic solvent can be removed by concentration and replaced with water. By substituting with water, the ionization of the salt in the solution is increased, and the salt and the high molecular weight PC are combined to easily precipitate. Therefore, polymer PC can be removed efficiently. The amount of water to be replaced can be adjusted so that the volume of the concentrate after the replacement is at most twice the volume of the crude extract before the concentration. When performing the concentration treatment, it is preferable to remove insolubles by filtration in advance. Yes. If such a crude extract is used, since the insoluble matter is removed, the concentration can be performed uniformly, and the concentration ratio can be easily adjusted.
濃縮方法としては、 当業者が通常用いる濃縮方法であれば、 特に制限はな い。 例えば、 加熱濃縮、 減圧濃縮、 凍結濃縮、 限外濾過膜による濃縮、 透析 膜による濃縮、 吸着剤を用いた濃縮などが挙げられる。 凍結濃縮は、 粗抽出 物を凍結させ、 その凍結物の水蒸気圧以下に減圧して水を昇華させて除去す る方法である。 好ましくは、 プロアントシァェジンの熱変性が少ない減圧濃 縮および凍結濃縮であり、 より好ましくは、 減圧濃縮である。 減圧濃縮を行 えば、 プロアントシァニジンの変性を最小限に抑えることができる。 The concentration method is not particularly limited as long as it is a concentration method usually used by those skilled in the art. For example, heating concentration, reduced-pressure concentration, freeze concentration, concentration using an ultrafiltration membrane, concentration using a dialysis membrane, concentration using an adsorbent and the like can be mentioned. Freeze-concentration is a method in which a crude extract is frozen, and the water is sublimated by reducing the pressure below the water vapor pressure of the frozen product to remove it. Preferably, it is concentration under reduced pressure and freeze concentration in which the heat denaturation of proanthocyanin is small, and more preferably, concentration under reduced pressure. Concentration under reduced pressure can minimize denaturation of proanthocyanidins.
上記濃縮方法は、 1つの方法によってのみ行ってもよいし、 複数の方法を 組み合わせて行ってもよい。 また、 加熱濃縮を行う場合は、 加熱によるプロ アントシァニジンの熱変性を防ぐために、 4 0 °C〜1 0 0 °Cの温度で行うこ とが好ましい。 The concentration method may be performed by only one method, or may be performed by combining a plurality of methods. In addition, when performing heat concentration, it is preferable to perform the heat concentration at a temperature of 40 ° C. to 100 ° C. in order to prevent thermal denaturation of proanthocyanidin by heating.
得られた濃縮物の濃縮率は、 特に制限されない。 一般的には、 濃縮物の体 積が、 濃縮前の粗抽出物の体積と比べて、 1 / 2〜1 Z 1 0 0容量、 好まし くは 1 / 5〜1 7 0容量、 さらに好ましくは 1ノ 1 0〜1ノ5 0容量とな るように濃縮が行われる。 The concentration rate of the obtained concentrate is not particularly limited. Generally, the volume of the concentrate is 1/2 to 1 Z 100 volumes, preferably 1/5 to 170 volumes, more preferably the volume of the crude extract before concentration. Is concentrated to a volume of 10 to 50 volumes.
上記濃縮処理は、 その後の (b ) 高分子 P C減少工程として塩処理を行う 場合に塩の使用量を減少させるため、 コストの低減および環境保全の面から も有用である。 具体的には、 粗抽出物を直接塩処理する場合に比べて、 塩の 使用量を約 1 / 2〜約 1 _ 1 0 0、 好ましくは約 1 / 5〜約 1 / 5 0に減少 できる。 The above-mentioned concentration treatment is useful in terms of cost reduction and environmental conservation, since the amount of salt used is reduced when the salt treatment is carried out as the subsequent (b) polymer PC reduction step. Specifically, the amount of salt used can be reduced to about 1/2 to about 1-100, preferably about 1/5 to about 1/50, as compared to the case where the crude extract is directly salted. .
( b ) 高分子 P C減少工程 (b) Polymer PC reduction process
次に、 高分子 P C減少工程について説明する。 この工程は、 上記 (a ) 粗 抽出工程で得られた粗抽出物 (または濃縮物) 中の高分子プロアントシァニ
ジン (高分子 P C) を減少させる目的で行われる。 あるいは (a ) 粗抽出ェ 程おょぴ後述する (c ) プロアントシァニジン濃縮工程の後に、 高分子 P C を減少させる目的で行われる。 上記高分子 P C減少工程としては、 例えば、 ( b— 1 ) 塩処理および (b— 2 ) 吸着剤処理が挙げられる。 この高分子 P C減少工程により、 高分子 P Cを減少させ、 その結果、 得られた高分子 P C 減少処理物中の O P C含有量を相対的に増加させることができる。 Next, the polymer PC reduction step will be described. In this step, the polymer proanthocyanin in the crude extract (or concentrate) obtained in the above (a) crude extraction step is used. This is done to reduce gin (polymer PC). Alternatively, (a) crude extraction is performed after the (c) proanthocyanidin enrichment step described below, with the purpose of reducing high molecular weight PC. Examples of the polymer PC reduction step include (b-1) salt treatment and (b-2) adsorbent treatment. By this high-molecular-weight PC reduction step, high-molecular-weight PC can be reduced, and as a result, the OPC content in the obtained high-molecular-weight PC reduction product can be relatively increased.
( b— 1 ) 塩処理 (b-1) Salt treatment
塩処理は、 粗抽出物 (または濃縮物) あるいは後述する (c ) プロアント シァニジン濃縮工程で得られるプロアントシァニジン濃縮物に、 塩を添加す ることによって、 高分子 P Cを、 例えば、 沈殿物などの不溶物として生じさ せてこの不溶物を除去する処理である。 The salt treatment is carried out by adding a salt to a crude extract (or concentrate) or a proanthocyanidin concentrate obtained in the (c) proanthocyanidin concentration step described below, whereby polymer PC, for example, a precipitate is added. This is a process that removes this insoluble matter by generating it as insoluble matter.
塩処理に用いられる塩は、 溶液中で電離するものであればよい。 塩として は、 例えば、 一価の金属塩、 二価の金属塩、 およぴ非金属性の塩が挙げられ る。 The salt used in the salt treatment may be any one that is ionized in the solution. Examples of the salt include a monovalent metal salt, a divalent metal salt, and a nonmetallic salt.
一価の金属塩としては、 リチウム、 ナトリウム、 カリウム、 ルビジウム、 セシウム、 フランシウムなどのアルカリ金属の塩、 例えば、 ハロゲン化物塩 (塩化物塩、 臭化物塩など) 、 リン酸塩、 炭酸塩、 有機酸塩 (酢酸塩などの カルボン酸塩、 スルホン酸塩など) などが挙げられる。 具体的には、 塩ィ匕ナ トリウム、 硫酸ナトリウム、 クェン酸ナトリウム、 塩化カリウム、 リン酸ナ トリウム、 リン酸カリウム、 酢酸ナトリウムなどが挙げられる。 特に塩祈に 好ましく用いられる硫酸ナトリウム、 リン酸カリウム、 クェン酸ナトリウム、 およぴ塩化ナトリゥムが好ましい。 Monovalent metal salts include salts of alkali metals such as lithium, sodium, potassium, rubidium, cesium, and francium, for example, halide salts (chloride salts, bromide salts, etc.), phosphates, carbonates, and organic acids. Salts (carboxylates such as acetate, sulfonates, etc.). Specific examples include sodium salt sodium, sodium sulfate, sodium citrate, potassium chloride, sodium phosphate, potassium phosphate, sodium acetate and the like. Particularly preferred are sodium sulfate, potassium phosphate, sodium citrate, and sodium chloride, which are preferably used for salt prayer.
二価の金属塩としては、 ベリリウム、 マグネシウム、 アルカリ土類金属 (カルシウム、 ストロンチウム、 バリウム、 ラジウム) などの金属塩が拳げ られる。 なお、 二価の金属塩は、 酸化剤として用いられる金属 (例えば、 銅
など) を含む塩を用いると、 プロアントシァ-ジンが酸ィ匕される恐れがある ため注意を要する。 二価の金属塩は、 特にプロアントシァニジンに対して吸 着力が強いため、 少ない塩の量で高分子 P Cを、 不溶物とすることができる。 非金属性の塩としては、 例えば、 硫酸アンモユウム (硫安) などが好適に 用いられる。 Examples of divalent metal salts include beryllium, magnesium, and alkaline earth metals (calcium, strontium, barium, and radium). The divalent metal salt is a metal used as an oxidizing agent (for example, copper Care must be taken when using a salt containing) because proanthocyanin may be oxidized. Since the divalent metal salt has a strong adsorptive power particularly to proanthocyanidin, the polymer PC can be made insoluble with a small amount of salt. As the nonmetal salt, for example, ammonium sulfate (ammonium sulfate) is preferably used.
上記の塩の中で、 O P Cと塩との結合をできるだけ小さくして O P Cの精 製効率を高めるという観点では、 一価の金属塩または硫安が好まし 、。 Among the above salts, a monovalent metal salt or ammonium sulfate is preferred from the viewpoint of minimizing the bond between OPC and the salt and increasing the purification efficiency of OPC.
上記塩の添加量は、 特に制限されないが、 粗抽出物 (または濃縮物) ある いはプロアントシァ-ジン濃縮物の全体質量に対し、 0 . 1質量%〜5 0質 量。 /0、 好ましくは 3質量%〜 5 0質量%、 より好ましくは 5質量。/。〜 4 5質 量%となるように添加し得る。 特に、 水に対する塩の飽和量の 1 0〜 7 5質 量%、 好ましくは 2 0〜6 0質量%相当量を、 粗抽出物 (または濃縮物) あ るいはプロアントシァニジン濃縮物に添加することが好ましい。 また、 塩と してカルシウム塩、 マグネシウム塩などの二価の金属塩を用いる場合は、 濃 縮物中に 0 . 1質量%〜 3 0質量%となるように添加することが好まし!/、。 塩処理、 特に金属塩による処理に際しては、 酸性側で処理を行うことが好 ましい。 弱〜強アルカリ性ではプロアントシァニジンの安定性が悪くなり分 解する恐れがある。 そのため、 溶液中の p Hを好ましくは 7 . 5未満、 より 好ましくは 6未満、 さらに好ましくは 5 . 5以下となるように調整すること が好ましい。 特に、 二価の金属塩を添加する場合、 溶液中の p Hが上がりや すいため注意を要する。 p Hの調整は、 例えば、 プロアントシァニジンを安 定化するための助剤 (ァスコルビン酸などの p H調整剤) などを用いること によって行われる。 具体的には、 予め金属塩濃度が塩処理時の最終濃度の 2 〜1 0倍濃度となるような金属塩溶液を調製し、 この溶液をさらに p Hが 4 〜6、 好ましくは 4〜5 . 5、 より好ましくは 4〜 5となるように調節する ことが好ましい。 この溶液を粗抽出物 (または濃縮物) あるいはプロアント
シァニジン濃縮物に加えることによって、 プロアントシァ-ジンの分解を回 避することができる。 The amount of the salt to be added is not particularly limited, but is 0.1% by mass to 50% by mass relative to the total mass of the crude extract (or concentrate) or the proanthocyanin concentrate. / 0 , preferably 3% to 50% by mass, more preferably 5% by mass. /. It can be added so as to be ~ 45 mass%. In particular, 10 to 75% by mass, preferably 20 to 60% by mass of the saturated amount of salt with respect to water is added to the crude extract (or concentrate) or the proanthocyanidin concentrate. Is preferred. When a divalent metal salt such as a calcium salt or a magnesium salt is used as the salt, it is preferable to add the salt so as to be 0.1% by mass to 30% by mass in the concentrate. /. In the salt treatment, particularly the treatment with a metal salt, it is preferable to perform the treatment on the acidic side. If the alkalinity is weak to strong, the stability of proanthocyanidins may be degraded and may be decomposed. Therefore, the pH in the solution is preferably adjusted to be less than 7.5, more preferably less than 6, and even more preferably 5.5 or less. In particular, care should be taken when adding a divalent metal salt, because the pH in the solution is easily increased. The pH is adjusted by using, for example, an auxiliary agent for stabilizing proanthocyanidin (pH adjusting agent such as ascorbic acid). Specifically, a metal salt solution is prepared in advance so that the metal salt concentration becomes 2 to 10 times the final concentration at the time of salt treatment, and this solution is further adjusted to have a pH of 4 to 6, preferably 4 to 5. 5, more preferably 4 to 5. This solution is used as a crude extract (or concentrate) or By adding to the cyanidin concentrate, proanthocyanin degradation can be avoided.
塩処理工程において、 処理温度に特に制限はない。 好ましくは 1〜4 0 °C である。 処理時間についても特に制限はなく、 処理温度に応じて適宜設定さ れ得る。 例えば、 塩を添加後、 1 °C〜4 0でで 3 0分〜 4 8時間静置し、 十 分に沈殿物などの不溶物を生じさせる。 なお、 静置時間は、 4 8時間以上で もよレ、が、 O P Cが自動酸化し、 赤褐色が濃い褐色に変色する前に次工程に 移ることが好ましい。 In the salt treatment step, the treatment temperature is not particularly limited. Preferably it is 1 to 40 ° C. There is no particular limitation on the processing time, and it can be set as appropriate according to the processing temperature. For example, after addition of the salt, the mixture is allowed to stand at 1 ° C. to 40 ° C. for 30 minutes to 48 hours to sufficiently generate an insoluble matter such as a precipitate. The standing time may be 48 hours or more, but it is preferable to move to the next step before the OPC is automatically oxidized and the reddish brown turns deep brown.
