[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005063393A1 - Method for electrolyzing water using organic photocatalyst - Google Patents

Method for electrolyzing water using organic photocatalyst Download PDF

Info

Publication number
WO2005063393A1
WO2005063393A1 PCT/JP2004/018886 JP2004018886W WO2005063393A1 WO 2005063393 A1 WO2005063393 A1 WO 2005063393A1 JP 2004018886 W JP2004018886 W JP 2004018886W WO 2005063393 A1 WO2005063393 A1 WO 2005063393A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic semiconductor
type organic
water
electrolysis
Prior art date
Application number
PCT/JP2004/018886
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Nagai
Toshiyuki Abe
Original Assignee
Kansai Technology Licensing Organization Co., Ltd.
Tmt Machinery, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co., Ltd., Tmt Machinery, Inc. filed Critical Kansai Technology Licensing Organization Co., Ltd.
Priority to JP2005516568A priority Critical patent/JP3995051B2/en
Publication of WO2005063393A1 publication Critical patent/WO2005063393A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a method for efficiently electrolyzing water into hydrogen and oxygen under light irradiation using an organic photocatalyst activated by light, particularly visible light, as an electrode material.
  • a conventional alkaline water electrolyzer has been put to practical use under conditions requiring a high applied voltage of 1.7 to 2.0 V at a high temperature of about 60 to 80 ° C or higher (see Non-Patent Document 1). .
  • electrolysis of water requires the addition of excess thermal energy and an additional overvoltage of approximately 0.5-0.8 V with respect to the theoretical voltage of 1.23 V.
  • Non-Patent Document 2 reports a water decomposition reaction by an inorganic semiconductor photocatalyst using light energy.
  • the photocatalyst is only a few types of titanium oxide, composites thereof, tungsten oxide, and the like that can utilize ultraviolet light or near-ultraviolet visible light (Non-Patent Document 3 and the like), and covers the entire visible light region. There is no known photocatalyst capable of utilizing light over a wide range.
  • Non-Patent Document 5 describes a single-layer electrode using an organic semiconductor such as anthracene.
  • an organic semiconductor such as anthracene.
  • a sufficient photocurrent has not been obtained, and the performance of this organic material cannot be improved. It is stated that it is impossible to build a good photovoltaic cell and use it to extract chemical energy.
  • Patent Document 1 JP-A-9-234374
  • Non-Patent Document 1 Electrochemistry and Industrial Physical Chemistry April, p278-282, 2003
  • Non-Patent Document 2 Nature, 414, pp. 625-627 (2001)
  • Non-Patent Document 3 Chem. Commun., 150 (1992)
  • Non-Patent Document 4 J. Chem. Soc. Faraday Trans., 93, 221 (1997)
  • Non-Patent Document 5 Review of Chemistry No.45 Functional Organic Thin Film Published November 25, 1984
  • the present invention provides an electrode material using an organic photocatalyst capable of utilizing light in the ultraviolet and visible regions, and electrolyzes water under light irradiation to form hydrogen and hydrogen. It is a main object to provide a method for efficiently producing oxygen.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, irradiated an organic photocatalyst comprising a specific p-type organic semiconductor and a specific n-type organic semiconductor with ultraviolet light or visible light. Then, they found that a photocatalytic oxidation-reduction reaction occurs through unidirectional photo-induced electron transfer. Further, when electrolysis of water was performed using an electrode using the organic photocatalyst as an electrode material under irradiation of ultraviolet light or visible light, it was found that electrolysis was possible under milder conditions. The present inventors have further developed the present invention based on these findings.
  • the present invention provides the following organic photocatalyst, electrode material for electrolysis of water, and the electrode material And an electrolysis method for water using the electrode, a water electrolysis apparatus, and the like.
  • Item 1 An electrode material for water electrolysis comprising an organic photocatalyst containing a p-type organic semiconductor and an n-type organic semiconductor.
  • Item 2 The electrode material for electrolysis of water according to Item 1, wherein the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
  • Item 3 The electrode material for electrolysis of water according to Item 1 or 2, wherein the p-type organic semiconductor is at least one member selected from the group consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
  • Item 4 The electrode material for electrolysis of water according to Item 1, 2 or 3, wherein the n-type organic semiconductor is a polycyclic aromatic compound.
  • Item 5 The item in which the n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, a conductive polymer doped with an electron donor, a perylene derivative, and a naphthalene derivative. 14. The electrode material for electrolysis of water according to any one of items 1-4.
  • Item 6 An electrode in which the surface of an electrode substrate is coated with the electrode material for water electrolysis according to any one of Items 115.
  • Item 7 The electrode according to item 6, wherein the surface of the electrode substrate is coated with a first layer made of an n-type organic semiconductor and a second layer made of a p-type organic semiconductor. An anode electrode that supports a transition metal catalyst on the second layer, if necessary.
  • Item 8 The electrode according to item 6, wherein the surface of the electrode substrate is coated with a first layer made of a p-type organic semiconductor and a second layer made of an n-type organic semiconductor.
  • a force sword electrode that supports a transition metal catalyst on the second layer, if necessary.
  • Item 9 The electrode according to item 6, wherein the electrode substrate is a conductive transparent glass substrate, a metal substrate, or a carbon-based substrate.
  • An electrolysis apparatus for water comprising: an anode electrode according to item 7, an electrode serving as a force source electrode according to item 8, a constant potential power supply, an aqueous electrolyte solution, and a light source.
  • Item 11 The item according to Item 10, wherein the anode electrode and the force source electrode are connected to a constant potential power supply, and the anode electrode and the force source electrode are immersed in an aqueous electrolyte solution. Water electrolysis equipment.
  • Item 12 The water electrolysis apparatus according to Item 11, wherein a voltage is applied to the anode electrode and the force source electrode with a constant potential power supply while irradiating the electrodes with light. Disassembly method.
  • Item 13 The water electrolysis method according to item 12, wherein the applied voltage is about 0.3 to 1.2 V.
  • Item 14 An electrode comprising the anode electrode and the force source electrode according to Item 7, or an electrode comprising the force electrode and the anode electrode according to Item 8, a constant potential power source, an aqueous electrolyte solution, and a light source. Water electrolysis equipment.
  • Item 15 The water electrolysis apparatus according to item 14, wherein the anode electrode and the force source electrode are connected to a constant potential power supply, and the anode electrode and the force source electrode are immersed in an aqueous electrolyte solution.
  • Item 16 The water electrolysis apparatus according to Item 15, wherein a voltage is applied to the anode electrode and the force source electrode with a constant potential power supply while irradiating the electrodes with light. Disassembly method.
  • Item 17 The water electrolysis method according to Item 16, wherein the applied voltage is about 1.0 to 1.4 V.
  • Item 18 The method for electrolyzing water according to Item 12 or 16, wherein the irradiation light is natural light.
  • Item 19 The water electrolysis method according to Item 12 or 16, wherein oxygen is generated from the anode electrode and hydrogen is generated from the force source electrode.
  • Item 20 An organic photocatalyst containing a p-type organic semiconductor and an n-type organic semiconductor.
  • Item 21 The organic photocatalyst according to item 20, wherein the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
  • Item 22 The organic photocatalyst according to item 20, wherein the p-type organic semiconductor is at least one member selected from the group consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
  • Item 23 The organic photocatalyst according to item 20, wherein the n-type organic semiconductor is a polycyclic aromatic compound.
  • Item 24 Item 20 wherein the n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, a conductive polymer doped with an electron donor, a perylene derivative, and a naphthalene derivative.
  • the organic photocatalyst according to the above.
  • the present invention will be described in detail.
  • the organic photocatalyst of the present invention contains a p-type organic semiconductor and an n-type organic semiconductor, and is preferably used as an electrode material for water electrolysis described later because it is stable in a medium containing water.
  • P-type organic semiconductors include macrocyclic ligand compounds or metal complexes thereof.
  • the macrocyclic ligand compound means a cyclic compound that can be a ligand of a metal containing an atom having an unpaired electron on the ring, and the metal complex is a metal complex with the macrocyclic ligand. It means a metal complex consisting of metal atoms. Examples of the atom having an unpaired electron include a nitrogen atom and an oxygen atom, and a nitrogen atom is preferable. Examples of the metal atom include metal elements belonging to groups 11 to 15 of the periodic table, preferably metal elements belonging to groups 4 to 14.
  • the metal complex is usually a metal complex composed of the metal atom and the macrocyclic ligand compound in a molar ratio of 1: 1 to form a four-coordinate planar complex.
  • macrocyclic ligand compound or its metal complex examples include a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
  • the phthalocyanine derivative means a compound having a basic skeleton of phthalocyanine.
  • M 1 represents a metal atom selected from the group consisting of Groups 414 of the Periodic Table or an atomic group containing the metal atom, and a dotted line represents a coordination bond.
  • the atomic group containing the metal atom means a group in which another ligand (eg, oxygen or cyano group) is coordinated with the metal (for example, Ti- ⁇ ).
  • M 1 is Co, Pt,
  • Phthalocyanine derivatives which are Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru are preferred, and cobalt phthalocyanine is particularly preferred in terms of the amount of oxygen generated in the electrolysis of water. All of these compounds are commercially available or can be easily produced by those skilled in the art.
  • the naphthalocyanine derivative means a compound having a basic skeleton of naphthalocyanine. Specifically, for example, the following formula (2A) or (2B):
  • M 2 represents a metal atom selected from the group consisting of Groups 414 of the Periodic Table or an atomic group containing the metal atom, and a dotted line represents a coordination bond.
  • one of the periodic table 4 one 14 metal atom shown by M 2, Group 4 (especially, ⁇ ), Group 5 (in particular, V), Group 6 (in particular, Mo), 7 group ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (especially Al), group 14 (especially Pb ).
  • the atomic group containing the metal atom means one in which another ligand (for example, oxygen or cyano group) is coordinated to the metal (for example, Ti-O).
  • M 2 is Co, Pt,
  • Naphthalocyanine derivatives which are ⁇ s, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru are preferred, and cobalt naphthalocyanine is particularly preferred in terms of the amount of oxygen generated in the electrolysis of water. These compounds are all commercially available or can be easily prepared by those skilled in the art.
  • the porphyrin derivative means a compound having a basic skeleton of porphyrin. Specifically, for example, the following formula (3A) or (3B):
  • R 3 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • M 3 contains a metal atom selected from the group consisting of Groups 4 to 14 of the periodic table or a metal atom thereof (Indicates atomic groups, dotted lines indicate coordination bonds.)
  • the alkyl group represented by R 3 above is a C straight-chain or branched-chain alkyl.
  • N-propyl isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
  • Examples of the aryl group represented by R 3 include a monocyclic or bicyclic aryl group, and specific examples include phenyl and naphthyl.
  • the atomic group containing the metal atom means a group in which another ligand (eg, oxygen or cyano group) is coordinated with the metal (for example, Ti- ⁇ ).
  • These compounds are all commercially available or can be easily produced by those skilled in the art.
  • the n-type organic semiconductor includes a polycyclic aromatic compound (which may be partially saturated).
  • a polycyclic aromatic compound is a compound having a structure in which at least two or more aromatic rings are fused, or a structure in which multiple aromatic rings are bonded via an unsaturated bond (double bond, triple bond, etc.).
  • the aromatic ring includes, in addition to the benzene ring and the like, a heteroaromatic ring such as a pyrrole ring, an imidazole ring, a pyridine ring and a quinoxaline ring. ,).
  • the polycyclic aromatic compound may have various substituents as long as the compound does not adversely affect the present invention.
  • substituents include an electron withdrawing group, and specific examples include a carbonyl group, a sulfone group, and a sulfoxide group.
  • polycyclic aromatic compound examples include fullerenes such as C60, C70, C76, C82, and C84; carbon nanotubes; and electron donors (phenylenediamine, tetraaminoethylene, tris (2, Conductive polymers (polyimide, polyphenylenevinylene, polyparaphenylene, polypyrrole, etc.) doped with 2-biviridine) ruthenium; perylene derivatives; naphthalene derivatives. Among them, perylene derivatives, naphthalene derivatives, fullerenes (C60 and the like) and the like are preferably employed, and perylene derivatives and fullerenes (C60 and the like) are particularly preferable.
  • fullerenes such as C60, C70, C76, C82, and C84
  • carbon nanotubes such as C60, C70, C76, C82, and C84
  • electron donors phenylenediamine, tetraaminoethylene, tris
  • the perylene derivative means a compound having a basic skeleton of perylene.
  • R 1 represents an alkyl group or an aryl group
  • the naphthalene derivative means a compound having a basic skeleton of naphthalene. Specifically, for example, the following formula (5A):
  • R 2 represents an alkyl group or an aryl group
  • the alkyl group represented by R 1 or R 2 above is a C straight-chain or branched-chain And an alkyl group of C 2 is preferable. Specifically, methyl
  • Ariru group represented by R 1 or R 2 include Ariru group mono- or bicyclic, in particular phenyl, naphthyl and the like.
  • the organic photocatalyst of the present invention there is no particular limitation on the form of bonding between the p-type organic semiconductor and the n-type organic semiconductor, but it is preferable to bond them so that the contact area between them increases.
  • a film-shaped p-type organic semiconductor and an n-type organic semiconductor may be joined, or one of the organic semiconductor films may be coated with the other organic semiconductor component to have a layer (film) structure.
  • water is efficiently converted into hydrogen and oxygen by applying a voltage while irradiating light to an electrode coated with an organic photocatalyst comprising a p-type organic semiconductor and an n-type organic semiconductor. It is characterized by electrolysis. A schematic diagram is shown in FIG.
  • the electrode used in the electrolysis of water of the present invention has an electrode substrate surface coated with an organic photocatalyst.
  • Examples of the electrode substrate include a conductive transparent glass substrate, a metal substrate, and a carbon-based substrate.
  • a conductive transparent glass base material coated with indium tin oxide (ITO) or the like; a metal base material such as platinum; a carbon base material such as graphite, diamond, glassy carbon or the like can be used.
  • the resistance value of the electrode substrate is, for example, 5-100 ⁇ m 2 , preferably 820 ⁇ m 2 .
  • the shape of the electrode substrate be a variety of shapes. A force that can be used.
  • the organic photocatalyst covering the electrode substrate is composed of a specific p-type organic semiconductor and a specific n-type organic semiconductor.
  • a p-type organic semiconductor having a high activity as an oxygen generation catalyst capable of efficiently generating oxygen in the electrolysis of water during light irradiation is used. It is.
  • the p-type organic semiconductor include the above-described macrocyclic ligand compounds and metal complexes thereof, and preferably include phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives. More preferably, compounds represented by the formulas (1A), (IB) ⁇ (2A), (2B), (3A), and (3B) are preferable.
  • a metal complex of phthalocyanine (cobalt phthalocyanine) in which M 1 is represented by Co in the formula (1B) is preferable.
  • the above-mentioned p-type organic semiconductor is available as a commercial product or can be easily manufactured by those skilled in the art.
  • the n-type organic semiconductor used for the electrode of the present invention can generate hydrogen efficiently in the electrolysis of water during light irradiation, and has a favorable relationship with the p-type organic semiconductor. Those having a pn junction relationship are used.
  • the n-type organic semiconductor include the above-mentioned polycyclic aromatic compounds (which may be partially saturated), and preferably include perylene derivatives, naphthalene derivatives, and fullerenes. More preferably, compounds represented by formulas (4A), (4B), (4C), and (5A) are preferable.
  • perylene derivatives (3,4,9,10-perylenetetracarboxyl-bisbenzimidazole) or fullerenes (C60 and the like) represented by the formula (4A) are preferably used.
  • n-type organic semiconductor is available as a commercial product or can be easily manufactured by those skilled in the art.
  • the electrode of the present invention is formed by coating an electrode substrate with an organic photocatalyst obtained by combining the n-type organic semiconductor and the p-type organic semiconductor.
  • the specific configuration of the electrode is as follows.
  • the anode has a first layer (film) made of an n-type organic semiconductor on the surface of an electrode substrate, and has a second layer (film) made of a p-type organic semiconductor thereon.
  • the first layer is a continuous film having a thickness of usually about 200 to 800 nm (preferably about 250 to 650 nm) covering the electrode, and the second layer is usually about 20 to 500 nm (preferably 30 to 350 nm) covering the electrode. )).
  • the first layer is more preferably about 250 to 650 nm, and the second layer is more preferably about 30 350 nm.
  • a second layer Transition metal on A catalyst eg, a Ni, Pd, Pt, Ir catalyst or the like, preferably a Pt or Ir catalyst
  • the transition metal catalyst supported on the second layer does not need to completely cover the second layer and may be dispersed and supported.
  • the transition metal catalyst is supported on the second layer in the form of fine particles having an average particle size of about 5 to 800 nm (preferably about 10 100 nm).
  • the anode electrode employing such a configuration becomes an efficient oxygen generating electrode.
  • electrons excited by light especially visible light
  • holes generated by photoexcitation flow through the p-type organic semiconductor toward the electrolyte.
  • water or hydroxide ions
  • the force source electrode has a first layer (film) made of a p-type organic semiconductor on the surface of an electrode substrate, and a second layer (film) made of an n-type organic semiconductor thereon.
  • the first layer is a continuous film having a thickness of usually about 20 to 500 nm (preferably about 30 to 350 nm) covering the electrode, and the second layer is generally about 200 to 800 nm (about 200 to 800 nm) covering the first layer. It preferably consists of a continuous film having a thickness of about 250 to 650.
  • the first layer is more preferably about 30 to 350 nm
  • the second layer is more preferably about 250 650 nm.
  • a force source electrode A transition metal catalyst (eg, a Ni, Pd, Pt, Ir catalyst or the like, preferably a Pt or Ir catalyst) supported on the layer may be used.
  • the transition metal catalyst supported on the second layer does not need to completely cover the second layer and may be dispersed and supported.
  • a transition metal catalyst has an average particle size of 5800 nm. Particles (preferably about 10-100 nm) are supported on the second layer.
  • the cathode electrode employing such a configuration becomes an efficient hydrogen generating electrode.
  • a force source electrode electrons excited by light (especially visible light) flow in the n-type organic semiconductor toward the electrolyte, and holes generated by photoexcitation flow in the p-type organic semiconductor toward the electrode substrate.
  • water or protons receives electrons and is reduced to generate hydrogen (see, for example, Figure 1).
  • each electrode substrate As a method of coating each electrode substrate with an n-type organic semiconductor and a p-type organic semiconductor, known methods can be adopted, for example, vacuum deposition, sputtering, electrochemical coating (electrodeposition). ) And coating from a solution. Above all, with respect to the perylene derivative Z phthalocyanine derivative system, a vacuum deposition method is preferable because a uniform coating film can be obtained. It is preferable that the thickness of each organic semiconductor covering each electrode is appropriately set in the above-described range.
  • the anode electrode forms an n-type organic semiconductor layer (first layer) by vacuum-depositing an n-type organic semiconductor on a conductive transparent glass substrate, and forms a p-type organic semiconductor thereon.
  • the P-type organic semiconductor layer (second layer) may be formed by vacuum evaporation.
  • the force source electrode is formed by vacuum-depositing a P-type organic semiconductor on a conductive transparent glass substrate to form a P-type organic semiconductor layer (first layer), and then vacuum-depositing an n-type organic semiconductor thereon.
  • the organic semiconductor layer (second layer) may be formed.
  • a known method such as an electroanalysis method (electrochemical reduction) can be employed.
  • an electroanalysis method electrochemical reduction
  • platinum salts such as KPtCl, KPtCl, and HPPtCl
  • the applied voltage is about 0-0.2 V (vs. Ag / AgCl).
  • the concentration of the acid is usually about ImMlOmM, and the concentration of the platinum salt is preferably about O.lmM ImM.
  • An electrode coated with force, and thus with the organic photocatalyst of the present invention, is produced.
  • water especially light in the entire visible wavelength range
  • hydrogen and oxygen can be efficiently used.
  • the electrode using the organic photocatalyst of the present invention has a feature that the electrode itself is stable without being decomposed by oxidation or the like even under the condition of electrolysis of water.
  • a force source electrode and / or an anode electrode containing the above-mentioned organic photocatalyst are used.
  • a force source electrode having a first layer made of a p-type organic semiconductor and a second layer made of an n-type organic semiconductor on the surface of an electrode substrate, and an n-type organic semiconductor
  • an anode electrode having a first layer comprising a P-type organic semiconductor and a second layer comprising a P-type organic semiconductor
  • a first layer comprising a P-type organic semiconductor and a second layer comprising an n-type organic semiconductor on the surface of the electrode substrate A combination of a force source electrode having a transition metal catalyst and an anode electrode having a first layer made of an n-type organic semiconductor and a second layer made of a p-type organic semiconductor on the surface of the electrode substrate
  • an electrode substrate Force electrode having a first layer made of a p-type organic semiconductor and a second layer made of an n-type organic semiconductor on the surface of the electrode, and a first layer made of an n-type organic semiconductor and a p-type organic semiconductor on the surface of the electrode, and a first
  • a combination of the above-mentioned force electrode or anode electrode containing an organic photocatalyst and an anode or force electrode consisting of a known electrode such as a platinum electrode
  • a known electrode such as a platinum electrode
  • one of the electrodes may be an electrode containing the organic photocatalyst of the present invention, and the other may be a known electrode.
  • aqueous electrolyte solution used in the electrolysis of the present invention an acidic aqueous solution or an alkaline aqueous solution is suitably used.
  • the acidic aqueous solution is preferably an aqueous solution containing an acid such as phosphoric acid or sulfuric acid. Especially preferred Alternatively, it is a phosphoric acid aqueous solution.
  • the concentration of the acid in the aqueous solution may usually be about 1 mM to 1 M.
  • the pH of the acid aqueous solution is preferably about 113.
  • Examples of the alkaline aqueous solution include an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, which contains an electrolyte such as a phosphate, a sulfate, a nitrate, a carbonate, or an acetate. preferable. Particularly preferred is an aqueous solution of an alkali metal hydroxide.
  • concentration of the alkali metal hydroxide in the aqueous solution may usually be about 1 mM 1 M.
  • the pH of an aqueous alkali metal hydroxide solution is preferably about 10-11.
  • the light used in the present invention can use light having a wide range of wavelengths (wavelength of about 220 to 800 nm).
  • the light source is selected from, for example, natural light (sunlight), fluorescent lamp, halogen lamp, high-pressure mercury lamp, low-pressure mercury lamp, black light, excimer laser, deuterium lamp, xenon lamp, Hg-Zn-Pb lamp, etc.
  • Different types of light sources or two types of light sources having different wavelength ranges can be used.
  • the present invention is extremely practical in that natural light can be used for electrolysis over almost the entire wavelength range (wavelength 300-800 ⁇ m) due to the nature of the organic photocatalyst comprising an n-type organic semiconductor and a p-type organic semiconductor. .
  • the light source may be usually irradiated with light from the light source to an anode electrode containing an organic photocatalyst and / or a force sword electrode containing an organic photocatalyst.
  • anode electrode containing an organic photocatalyst and / or a force sword electrode containing an organic photocatalyst.
  • the electrode containing the organic photocatalyst may be irradiated.
  • an anode electrode containing an organic photocatalyst and a force sword electrode containing an organic photocatalyst were used, and when light was applied to both electrodes, the applied voltage of the power source was 0.3 to 1.2 V A low voltage (preferably about 0.8 1. IV) is sufficient.
  • the present invention employs an electrode using an organic photocatalyst as described above, so that a light-induced voltage is generated by light irradiation, and a power supply having a lower voltage than the theoretical voltage can be used. is there. In other words, by effectively using light energy, the power consumption for electrolysis can be increased. The ability to reduce S can.
  • the applied voltage of the power supply is At a low voltage of about 1.0 1.4V (preferably about 1.1 to 1.3V). Also in this case, by using light energy at the electrode including the organic photocatalyst, the applied voltage can be reduced and the power consumption used for the electrolysis can be significantly reduced.
  • the method for decomposing water of the present invention it is possible to effectively utilize solar energy and to generate oxygen and hydrogen safely and efficiently. Further, the electrolysis of water of the present invention can be carried out at normal temperature (for example, about 0.degree. C.), which is advantageous in that heating and pressurization are not required.
  • the generated hydrogen can be used effectively for fuel cell fuels and existing hydrogen utilization technologies (eg, petroleum refining, petrochemical manufacturing, metallurgy, etc.).
  • the water electrolysis apparatus of the present invention includes the above-described anode electrode, force electrode, power supply (constant potential power supply), electrolyte aqueous solution, and light source (for example, see FIG. 1).
  • the anode electrode and the force source electrode are connected to a power supply for applying a voltage, and each electrode is partially or entirely immersed in an aqueous electrolyte solution.
  • an electrolyzer having a single-chamber bipolar cell is exemplified.
  • the anode electrode and the force sword electrode those described above are used.
  • the aqueous electrolyte solution those described above are used.
  • the pH is preferably about 113, and in the case of an electrode coated with a perylene derivative / phthalocyanine derivative, the pH is preferably about 10-11.
  • the pH of the electrolyte solution in which the anode electrode and the force electrode are immersed may be different.
  • a reaction cell with a salt bridge separating the electrolyte solution of the anode electrode and the force electrode is used.
  • the embodiment of Example 6 is exemplified.
  • the reaction tank on the anode electrode (anode) side is alkali water adjusted to pH-11 with sodium hydroxide or potassium hydroxide, and the reaction on the power source electrode (cathode) side.
  • Acidified tank adjusted to pH-2 with phosphoric acid or sulfuric acid There is a bipolar cell that uses water and connects both tanks with a salt bridge.
  • an organic photocatalyst capable of utilizing light in the ultraviolet and visible regions is used as an electrode material, and water is efficiently converted into hydrogen and oxygen under mild conditions under light irradiation.
  • the angle of separation can be S.
  • the present invention provides a method for electrolysis of clean water (including hydrogen ions and hydroxide ions) that can effectively utilize natural energy (solar energy) and reduce carbon dioxide emissions. .
  • FIG. 1 is a schematic view of a method for electrolyzing water using an organic photocatalyst of the present invention.
  • FIG. 2 is a schematic diagram of a photoelectrochemical measurement device according to Examples 1 and 2 and Comparative Example 1.
  • FIG. 3 is a schematic diagram of a photoelectrochemical measurement device according to Examples 3 and 4 and Comparative Examples 2 and 3.
  • FIG. 4 is a schematic diagram of a photoelectrochemical measurement device according to Example 5.
  • FIG. 5 is a schematic diagram of a photoelectrochemical measurement device according to Example 6.
  • FIG. 6 is a schematic diagram of a photoelectrochemical measurement device according to Example 7.
  • Example 1 (Oxygen-causing vortex at irradiation of halogen lamp) Electrode substrate / PV / CoPc is used as photoanode (working electrode), platinum wire as counter electrode, silver / silver chloride electrode as reference electrode, and alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide. Thus, a three-electrode cell as shown in FIG. 2 was constructed. When electrolysis was carried out under the halogen lamp irradiation at an applied potential of +0.3 V, oxygen was generated at about 3-4 ⁇ 1 / h. The specific operation procedure is shown below.
  • n-type semiconductor 3,4,9,10-perylenetetracarboxynor-bisbenzimidazole (hereinafter referred to as “PV”) and p-type semiconductor cobalt lid Mouth cyanine (hereinafter referred to as “CoPc”) was used.
  • PV 3,4,9,10-perylenetetracarboxynor-bisbenzimidazole
  • CoPc p-type semiconductor cobalt lid Mouth cyanine
  • the production of the organic photocatalytic device was performed by a vacuum evaporation method.
  • a conductive transparent glass substrate hereinafter referred to as “ITO-coated glass substrate” coated with indium monotin oxide (ITO) (manufactured by Nippon Sheet Glass Co., Ltd., resistance 13 ⁇ cm- 2 ; transmittance of glass 85%;
  • ITO indium monotin oxide
  • the PV was laminated with a thickness of 250 to 650 nm on the indium tin oxide laminate thickness of 110 nm, and then the CoPc was laminated with a thickness of 30 to 350 nm on the PV.
  • a portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.).
  • T-700 manufactured by Toyo Ink Manufacturing Co., Ltd.
  • the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
  • the photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As the electrolyte solution, alkaline water adjusted to pH 11 with sodium hydroxide or potassium hydroxide was used.
  • Example 2 (light, cattle in fr s temple.
  • a three-electrode cell as shown in FIG. 2 was constructed.
  • electrolysis was performed under an applied potential of +0.4 V under natural light irradiation, about 1.5 uL / h of oxygen and about 3.5 ⁇ 1 / h of hydrogen were generated.
  • the specific operation procedure is shown below.
  • PV as an n-type semiconductor
  • CoPc as a p-type semiconductor
  • those purified by sublimation were used.
  • PV is 250-300 nm thick, then CoPc on PV was laminated at a thickness of 135-145 nm.
  • a portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.).
  • T-700 manufactured by Toyo Ink Manufacturing Co., Ltd.
  • the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
  • the photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As the electrolyte solution, alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used.
  • an electrode supporting a working oxygen generating catalyst was prepared, and electrocatalytic oxygen in alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used. Occurred.
  • the oxygen generating catalyst Ir ⁇ , whose high catalytic activity is known, was used. The specific operation procedure is shown below.
  • Oxygen generation of 5-6 ⁇ 1 / h- 1 was confirmed.
  • PV as an n-type semiconductor and phthalocyanine as a p-type semiconductor (hereinafter referred to as “H Pc”) were used as organic photocatalyst materials.
  • H Pc phthalocyanine as a p-type semiconductor
  • a portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.).
  • T-700 manufactured by Toyo Ink Manufacturing Co., Ltd.
  • the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
  • the photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As the electrolyte solution, alkaline water adjusted to pH 11 with sodium hydroxide or potassium hydroxide was used.
  • Example 3 an electrode supporting a hydrogen generating catalyst that works for a long time was produced, and hydrogen was generated in alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide. Platinum black, which is known to have high activity, was used as the hydrogen generation catalyst. The specific operation procedure is shown below.
  • the electrode (about 0.2cm 2 ) is subjected to force sword polarization, and about 3-4 coulombs (C) are energized to become white. A gold black electrode was obtained. After washing this platinum black electrode with water, it was used for a hydrogen generation experiment.
  • Example 3 employing a force sword electrode containing an organic photocatalyst, a light power sword electrode was generated by irradiation with visible light, which was higher than Comparative Example 2 at a (noble) applied potential. Generation of hydrogen was confirmed.
  • C as an n-type semiconductor and H Pc as a p-type semiconductor were used.
  • H Pc as a p-type semiconductor
  • those purified by sublimation were used.
  • a portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.).
  • T-700 manufactured by Toyo Ink Manufacturing Co., Ltd.
  • the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
  • the photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As an electrolyte solution, acidic water adjusted to pH 2 with phosphoric acid or sulfuric acid was used.
  • Example 4 an electrode supporting a hydrogen generating catalyst that works for a long time was prepared, and hydrogen was generated in acidic water adjusted to pH-2 with phosphoric acid or sulfuric acid. Platinum black, which is known to have high activity, was used as the hydrogen generation catalyst. The specific operation procedure is shown below.
  • ITO-coated glass substrate by law (manufactured by Asahi Glass Company, resistance 8 Omega cm- 2; transmittance of 85 percent glass; Injiu Musuzuokishido laminate thickness 174 nm) of the electrode (about lcm 2) to force cathode polarization, about 0.01 0.05 Coo Ron (C) was energized to obtain a platinum black electrode. After washing this platinum black electrode with water, it was used for a hydrogen generation experiment.
  • Example 4 employing a force sword electrode containing an organic photocatalyst, a light power sword current was generated by irradiation with visible light, and hydrogen was applied at a higher (noble) applied potential than Comparative Example 3. Occurrence was confirmed.
  • Example 5 (Existence of n solution using n hornworm shrinkage) Electrode substrate / PV / CoPc photo-anode electrode (anode), Electrode substrate / H Pc / PV / Platinum catalyst light
  • a bipolar cell as shown in Fig. 4 was constructed using alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide as the force source electrode (cathode).
  • oxygen was generated at about 3.5 ⁇ ⁇ / hydrogen at about 8.0 x l / h.
  • the specific operation procedure is shown below.
  • PV as an n-type semiconductor and CoPc or HPc as a p-type semiconductor were used.
  • PV, H Pc and CoPc were each purified by sublimation.
  • the production of the organic photocatalytic device was performed by a vacuum evaporation method.
  • PV was laminated with a thickness of 650 nm on an IT ⁇ -coated glass substrate (manufactured by Nippon Sheet Glass Co., Ltd., resistance 10 ⁇ cm- 2 ), and then CoPc was laminated with a thickness of 190 nm on the PV. Then it was cut into lcm x 1.5cm.
  • HPc was deposited on a thermally decomposable graphite with a cross-sectional area of lcm x 1.5cm at a thickness of 190 nm and PV was applied.
  • the layers were stacked to a thickness of 650 marauders, and further carried platinum black.
  • the photocatalytic reaction cell was produced by the following method.
  • a single-chamber bipolar cell was constructed using the organic photocatalyst-coated electrode prepared in (3) above as both electrodes.
  • the cell also has a function as a reference electrode due to the cell configuration.
  • Alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used as the electrolyte solution.
  • Example 5 in the electrolysis of water employing an anode electrode and an organic sword electrode containing an organic photocatalyst, a photo-induced electrode is generated by irradiation with visible light, and hydrogen and oxygen are generated at an applied voltage (0.9 V) lower than the theoretical voltage. Occurrence was confirmed.
  • Example 6 (Existence of n solution using shrunken hornworm)
  • the electrode substrate / PV / CoPc is the anode electrode (anode), and the electrode substrate / H Pc / C is the force electrode (negative electrode).
  • a bipolar cell as shown in Fig. 5 was constructed.
  • electrolysis was performed at an applied voltage of 0.9 V, about 3.0 ⁇ / h of oxygen and about 6.0 ⁇ / h of hydrogen were generated.
  • the specific operation procedure is shown below.
  • CoPc or HPc was used. PV, H Pc and CoPc were each purified by sublimation.
  • the production of the organic photocatalytic device was performed by a vacuum evaporation method.
  • PV was coated on an ITO-coated glass substrate (Nippon Sheet Glass Co., Ltd., resistance 13 ⁇ cm- 2 ; glass transmittance 85%; indium tin oxide laminated thickness 110 nm) with a thickness of 650 nm, and then PV On top, CoPc was laminated with a thickness of 190 nm. Then it was cut into lcm x 1.5cm.
  • the cathode as in the case of the anode, HPc is laminated on ITO at a thickness of 60 nm, C is laminated at a thickness of 120 nm, and platinum black is further supported.
  • the photocatalytic reaction cell was produced by the following method.
  • a bipolar cell was constructed using the organic photocatalyst-coated electrode prepared in (3) above as both electrodes.
  • For the electrolyte solution use alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide in the reaction tank on the anode side, and acidic water adjusted to pH 2 with phosphoric acid or sulfuric acid in the reaction tank on the cathode side, respectively.
  • both tanks were connected by a salt bridge, and the tank was used as a reaction cell.
  • the organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder (Graphtec, WX-4000) equipped with a potentiometer / galvanostat (Hokuto Denko, HA-301), and a halogen lamp (150 W) was used as a light source.
  • the product was analyzed using a gas chromatograph (GC-8A, manufactured by Shimadzu Corporation).
  • Example 6 in the electrolysis of water using an anode electrode and a force source electrode containing an organic photocatalyst, a light-induced current is generated by irradiation with visible light, and hydrogen is applied at an applied voltage (0.9 V) lower than the theoretical voltage. Generation of oxygen was confirmed.
  • Example 7 yes n horned anode, t-solution using shrinkage
  • Electrode substrate / PV / CoPc is used as an anode electrode (anode), and a platinum rod is used as a force source electrode (cathode) using alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide as shown in Fig. 6.
  • a bipolar cell was constructed. When electrolysis was performed at an applied voltage of 1.1 V, about 3.5 ⁇ ⁇ / h of oxygen and about 8.0 ⁇ / h of hydrogen were generated. The specific operation procedure is shown below.
  • PV as an n-type semiconductor
  • CoPc as a p-type semiconductor
  • the production of the organic photocatalytic device was performed by a vacuum evaporation method.
  • the anode PV was laminated with a thickness of 650 nm on an ITO-coated glass substrate (manufactured by Nippon Sheet Glass Co., Ltd., resistance 10 ⁇ cm- 2 ), and then CoPc was laminated with a thickness of 190 nm on the PV. Then it was cut into lcm x 1.5cm. A white gold bar was used as the cathode.
  • the photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as an anode and a platinum rod as a cathode, a single-chamber bipolar cell was constructed. In this case, the cell Has a function as a reference electrode. As the electrolyte solution, alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Disclosed is a method for efficiently producing hydrogen and oxygen by electrolyzing water with light irradiation using an organic photocatalyst which is capable of effectively utilizing all the light in the visible range. The present invention relates to an organic photocatalyst containing a p-type organic semiconductor and an n-type organic semiconductor, an electrode material for electrolysis of water which is composed of such an organic photocatalyst, an electrode covered with such an electrode material, a method for electrolyzing water using such an electrode, an apparatus for electrolyzing water and the like.

Description

明 細 書  Specification
有機光触媒を用いた水の電気分解方法  Water electrolysis method using organic photocatalyst
技術分野  Technical field
[0001] 本発明は、光、特に可視光により活性化される有機光触媒を電極材料に用いて、 光照射下、水を水素と酸素に効率的に電気分解する方法に関する。  The present invention relates to a method for efficiently electrolyzing water into hydrogen and oxygen under light irradiation using an organic photocatalyst activated by light, particularly visible light, as an electrode material.
背景技術  Background art
[0002] 光を用いて水分子を水素と酸素に分解することは、潜在的な太陽エネルギーの変 換ゃ貯蔵システムとして大いに注目されてきており、中でも、可視光照射下で水を分 解することができる光触媒の開発は、近年大きな話題となっている。  [0002] The use of light to decompose water molecules into hydrogen and oxygen has attracted much attention as a potential solar energy conversion / storage system, in particular, decomposing water under visible light irradiation. The development of photocatalysts that can be used has been a big topic in recent years.
[0003] そして、二酸化炭素の発生を伴わずに水素発生を行なうことは、炭素循環に代わる 水素循環型エネルギー社会を構築するうえでも必需な技術である。  [0003] Further, performing hydrogen generation without generating carbon dioxide is a necessary technology for building a hydrogen-cycle energy society that replaces the carbon cycle.
[0004] 従来のアルカリ水電気分解装置は、約 60— 80°C以上と高温下で、 1.7— 2.0 Vと高 い印加電圧を要する条件で実用化されている(非特許文献 1を参照)。つまり、水の 電気分解には、過剰の熱エネルギーの投入と、理論電圧 1.23 Vに対してさらに約 0.5 一 0.8 Vの過電圧が必要とされているのである。  [0004] A conventional alkaline water electrolyzer has been put to practical use under conditions requiring a high applied voltage of 1.7 to 2.0 V at a high temperature of about 60 to 80 ° C or higher (see Non-Patent Document 1). . In other words, electrolysis of water requires the addition of excess thermal energy and an additional overvoltage of approximately 0.5-0.8 V with respect to the theoretical voltage of 1.23 V.
[0005] しかし、これでは、エネルギーの有効利用や穏和な条件での水の電気分解という観 点からは、大いに改善の余地がある。しかも、通常の水の電気分解では、その駆動 力である電気は大量の二酸化炭素を排出しながら発電されるものであり、エネルギー 効率、環境破壊、地球温暖化等の観点からも問題を有している。  [0005] However, there is much room for improvement in terms of effective use of energy and electrolysis of water under mild conditions. In addition, in ordinary water electrolysis, the driving power, electricity, is generated while emitting a large amount of carbon dioxide, which poses problems from the viewpoints of energy efficiency, environmental destruction, global warming, etc. ing.
[0006] これらの問題点を解決するため、自然エネルギー(例えば、光エネルギー)を積極 的に利用する試みがなされてきている。例えば、非特許文献 2には、光エネルギーを 用いた無機半導体光触媒による水の分解反応が報告されている。  [0006] In order to solve these problems, attempts have been made to actively use natural energy (for example, light energy). For example, Non-Patent Document 2 reports a water decomposition reaction by an inorganic semiconductor photocatalyst using light energy.
[0007] しかし、該光触媒は、紫外光或いは近紫外域の可視光を利用できる酸化チタン、そ の複合物、酸化タングステンなどの数種類にすぎず (非特許文献 3等)、可視光領域 の全域に渡る光を利用できる光触媒は知られていない。  [0007] However, the photocatalyst is only a few types of titanium oxide, composites thereof, tungsten oxide, and the like that can utilize ultraviolet light or near-ultraviolet visible light (Non-Patent Document 3 and the like), and covers the entire visible light region. There is no known photocatalyst capable of utilizing light over a wide range.
[0008] また、これまで水の分解反応に用いられる光触媒は、無機光触媒がほとんどであり 、有機光触媒、特に、水素と酸素の両方を発生させることができ、かつ、水の電気分 解に不可欠な水中使用できる有機光触媒は報告例はなかった (非特許文献 4)。 [0008] In addition, most of the photocatalysts used so far for the decomposition reaction of water are inorganic photocatalysts, and organic photocatalysts, in particular, can generate both hydrogen and oxygen, and have an electrical component of water. There has been no report of an organic photocatalyst that can be used in water that is indispensable for the solution (Non-Patent Document 4).
[0009] また、金属錯体等の水の酸化触媒と増感剤とを複合化させた水の光酸化触媒が検 討されているが、光照射下における触媒活性は著しく低ぐ光エネルギーの有効利 用にはほど遠レ、ものであった(特許文献 1を参照)。 [0009] Further, a photooxidation catalyst of water in which a water oxidation catalyst such as a metal complex is combined with a sensitizer has been studied, but the catalytic activity under light irradiation is remarkably low, and the light energy efficiency is low. It was far from useful (see Patent Document 1).
[0010] さらに、非特許文献 5には、アントラセン等の有機半導体を用いた単層系電極が記 載されているが、充分な光電流は得られておらず、しかもこの有機材料では性能の 良い光電池を組んで化学エネルギーを取り出すのに使うことは無理であることが記載 されている。 [0010] Further, Non-Patent Document 5 describes a single-layer electrode using an organic semiconductor such as anthracene. However, a sufficient photocurrent has not been obtained, and the performance of this organic material cannot be improved. It is stated that it is impossible to build a good photovoltaic cell and use it to extract chemical energy.