次レ、で、 生じた沈殿物などの不溶物を除去する。 不溶物を除去する方法と してま、 当業者が通常用いる方法、 例えば、 濾過や遠心分離などを用いれば よい。 処理時間の点から、 濾過が好適に用いられる。 濾過は、 好ましくは 1 〜4 O °Cで行われ得る。 低温であるほど、 より多くの高分子 P Cを除去する ことができ、 好ましくは 3 0 °C以下、 より好ましくは 2 5 °C以下で行われる。 この滤過処理は、 塩を添加する前に行ってもよいが、 塩添加後にも沈殿物な どの不溶物を除去するために行う必要がある。 濾過は、 O P Cの損失を最小 限に抑えるために、 濾過後に残った残渣を、 飽和濃度が同等の塩の水溶液で 繰り返し洗浄することが好ましい。 In the next step, the insoluble matter such as the generated precipitate is removed. As a method for removing insolubles, a method commonly used by those skilled in the art, for example, filtration or centrifugation may be used. Filtration is preferably used in terms of processing time. Filtration may preferably be carried out at 1-4 ° C. The lower the temperature, the more polymer PC can be removed, and the reaction is preferably performed at 30 ° C. or lower, more preferably at 25 ° C. or lower. This filtration treatment may be performed before the addition of the salt, but must be performed after the addition of the salt in order to remove insoluble matters such as precipitates. In the filtration, it is preferable to repeatedly wash the residue remaining after the filtration with an aqueous solution of a salt having a similar saturation concentration in order to minimize the loss of OPC.
塩処理工程後の液 (高分子 P C減少処理物) に含有される高分子プロアン トシァニジンの量は、 塩処理前の粗抽出物 (または濃縮物) あるいはブロア ントシァニジン濃縮物と比べて、 1 2以下、 好ましくは 1 Z 3以下、 より 好ましくは 1 5以下、 さらに好ましくは 1 / 6以下である。 The amount of high molecular weight proanthocyanidin contained in the solution after salt treatment (high-molecular weight PC-reduced product) is 12 or less compared to the crude extract (or concentrate) or the salt of broanthocyanidin before salt treatment. , Preferably 1 Z 3 or less, more preferably 15 or less, and even more preferably 1/6 or less.
塩処理工程 (高分子 P C減少工程) の後に、 後述する (c ) プロアントシ ァ-ジン濃縮工程が採用される場合、 塩による処理で使用された塩が吸着剤 処理工程で除去されるため、 特に塩を除去する工程を設ける必要がなく、 効 率的である。
(b-2) 吸着剤処理 If the (c) proanthocyanin enrichment step described below is adopted after the salt treatment step (polymer PC reduction step), the salt used in the salt treatment is removed in the adsorbent treatment step. There is no need to provide a step for removing salts, which is efficient. (b-2) Adsorbent treatment
(b) 高分子 PC減少工程に用いる吸着剤としては、 OPCを効果的に吸 着することが可能で、 高分子 PCを吸着しにくい吸着剤 (以下、 第 1の吸着 剤という) を用いることが好ましい。 この第 1の吸着剤と、 (a) 粗抽出ェ 程で得られた粗抽出物 (または濃縮物) あるいは後述する (c) プロアント シァニジン濃縮工程で得られたプロアントシァ-ジン濃縮物とを接触させ、 所定の溶媒で吸着物を回収することによって、 吸着されない高分子 P Cを除 去することができる。 吸着剤処理の詳細は後述の(ii)吸着剤による処理の項 で説明する。 (b) As the adsorbent used in the polymer PC reduction step, an adsorbent that can effectively adsorb OPC and does not easily adsorb polymer PC (hereinafter referred to as the first adsorbent) should be used. Is preferred. The first adsorbent is brought into contact with (a) the crude extract (or concentrate) obtained in the crude extraction step or (c) the proanthocyanin concentrate obtained in the (c) proanthocyanidin concentration step described below. By recovering the adsorbate with a predetermined solvent, the non-adsorbed polymer PC can be removed. Details of the adsorbent treatment will be described in the section of (ii) Adsorbent treatment described later.
(c) プロアントシァ-ジン濃縮工程 (c) Proanthocyanin concentration process
次に、 プロアントシァニジン濃縮工程について説明する。 この工程は、 上 記で得られた樹皮の粗抽出物 (またはその濃縮物) あるいは高分子 PC減少 処理物を、 所定の吸着剤で処理することによって、 該処理物から糖類、 有機 酸、 脂溶性成分などの夾雑物を除去する工程である。 具体的には、 樹皮の粗 抽出物 (またはその濃縮物) あるいは高分子 PC減少処理物を合成樹脂系吸 着剤と接触させて、 O PCおよび高分子 PCを含むプロアントシァニジンを 吸着剤に吸着させた後、 吸着剤を洗浄し、 所定の溶媒で溶出することにより、 プロアントシァニジン濃縮物 (または樹皮抽出物) を得ることができる。 こ の処理に用いる吸着剤を第 2の吸着剤という。 このようにして得られたプロ アントシァニジン濃縮物 (または樹皮抽出物) は、 夾雑物が除去された結果、 プロアントシァニジン (OPCなど) をより多く含有する。 吸着剤処理の詳 細は後述の(ii)吸着剤による処理の項で説明する。 Next, the proanthocyanidin concentration step will be described. In this step, the crude extract of bark (or its concentrate) or the high molecular weight PC-reduced material obtained above is treated with a predetermined adsorbent to obtain saccharides, organic acids, and fats from the treated material. This is a step of removing contaminants such as soluble components. Specifically, a crude extract of bark (or its concentrate) or a high-molecular-weight PC-treated product is brought into contact with a synthetic resin-based adsorbent, and proanthocyanidin containing OPC and high-molecular-weight PC is adsorbed. After being adsorbed on the surface, the adsorbent is washed and eluted with a predetermined solvent to obtain a proanthocyanidin concentrate (or bark extract). The adsorbent used in this treatment is called a second adsorbent. The proanthocyanidin concentrate (or bark extract) thus obtained contains more proanthocyanidins (such as OPC) as a result of removing contaminants. The details of the adsorbent treatment will be described later in the section of (ii) Adsorbent treatment.
(c) のプロアントシァニジン濃縮工程の後に (b) の高分子 PC減少ェ 程を行う場合には、 上記工程 (c) と工程 (b) との間において、 減圧濃縮 などの溶媒を減少させる濃縮処理を行つてもよい。 この濃縮処理によって、
例えば、 上述のように、 その後の (b ) 高分子 P C減少工程としての塩処理 において、 塩の使用量を減少させるなどの効果が得られる。 なお、 この場合、If the polymer PC reduction step of (b) is performed after the proanthocyanidin concentration step of (c), reduce the solvent such as concentration under reduced pressure between the above steps (c) and (b). May be performed. By this concentration process, For example, as described above, in the subsequent salt treatment as the (b) polymer PC reduction step, effects such as a reduction in the amount of salt used can be obtained. In this case,
( c ) プロアントシァニジン濃縮工程において、 粗抽出に使用した溶媒を、 揮発性の高い有機溶媒に置換することができる。 このように揮発性の高い有 機溶媒に置換すれば、 水を抽出溶媒とした粗抽出物に比べて濃縮が容易とな る。 具体的には、 水を抽出溶媒とした粗抽出物と吸着剤とを接触させた後、 吸着剤に吸着されている成分を脱離させる時に、 有機溶媒 (例えば無水エタ ノール) を用いて、 カラムから吸着物の全てを溶出させる。 このエタノール 溶出液は、 減圧濃縮などによって、 容易に濃縮される。 以下、 (i ) 吸着剤、 および(ii)吸着剤による処理について説明する。 (c) In the proanthocyanidin concentration step, the solvent used for the crude extraction can be replaced with a highly volatile organic solvent. Substitution with such a highly volatile organic solvent facilitates concentration compared to a crude extract using water as an extraction solvent. Specifically, after contacting the crude extract with water as the extraction solvent and the adsorbent, when desorbing the components adsorbed on the adsorbent, an organic solvent (for example, anhydrous ethanol) is used. Elute all of the adsorbate from the column. This ethanol eluate is easily concentrated by vacuum concentration or the like. Hereinafter, (i) the adsorbent and (ii) the treatment with the adsorbent will be described.
( i ) 吸着剤 (i) Adsorbent
( b ) 高分子 P C減少工程および (c ) プロアントシァニジン濃縮工程に 用いる、 第 1の吸着剤および第 2の吸着剤は、 プロアントシァニジンに対し て異なる挙動を示すが、 この相違は、 吸着剤の材質、 細孔半径、 比表面積、 分子量分画範囲などによるものであると考えられる。 そこでまず、 一般的に プロアントシァニジンの吸着に用いられる吸着剤について説明し、 次に、 第 The first adsorbent and the second adsorbent used in the (b) polymer PC reduction step and (c) the proanthocyanidin enrichment step behave differently with respect to proanthocyanidin. It is thought to be due to the material of the adsorbent, pore radius, specific surface area, molecular weight fractionation range, etc. Therefore, first, adsorbents generally used for adsorption of proanthocyanidins will be described.
1の吸着剤および第 2の吸着剤それぞれの好ましい性質について説明する。 上記第 1の吸着剤おょぴ第 2の吸着剤の個々の吸着剤としては、 一般に力 ラムクロマトグラフィーに用いられる吸着剤であれば特に制限はない。 本発 明に用いられる吸着剤としては、 例えば、 合成吸着剤、 陽イオン交換樹脂系 吸着剤、 陰イオン交換樹脂系吸着剤、 架橋デキストラン誘導体系吸着剤、 ポ リビエル系榭脂からなる吸着剤、 ァガロース誘導体系吸着剤、 およびセル口 ース誘導体系吸着剤が挙げられる。 ここで、 合成吸着剤とは、 イオン交換基 等の官能基を有さず、 多孔' I"生で、 かつ微細な連続孔 (細孔) を有するものを レ、い、 例えば、 ファンデルワールス力で吸着し得る。
合成吸着剤は、 さらにその材質によって分類され、 芳香族系合成吸着剤、 置換芳香族系合成吸着剤、 アタリル系合成吸着剤などの合成吸着剤に分類さ れる。 これらの合成吸着剤は、 材質により親水性および疎水性の程度が異な る。 合成吸着剤の安定性、 プロアントシァニジン (OPC) の吸着効率、 お よび分離 ·分画能の点から、 好ましくは芳香族系合成吸着剤である。 Preferred properties of each of the first adsorbent and the second adsorbent will be described. The individual adsorbents of the first adsorbent and the second adsorbent are not particularly limited as long as they are generally used for column chromatography. Examples of the adsorbent used in the present invention include a synthetic adsorbent, a cation-exchange resin-based adsorbent, an anion-exchange resin-based adsorbent, a crosslinked dextran derivative-based adsorbent, and an adsorbent composed of a polyester resin. Agarose derivative-based adsorbent and cellose derivative-based adsorbent. Here, a synthetic adsorbent is a material that has no functional groups such as ion-exchange groups, is porous and has fine continuous pores (pores). For example, van der Waals Can be absorbed by force. Synthetic adsorbents are further classified according to their materials, and are classified into synthetic adsorbents such as aromatic synthetic adsorbents, substituted aromatic synthetic adsorbents, and ataryl synthetic adsorbents. These synthetic adsorbents have different degrees of hydrophilicity and hydrophobicity depending on the material. From the viewpoint of the stability of the synthetic adsorbent, the adsorption efficiency of proanthocyanidin (OPC), and the separation and fractionation ability, an aromatic synthetic adsorbent is preferred.
芳香族系合成吸着剤としては、 架橋スチレン系樹脂などの多孔質樹脂から なる吸着剤が好ましい。 市販の吸着剤としては、 例えば、 ダイアイオン (登 録商標) HP— 10、 HP- 20 、 HP— 21 、 HP— 30 、 HP— 4 0 、 および HP— 50、 (以上、 三菱化学株式会社製) ;アンバーライト (登録商標) XAD— 4、 XAD— 16、 X AD— 1 180、 および X AD As the aromatic synthetic adsorbent, an adsorbent composed of a porous resin such as a crosslinked styrene resin is preferable. Commercially available adsorbents include, for example, DIAION (registered trademark) HP-10, HP-20, HP-21, HP-30, HP-40, and HP-50 (all manufactured by Mitsubishi Chemical Corporation). ); Amberlight® XAD-4, XAD-16, XAD-1180, and XAD
- 2000 (以上、 株式会社オルガノ製) ;ならびにセパビーズ (登録商 標) S P—825 、 S P—800 、 S P— 850 、 および S P— 875 (以上、 三菱化学株式会社製) が挙げられる。 -2000 (all manufactured by Organo Co., Ltd.); and Sepabeads (registered trademark) SP-825, SP-800, SP-850, and SP-875 (all manufactured by Mitsubishi Chemical Corporation).
置換芳香族系合成吸着剤としては、 例えば、 芳香族重合体の芳香核に臭素 原子などを結合させた、 疎水性の強い樹脂からなる吸着剤が挙げられる。 市 販の吸着剤としては、 例えば、 セパビーズ (登録商標) S P— 205 、 S P-206 、 および S P—207 (以上、 三菱化学株式会社製) が挙げら れる。 Examples of the substituted aromatic synthetic adsorbent include an adsorbent made of a strongly hydrophobic resin in which a bromine atom or the like is bonded to an aromatic nucleus of an aromatic polymer. Examples of commercially available adsorbents include Sepabeads (registered trademark) SP-205, SP-206, and SP-207 (all manufactured by Mitsubishi Chemical Corporation).
アタリル系合成吸着剤としては、 例えば、 メタタリル酸エステル重合体な どを骨格とする親水性の強い樹脂からなる吸着剤が挙げられる。 市販の吸着 剤としては、 例えば、 ダイアイオン (登録商標) HP 1MGおよび HP 2M G (以上、 三菱化学株式会社製) ;ならびにアンパーライト (登録商標) X AD-7 (株式会社オルガノ製) が挙げられる。 As the ataryl-based synthetic adsorbent, for example, an adsorbent made of a highly hydrophilic resin having a skeleton of a methacrylic acid ester polymer or the like can be used. Commercially available adsorbents include, for example, Diaion (registered trademark) HP 1MG and HP 2MG (all manufactured by Mitsubishi Chemical Corporation); and Amperlite (registered trademark) X AD-7 (produced by Organo Corporation). Can be
上記合成吸着剤は、 上記のように、 微細な連続孔 (細孔) を有する多孔性 であるため、 溶液中に存在する目的の溶質を分子ふるいの効果により分離す ることができる。 すなわち、 合成吸着剤と溶液とを接触させると、 小さな溶
質分子は、 その細孔を通って合成吸着剤の内部まで浸透拡散して吸着する。 他方、 この細孔のサイズよりも大きな分子は、 合成吸着剤内に拡散できず、 吸着されない。 Since the synthetic adsorbent is porous having fine continuous pores (pores) as described above, the target solute present in the solution can be separated by the effect of a molecular sieve. That is, when the synthetic adsorbent is brought into contact with the solution, The porous molecules permeate and diffuse through the pores to the inside of the synthetic adsorbent and are adsorbed. On the other hand, molecules larger than this pore size cannot diffuse into the synthetic adsorbent and are not adsorbed.
陽イオン交換樹脂系吸着剤としては、 例えば、 官能基としてスルホン酸塩 基を有する樹脂である、 アンバーライト (登録商標) CG— 4000、 CG 一 5000、 CG— 6000、 CG— 8000、 I R— 1 16、 I R- 1 1 8、 I R— 120B、 I R— 122、 I R— 1 24、 X T— 1007、 X T 一 1009、 XT— 1002 (以上、 株式会社オルガノ製) などが挙げられ る。 Examples of the cation exchange resin-based adsorbent include resins having a sulfonate group as a functional group, such as Amberlite (registered trademark) CG-4000, CG-5000, CG-6000, CG-8000, IR-1. 16, IR-118, IR-120B, IR-122, IR-124, XT-1007, XT-1009, XT-1002 (all manufactured by Organo Co., Ltd.).
陰イオン交換樹脂系吸着剤としては、 例えば、 官能基として 4級ァミンを 有する弱塩基性陰イオン交換樹脂である、 OPT I PORE-XUS 402 85. 00、 OPT I PORE-XUS 40390. 00 (以上、 ダウケ ミカル株式会社製) などが挙げられる。 Examples of anion exchange resin-based adsorbents include OPT I PORE-XUS 402 85.00 and OPT I PORE-XUS 40390.00 (which are weakly basic anion exchange resins having a quaternary amine as a functional group). And Dow Chemical Co., Ltd.).
架橋デキストラン誘導体系吸着剤としては、 例えば、 セフアデックス (登 録商標) LH20 、 LH60 (以上、 アマシャムバイオサイエンス株式会 社製) などが挙げられる。 Examples of the cross-linked dextran derivative-based adsorbent include SEPHADEX (registered trademark) LH20 and LH60 (all manufactured by Amersham Bioscience Co., Ltd.).
ポリビュル系樹脂 (ゲル) からなる吸着剤としては、 例えば、 トョパール HW— 40、 50 (東洋曹達工業株式会社) などが挙げられる。 Examples of the adsorbent composed of a polybutyl-based resin (gel) include Toyopearl HW-40 and 50 (Toyo Soda Kogyo Co., Ltd.).
ァガロース誘導体系吸着剤としては、 例えば、 セファロース CL、 4B、 6 B (以上アマシャムバイオサイエンス株式会社) 、 B i o— Ge l A (バ ィオラッド株式会社) などが挙げられる。 Examples of the agarose derivative-based adsorbent include Sepharose CL, 4B and 6B (Amersham Biosciences, Inc.) and Bio-Gel A (Biorad Inc.).
セルロース誘導体系吸着剤としては、 セル口ファイン CL一 90、 GCL — 300、 GCL— 1000 (以上、 生化学工業株式会社) などが挙げられ る。 Cellulose derivative-based adsorbents include Cellguchi Fine CL-90, GCL-300, GCL-1000 (all of which are manufactured by Seikagaku Corporation).
上記の吸着剤の中でも、 多孔性で網目状分子構造を有する吸着剤であるこ とが特に好ましい。 例えば、 ダイアイオン HP— 20、 アンバーライト XA
D— 4などの合成吸着剤、 セフアデックス L H 2 0、 L H 6 0などの架橋デ キストラン誘導体系吸着剤が特に好ましい。 Among the above adsorbents, it is particularly preferable that the adsorbent is porous and has a network-like molecular structure. For example, Diaion HP-20, Amberlite XA Particularly preferred are synthetic adsorbents such as D-4 and crosslinked dextran derivative-based adsorbents such as Sephadex LH20 and LH60.
以下、 第 1の吸着剤および第 2の吸着剤について、 それぞれ好ましい性状 について説明する。 Hereinafter, preferable properties of the first adsorbent and the second adsorbent will be described.
第 1 の吸着剤および第 2の吸着剤について、 材質を基準に選択する場合、 第 1の吸着剤としては、 好ましくは合成吸着剤、 より好ましくは芳香族系合 成吸着剤が選択される。 第 2の吸着剤としては、 好ましくは合成吸着剤また は架橋デキストラン誘導体が、 特に好ましくは芳香族系合成吸着剤または架 橋デキストラン誘導体が選択される。 When the first adsorbent and the second adsorbent are selected based on the material, the first adsorbent is preferably a synthetic adsorbent, more preferably an aromatic synthetic adsorbent. As the second adsorbent, a synthetic adsorbent or a crosslinked dextran derivative is preferably selected, and an aromatic synthetic adsorbent or a bridged dextran derivative is particularly preferably selected.
細孔半径を基準に選択する場合、 細孔半径によって、 吸着される分子の大 きさまたはその分子に対する吸着力が異なることを利用する。 When selecting based on the pore radius, the fact that the size of the molecule to be adsorbed or the adsorptive power to the molecule differs depending on the pore radius is used.
第 1 の吸着剤は、 好ましくは 9 0 A以下、 より好ましくは 2 0〜 9 0 A、 さらに好ましくは 3 o A〜8 O Aの細孔半径を有することが好ましい (A= The first adsorbent preferably has a pore radius of 90 A or less, more preferably 20 to 90 A, still more preferably 3 to 8 O A (A =
1 X 1 0— 1 D m) 。 細孔半径が小さい程、 高分子よりも低分子 (分子量数千 以下) に対する吸着能力が高い。 そのため、 低分子量の化合物を吸着する一 方、 比較的分子量の高い 5量体の以上のプロアントシァニジンを吸着するこ となく除去することが可能である。 このような吸着剤としては、 例えば、 芳 香族系合成吸着剤であるセパビーズ S P— 8 2 5、 セパビーズ S P— 8 5 0 アンパーライト X A D— 4、 および X AD— 2 0 0 0が好適である。 1 X 1 0- 1 D m) . The smaller the pore radius, the higher the adsorption capacity for low molecules (molecular weight of several thousand or less) than for high molecules. Therefore, it is possible to adsorb low-molecular-weight compounds and remove proanthocyanidins without adsorbing pentamers or higher pentamers having relatively high molecular weights. As such adsorbents, for example, aromatic synthetic adsorbents Sepabeads SP-825, Sepabeads SP-850 Amperlite XAD-4 and XAD-200 are preferable. .
第 2の吸着剤は、 好ましくは 1 0 0 A以上、 より好ましくは 1 0 0 A〜 5 The second adsorbent is preferably 100 A or more, more preferably 100 A to 5
0 0 A、 さらに好ましくは 1 0 0 A〜3 0 O Aの細孔半径を有することが好 ましい。 細孔半径が大きい程、 分子量が数千から数万までの広い分子量のプ 口アン トシァニジンを効率的に吸着するが、 夾雑物を吸着させる力が弱いた め、 該夾雑物を吸着させることなく、 これを容易に除去し得る。 このような 吸着剤としては、 例えば、 芳香族系合成吸着剤であるダイアイオン H P— 2 0、 ダイアイオン H P— 2 1、 およびアンパーライト X AD— 1 6、 あるい
は架橋デキストラン誘導体系吸着剤であるセフアデックス L H 20が好適で ある。 It is preferred to have a pore radius of 100 A, more preferably 100 A to 30 OA. The larger the pore radius is, the more efficiently it absorbs a wide range of molecular weight of anthocyanidin having a molecular weight of several thousand to several tens of thousands.However, since the ability to adsorb impurities is weak, it is not necessary to adsorb the impurities. This can be easily removed. Such adsorbents include, for example, aromatic synthetic adsorbents such as Diaion HP-20, Diaion HP-21, and Amperlite XAD-16, or Is preferably Sephadex LH20 which is a crosslinked dextran derivative-based adsorbent.
第 1の吸着剤および第 2の吸着剤を比表面積を基準に選択する場合、 吸着 力の観点から、 第 1の吸着剤おょぴ第 2の吸着剤はいずれも、 比表面積が 5 0
以上であることが好ましい。 さらに、 O PCを効率的に吸着す る, から、 第 1の吸着剤としては、 比表面積が 70 Om2 ^以上であるこ とがより好ましい。 吸着剤の比表面積は、 個々の吸着剤のサイズによって、 あるいは多孔性の吸着剤の場合は細孔の大きさおよぴ数によつて異なるので、 必要とされる比表面積の吸着剤を適宜選択することが可能である。 When the first adsorbent and the second adsorbent are selected based on the specific surface area, from the viewpoint of the adsorbing power, the first adsorbent and the second adsorbent each have a specific surface area of 50%. It is preferable that it is above. Further, the first adsorbent preferably has a specific surface area of 70 Om 2 ^ or more, because it adsorbs OPC efficiently. The specific surface area of the adsorbent varies depending on the size of the individual adsorbent or, in the case of porous adsorbent, on the size and number of pores. It is possible to choose.
架橋デキストラン誘導体、 ポリビエル系樹脂 (ゲル状を使用する) などの 吸着剤を用いて、 分子量によって分画することも可能である。 分子量分画範 囲に特に制限はないが、 第 1の吸着剤は、 分子量分画範囲が、 100〜 20 , 000、 好ましくは 100〜 5, 000であることが好ましい。 第 2の吸着 剤は、 分子量分画範囲が、 100〜 20, 000、 好ましくは 100〜: 10, 000であることが好ましい。 このような分子量分画範囲を有する吸着剤は、 プロアントシァニジンを吸着し、 夾雑物を除去し得る。 さらに、 吸着したプ ロアントシァニジン中の O P Cを溶出させて分取することが可能である。 中 でもセフアデックス LH— 20およびセフアデックス LH— 60が好適であ る。 It is also possible to fractionate by molecular weight using an adsorbent such as a cross-linked dextran derivative or polybier resin (using a gel). The molecular weight fraction range is not particularly limited, but the first adsorbent preferably has a molecular weight fraction range of 100 to 20,000, preferably 100 to 5,000. The second adsorbent preferably has a molecular weight fractionation range of 100 to 20,000, preferably 100 to 10,000. An adsorbent having such a molecular weight fraction range can adsorb proanthocyanidins and remove contaminants. Furthermore, it is possible to elute and separate the OPCs in the adsorbed proanthocyanidins. Among them, SEPHADEX LH-20 and SEPHADEX LH-60 are preferred.
上記種々の吸着剤のうちで、 第 1の吸着剤としては、 多孔性であり、 90 Among the above various adsorbents, the first adsorbent is porous,
A以下の細孔半径を有し、 比表面積が 700m2/g以上の芳香族系合成吸 着斉【』でなる吸着剤であるアンバーライト XAD— 4ならびにセパビーズ S P 825および SP 850が特に好適である。 (ii) 吸着剤による処理 Amberlite XAD-4, which is an adsorbent composed of an aromatic synthetic adsorbent with a pore radius of not more than A and a specific surface area of 700 m 2 / g or more, and Sepabeads SP 825 and SP 850 are particularly suitable. is there. (ii) Treatment with adsorbent
吸着剤の量は、 被処理物 (粗抽出物またはその濃縮物、 高分子 PC減少処
理物、 あるいはプロアントシァニジン濃縮物) に含まれる固形分量、 溶媒の 種類 (後述) 、 吸着剤の種類等によって適宜設定すればよい。 例えば、 被処 理物に含まれる固形分の乾燥質量 1質量部に対して、 0 . 1〜1 0 0質量部、 好ましくは 0 . 1〜 5 0質量部の吸着剤を使用することが好ましい。 0 . 0 1質量部より少ないと、 プロアントシァニジンの回収率が低下し、 1 0 0質 量部を超えると、 十分吸着することはできるが、 吸着剤からの回収率が悪く なる。 The amount of adsorbent depends on the substance to be treated (crude extract or its concentrate, polymer The amount may be appropriately determined depending on the amount of solids contained in the chemical substance or the proanthocyanidin concentrate), the type of solvent (described later), the type of adsorbent, and the like. For example, it is preferable to use 0.1 to 100 parts by mass, preferably 0.1 to 50 parts by mass of the adsorbent with respect to 1 part by mass of the dry mass of the solid content contained in the substance to be treated. . If the amount is less than 0.01 part by mass, the recovery of proanthocyanidin decreases, and if the amount exceeds 100 parts by mass, sufficient adsorption is possible, but the recovery from the adsorbent becomes poor.