特許文献 1:特開平 9-234374号公報  Patent Document 1: JP-A-9-234374
非特許文献 1:電気化学と工業物理化学 4月号、 p278-282, 2003年  Non-Patent Document 1: Electrochemistry and Industrial Physical Chemistry April, p278-282, 2003
非特許文献 2 : Nature, 414, pp. 625-627 (2001)  Non-Patent Document 2: Nature, 414, pp. 625-627 (2001)
非特許文献 3 : Chem. Commun. , 150 (1992)  Non-Patent Document 3: Chem. Commun., 150 (1992)
非特許文献 4 : J. Chem. Soc. Faraday Trans., 93, 221 (1997)  Non-Patent Document 4: J. Chem. Soc. Faraday Trans., 93, 221 (1997)
非特許文献 5:化学総説 No.45機能性有機薄膜昭和 59年 11月 25日発行  Non-Patent Document 5: Review of Chemistry No.45 Functional Organic Thin Film Published November 25, 1984
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 以上の従来技術の問題点に鑑み、本発明は、紫外及び可視領域の光を利用でき る有機光触媒を電極材料に用いて、光照射下で水を電気分解することにより、水素と 酸素を効率的に製造する方法を提供することを主な目的とする。 [0011] In view of the above-described problems of the conventional technology, the present invention provides an electrode material using an organic photocatalyst capable of utilizing light in the ultraviolet and visible regions, and electrolyzes water under light irradiation to form hydrogen and hydrogen. It is a main object to provide a method for efficiently producing oxygen.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者らは、上記の目的を達成するために鋭意研究を行った結果、特定の p型 有機半導体と特定の n型有機半導体からなる有機光触媒に、紫外光乃至可視光を 照射すると、単方向性の光誘起電子移動(unidirectional photo-induced electron transfer)を経て光触媒的な酸化還元反応が生じることを見出した。また、紫外光乃至 可視光の照射下で、該有機光触媒を電極材料に用いた電極を用いて水の電気分解 を行ったところ、より穏和な条件で電気分解が可能であることを見出した。本発明者 は、これらの知見に基づき、さらに発展させて本発明を完成するに至った。  [0012] The present inventors have conducted intensive studies to achieve the above object, and as a result, irradiated an organic photocatalyst comprising a specific p-type organic semiconductor and a specific n-type organic semiconductor with ultraviolet light or visible light. Then, they found that a photocatalytic oxidation-reduction reaction occurs through unidirectional photo-induced electron transfer. Further, when electrolysis of water was performed using an electrode using the organic photocatalyst as an electrode material under irradiation of ultraviolet light or visible light, it was found that electrolysis was possible under milder conditions. The present inventors have further developed the present invention based on these findings.
[0013] すなわち、本発明は、以下の有機光触媒、水の電気分解用電極材料、該電極材料 で被覆されてなる電極、該電極を用いた水の電気分解方法、及び水の電気分解装 置等を提供する。 Specifically, the present invention provides the following organic photocatalyst, electrode material for electrolysis of water, and the electrode material And an electrolysis method for water using the electrode, a water electrolysis apparatus, and the like.
[0014] 項 1. p型有機半導体と n型有機半導体とを含む有機光触媒からなる水の電気分解 用電極材料。  Item 1. An electrode material for water electrolysis comprising an organic photocatalyst containing a p-type organic semiconductor and an n-type organic semiconductor.
[0015] 項 2. p型有機半導体が大環状の配位子化合物又はその金属錯体である項 1に記 載の水の電気分解用電極材料。  Item 2. The electrode material for electrolysis of water according to Item 1, wherein the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
[0016] 項 3. p型有機半導体が、フタロシアニン誘導体、ナフタロシアニン誘導体、及びポ ルフィリン誘導体からなる群から選ばれる少なくとも 1種である項 1又は 2に記載の水 の電気分解用電極材料。 Item 3. The electrode material for electrolysis of water according to Item 1 or 2, wherein the p-type organic semiconductor is at least one member selected from the group consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
[0017] 項 4. n型有機半導体が多環式芳香族化合物である項 1、 2又は 3に記載の水の電 気分解用電極材料。 Item 4. The electrode material for electrolysis of water according to Item 1, 2 or 3, wherein the n-type organic semiconductor is a polycyclic aromatic compound.
[0018] 項 5. n型有機半導体が、フラーレン類、カーボンナノチューブ類、電子供与体をド ープした導電性高分子、ペリレン誘導体、及びナフタレン誘導体からなる群から選ば れる少なくとも 1種である項 1一 4のいずれかに記載の水の電気分解用電極材料。  Item 5. The item in which the n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, a conductive polymer doped with an electron donor, a perylene derivative, and a naphthalene derivative. 14. The electrode material for electrolysis of water according to any one of items 1-4.
[0019] 項 6.電極基材の表面に項 1一 5のいずれかに記載の水の電気分解用電極材料を 被覆してなる電極。  Item 6. An electrode in which the surface of an electrode substrate is coated with the electrode material for water electrolysis according to any one of Items 115.
[0020] 項 7.項 6に記載の電極であって、電極基材の表面に、 n型有機半導体からなる第 1 層及び p型有機半導体からなる第 2層を被覆してなり、必要に応じ、第 2層の上に遷 移金属触媒を担持してなるアノード電極。  [0020] Item 7. The electrode according to item 6, wherein the surface of the electrode substrate is coated with a first layer made of an n-type organic semiconductor and a second layer made of a p-type organic semiconductor. An anode electrode that supports a transition metal catalyst on the second layer, if necessary.
[0021] 項 8.項 6に記載の電極であって、電極基材の表面に、 p型有機半導体からなる第 1 層及び n型有機半導体からなる第 2層を被覆してなり、必要に応じ、第 2層の上に遷 移金属触媒を担持してなる力ソード電極。 [0021] Item 8. The electrode according to item 6, wherein the surface of the electrode substrate is coated with a first layer made of a p-type organic semiconductor and a second layer made of an n-type organic semiconductor. A force sword electrode that supports a transition metal catalyst on the second layer, if necessary.
[0022] 項 9.電極基材が、導電性透明ガラス基材、金属基材、又は炭素系基材である項 6 に記載の電極。 Item 9. The electrode according to item 6, wherein the electrode substrate is a conductive transparent glass substrate, a metal substrate, or a carbon-based substrate.
[0023] 項 10.項 7に記載のアノード電極と項 8に記載の力ソード電極と力 なる電極、定電 位電源、電解質水溶液、及び光源を備えた水の電気分解装置。  Item 10. An electrolysis apparatus for water comprising: an anode electrode according to item 7, an electrode serving as a force source electrode according to item 8, a constant potential power supply, an aqueous electrolyte solution, and a light source.
[0024] 項 11.前記アノード電極及び前記力ソード電極が定電位電源に接続され、前記ァ ノード電極及び前記力ソード電極が電解質水溶液に浸漬されてなる項 10に記載の 水の電気分解装置。 Item 11. The item according to Item 10, wherein the anode electrode and the force source electrode are connected to a constant potential power supply, and the anode electrode and the force source electrode are immersed in an aqueous electrolyte solution. Water electrolysis equipment.
[0025] 項 12.項 11に記載の水の電気分解装置において、電極に光を照射しながら、定 電位電源でアノード電極及び力ソード電極に電圧を印加することを特徴とする水の電 気分解方法。  [0025] Item 12. The water electrolysis apparatus according to Item 11, wherein a voltage is applied to the anode electrode and the force source electrode with a constant potential power supply while irradiating the electrodes with light. Disassembly method.
[0026] 項 13.印加電圧が、 0.3— 1.2V程度である項 12に記載の水の電気分解方法。  Item 13. The water electrolysis method according to item 12, wherein the applied voltage is about 0.3 to 1.2 V.
[0027] 項 14.項 7に記載のアノード電極と力ソード電極とからなる電極、又は項 8に記載の 力ソード電極とアノード電極とからなる電極、定電位電源、電解質水溶液、及び光源 を備えた水の電気分解装置。 Item 14. An electrode comprising the anode electrode and the force source electrode according to Item 7, or an electrode comprising the force electrode and the anode electrode according to Item 8, a constant potential power source, an aqueous electrolyte solution, and a light source. Water electrolysis equipment.
[0028] 項 15.前記アノード電極及び前記力ソード電極が定電位電源に接続され、前記ァ ノード電極及び前記力ソード電極が電解質水溶液に浸漬されてなる項 14に記載の 水の電気分解装置。 Item 15. The water electrolysis apparatus according to item 14, wherein the anode electrode and the force source electrode are connected to a constant potential power supply, and the anode electrode and the force source electrode are immersed in an aqueous electrolyte solution.
[0029] 項 16.項 15に記載の水の電気分解装置において、電極に光を照射しながら、定 電位電源でアノード電極及び力ソード電極に電圧を印加することを特徴とする水の電 気分解方法。  [0029] Item 16. The water electrolysis apparatus according to Item 15, wherein a voltage is applied to the anode electrode and the force source electrode with a constant potential power supply while irradiating the electrodes with light. Disassembly method.
[0030] 項 17.印加電圧が、 1.0— 1.4V程度である項 16に記載の水の電気分解方法。  Item 17. The water electrolysis method according to Item 16, wherein the applied voltage is about 1.0 to 1.4 V.
[0031] 項 18.照射光が自然光である項 12又は 16に記載の水の電気分解方法。  Item 18. The method for electrolyzing water according to Item 12 or 16, wherein the irradiation light is natural light.
[0032] 項 19.アノード電極から酸素を発生し、力ソード電極から水素を発生することを特徴 とする項 12又は 16に記載の水の電気分解方法。  Item 19. The water electrolysis method according to Item 12 or 16, wherein oxygen is generated from the anode electrode and hydrogen is generated from the force source electrode.
[0033] 項 20. p型有機半導体と n型有機半導体とを含む有機光触媒。 Item 20. An organic photocatalyst containing a p-type organic semiconductor and an n-type organic semiconductor.
項 21. p型有機半導体が大環状の配位子化合物又はその金属錯体である項 20に 記載の有機光触媒。  Item 21. The organic photocatalyst according to item 20, wherein the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
[0034] 項 22. p型有機半導体が、フタロシアニン誘導体、ナフタロシアニン誘導体、及びポ ルフィリン誘導体からなる群から選ばれる少なくとも 1種である項 20に記載の有機光 触媒。  Item 22. The organic photocatalyst according to item 20, wherein the p-type organic semiconductor is at least one member selected from the group consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
[0035] 項 23. n型有機半導体が多環式芳香族化合物である項 20に記載の有機光触媒。  Item 23. The organic photocatalyst according to item 20, wherein the n-type organic semiconductor is a polycyclic aromatic compound.
[0036] 項 24. n型有機半導体が、フラーレン類、カーボンナノチューブ類、電子供与体を ドープした導電性高分子、ペリレン誘導体、及びナフタレン誘導体からなる群から選 ばれる少なくとも 1種である項 20に記載の有機光触媒。 [0037] 以下、本発明について詳細に説明する。 Item 24. Item 20 wherein the n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, a conductive polymer doped with an electron donor, a perylene derivative, and a naphthalene derivative. The organic photocatalyst according to the above. Hereinafter, the present invention will be described in detail.
I. ^m  I. ^ m
本発明の有機光触媒は、 p型有機半導体と n型有機半導体とを含んでなり、また、 水を含む媒体中で安定であることから、後述する水の電気分解の電極材料として好 適に用いられる。  The organic photocatalyst of the present invention contains a p-type organic semiconductor and an n-type organic semiconductor, and is preferably used as an electrode material for water electrolysis described later because it is stable in a medium containing water. Can be
[0038] Ό¾ί 体 [0038] Ό ¾ί body
P型有機半導体としては、大環状の配位子化合物又はその金属錯体が挙げられる 。大環状の配位子化合物とは、不対電子を有する原子を環上に含む金属の配位子 となり得る環状化合物の意であり、また、その金属錯体とは、該大環状配位子と金属 原子からなる金属錯体の意味である。不対電子を有する原子としては、例えば、窒素 原子、酸素原子が挙げられ、窒素原子が好ましい。金属原子としては、周期律表 1一 15族の各金属元素が挙げられ、好ましくは 4一 14族の金属元素である。また、金属錯 体は、通常、該金属原子と大環状の配位子化合物とが 1: 1 (モル比)からなり、平面 4 配位の錯体を形成するものであればょレ、。  P-type organic semiconductors include macrocyclic ligand compounds or metal complexes thereof. The macrocyclic ligand compound means a cyclic compound that can be a ligand of a metal containing an atom having an unpaired electron on the ring, and the metal complex is a metal complex with the macrocyclic ligand. It means a metal complex consisting of metal atoms. Examples of the atom having an unpaired electron include a nitrogen atom and an oxygen atom, and a nitrogen atom is preferable. Examples of the metal atom include metal elements belonging to groups 11 to 15 of the periodic table, preferably metal elements belonging to groups 4 to 14. The metal complex is usually a metal complex composed of the metal atom and the macrocyclic ligand compound in a molar ratio of 1: 1 to form a four-coordinate planar complex.
[0039] 大環状の配位子化合物又はその金属錯体の具体例としては、フタロシアニン誘導 体、ナフタロシアニン誘導体、ポルフィリン誘導体等が挙げられる。  [0039] Specific examples of the macrocyclic ligand compound or its metal complex include a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
[0040] フタロシアニン誘導体とは、フタロシアニンの基本骨格を有する化合物を意味する。  [0040] The phthalocyanine derivative means a compound having a basic skeleton of phthalocyanine.
具体的には、例えば、下記式(1A)又は(1B):  Specifically, for example, the following formula (1A) or (1B):
[0041] [化 1]  [0041] [Formula 1]
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 M1は、周期律表 4一 14族からなる群から選ばれる金属原子又はその金属原 子を含む原子団を示し、点線は配位結合を示す) で表されるフタロシアニン誘導体が挙げられる。 (In the formula, M 1 represents a metal atom selected from the group consisting of Groups 414 of the Periodic Table or an atomic group containing the metal atom, and a dotted line represents a coordination bond.) A phthalocyanine derivative represented by
[0043] M1で示される周期律表 4一 14族の金属原子のうち好ましくは、 4族(特に、 Ή)、 5族( 特に、 V)、 6族(特に、 Mo)、 7族(特に、 Mn)、 8族(Fe, Ru, Os)、 9族 (Co, Rh, Ir)、 10 族 (Ni, Pd, Pt)、 11族(特に、 Cu)、 12族(特に、 Zn)、 13族(特に、 Al)、 14族(特に、 Pb )が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子 (例 えば、酸素、シァノ基)が配位したもの(例えば、 Ti-〇)を意味する。 [0043] Preferably one of the periodic table 4 one 14 metal atom represented by M 1, Group 4 (especially, Ή), Group 5 (in particular, V), Group 6 (in particular, Mo), 7 group ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (particularly Al) and Group 14 (particularly Pb). Further, the atomic group containing the metal atom means a group in which another ligand (eg, oxygen or cyano group) is coordinated with the metal (for example, Ti-〇).
[0044] 上記のうち、式(1A)で表されるフタロシアニン、又は式(1 B)において M1が Co, Pt, [0044] Among the above, in the phthalocyanine represented by the formula (1A) or in the formula (1B), M 1 is Co, Pt,
Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又は Ruであるフタロシアニン誘導体が好ましく、 特に水の電気分解における酸素の発生量の点からコバルトフタロシアニンが好まし レ、。これらの化合物は、いずれも市販されているか又は当業者が容易に製造すること ができる。  Phthalocyanine derivatives which are Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru are preferred, and cobalt phthalocyanine is particularly preferred in terms of the amount of oxygen generated in the electrolysis of water. All of these compounds are commercially available or can be easily produced by those skilled in the art.
[0045] ナフタロシアニン誘導体とは、ナフタロシアニンの基本骨格を有する化合物を意味 する。具体的には、例えば、下記式(2A)又は(2B):  [0045] The naphthalocyanine derivative means a compound having a basic skeleton of naphthalocyanine. Specifically, for example, the following formula (2A) or (2B):
[0046] [化 2] [0046]
Figure imgf000008_0001
Figure imgf000008_0001
[0047] (式中、 M2は、周期律表 4一 14族からなる群から選ばれる金属原子又はその金属原 子を含む原子団を示し、点線は配位結合を示す) (In the formula, M 2 represents a metal atom selected from the group consisting of Groups 414 of the Periodic Table or an atomic group containing the metal atom, and a dotted line represents a coordination bond.)
で表されるナフタロシアニン誘導体が挙げられる。  And a naphthalocyanine derivative represented by
[0048] M2で示される周期律表 4一 14族の金属原子のうち好ましくは、 4族(特に、 Ή)、 5族( 特に、 V)、 6族(特に、 Mo)、 7族(特に、 Mn)、 8族 (Fe, Ru, Os)、 9族 (Co, Rh, Ir)、 10 族 (Ni, Pd, Pt)、 11族(特に、 Cu)、 12族(特に、 Zn)、 13族(特に、 Al)、 14族(特に、 Pb )が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子(例 えば、酸素、シァノ基)が配位したもの(例えば、 Ti-O)を意味する。 [0048] Preferably one of the periodic table 4 one 14 metal atom shown by M 2, Group 4 (especially, Ή), Group 5 (in particular, V), Group 6 (in particular, Mo), 7 group ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (especially Al), group 14 (especially Pb ). Further, the atomic group containing the metal atom means one in which another ligand (for example, oxygen or cyano group) is coordinated to the metal (for example, Ti-O).
[0049] 上記のうち、式(2A)表されるナフタロシアニン、又は式(2B)において M2が Co, Pt, [0049] Among the above, in the naphthalocyanine represented by the formula (2A) or in the formula (2B), M 2 is Co, Pt,
〇s, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又は Ruであるナフタロシアニン誘導体が好ましく 、特に水の電気分解における酸素の発生量の点からコバルトナフタロシアニンが好ま しい。これらの化合物は、いずれも市販されているか又は当業者が容易に製造するこ とができる。  Naphthalocyanine derivatives which are 〇s, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru are preferred, and cobalt naphthalocyanine is particularly preferred in terms of the amount of oxygen generated in the electrolysis of water. These compounds are all commercially available or can be easily prepared by those skilled in the art.
[0050] ポルフィリン誘導体とは、ポルフィリンの基本骨格を有する化合物を意味する。具体 的には、例えば、下記式(3A)又は(3B) :  [0050] The porphyrin derivative means a compound having a basic skeleton of porphyrin. Specifically, for example, the following formula (3A) or (3B):
[0051] [化 3] [0051] [Formula 3]
Figure imgf000009_0001
Figure imgf000009_0001
[0052] (式中、 R3は、水素原子、アルキル基、ァリール基又はへテロアリール基、 M3は、周 期律表 4一 14族からなる群から選ばれる金属原子又はその金属原子を含む原子団を 示し、点線は配位結合を示す) (Wherein, R 3 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group, and M 3 contains a metal atom selected from the group consisting of Groups 4 to 14 of the periodic table or a metal atom thereof (Indicates atomic groups, dotted lines indicate coordination bonds.)
で表されるポルフィリン誘導体が挙げられる。  And a porphyrin derivative represented by
[0053] ここで、上記の R3で示されるアルキル基としては、 C の直鎖又は分岐鎖のアルキ [0053] Here, the alkyl group represented by R 3 above is a C straight-chain or branched-chain alkyl.
1 20  1 20
ル基が挙げられ、好ましくは c のアルキル基である。具体的には、メチノレ、ェチル  And is preferably an alkyl group of c. Specifically, Mechinore, Ethil
1 10  1 10
、 n—プロピル、イソプロピル、 n—ブチル、 sec—ブチル、イソブチル、 n—ペンチル、 n— へキシル、 n—へプチル、 n—ォクチルなどが挙げられる。  , N-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
[0054] また、上記の R3で示されるァリール基としては、単環又は 2環のァリール基が挙げら れ、具体的にはフエニル、ナフチル等が挙げられる。 Examples of the aryl group represented by R 3 include a monocyclic or bicyclic aryl group, and specific examples include phenyl and naphthyl.
[0055] また、上記の R3で示されるヘテロァリール基としては、ピリジル、ビラジニル等が挙 げられる。 [0055] Further, as the Heteroariru group represented by the above R 3, pyridyl, Birajiniru etc. ani I can get lost.
[0056] M3で示される周期律表 4一 14族の金属原子のうち好ましくは、 4族(特に、 Ή)、 5族( 特に、 V)、 6族(特に、 Mo)、 7族(特に、 Mn)、 8族(Fe, Ru, Os)、 9族 (Co, Rh, Ir)、 10 族 (Ni, Pd, Pt)、 11族(特に、 Cu)、 12族(特に、 Zn)、 13族(特に、 Al)、 14族(特に、 Pb )が挙げられる。また、該金属原子を含む原子団としては、該金属に他の配位子 (例 えば、酸素、シァノ基)が配位したもの(例えば、 Ti-〇)を意味する。 [0056] Preferably one of the periodic table 4 one 14 metal atom represented by M 3, Group 4 (especially, Ή), Group 5 (in particular, V), Group 6 (in particular, Mo), 7 group ( In particular, Mn), Group 8 (Fe, Ru, Os), Group 9 (Co, Rh, Ir), Group 10 (Ni, Pd, Pt), Group 11 (particularly Cu), Group 12 (particularly Zn) , Group 13 (particularly Al) and Group 14 (particularly Pb). Further, the atomic group containing the metal atom means a group in which another ligand (eg, oxygen or cyano group) is coordinated with the metal (for example, Ti-〇).
[0057] 上記のうち、式(3A)で表されるポルフィリン、又は式(3B)において M3が Co, Pt, Os, Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd又は Ru、 R3がフエニル又は水素原子であるポル フィリン誘導体が好ましぐ特に水の電気分解における酸素の発生量の点からコバル トポルフィリンが好ましい。これらの化合物は、いずれも市販されているか又は当業者 が容易に製造することができる。 [0057] Among the above, a porphyrin of the formula (3A), or M 3 in the formula (3B) Co, Pt, Os , Mn, Ir, Fe, Rh, Cu, Zn, Ni, Pd or Ru, Porphyrin derivatives in which R 3 is phenyl or a hydrogen atom are preferred, and cobalt porphyrin is particularly preferred in view of the amount of oxygen generated in the electrolysis of water. These compounds are all commercially available or can be easily produced by those skilled in the art.
[0058] n型有機半導体  [0058] n-type organic semiconductor
また、 n型有機半導体としては、多環式芳香族化合物 (一部が飽和していても良い) 力 S挙げられる。多環式芳香族化合物とは、少なくとも 2個以上の芳香環が縮環した構 造を有する化合物、或いは複数の芳香環が不飽和結合 (二重結合、三重結合等)を 介して結合した構造を有する化合物等を意味する。芳香環としては、ベンゼン環等の ほかに、ピロール環、イミダゾール環、ピリジン環、キノキサリン環等の複素芳香環も 含まれる(レ、ずれの環も一部が飽和してレ、ても良レ、)。  The n-type organic semiconductor includes a polycyclic aromatic compound (which may be partially saturated). A polycyclic aromatic compound is a compound having a structure in which at least two or more aromatic rings are fused, or a structure in which multiple aromatic rings are bonded via an unsaturated bond (double bond, triple bond, etc.). And the like. The aromatic ring includes, in addition to the benzene ring and the like, a heteroaromatic ring such as a pyrrole ring, an imidazole ring, a pyridine ring and a quinoxaline ring. ,).
[0059] 多環式芳香族化合物には、本発明に悪影響を与えない範囲で、種々の置換基を 有していても良い。置換基としては、電子吸引基が挙げられ、具体的にはカルボニル 基、スルホン基、スルホキシド基等が挙げられる。  [0059] The polycyclic aromatic compound may have various substituents as long as the compound does not adversely affect the present invention. Examples of the substituent include an electron withdrawing group, and specific examples include a carbonyl group, a sulfone group, and a sulfoxide group.
[0060] 多環式芳香族化合物の具体例としては、 C60、 C70、 C76、 C82、 C84などのフラーレ ン類;カーボンナノチューブ類;電子供与体(フエ二レンジァミン、テトラアミノエチレン 、トリス(2,2-ビビリジン)ルテニウムなど)をドープした導電性高分子(ポリイミド、ポリフ ェニレンビニレン、ポリパラフエ二レン、ポリピロール等);ペリレン誘導体;ナフタレン誘 導体等が挙げられる。中でも、ペリレン誘導体、ナフタレン誘導体、フラーレン類(C60 等)等が好ましく採用され、特にペリレン誘導体やフラーレン類 (C60等)が好ましい。  [0060] Specific examples of the polycyclic aromatic compound include fullerenes such as C60, C70, C76, C82, and C84; carbon nanotubes; and electron donors (phenylenediamine, tetraaminoethylene, tris (2, Conductive polymers (polyimide, polyphenylenevinylene, polyparaphenylene, polypyrrole, etc.) doped with 2-biviridine) ruthenium; perylene derivatives; naphthalene derivatives. Among them, perylene derivatives, naphthalene derivatives, fullerenes (C60 and the like) and the like are preferably employed, and perylene derivatives and fullerenes (C60 and the like) are particularly preferable.
[0061] ペリレン誘導体とは、ペリレンの基本骨格を有する化合物を意味する。具体的には 、例えば、下記式 (4A)一 (4C): [0061] The perylene derivative means a compound having a basic skeleton of perylene. In particular For example, the following formula (4A)-(4C):
[0062] [化 4] [0062] [Formula 4]
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0001
Figure imgf000011_0002
(4C)  (4C)
[0063] (式中、 R1は、アルキル基又はァリール基を示す) (Wherein, R 1 represents an alkyl group or an aryl group)
で表されるペリレン誘導体が挙げられる。  And a perylene derivative represented by
[0064] ナフタレン誘導体とは、ナフタレンの基本骨格を有する化合物を意味する。具体的 には、例えば、下記式(5A) : [0064] The naphthalene derivative means a compound having a basic skeleton of naphthalene. Specifically, for example, the following formula (5A):
[0065] [化 5] [0065]
Figure imgf000011_0003
Figure imgf000011_0003
(5Α)  (5Α)
[0066] (式中、 R2は、アルキル基又はァリール基を示す) (Wherein, R 2 represents an alkyl group or an aryl group)
で表されるナフタレン誘導体が挙げられる。  The naphthalene derivative represented by these is mentioned.
[0067] ここで、上記の R1又は R2で示されるアルキル基としては、 C の直鎖又は分岐鎖 のアルキル基が挙げられ、好ましくは C のアルキル基である。具体的には、メチル Here, the alkyl group represented by R 1 or R 2 above is a C straight-chain or branched-chain And an alkyl group of C 2 is preferable. Specifically, methyl
1-10  1-10
、ェチル、 n プロピル、イソプロピル、 sec—ブチル、イソブチル、 n ペンチル、 n—へ キシル、 n—へプチル、 n—ォクチルなどが挙げられる。  , Ethyl, n-propyl, isopropyl, sec-butyl, isobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
[0068] また、上記の R1又は R2で示されるァリール基としては、単環又は 2環のァリール基 が挙げられ、具体的にはフエニル、ナフチル等が挙げられる。 [0068] Further, as the Ariru group represented by R 1 or R 2, include Ariru group mono- or bicyclic, in particular phenyl, naphthyl and the like.
[0069] 本発明の有機光触媒における、 p型有機半導体と n型有機半導体の接合形態は特 に限定はないが、両者の接触面積が増大するように接合させることが好ましい。例え ば、フィルム状の p型有機半導体と n型有機半導体を接合させたり、いずれかの有機 半導体膜に他方の有機半導体成分をコートして製造された層(膜)構造を有するもの でも良い。 [0069] In the organic photocatalyst of the present invention, there is no particular limitation on the form of bonding between the p-type organic semiconductor and the n-type organic semiconductor, but it is preferable to bond them so that the contact area between them increases. For example, a film-shaped p-type organic semiconductor and an n-type organic semiconductor may be joined, or one of the organic semiconductor films may be coated with the other organic semiconductor component to have a layer (film) structure.
II.水の電気分角 ¾  II.Electric angle of water ¾
本発明の水の電気分解方法は、 p型有機半導体と n型有機半導体とからなる有機 光触媒で被覆された電極に、光を照射しながら電圧を印加することにより、水を水素 と酸素に効率的に電気分解することを特徴とする。模式図を図 1に示す。  In the water electrolysis method of the present invention, water is efficiently converted into hydrogen and oxygen by applying a voltage while irradiating light to an electrode coated with an organic photocatalyst comprising a p-type organic semiconductor and an n-type organic semiconductor. It is characterized by electrolysis. A schematic diagram is shown in FIG.
[0070] fi [0070] fi
本発明の水の電気分解に用いられる電極は、電極基材表面が有機光触媒で被覆 されている。  The electrode used in the electrolysis of water of the present invention has an electrode substrate surface coated with an organic photocatalyst.
[0071] 電極基材としては、導電性透明ガラス基材、金属基材、炭素系基材等が挙げられ る。具体的には、例えば、インジウム スズォキシド(ITO)等で被覆された導電性透明 ガラス基材;白金等の金属基材;グラフアイト、ダイヤモンド、グラッシ一カーボン等の 炭素系基材等が挙げられる。電極基材の抵抗値は、例えば、 5— 100 Ωん m2、好まし くは 8 20 Ωん m2のものが用いられる。また、電極基材の形状は種々の形状を採用す ること力 Sできる力 電気分解や光照射の効率を上げる電極表面の大きい平板状、基 板状のものが好ましい。 [0071] Examples of the electrode substrate include a conductive transparent glass substrate, a metal substrate, and a carbon-based substrate. Specifically, for example, a conductive transparent glass base material coated with indium tin oxide (ITO) or the like; a metal base material such as platinum; a carbon base material such as graphite, diamond, glassy carbon or the like can be used. The resistance value of the electrode substrate is, for example, 5-100 Ω m 2 , preferably 820 Ω m 2 . In addition, it is preferable that the shape of the electrode substrate be a variety of shapes. A force that can be used.
[0072] この電極基材を覆う有機光触媒は、特定の p型有機半導体と特定の n型有機半導 体から構成される。  [0072] The organic photocatalyst covering the electrode substrate is composed of a specific p-type organic semiconductor and a specific n-type organic semiconductor.
[0073] 本発明の電極に用いられる p型有機半導体としては、光照射時における水の電気 分解において酸素を効率よく発生しうる酸素発生触媒として活性の高レ、ものが用いら れる。この p型有機半導体としては、上述した大環状の配位子化合物又はその金属 錯体が挙げられ、好ましくは、フタロシアニン誘導体、ナフタロシアニン誘導体、ポル フィリン誘導体が挙げられる。より好ましくは、式(1A)、 (IB)ヽ (2A)、(2B)、(3A)、 (3B)で表される化合物が好ましい。特に、式(1B)において M1が Coで示されるフタ ロシアニンの金属錯体(コバルトフタロシアニン)が好ましレ、。上記の p型有機半導体 は、市販品として入手可能か、或いは当業者が容易に製造できるものである。 [0073] As the p-type organic semiconductor used for the electrode of the present invention, a p-type organic semiconductor having a high activity as an oxygen generation catalyst capable of efficiently generating oxygen in the electrolysis of water during light irradiation is used. It is. Examples of the p-type organic semiconductor include the above-described macrocyclic ligand compounds and metal complexes thereof, and preferably include phthalocyanine derivatives, naphthalocyanine derivatives, and porphyrin derivatives. More preferably, compounds represented by the formulas (1A), (IB) ヽ (2A), (2B), (3A), and (3B) are preferable. Particularly, a metal complex of phthalocyanine (cobalt phthalocyanine) in which M 1 is represented by Co in the formula (1B) is preferable. The above-mentioned p-type organic semiconductor is available as a commercial product or can be easily manufactured by those skilled in the art.
[0074] 本発明の電極に用いられる n型有機半導体としては、光照射時における水の電気 分解において効率的な水素の発生が可能であり、かつ上記の p型有機半導体との間 において良好な p— n接合の関係を有しているものが用いられる。この n型有機半導体 としては、上述した多環式芳香族化合物(一部が飽和していても良い)が挙げられ、 好ましくは、ペリレン誘導体、ナフタレン誘導体又はフラーレン類が挙げられる。より 好ましくは、式 (4A)、(4B)、(4C)、(5A)で表される化合物が好ましい。特に、効率 的なキャリア生成の点から、式(4A)で示されるペリレン誘導体(3,4,9,10—ペリレンテ トラカルボキシルービスべンズイミダゾール)又はフラーレン類(C60等)が好適に用い られる。上記の n型有機半導体は、市販品として入手可能か、或いは当業者が容易 に製造できるものである。 [0074] The n-type organic semiconductor used for the electrode of the present invention can generate hydrogen efficiently in the electrolysis of water during light irradiation, and has a favorable relationship with the p-type organic semiconductor. Those having a pn junction relationship are used. Examples of the n-type organic semiconductor include the above-mentioned polycyclic aromatic compounds (which may be partially saturated), and preferably include perylene derivatives, naphthalene derivatives, and fullerenes. More preferably, compounds represented by formulas (4A), (4B), (4C), and (5A) are preferable. In particular, from the viewpoint of efficient carrier generation, perylene derivatives (3,4,9,10-perylenetetracarboxyl-bisbenzimidazole) or fullerenes (C60 and the like) represented by the formula (4A) are preferably used. . The above-mentioned n-type organic semiconductor is available as a commercial product or can be easily manufactured by those skilled in the art.
[0075] これらの n型有機半導体及び p型有機半導体を組み合わせた有機光触媒を、電極 基材に被覆することにより本発明の電極が形成される。具体的な電極の構成は、次 に示す通りである。 [0075] The electrode of the present invention is formed by coating an electrode substrate with an organic photocatalyst obtained by combining the n-type organic semiconductor and the p-type organic semiconductor. The specific configuration of the electrode is as follows.
[0076] アノード電極(陽極)は、電極基材の表面に n型有機半導体からなる第 1層(膜)を 有し、その上に p型有機半導体からなる第 2層(膜)を有している。第 1層は、電極を被 覆する通常 200 800nm程度(好ましくは 250— 650nm程度)の厚さを有する連続被膜 力 なり、第 2層は、電極を被覆する通常 20 500nm程度(好ましくは 30 350nm程度 )の厚さを有する連続被膜からなる。有機半導体層の厚さに関して、層が厚すぎると 自身のフィルター効果により可視光の吸収効率が低下するため、第 1層は 250— 650nm程度、第 2層は 30 350nm程度がより好ましい。  The anode (anode) has a first layer (film) made of an n-type organic semiconductor on the surface of an electrode substrate, and has a second layer (film) made of a p-type organic semiconductor thereon. ing. The first layer is a continuous film having a thickness of usually about 200 to 800 nm (preferably about 250 to 650 nm) covering the electrode, and the second layer is usually about 20 to 500 nm (preferably 30 to 350 nm) covering the electrode. )). Regarding the thickness of the organic semiconductor layer, if the layer is too thick, the absorption efficiency of visible light decreases due to its own filter effect. Therefore, the first layer is more preferably about 250 to 650 nm, and the second layer is more preferably about 30 350 nm.
[0077] また、アノード電極は、上記の電極基材の表面に n型有機半導体からなる第 1層( 膜)及び P型有機半導体からなる第 2層(膜)に加えて、さらに第 2層の上に遷移金属 触媒 (例えば、 Ni, Pd, Pt, Ir触媒等、好ましくは Pt又は Ir触媒)を担持したものであつ てもよレ、。第 2層上に担持される遷移金属触媒は、第 2層を完全に被覆する必要はな く分散担持されていればよい。例えば、遷移金属触媒は、その平均粒径が 5— 800nm 程度(好ましくは 10 lOOnm程度)の微粒子状態で第 2層上に担持される。 [0077] In addition to the first layer (film) made of an n-type organic semiconductor and the second layer (film) made of a P-type organic semiconductor on the surface of the above-mentioned electrode substrate, a second layer Transition metal on A catalyst (eg, a Ni, Pd, Pt, Ir catalyst or the like, preferably a Pt or Ir catalyst) may be supported. The transition metal catalyst supported on the second layer does not need to completely cover the second layer and may be dispersed and supported. For example, the transition metal catalyst is supported on the second layer in the form of fine particles having an average particle size of about 5 to 800 nm (preferably about 10 100 nm).
[0078] このような構成を採用する該アノード電極は、効率的な酸素発生極となる。アノード 電極では、光(特に可視光)で励起された電子が、 n型有機半導体内を電極基材方 向に流れ、また光励起により生じた正孔は p型有機半導体内を電解液方向に流れる 。 P型有機半導体と電解液との界面では、水 (もしくは水酸化物イオン)が正孔により 酸化されて酸素を発生する(例えば、図 1を参照)。  [0078] The anode electrode employing such a configuration becomes an efficient oxygen generating electrode. At the anode, electrons excited by light (especially visible light) flow through the n-type organic semiconductor toward the electrode substrate, and holes generated by photoexcitation flow through the p-type organic semiconductor toward the electrolyte. . At the interface between the P-type organic semiconductor and the electrolyte, water (or hydroxide ions) is oxidized by holes to generate oxygen (see, for example, Figure 1).
[0079] これまで、光触媒を用いた光(可視光)照射による水の電気分解では、酸素の発生 量は極めて低かったが、本発明の電極を用いる電気分解方法によれば効率的に酸 素を発生させることができる。この点は、例えば、実施例の記載から容易に理解でき る。  Until now, in the electrolysis of water by irradiation of light (visible light) using a photocatalyst, the amount of generated oxygen was extremely low. However, according to the electrolysis method using the electrode of the present invention, oxygen is efficiently used. Can be generated. This point can be easily understood, for example, from the description of the examples.
[0080] また、背景技術でも述べた特許文献 1 (特開平 9-234374号公報)に記載の水の光 酸化触媒と比しても、単位触媒量当たりの酸素の発生量 (酸素発生効率)は格段に 増加している。  Further, even when compared with the photooxidation catalyst of water described in Patent Document 1 (Japanese Patent Application Laid-Open No. 9-234374) described in the background art, the amount of oxygen generated per unit catalyst amount (oxygen generation efficiency) Has increased significantly.
[0081] 一方、力ソード電極(陰極)は、電極基材の表面に p型有機半導体からなる第 1層( 膜)を有し、その上に n型有機半導体からなる第 2層(膜)を有している。第 1層は、電 極を被覆する通常 20— 500nm程度(好ましくは 30— 350nm程度)の厚さを有する連続 被膜からなり、第 2層は、第 1層を被覆する通常 200— 800nm程度(好ましくは 250— 650醒程度)の厚さを有する連続被膜からなる。有機半導体層の厚さに関して、層が 厚すぎると自身のフィルター効果により可視光の吸収効率が低下するため、第 1層は 30— 350nm程度、第 2層は 250 650nm程度がより好ましい。  On the other hand, the force source electrode (cathode) has a first layer (film) made of a p-type organic semiconductor on the surface of an electrode substrate, and a second layer (film) made of an n-type organic semiconductor thereon. have. The first layer is a continuous film having a thickness of usually about 20 to 500 nm (preferably about 30 to 350 nm) covering the electrode, and the second layer is generally about 200 to 800 nm (about 200 to 800 nm) covering the first layer. It preferably consists of a continuous film having a thickness of about 250 to 650. Regarding the thickness of the organic semiconductor layer, if the layer is too thick, the absorption efficiency of visible light decreases due to its own filter effect. Therefore, the first layer is more preferably about 30 to 350 nm, and the second layer is more preferably about 250 650 nm.
[0082] また、力ソード電極は、上記の電極基材の表面に p型有機半導体からなる第 1層( 膜)及び n型有機半導体からなる第 2層(膜)に加えて、さらに第 2層の上に遷移金属 触媒 (例えば、 Ni, Pd, Pt, Ir触媒等、好ましくは Pt又は Ir触媒)を担持したものであつ てもよレ、。第 2層上に担持される遷移金属触媒は、第 2層を完全に被覆する必要はな く分散担持されていればよい。例えば、遷移金属触媒は、その平均粒径が 5 800nm 程度(好ましくは 10— lOOnm程度)の微粒子状態で第 2層上に担持される。 [0082] Further, in addition to the first layer (film) made of a p-type organic semiconductor and the second layer (film) made of an n-type organic semiconductor, a force source electrode A transition metal catalyst (eg, a Ni, Pd, Pt, Ir catalyst or the like, preferably a Pt or Ir catalyst) supported on the layer may be used. The transition metal catalyst supported on the second layer does not need to completely cover the second layer and may be dispersed and supported. For example, a transition metal catalyst has an average particle size of 5800 nm. Particles (preferably about 10-100 nm) are supported on the second layer.
[0083] このような構成を採用する該カソード電極は、効率的な水素発生極となる。力ソード 電極では、光(特に可視光)で励起された電子が、 n型有機半導体内を電解液方向 に流れ、また光励起により生じた正孔は p型有機半導体内を電極基材方向に流れる 。 n型有機半導体と電解液との界面では、水 (もしくはプロトン)が電子を受けて還元さ れて水素を発生する(例えば、図 1を参照)。 [0083] The cathode electrode employing such a configuration becomes an efficient hydrogen generating electrode. In a force source electrode, electrons excited by light (especially visible light) flow in the n-type organic semiconductor toward the electrolyte, and holes generated by photoexcitation flow in the p-type organic semiconductor toward the electrode substrate. . At the interface between the n-type organic semiconductor and the electrolyte, water (or protons) receives electrons and is reduced to generate hydrogen (see, for example, Figure 1).
[0084] 各電極基材を n型有機半導体及び p型有機半導体で被覆する方法は、公知の方 法を採用することができ、例えば、真空蒸着法、スパッタリング法、電気化学的被覆( 電析)、溶液より被覆等の方法が挙げられる。中でも、ペリレン誘導体 Zフタロシア二 ン誘導体系に関しては、均一な被覆膜が得られる点から、真空蒸着法が好ましい。 各電極を被覆する各有機半導体の膜厚は、前述した範囲に適宜設定することが好ま しい。 [0084] As a method of coating each electrode substrate with an n-type organic semiconductor and a p-type organic semiconductor, known methods can be adopted, for example, vacuum deposition, sputtering, electrochemical coating (electrodeposition). ) And coating from a solution. Above all, with respect to the perylene derivative Z phthalocyanine derivative system, a vacuum deposition method is preferable because a uniform coating film can be obtained. It is preferable that the thickness of each organic semiconductor covering each electrode is appropriately set in the above-described range.