第 1の吸着剤において、 特に O P cの吸着効率が高い吸着剤を用いる場合、 より簡便に操作をするために、 被処理物中の乾燥質量を測定せずに、 処理す る前の樹皮の質量を基準として吸着剤の量を設定してもよい。 例えば、 ダイ アイオン H P— 2 0、 セパビーズ S P— 8 2 5、 アンバーライト XAD—1 6などの芳香族系合成吸着剤を用いる場合は、 処理する前の樹皮の乾燥質量 1質量部に対して、 吸着剤を乾燥質量で 0 . 1〜 1 0質量部、 好ましくは 0 . 2〜 5質量部用いることで、 被処理物と吸着剤との接触が十分に行われ、 効 率よく吸着し得る。 In the first adsorbent, especially when an adsorbent having a high OPc adsorption efficiency is used, the bark before the treatment is measured without measuring the dry mass in the object to be operated more easily. The amount of the adsorbent may be set based on the mass. For example, when using an aromatic synthetic adsorbent such as Diaion HP-20, Sepabeads SP-825, Amberlite XAD-16, etc., 1 part by mass of dry mass of bark before treatment is By using the adsorbent in a dry mass of 0.1 to 10 parts by mass, preferably 0.2 to 5 parts by mass, the object to be treated and the adsorbent are sufficiently contacted, and the adsorbent can be efficiently adsorbed.
被処理物と、 吸着剤との接触は、 いかなる方法で行ってもよい。 例えば、 簡易な方法としては、 吸着剤をカラムに充填し、 そのカラムに被処理物を通 過させるカラム法、 吸着剤を被処理物に加え、 一定時間後、 吸着剤を除去す るバッチ法などが挙げられる。 Contact between the object to be treated and the adsorbent may be performed by any method. For example, as a simple method, a column method in which an adsorbent is packed in a column and the substance is passed through the column, or a batch method in which the adsorbent is added to the substance to be treated and the adsorbent is removed after a certain period of time And the like.
カラム法を用いて処理するには、 必要に応じて、 被処理物の溶媒を、 吸着 剤との接触に適した溶媒に置換する。 この置換は、 加熱乾燥、 凍結乾燥、 減 圧濃縮乾固、 透析などの当業者が通常用いる工程を含む方法により行われ得 る。 例えば、 ダイアイオン H P— 2 0等の芳香族系合成吸着剤を用いる場合 は、 溶媒を水に置換する。 また、 セフアデックス L H 2 0等の架橋デキスト ラン誘導体系吸着剤を用いる場合は、 溶媒をエタノールに置換する。 次いで、 例えば、 第 2の吸着剤 (例えば、 合成樹脂系吸着剤) をカラムに充填し、 そ
のカラムに被処理物を通液し、 吸着剤の体積に対し、 例えば 5倍〜 1 0倍の 体積の水を通液させる。 これにより、 夾雑物である糖類および有機酸が除去 される。 その後、 適切な溶媒を用いることによりプロアントシァニジン、 特 に O P C高含有プロアントシァニジンを溶出できる。 なお、 カラム法におけ る種々の条件は、 用いる吸着剤により適宜決定すればよく、 例えば、 イオン 交換樹脂でなる吸着剤を用いる場合、 カラム温度を 1 0 °C〜1 2 0 °Cに設定 し、 カラム内を常圧または加圧された状態にすることが好ましい。 To perform treatment using the column method, the solvent of the substance to be treated is replaced with a solvent suitable for contact with the adsorbent, if necessary. This substitution can be performed by a method including a step commonly used by those skilled in the art, such as heat drying, freeze drying, reduced pressure concentrating to dryness, and dialysis. For example, when using an aromatic synthetic adsorbent such as Diaion HP-20, the solvent is replaced with water. When a crosslinked dextran derivative-based adsorbent such as Sephadex LH20 is used, the solvent is replaced with ethanol. Next, for example, a second adsorbent (for example, a synthetic resin-based adsorbent) is packed in the column, and The material to be treated is passed through the column (1), and water, for example, 5 to 10 times the volume of the adsorbent is passed through. As a result, saccharides and organic acids as contaminants are removed. Then, by using an appropriate solvent, proanthocyanidins, particularly proanthocyanidins with a high OPC content, can be eluted. Various conditions in the column method may be appropriately determined depending on the adsorbent to be used.For example, when an adsorbent made of an ion exchange resin is used, the column temperature is set at 10 ° C to 120 ° C. However, it is preferable that the inside of the column is set to a normal pressure or a pressurized state.
パッチ法を用いて処理するには、 上記カラム法と同様の質量比の吸着剤 (例えば、 合成構脂系吸着剤) を被処理物に加え、 攪拌しながら 1〜3時間 接触させた後に、 濾過または遠心分離により吸着剤を回収する。 例えば、 吸 着剤として第 2の吸着剤を用いた場合には、 この操作により夾雑物を除去し 得る。 次いで、 プロアントシァニジンが吸着された第 2の吸着剤を、 さらに 適切な溶媒 (後述) で 1時間〜 3時間攪拌し、 プロアントシァニジンを溶出 させ、 次いで濾過または遠心分離して上清を回収することにより、 プロアン トシァ-ジンまたは O P Cをより多く含むプロアントシァニジン含有樹皮抽 出物を得ることができる。 To perform treatment using the patch method, an adsorbent (for example, a synthetic lipophilic adsorbent) having the same mass ratio as the above column method is added to the material to be treated, and the mixture is contacted for 1 to 3 hours with stirring. The adsorbent is recovered by filtration or centrifugation. For example, when the second adsorbent is used as the adsorbent, impurities can be removed by this operation. Next, the second adsorbent to which proanthocyanidin has been adsorbed is further stirred with an appropriate solvent (described later) for 1 to 3 hours to elute proanthocyanidin, and then filtered or centrifuged to separate the supernatant. By recovering the extract, a bark extract containing proanthocyanidin or proanthocyanidin containing more OPC can be obtained.
溶出溶媒は、 吸着剤の種類、 ならびに吸着または溶出すべき物質の種類に より適宜選択すればよい。 例えば、 第 1の吸着剤を用いる場合の溶出溶媒と しては、 水、 メタノール、 エタノール、 酢酸ェチル、 クロ口ホルム、 および これらの混合溶媒が挙げられる。 安全性の面から、 好ましくは水とエタノー ルとの混合溶媒が用いられる。 例えば、 アンバーライト X A D— 4、 アンバ 一ライト X AD— 2 0 0 0、 セパビーズ S P 8 2 5、 セパビーズ S P 8 5 0 などの高分子 P Cを除去する芳香族系合成吸着剤を用いた場合、 水とエタノ ールとの混合比は、 高分子 P Cが除去されていることから 1 0容量%以上、 好ましくは 3 0容量%以上、 より好ましくは 5 0容量%以上の比較的高レヽ濃 度のエタノール水溶液を用いることが吸着した O P Cを溶出させるときの回
収率を高める観点から好ましい。 The elution solvent may be appropriately selected depending on the type of the adsorbent and the type of the substance to be adsorbed or eluted. For example, the elution solvent when the first adsorbent is used includes water, methanol, ethanol, ethyl acetate, chloroform, and a mixed solvent thereof. From the viewpoint of safety, a mixed solvent of water and ethanol is preferably used. For example, when using an aromatic synthetic adsorbent for removing high molecular weight PC such as Amberlite XAD-4, Amberlite XAD-200, Sepabeads SP825, Sepabeads SP850, water The mixing ratio between ethanol and ethanol is a relatively high concentration of 10% by volume or more, preferably 30% by volume or more, and more preferably 50% by volume or more because the polymer PC is removed. Using ethanol aqueous solution to elute adsorbed OPC It is preferable from the viewpoint of increasing the yield.
第 2の吸着剤を用いる場合のプロアントシァニジンを多く含む成分を溶出 させるのに使用可能な溶媒としては、 例えば、 水、 メタノール、 エタノール、 酢酸ェチル、 クロ口ホルム、 およびこれらの混合溶媒が挙げられる。 そのう ち、 榭皮抽出物の安全性という観点からは、 好ましくは水とエタノールとの 混合溶媒が用いられる。 また、 吸着剤処理工程において、 吸着剤に吸着され ている成分から、 選択的に O PCを溶出させて分離 ·分画が可能な溶媒を選 択することが好ましい。 したがって、 水とエタノールとの混合溶媒 (ェタノ ール水溶液) を用いるのが好ましい。 例えば、 ダイアイオン HP— 20、 H P— 21、 XAD— 16などの芳香族系合成吸着剤を用いた場合は、 10容 量。/。〜 5 0容量%、 好ましくは 10容量。/。〜 30容量。 /0のエタノール水溶液 が好ましい。 また、 セフアデックス LH— 20、 セフアデックス LH—60 などの架橋デキストラン誘導体系吸着剤の場合は、 70容量%以上、 好まし くは 80容量%以上のエタノール水溶液が好ましい。 なお、 ィオン交換樹脂 系の吸着剤を用いる場合は、 溶出溶媒として水を用いることが好ましい。 上記のような (a) 粗抽出工程、 (b) 高分子 P C減少工程、 および (c) プロアントシァニジン濃縮工程、 あるいは (a) 粗抽出工程、 (c) プロアントシァニジン濃縮工程、 および (b) 高分子 PC減少工程によって、 O PC含量が極めて高い樹皮抽出物が得られ、 かつ収量も高い。 上記の樹皮 抽出物は、 高分子プロアントシァニジン量が減少され、 さらに、 樹皮抽出物 に含まれる脂溶性成分も減少されているため、 樹皮抽出物の水への溶解性が さらに向上するとともに、 樹皮抽出物を水に混合した場合における白濁の発 生を、 大幅に減少させることができる。 (樹皮抽出物) Solvents that can be used to elute the proanthocyanidin-rich component when using the second adsorbent include, for example, water, methanol, ethanol, ethyl acetate, cro-form, and mixtures thereof. No. Among them, a mixed solvent of water and ethanol is preferably used from the viewpoint of the safety of the skin extract. In the adsorbent treatment step, it is preferable to select a solvent capable of selectively eluting OPC and separating and fractionating from the components adsorbed on the adsorbent. Therefore, it is preferable to use a mixed solvent of water and ethanol (aqueous ethanol solution). For example, when an aromatic synthetic adsorbent such as Diaion HP-20, HP-21, XAD-16 is used, the capacity is 10 volumes. /. ~ 50% by volume, preferably 10% by volume. /. ~ 30 capacity. A / 0 aqueous ethanol solution is preferred. In the case of a crosslinked dextran derivative-based adsorbent such as Sephadex LH-20 or Sephadex LH-60, an ethanol aqueous solution of 70% by volume or more, preferably 80% by volume or more is preferable. When an ion-exchange resin-based adsorbent is used, water is preferably used as an elution solvent. (A) crude extraction step, (b) polymer PC reduction step, and (c) proanthocyanidin concentration step, or (a) crude extraction step, (c) proanthocyanidin concentration step, and (B) By the high-molecular PC reduction step, a bark extract with an extremely high OPC content is obtained, and the yield is high. In the above bark extract, the amount of high molecular weight proanthocyanidins is reduced, and the fat-soluble component contained in the bark extract is also reduced, so that the solubility of the bark extract in water is further improved and However, the occurrence of cloudiness when the bark extract is mixed with water can be significantly reduced. (Bark extract)
上記の (a) 〜 (c) を含む方法で精製された樹皮抽出物は、 上述のよう
に、 2〜4量体である O P Cを豊富に含み、 樹皮抽出物に含有される全プロ アントシァニジン中の O P Cの割合は 4 5質量%以上、 好ましくは 5 0質 量%以上である。 このよ うなプロアントシァニジンを含有する榭皮抽出物は、 水への溶解性に優れるだけでなく、 生理活性も高 、ものとなる。 The bark extract purified by the method including the above (a) to (c) is as described above. In addition, OPCs, which are dimers to tetramers, are abundant, and the proportion of OPCs in the total proanthocyanidins contained in the bark extract is 45% by mass or more, preferably 50% by mass or more. Such a percutaneous extract containing proanthocyanidins not only has excellent solubility in water, but also has high physiological activity.
本発明の樹皮抽出物は、 さらに、 力テキン類を含有することが好ましい。 カテキン類とは、 上述の通り、 ポリヒドロキシフラバン一 3—オールの総称 である。 カテキン類としては、 (+ ) —力テキン、 (一) 一ェピカテキン、 The bark extract of the present invention preferably further contains phytotechins. As described above, catechins are a general term for polyhydroxyflavan-1-ol. As catechins, (+)-force techin, (1) eppicatechin,
(+ ) ーガロカテキン、 ( _ ) —ェピガロカテキン、 ェピガロカテキンガレ ート、 ェピカテキンガレートなどが挙げられる。 さらに、 天然物由来のァフ ゼレキン、 ならびに (+ ) 一力テキンまたはガロカテキンの 3—ガロイノレ誘 導体も含む。 カテキン類は、 発癌抑制作用、 動脈硬化予防作用、 脂肪代謝異 常の抑制作用、 血圧上昇抑制作用、 血小板凝集抑制作用、 抗アレルギー作用、 抗ウィルス作用、 抗菌作用、 虫歯予防作用、 口臭防止作用、 腸内細菌叢正常 化作用、 活性酸素やフリーラジカルの消去作用、 抗酸化作用、 血糖の上昇を 抑制する抗糖尿病作用などを有することが知られている。 カテキン類と O P Cとを共存させると、 カテキン類の水溶性が増加される。 そのため、 体内へ のカテキン類の吸収を容易にし得、 カテキン類の上記作用が活性化されると 考えられる。 したがって、 O P Cとカテキン類とを含有する樹皮抽出物は、 水に対する溶解性の高さを保持しつつ、 さらに活性ィ匕されたカテキン類の生 体に対する効果が得られるため、 特に有用である。 (+)-Gallocatechin, (_) -epigallocatechin, epigallocatechin gallate, eppicatechin gallate and the like. In addition, it includes afzelequin derived from natural products, as well as the (+) 3-gallonole derivative of one-pot techin or gallocatechin. Catechins have carcinogenesis-preventing action, arteriosclerosis-preventing action, fat metabolic disorder-suppressing action, blood pressure elevation-inhibiting action, platelet aggregation-inhibiting action, antiallergic action, antiviral action, antibacterial action, caries prevention action, bad breath prevention action, It is known to have a normalizing effect on the intestinal flora, a scavenging effect of active oxygen and free radicals, an antioxidant effect, and an antidiabetic effect for suppressing an increase in blood sugar. Coexistence of catechins and OPC increases the water solubility of catechins. Therefore, it is considered that absorption of catechins into the body can be facilitated, and the above-mentioned action of catechins is activated. Therefore, a bark extract containing OPC and catechins is particularly useful because it can maintain the high solubility in water and can further exert an effect on the organism of activated catechins.