[0085] 具体的には、アノード電極は、導電性透明ガラス基板に n型有機半導体を真空蒸 着して n型有機半導体層(第 1層)を形成し、その上に p型有機半導体を真空蒸着し て P型有機半導体層(第 2層)を形成すればよい。一方、力ソード電極は、導電性透 明ガラス基板に P型有機半導体を真空蒸着して P型有機半導体層(第 1層)を形成し 、その上に n型有機半導体を真空蒸着して n型有機半導体層(第 2層)を形成すれば よい。  [0085] Specifically, the anode electrode forms an n-type organic semiconductor layer (first layer) by vacuum-depositing an n-type organic semiconductor on a conductive transparent glass substrate, and forms a p-type organic semiconductor thereon. The P-type organic semiconductor layer (second layer) may be formed by vacuum evaporation. On the other hand, the force source electrode is formed by vacuum-depositing a P-type organic semiconductor on a conductive transparent glass substrate to form a P-type organic semiconductor layer (first layer), and then vacuum-depositing an n-type organic semiconductor thereon. The organic semiconductor layer (second layer) may be formed.
[0086] さらに、各電極の第 2層上に遷移金属触媒を担持する場合、その方法は、電解析 出法(電気化学的還元)等の公知の方法を採用できる。例えば、白金担持に関して は、硫酸やリン酸などを含む水溶液に、 K PtCl、 K PtCl、 H PtClなどの白金塩を加 えて、力ソード条件で白金を担持する方法が挙げられる。適用する力ソード条件とし ては、印加電圧が 0—- 0.2 V (vs. Ag/AgCl)程度であることが好ましい。酸の濃度は、 通常 ImM lOmM程度であり、白金塩の濃度は、通常 O.lmM ImM程度であること が好ましい。  [0086] Further, when a transition metal catalyst is supported on the second layer of each electrode, a known method such as an electroanalysis method (electrochemical reduction) can be employed. For example, with respect to platinum loading, a method of adding platinum salts such as KPtCl, KPtCl, and HPPtCl to an aqueous solution containing sulfuric acid, phosphoric acid, or the like, and loading platinum under a force source condition may be mentioned. As the applied force sword condition, it is preferable that the applied voltage is about 0-0.2 V (vs. Ag / AgCl). The concentration of the acid is usually about ImMlOmM, and the concentration of the platinum salt is preferably about O.lmM ImM.
[0087] 力、くして本発明の有機光触媒で被覆された電極が製造される。本発明の電極を用 レ、ることにより、光(特に可視光波長の全領域の光)を利用して、理論電圧より小さい セル電圧で水の電気分解が可能となり、水素及び酸素を効率的に発生させることが 可能となる。しかも、本発明の有機光触媒を用いた電極は、水の電気分解の条件下 でも、電極自身が酸化等により分解することなく安定であるという特徴を有している。 [0087] An electrode coated with force, and thus with the organic photocatalyst of the present invention, is produced. By using the electrode of the present invention, water (especially light in the entire visible wavelength range) can be used to electrolyze water at a cell voltage lower than the theoretical voltage, and hydrogen and oxygen can be efficiently used. Can be generated It becomes possible. Moreover, the electrode using the organic photocatalyst of the present invention has a feature that the electrode itself is stable without being decomposed by oxidation or the like even under the condition of electrolysis of water.
[0088] なお、本発明の水の電気分解では、上記した有機光触媒を含む力ソード電極及び /又はアノード電極を用いる。  [0088] In the electrolysis of water of the present invention, a force source electrode and / or an anode electrode containing the above-mentioned organic photocatalyst are used.
[0089] 例えば、(a)電極基材の表面に p型有機半導体からなる第 1層及び n型有機半導体 からなる第 2層を有する力ソード電極と、電極基材の表面に n型有機半導体からなる 第 1層及び P型有機半導体からなる第 2層を有するアノード電極の組合せ、(b)電極 基材の表面に P型有機半導体からなる第 1層、 n型有機半導体からなる第 2層及び遷 移金属触媒を有する力ソード電極と、電極基材の表面に n型有機半導体からなる第 1 層及び p型有機半導体からなる第 2層を有するアノード電極の組合せ、(c)電極基材 の表面に p型有機半導体からなる第 1層及び n型有機半導体からなる第 2層を有する 力ソード電極と、電極基材の表面に n型有機半導体からなる第 1層、 p型有機半導体 力 なる第 2層及び遷移金属触媒を有するアノード電極の組合せ、 (d)電極基材の 表面に p型有機半導体からなる第 1層、 n型有機半導体からなる第 2層及び遷移金属 触媒を有する力ソード電極と、電極基材の表面に n型有機半導体からなる第 1層、 p 型有機半導体からなる第 2層及び遷移金属触媒を有するアノード電極の組合せ、が 挙げられる。  For example, (a) a force source electrode having a first layer made of a p-type organic semiconductor and a second layer made of an n-type organic semiconductor on the surface of an electrode substrate, and an n-type organic semiconductor A combination of an anode electrode having a first layer comprising a P-type organic semiconductor and a second layer comprising a P-type organic semiconductor; (b) a first layer comprising a P-type organic semiconductor and a second layer comprising an n-type organic semiconductor on the surface of the electrode substrate A combination of a force source electrode having a transition metal catalyst and an anode electrode having a first layer made of an n-type organic semiconductor and a second layer made of a p-type organic semiconductor on the surface of the electrode substrate, (c) an electrode substrate Force electrode having a first layer made of a p-type organic semiconductor and a second layer made of an n-type organic semiconductor on the surface of the electrode, and a first layer made of an n-type organic semiconductor and a p-type organic semiconductor on the surface of the electrode substrate A combination of a second layer and an anode electrode having a transition metal catalyst, (d) an electrode base A first layer made of a p-type organic semiconductor on the surface of the material, a second layer made of an n-type organic semiconductor, and a force electrode having a transition metal catalyst; a first layer made of an n-type organic semiconductor on the surface of the electrode substrate; and a combination of a second layer made of a p-type organic semiconductor and an anode electrode having a transition metal catalyst.
[0090] さらに、本発明の水の電気分解では、上記した有機光触媒を含む力ソード電極又 はアノード電極と、公知の電極(白金電極等)からなるアノード電極又は力ソード電極 を組み合わせたものであってもよレ、。すなわち、いずれか一方の電極として本発明の 有機光触媒を含む電極とし、他方を公知の電極とするものであってもよい。  Further, in the electrolysis of water of the present invention, a combination of the above-mentioned force electrode or anode electrode containing an organic photocatalyst and an anode or force electrode consisting of a known electrode (such as a platinum electrode) is used. It may be. That is, one of the electrodes may be an electrode containing the organic photocatalyst of the present invention, and the other may be a known electrode.
[0091] この場合、一方の有機光触媒からなる電極のみが光を利用することになるため、太 陽エネルギーの利用効率は低くなる力 理論電圧より小さいセル電圧で水の電気分 解は充分可能であり、水素及び酸素を効率的に発生させることができる。  [0091] In this case, since only one of the electrodes composed of the organic photocatalyst uses light, the efficiency of use of solar energy is reduced. The electric decomposition of water is sufficiently possible with a cell voltage smaller than the theoretical voltage. Yes, hydrogen and oxygen can be generated efficiently.
[0092] 雷解晳 7k 液 [0092] Thunder solution 7k liquid
本発明の電気分解で用いられる電解質水溶液は、酸性水溶液やアルカリ性水溶 液が好適に用いられる。  As the aqueous electrolyte solution used in the electrolysis of the present invention, an acidic aqueous solution or an alkaline aqueous solution is suitably used.
[0093] 該酸性水溶液としては、リン酸や硫酸などの酸を含む水溶液が好ましい。特に好ま しくは、リン酸水溶液である。該水溶液中の酸の濃度は、通常 1 mM— 1 M程度であ ればよい。例えば、上記のフラーレン類/フタロシアニン誘導体で被覆された電極を 用いた場合では、酸水溶液が好ましぐその pHは 1一 3程度が好ましい。 [0093] The acidic aqueous solution is preferably an aqueous solution containing an acid such as phosphoric acid or sulfuric acid. Especially preferred Alternatively, it is a phosphoric acid aqueous solution. The concentration of the acid in the aqueous solution may usually be about 1 mM to 1 M. For example, when an electrode coated with the above-mentioned fullerenes / phthalocyanine derivative is used, the pH of the acid aqueous solution is preferably about 113.
[0094] 該アルカリ性水溶液としては、水酸化ナトリウムや水酸化カリウムなどのアルカリ金 属水酸化物の水溶液中に、リン酸塩、硫酸塩、硝酸塩、炭酸塩、酢酸塩等の電解質 を含むものが好ましい。特に好ましくは、アルカリ金属水酸化物水溶液である。該水 溶液中のアルカリ金属水酸化物の濃度は、通常 1 mM 1 M程度であればよい。例え ば、上記のペリレン誘導体 Zフタロシアニン誘導体で被覆された電極を用いた場合 では、アルカリ金属水酸化物水溶液が好ましぐその pHは 10— 11程度が好ましい。  [0094] Examples of the alkaline aqueous solution include an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, which contains an electrolyte such as a phosphate, a sulfate, a nitrate, a carbonate, or an acetate. preferable. Particularly preferred is an aqueous solution of an alkali metal hydroxide. The concentration of the alkali metal hydroxide in the aqueous solution may usually be about 1 mM 1 M. For example, when an electrode coated with the above perylene derivative Z phthalocyanine derivative is used, the pH of an aqueous alkali metal hydroxide solution is preferably about 10-11.
[0095] ( )  [0095] ()
本発明で用いられる光は、広範な波長を有する光(波長 220— 800nm程度)を用い ること力 Sできる。その光源としては、例えば、 自然光(太陽光)、蛍光灯、ハロゲンラン プ、高圧水銀灯、低圧水銀灯、ブラックライト、エキシマレーザ、重水素ランプ、キセノ ンランプ、 Hg-Zn-Pbランプ等から選ばれる 1種類の光源または波長域の異なる 2種 類の光源を用いることができる。とりわけ、本発明では、 n型有機半導体及び p型有機 半導体からなる有機光触媒の特質から、自然光をほぼ全波長領域 (波長 300— 800η m)に渡り電気分解に利用できる点で極めて実用的である。  The light used in the present invention can use light having a wide range of wavelengths (wavelength of about 220 to 800 nm). The light source is selected from, for example, natural light (sunlight), fluorescent lamp, halogen lamp, high-pressure mercury lamp, low-pressure mercury lamp, black light, excimer laser, deuterium lamp, xenon lamp, Hg-Zn-Pb lamp, etc. Different types of light sources or two types of light sources having different wavelength ranges can be used. In particular, the present invention is extremely practical in that natural light can be used for electrolysis over almost the entire wavelength range (wavelength 300-800ηm) due to the nature of the organic photocatalyst comprising an n-type organic semiconductor and a p-type organic semiconductor. .
[0096] 本発明の水の電気分解では、通常、有機光触媒を含むアノード電極及び/又は有 機光触媒を含む力ソード電極に、上記の光源から光を照射すればよい。いずれか一 方の電極に、公知の電極(白金電極等)を用いた場合は、有機光触媒を含む電極に 照射すればよい。  [0096] In the electrolysis of water of the present invention, the light source may be usually irradiated with light from the light source to an anode electrode containing an organic photocatalyst and / or a force sword electrode containing an organic photocatalyst. When a known electrode (such as a platinum electrode) is used for any one of the electrodes, the electrode containing the organic photocatalyst may be irradiated.
[0097] 雷源及び印加電圧  [0097] Lightning source and applied voltage
本発明の水の電気分解で、有機光触媒を含むアノード電極及び有機光触媒を含 む力ソード電極を用レ、、その両電極に光を照射した場合は、電源の印加電圧は、 0.3 一 1.2V程度(好ましくは 0.8 1. IV程度)の低い電圧でよい。これは、本発明では上 記のような有機光触媒を用いた電極を採用しているため、光照射により光誘起電圧 が発生し、理論電圧と比べより低電圧の電源を用いることができるからである。つまり 、光エネルギーを有効に利用することにより、電気分解に使用する消費電力を大きく 低減すること力 Sできる。 In the electrolysis of water of the present invention, an anode electrode containing an organic photocatalyst and a force sword electrode containing an organic photocatalyst were used, and when light was applied to both electrodes, the applied voltage of the power source was 0.3 to 1.2 V A low voltage (preferably about 0.8 1. IV) is sufficient. This is because the present invention employs an electrode using an organic photocatalyst as described above, so that a light-induced voltage is generated by light irradiation, and a power supply having a lower voltage than the theoretical voltage can be used. is there. In other words, by effectively using light energy, the power consumption for electrolysis can be increased. The ability to reduce S can.
[0098] また、一方の電極に有機光触媒を含む電極を用い、他方の電極に公知の電極(白 金電極等)を用い、有機光触媒を含む電極に光照射する場合は、電源の印加電圧 は、 1.0 1.4V程度(好ましくは 1.1一 1.3V程度)の低い電圧でよレ、。この場合も、有 機光触媒を含む電極における光エネルギーの利用により、印加電圧を低減し電気分 解に使用する消費電力を大きく低減することができる。  When an electrode containing an organic photocatalyst is used for one electrode, a known electrode (eg, a platinum electrode) is used for the other electrode, and the electrode containing the organic photocatalyst is irradiated with light, the applied voltage of the power supply is At a low voltage of about 1.0 1.4V (preferably about 1.1 to 1.3V). Also in this case, by using light energy at the electrode including the organic photocatalyst, the applied voltage can be reduced and the power consumption used for the electrolysis can be significantly reduced.
[0099] 上記本発明の水の分解方法を採用することにより、太陽光エネルギーを有効に活 用し、酸素及び水素を安全かつ効率的に発生させることが可能となる。また、本発明 の水の電気分解は、常温下(例えば、 0 40°C程度)で実施することができ、加温、加 圧の必要がない点でも有利である。発生する水素は、燃料電池の燃料、現行の水素 利用技術 (例えば、石油精製、石油化学品製造、冶金など)などに有効に活用するこ とが可能である。  [0099] By employing the method for decomposing water of the present invention, it is possible to effectively utilize solar energy and to generate oxygen and hydrogen safely and efficiently. Further, the electrolysis of water of the present invention can be carried out at normal temperature (for example, about 0.degree. C.), which is advantageous in that heating and pressurization are not required. The generated hydrogen can be used effectively for fuel cell fuels and existing hydrogen utilization technologies (eg, petroleum refining, petrochemical manufacturing, metallurgy, etc.).
in- 7kの電気分解装置  in- 7k electrolysis equipment
本発明の水の電気分解装置は、上述したアノード電極、力ソード電極、電源(定電 位電源)、電解質水溶液、及び光源を有している(例えば、図 1を参照)。アノード電 極、及び力ソード電極は、電圧を印加するために電源に接続されており、また、各電 極はその一部又は全部が電解質水溶液に浸漬されている。具体的な電気分解装置 としては、一室型二極式セルを構成したものが例示される。  The water electrolysis apparatus of the present invention includes the above-described anode electrode, force electrode, power supply (constant potential power supply), electrolyte aqueous solution, and light source (for example, see FIG. 1). The anode electrode and the force source electrode are connected to a power supply for applying a voltage, and each electrode is partially or entirely immersed in an aqueous electrolyte solution. As a specific electrolyzer, an electrolyzer having a single-chamber bipolar cell is exemplified.
[0100] アノード電極及び力ソード電極は、上述したものが用いられる。また、電解質水溶液 は、上述したものが用いられる。例えば、フラーレン類/フタロシアニン誘導体で被覆 された電極の場合、その pHは 1一 3程度が好ましぐペリレン誘導体/フタロシアニン 誘導体で被覆された電極の場合、その pHは 10— 11程度が好ましい。  [0100] As the anode electrode and the force sword electrode, those described above are used. As the aqueous electrolyte solution, those described above are used. For example, in the case of an electrode coated with a fullerene / phthalocyanine derivative, the pH is preferably about 113, and in the case of an electrode coated with a perylene derivative / phthalocyanine derivative, the pH is preferably about 10-11.
[0101] なお、有機光触媒を含む電極の性質に応じて、アノード電極及び力ソード電極を浸 漬する電解質溶液を異なる pHとしてもよい。その場合、アノード電極及び力ソード電 極の電解質溶液を隔てた塩橋を備えた反応セルが用いられる。例えば、実施例 6の 実施形態が例示される。具体的には、電解質溶液には、アノード電極(陽極)側の反 応漕を水酸化ナトリウムまたは水酸化カリウムなどで pH— 11に調整したアルカリ水と し、力ソード電極(陰極)側の反応漕をリン酸または硫酸などで pH— 2に調整した酸性 水とし、両漕を塩橋でつないだ二極式セルが挙げられる。 [0101] Note that, depending on the properties of the electrode containing the organic photocatalyst, the pH of the electrolyte solution in which the anode electrode and the force electrode are immersed may be different. In that case, a reaction cell with a salt bridge separating the electrolyte solution of the anode electrode and the force electrode is used. For example, the embodiment of Example 6 is exemplified. Specifically, in the electrolyte solution, the reaction tank on the anode electrode (anode) side is alkali water adjusted to pH-11 with sodium hydroxide or potassium hydroxide, and the reaction on the power source electrode (cathode) side. Acidified tank adjusted to pH-2 with phosphoric acid or sulfuric acid There is a bipolar cell that uses water and connects both tanks with a salt bridge.
[0102] 光源も上述したものが用いられるが、自然エネルギーの有効利用の観点から自然 光を用いることが好ましい。  [0102] The light source described above is used, but it is preferable to use natural light from the viewpoint of effective use of natural energy.
発明の効果  The invention's effect
[0103] 本発明の水の電気分解方法によれば、紫外及び可視領域の光を利用できる有機 光触媒を電極材料に用いて、光照射下、水を穏和な条件で効率的に水素と酸素に 分角军すること力 Sできる。  [0103] According to the water electrolysis method of the present invention, an organic photocatalyst capable of utilizing light in the ultraviolet and visible regions is used as an electrode material, and water is efficiently converted into hydrogen and oxygen under mild conditions under light irradiation. The angle of separation can be S.
[0104] つまり、本発明は、自然エネルギー(太陽光エネルギー)を有効に利用し、二酸化 炭素の排出を低減できるクリーンな水 (水素イオンや水酸化イオンも含む)の電気分 解方法を提供する。  [0104] That is, the present invention provides a method for electrolysis of clean water (including hydrogen ions and hydroxide ions) that can effectively utilize natural energy (solar energy) and reduce carbon dioxide emissions. .
[0105] また、従来のアルカリ水電気分解装置では、高温 (約 60— 80°C以上)、かつ 1.7— 2.0 Vの電圧印加を要する条件で実用化されているが(理論電圧 1.23 Vに対してさら に約 0.5— 0.8 Vの過電圧が必要)、本発明の有機光触媒を備えた電極の利用により 、水素 ·酸素の化学量論的製造に要する熱エネルギーの投入が不要になるほか、理 論電圧以下のセル電圧でも水の電解が可能となり、電気エネルギーの消費を大幅に 低減すること力 Sできる。  [0105] Conventional alkaline water electrolyzers have been put to practical use under conditions of high temperature (about 60-80 ° C or higher) and application of a voltage of 1.7-2.0 V (theoretical voltage is 1.23 V). Furthermore, the use of an electrode equipped with the organic photocatalyst of the present invention eliminates the need for the input of thermal energy required for the stoichiometric production of hydrogen and oxygen. Water can be electrolyzed even at a cell voltage lower than the voltage, which can greatly reduce the consumption of electric energy.
図面の簡単な説明  Brief Description of Drawings
[0106] [図 1]本発明の有機光触媒を用いた水の電気分解方法の模式図である。  FIG. 1 is a schematic view of a method for electrolyzing water using an organic photocatalyst of the present invention.
[図 2]実施例 1及び 2と比較例 1に関する光電気化学測定装置の概略図である。  FIG. 2 is a schematic diagram of a photoelectrochemical measurement device according to Examples 1 and 2 and Comparative Example 1.
[図 3]実施例 3及び 4と比較例 2及び 3に関する光電気化学測定装置の概略図である  FIG. 3 is a schematic diagram of a photoelectrochemical measurement device according to Examples 3 and 4 and Comparative Examples 2 and 3.
[図 4]実施例 5に関する光電気化学測定装置の概略図である。 FIG. 4 is a schematic diagram of a photoelectrochemical measurement device according to Example 5.
[図 5]実施例 6に関する光電気化学測定装置の概略図である。  FIG. 5 is a schematic diagram of a photoelectrochemical measurement device according to Example 6.
[図 6]実施例 7に関する光電気化学測定装置の概略図である。  FIG. 6 is a schematic diagram of a photoelectrochemical measurement device according to Example 7.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0107] 以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によ つて限定されるものではない。 [0107] Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0108] 実施例 1 (ハロゲンランプ照射時の酸素発牛渦程) 電極基材 /PV/CoPcを光アノード極(作用極)、白金線を対極、銀/塩化銀電極を参 照極として、水酸化ナトリウム又は水酸化カリウムで pH— 11に調整したアルカリ水を 用いて、図 2のような三極セルを構成した。これを用いてハロゲンランプ照射下、印加 電位 +0.3 Vで電気分解を行ったところ、酸素が約 3— 4 μ 1/h発生した。具体的な操 作手順を以下に示す。 Example 1 (Oxygen-causing vortex at irradiation of halogen lamp) Electrode substrate / PV / CoPc is used as photoanode (working electrode), platinum wire as counter electrode, silver / silver chloride electrode as reference electrode, and alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide. Thus, a three-electrode cell as shown in FIG. 2 was constructed. When electrolysis was carried out under the halogen lamp irradiation at an applied potential of +0.3 V, oxygen was generated at about 3-4 μ1 / h. The specific operation procedure is shown below.
[0109] (1)有機光触媒材料として、 n型半導体である 3,4,9,10—ペリレンテトラカルボキシノレ —ビスべンズイミダゾール(以下「PV」と表記する)及び p型半導体であるコバルトフタ口 シァニン(以下「CoPc」と表記する)を用いた。本発明においては、それぞれ昇華精 製したものを用いた。  [0109] (1) As organic photocatalyst materials, n-type semiconductor 3,4,9,10-perylenetetracarboxynor-bisbenzimidazole (hereinafter referred to as "PV") and p-type semiconductor cobalt lid Mouth cyanine (hereinafter referred to as “CoPc”) was used. In the present invention, sublimated products were used.
[0110] (2)有機光触媒素子の作製は、真空蒸着法により行った。まず、インジウム一スズォ キシド (ITO)で被覆された導電性透明ガラス基板(以下「ITO被覆ガラス基板」と表記 する)(日本板硝子社製、抵抗 13 Ω cm—2 ;ガラスの透過率 85 % ;インジウムスズォキシ ドの積層厚 110 nm)上に、 PVを 250— 650nmの厚さで、次いで、 PV上に CoPcを 30— 350nmの厚さで積層した。 (2) The production of the organic photocatalytic device was performed by a vacuum evaporation method. First, a conductive transparent glass substrate (hereinafter referred to as “ITO-coated glass substrate”) coated with indium monotin oxide (ITO) (manufactured by Nippon Sheet Glass Co., Ltd., resistance 13 Ωcm- 2 ; transmittance of glass 85%; The PV was laminated with a thickness of 250 to 650 nm on the indium tin oxide laminate thickness of 110 nm, and then the CoPc was laminated with a thickness of 30 to 350 nm on the PV.
[0111] (3)上記 (2)で作製した有機光触媒素子を lcm X 1.5cmに切り出した。そのうちの lcm  (3) The organic photocatalyst device prepared in the above (2) was cut into lcm × 1.5 cm. Lcm of which
X 0.5cmに相当する部分をアセトンで拭き取り、銀含有エポキシ系接着剤(東洋イン キ製造社製、 T-700)を用いて導線を取り付けた。銀部位と水の接触を防ぐために、 エポキシ系接着剤を用いて絶縁して、有機光触媒被覆電極とした。  A portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.). In order to prevent contact between the silver part and water, the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
[0112] (4)光触媒反応セルは、以下の方法で作製した。上記 (3)で作製した有機光触媒被 覆電極を作用極、白金線を対極、銀/塩化銀電極(内部液は塩化カリウム飽和水溶 液)を参照極として、一室型三極式セルを構成した。電解質溶液として、水酸化ナトリ ゥムまたは水酸化カリウムで pH 11に調整したアルカリ水を用いた。  [0112] (4) The photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As the electrolyte solution, alkaline water adjusted to pH 11 with sodium hydroxide or potassium hydroxide was used.
[0113] (5)有機光触媒反応は、図 2に示すような測定装置を用いて実施した。関数発生器  (5) The organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator
(北斗電工社製、 HB-104)、クーロンメーター(北斗電工社製、 HF-201)及び X-Yレコ ーダー(グラフテック社製, WX-4000)を備えたポテンショ /ガルバノスタツト(北斗電工 社製、 HA-301)を用レ、、光源としてハロゲンランプ(150W)を用いた。  (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder (Graphtec, WX-4000) equipped with a potentiometer / galvanostat (Hokuto Denko, HA-301), and a halogen lamp (150 W) was used as a light source.
[0114] (6)常温、常圧下、約 +0.2 V (vs. Ag/AgCl)付近より貴な電位領域で、水酸化物ィ オンの酸化に伴う光アノード電流が得られた。実際に、 +0.3 Vで定電位電解を行い、 生成物をガスクロマトグラフ(島津製作所製、 GC-8A)により分析したところ、約 3— 4 μ 1/h—1の酸素発生を確認した。 [0114] (6) At normal temperature and normal pressure, a photoanode current accompanying oxidation of hydroxide ions was obtained in a potential region more noble than about +0.2 V (vs. Ag / AgCl). Actually, constant potential electrolysis is performed at +0.3 V, The product was analyzed by gas chromatography (GC-8A, manufactured by Shimadzu Corporation), and it was confirmed that about 3-4 μ1 / h- 1 of oxygen was generated.
[0115] 2 OH—→ 1/2 0 + H 0 + 2e [0115] 2 OH— → 1/20 + H 0 + 2e
2 2  twenty two
例 2 (自 照、 fr s寺の 牛. 禾呈)  Example 2 (light, cattle in fr s temple.
電極基材 /PV/CoPcを光アノード極(作用極)、白金線を対極、銀/塩化銀電極を参 照極として、水酸化ナトリウムまたは水酸化カリウムで pH 11に調整したアルカリ水 を用いて、図 2のような三極セルを構成した。 自然光照射下、印加電位 +0.4 Vで電気 分解を行ったところ、酸素が約 1.5 u l/h,水素が約 3.5 μ 1/h発生した。具体的な操 作手順を以下に示す。  Electrode substrate / PV / CoPc using photoanode (working electrode), platinum wire as counter electrode, silver / silver chloride electrode as reference electrode, and alkaline water adjusted to pH 11 with sodium hydroxide or potassium hydroxide Thus, a three-electrode cell as shown in FIG. 2 was constructed. When electrolysis was performed under an applied potential of +0.4 V under natural light irradiation, about 1.5 uL / h of oxygen and about 3.5 μ1 / h of hydrogen were generated. The specific operation procedure is shown below.
[0116] (1)有機光触媒材料として、 n型半導体である PV及び p型半導体である CoPcを用い た。本発明においては、それぞれ昇華精製したものを用いた。  (1) As an organic photocatalyst material, PV as an n-type semiconductor and CoPc as a p-type semiconductor were used. In the present invention, those purified by sublimation were used.
[0117] (2)有機光触媒素子の作製は真空蒸着法により行った。まず、 ITO被覆ガラス基板  (2) The production of the organic photocatalytic device was performed by a vacuum deposition method. First, ITO coated glass substrate
(日本板硝子社製、抵抗 13 Ω cm—2 ;ガラスの透過率 85 %;インジウムスズォキシドの 積層厚 1 10 nm)上に、 PVを 250— 300nmの厚さで、次いで、 PV上に CoPcを 135— 145nmの厚さで積層した。 (Nippon Sheet Glass Co., Ltd., resistance 13 Ωcm- 2 ; transmittance of glass 85%; laminated thickness of indium tin oxide 110 nm), PV is 250-300 nm thick, then CoPc on PV Was laminated at a thickness of 135-145 nm.
[0118] (3)上記 (2)で作製した有機光触媒素子を l cm X 1.5cmに切り出した。そのうちの lcm  (3) The organic photocatalyst device prepared in the above (2) was cut into lcm × 1.5 cm. Lcm of which
X 0.5cmに相当する部分をアセトンで拭き取り、銀含有エポキシ系接着剤(東洋イン キ製造社製、 T-700)を用いて導線を取り付けた。銀部位と水の接触を防ぐために、 エポキシ系接着剤を用いて絶縁して、有機光触媒被覆電極とした。  A portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.). In order to prevent contact between the silver part and water, the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
[0119] (4)光触媒反応セルは、以下の方法で作製した。上記 (3)で作製した有機光触媒被 覆電極を作用極、白金線を対極、銀/塩化銀電極(内部液は塩化カリウム飽和水溶 液)を参照極として、一室型三極式セルを構成した。電解質溶液として、水酸化ナトリ ゥムまたは水酸化カリウムなどで pH— 1 1に調整したアルカリ水を用いた。  [0119] (4) The photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As the electrolyte solution, alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used.
[0120] (5)有機光触媒反応は、図 2に示すような測定装置を用いて実施した。関数発生器  (5) The organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator
(北斗電工社製、 HB- 104)、クーロンメーター(北斗電工社製、 HF-201 )及び X-Yレコ ーダー(グラフテック社製, WX-4000)を備えたポテンショ /ガルバノスタツト(北斗電工 社製、 HA-301 )を用いた。光源としては、 自然光を用いた。  (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder (Graphtec, WX-4000) equipped with a potentiometer / galvanostat (Hokuto Denko, HA-301) was used. Natural light was used as the light source.
[0121] (6)真夏の晴天の日に、午前 1 1時から午後 2時までの計 3時間、 自然光を用いた光 電気化学的水の分解に関する実験を行った。この時の最低光量は 58 mW
Figure imgf000022_0001
最 高光量は 64 mW cm— 2であり、平均光量は、約 62 mW cm— 2であった。
[0121] (6) Light using natural light for a total of 3 hours from 11 am to 2 pm on a clear summer day An experiment on electrochemical water decomposition was performed. The minimum light quantity at this time is 58 mW
Figure imgf000022_0001
The maximum light intensity was 64 mW cm- 2 , and the average light intensity was about 62 mW cm- 2 .
[0122] (7)水温約 36°C、常圧下、 +0.4 Vのバイアス電位を印加した条件で、自然光照射 下における光電気化学的水の分解を行った。反応生成物をガスクロマトグラフ(島津 製作所製、 GC-8A)により分析した結果、(有機光触媒電極 (光アノード)における)酸 化生成物として酸素が約 1.5 μ 1 h— (白金対極 (力ソード)における)還元生成物とし て水素が約 3.5 μ 1 h— それぞれ生じることを確認した。  [0122] (7) Photochemical water decomposition under natural light irradiation was performed under a condition in which a bias potential of +0.4 V was applied at a water temperature of about 36 ° C under normal pressure. As a result of analyzing the reaction product by gas chromatography (GC-8A, manufactured by Shimadzu Corporation), as an oxidation product (at the organic photocatalyst electrode (photoanode)), oxygen was approximately 1.5 μ1 h— (platinum counter electrode (force sword)). It was confirmed that hydrogen was generated as a reduction product in (about 3.5 μl h).
[0123] 比較例 1 (暗時の酸素発牛渦程 (参照データ) )  [0123] Comparative Example 1 (Oxygen-causing vortex range in darkness (reference data))
実施例 1及び 2に関連して、喑時に働く酸素発生触媒を担持した電極を作製して、 水酸化ナトリウムまたは水酸化カリウムで pH— 11に調整したアルカリ水中での電気触 媒化学的な酸素発生を行った。酸素発生触媒としては、その高い触媒活性が知られ ている Ir〇を用いた。具体的な操作手順を以下に示す。  In connection with Examples 1 and 2, an electrode supporting a working oxygen generating catalyst was prepared, and electrocatalytic oxygen in alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used. Occurred. As the oxygen generating catalyst, Ir〇, whose high catalytic activity is known, was used. The specific operation procedure is shown below.
[0124] (1)約 2.5mgの IrO (アルドリッチ社製)を ΙΤΟ被覆ガラス基板(1 X lcm2) (日本板硝 子社製、抵抗 13 Ω cm—2 ;ガラスの透過率 85 %;インジウムスズォキシドの積層厚 110 nm)上にコートした。コートした IrOの剥離を抑制するために、 0.05wt.%ナフイオン(デ ュポン社登録商標)のアルコール溶液を 15 μ 1塗布し室温風乾したもの(ナフイオン は成膜時 30nm程度)を酸素発生実験に用いた。 (1) About 2.5 mg of IrO (manufactured by Aldrich) was coated on a glass substrate (1 X lcm 2 ) (manufactured by Nippon Sheet Glass Co., Ltd., resistance: 13 Ωcm— 2 ; transmittance of glass: 85%; indium Coating was carried out on a stack thickness of soxide (110 nm). To suppress the peeling of the coated IrO, 15 μl of an alcohol solution of 0.05 wt.% Naphion (registered trademark of DuPont) was applied and air-dried at room temperature. Using.
[0125] (2)図 2に示した反応セル及び測定装置を用いて光源を使用せずに酸素発生実験 を実施し、 IrO電極上で、約 +1.0 V(vs. Ag/AgCl)より貴な電位領域で酸素発生に基 づくアノード電流が得られた。実際に、 +1.2 Vで定電位電解を行い、実施例 1(6)と同 様に、生成物をガスクロマトグラフ(島津製作所製、 GC-8A)により分析したところ、約(2) An oxygen generation experiment was performed without using a light source using the reaction cell and the measurement device shown in FIG. 2, and a voltage of about +1.0 V (vs. Ag / AgCl) was obtained on the IrO electrode. An anodic current based on oxygen evolution was obtained in a wide potential range. Actually, a constant potential electrolysis was performed at +1.2 V, and the product was analyzed with a gas chromatograph (Shimadzu Corporation, GC-8A) as in Example 1 (6).
5-6 μ 1/h—1の酸素発生を確認した。 Oxygen generation of 5-6 μ 1 / h- 1 was confirmed.
[0126] 上記実施例 1及び 2と比較例 1より、有機光触媒を含むアノード電極を採用する実 施例 1及び 2では、 自然光や可視光照射により光アノード電流が生じ、比較例 1より低 レ、(卑な)印加電位で酸素の発生が確認された。 [0126] From Examples 1 and 2 and Comparative Example 1, in Examples 1 and 2 employing an anode electrode containing an organic photocatalyst, a photoanode current was generated by irradiation with natural light or visible light, and the level was lower than that in Comparative Example 1. It was confirmed that oxygen was generated at a (low) applied potential.
[0127] 実施例 3 (ハロゲンランプ照射時の水素発牛渦程) Example 3 (Hydrogen-causing vortex at irradiation with halogen lamp)
(1)有機光触媒材料として、 n型半導体である PV及び p型半導体であるフタロシア二 ン(以下「H Pc」と表記する)を用いた。本発明においては、それぞれ昇華精製したも のを用いた。 (1) PV as an n-type semiconductor and phthalocyanine as a p-type semiconductor (hereinafter referred to as “H Pc”) were used as organic photocatalyst materials. In the present invention, each sublimation purified Was used.
[0128] (2)有機光触媒素子の作製は真空蒸着法により行った。まず、 ITO被覆ガラス基板  (2) The production of the organic photocatalytic device was performed by a vacuum deposition method. First, ITO coated glass substrate
(日本板硝子社製、抵抗 10 Ω cm—2)上に H Pcを 30— 350nmの厚さで、次いで PVを 250 (Nippon Sheet Glass Co., Ltd., resistance: 10 Ωcm- 2 )
2  2
一 650nmの厚さで、 H Pc上に積層した。さらに、白金黒微粒子を担持した。  One 650 nm thick, laminated on HPc. Further, platinum black fine particles were supported.
2  2
[0129] (3)上記 (2)で作製した有機光触媒素子を lcm X 1.5cmに切り出した。そのうちの lcm  (3) The organic photocatalyst device prepared in the above (2) was cut into lcm × 1.5 cm. Lcm of which
X 0.5cmに相当する部分をアセトンで拭き取り、銀含有エポキシ系接着剤(東洋イン キ製造社製、 T-700)を用いて導線を取り付けた。銀部位と水の接触を防ぐために、 エポキシ系接着剤を用いて絶縁して、有機光触媒被覆電極とした。  A portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.). In order to prevent contact between the silver part and water, the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
[0130] (4)光触媒反応セルは、以下の方法で作製した。上記 (3)で作製した有機光触媒被 覆電極を作用極、白金線を対極、銀/塩化銀電極(内部液は塩化カリウム飽和水溶 液)を参照極として、一室型三極式セルを構成した。電解質溶液として、水酸化ナトリ ゥムまたは水酸化カリウムで pH 11に調整したアルカリ水を用いた。  [0130] (4) The photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As the electrolyte solution, alkaline water adjusted to pH 11 with sodium hydroxide or potassium hydroxide was used.
[0131] (5)有機光触媒反応は、図 3に示すような測定装置を用いて実施した。関数発生器  (5) The organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator
(北斗電工社製、 HB-104)、クーロンメーター(北斗電工社製、 HF-201)及び X-Yレコ ーダー(グラフテック社製, WX-4000)を備えたポテンショ /ガルバノスタツト(北斗電工 社製、 HA-301)を用レ、、光源としてハロゲンランプ(150W)を用いた。  (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder (Graphtec, WX-4000) equipped with a potentiometer / galvanostat (Hokuto Denko, HA-301), and a halogen lamp (150 W) was used as a light source.
[0132] (6)常温、常圧下、約- 0.7 V (vs. Ag/AgCl)付近より卑な電位領域で、水素発生に 伴う光力ソード電流が得られた。生成物をガスクロマトグラフ(島津製作所製、 GC-8A )により分析し、水素の生成を確認した。  [0132] (6) At room temperature and under normal pressure, in the potential region lower than about -0.7 V (vs. Ag / AgCl), a light source current accompanying hydrogen generation was obtained. The product was analyzed with a gas chromatograph (GC-8A, manufactured by Shimadzu Corporation) to confirm the generation of hydrogen.
[0133] 2 H 0 + 2 → 20H— + H  [0133] 2 H 0 + 2 → 20H— + H
2 2  twenty two
比較例 2 (暗時の水素発生渦程 (参照データ) )  Comparative Example 2 (Hydrogen evolution vortex in the dark (reference data))
実施例 3に関連して、喑時に働く水素発生触媒を担持した電極を作製して、水酸化 ナトリウムまたは水酸化カリウムで pH— 11に調整したアルカリ水中で水素発生を行つ た。水素発生触媒としては高い活性の知られる白金黒を用いた。具体的な操作手順 を以下に示す。  In connection with Example 3, an electrode supporting a hydrogen generating catalyst that works for a long time was produced, and hydrogen was generated in alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide. Platinum black, which is known to have high activity, was used as the hydrogen generation catalyst. The specific operation procedure is shown below.
[0134] (1)約 0.3gを含む K PtCl水溶液を 10ml調製し、約 50mgの酢酸鉛を添加し、この K  (1) 10 ml of a K PtCl aqueous solution containing about 0.3 g was prepared, and about 50 mg of lead acetate was added thereto.
2 4 2 2 4 2
PtCl水溶液を用いて約 50— 100 mAcm— 2の条件で熱分解性グラフアイト(basa卜 plane Pyrolytic graphite (basal plane) under the condition of about 50-100 mAcm- 2 using PtCl aqueous solution
4  Four
pyrolytic graphite)電極(約 0.2cm2)を力ソード分極し、約 3— 4クーロン(C)通電して白 金黒電極を得た。この白金黒電極を水洗後、水素発生実験に用いた。 pyrolytic graphite) The electrode (about 0.2cm 2 ) is subjected to force sword polarization, and about 3-4 coulombs (C) are energized to become white. A gold black electrode was obtained. After washing this platinum black electrode with water, it was used for a hydrogen generation experiment.
[0135] (2)図 3に示した反応セル及び測定装置 (但し光源を用いないで)を用いて水素発 生実験を実施し、白金黒電極上で、約- 0.9 V(vs. Ag/AgCl)より卑な電位領域で水素 発生に基づく力ソード電流が得られた。実際に、 -1.0Vで定電位電解を行い、実施例 1(6)と同様に、生成物をガスクロマトグラフ(島津製作所製、 GC-8A)により分析したと ころ、約 16 μ ΐ/h—1の水素発生を確認した。また、多結晶白金板(lcm2)を用いた場合 も、同様の方法で水素が得られた。 (2) A hydrogen generation experiment was carried out using the reaction cell and the measuring device (without using a light source) shown in FIG. 3, and a voltage of about -0.9 V (vs. Ag / A force sword current based on hydrogen evolution was obtained in a potential region lower than AgCl). Actually, constant potential electrolysis was performed at -1.0 V, and the product was analyzed by gas chromatography (GC-8A, manufactured by Shimadzu Corporation) in the same manner as in Example 1 (6). 1 hydrogen generation was confirmed. Also, when a polycrystalline platinum plate (lcm 2 ) was used, hydrogen was obtained in the same manner.
[0136] 2 H〇 + 2e—→ H + 2 OH—  [0136] 2 H〇 + 2e— → H + 2 OH—
上記実施例 3及び比較例 2より、有機光触媒を含む力ソード電極を採用する実施例 3では、可視光照射により光力ソード電極が生じ、比較例 2より高レ、(貴な)印加電位 で水素の発生が確認された。  From Example 3 and Comparative Example 2 described above, in Example 3 employing a force sword electrode containing an organic photocatalyst, a light power sword electrode was generated by irradiation with visible light, which was higher than Comparative Example 2 at a (noble) applied potential. Generation of hydrogen was confirmed.
[0137] 実施例 4 (ハロゲンランプ照射時の水素発牛渦程) Example 4 (Hydrogen-causing vortex at irradiation with halogen lamp)
(1)有機光触媒材料として、 n型半導体である C 及び p型半導体である H Pcを用い た。本発明においては、それぞれ昇華精製したものを用いた。  (1) As an organic photocatalyst material, C as an n-type semiconductor and H Pc as a p-type semiconductor were used. In the present invention, those purified by sublimation were used.