カテキン類の含量は、 特に制限されないが、 好ましくは、 樹皮抽出物中の 固形分に対して 5質量。 /0以上、 より好ましくは 5質量%〜1 5質量%含有す る。 The content of the catechins is not particularly limited, but is preferably 5 mass with respect to the solid content in the bark extract. / 0 or more, more preferably 5 to 15% by mass.
上記方法によって製造される樹皮抽出物は、 当業者が通常用いる方法によ つて、 濃縮あるいは希釈され、 適宜調整され得る。 例えば、 濃縮には、 膜濃 縮、 加熱濃縮、 真空 (減圧) 濃縮、 凍結濃縮などの種々の方法を用いればよ
い。 また、 必要に応じて、 樹皮抽出物を、 殺菌処理して保存してもよい。 殺 菌は、 気流殺菌、 高圧殺菌、 加熱殺菌などの、 当業者が通常用いる方法で行 えばよい。 The bark extract produced by the above method can be concentrated or diluted by a method commonly used by those skilled in the art and adjusted as appropriate. For example, various methods such as membrane concentration, heat concentration, vacuum (reduced pressure) concentration, and freeze concentration can be used for concentration. Yes. Further, if necessary, the bark extract may be sterilized and stored. Sterilization may be performed by a method commonly used by those skilled in the art, such as air sterilization, high-pressure sterilization, and heat sterilization.
本発明の樹皮抽出物は、 水に対して優れた溶解性を有する。 具体的には、 樹皮抽出物の溶解率が 9 0 %以上、 好ましくは 9 5 %以上、 より好ましくは 9 9 %以上、 さらに好ましくは 9 9 . 5 %以上、 最も好ましくは 9 9 . 7 % 以上である。 このような樹皮抽出物を含有する水溶液は、 沈殿および白濁が 少ない。 したがって、 プロアントシァ-ジン含有樹皮抽出物を飲料、 液状の 化粧品などに利用する場合、 製品の外観に優れ、 かつ樹皮抽出物中のポリフ ェノール、 特にプロアントシァニジンの体内への吸収が促進されるため、 摂 取後速やかに優れた生理的効果、 例えば、 抗酸化作用、 特に、 スーパーォキ シドジスムターゼ活性 (S O D活性) を発揮し得る。 本発明の樹皮抽出物が 有する抗酸化作用、 特に S O D活性は、 ァスコルビン酸の作用に比べて、 持 続性が高い。 The bark extract of the present invention has excellent solubility in water. Specifically, the dissolution rate of the bark extract is 90% or more, preferably 95% or more, more preferably 99% or more, still more preferably 99.5% or more, and most preferably 99.7%. That is all. An aqueous solution containing such a bark extract has little precipitation and cloudiness. Therefore, when the bark extract containing proanthocyanin is used in beverages, liquid cosmetics, etc., the appearance of the product is excellent and the absorption of polyphenols in the bark extract, especially proanthocyanidin, into the body is promoted. Therefore, it can exert excellent physiological effects immediately after ingestion, for example, an antioxidant effect, in particular, a superoxide dismutase activity (SOD activity). The antioxidant action, particularly the SOD activity, of the bark extract of the present invention is more persistent than the action of ascorbic acid.
本発明の樹皮抽出物は、 液状であっても、 乾燥物 (粉末) であってもよい。 本発明の樹皮抽出物乾燥物 (粉末) は、 上記樹皮抽出物に含まれている溶媒 (例えば水、 エタノールなど) を除去して、 得ることができる。 乾燥は、 当 業者が通常用いる方法によって行えばよいが、 中でも、 凍結乾燥、 真空乾燥、 嘖霧乾燥などの方法で行うことが好ましい。 The bark extract of the present invention may be liquid or dry (powder). The dried bark extract (powder) of the present invention can be obtained by removing the solvent (eg, water, ethanol, etc.) contained in the bark extract. Drying may be performed by a method commonly used by those skilled in the art, and among them, drying by freeze drying, vacuum drying, and air drying is preferred.
上記の樹皮抽出物 (特に樹皮抽出物乾燥物) は、 そのまま飲食に供するだ けでなく、 賦形剤、 増量剤、 結合剤、 增粘剤、 乳化剤、 香料、 食品添加物、 調味料などと混合して、 用途に応じて、 顆粒、 錠剤などの形態に成形されて もよい。 例えば、 ローヤルゼリー、 ビタミン類、 プロテイン、 カルシウム、 キトサン、 レシチン、 カフェインなどと混合して、 さらに調味料により味が 整えられてもよい。 さらに、 ハードカプセルおよびソフトカプセルなどの力 プセル剤、 丸剤、 またはティーバッグ状などにされてもよい。 これらは、 こ
れらの形状または好みに応じて、 そのまま食してもよく、 あるいは水、 湯、 牛乳などに溶いて飲んでもよい。 またティーバッグ状などの場合、 成分を浸 出させてから飲んでもよい。 このように、 本発明の樹皮抽出物および樹皮抽 出物乾燥物は、 食品 (飲料) 、 ィヒ粧品、 医薬部外品、 および医薬品の原料と して、 広く使用することができる。 The above bark extract (especially dried bark extract) can be used not only for eating and drinking but also for excipients, bulking agents, binders, thickeners, emulsifiers, fragrances, food additives, seasonings, etc. They may be mixed and formed into granules, tablets and the like depending on the application. For example, it may be mixed with royal jelly, vitamins, protein, calcium, chitosan, lecithin, caffeine and the like, and further seasoned with seasonings. Further, capsules such as hard capsules and soft capsules, pills, or tea bags may be used. These are Depending on their shape or preference, they may be eaten as they are, or may be dissolved in water, hot water, milk, etc. for drinking. In the case of tea bags, etc., the ingredients may be leached before drinking. As described above, the bark extract and the dried bark extract of the present invention can be widely used as raw materials for food (drinks), cosmetics, quasi-drugs, and pharmaceuticals.
本発明の樹皮抽出物は、 プロアントシァニジン、 特に O P Cが多く含有さ れているため、 優れた抗酸化作用を有する。 さらに水に対する溶解性が大き く、 すばやく体内に吸収され、 優れた高脂質血症改善効果、 血糖上昇抑制効 果、 高血圧の予防効果、 血流改善効果、 美容 (美肌) 効果などの生体に対す る改善効果を発揮すると考えられる。 Since the bark extract of the present invention contains a large amount of proanthocyanidins, particularly OPC, it has an excellent antioxidant effect. Furthermore, it has high solubility in water and is quickly absorbed into the body. It has excellent effects of improving hyperlipidemia, suppressing blood sugar rise, preventing hypertension, improving blood flow, and improving beauty (beautiful skin). It is thought that the improvement effect is exhibited.
なお、 本発明は、 上記実施の开態に限定されず、 本発明の範囲内で種々の 応用が可能である。 実施例 Note that the present invention is not limited to the above embodiment, and various applications are possible within the scope of the present invention. Example
以下、 本発明の実施例について説明する。 なお、 下記実施例は、 本発明を 制限するものではない。 下記実施例において、 実施例に示す単位 (V/V) は (容量 Z容量) を、 (w/w) は (質量/質量) を、 (vzw) は (容量 ノ質量) を示す。 (実施例 1 :樹皮抽出物の製造) Hereinafter, examples of the present invention will be described. The following examples do not limit the present invention. In the following examples, the units (V / V) shown in the examples represent (capacity Z capacity), (w / w) represents (mass / mass), and (vzw) represents (capacity / mass). (Example 1: Production of bark extract)
樹齢 2 5年の松の樹皮 (フランス海岸松の樹皮) 1 k gに、 8 0 νΖ^ν% のエタノーノレ水溶液 5 . 4 Lをカロえ、 ワーリングブレンダー (Waring Blend er) で破碎した後、 8 0 °Cで 2 4時間還流しながら加熱抽出した。 次いで、 直ちに濾過し、 濾過後の不溶物を 8 0 V /W%のェタノール水溶液 1 . 6 L で洗浄し、 濾液と洗净液とを合わせて 7 Lの粗抽出液 Aを得た。 この粗抽出 液 1 0 0 m Lを凍結乾燥して、 7 0 0 m gの乾燥粉末を得た。 この値から、
7 L中の乾燥粉末量を求めたところ、 49 gであった。 25 kg of pine bark (Pine bark of the French coast) with 1 kg of 5.4 L of 80 νΖ ^ ν% aqueous solution of ethanol, crushed by a Waring Blender. The mixture was heated and extracted under reflux at 24 ° C for 24 hours. Then, the mixture was immediately filtered, and the insoluble material after the filtration was washed with 1.6 V of an 80 V / W% aqueous ethanol solution. The filtrate and the washing solution were combined to obtain 7 L of a crude extract A. The crude extract (100 mL) was freeze-dried to obtain 700 mg of a dry powder. From this value, The amount of dry powder in 7 L was determined to be 49 g.
次いで、 この粉末に含まれる各成分の含有量を調べるために、 松樹皮粗抽 出液 Aを、 次のような画分に分画した。 松樹皮粗抽出液 Aの分画工程を図 1 に示す。 Next, in order to examine the content of each component contained in this powder, the pine bark crude extract A was fractionated into the following fractions. Figure 1 shows the fractionation process of pine bark crude extract A.
まず、 水で膨潤させたセフアデックス LH— 20 (アマシャムバイオテツ ク株式会社製) 25mLを 1 5 X 30 Ommのカラムに充填し、 50mLの ェタノールで洗浄した。 次に、 100 m gの上記粗抽出液 Aの乾燥粉末を 2 mLのェタノ ルに溶解させ、 この溶液をカラムに通液して吸着させた。 そ の後、 100〜80% (V/V) エタノール一水混合溶媒でグラジェント溶 出し、 10mLずつ分取した。 First, 25 mL of Sefadex LH-20 (manufactured by Amersham Biotech) swollen with water was packed in a 15 × 30 Omm column, and washed with 50 mL of ethanol. Next, 100 mg of the dry powder of the crude extract A was dissolved in 2 mL of ethanol, and the solution was passed through a column to be adsorbed. After that, gradient elution was carried out with a mixed solvent of 100-80% (V / V) ethanol / water, and 10 mL each was collected.
分取の際に、 2〜4量体の O PCの標品を指標として、 各画分中の O PC の有無を、 シリカゲル薄層クロマトグラフィー (TLC) により検出した。 そして、 O PCよりも先に流出し、 O PCを含まない O PC非含有画分 (画 分 1) および OPC含有画分 (画分 2) に分画した。 At the time of fractionation, the presence or absence of OPC in each fraction was detected by silica gel thin-layer chromatography (TLC), using a dimer to tetramer OPC sample as an index. Then, it was separated into an OPC-free fraction (fraction 1) and an OPC-containing fraction (fraction 2) that did not contain OPC and flowed before OPC.
なお、 上記 TLCにおいて、 2量体の OP Cの標品にはプロアントシァ- ジン B— 2 (R f値: 0. 6) を、 3量体の OP Cの標品にはプロアントシ ァニジン C— 1 (R f値: 0. 4) を、 4量体の OP Cの標品にはシンナム タンニン A2 (R f値: 0. 2) を用いた。 そして、 TLCは、 下記の条件 で行った。 In the above TLC, proanthocyanin B—2 (R f value: 0.6) was used as a sample of dimeric OPC, and proanthocyanidin C—1 was used as a sample of trimeric OPC. (R f value: 0.4), and cinnam tannin A 2 (R f value: 0.2) was used as a sample of tetramer OPC. TLC was performed under the following conditions.
(TLCの条件) (TLC conditions)
• T L C:シリカゲルプレート(Merck & CO. , Inc. 製) • TLC: Silica gel plate (Merck & CO., Inc.)
•展開溶媒:ベンゼン/蟻酸ェチル Z蟻酸 (2/7/1) • Developing solvent: benzene / ethyl formate Z formic acid (2/7/1)
•検出試薬:硫酸おょぴァニスアルデヒド硫酸 • Detection reagent: sulfuric acid
•サンプル量:各 10 L • Sample volume: 10 L each
次に、 O PCが検出されなくなった時点で、 300mLの 50% (V/ V) 水一アセトン混合溶媒を通液し、 カラム (榭脂) に吸着されている残り
の吸着物を溶出させ、 1 0mLずつ分取した。 これを OPC非含有画分 (榭 脂吸着画分:画分 3) とした。 Next, when OPC is no longer detected, 300 mL of a 50% (V / V) water-acetone mixed solvent is passed through, and the remaining adsorbed on the column (resin) is removed. Of the adsorbed product was eluted and fractionated in 10 mL portions. This was designated as OPC-free fraction (resin adsorbed fraction: fraction 3).