[0138] (2)有機光触媒素子の作製は真空蒸着法により行った。まず、 ITO被覆ガラス基板 (2) The production of the organic photocatalytic device was performed by a vacuum deposition method. First, ITO coated glass substrate
(旭硝子社製、抵抗 8 Ω cm—2 ;ガラスの透過率 85 %;インジウムスズォキシドの積層厚 174 nm)上に H Pcを 30— 350nmの厚さで、次いで C を 100— 200nmの厚さで、 H Pc 上に積層した。さらに、白金黒微粒子を担持した。 (Asahi Glass Co., Ltd., resistance 8 Ωcm- 2 ; transmittance of glass 85%; laminated thickness of indium tin oxide 174 nm) on top of 30-350 nm thickness of H Pc and then 100-200 nm thickness of C Now, it was laminated on HPc. Further, platinum black fine particles were supported.
[0139] (3)上記 (2)で作製した有機光触媒素子を lcm X 1.5cmに切り出した。そのうちの lcm  (3) The organic photocatalyst device prepared in the above (2) was cut into lcm × 1.5 cm. Lcm of which
X 0.5cmに相当する部分をアセトンで拭き取り、銀含有エポキシ系接着剤(東洋イン キ製造社製、 T-700)を用いて導線を取り付けた。銀部位と水の接触を防ぐために、 エポキシ系接着剤を用いて絶縁して、有機光触媒被覆電極とした。  A portion corresponding to X 0.5 cm was wiped off with acetone, and a conductive wire was attached using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Manufacturing Co., Ltd.). In order to prevent contact between the silver part and water, the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
[0140] (4)光触媒反応セルは、以下の方法で作製した。上記 (3)で作製した有機光触媒被 覆電極を作用極、白金線を対極、銀/塩化銀電極(内部液は塩化カリウム飽和水溶 液)を参照極として、一室型三極式セルを構成した。電解質溶液として、リン酸または 硫酸などで pH 2に調整した酸性水を用レ、た。  (4) The photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as the working electrode, a platinum wire as the counter electrode, and a silver / silver chloride electrode (the internal solution is a saturated aqueous solution of potassium chloride) as a reference electrode, constructing a one-chamber type three-electrode cell. did. As an electrolyte solution, acidic water adjusted to pH 2 with phosphoric acid or sulfuric acid was used.
[0141] (5)有機光触媒反応は、図 3に示すような測定装置を用いて実施した。関数発生器  (5) The organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator
(北斗電工社製、 HB-104)、クーロンメーター(北斗電工社製、 HF-201)及び X-Yレコ ーダー(グラフテック社製, WX-4000)を備えたポテンショ /ガルバノスタツト(北斗電工 社製、 HA-301)を用レ、、光源としてハロゲンランプ(150W)を用いた。 (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder A potentiometer / galvanostat (Hokuto Denko, HA-301) equipped with a loader (WX-4000, manufactured by Graphtec) was used, and a halogen lamp (150 W) was used as a light source.
[0142] (6)常温、常圧下、約 +0.1 V (vs. Ag/AgCl)付近より卑な電位領域で、水素発生に 伴う光力ソード電流が得られた。実際に、 -0.1 Vで定電位電解を行い、生成物をガス クロマトグラフ(島津製作所製、 GC-8A)により分析したところ、約 10 15 μ 1 /h— 1の水 素発生を確認した。 [0142] (6) At room temperature and under normal pressure, a photovoltaic sword current accompanying hydrogen generation was obtained in a potential region lower than about +0.1 V (vs. Ag / AgCl). Actually, constant-potential electrolysis was performed at -0.1 V, and the product was analyzed by gas chromatography (GC-8A, manufactured by Shimadzu Corporation). As a result, hydrogen generation of about 10 15 μ 1 / h- 1 was confirmed.
[0143] 2H+ + 2e— → H [0143] 2H + + 2e— → H
2  2
比較例 3 (暗時の水素発牛渦程(参照データ) )  Comparative Example 3 (Hydrogen cattle vortex in darkness (reference data))
実施例 4に関連して、喑時に働く水素発生触媒を担持した電極を作製して、リン酸 または硫酸などで pH— 2に調整した酸性水中で水素発生を行った。水素発生触媒と しては高い活性の知られる白金黒を用いた。具体的な操作手順を以下に示す。  In connection with Example 4, an electrode supporting a hydrogen generating catalyst that works for a long time was prepared, and hydrogen was generated in acidic water adjusted to pH-2 with phosphoric acid or sulfuric acid. Platinum black, which is known to have high activity, was used as the hydrogen generation catalyst. The specific operation procedure is shown below.
[0144] (1)約 0.3gを含む K PtCl水溶液を 10ml調製し、約 50mgの酢酸鉛を添加し、この K [0144] (1) 10 ml of a K PtCl aqueous solution containing about 0.3 g was prepared, and about 50 mg of lead acetate was added thereto.
2 4 2 2 4 2
PtCl水溶液を用いて +0·4 V一- 0.1 V(vs. Ag/AgCl)の範囲で電位操作を繰り返す方To repeat the potential operation in the range of +0.4 V-0.1 V (vs. Ag / AgCl) using PtCl aqueous solution
4 Four
法で ITO被覆ガラス基板(旭硝子社製、抵抗 8 Ω cm— 2;ガラスの透過率 85 %;インジゥ ムスズォキシドの積層厚 174 nm)電極(約 lcm2)を力ソード分極し、約 0.01— 0.05クー ロン(C)通電して白金黒電極を得た。この白金黒電極を水洗後、水素発生実験に用 いた。 ITO-coated glass substrate by law (manufactured by Asahi Glass Company, resistance 8 Omega cm- 2; transmittance of 85 percent glass; Injiu Musuzuokishido laminate thickness 174 nm) of the electrode (about lcm 2) to force cathode polarization, about 0.01 0.05 Coo Ron (C) was energized to obtain a platinum black electrode. After washing this platinum black electrode with water, it was used for a hydrogen generation experiment.
[0145] (2)図 3に示した反応セル及び測定装置 (但し光源を用いないで)を用いて水素発 生実験を実施し、白金黒電極上で、約- 0.3 V(vs. Ag/AgCl)より卑な電位領域で水素 発生に基づく力ソード電流が得られた。実際に、 -0.4 Vで定電位電解を行い、実施 例 1(6)と同様に、生成物をガスクロマトグラフ(島津製作所製、 GC-8A)により分析し たところ、約 4 μ 1/h— 1の水素発生を確認した。また、多結晶白金板(lcm2)を用いた場 合も、同様の方法で水素が得られた。 [2] (2) A hydrogen generation experiment was performed using the reaction cell and the measuring device (without using a light source) shown in FIG. 3, and a voltage of about -0.3 V (vs. Ag / A force sword current based on hydrogen evolution was obtained in a potential region lower than AgCl). Actually, constant potential electrolysis was performed at -0.4 V, and the product was analyzed by gas chromatography (GC-8A, manufactured by Shimadzu Corporation) in the same manner as in Example 1 (6). 1 hydrogen generation was confirmed. Also, when a polycrystalline platinum plate (lcm 2 ) was used, hydrogen was obtained in the same manner.
[0146] 2H+ + 2e— → H  [0146] 2H + + 2e— → H
2  2
上記実施例 4及び比較例 3より、有機光触媒を含む力ソード電極を採用する実施例 4では、可視光照射により光力ソード電流が生じ、比較例 3より高い(貴な)印加電位 で水素の発生が確認された。  From Example 4 and Comparative Example 3 described above, in Example 4 employing a force sword electrode containing an organic photocatalyst, a light power sword current was generated by irradiation with visible light, and hydrogen was applied at a higher (noble) applied potential than Comparative Example 3. Occurrence was confirmed.
[0147] 例 5 (有 n 角虫 縮こ用いた の 気ズ τ解) 電極基材 /PV/CoPcを光アノード電極(陽極)、電極基材 /H Pc/PV/白金触媒を光 [0147] Example 5 (Existence of n solution using n hornworm shrinkage) Electrode substrate / PV / CoPc photo-anode electrode (anode), Electrode substrate / H Pc / PV / Platinum catalyst light
2  2
力ソード電極(陰極)として、水酸化ナトリウムまたは水酸化カリウムで pH— 11に調整 したアルカリ水を用いて、図 4のような二極セルを構成した。印加電圧 0.9 Vで電気分 解を行ったところ酸素が約 3.5 μ \/ 水素が約 8.0 x l/h発生した。具体的な操作手 順を以下に示す。  A bipolar cell as shown in Fig. 4 was constructed using alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide as the force source electrode (cathode). When electrolysis was performed at an applied voltage of 0.9 V, oxygen was generated at about 3.5 μ \ / hydrogen at about 8.0 x l / h. The specific operation procedure is shown below.
[0148] (1)有機光触媒材料として、 n型半導体である PV及び p型半導体である CoPcまたは H Pcを用いた。 PV, H Pc及び CoPcは、それぞれ昇華精製したものを用いた。  (1) As an organic photocatalyst material, PV as an n-type semiconductor and CoPc or HPc as a p-type semiconductor were used. PV, H Pc and CoPc were each purified by sublimation.
2 2  twenty two
[0149] (2)有機光触媒素子の作製は真空蒸着法により行った。陽極に関しては、 IT〇被覆 ガラス基板(日本板硝子社製、抵抗 10 Ω cm—2)上に PVを 650nmの厚さで、次いで、 PV 上に CoPcを 190nmの厚さで積層した。次いで lcm X 1.5cmに切り出した。陰極に関し ては、断面積 lcm X 1.5cmの熱分解性グラフアイト上に H Pcを 190nmの厚さで、 PVを (2) The production of the organic photocatalytic device was performed by a vacuum evaporation method. As for the anode, PV was laminated with a thickness of 650 nm on an IT〇-coated glass substrate (manufactured by Nippon Sheet Glass Co., Ltd., resistance 10 Ωcm- 2 ), and then CoPc was laminated with a thickness of 190 nm on the PV. Then it was cut into lcm x 1.5cm. For the cathode, HPc was deposited on a thermally decomposable graphite with a cross-sectional area of lcm x 1.5cm at a thickness of 190 nm and PV was applied.
2  2
650匪の厚さで積層し、更に白金黒を担持した。  The layers were stacked to a thickness of 650 marauders, and further carried platinum black.
[0150] (3)上記 (2)で作製した各電極の lcm X 0.5cmに相当する部分をアセトンで拭き取り、 銀含有エポキシ系接着剤 (東洋インキ製造社製)を用いて導線を取り付けた。銀部位 と水の接触を防ぐために、エポキシ系接着剤を用いて絶縁して、有機光触媒被覆電 極とした。 (3) A portion corresponding to lcm × 0.5 cm of each electrode prepared in (2) was wiped off with acetone, and a lead wire was attached using a silver-containing epoxy adhesive (manufactured by Toyo Ink Mfg. Co., Ltd.). In order to prevent contact between the silver part and water, the electrode was insulated using an epoxy adhesive to form an organic photocatalyst-coated electrode.
[0151] (4)光触媒反応セルは、以下の方法で作製した。上記 (3)で作製した有機光触媒被 覆電極を両極として、一室型二極式セルを構成した。この場合、セルの構成上、参照 極としての機能をも併せ持つている。電解質溶液として、水酸化ナトリウムまたは水酸 化カリウムなどで pH— 11に調整したアルカリ水を用いた。  [0151] (4) The photocatalytic reaction cell was produced by the following method. A single-chamber bipolar cell was constructed using the organic photocatalyst-coated electrode prepared in (3) above as both electrodes. In this case, the cell also has a function as a reference electrode due to the cell configuration. Alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used as the electrolyte solution.
[0152] (5)有機光触媒反応は、図 4に示すような測定装置を用いて実施した。関数発生器  (5) The organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator
(北斗電工社製、 HB-104)、クーロンメーター(北斗電工社製、 HF-201)及び X-Yレコ ーダー(グラフテック社製, WX-4000)を備えたポテンショ /ガルバノスタツト(北斗電工 社製、 HA-301)を用レ、、光源としてハロゲンランプ(150W)を用いた。また、生成物を ガスクロマトグラフ(島津製作所製、 GC-8A)を用いて、解析した。  (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder (Graphtec, WX-4000) equipped with a potentiometer / galvanostat (Hokuto Denko, HA-301), and a halogen lamp (150 W) was used as a light source. The product was analyzed using a gas chromatograph (GC-8A, manufactured by Shimadzu Corporation).
[0153] (6)常温、常圧下、アノード電極及び力ソード電極に上記の光源から光を照射し、印 加電圧約 0.9 Vで電解を行ったところ、酸素が約 3.5 μ 1 水素が約 8 μ 1 h— 1発生し た。 [0154] 2 OH—→ 1/2 O + H O + 2e— (6) At normal temperature and normal pressure, the anode electrode and the force source electrode were irradiated with light from the above light source, and electrolysis was performed at an applied voltage of about 0.9 V. μ 1 h— 1 occurred. [0154] 2 OH— → 1/2 O + HO + 2e—
2 2  twenty two
上記実施例 5より、有機光触媒を含むアノード電極及び力ソード電極を採用する水 の電気分解では、可視光照射により光誘起電極が生じ、理論電圧より低い印加電圧 (0.9 V)で水素と酸素の発生が確認された。  According to the above Example 5, in the electrolysis of water employing an anode electrode and an organic sword electrode containing an organic photocatalyst, a photo-induced electrode is generated by irradiation with visible light, and hydrogen and oxygen are generated at an applied voltage (0.9 V) lower than the theoretical voltage. Occurrence was confirmed.
[0155] 例 6 (有 n 角虫 縮こ用いた の 気ズ τ解)  [0155] Example 6 (Existence of n solution using shrunken hornworm)
電極基材 /PV/CoPcをアノード電極(陽極)、電極基材 /H Pc/C を力ソード電極(陰  The electrode substrate / PV / CoPc is the anode electrode (anode), and the electrode substrate / H Pc / C is the force electrode (negative electrode).
2 60  2 60
極)として、図 5のような二極セルを構成した。印加電圧 0.9 Vで電気分解を行ったとこ ろ酸素が約 3.0 μ ΐ/h,水素が約 6.0 μ ΐ/h発生した。具体的な操作手順を以下に示 す。  As a pole, a bipolar cell as shown in Fig. 5 was constructed. When electrolysis was performed at an applied voltage of 0.9 V, about 3.0 μΐ / h of oxygen and about 6.0 μΐ / h of hydrogen were generated. The specific operation procedure is shown below.
[0156] (1)有機光触媒材料として、 n型半導体である PVまたは C 及び p型半導体である  (1) As an organic photocatalyst material, n-type semiconductor PV or C and p-type semiconductor
60  60
CoPcまたは H Pcを用いた。 PV、 H Pc、 CoPcは、それぞれ昇華精製したものを用いた  CoPc or HPc was used. PV, H Pc and CoPc were each purified by sublimation.
2 2  twenty two
[0157] (2)有機光触媒素子の作製は真空蒸着法により行った。陽極に関しては、 ITO被覆 ガラス基板(日本板硝子社製、抵抗 13 Ω cm— 2;ガラスの透過率 85 %;インジウムスズ ォキシドの積層厚 110 nm)上に PVを 650nmの厚さで、次いで、 PV上に CoPcを 190nm の厚さで積層した。次いで lcm X 1.5cmに切り出した。陰極に関しては、陽極と同様に 、 ITO上に H Pcを 60nmの厚さで、 C を 120nmの厚さで積層し、更に白金黒を担持し (2) The production of the organic photocatalytic device was performed by a vacuum evaporation method. Regarding the anode, PV was coated on an ITO-coated glass substrate (Nippon Sheet Glass Co., Ltd., resistance 13 Ωcm- 2 ; glass transmittance 85%; indium tin oxide laminated thickness 110 nm) with a thickness of 650 nm, and then PV On top, CoPc was laminated with a thickness of 190 nm. Then it was cut into lcm x 1.5cm. As for the cathode, as in the case of the anode, HPc is laminated on ITO at a thickness of 60 nm, C is laminated at a thickness of 120 nm, and platinum black is further supported.
2 60  2 60
[0158] (3)上記 (2)で作製した各電極の lcm X 0.5cmに相当する部分をアセトンで拭き取り、 銀含有エポキシ系接着剤 (東洋インキ製造社製、 T-700)を用いて導線を取り付けた 。銀部位と水の接触を防ぐために、エポキシ系接着剤を用いて絶縁して、有機光触 媒被覆電極とした。 [0158] (3) A portion corresponding to lcm x 0.5cm of each electrode prepared in (2) above was wiped with acetone, and a lead wire was used using a silver-containing epoxy adhesive (T-700, manufactured by Toyo Ink Mfg. Co., Ltd.). Attached. An organic photocatalyst-coated electrode was insulated using an epoxy-based adhesive to prevent contact of silver with water.
[0159] (4)光触媒反応セルは、以下の方法で作製した。上記 (3)で作製した有機光触媒被 覆電極を両極として、二極式セルを構成した。電解質溶液には、陽極側の反応漕を 水酸化ナトリウムまたは水酸化カリウムで pH— 11に調整したアルカリ水、そして陰極 側の反応漕をリン酸または硫酸で pH 2に調整した酸性水をそれぞれ用いた。さら に、両漕を塩橋でつなレ、だものを反応セルとした。  [0159] (4) The photocatalytic reaction cell was produced by the following method. A bipolar cell was constructed using the organic photocatalyst-coated electrode prepared in (3) above as both electrodes. For the electrolyte solution, use alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide in the reaction tank on the anode side, and acidic water adjusted to pH 2 with phosphoric acid or sulfuric acid in the reaction tank on the cathode side, respectively. Was. Furthermore, both tanks were connected by a salt bridge, and the tank was used as a reaction cell.
[0160] (5)有機光触媒反応は、図 5に示すような測定装置を用いて実施した。関数発生器 (北斗電工社製、 HB-104)、クーロンメーター(北斗電工社製、 HF-201)及び X-Yレコ ーダー(グラフテック社製, WX-4000)を備えたポテンショ /ガルバノスタツト(北斗電工 社製、 HA-301)を用レ、、光源としてハロゲンランプ(150W)を用いた。また、生成物を ガスクロマトグラフ(島津製作所製、 GC-8A)を用いて、解析した。 (5) The organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder (Graphtec, WX-4000) equipped with a potentiometer / galvanostat (Hokuto Denko, HA-301), and a halogen lamp (150 W) was used as a light source. The product was analyzed using a gas chromatograph (GC-8A, manufactured by Shimadzu Corporation).
[0161] (6)常温、常圧下、アノード電極及び力ソード電極に上記の光源から光を照射し、印 加電圧約 0.9Vで電解を行ったところ、酸素が約 3.0 μ 1 水素が約 6.0 μ 1 h— 1発生 した。 [0161] (6) At normal temperature and normal pressure, the anode electrode and the force source electrode were irradiated with light from the above-mentioned light source, and electrolysis was performed at an applied voltage of about 0.9 V. μ 1 h— 1 occurred.
[0162] 2 OH— → 1/2 0 2 + H 20 + 2e—  [0162] 2 OH— → 1/2 0 2 + H 20 + 2e—
上記実施例 6より、有機光触媒を含むアノード電極及び力ソード電極を採用する水 の電気分解では、可視光照射により光誘起の電流が生じ、理論電圧より低い印加電 圧(0.9 V)で水素と酸素の発生が確認された。  According to Example 6 above, in the electrolysis of water using an anode electrode and a force source electrode containing an organic photocatalyst, a light-induced current is generated by irradiation with visible light, and hydrogen is applied at an applied voltage (0.9 V) lower than the theoretical voltage. Generation of oxygen was confirmed.
[0163] 例 7 (有 n 角虫 アノード、縮こ用いた の t½解)  [0163] Example 7 (yes n horned anode, t-solution using shrinkage)
電極基材 /PV/CoPcをアノード電極(陽極)、白金棒を力ソード電極(陰極)として、 水酸化ナトリウムまたは水酸化カリウムで pH— 11に調整したアルカリ水を用いて、図 6のような二極セルを構成した。印加電圧 1.1 Vで電気分解を行ったところ酸素が約 3.5 μ ΐ/h、水素が約 8.0 μ ΐ/h発生した。具体的な操作手順を以下に示す。  Electrode substrate / PV / CoPc is used as an anode electrode (anode), and a platinum rod is used as a force source electrode (cathode) using alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide as shown in Fig. 6. A bipolar cell was constructed. When electrolysis was performed at an applied voltage of 1.1 V, about 3.5 μ 約 / h of oxygen and about 8.0 μΐ / h of hydrogen were generated. The specific operation procedure is shown below.
[0164] (1)有機光触媒材料として、 n型半導体である PV及び p型半導体である CoPcを用い た。 PV及び CoPcは、それぞれ昇華精製したものを用いた。  (1) As an organic photocatalyst material, PV as an n-type semiconductor and CoPc as a p-type semiconductor were used. PV and CoPc used were each purified by sublimation.
[0165] (2)有機光触媒素子の作製は真空蒸着法により行った。陽極に関しては、 ITO被覆 ガラス基板(日本板硝子社製、抵抗 10 Ω cm—2)上に PVを 650nmの厚さで、次いで、 PV 上に CoPcを 190nmの厚さで積層した。次いで lcm X 1.5cmに切り出した。陰極には白 金棒をそのまま使用した。 (2) The production of the organic photocatalytic device was performed by a vacuum evaporation method. As for the anode, PV was laminated with a thickness of 650 nm on an ITO-coated glass substrate (manufactured by Nippon Sheet Glass Co., Ltd., resistance 10 Ωcm- 2 ), and then CoPc was laminated with a thickness of 190 nm on the PV. Then it was cut into lcm x 1.5cm. A white gold bar was used as the cathode.