この画分 3については、 さらに TLCを行い、 高分子 P C画分 (画分 3 a) とその他の画分 (画分 3 b) とに分けた。 TLCの展開条件および検出 方法を上記と同様に行い、 4量体の標品 (R f値: 0. 2) より小さい R f 値で発色する画分を高分子 PC画分 (画分 3 a) とし、 発色しない画分をそ の他の画分 (画分 3 b) とした。 This fraction 3 was further subjected to TLC to separate it into a high molecular weight PC fraction (fraction 3a) and another fraction (fraction 3b). The TLC development conditions and detection method were performed in the same manner as above, and the fraction that developed color with an R f value smaller than the tetramer sample (R f value: 0.2) was converted to the polymer PC fraction (fraction 3a). ), And the non-colored fraction was designated as the other fraction (fraction 3b).
次に、 OPCよりも先に流出し、 OP Cを含まない O PC非含有画分 (画 分 1) については、 以下のようにして、 力テキン類画分 (画分 l a) とその 他の画分 (画分 l b) とに分離した。 まず、 画分 1を凍結乾燥して粉末を得 た。 この粉末を 3 m Lの水に溶解させ、 水で膨潤させた 20mLの MC Iゲ ル (三菱化学株式会社製) が充填されたカラム (1 5 X 3 00mm) に通液 して、 成分を吸着させた。 次に、 このカラムを水で洗浄した後、 1 0〜1 0 0% (V/V) エタノール一水混合溶媒でグラジェント溶出し、 7mLずつ 分取した。 溶出終了後、 カテキンを指標として、 各画分中の力テキン類を T LCにより検出して力テキン類画分 (画分 l a) とその他の画分 (画分 1 b) とに分けた。 Next, for the OPC-free fraction (fraction 1), which bleeds ahead of OPC and does not contain OPC, the phytotechin fraction (fraction la) and other It was separated into fractions (fraction lb). First, fraction 1 was freeze-dried to obtain a powder. This powder was dissolved in 3 mL of water and passed through a column (15 x 300 mm) packed with 20 mL of MC I gel (manufactured by Mitsubishi Chemical Corporation) swelled with water to separate the components. Adsorbed. Next, the column was washed with water, and then eluted with a mixed solvent of 10% to 100% (V / V) ethanol / aqueous solution, and fractionated in 7 mL portions. After completion of the elution, catechins in each fraction were detected by TLC using catechin as an index, and the fraction was divided into a motive force fraction (fraction la) and other fractions (fraction 1b).
上記のようにして得られた画分 1〜 3については、 それぞれ凍結乾燥によ り粉末化し、 乾燥質量を測定した。 なお、 樹皮抽出物の乾燥粉末 1 0 Omg に対して、 画分 1〜3の総和は、 9 9. 9mgであったため、 ほぼ全量が回 収されていることがわかった。 さらに、 各画分の乾燥質量から樹皮抽出物の 乾燥粉末中に含まれる各成分の含有率を算出した。 結果を表 1に示す。 Fractions 1 to 3 obtained as described above were each powdered by freeze-drying, and the dry mass was measured. The sum of fractions 1 to 3 was 99.9 mg per 10 Omg of the dry powder of the bark extract, indicating that almost the entire amount was recovered. Furthermore, the content of each component contained in the dry powder of the bark extract was calculated from the dry mass of each fraction. The results are shown in Table 1.
(実施例 2 ) (Example 2)
樹齢 2 5年の松の樹皮 (フランス海岸松の樹皮) の代わりに、 樹齢 5 0年 の樹木 (ニュージーランドマツ) の樹皮を用いたこと以外は、 実施例 1と同
様にして、 粗抽出液 (粗抽出液 B ) の乾燥粉末を得た。 この粉末中に含まれ る各成分の含有量を実施例 1と同様に測定し、 含有率を求めた。 結果を表 1 に併せて示す。 · Same as Example 1 except that the bark of a 50-year-old tree (New Zealand pine) was used instead of the 25-year-old pine bark (Pine bark of the French coast). Thus, a dry powder of the crude extract (crude extract B) was obtained. The content of each component contained in this powder was measured in the same manner as in Example 1, and the content was determined. The results are shown in Table 1. ·
(実施例 3 ) (Example 3)
樹齢 2 5年の松の樹皮 (フランス海岸松の樹皮) の代わりに、 樹齢 8 0年 の樹木 (北洋ェゾ松) の樹皮を用いたこと以外は、 実施例 1と同様にして、 粗抽出液 (粗抽出液 C) を得た。 この粉ま中に含まれる各成分の含有量を実 施例 1と同様に測定し、 含有率を求めた。 結果を表 1に併せて示す。 Crude extraction was performed in the same manner as in Example 1, except that the bark of an 80-year-old tree (North-Ezo pine) was used instead of the 25-year-old pine bark (French coastal pine bark). A liquid (crude extract C) was obtained. The content of each component contained in the powder was measured in the same manner as in Example 1, and the content was determined. The results are shown in Table 1.
(比較例 1 ) (Comparative Example 1)
樹齢 2 5年の松の樹皮 (フランス海岸松の樹皮) の代わりに、 樹齢 1 0 0 年を超えた樹木 (北洋ェゾ松) の樹皮を用いたこと以外は、 実施例 1と同様 にして、 粗抽出液 (粗抽出液 D) を得た。 この粉末中に含まれる各成分の含 有量を実施例 1と同様に測定し、 含有率を求めた。 結果を表 1に併せて示す。 表 1 The same procedure as in Example 1 was carried out except that the bark of a tree over 100 years old (Pine pine) was used instead of the bark of a 25-year-old pine tree (Pine bark of the French coast). Thus, a crude extract (crude extract D) was obtained. The content of each component contained in this powder was measured in the same manner as in Example 1, and the content was determined. The results are shown in Table 1. table 1
PC…プロアン卜シァ二ジン
表 1の結果から、 実施例 1〜 3の榭齢 25年、 50年おょぴ 80年の樹木 の樹皮から得られる粗抽出液は、 比較例 1の榭齢 100年を超えた樹木の樹 皮から得られる粗抽出液に比べて O P C含量が高いことが分かる。 このこと は、 樹齢 100年未満の樹木の樹皮から得られる粗抽出物が樹齢 100年以 上の樹木の樹皮から得られる抽出物に比べて、 O PC含量が高いことを示す。 特に、 実施例 1および 2の樹齢 25年おょぴ 50年の樹木の樹皮から得られ る粗抽出液は、 粗抽出液に含まれるプロアントシァニジン中に占める O PC の割合 (OPCZ全プロアントシァェジン) が 10質量%以上であり、 高い O PC含有率であった。 さらに、 抽出固形物質量に大きな差異が見られた。 すなわち、 樹齢 100年未満の樹木の樹皮を用いた場合、 樹齢 100年超の 樹木の樹皮を用いる場合よりも、 樹皮抽出物中の固形分濃度が約 1. 5〜2 倍高い榭皮抽出液が得られ、 プロアントシァニジン含有量、 特に O PC含有 量が高いことがわかる。 (実施例 4 ) PC… Pro-Antian From the results in Table 1, the crude extract obtained from the bark of the 25-year-old, 50-year-old, 80-year-old trees of Examples 1 to 3 It can be seen that the OPC content is higher than the crude extract obtained from the skin. This indicates that the crude extract obtained from the bark of a tree less than 100 years old has a higher OPC content than the extract obtained from the bark of a tree older than 100 years. In particular, the crude extract obtained from the bark of the 25-year-old and 50-year-old trees of Examples 1 and 2 shows the proportion of OPC in the proanthocyanidins contained in the crude extract (OPCZ total Anthocyanin) was 10% by mass or more, and had a high OPC content. In addition, a large difference was found in the amount of extracted solid substances. That is, when bark of a tree less than 100 years old is used, the bark extract has a solid concentration of about 1.5 to 2 times higher than that of a bark of a tree older than 100 years. It can be seen that the proanthocyanidin content, especially the OPC content, was high. (Example 4)
実施例 1で得られた 1 Lの粗抽出液 Aを減圧濃縮してエタノールを完全に 除去した。 その後、 精製水を添カロして容量が 5 OmLとなるように調整して、 抽出液の 1/20容量に相当する濃縮液 Aを得た。 この 5 OmLの濃縮液 A 1に、 塩ィ匕ナトリウム (約 3 g) を添カ卩してよく攪拌した。 この溶液を 4°C で 24時間静置後、 析出した不溶物を濾過により除去し、 5 1 m Lの濾液 A を得た。 1 L of crude extract A obtained in Example 1 was concentrated under reduced pressure to completely remove ethanol. Thereafter, purified water was added to adjust the volume to 5 OmL to obtain a concentrate A corresponding to 1/20 volume of the extract. To 5 OmL of the concentrated solution A1, sodium chloride (about 3 g) was added and stirred well. After the solution was allowed to stand at 4 ° C. for 24 hours, the precipitated insolubles were removed by filtration to obtain 51 mL of filtrate A.
次に、 濾液 A1を、 水で膨潤させた芳香族系合成樹脂 (ダイアイオン HP -20 :三菱化学株式会社製) 1 00 mLが充填された 30 X 300 mmの カラムに通液し、 濾液 A 1中のプロアントシァニジンをカラムに吸着させた。 このカラムを 1 Lの精製水で洗净して、 カラムに残存する糖類、 有機酸など を除去した。 次いで 20% (V V) のエタノール一水混合溶媒でカラムか
らプロアントシァニジンを溶出させ、 2 0 O rn Lの松樹皮抽出液 A 1を得た。 次に、 松樹皮抽出液 Aを凍結乾燥することによって、 乾燥粉末 (松樹皮抽出 物 A) を得た。 実施例 1と同様にして、 松樹皮抽出物 A中に含まれる各成分 の含有量を測定し、 その含有率を求めた。 結果を表 2に示す。 Next, the filtrate A1 was passed through a 30 X 300 mm column filled with 100 mL of an aromatic synthetic resin swollen with water (Diaion HP-20: manufactured by Mitsubishi Chemical Corporation). The proanthocyanidin in 1 was adsorbed on the column. This column was washed with 1 L of purified water to remove saccharides, organic acids, and the like remaining on the column. Then, apply 20% (VV) ethanol / water mixed solvent to the column. Then, proanthocyanidins were eluted to obtain 20 O rn L of pine bark extract A1. Next, the pine bark extract A was freeze-dried to obtain a dry powder (pine bark extract A). In the same manner as in Example 1, the content of each component contained in the pine bark extract A was measured, and the content was determined. Table 2 shows the results.
(実施例 5 ) (Example 5)
粗抽出液 Aの代わりに、 実施例 2の粗抽出液 Bを用いたこと以外は、 実施 例 4と同様にして松樹皮抽出液 Bの乾燥粉末 (松樹皮抽出物 B ) を得、 粉末 中に含まれる各成分の含有量を測定し、 含有率を求めた。 結果を表 2に示す。 A dry powder (pine bark extract B) of pine bark extract B was obtained in the same manner as in Example 4 except that crude extract B of Example 2 was used instead of crude extract A. The content of each component contained in was measured and the content was determined. Table 2 shows the results.
(実施例 6 ) (Example 6)
粗抽出液 Aの代わりに、 実施例 3の粗抽出液 Cを用いたこと以外は、 実施 例 4と同様にして松樹皮抽出液 Cの乾燥粉末 (松樹皮抽出物 C ) を得、 粉末 中に含まれる各成分の含有量を測定し、 含有率を求めた。 結果を表 2に示す。 A dry powder (pine bark extract C) of pine bark extract C was obtained in the same manner as in Example 4, except that crude extract C of Example 3 was used instead of crude extract A. The content of each component contained in was measured and the content was determined. Table 2 shows the results.
(比較例 2 ) (Comparative Example 2)
粗抽出液 Aの代わりに、 比較例 1の粗抽出液 Dを用いたこと以外は、 実施 例 4と同様にして松樹皮抽出液 Dの乾燥粉末 (松樹皮抽出物 D ) を得、 粉末 中に含まれる各成分の含有量を測定し、 含有率を求めた。 結果を表 2に示す。
A dry powder (pine bark extract D) of pine bark extract D was obtained in the same manner as in Example 4, except that crude extract D of Comparative Example 1 was used instead of crude extract A. The content of each component contained in was measured and the content was determined. Table 2 shows the results.
表 2 Table 2
表 2の結果から、 実施例 1〜3の樹齢 25年、 50年おょぴ 80年の樹木 の樹皮から得られた粗抽出液は、 比較例 1の樹齢 1 00年超の樹木の樹皮か ら得られる抽出液に比べて、 O PC含有量が高いことが分かる。 さらに精製 して得られる実施例 4〜6の抽出物の収量 (固形物質量) も高いことがわか る。 このことは、 樹齢 100年未満の樹木の樹皮から得られる抽出物が樹齢 100年以上の樹木の樹皮から得られる抽出物に比べて、 O PC含量が高く なるが、 それ以上に回収率が高くなることを示す。 特に、 実施例 1および 2 の樹齢 25年および 50年の樹木の樹皮から得られる抽出物は、 抽出物に含 まれるプロアントシァニジン中に占める OPCの割合 (OPC,全プロアン トシァニジン) が 50%以上と、 OP Cがプロアントシァニジンの半分以上 を占め、 収量も大きく増加した。 From the results in Table 2, the crude extract obtained from the bark of the trees of Examples 1 to 3 at the ages of 25 years, 50 years, and 80 years was the same as that of the bark of the tree of Comparative Example 1 over the age of 100 years. It can be seen that the OPC content is higher than that of the obtained extract. It can be seen that the yield (solid content) of the extracts of Examples 4 to 6 obtained by further purification is high. This means that extracts obtained from the bark of trees less than 100 years old have a higher OPC content than extracts obtained from the bark of trees older than 100 years, but have higher recovery rates. Indicates that In particular, the extract obtained from the bark of the 25-year-old and 50-year-old trees of Examples 1 and 2 showed that the proportion of OPC in the proanthocyanidin contained in the extract (OPC, total proanthocyanidin) was 50%. At over 50%, OPC accounted for more than half of proanthocyanidins, and yields also increased significantly.
(実施例 7 :樹皮抽出物の製造) (Example 7: Production of bark extract)
松樹皮 (フランス海岸松の樹皮、 榭齢 1 00年未満) 1 k gに、 精製水 5 Pine bark (French coastal pine bark, less than 100 years old) 1 kg, purified water 5
4Lを加え、 ワーリングプレンダー (Waring Blender) で破碎した後、 10
0°Cで 24時間還流しながら加熱抽出した。 次いで、 直ちに濾過し、 濾過後 の不溶物を精製水 1. 6 Lで洗浄し、 濾液と洗浄液とを合わせて 7 Lの粗抽 出液を得た。 この粗抽出液 1 OmLを凍結乾燥したところ、 乾燥質量は 70 mgであった。 この抽出液を 25 °Cまで放冷した。 Add 4L, crush with Waring Blender and add 10L The mixture was heated and extracted while refluxing at 0 ° C for 24 hours. Then, the mixture was immediately filtered, and the insoluble matter after the filtration was washed with 1.6 L of purified water, and the filtrate and the washing liquid were combined to obtain a 7 L crude extract. When 1 OmL of the crude extract was freeze-dried, the dry mass was 70 mg. The extract was allowed to cool to 25 ° C.
上記抽出液 1 L (抽出物粉末乾燥質量 7 g) を、 比表面積 y O
細孔半径 8 OA以下の芳香族系合成吸着剤 (アンパーライト (登録商標) X AD— 4 (株式会社オルガノ製) ) 30 OmL (約 200 g相当) が充填さ れた直径 5 c mのカラムに通液した。 次いで、 このカラムを 6 0 OmLの精 製水で洗浄後、 80% (V/V) 一エタノール水溶液 80 OmLをカラムに 通液して吸着物を溶出させた。 吸着剤に吸着されている成分は、 このエタノ 一ルの通液によって溶出させた。 この溶出液を減圧濃縮してエタノールを除 去した後、 水を加えて、 体積を 50 OmLとした。 Add 1 L of the above extract (7 g dry weight of extract powder) to specific surface area y O An aromatic synthetic adsorbent with a pore radius of 8 OA or less (Amperlite (registered trademark) X AD-4 (manufactured by Organo Corporation)) packed in a column of 5 cm in diameter packed with 30 OmL (equivalent to about 200 g) The liquid was passed. Next, the column was washed with 60 OmL of purified water, and 80 OmL of an 80% (V / V) aqueous ethanol solution was passed through the column to elute the adsorbed material. The components adsorbed on the adsorbent were eluted by passing the ethanol through. The eluate was concentrated under reduced pressure to remove ethanol, and water was added to adjust the volume to 50 OmL.
次に、 上記溶出液 5 0 OmLを、 さらに比表面積 6 0 0m2Zg、 細孔半 径 1 00〜1 2 OAの芳香族系合成吸着剤であるダイアイオン (登録商標) HP-20 (三菱化学株式会社製) 20 OmL (約 1 40 g相当) が充填 された直径 5 cmのカラムに通液した。 このカラムを 6 0 OmLの精製水で 洗浄した後、 20% (V/V) 一エタノール水溶液 (70 OmL) を通液し て溶出させ、 松榭皮抽出液 Eを得た。 Next, the eluate 5 0 OML, further specific surface area 6 0 0 m 2 Zg, DIAION (registered trademark) is aromatic synthetic adsorbents Hosoanahan diameter 1 00~1 2 OA HP-20 (Mitsubishi The solution was passed through a 5 cm diameter column packed with 20 OmL (equivalent to about 140 g). The column was washed with 60 OmL of purified water, and then eluted by passing a 20% (V / V) aqueous ethanol solution (70 OmL) to obtain pine husk extract E.
次に、 得られた松榭皮抽出液 E中の各成分の含有量を調べるために、 松樹 皮抽出液 Eを、 実施例 1と同様の方法で分離した。 Next, in order to examine the content of each component in the obtained pine bark extract E, pine bark extract E was separated in the same manner as in Example 1.
実施例 1と同様に、 樹皮抽出物の乾燥粉末 1 0 Omgに対して、 画分 1〜 3の総和は、 9 9. 9mgであった。 よって、 ほぼ全量が回収されていたこ とが分かった。 そして、 樹皮抽出物の各成分の質量から各成分の含有率を算 出したところ、 OPC画分 (画分 2) は 45. 2%、 高分子 PC画分 (画分 3 a) は 2 1. 2%、 カテキン類の画分 (画分 1 a ) は 1 4. 9 %、 その他 の画分 (画分 l b+画分 3 b) は 1 8. 7%であった。 なお、 OPC比 (画
分 2/画分 3 a) は、 2. 13であった。 As in Example 1, the total of fractions 1 to 3 was 99.9 mg with respect to 10 Omg of the dry powder of the bark extract. Therefore, it was found that almost the entire amount had been recovered. When the content of each component was calculated from the mass of each component of the bark extract, the OPC fraction (fraction 2) was 45.2%, and the high-molecular PC fraction (fraction 3a) was 21%. The fraction of catechins (fraction 1a) was 14.9% and that of the other fractions (fraction lb + fraction 3b) was 18.7%. The OPC ratio (image The fraction 2 / fraction 3 a) was 2.13.
(実施例 8 :樹皮抽出物の製造) (Example 8: Production of bark extract)
松榭皮 (樹齢 100年未満) 900 gに、 80 (V/V) %エタノール水 溶液 7. 2しをカロぇ、 ワーリングブレンダー (Waring Blender) で破砕した 後、 70。Cで 1時間還流させながら加熱抽出した。 次いで、 直ちに濾過し、 濾過後の不溶物を 80 (V_ V) %エタノール水溶液 1. 8 Lで洗浄し、 濾 液と洗浄液とを合わせて 9 Lの松樹皮の含水ェタノ一ノレ粗抽出液 Fを得た。 このエタノール抽出液 1 L (抽出物粉末乾燥質量 1 O g) を 25°Cまで放 冷し、 濃縮してエタノールを完全に除去した。 その後、 実施例 4と同様の方 法で 20 OmLの松樹皮抽出液 Fを得た。 次に、 松榭皮抽出液 Fを凍結乾燥 することによって、 乾燥粉末を得た。 これを松樹皮抽出液 Fの乾燥粉末とし た。 実施例 7と同様にして、 松樹皮抽出液 F中の各成分の含有量を測定した ところ、 O PCが 43. 2%、 高分子 PCが 36. 4 %、 およびその他の成 分が 20. 4%であった。 なお、 OPC比 (画分 2Z画分 3 a) は、 1. 1 9であった。 Pine bark (under 100 years old) To 900 g, 80 (V / V)% ethanol aqueous solution 7.2, after crushing it with a Waring Blender, 70. The mixture was extracted with heating while refluxing with C for 1 hour. Then, the mixture was immediately filtered, and the insoluble material after the filtration was washed with 1.8 L of an 80 (V_V)% ethanol aqueous solution. The combined filtrate and washings were combined with 9 L of pine bark aqueous ethanol-free crude extract F. Got. One liter of this ethanol extract (dry mass of extract powder 1 Og) was allowed to cool to 25 ° C and concentrated to completely remove ethanol. Thereafter, pine bark extract F of 20 OmL was obtained in the same manner as in Example 4. Next, the pine peel extract F was freeze-dried to obtain a dry powder. This was used as a dry powder of pine bark extract F. When the content of each component in the pine bark extract F was measured in the same manner as in Example 7, OPC was 43.2%, polymer PC was 36.4%, and other components were 20. 4%. The OPC ratio (fraction 2Z fraction 3a) was 1.19.
(実施例 9 :樹皮抽出物の製造) (Example 9: Production of bark extract)
実施例 8と同様にして、 松樹皮 (樹齢 100年未満) の含水エタノール粗 抽出液 Gを得、 さらに濃縮してエタノールを完全に除去した。 その後、 精製 水を添加して容量が 10 OmLとなるように調整して、 抽出液の 1ノ10容 量に相当する濃縮液 B 2を得た。 In the same manner as in Example 8, a crude extract G of hydrated ethanol containing pine bark (tree age less than 100 years) was obtained and further concentrated to completely remove ethanol. Thereafter, purified water was added to adjust the volume to 10 OmL to obtain a concentrate B2 corresponding to 1 to 10 volumes of the extract.
次に、 l O OmLの濃縮液 Gに、 塩化ナトリウム (糸勺 15 g) を添カ卩して よく攪拌した。 この溶液を 4 °Cで 24時間静置後、 析出した不溶物を濾過に より除去し、 96 m Lの濾液 Gを得た。 Next, sodium chloride (15 g of yarn) was added to the concentrated solution G of 1 O OmL, and the mixture was stirred well. After the solution was allowed to stand at 4 ° C for 24 hours, the precipitated insolubles were removed by filtration to obtain 96 mL of filtrate G.
その後の操作は、 実施例 8と同様にして、 松樹皮抽出液 Gを得、 これを乾
燥することによって松樹皮抽出液 Gの乾燥粉末を得た。 実施例 7と同様にし て、 松樹皮抽出液 G中の各成分の含有量を?則定したところ、 0 〇が39. 3%、 高分子 PCが 39. 9%、 およびその他の成分が 20. 8%であった。 なお、 OPC比 (画分 2 画分 3 a) は、 0. 98であった。 Subsequent operations were performed in the same manner as in Example 8 to obtain pine bark extract G, which was dried. The dried powder of the pine bark extract G was obtained by drying. The content of each component in the pine bark extract G was determined in the same manner as in Example 7, with 0% being 39.3%, polymer PC being 39.9%, and other components being 20. 8%. The OPC ratio (fraction 2 fraction 3a) was 0.98.
(比較例 3 :市販の松樹皮抽出物の成分分析) (Comparative Example 3: Component analysis of commercially available pine bark extract)
市販の松榭皮抽出物の粉末 (松樹皮抽出物 H) について、 実施例 7と同様 にして、 抽出物中の各成分の含有量を測定したところ、 OPCが 19. 3%、 高分子 PCが 37. 1%、 カテキン類の画分が 10. 8%、 およびその他の 成分が 32. 8 %であった。 なお、 O P Ci:匕 (画分 2ノ画分 3 a) は、 0. 52であった。 The content of each component in the extract of a commercially available pine bark extract powder (pine bark extract H) was measured in the same manner as in Example 7 to find that OPC was 19.3% and polymer PC 37.1%, the catechin fraction was 10.8%, and the other components were 32.8%. In addition, OP Ci: dani (fraction 2 fraction 3a) was 0.52.
(比較例 4 :市販の松榭皮抽出物の成分分析) (Comparative Example 4: Component analysis of commercially available pine peel extract)
市販の松樹皮抽出物の粉末 (松樹皮抽出物 I) について、 実施例 7と同様 にして、 抽出物中の各成分の含有量を測定したところ、 OPCが 15. 9%、 高分子 PCが 39. 6%、 カテキン類の画分が 12. 9%、 およびその他の 成分が 31. 6%であった。 なお、 OPCJ:匕 (画分 2ノ画分 3 a) は、 0. 40であった。 (実施例 10 :溶解性) The content of each component in the extract of a commercially available pine bark extract powder (pine bark extract I) was measured in the same manner as in Example 7, and found that OPC was 15.9% and polymer PC was 39.6%, catechin fraction was 12.9%, and other components were 31.6%. In addition, OPCJ: dani (fraction 2 fraction 3a) was 0.40. (Example 10: solubility)
実施例 7〜9で得られた松樹皮抽出液の乾燥粉末 (樹皮抽出物 E、 F、 お よび G) 、 ならびに比較例 3および 4の市販の松樹皮抽出物 (榭皮抽出物 H および I) を用いて、 水への溶解性試験を行った。 Dry powders of the pine bark extracts obtained in Examples 7 to 9 (bark extracts E, F, and G), and commercially available pine bark extracts of Comparative Examples 3 and 4 (4 bark extracts H and I) ) Was used to conduct a water solubility test.
各松樹皮抽出物が 1質量 体積%となるように、 蒸留水に懸濁させ、 ボル テックスでよく攪拌した。 その後、 室温 (約 25°C) にて静置した。 静置 6 0分後、 溶液中の沈殿および濁度を目視により確認し、 以下の基準で評価し
た。 結果を表 3に示す。 Each pine bark extract was suspended in distilled water so as to be 1% by mass and stirred well with Vortex. Then, it was left still at room temperature (about 25 ° C). After 60 minutes of standing, the precipitate and turbidity in the solution were visually checked and evaluated according to the following criteria. It was. Table 3 shows the results.
隱) Hidden)
+ :沈殿が多量に認められる。 +: A large amount of precipitation is observed.
土 :沈殿が若干認められる。 Soil: Some precipitation is observed.
一 :沈殿は認められない。 1: No precipitation is observed.
(濁度) (Turbidity)
+ : 白濁が顕著である。 +: The cloudiness is remarkable.
士 : 白濁が若干認められる。 Shi: Some clouding is observed.
一 : 白濁は認められない。 1: No clouding is observed.
さらに、 上記目視による確認後、 上記各水溶液全量を、 ガラス繊維濾紙を 用いて濾過した。 得られた濾滓の乾燥質量を測定して、 前記式 1から溶解率 を求めた。 結果を表 3に併せて示す。 表 3 Further, after the visual confirmation, the entire amount of each of the aqueous solutions was filtered using a glass fiber filter paper. The dry mass of the obtained filter cake was measured, and the dissolution rate was determined from the above formula 1. The results are shown in Table 3. Table 3
表 3の結果から、 実施例 7〜 9の松樹皮抽出物 (E、 F、 および G) につ いては、 目視により沈殿が認められず、 白濁も認めらないことがわかる。 一
方、 比較例 3および 4の市販の松樹皮抽出物 (Hおよび I ) については、 若 干量の沈殿が認められ、 白濁していた。 さらに、 実施例 7〜 9の松樹皮抽出 物 (E、 F、 および G) の溶解率はいずれも、 9 9 . 7 %であるのに対して、 比較例 3および 4の市販の松樹皮抽出物 (Hおよび I ) の溶解率は、 8 5 . 7 %および 8 9 . 7 %であった。 これらのことは、 実施例 7〜 9の松樹皮抽 出物 (E、 F、 および G) i 比較例 3および 4の市販の松樹皮抽出物 (Η および I ) に比べて、 水に対する溶解性が高いことを示す。 From the results in Table 3, it can be seen that the pine bark extracts (E, F, and G) of Examples 7 to 9 did not show any visible precipitation and no cloudiness. one On the other hand, with respect to the commercially available pine bark extracts (H and I) of Comparative Examples 3 and 4, a slight amount of precipitation was observed, and it was cloudy. Further, the dissolution rates of the pine bark extracts (E, F, and G) of Examples 7 to 9 were all 99.7%, whereas the commercially available pine bark extracts of Comparative Examples 3 and 4 were all soluble. The dissolution rates of the products (H and I) were 85.7% and 89.7%. These results indicate that the pine bark extracts (E, F, and G) of Examples 7 to 9 are more soluble in water than the commercially available pine bark extracts of Comparative Examples 3 and 4 (Η and I). Is higher.
実施例 7〜 9の松樹皮抽出液については、 上述の通り、 沈殿おょぴ白濁が 認められず、 溶解率も高い値であった。 このことは、 O P Cが樹皮抽出物中 に 2 5質量%以上、 好ましくは 3 0質量%以上、 より好ましくは 3 5質量% 以上、 さらに好ましくは 4 0質量%以上、 さらに好ましくは 4 5質量%以上 含有する場合に、 その樹皮抽出物の水に対する溶解性が飛躍的に高くなるこ とを示す。 また、 O P C比については、 0 . 9以上であれば、 水に対する溶 解性が高くなることを示す。 As described above, the pine bark extracts of Examples 7 to 9 did not show sedimentation and cloudiness, and had high dissolution rates. This means that the OPC content of the bark extract is at least 25% by mass, preferably at least 30% by mass, more preferably at least 35% by mass, even more preferably at least 40% by mass, even more preferably at least 45% by mass. It shows that the solubility of the bark extract in water is dramatically increased when it is contained as described above. If the OPC ratio is 0.9 or more, it indicates that the solubility in water is increased.
一方、 比較例 3および 4の市販の松樹皮抽出物の粉末 Hおよび Iは、 若干 量の沈殿が認められ、 白濁し、 さらに溶解率も低かった。 このことは、 樹皮 抽出物中に O P Cの含有割合が小さい場合には、 樹皮抽出物の水に対する溶 解性は小さいことを示す。 また、 樹皮抽出物中の高分子プロアントシァニジ ン含量が、 O P C含量よりもかなり大きい場合は、 樹皮抽出物の水への溶解 性は小さくなる傾向にある。 On the other hand, the powders H and I of the commercially available pine bark extracts of Comparative Examples 3 and 4 showed slight precipitation, became cloudy, and had a low dissolution rate. This indicates that when the content of OPC in the bark extract is small, the solubility of the bark extract in water is small. Also, when the polymer proanthocyanidin content in the bark extract is considerably larger than the OPC content, the solubility of the bark extract in water tends to decrease.
(実施例 1 1 :抗酸化作用 (S O D活性) ) (Example 11: Antioxidant activity (SOD activity))
( 1 ) 試験用ラットの調製 (1) Preparation of test rats
5週齢の雄性 S Dラットを購入後、 それを 6週齢となるまで予備飼育した。 予備飼育期間中、 ラットを観察し、 体重の増加異常などの異常が見られるラ ットを除去した。 なお、 予備飼育期間中、 ラット用固形飼料 MF (オリエン
タル酵母工業株式会社製) およぴ水道水を自由摂取させた。 After purchasing a 5-week-old male SD rat, it was pre-bred until the age of 6 weeks. During the pre-breeding period, rats were observed and rats showing abnormalities such as abnormal weight gain were removed. During the preliminary breeding period, rat solid feed MF (Orient Tal Yeast Co., Ltd.) and tap water were allowed to freely ingest.
上記 6週齢のラットを 12時間絶食させ、 その後直ちに、 ラットの眼窩静 脈から血液を採取した。 この血液を 3000 r pm (1 700 XG) にて 2 0分間遠心分離し、 血清を得た。 次いで、 血清の SOD活性を測定キット (S ODテストヮコー(Code 435- 70601) :和光純薬株式会社) を用いて NB The 6-week-old rat was fasted for 12 hours, and immediately thereafter, blood was collected from the orbital vein of the rat. This blood was centrifuged at 3000 rpm (1700 XG) for 20 minutes to obtain serum. Then, the serum SOD activity was measured using a kit (SOD Test Co., Ltd. (Code 435-70601): Wako Pure Chemical Industries, Ltd.) for NB.
T還元法により測定した。 測定後、 SOD活"生の平均値が均一になるように 1群 5匹ずつにわけた。 It was measured by the T reduction method. After the measurement, the animals were divided into 5 animals per group so that the average value of the SOD activities was uniform.
(2) 試験液の調製 (2) Preparation of test solution
実施例 9で得られた松樹皮抽出液 Gの乾燥粉末 (松樹皮抽出物 G) の最終 濃度が 1 Omg/mLとなるように蒸留水に溶解させた (試験液 1とする) 。 松樹皮抽出物 Gの代わりに、 比較例 3の松樹皮抽出物 (松樹皮抽出物 H) 、 市販の (一) カテキン、 市販のビタミン C (ァスコルビン酸) 、 および市販 のブドウ種子ポリフエノールのいずれかを用いたこと以外は、 上記と同様に して試験液を調製した (それぞれ試験液 2〜 5とする) 。 なお、 対照として 蒸留水を試験液 6とした。 The dried powder (pine bark extract G) of the pine bark extract G obtained in Example 9 was dissolved in distilled water so that the final concentration was 1 Omg / mL (referred to as test solution 1). Instead of the pine bark extract G, any of the pine bark extract of Comparative Example 3 (pine bark extract H), commercially available (I) catechin, commercially available vitamin C (ascorbic acid), and commercially available grape seed polyphenol Test solutions were prepared in the same manner as above, except that was used (test solutions 2 to 5 respectively). As a control, distilled water was used as test solution 6.
(3) SOD活性の測定 (3) Measurement of SOD activity
各試験液 (各成分を 1 OmgZmL含有) を 10 m k g体重の割合と なるように、 上記 1群 5匹のラットにゾンデを用いて経口投与した (成分と して 10 OmgZk g体重) 。 経口投与後、 水道水の自由摂取が可能な環境 下でラットを飼育し、 経口投与 45分後および 90分後に、 再度眼窩静脈か ら採血し、 上記と同様にして SOD活性を測定した。 そして、 投与前の SO D活性の測定値を 1とした場合の投与後の S OD活性の相対値を求めた。 結 果を図 2に示す: Each test solution (containing 1 OmgZmL of each component) was orally administered to the above-mentioned five rats per group using a sonde so that the ratio of each component was 10 mkg body weight (10 OmgZkg body weight as a component). After oral administration, rats were bred in an environment where tap water was freely available, and blood was collected again from the orbital vein 45 minutes and 90 minutes after oral administration, and SOD activity was measured in the same manner as described above. Then, when the measured value of the SOD activity before administration was set to 1, the relative value of the SOD activity after administration was determined. The result is shown in figure 2:
図 2の結果から、 OPCを 25質量%以上含有する松樹皮抽出液 Gを含む
試験液 1は、 OPCを 19. 3 %含有する松榭皮抽出物 Hを含む試験液 2あ るいは他の抗酸化物質を含有する試験液 3〜 6に J;匕べて、 S OD活性が高い 傾向にあることがわかる。 From the results in Fig. 2, pine bark extract G containing at least 25% by mass of OPC is included Test solution 1 was composed of a test solution containing pine husk extract H containing 19.3% OPC and a test solution 2 containing other antioxidants, or a test solution containing other antioxidants. It can be seen that there is a tendency for
特に、 試験液 1および 4の投与 45分後の S O D活性は、 試験液 2、 3、 および 5の投与 45分後の SOD活性に比べて高いことがわかる。 このこと は、 O PCを 25質量%以上含有する松樹皮抽出物 G (試験液 1) およびァ スコルビン酸 (試験液 4) 力 S、 OPCを 19. 3。/0含有する松樹皮抽出物 H (試験液 2) 、 カテキン (試験液 3) 、 プドウ種子ポリフ ノール (試験液 5) に比べて、 速やかに生体内に吸収され、 高い SOD活性を有することを 示す。 In particular, it can be seen that the SOD activity 45 minutes after administration of Test Solutions 1 and 4 was higher than the SOD activity 45 minutes after administration of Test Solutions 2, 3, and 5. This means that pine bark extract G (test solution 1) and ascorbic acid (test solution 4) containing at least 25% by mass of OPC S, OPC 19.3. / 0 containing that pine bark extract H (test solution 2), catechin (test solution 3), compared to Pudou seeds polyphenylene Nord (test solution 5), are absorbed rapidly in vivo, to have a high SOD activity Show.
さらに、 図 2において、 松樹皮抽出物 G (試験液 1) の投与 45分後〜 9 0分後の SOD活性の増加 (傾き) は、 ァスコルビン酸 (試験液 4) の投与 45分後〜 90分後の SOD活性の増加に比べて高いことがわかる。 このこ とは、 O PCを 25質量%以上含有する松樹皮抽出物 Gが、 ァスコルビン酸 に比べて、 SOD活性の持続性に優れることを示す。 ァスコルビン酸は、 速 やかに SOD活性が増加するにもかかわらず、 活性の持続性が低かった。 ァ スコルビン酸は、 OPCを 19. 3%含有する松檑皮抽出物 H (試験液 2) に比べても S O D活性の持続性に乏しかった。 Furthermore, in FIG. 2, the increase (slope) of the SOD activity from 45 minutes to 90 minutes after administration of pine bark extract G (test solution 1) was due to the difference between 45 minutes and 90 minutes after administration of ascorbic acid (test solution 4). It can be seen that it is higher than the increase in SOD activity after one minute. This indicates that pine bark extract G containing 25% by mass or more of OPC is superior in persistence of SOD activity as compared with ascorbic acid. Ascorbic acid had a low sustained activity despite a rapid increase in SOD activity. Ascorbic acid had poor persistence of SOD activity as compared with pine peel extract H containing 19.3% OPC (test solution 2).
最終的に、 試験液 1の投与 90分後の SOD活性が最も高かった。 これは、 試験液 1に含まれる O PCを 25質量%以上含有する松樹皮抽出物 Gが、 水 に対する溶解性が高く、 生体内にすばやく吸収されるためと考えられる。 こ のように、 本発明の樹皮抽出物が、 他の抗酸化物質に比べて、 比較的迅速に、 かつ生体内で優れた抗酸化作用、 特に S O D活性を示す傾向にあることがわ かる。 Finally, the SOD activity was highest at 90 minutes after administration of Test Solution 1. This is considered to be because the pine bark extract G containing 25% by mass or more of OPC contained in the test solution 1 has high solubility in water and is quickly absorbed into the living body. Thus, it can be seen that the bark extract of the present invention tends to exhibit an excellent antioxidant action, particularly an SOD activity, relatively quickly and in vivo compared to other antioxidants.
以上のことから、 OPCを 25質量%以上含有する松樹皮抽出物 Gは、 S From the above, pine bark extract G containing 25% by mass or more of OPC
O D活性を速やかに増加させる即効性と、 優れた持続性とを兼ね備えている
ことがわかる。 この効果は、 従来の抗酸ィ匕剤には見られない効果である。 こ のように、 松榭皮抽出物 Gは、 水溶性が高く、 容易に生体内に吸収される易 吸収性抗酸化剤 (易吸収性 S O D活性化剤) として利用できることがわかる。 産業上の利用可能个生 It has both the immediate effect of rapidly increasing OD activity and excellent sustainability You can see that. This effect is an effect not seen in the conventional antioxidant. Thus, it can be seen that pine husk extract G is highly water-soluble and can be used as an easily-absorbable antioxidant (easy-absorbable SOD activator) that is easily absorbed into a living body. Industrial Available Individuals
本発明の樹皮抽出物は、 樹齢 ;L O 0年未満の樹木の樹皮から水および極性 溶媒の少なくとも 1種以上の溶媒で抽出して得ることができる。 樹齢 1 0 0 年を超える榭皮よりも高い収率で、 プロアントシァ-ジンを含有する樹皮抽 出物を得ることができ、 さらに、 全プロアントシァ-ジン中の O P Cの割合 が高い。 この榭皮抽出物は、 水に対して優れた溶解性を有するため、 水溶液 中の白濁および沈殿の発生が少なく、 すばやく体内に吸収され、 優れた抗酸 化活性 (特に、 スーパーォキシドジスムターゼ活性) を有する。 したがって、 この樹皮抽出物を飲料、 液状の化粧品、 医薬部外品、 医薬品、 食品、 飲料な どに利用することが容易である。
The bark extract of the present invention can be obtained by extracting from the bark of a tree with an age of less than 0 years L0 with at least one of water and a polar solvent. A bark extract containing proanthocyanin can be obtained in a higher yield than bark over 100 years of age, and the proportion of OPC in the total proanthocyanin is high. This skin extract has excellent solubility in water, so there is little turbidity and precipitation in aqueous solution, it is quickly absorbed into the body, and it has excellent antioxidation activity (particularly superoxide dismutase activity). ). Therefore, the bark extract can be easily used in beverages, liquid cosmetics, quasi-drugs, pharmaceuticals, foods, beverages, and the like.