[0166] (3)上記 (2)で作製した陽極の lcm X 0.5cmに相当する部分をアセトンで拭き取り、銀 含有エポキシ系接着剤 (東洋インキ製造社製)を用いて導線を取り付けた。銀部位と 水の接触を防ぐために、エポキシ系接着剤を用いて絶縁して、有機光触媒被覆電極 とした。  (3) A portion corresponding to lcm × 0.5 cm of the anode prepared in (2) was wiped off with acetone, and a lead wire was attached using a silver-containing epoxy adhesive (manufactured by Toyo Ink Mfg. Co., Ltd.). In order to prevent contact between the silver site and water, the electrode was insulated with an epoxy adhesive to form an organic photocatalyst-coated electrode.
[0167] (4)光触媒反応セルは、以下の方法で作製した。上記 (3)で作製した有機光触媒被 覆電極を陽極、白金棒を陰極として、一室型二極式セルを構成した。この場合、セル の構成上、参照極としての機能をも併せ持っている。電解質溶液として、水酸化ナトリ ゥムまたは水酸化カリウムなどで pH— 11に調整したアルカリ水を用いた。 [0167] (4) The photocatalytic reaction cell was produced by the following method. Using the organic photocatalyst-coated electrode prepared in (3) above as an anode and a platinum rod as a cathode, a single-chamber bipolar cell was constructed. In this case, the cell Has a function as a reference electrode. As the electrolyte solution, alkaline water adjusted to pH-11 with sodium hydroxide or potassium hydroxide was used.
[0168] (5)有機光触媒反応は、図 6に示すような測定装置を用いて実施した。関数発生器 (5) The organic photocatalytic reaction was carried out using a measuring device as shown in FIG. Function generator
(北斗電工社製、 HB-104)、クーロンメーター(北斗電工社製、 HF-201)及び X-Yレコ ーダー(グラフテック社製, WX-4000)を備えたポテンショ /ガルバノスタツト(北斗電工 社製、 HA-301)を用レ、、光源としてハロゲンランプ(150W)を用いた。また、生成物を ガスクロマトグラフ(島津製作所製、 GC-8A)を用いて、解析した。  (Hokuto Denko, HB-104), Coulomb meter (Hokuto Denko, HF-201) and XY recorder (Graphtec, WX-4000) equipped with a potentiometer / galvanostat (Hokuto Denko, HA-301), and a halogen lamp (150 W) was used as a light source. The product was analyzed using a gas chromatograph (GC-8A, manufactured by Shimadzu Corporation).
[0169] (6)常温、常圧下、力ソード電極には光を照射せずにアノード電極のみに光を照射 し、印加電圧約 1.1 Vで電解を行ったところ、酸素が約 3.5 μ 1、水素が約 8 μ 1 h— 1発 生した。 (6) Under normal temperature and normal pressure, the anode electrode was irradiated with light without irradiating the force electrode with light, and electrolysis was performed at an applied voltage of about 1.1 V. As a result, oxygen was reduced to about 3.5 μ 1 , Hydrogen was generated for about 8 μ1 h- 1 .
[0170] 2 OH"→ 1/2 0 + H 0 + 2e—  [0170] 2 OH "→ 1/2 0 + H 0 + 2e—
上記実施例 7より、有機光触媒を含むアノード電極及び白金からなる力ソード電極 を採用する水の電気分解では、可視光照射により光誘起電極が生じ、理論電圧より 低レ、印加電圧(1.1 V)で水素と酸素の発生が確認された。  From Example 7 above, in the electrolysis of water employing an anode electrode containing an organic photocatalyst and a force sword electrode made of platinum, a photo-induced electrode was generated by irradiation with visible light, and the applied voltage (1.1 V) was lower than the theoretical voltage. As a result, generation of hydrogen and oxygen was confirmed.

Claims

請求の範囲 The scope of the claims
[I] P型有機半導体と n型有機半導体とを含む有機光触媒からなる水の電気分解用電 極材料。  [I] An electrode material for electrolysis of water, comprising an organic photocatalyst containing a P-type organic semiconductor and an n-type organic semiconductor.
[2] p型有機半導体が大環状の配位子化合物又はその金属錯体である請求項 1に記 載の水の電気分解用電極材料。  [2] The electrode material for electrolysis of water according to claim 1, wherein the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
[3] p型有機半導体が、フタロシアニン誘導体、ナフタロシアニン誘導体、及びポルフィ リン誘導体からなる群から選ばれる少なくとも 1種である請求項 1に記載の水の電気 分解用電極材料。 3. The electrode material for water electrolysis according to claim 1, wherein the p-type organic semiconductor is at least one selected from the group consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
[4] n型有機半導体が多環式芳香族化合物である請求項 1に記載の水の電気分解用 電極材料。  [4] The electrode material for electrolysis of water according to claim 1, wherein the n-type organic semiconductor is a polycyclic aromatic compound.
[5] n型有機半導体が、フラーレン類、カーボンナノチューブ類、電子供与体をドープし た導電性高分子、ペリレン誘導体、及びナフタレン誘導体からなる群から選ばれる少 なくとも 1種である請求項 1に記載の水の電気分解用電極材料。  [5] The n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, a conductive polymer doped with an electron donor, a perylene derivative, and a naphthalene derivative. 2. The electrode material for electrolysis of water according to 1.
[6] 電極基材の表面に請求項 1に記載の水の電気分解用電極材料を被覆してなる電 極。  [6] An electrode obtained by coating the surface of an electrode substrate with the electrode material for water electrolysis according to claim 1.
[7] 請求項 6に記載の電極であって、電極基材の表面に、 n型有機半導体からなる第 1 層及び p型有機半導体からなる第 2層を被覆してなり、必要に応じ、第 2層の上に遷 移金属触媒を担持してなるアノード電極。  [7] The electrode according to claim 6, wherein the surface of the electrode substrate is coated with a first layer made of an n-type organic semiconductor and a second layer made of a p-type organic semiconductor. An anode electrode that supports a transition metal catalyst on the second layer.
[8] 請求項 6に記載の電極であって、電極基材の表面に、 p型有機半導体からなる第 1 層及び n型有機半導体からなる第 2層を被覆してなり、必要に応じ、第 2層の上に遷 移金属触媒を担持してなる力ソード電極。 [8] The electrode according to claim 6, wherein the surface of the electrode substrate is coated with a first layer made of a p-type organic semiconductor and a second layer made of an n-type organic semiconductor. A force sword electrode that supports a transition metal catalyst on the second layer.
[9] 電極基材が、導電性透明ガラス基材、金属基材、又は炭素系基材である請求項 6 に記載の電極。 [9] The electrode according to claim 6, wherein the electrode substrate is a conductive transparent glass substrate, a metal substrate, or a carbon-based substrate.
[10] 請求項 7に記載のアノード電極と請求項 8に記載の力ソード電極とからなる電極、定 電位電源、電解質水溶液、及び光源を備えた水の電気分解装置。  [10] An electrolysis apparatus for water comprising an electrode comprising the anode electrode according to claim 7 and the force sword electrode according to claim 8, a constant potential power supply, an aqueous electrolyte solution, and a light source.
[II] 前記アノード電極及び前記力ソード電極が定電位電源に接続され、前記アノード電 極及び前記力ソード電極が電解質水溶液に浸漬されてなる請求項 10に記載の水の 電気分解装置。 11. The water electrolysis apparatus according to claim 10, wherein the anode electrode and the force sword electrode are connected to a constant potential power supply, and the anode electrode and the force sword electrode are immersed in an aqueous electrolyte solution.
[12] 請求項 11に記載の水の電気分解装置において、電極に光を照射しながら、定電 位電源でアノード電極及び力ソード電極に電圧を印加することを特徴とする水の電気 分解方法。 12. The water electrolysis apparatus according to claim 11, wherein a voltage is applied to the anode electrode and the force source electrode with a constant potential power supply while irradiating the electrodes with light. .
[13] 印加電圧が、 0.3— 1.2V程度である請求項 12に記載の水の電気分解方法。  13. The water electrolysis method according to claim 12, wherein the applied voltage is about 0.3 to 1.2 V.
[14] 請求項 7に記載のアノード電極と力ソード電極とからなる電極、又は請求項 8に記載 の力ソード電極とアノード電極とからなる電極、定電位電源、電解質水溶液、及び光 源を備えた水の電気分解装置。  [14] An electrode comprising the anode electrode and the force electrode according to claim 7, or an electrode comprising the force electrode and the anode electrode according to claim 8, a constant potential power supply, an aqueous electrolyte solution, and a light source. Water electrolysis equipment.
[15] 前記アノード電極及び前記力ソード電極が定電位電源に接続され、前記アノード電 極及び前記力ソード電極が電解質水溶液に浸漬されてなる請求項 14に記載の水の 電気分解装置。 15. The water electrolysis apparatus according to claim 14, wherein the anode electrode and the force source electrode are connected to a constant potential power supply, and the anode electrode and the force source electrode are immersed in an aqueous electrolyte solution.
[16] 請求項 15に記載の水の電気分解装置において、電極に光を照射しながら、定電 位電源でアノード電極及び力ソード電極に電圧を印加することを特徴とする水の電気 分解方法。  16. The water electrolysis apparatus according to claim 15, wherein a voltage is applied to the anode electrode and the force source electrode by a constant potential power supply while irradiating the electrodes with light. .
[17] 印加電圧が、 1.0— 1.4V程度である請求項 16に記載の水の電気分解方法。  17. The method for electrolyzing water according to claim 16, wherein the applied voltage is about 1.0 to 1.4 V.
[18] 照射光が自然光である請求項 12又は 16に記載の水の電気分解方法。  [18] The method for electrolyzing water according to claim 12, wherein the irradiation light is natural light.
[19] アノード電極から酸素を発生し、力ソード電極から水素を発生することを特徴とする 請求項 12又は 16に記載の水の電気分解方法。  19. The water electrolysis method according to claim 12, wherein oxygen is generated from the anode electrode, and hydrogen is generated from the force electrode.
[20] p型有機半導体と n型有機半導体とを含む有機光触媒。 [20] An organic photocatalyst containing a p-type organic semiconductor and an n-type organic semiconductor.
[21] p型有機半導体が大環状の配位子化合物又はその金属錯体である請求項 20に記 載の有機光触媒。  [21] The organic photocatalyst according to claim 20, wherein the p-type organic semiconductor is a macrocyclic ligand compound or a metal complex thereof.
[22] p型有機半導体が、フタロシアニン誘導体、ナフタロシアニン誘導体、及びポルフィ リン誘導体からなる群から選ばれる少なくとも 1種である請求項 20に記載の有機光触 媒。  22. The organic photocatalyst according to claim 20, wherein the p-type organic semiconductor is at least one selected from the group consisting of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative.
[23] n型有機半導体が多環式芳香族化合物である請求項 20に記載の有機光触媒。  [23] The organic photocatalyst according to claim 20, wherein the n-type organic semiconductor is a polycyclic aromatic compound.
[24] n型有機半導体が、フラーレン類、カーボンナノチューブ類、電子供与体をドープし た導電性高分子、ペリレン誘導体、及びナフタレン誘導体からなる群から選ばれる少 なくとも 1種である請求項 20に記載の有機光触媒。 [24] The n-type organic semiconductor is at least one selected from the group consisting of fullerenes, carbon nanotubes, a conductive polymer doped with an electron donor, a perylene derivative, and a naphthalene derivative. 4. The organic photocatalyst according to 1.
PCT/JP2004/018886 2003-12-26 2004-12-17 Method for electrolyzing water using organic photocatalyst WO2005063393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516568A JP3995051B2 (en) 2003-12-26 2004-12-17 Water electrolysis using organic photocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-433623 2003-12-26
JP2003433623 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005063393A1 true WO2005063393A1 (en) 2005-07-14

Family

ID=34736521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018886 WO2005063393A1 (en) 2003-12-26 2004-12-17 Method for electrolyzing water using organic photocatalyst

Country Status (3)

Country Link
JP (1) JP3995051B2 (en)
TW (1) TW200534330A (en)
WO (1) WO2005063393A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107085A (en) * 2005-10-15 2007-04-26 Tetsuzo Yoshimura Integrated chemical system and integrated light energy conversion system
JP2009505904A (en) * 2005-08-31 2009-02-12 バッテル メモリアル インスティテュート Power device and oxygen generator
JP2009028669A (en) * 2007-07-27 2009-02-12 Hirosaki Univ Visible-light response type photocatalyst
JP2009125609A (en) * 2007-11-20 2009-06-11 National Institute Of Advanced Industrial & Technology Catalyst for electrochemical oxidation of oxalates
JP2009219958A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Oxidative decomposition method using photocatalyst and water purification apparatus
WO2009118162A1 (en) * 2008-03-27 2009-10-01 Bayer Technology Services Gmbh Electrolysis cell for hydrogen chloride electrolysis
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film
JP2010050115A (en) * 2008-08-19 2010-03-04 Hirosaki Univ Reaction cell for organic optical response element
WO2010042197A1 (en) * 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
WO2010042196A1 (en) * 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
WO2011146218A1 (en) * 2010-05-17 2011-11-24 Honda Motor Co., Ltd. Solar fuel cell
JP2012506492A (en) * 2008-10-21 2012-03-15 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Novel materials and their use for electrocatalytic generation or incorporation of H2
JP5182665B2 (en) * 2005-04-26 2013-04-17 国立大学法人弘前大学 Organic photocatalyst
CN103872364A (en) * 2012-12-14 2014-06-18 黄炳照 Dielectric type photoelectric cell system
JP2015013262A (en) * 2013-07-05 2015-01-22 公立大学法人首都大学東京 Oxidation catalyst
WO2015079594A1 (en) * 2013-11-29 2015-06-04 鈴木 健治 Hydrogen water production apparatus, and electrode for use in same
WO2015133127A1 (en) * 2014-03-04 2015-09-11 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
CN105289664A (en) * 2015-08-27 2016-02-03 湖北文理学院 Efficient and stable silver chloride photocatalyst preparation method
CN111085107A (en) * 2019-11-25 2020-05-01 苏交科集团股份有限公司 Method for purifying vehicle tail gas by porous asphalt pavement loaded composite modified photocatalyst
JP2021194555A (en) * 2020-06-09 2021-12-27 国立大学法人弘前大学 Catalyst electrode, method for manufacturing the same and method for oxidizing formic acid using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551543B (en) * 2014-05-02 2016-10-01 國立成功大學 Preparation and application of carbon nanoparticle diode
CN107188273A (en) * 2017-04-27 2017-09-22 华中科技大学 A kind of preparation method of three-dimensional carbon metal oxides electro catalytic electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463113A (en) * 1990-06-29 1992-02-28 Hitachi Ltd Photoreduction cell for carbon dioxide gas
JP2001286749A (en) * 2000-02-03 2001-10-16 Sharp Corp Chemical transducer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463113A (en) * 1990-06-29 1992-02-28 Hitachi Ltd Photoreduction cell for carbon dioxide gas
JP2001286749A (en) * 2000-02-03 2001-10-16 Sharp Corp Chemical transducer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABE T. ET AL.: "Laser kakuyugo target-yo kuri zairyo no denshi tikusei.", LASER KAKUYUGU KENKYU CENTER HEISEI 13 NENDO ANNUAL COLABORATION REPORT., March 2002 (2002-03-01), pages 159 - 160, XP002991231 *
ABE T. ET AL.: "Laser kakuyugu target-yo yuki zairyo no denshi tokusei.", LASER KAKUYUGU KENKYU CENTER HEISEI 14 NENDO ANNUAL COLLABORATION REPORT., March 2003 (2003-03-01), pages 157 - 158, XP002991230 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182665B2 (en) * 2005-04-26 2013-04-17 国立大学法人弘前大学 Organic photocatalyst
JP2009505904A (en) * 2005-08-31 2009-02-12 バッテル メモリアル インスティテュート Power device and oxygen generator
JP2007107085A (en) * 2005-10-15 2007-04-26 Tetsuzo Yoshimura Integrated chemical system and integrated light energy conversion system
JP2009028669A (en) * 2007-07-27 2009-02-12 Hirosaki Univ Visible-light response type photocatalyst
JP2009125609A (en) * 2007-11-20 2009-06-11 National Institute Of Advanced Industrial & Technology Catalyst for electrochemical oxidation of oxalates
JP2009219958A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Oxidative decomposition method using photocatalyst and water purification apparatus
WO2009118162A1 (en) * 2008-03-27 2009-10-01 Bayer Technology Services Gmbh Electrolysis cell for hydrogen chloride electrolysis
US8778148B2 (en) 2008-03-27 2014-07-15 Bayer Intellectual Property Gmbh Electrolysis cell for hydrogen chloride electrolysis
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film
JP2010050115A (en) * 2008-08-19 2010-03-04 Hirosaki Univ Reaction cell for organic optical response element
WO2010042197A1 (en) * 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
WO2010042196A1 (en) * 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
JP2012506492A (en) * 2008-10-21 2012-03-15 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Novel materials and their use for electrocatalytic generation or incorporation of H2
CN103119203B (en) * 2010-05-17 2016-06-08 本田技研工业株式会社 Solar fuel cell
WO2011146218A1 (en) * 2010-05-17 2011-11-24 Honda Motor Co., Ltd. Solar fuel cell
CN103119203A (en) * 2010-05-17 2013-05-22 本田技研工业株式会社 Solar fuel cell
JP2013532228A (en) * 2010-05-17 2013-08-15 本田技研工業株式会社 Solar fuel cell
CN103872364A (en) * 2012-12-14 2014-06-18 黄炳照 Dielectric type photoelectric cell system
JP2015013262A (en) * 2013-07-05 2015-01-22 公立大学法人首都大学東京 Oxidation catalyst
JP2015104690A (en) * 2013-11-29 2015-06-08 株式会社インテクトプランニング Device for producing hydrogen water, and electrode used therefor
WO2015079594A1 (en) * 2013-11-29 2015-06-04 鈴木 健治 Hydrogen water production apparatus, and electrode for use in same
WO2015133127A1 (en) * 2014-03-04 2015-09-11 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
JP2015180765A (en) * 2014-03-04 2015-10-15 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which the same is used
CN105289664A (en) * 2015-08-27 2016-02-03 湖北文理学院 Efficient and stable silver chloride photocatalyst preparation method
CN111085107A (en) * 2019-11-25 2020-05-01 苏交科集团股份有限公司 Method for purifying vehicle tail gas by porous asphalt pavement loaded composite modified photocatalyst
JP2021194555A (en) * 2020-06-09 2021-12-27 国立大学法人弘前大学 Catalyst electrode, method for manufacturing the same and method for oxidizing formic acid using the same
JP7399423B2 (en) 2020-06-09 2023-12-18 国立大学法人弘前大学 Catalytic electrode, its manufacturing method, and formic acid oxidation method using the same

Also Published As

Publication number Publication date
JP3995051B2 (en) 2007-10-24
TW200534330A (en) 2005-10-16
JPWO2005063393A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP3995051B2 (en) Water electrolysis using organic photocatalyst
Windle et al. Earth-abundant molecular Z-scheme photoelectrochemical cell for overall water-splitting
McKone et al. Will solar-driven water-splitting devices see the light of day?
Kim et al. Artificial photosynthesis for high‐value‐added chemicals: old material, new opportunity
Li et al. Electrolytic CO2 reduction in tandem with oxidative organic chemistry
Lewis Developing a scalable artificial photosynthesis technology through nanomaterials by design
Zhong et al. Photoelectrochemical water oxidation by cobalt catalyst (“Co− Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck
Mor et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation
Sato et al. Toward solar-driven photocatalytic CO2 reduction using water as an electron donor
Samanta et al. Stimulating the visible-light catalytic activity of Bi2MoO6 nanoplates by embedding carbon dots for the efficient oxidation, cascade reaction, and photoelectrochemical O2 evolution
Liu et al. Charge Transport in Two‐Photon Semiconducting Structures for Solar Fuels
Huang et al. Dirhodium (II, II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light
Lu et al. Microbial photoelectrosynthesis for self-sustaining hydrogen generation
Zhang et al. Noble-metal-free perovskite–BiVO4 tandem device with simple preparation method for unassisted solar water splitting
Kan et al. System engineering enhances photoelectrochemical CO2 reduction
Zhao et al. Conversion of CO2 to formic acid by integrated all-solar-driven artificial photosynthetic system
Wan et al. Solar driven CO 2 reduction: from materials to devices
Yamada et al. Robustness of Ru/SiO2 as a hydrogen-evolution catalyst in a photocatalytic system using an organic photocatalyst
Zhang et al. Sustainable nitrogen fixation over Ru single atoms decorated Cu2O using electrons produced from photoelectrocatalytic organics degradation
Liang et al. Hydrogen generation promoted by photocatalytic oxidation of ascorbate and glucose at a cadmium sulfide electrode
Lee et al. Solar-harvesting lead halide perovskite for artificial photosynthesis
Huang et al. Solar-to-chemical fuel conversion via metal halide perovskite solar-driven electrocatalysis
Altaf et al. Synthesis, characterization, and photoelectrochemical catalytic studies of a water‐stable zinc‐based metal–organic framework
Jian et al. Interface-engineered Ni-coated CdTe heterojunction photocathode for enhanced photoelectrochemical hydrogen evolution
Woldu et al. Electrochemical reduction of CO2: Two‐or three‐electrode configuration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516568

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase