[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005059623A1 - 光スイッチ - Google Patents

光スイッチ Download PDF

Info

Publication number
WO2005059623A1
WO2005059623A1 PCT/JP2004/019046 JP2004019046W WO2005059623A1 WO 2005059623 A1 WO2005059623 A1 WO 2005059623A1 JP 2004019046 W JP2004019046 W JP 2004019046W WO 2005059623 A1 WO2005059623 A1 WO 2005059623A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable block
fixed
movable
block
optical fiber
Prior art date
Application number
PCT/JP2004/019046
Other languages
English (en)
French (fr)
Inventor
Masahiro Mita
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to JP2005516381A priority Critical patent/JP3900301B2/ja
Priority to US10/547,391 priority patent/US7336865B2/en
Publication of WO2005059623A1 publication Critical patent/WO2005059623A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3508Lateral or transverse displacement of the whole waveguides, e.g. by varying the distance between opposed waveguide ends, or by mutual lateral displacement of opposed waveguide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3572Magnetic force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs

Definitions

  • the present invention relates to an optical switch, and more particularly to an optical switch suitable for use in an optical communication apparatus, an optical transmission apparatus, and the like.
  • optical path switching is for failure recovery to switch a broken transmission path to another non-broken path only by switching a normal line, or for maintenance inspection to switch a line in an optical communication network in a building or area, It is for changing the optical path in the measuring device.
  • the switching method of the light switch a method of switching the traveling direction of light by changing the refractive index or phase of the light path electrically or optically and switching the traveling direction of light by moving the light path mechanically.
  • mechanical light switches have the advantage that there is almost no wavelength dependence of the propagating light which causes the coupling loss of the light to be small. Therefore, mechanical light switches of various structures are proposed according to various switching purposes and the number of branches.
  • the mechanical light switch described in US Pat. No. 6,169,826 includes a movable member made of soft magnetic ceramic fixed to the tip of two movable optical fibers 20a and 20b. 30, a fixed member 32 fixed at a position opposite to the movable member 30, four fixed optical fibers 21 a, 21 b, 21 c, 21 d fixed to the fixed member 32, and the movable member 30 to the fixed member 32.
  • the actuator has an actuator to be moved relative to the movable optical fibers 20a, 20b and a means for positioning the movable optical fibers 21a, 21b, 21c, 21d in a pair, and the armature has a permanent magnet 52 and a movable member 30.
  • the first and second yokes 50a, 50b facing each other in the moving direction Coils 51a, 51b disposed in the first and second yokes 50a, 50b.
  • This mechanical light switch is widely used at present because of its small size and high reliability.
  • An optical communication network is a general line communication network (referred to as communication system) including long distance communication between cities, and a closed communication network within a company etc. [generally referred to as Local Area Network (LAN)]. It is roughly divided into In a general communication network, many of the optical switches that often use redundant line optical fibers to minimize the failure caused by optical fiber disconnection are used to switch between these redundant line optical fibers. The optical switch for this consumes power only when switching, and has a self-holding mechanism that does not require power when the optical fiber is coupled.
  • the optical switch described in U.S. Pat. No. 6,169,826 is a latch-type optical switch which holds its position with a permanent magnet after the coil is energized to move the movable optical fiber, and is suitable for such applications. It is.
  • a LAN-based optical communication network forms a closed optical loop as a whole.
  • Optical fibers are connected by terminal devices on the loop, and the incident optical signal is once converted into an electrical signal, and the terminal is The electrical signal from the device through the copper wire is processed for signal exchange with the LAN, then converted to an optical signal and returned to the loop.
  • This communication network has no problem as long as each terminal operates normally, but there is a problem that when one terminal fails, no optical signal is sent after that, and the entire communication network goes down. In order to prevent this problem, it is necessary to provide an optical switch that disconnects the terminal in the event of an abnormal terminal.
  • the non-latch optical switch automatically return to the preset "home position" when the movable optical fiber continues to be maintained at the holding position and the latch optical switch loses a normal electrical signal.
  • the optical switch described in US Pat. No. 6,169,826 has a compact and reliable structure using only electromagnetic force for switching operation, but it is not a non-latching type. Force to use panel force to obtain resilience without using electricity If the panel mechanism is incorporated into the electromagnetically actuated light switch described in US Pat. No. 6,1698,26, the structure becomes complicated.
  • an object of the present invention is to move a movable optical fiber to a home position at the time of abnormality
  • a soft magnetic fixed block fixed at a position facing the movable block, an actuator for moving the movable block relative to the fixed block, and a position of the movable block relative to the fixed block.
  • a yoke having a pair of arms at opposite ends of the base sandwiching the movable block in the moving direction, a permanent magnet mounted on the base of the yoke, and at least one arm And a coil disposed in a part, and regardless of the position of the movable block, the magnetic flux generated by the permanent magnet is Towards the first gap is equal to or more Ri by the second gap between said movable block and the other arm portion between the arm portion between said movable block.
  • the widths of the first and second gaps in the moving direction of the movable block are different.
  • a soft magnetic fixed block fixed at a position facing the movable block, an armature for moving the movable block relative to the fixed block, and the movable block fixed by the fixed block
  • a yoke for positioning the movable block with respect to the movable block, the armature having a pair of arms at both ends of the base sandwiching the movable block in the moving direction, and a yoke fixed to the fixed block and the yoke
  • the movable block includes a permanent magnet and a coil provided to the yoke, and the movable block has a home position closest to one arm and the other.
  • the width (a + s) of the first gap at the make position is the width of the second gap (b- s) smaller! It is characterized by
  • the difference (b ⁇ a ⁇ 2s) between the width (a + s) of the first gap and the width (b ⁇ s) of the second gap at the make position is 0.3 mm or more Is preferred! /.
  • a soft magnetic fixed block which is fixed and fixed at a position facing the movable block, an actuator for moving the movable block with respect to the fixed block, and a movable block with respect to the fixed block
  • the magnetic flux generated by the permanent magnet is the first magnetic flux path passing through the permanent magnet, the fixed block, the movable block, the first gap, and the one arm, and Since the permanent magnet passes through the second magnetic flux path passing through the permanent magnet, the other arm, the second gap, the movable block, the first gap and the one arm, the magnetic flux of the permanent magnet is Gap is always more than the second gap.
  • the movable block moves between a home position closest to one arm and a make position closest to the other arm, and when the coil is excited to generate a magnetic flux, the movable block
  • the amount of magnetic flux passing through the first gap to one arm is smaller than the amount of magnetic flux passing through the second gap between the movable block and the other arm, and the movable block is held at the make position.
  • the movable block returns to the home position.
  • the coil is disposed on each arm of the yoke.
  • at least one of the movable block and the fixed block is a soft magnetic ceramic force.
  • the soft magnetic ceramic is more preferably manganese 'zinc ferrite which soft magnetic ferrite is preferred. When single crystal ferrite is used as soft magnetic ferrite, processing accuracy can be relatively easily enhanced.
  • the movable optical fiber and Z or the fixed optical fiber be plural in number.
  • the non-latching optical switch according to the present invention mechanically switches the optical path by moving the movable optical fiber with an electromagnetic force automatically switches the optical path to the home position in the event of a power supply or control signal failure. It can be restored, small size and high accuracy.
  • the optical switch of the present invention having such characteristics is suitable for use in an optical communication apparatus, an optical transmission apparatus, and the like.
  • FIG. 1 (a) is a plan view showing a light switch according to a first embodiment of the present invention.
  • FIG. 1 (b) is an exploded view showing the main part of the optical switch of FIG. 1 (a).
  • FIG. 1 (c) It is a cross-sectional view taken along the line CC in FIG. 1 (b).
  • FIG. 2 (a) is an enlarged cross-sectional view of FIG. 1 (a) taken along the line AA.
  • FIG. 2 (b) It is an enlarged BB sectional view of FIG. 1 (a).
  • FIG. 3 (a) is a schematic view showing the magnetic flux of a permanent magnet when the movable block is held at the home position in the light switch of FIG. 1 (a).
  • FIG. 3 (b) is a schematic view showing the magnetic flux of the permanent magnet and the magnetic flux of the coil when the movable block switches from the home position to the make position in the light switch of FIG. 1 (a).
  • FIG. 3 (c) is a schematic view showing the distance between the movable block and the tip yoke member when the movable block is held at the make position in the light switch of FIG. 1 (a).
  • FIG. 4 is a graph showing the relationship between the amount of setback and the magnetic attraction force at the air gap in Example 1.
  • FIG. 5 is a graph showing the relationship between the coil magnetomotive force and the magnetic attraction force at the air gap in Example 1.
  • FIG. 6 is a plan view showing an optical switch according to a second embodiment of the present invention.
  • 7 (a) is a schematic view showing the magnetic flux of the permanent magnet when the movable block is held at the home position in the light switch of FIG.
  • FIG. 7 (b) is a schematic view showing the magnetic flux of the permanent magnet and the magnetic flux of the coil when the movable block switches from the home position to the make position in the light switch of FIG.
  • FIG. 7 (c) This is a schematic view showing the distance between the movable block and the tip yoke member when the movable block is held at the make position in the light switch of FIG.
  • FIG. 8 is a plan view showing an optical switch according to a third embodiment of the present invention.
  • FIG. 9 (a) is a schematic view showing the magnetic flux of the permanent magnet when the movable block is held at the home position in the light switch of FIG. 8.
  • FIG. 9 (a) is a schematic view showing the magnetic flux of the permanent magnet when the movable block is held at the home position in the light switch of FIG. 8.
  • FIG. 9 (b) is a schematic view showing the magnetic flux of the permanent magnet and the magnetic flux of the coil when the movable block switches from the home position to the make position in the light switch of FIG.
  • FIG. 9 (c) This is a schematic view showing the distance between the movable block and the tip yoke member when the movable block is held at the make position in the light switch shown in FIG.
  • FIG. 10 is a graph showing the relationship between the coil magnetomotive force and the magnetic attraction force in Example 3.
  • FIG. 11 is a plan view showing a conventional light switch described in US Pat. No. 6,169,826.
  • a 2 ⁇ 4 optical switch As an example of the non-latching optical switch of the present invention actuated by an electromagnetic force, a 2 ⁇ 4 optical switch will be described with reference to FIG.
  • an electromagnetic actuator 10 for moving the movable block 5 and a block 4 for supporting the movable optical fibers 2a and 2b are fixed.
  • the substrate 15 is made of a nonmagnetic material such as stainless steel, ceramics, glass or the like which is nonmagnetic.
  • the electromagnetic actuator 10 comprises a soft magnetic yoke 1 (eg, made of soft magnetic iron or permalloy), a soft magnetic fixed block 6 (eg, made of soft magnetic ceramic such as soft magnetic ferrite), and a permanent magnet 8 (eg, neodymium monoiron boron alloy) And coils 9a and 9b.
  • the support block 4 and the fixed block 6 are fixed to the substrate 15 so that the movable optical fiber 2 and the fixed optical fiber 3 are parallel.
  • the soft magnetic yoke 1 is preferably U-shaped or E-shaped, and preferably has a pair of arms.
  • Fig. 1 (a) shows a pair of arms la and lb arranged to sandwich the movable block 5 at both ends of the base lc.
  • the U-shaped yoke which it has is shown.
  • a fixed block 6 is fixed to the center of the base 1c of the yoke 1 via a permanent magnet 8.
  • the fixing block 6 is directly fixed to the base lc, and so on.
  • the permanent magnet is preferably a neodymium-iron-boron-based magnet in that other permanent magnets such as a samarium-cobalt-based magnet as well as the neodymium-iron-boron-based magnet are good in that they have high residual magnetic flux density.
  • the tips of the fixed optical fibers 3a, 3b, 3c and 3d are supported so as to face the tips of the movable optical fibers 2a and 2b.
  • Coils 9a and 9b are attached to arms la and lb of the yoke 1, respectively.
  • the number of coils provided in the yoke 1 may be one, but in order to facilitate control of the amount of magnetic flux and to secure a winding space, it is preferable to be arranged at each arm la and lb.
  • Plate-like tip yoke members Id and le are attached to the inner surfaces of the tip portions of the arms la and lb of the yoke 1 so as to face the side face of the movable block 5 with a predetermined gap therebetween.
  • the movable optical fiber By energizing the coils 9a and 9b, magnetic flux passing through the yoke 1 and the movable block 5 is generated.
  • the amount of magnetic flux can be controlled by changing the on / off, polarity, amount, etc. of the current flowing through the coils 9a, 9b.
  • the movable optical fiber By turning on and off the coils 9a and 9b, the movable optical fiber can be switched between the non-latched state (non-self holding state) and the latched state (self holding state).
  • the fixed block 6 is composed of a soft magnetic block main body 6a and a glass presser plate 6b fixed thereto, and the upper surface of the soft magnetic block main body 6a has four Four V-shaped grooves 23 for fixing the fixed optical fibers 3a, 3b, 3c, 3d and two V for fixing two positioning pins 7a, 7b made of super hard metal
  • the grooved grooves 71, 71 are formed in parallel.
  • the longitudinal direction of the optical fiber is taken as the X axis direction, and the orthogonal direction is taken as the Y axis direction.
  • the movable block 5 opposed to the fixed block 6 with a predetermined gap is a soft magnetic block body 5a and a glass presser fixed thereto. It consists of board 5b.
  • the upper surface of the block body 5a receives the two V-shaped grooves 23 for fixing the two movable optical fibers 2a and 2b and the two positioning pins 7a and 7b, and the fixed optical fiber 3a. , 3b and 3c, 3d, and trapezoidal grooves 72a, 72b having a width that makes it possible to move by the same distance as the switching distance s.
  • the movable block 5 supports the tips of the movable optical fibers 2a and 2b, and by the positioning pins 7a and 7b received by the trapezoidal grooves 72a and 72b, the distance s by the distance s It is movable to
  • the height of each part of the light switch 1 is, for example, as shown in FIG. 1 (c).
  • the movable block 5 and the fixed block 6 are both formed of a soft magnetic material.
  • the soft magnetic material preferably has a saturation magnetic flux density of 0.3 T (3 kG) or more.
  • the soft magnetic material soft magnetic ceramic, particularly soft magnetic ferrite is preferable.
  • Soft magnetic ferrite can be processed with high precision, and since it has a thermal expansion coefficient close to that of glass, which is a material of optical fiber, than soft magnetic metal, it is possible to obtain a highly reliable optical switch.
  • soft magnetic ferrite is suitable for the movable block 5 because it has a lower density than soft magnetic metals.
  • the holding member 4 is also formed of the same soft magnetic ferrite, the holding member 4, the movable block 5 and the fixed block 6 all have the same thermal expansion coefficient, so the positional deviation between the movable and fixed optical fibers Absent.
  • Preferred soft magnetic ferrites are manganese ′ zinc ferrite, nickel ′ zinc ferrite and the like.
  • Manganese 'zinc ferrite is particularly preferred as it has high permeability and saturation flux density.
  • the trapezoidal grooves 72a and 72b of the movable block 5 define the range in which the positioning pins 7a and 7b can move. Therefore, both ends of the trapezoidal grooves 72a and 72b function as stoppers of the movable block 5, and the movable Position the optical Fino 2 with respect to the fixed optical Fino 3.
  • the trapezoidal grooves 72a and 72b also function as vertical guides when the movable block 5 moves in the Y-axis direction.
  • the movable block 5 can be positioned not only by the combination of the positioning pins 7a and 7b and the trapezoidal grooves 72a and 72b, but also by a guide, a stopper or the like disposed outside the movable block 5.
  • the width of the air gap Ga (first gap) between the movable block 5 and the end yoke member Id at the home position is a
  • the movable block 5 and the end yoke member le Letting b be the width of the air gap Gb (second gap) between them and s be the movement amount of the movable block 5, not only a ⁇ b but (a + s) ⁇ (b-s) ) And Do.
  • the movable block 5 in which the magnetic flux passing through the air gap Ga always exceeds the magnetic flux passing through the air gap Gb is attracted to the tip end member 1 d side.
  • the movable block 5 is at the home position.
  • the movable block 5 In the home position, the movable block 5 is held on the tip yoke member Id side, the movable optical fiber 2a is coupled to the fixed optical fiber 3a, and the movable optical fiber 2b is coupled to the fixed optical fiber 3c.
  • FIG. 3 (a) shows the flow of the magnetic flux of the permanent magnet 8 at the home position by a black arrow.
  • the magnetic flux generated by the permanent magnet 8 is fixed block 6 ⁇ movable block 5 ⁇ tip yoke member ld ⁇ arm la ⁇ base lc ⁇ first magnetic flux path of permanent magnet 8 and fixed block 6 ⁇ movable block 5 ⁇ tip yoke Member le ⁇ arm portion lb ⁇ base lc ⁇ flow in the second magnetic flux path of permanent magnet 8
  • the width a of the air gap Ga is sufficiently smaller than the width b of the air gap Gb, so the magnetic flux passing through the air gap Ga is much higher than the magnetic flux passing through the air gap Gb.
  • the movable block 5 is reliably attracted to the tip yoke member Id side because it is proportional to the square of the amount of magnetic flux, as represented by.
  • Air gap refers to the space between magnetic materials, and it may be filled with a liquid such as matching oil, as well as a gas such as air.
  • the movable block 5, the fixed block 6 and the permanent magnet 8 are disposed inside the yoke 1 (between the arms la and lb), the flux of the permanent magnet 8 is Leakage is prevented. Therefore, the magnetic flux can be efficiently guided to the air gap between the movable block 5 and the arms la and lb from the light switch in which the magnetic pole of the permanent magnet is open so that the magnetic path by the fixed block is open.
  • Such an arrangement is also suitable for making the distance between the movable block 5 and the pair of arms la and lb different.
  • the magnetic circuit formed by the permanent magnet 8 is divided into a first magnetic flux path having a large magnetic flux amount and a second magnetic flux path having a small magnetic flux amount, thereby providing a difference in attraction to the movable block 5.
  • De-energization of 9a, 9b ensures that the movable block 5 is held at the home position.
  • FIG. 3 (b) shows the switching from the home position to the make position.
  • the coils 9a and 9b cancel the magnetic flux of the permanent magnet 8 flowing in the air gap Ga and A current is generated to generate a magnetic flux (indicated by a white arrow) that strengthens the magnetic flux of the flowing permanent magnet 8.
  • the coils 9a and 9b may be controlled separately, but it is preferable to connect them in series and pass the same current for easier control.
  • the magnetic flux generated by the coils 9a and 9b flows from the yoke 1 to the tip yoke member ld to the movable block 5 to the tip yoke member le to the yoke 1.
  • the movable block 5 moves the force at the end yoke member Id side to the end yoke member le side (make position) by the magnetic flux (magnetic flux of permanent magnet 8 + magnetic flux of coil 9a, 9b) passing through both air gaps Ga and Gb.
  • the movable optical fiber 2a is coupled to the fixed optical fiber 3b
  • the movable optical fiber 2b is coupled to the fixed optical fiber 3d.
  • FIG. 3 (c) shows the widths of the air gaps Ga and Gb when the movable block 5 is in the make position.
  • the width (a + s) of the air gap Ga at the make position is sufficiently smaller than the width (b ⁇ s) of the air gap Gb, but the magnetic flux generated by the coils 9a and 9b Since the magnetic flux is less than the total magnetic flux passing through the air gap Gb, the movable block 5 continues to be attracted to the tip yoke member le and is held at the make position.
  • the electromagnetic actuator 10 can be driven with a small current.
  • two coils 9a and 9b are connected in series, they can be driven with extremely small current. As a result, power consumption can be significantly reduced even with non-latching optical switches that must continue to be energized to maintain the make position.
  • FIGS. 6 and 7 A specific example of this light switch is shown in FIGS. 6 and 7, the same parts as in the first embodiment are given the same reference numerals and their explanations are omitted.
  • FIG. 6 the base portion lc of the substantially E-shaped yoke 1 having a pair of arms la and lb is provided with a convex portion li3 at its center, and the pair of arms la and lb A permanent magnet 8 is mounted at a position (arm side la side) deviated from the longitudinal center line 40 passing through the middle of.
  • FIG. 7 (a) shows a state where the movable pro- gram 5 is held at the tip yoke member Id side (at the home position).
  • the magnetic flux (indicated by a black arrow) generated by the permanent magnet 8 is the base lc ⁇ fixed block 6 ⁇ movable block 5 ⁇ tip yoke member ld ⁇ first flux path of arm la and base lc ⁇ arm Part lb ⁇ tip yoke member le ⁇ movable block 5 ⁇ tip yoke member ld ⁇ arm Part is divided into a second magnetic flux path passing through la.
  • the permanent magnet 8 may be provided at the position of the tip yoke member Id.
  • the movable block 5 is held on the tip yoke member Id side in a state in which no current flows through the coils 9a and 9b due to the difference in magnetic attraction due to the difference in magnetic flux amount, and the movable optical fiber 2a is coupled to the fixed optical fiber 3a.
  • the movable optical fiber 2b is coupled to the fixed optical fiber 3c.
  • FIG. 7 (b) shows the switching from the home position to the make position.
  • the magnetic flux (indicated by the white arrow) generated by energization of the coils 9a and 9b is in the opposite direction to the magnetic flux of the permanent magnet 8 and is sufficiently larger than that, so the total magnetic flux flowing in the air gap Gb Is It is much higher than the total magnetic flux flowing through the air gap Ga.
  • the movable block 5 can be held at the make position simply by energizing the coils 9a and 9b in this manner.
  • FIG. 7 (c) shows the widths of the air gaps Ga and Gb when the movable block 5 is in the make position.
  • the width of the air gap Ga is (a + s) and the width of the air gap Gb is (b-s) 1S
  • the flux of the permanent magnet 8 is better in the air gap Ga than in the air gap Gb
  • the movable block 5 is automatically returned to the home position on the tip yoke member Id side when the current does not flow to the coils 9a and 9b due to the coil energization command being down or a power failure.
  • the optical switch of this embodiment is also a non-latching optical switch.
  • the same parts as in the second embodiment are given the same reference numerals and their description is omitted.
  • FIG. 8 shows the light switch of the third embodiment in the home position.
  • the tip yoke member le is thinner than the tip yoke member (shown by a dotted line) in the second embodiment by the setback amount ⁇ . As shown in FIGS.
  • the air gap Gb in the third embodiment is wider than the width in the second embodiment by the setback amount ⁇ , in the third embodiment, the air gap Gb is more permanent than the second embodiment.
  • the magnetic flux of the magnet 8 (indicated by the black arrow) is less, the magnetic flux of the permanent magnet 8 passing through the many air gaps Gb. Therefore, when current is not supplied to the coils 9a and 9b, the movable block 5 is held on the tip yoke member Id side (home position) more strongly in the third embodiment than in the second embodiment.
  • FIG. 9 (b) shows the switching from the home position to the make position.
  • Coils 9a, 9b When a current flows to generate a magnetic flux (indicated by an open arrow), in the air gap Ga, the magnetic flux of the permanent magnet 8 (indicated by a black arrow) and the magnetic flux of the coils 9a and 9b (indicated by an open arrow) are reduced. Since the magnetic flux of the coils 9a and 9b is sufficiently larger than that of the permanent magnet 8 in the air gap Gb, the total magnetic flux amount in the air gap Gb is larger than the total magnetic flux amount in the air gap Ga.
  • the block 5 moves to the tip yoke member Id side force tip yoke member le side.
  • FIG. 9 (c) shows the widths of the air gaps Ga and Gb when the movable block 5 is in the make position. Since these are the same as in the case of the first embodiment, the description will be omitted.
  • the magnetic flux (shown by the black arrows) of the permanent magnet 8 passing through the air gap Ga is larger than that of the second embodiment because the magnetic flux of the permanent magnet 8 passing through the air gap Gb is smaller.
  • the movable block 5 returns to the tip yoke member Id side with a stronger force than in the second embodiment and is held.
  • the magnetic flux generated by the permanent magnet 8 is divided into a path that flows only in one arm la and a path that flows in both arms la and lb.
  • the magnetic flux of the permanent magnet 8 is larger in the air gap Ga than in the air gap Gb, so the movable block 5 is held by the home position when the coils 9a and 9b are not excited. . While the coils 9a and 9b are excited, the movable block 5 whose total amount of magnetic flux passing through the air gap Ga is less than the total amount of magnetic flux passing through the air gap Gb is held at the make position. However, when the coils 9a and 9b are de-energized, the movable block 5 automatically returns to the home position. Therefore, the optical switch of this embodiment is also a non-latch type optical switch.
  • the yoke is E-shaped, but is not limited to this and has substantially parallel arms.
  • a U-shaped yoke may be used if it is a yoke.
  • the arms and the base of the yoke may be integral or separate.
  • the L-shaped arm and the base may be butted.
  • the permanent magnet may be, for example, sandwiched between adjacent yokes in the case of an assembled yoke, and may be mounted in a recess in the case of an integral yoke.
  • the grooves formed in the block body of the movable block and the fixed block for movably accommodating the pins for positioning at the home position and the make position are not limited to trapezoidal shapes, and may be rectangular shapes. Also, grooves for fixing the optical fiber and grooves for accommodating the pins may be formed in the block body and Z or the pressure plate, and so on.
  • the setback amount ⁇ may be obtained by adjusting the positions of both arms instead of being obtained by making the two tip yoke members different in thickness.
  • the positions of both arms may be adjusted by interposing a soft magnetic spacer between the arms and the base of the yoke. In that case, the tip yoke member may be omitted.
  • a gap is provided in the yoke at a position shifted from the longitudinal center line 40, and a nonmagnetic material or low permeability material is placed in the gap. You may insert it ,.
  • the pressure plate is not limited to glass but may be made of the same soft magnetic ceramic as the movable block and the fixed block in order to make the thermal expansion coefficient the same.
  • Support block 4 having a saturation magnetic flux density of 0.47 none movable block 5 and the fixed block 6 T (4,700 G), a magnetic permeability (at 1 kHz) and the thermal expansion coefficient of 115 X 10- 7 / ° C 1,500 It is formed of manganese 'zinc ferrite.
  • the movable block 5 had a thickness of 1.9 mm, an X-axis width of 3 mm, and a Y-axis width of 2.5 mm.
  • the suction surfaces of the end yoke members Id and le made of SS400 (JIS standard) were 2 mm ⁇ 1.9 mm, and were opposed to the movable block 5 in the Y-axis direction.
  • the number of coils 9a and 9b was 500 turns.
  • the width a of the air gap Ga between the tip yoke member Id at the home position and the movable block 5 is 0.075 mm, and the moving distance s of the movable block 5 is 0.25 mm.
  • the setback amount [(bs) i] when the magnetic attraction force at the make position side becomes zero (the force on the make position side also switches to the home position side) is about 0.25 mm Met.
  • a + s 0.325 mm
  • the setback amount ⁇ 0, it is a self-holding type optical switch.
  • the amount of setback was changed to 0.3 mm, the coils 9a and 9b were excited, and the magnetic attraction force on the home position side and the make position side was measured.
  • the results are shown in FIG. As apparent from FIG. 5, when a current of about 30 30 ⁇ ⁇ or more is supplied to each coil 9a, 9b, the movable block 5 can be moved from the home position to the make position.
  • the loss of transmitted light was as small as 0.5 dB between 20 ° C. and + 80 ° C.
  • the setback amount ⁇ is 0.5 mm, 0.7 mm and 0.75 mm.
  • the operation was tested with [(b-s)-(a + s)] of 0.25 mm, 0.45 mm and 0.5 mm.
  • the setback amount ⁇ force is 0.7 mm and 0.75 mm, that is, [(b ⁇ s)-(a + s)] is 0.45 mm and 0.5 mm, the force setback amount with which the non-latching operation is reliably reproduced.
  • the operation of the light switch shown in Fig. 6 was tested.
  • the movable block 5 had a thickness of 1.9 mm, an X-axis width of 3 mm, and a Y-axis width of 2.5 mm.
  • the suction surface of the tip yoke member Id, le made of SS400 (JIS standard) has a width of 2 mm and a thickness of 1.9 mm. I was facing the other side.
  • the number of turns of each coil 9a, 9b was 500 turns.
  • the width a of the air gap Ga between the tip yoke member Id and the movable block 5 is 0.075 mm
  • the width b of the air gap Gb between the tip yoke member le and the movable block 5 is 0.325 mm.
  • the width of the air gap between the movable block 5 and the fixed block 6 was 0.35 mm.
  • the moving distance s of the movable block 5 was 0.25 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 可動光ファイバと固定光ファイバとの結合を切り替える光スイッチであって、前記可動光ファイバの先端に固定された軟磁性可動ブロックと、前記固定光ファイバが固定されているとともに、前記可動ブロックに対向する位置に固定された軟磁性固定ブロックと、前記可動ブロックを前記固定ブロックに対して移動させるためのアクチュエータと、前記可動ブロックを前記固定ブロックに対して位置決めする手段とを有し、前記アクチュエータは、前記可動ブロックをその移動方向に挟む一対の腕部を基部の両端に有するヨークと、前記ヨークの基部に装着された永久磁石と、少なくとも一方の腕部に配置されたコイルとを具備し、前記可動ブロックの位置にかかわらず、前記永久磁石により生じる磁束は、一方の腕部と前記可動ブロックとの間の第一のギャップの方が他方の腕部と前記可動ブロックとの間の第二のギャップより多い光スイッチ。

Description

明 細 書
光スィッチ
技術分野
[0001] 本発明は光スィッチに関し、特に光通信装置や光伝送装置等に用いるのに好適な 光スィッチに関する。
背景技術
[0002] 光通信の発達に伴って、光ファイバ通信網は長い光路と複雑な分岐を持つように なった。それに応じて光通信装置や光伝送装置内において回線間での光ファイバの 光路 (伝送経路)の切替が増大し、多くの光スィッチが用いられるようになった。光路 の切替の目的は、通常の回線の切替だけでなぐ断線した伝送経路を別の断線して いない経路に切り替える障害復旧用や、建物や地域内の光通信ネットワークの回線 を切り替える保守点検用、測定装置における光路の変更用等である。光路の分岐数 でみると、 1本の可動光ファイバを 2本の固定光ファイバに切り替える 1 X 2型光スイツ チゃ、多数の光ファイバ同士の端面を対向させた 1 X m型光スィッチ又は n X m型光 スィッチ等がある。
[0003] 光スィッチの切替方式については、電気的又は光学的に光路の屈折率や位相を 変化させて光の進行方向を切り替える方式や、機械的に光路を移動させて光の進行 方向を切り替える方式等があるが、機械式光スィッチは光の結合損失が小さぐ伝搬 する光の波長依存性がほとんどないという利点を有する。そのため、種々の切換え目 的及び分岐数に応じて種々の構造の機械式光スィッチが提案されて!ヽる。
[0004] 例えば、米国特許第 6169826号に記載された機械式光スィッチは、図 11に示すよう に、 2本の可動光ファイバ 20a、 20bの先端に固定された軟磁性セラミック製の可動部 材 30と、可動部材 30に対向する位置に固定された固定部材 32と、固定部材 32に固 定された 4本の固定光ファイバ 21a、 21b, 21c、 21dと、可動部材 30を固定部材 32に対 して移動させるァクチユエータと、可動光ファイバ 20a、 20bを固定光ファイバ 21a、 21b 、 21c, 21dに対 Lf立置決めする手段とを有し、前記ァクチユエータは永久磁石 52と、 可動部材 30をその移動方向に挟むように対向する第一及び第二のヨーク 50a、 50bと 、第一及び第二のヨーク 50a、 50bに配置されたコイル 51a、 51bとを具備している。この 機械式光スィッチは小型で信頼性が高ぐ現在広く使用されている。
発明の開示
発明が解決しょうとする課題
[0005] 光通信網は、都市間の長距離通信を包含する一般回線通信網 (通信系と言われる )と、企業内等の閉じた通信網 [一般に Local Area Network (LAN)と言われる]に大別 される。一般回線通信網では、光ファイバの切断による障害を最小限に抑えるために 冗長回線用光ファイバを敷設することが多ぐ光スィッチの多くはこれらの冗長回線 用光ファイバ間の切替えに用いられる。このための光スィッチは、切換え時のみ電力 を消費し、光ファイバが結合されている状態では電力を要しない自己保持機構を有 する。米国特許第 6169826号に記載の光スィッチは、コイルに通電して可動光フアイ バを移動させた後は、永久磁石でその位置を保持するラッチ型光スィッチであり、こ のような用途に好適である。
[0006] LAN系光通信網は全体として閉じた光ループを形成している力 光ファイバはルー プ上の端末装置で接続されており、入射された光信号は一旦電気信号に変換され、 端末装置から銅線を通る電気信号は LANとの信号授受に必要な処理をされた後、光 信号に変換されてループに戻る。この通信網は、各端末が正常に作動している限り 問題ないが、一つの端末が故障するとそれ以降に光信号が送られなくなり、通信網 全体がダウンするという問題がある。この問題を防止するためには、端末の異常時に 光ループカゝらその端末を切り離す光スィッチを設ける必要がある。この場合、可動光 ファイバが保持位置に維持され続ける上記ラッチ型光スィッチではなぐ正常な電気 信号がなくなると、予め設定した「ホームポジション」に自動的に復帰するノンラッチ型 光スィッチであるのが好ましい。米国特許第 6169826号に記載の光スィッチは、切換 え動作に電磁力だけを使用して小型で信頼性の高い構造にしたが、ノンラッチ型で はない。電気を用いずに復元力を得るためにパネ力を用いることも考えられる力 米 国特許第 6169826号に記載の電磁作動式光スィッチにパネ機構を組み入れると、構 造が複雑になる。
[0007] 従って本発明の目的は、異常時に可動光ファイバをホームポジションに移動させる ことができる小型で高信頼性のノンラッチ型光スィッチを提供することである。
課題を解決するための手段
[0008] 可動光ファイバと固定光ファイバとの結合を切り替える本発明の一実施態様による 光スィッチは、前記可動光ファイバの先端に固定された軟磁性可動ブロックと、前記 固定光ファイバが固定されているとともに、前記可動ブロックに対向する位置に固定 された軟磁性固定ブロックと、前記可動ブロックを前記固定ブロックに対して移動させ るためのァクチユエータと、前記可動ブロックを前記固定ブロックに対して位置決めす る手段とを有し、前記ァクチユエータは、前記可動ブロックをその移動方向に挟む一 対の腕部を基部の両端に有するヨークと、前記ヨークの基部に装着された永久磁石 と、少なくとも一方の腕部に配置されたコイルとを具備し、前記可動ブロックの位置に かかわらず、前記永久磁石により生じる磁束は、一方の腕部と前記可動ブロックとの 間の第一のギャップの方が他方の腕部と前記可動ブロックとの間の第二のギャップよ り多いことを特徴とする。
[0009] 前記可動ブロックの移動方向における前記第一及び第二のギャップの幅は異なる のが好ましい。
[0010] 可動光ファイバと固定光ファイバとの結合を切り替える本発明の別の実施態様によ る光スィッチは、前記可動光ファイバの先端に固定された軟磁性可動ブロックと、前 記固定光ファイバが固定されているとともに、前記可動ブロックに対向する位置に固 定された軟磁性固定ブロックと、前記可動ブロックを前記固定ブロックに対して移動さ せるためのァクチユエータと、前記可動ブロックを前記固定ブロックに対して位置決め する手段とを有し、前記ァクチユエータは、前記可動ブロックをその移動方向に挟む 一対の腕部を基部の両端に有するヨークと、前記固定ブロックと前記ヨークとの間に 固定された永久磁石と、前記ヨークに設けられたコイルとを具備し、前記可動ブロック は一方の腕部に最接近するホームポジションと他方の腕部に最接近するメーク( make)ポジションとの間を移動し、前記ホームポジションにおける前記可動ブロックと 前記一方の腕部及び前記他方の腕部との間の第一及び第二のギャップの幅をそれ ぞれ a及び bとし、前記可動ブロックの移動距離を sとすると、前記メークポジションにお ける前記第一のギャップの幅(a + s)は前記第二のギャップの幅(b— s)より小さ!/、こと を特徴とする。
[0011] 前記メークポジションにおける前記第一のギャップの幅(a + s)と前記第二のギヤッ プの幅(b— s)との差(b— a— 2s)は 0.3 mm以上であるのが好まし!/、。
[0012] 可動光ファイバと固定光ファイバとの結合を切り替える本発明のさらに別の実施態 様による光スィッチは、前記可動光ファイバの先端に固定された軟磁性可動ブロック と、前記固定光ファイバが固定されているとともに、前記可動ブロックに対向する位置 に固定された軟磁性固定ブロックと、前記可動ブロックを前記固定ブロックに対して 移動させるためのァクチユエータと、前記可動ブロックを前記固定ブロックに対して位 置決めする手段とを有し、前記ァクチユエータは、前記可動ブロックをその移動方向 に挟む一対の腕部を基部の両端に有するヨークと、前記ヨークに装着された永久磁 石と、少なくとも一方の腕部に配置されたコイルとを具備し、前記永久磁石は一対の 腕部の中間の長手方向中心線よりずれていることを特徴とする。
[0013] 上記構成により、前記永久磁石が発生する磁束は、前記永久磁石、前記固定プロ ック、前記可動ブロック、第一のギャップ及び前記一方の腕部を通る第一の磁束経路 と、前記永久磁石、前記他方の腕部、第二のギャップ、前記可動ブロック、第一のギ ヤップ及び前記一方の腕部とを通る第二の磁束経路とを通るので、前記永久磁石の 磁束は第一のギャップの方が第二のギャップより常に多い。
[0014] 前記可動ブロックは一方の腕部に最接近するホームポジションと他方の腕部に最 接近するメークポジションとの間を移動し、前記コイルが励磁されて磁束を発生すると 、前記可動ブロックと一方の腕部との間の第一のギャップを通る磁束量力 前記可動 ブロックと他方の腕部との間の第二のギャップを通る磁束量より少なくなり、前記可動 ブロックは前記メークポジションに保持されるが、前記コイルが無励磁になると前記可 動ブロックは前記ホームポジションに戻る。
[0015] 前記ホームポジションにおける前記第一及び第二のギャップの幅をそれぞれ a及び bとし、前記可動ブロックの移動距離を sとすると、 δ = (b— s)— aで表されるセットバック 量 δ力 より大きいのが好ましい。この場合、 b= (a+s)の関係を満たす光スィッチより 、ホームポジションへの自己復帰の信頼性が高い。
[0016] 前記コイルは前記ヨークの各腕部に配置されているのが好ましい。 [0017] 前記可動ブロック及び前記固定ブロックの少なくとも一方は軟磁性セラミック力 な るのが好ましい。軟磁性セラミックは軟磁性フェライトが好ましぐマンガン '亜鉛フェラ イトがより好ましい。軟磁性フェライトとして単結晶フェライトを用いると、加工精度を比 較的容易に高めることができる。
[0018] 前記可動光ファイバ及び Z又は前記固定光ファイバは複数本あるのが好ましい。
発明の効果
[0019] 上記の通り、可動光ファイバを電磁力で移動させて光路を機械的に切り換える本発 明のノンラッチ型光スィッチは、電源又は制御信号が途絶えた異常時に自動的にホ ームポジションに光路を復帰させることができ、小型で高精度である。このような特徴 を有する本発明の光スィッチは、光通信装置や光伝送装置等に用いるのに好適であ る。
図面の簡単な説明
[0020] [図 1(a)]本発明の第一の実施態様による光スィッチ示す平面図である。
[図 1(b)]図 1(a)の光スィッチの要部示す分解図である。
[図 1(c)]図 1(b)の C-C断面図である。
[図 2(a)]図 1(a)の拡大 A-A断面図である。
[図 2(b)]図 1(a)の拡大 B-B断面図である。
[図 3(a)]図 1(a)の光スィッチにおいて可動ブロックがホームポジションに保持されてい るときの永久磁石の磁束を示す概略図である。
[図 3(b)]図 1(a)の光スィッチにおいて可動ブロックがホームポジションからメークポジシ ヨンに切り替わるときの永久磁石の磁束及びコイルの磁束を示す概略図である。
[図 3(c)]図 1(a)の光スィッチにおいて可動ブロックがメークポジションに保持されている ときの可動ブロックと先端ヨーク部材との距離を示す概略図である。
[図 4]実施例 1におけるセットバック量とエアーギャップにおける磁気吸引力との関係 を示すグラフである。
[図 5]実施例 1におけるコイル起磁力とエアーギャップにおける磁気吸引力との関係を 示すグラフである。
[図 6]本発明の第二の実施態様による光スィッチを示す平面図である。 [図 7(a)]図 6の光スィッチにおいて可動ブロックがホームポジションに保持されていると きの永久磁石の磁束を示す概略図である。
[図 7(b)]図 6の光スィッチにおいて可動ブロックがホームポジションからメークポジショ ンに切り替わるときの永久磁石の磁束及びコイルの磁束を示す概略図である。
[図 7(c)]図 6の光スィッチにおいて可動ブロックがメークポジションに保持されていると きの可動ブロックと先端ヨーク部材との距離を示す概略図である。
[図 8]本発明の第三の実施態様による光スィッチを示す平面図である。
[図 9(a)]図 8の光スィッチにおいて可動ブロックがホームポジションに保持されていると きの永久磁石の磁束を示す概略図である。
[図 9(b)]図 8の光スィッチにおいて可動ブロックがホームポジションからメークポジショ ンに切り替わるときの永久磁石の磁束及びコイルの磁束を示す概略図である。
[図 9(c)]図 8の光スィッチにおいて可動ブロックがメークポジションに保持されていると きの可動ブロックと先端ヨーク部材との距離を示す概略図である。
[図 10]実施例 3のコイル起磁力と磁気吸引力との関係を示すグラフである。
[図 11]米国特許第 6169826号に記載の従来の光スィッチを示す平面図である。
発明を実施するための最良の形態
[0021] [I]第一の実施態様
電磁力により作動する本発明のノンラッチ型光スィッチの一例として、 2 X 4型の光ス イッチを図 1一 3を参照して説明する。非磁性基板 15には、可動ブロック 5を移動させ る電磁ァクチユエータ 10と、可動光ファイバ 2a, 2bを支持するブロック 4とが固定されて いる。基板 15は非磁性であれば良ぐステンレススチール、セラミックス、ガラス等の非 磁性体により形成されている。電磁ァクチユエータ 10は、軟磁性ヨーク 1 (例えば軟磁 性鉄やパーマロイ製)と、軟磁性固定ブロック 6 (例えば軟磁性フェライトのような軟磁 性セラミック製)と、永久磁石 8 (例えばネオジゥム一鉄 ボロン合金製)と、コイル 9a, 9b とを有する。支持ブロック 4及び固定ブロック 6は、可動光ファイバ 2と固定光ファイバ 3 が平行になるように基板 15に固定されて ヽる。
[0022] 軟磁性ヨーク 1はコの字型又は E字型等で、一対の腕部を有するのが好ましい。図 1(a)は、基部 lcの両端に、可動ブロック 5を挟むように配置された一対の腕部 la, lbを 有するコの字型ヨークを示す。ヨーク 1の基部 lcの中央には、永久磁石 8を介して固定 ブロック 6が固定されて 、る。固定ブロック 6は基部 lcに直接固定されて 、てもよ 、。 永久磁石は、ネオジゥム一鉄 ボロン系磁石の他に、サマリウム コバルト系磁石等の 他種の永久磁石でも良 ヽが、高残留磁束密度を有する点でネオジゥム一鉄 ボロン 系磁石が好ましい。固定ブロック 6では、固定光ファイバ 3a, 3b, 3c, 3dの先端が可動 光ファイバ 2a, 2bの先端と対向するように支持されて 、る。
[0023] ヨーク 1の腕部 la, lbにはコイル 9a, 9bがそれぞれ取り付けられている。ヨーク 1に設 けるコイルは一つでも良いが、磁束量の制御の容易さ及び卷線スペースの確保のた めに、各腕部 la, lbに配置するのが好ましい。ヨーク 1の各腕部 la, lbの先端部の内 面には、可動ブロック 5の側面と所定の隙間を置いて対向するように板状の先端ョー ク部材 Id, leが取り付けられている。
[0024] コイル 9a, 9bに通電することにより、ヨーク 1及び可動ブロック 5を通る磁束を発生さ せる。コイル 9a, 9bに流す電流のオン'オフ、極性、量等を変えることにより、磁束量を 制御することができる。コイル 9a, 9bのオン'オフにより、可動光ファイバをノンラッチ状 態 (非自己保持状態)とラッチ状態(自己保持状態)の 、ずれかに切り替えることがで きる。
[0025] 図 2(a)に示すように、固定ブロック 6は軟磁性ブロック本体 6aと、それに固定される ガラス製押さえ板 6bとからなり、軟磁性ブロック本体 6aの上面には、 4本の固定光ファ ィバ 3a, 3b, 3c, 3dを固定するための 4個の V字状溝 23と、超硬質金属製の 2本の位 置決めピン 7a, 7bを固定するための両側の V字状溝 71, 71とが平行に形成されてい る。光ファイバの長手方向を X軸方向とし、その直交方向を Y軸方向とする。
[0026] 図 1(b)及び図 2(b)に示すように、固定ブロック 6と所定の隙間を置いて対向する可動 ブロック 5は、軟磁性ブロック本体 5aと、それに固定されるガラス製押さえ板 5bとからな る。ブロック本体 5aの上面には、 2本の可動光ファイバ 2a, 2bを固定するための 2個の V字状溝 23と、 2本の位置決めピン 7a, 7bを受承して、固定光ファイバ 3a, 3b及び 3c, 3dの切替距離 sと同じ距離を移動可能にする幅を有する台形状溝 72a, 72bとが平行 に形成されている。可動ブロック 5は可動光ファイバ 2a, 2bの先端部を支持するととも に、台形状溝 72a, 72bに受承された位置決めピン 7a, 7bにより、距離 sだけ Y軸方向 に移動自在である。光スィッチ 1の各部の高さは、例えば図 1(c)に示す通りである。
[0027] 可動ブロック 5及び固定ブロック 6はいずれも軟磁性体により形成される。ヨーク 1へ の十分な磁気吸引を得るために、軟磁性体は 0.3 T (3 kG)以上の飽和磁束密度を 有するのが好ましい。軟磁性体としては、軟磁性セラミック、特に軟磁性フェライトが 好ましい。軟磁性フェライトは高精度な加工が可能で、軟磁性金属より光ファイバの 材料であるガラスに近 ヽ熱膨張係数を有するため、信頼性の高 、光スィッチが得ら れる。また軟磁性フェライトは軟磁性金属より低密度であるので、可動ブロック 5に好 適である。さらに保持部材 4も同じ軟磁性フェライトにより形成すると、保持部材 4、可 動ブロック 5及び固定ブロック 6が全て同じ熱膨張係数を有するので、温度変化による 可動側と固定側の光ファイバの位置ずれがない。
[0028] 好ま 、軟磁性フェライトは、マンガン '亜鉛フェライト、ニッケル '亜鉛フェライト等で ある。マンガン '亜鉛フェライトは高い透磁率及び飽和磁束密度を有するので、特に 好ましい。
[0029] 可動光ファイバ 2a, 2b及び固定光ファイバ 3a, 3b, 3c, 3dの結合部近傍をそれぞれ 可動ブロック 5及び固定ブロック 6で支持することにより、駆動時の光ファイバのブレを 防止し、高い位置精度が得られる。また軟磁性フェライトからなる可動ブロック 5は弾 性変形が小さいために、小型 ·薄型化しても駆動時のブレゃ反りを抑えることができる
[0030] 可動ブロック 5の台形状溝 72a, 72bは、位置決めピン 7a, 7bが移動し得る範囲を規 定するので、台形状溝 72a, 72bの両端は可動ブロック 5のストッパとして機能し、可動 光ファイノ 2を固定光ファイノ 3に対して位置決めする。また台形状溝 72a, 72bは、可 動ブロック 5の Y軸方向移動時に上下方向のガイドとしても機能する。なお可動ブロッ ク 5の位置決めは、位置決めピン 7a, 7bと台形状溝 72a, 72bの組合せの他に、可動ブ ロック 5の外側に配置されたガイド、ストッパ等によっても、行うことができる。
[0031] 本実施態様の光スィッチは、ホームポジションにおける可動ブロック 5と先端ヨーク 部材 Idとの間のエアーギャップ Ga (第一のギャップ)の幅を aとし、可動ブロック 5と先 端ヨーク部材 leとの間のエアーギャップ Gb (第二のギャップ)の幅を bとし、可動ブロッ ク 5の移動量を sとすると、 a< bであるのみならず、(a + s) < (b— s)であることを特徴と する。このため、コイル 9a, 9bに電流を流さない状態では、必ずエアーギャップ Gaを 通る磁束がエアーギャップ Gbを通る磁束より多ぐ可動ブロック 5は先端ョ一ク部材 1 d 側に吸引される。このとき、可動ブロック 5はホームポジションにあると言う。ホームポジ シヨンでは可動ブロック 5は先端ヨーク部材 Id側に保持され、可動光ファイバ 2aは固 定光ファイバ 3aに結合し、可動光ファイバ 2bは固定光ファイバ 3cに結合する。
[0032] 図 3(a)はホームポジションにおける永久磁石 8の磁束の流れを黒の矢印で示す。な お説明の明瞭化のために、可動ブロック 5と先端ヨーク部材 Id, leとの距離を誇張し て示す。永久磁石 8が作る磁束は、固定ブロック 6→可動ブロック 5→先端ヨーク部材 ld→腕部 la→基部 lc→永久磁石 8の第一の磁束経路と、固定ブロック 6→可動ブロッ ク 5→先端ヨーク部材 le→腕部 lb→基部 lc→永久磁石 8の第二の磁束経路を流れる 。ホームポジションでは、エアーギャップ Gaの幅 aはエアーギャップ Gbの幅 bより十分 に小さいので、エアーギャップ Gaを通る磁束はエアーギャップ Gbを通る磁束よりはる かに多い。磁気吸引力 Fは、式: Ρ= Φ2/2 /ζ Α (ただし、 Φはエアーギャップを通る 磁束量であり、 Αはエアーギャップの面積であり、 μはエアーギャップの透磁率である 。)により表されるように、磁束量の二乗に比例するので、可動ブロック 5は先端ヨーク 部材 Id側に確実に吸引される。なお「エアーギャップ」は磁性体間の空間をいい、空 気等の気体の他、マッチングオイル等の液体で満たされて 、ても良 、。
[0033] 本実施態様の光スィッチでは、ヨーク 1の内側(両腕部 la, lb間)に可動ブロック 5、 固定ブロック 6及び永久磁石 8が配置されて 、るため、永久磁石 8の磁束の漏洩が防 止されている。そのため、固定ブロックによる磁路がなぐ永久磁石の磁極が開放さ れている光スィッチより、可動ブロック 5と両腕部 la, lbとのエアーギャップに効率良く 磁束を導くことができる。またこのような配置は、可動ブロック 5と一対の腕部 la, lbと の間隔を異ならせるのに好適である。これにより、永久磁石 8により形成される磁気回 路は、大きな磁束量の第一の磁束経路と小さな磁束量の第二の磁束経路に分け、 可動ブロック 5に対する吸引力に差を設け、もってコイル 9a, 9bの非励磁では可動ブ ロック 5がホームポジションに保持されるのを確実にする。
[0034] 図 3(b)はホームポジションからメークポジションへの切換えを示す。コイル 9a, 9bに、 エアーギャップ Gaを流れる永久磁石 8の磁束を打ち消すとともにエアーギャップ Gbを 流れる永久磁石 8の磁束を強める磁束(白 ヽ矢印で示す)を発生させる電流を流す。 コイル 9a, 9bは別々に制御しても良いが、直列に接続して同じ電流を流す方が制御 が簡単で好ましい。コイル 9a, 9bが発生する磁束は、ヨーク 1→先端ヨーク部材 ld→ 可動ブロック 5→先端ヨーク部材 le→ヨーク 1と流れる。従って、両エアーギャップ Ga, Gbを通る磁束(永久磁石 8の磁束 +コイル 9a, 9bの磁束)により、可動ブロック 5は先 端ヨーク部材 Id側力も先端ヨーク部材 le側 (メークポジション)に移動する。メークポジ シヨンでは、可動光ファイバ 2aは固定光ファイバ 3bに結合し、可動光ファイバ 2bは固 定光ファイバ 3dに結合する。
[0035] 図 3(c)は、可動ブロック 5がメークポジションにあるときの各エアーギャップ Ga, Gbの 幅を示す。上記の通り、メークポジションにおけるエアーギャップ Gaの幅(a + s)はェ ァーギャップ Gbの幅(b— s)より十分に小さいが、コイル 9a, 9bが発生する磁束により、 エアーギャップ Gaを通る全磁束はエアーギャップ Gbを通る全磁束より少なくなるため 、可動ブロック 5は先端ヨーク部材 leに吸引され続け、メークポジションに保持される。 このように二つの磁路を形成することにより、小電流で電磁ァクチユエータ 10を駆動 することができる。特に二つのコイル 9a, 9bを直列に接続すると、著しく小電流で駆動 することができる。その結果、メークポジションを維持するのに通電し続けなければな らないノンラッチ型光スィッチでも、消費電力を著しく抑制できる。
[0036] 通電指令のダウンや停電等によりコイル 9a, 9bに電流が流れなくなると、コイル 9a, 9bによる磁束が消滅し、永久磁石 8による磁束だけが残るので、図 3(a)の状態になり、 可動ブロック 5は先端ヨーク部材 Id側に吸引され、ホームポジションに戻る。このように 、端末装置が正常に作動している間はメークポジションに保持されるが、端末装置に 異常が発生して電気信号又は電気エネルギーがなくなると、可動ブロック 5はメークポ ジシヨンを維持できなくなり、ホームポジションに自動的に戻る。このノンラッチ型動作 は(a + s)く(b—s)とすることにより達成される。可動ブロック 5が大きな質量を有する場 合や重力の影響を受ける場合にも確実にホームポジションに切り替わるように、メーク ポジションにおけるエアーギャップ Gaの幅(a + s)とエアーギャップ Gbの幅(b— s)との 差 (b— a— 2s)は 0.3 mm以上であるのが好ましい。
[0037] 自己保持型光スィッチ (米国特許第 6169826号)の場合、図 3(c)に仮想線で示す先 端ヨーク部材 leと可動ブロック 5との間のエアーギャップ Gbの幅は aである力 本実施 態様の光スィッチの場合、エアーギャップ Gbの幅は(b— s)である。従って、セットバッ ク量 δは [ (b—s)—a]である。エアーギャップ Gaの幅とエアーギャップ Gbの幅との差は セットバック量 δに相関する。
[0038] [2]第二の実施態様
第二の実施態様の光スィッチはヨークの一部に永久磁石を有することを特徴とする 。従って、(a+s) < (b— s)の要件や δ [ = (b-s) -a] >0の要件を満たす必要がない。 この光スィッチの具体例を図 6及び 7に示すが、第一の実施態様と同じ部品には同じ 参照番号を付与し、それらの説明は省略する。
[0039] 図 6に示すように、一対の腕部 la, lbを有するほぼ E字状のヨーク 1の基部 lcには中 央に凸部 li¾設けられているとともに、一対の腕部 la, lbの中間を通る長手方向中心 線 40からずれた位置 (腕部 la側)に永久磁石 8が装着されている。図 7(a)は、可動プロ ック 5が先端ヨーク部材 Id側に保持された (ホームポジションにある)状態を示す。この 状態では、永久磁石 8が作る磁束 (黒色の矢印で示す)は、基部 lc→固定ブロック 6 →可動ブロック 5→先端ヨーク部材 ld→腕部 laの第一の磁束経路と、基部 lc→腕部 lb→先端ヨーク部材 le→可動ブロック 5→先端ヨーク部材 ld→腕部 laを通る第二の 磁束経路に分かれる。なお永久磁石 8を基部 lc内に設ける代わりに、先端ヨーク部材 Idの位置に永久磁石 8を設けても良い。
[0040] 先端ヨーク部材 leと可動ブロック 5の間のエアーギャップ Gbには第二の磁束経路だ けが通るが、可動ブロック 5と先端ヨーク部材 Idの間のエアーギャップ Gaには第一及 び第二の磁束経路が通るので、エアーギャップ Gbの磁束量はエアーギャップ Gaの磁 束量より十分に多い。従って、磁束量の差による磁気吸引力の違いにより、コイル 9a , 9bに電流を流さない状態では、可動ブロック 5は先端ヨーク部材 Id側に保持され、 可動光ファイバ 2aは固定光ファイバ 3aに結合し、可動光ファイバ 2bは固定光ファイバ 3cに結合する。
[0041] 図 7(b)はホームポジションからメークポジションへの切換えを示す。コイル 9a, 9bの 通電により発生する磁束(白抜きの矢印で示す)を、永久磁石 8の磁束と逆方向にす るとともに、それより十分に大きくしているので、エアーギャップ Gbを流れる全磁束は エアーギャップ Gaを流れる全磁束より十分に多くなる。このようにコイル 9a, 9bに通電 するだけで、可動ブロック 5をメークポジションに保持することができる。
[0042] 図 7(c)は可動ブロック 5がメークポジションにある時のエアーギャップ Ga, Gbの幅を 示す。図示の例は(a+s) =bの要件を満たす力 必須ではない。メークポジションの 状態ではエアーギャップ Gaの幅は(a + s)で、エアーギャップ Gbの幅は(b— s)である 1S それでも永久磁石 8の磁束はエアーギャップ Gaの方がエアーギャップ Gbより十分 に多く設定してあるので、コイル通電指令のダウンや停電等によりコイル 9a, 9bに電 流が流れなくなると、可動ブロック 5は先端ヨーク部材 Id側のホームポジションに自動 的に戻る。端末装置の作動が正常化すると、コイル 9a, 9bが発生する磁束により可動 ブロック 5はメークポジションに移動し、そこに保持される。従って、本実施態様の光ス イッチもノンラッチ型光スィッチである。
[0043] [3]第三の実施態様
第三の実施態様は、 (a+s) < (b— s)の要件及び δ [ = (b-s) -a] >0の要件を満た す以外第二の実施態様と異ならない。第二の実施態様と同じ部品には同じ参照番 号を付与し、それらの説明は省略する。図 8はホームポジションにおける第三の実施 態様の光スィッチを示す。先端ヨーク部材 leは、第二の実施態様における先端ヨーク 部材 (点線で示す)よりセットバック量 δだけ薄い。図 9(a)及び (c)に示すように、可動 ブロック 5がホームポジションにある時のエアーギャップ Ga, Gbの幅を a、 bとし、可動ブ ロック 5の移動量を sとすると、可動ブロック 5がメークポジションにある時のエアーギヤッ プ Ga, Gbの幅は(a+s)及び (b— s)となる。セットバック量 δは [ (b—s)— a]により表され る。
[0044] 第三の実施態様におけるエアーギャップ Gbの幅は第二の実施態様における幅より セットバック量 δだけ広いので、第三の実施態様では第二の実施態様よりエアーギヤ ップ Gaを通る永久磁石 8の磁束(黒色の矢印で示す)は多ぐエアーギャップ Gbを通 る永久磁石 8の磁束は少ない。従って、コイル 9a, 9bに電流を流さないとき、可動ブロ ック 5は第三の実施態様の方が第二の実施態様より強く先端ヨーク部材 Id側 (ホーム ポジション)に保持される。
[0045] 図 9(b)は、ホームポジションからメークポジションへの切換えを示す。コイル 9a, 9bに 電流を流して磁束(白抜きの矢印で示す)が発生すると、エアーギャップ Gaでは永久 磁石 8の磁束 (黒色の矢印で示す)とコイル 9a, 9bの磁束(白抜きの矢印で示す)はほ ぼ打ち消しあい、エアーギャップ Gbでは永久磁石 8の磁束よりコイル 9a, 9bの磁束が 十分に大きいため、エアーギャップ Gaにおける全磁束量よりエアーギャップ Gbにおけ る全磁束量の方が多くなり、可動ブロック 5は先端ヨーク部材 Id側力 先端ヨーク部材 le側に移動する。
[0046] 図 9(c)は可動ブロック 5がメークポジションにある時のエアーギャップ Ga, Gbの幅を 示す。これらは第一の実施態様の場合と同じであるので、説明を省略する。なお上記 の通り、第三の実施態様では第二の実施態様よりエアーギャップ Gaを通る永久磁石 8の磁束 (黒色の矢印で示す)が多ぐエアーギャップ Gbを通る永久磁石 8の磁束が 少ないので、コイルの通電指令のダウンや停電等によりコイル 9a, 9bに電流が流れな くなると、可動ブロック 5は第二の実施態様の場合より強い力で先端ヨーク部材 Id側 に戻り、保持される。
[0047] 第二及び第三の実施態様では、永久磁石 8が作る磁束を一方の腕部 laだけを流れ る経路と、両方の腕部 la, lbを流れるような経路に分けたので、(a)図 6及び 7に示す ように(a + s) =bの要件を満たす場合も、 (b)図 8及び 9に示すように(a+s) < (b— s)の 要件及び δ [ = (b-s) -a] >0の要件を満たす場合でも、腕部 la側のエアーギャップ Gaにおける永久磁石 8の磁束量は腕部 lb側のエアーギャップ Gbにおける永久磁石 8 の磁束量より多い。この点では、永久磁石 8がヨーク 1の基部 lcの中央に設けられた 第一の実施態様の場合と異ならな 、。
[0048] 上記いずれの光スィッチでも、永久磁石 8の磁束はエアーギャップ Gaの方がエアー ギャップ Gbより多いので、コイル 9a, 9bが無励磁のとき、可動ブロック 5はホームポジシ ヨンに保持される。コイル 9a, 9bが励磁されている間、エアーギャップ Gaを通る全磁束 量はエアーギャップ Gbを通る全磁束量より少なぐ可動ブロック 5はメークポジションに 保持される。しかしコイル 9a, 9bが無励磁になると、可動ブロック 5は自動的にホーム ポジションに戻る。従って、本実施態様の光スィッチもノンラッチ型光スィッチである。
[0049] 本発明には技術的思想の範囲内で種々の変更を施すことができる。例えば上記実 施態様ではヨークは E字形状であるが、これに限定されず、ほぼ平行な腕部を有する ヨークであれば良ぐ例えばコ字状のヨークでも良い。またヨークの腕部と基部は一体 的でも別体でも良い。また L字状に一体ィ匕した腕部と基部を突き合わせても良い。
[0050] 永久磁石は、例えば組み立て型ヨークであれば隣接するヨーク部に挟み込み、また 一体型ヨークであれば凹部に装着すれば良い。
[0051] ホームポジション及びメークポジションに位置決めするためのピンを移動自在に収 容するために可動ブロック及び固定ブロックのブロック本体に形成する溝は台形状に 限らず、四角形状でも良い。また光ファイバを固定する溝及びピンを収容する溝はブ ロック本体及び Z又は押さえ板に形成して 、れば良!、。
[0052] セットバック量 δを二つの先端ヨーク部材を異なる厚さにすることにより得る代わりに 、両腕部の位置を調整することにより得ても良い。その際、ヨークの腕部と基部の間に 軟磁性スぺーサを介在させることにより、両腕部の位置を調整しても良い。その場合 、先端ヨーク部材を省いても良い。またエアーギャップ Ga, Gbを通る磁束の量を非対 称性にするのに、長手方向中心線 40からずれた位置でヨークにギャップを設けたり、 そのギャップに非磁性体や低透磁率材を挿入したりしても良 、。
[0053] 押さえ板はガラス製に限らず、熱膨張係数を同じにするために可動ブロック及び固 定ブロックと同じ軟磁性セラミックにより形成しても良い。
[0054] 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの実施例 に限定されるものではない。
[0055] 実施例 1
図 1に示す光スィッチの動作をテストした。支持ブロック 4、可動ブロック 5及び固定ブ ロック 6はいずれも 0.47 T (4,700 G)の飽和磁束密度、 1,500の透磁率(at 1 kHz)及び 115 X 10— 7/°Cの熱膨張係数を有するマンガン '亜鉛フェライトにより形成した。可動ブ ロック 5は 1.9 mmの厚さ、 3 mmの X軸方向幅及び 2.5 mmの Y軸方向幅を有していた。 SS400 (JIS規格)からなる先端ヨーク部材 Id, leの吸着面は 2 mm X 1.9 mmで、可動ブ ロック 5に対して Y軸方向に対向していた。各コイル 9a, 9bの卷数は 500ターンであつ た。ホームポジションにおける先端ヨーク部材 Idと可動ブロック 5との間のエアーギヤッ プ Gaの幅 aを 0.075 mmとし、可動ブロック 5の移動距離 sを 0.25 mmとした。
[0056] コイル 9a, 9bに電流を流さない状態でエアーギャップ Gbの幅 bを増加させ、エアー ギャップ Ga, Gbにおける磁気吸引力を測定した。結果を図 4に示す。ホームポジショ ン方向の磁気吸引力をプラスとし、メークポジション方向への磁気吸引力をマイナスと した。
[0057] 図 4から明らかなように、メークポジション側での磁気吸引力がゼロとなる(メークポジ シヨン側力もホームポジション側に切換る)時のセットバック量 [ (b s) i]は約 0.25 mmであった。このとき、 a+s = 0.325 mm、 b— s = δ +a=0.325 mmである。従って、セ ットバック量を 0.25 mm超に設定すると、 (a+s) < (b— s)となり、ホームポジションへの 復元力を常に働力せることができる。なおセットバック量 δ =0の場合、自己保持型光 スィッチである。
[0058] セットバック量を 0.3 mmに変更してコイル 9a, 9bを励磁し、ホームポジション側及びメ ークポジション側の磁気吸着力を測定した。結果を図 5に示す。図 5から明らかなよう に、各コイル 9a, 9bに約 30 Α·Τ以上の電流を流すと、ホームポジションからメークポジ シヨンに可動ブロック 5を移動させることができる。
[0059] また 20°C— + 80°Cの間で透過光の損失は 0.5 dBと僅かであった。
[0060] 実施例 2
可動ブロック 5の X軸方向幅を 2 mmとし、 Y軸方向幅を 3.2 mmとした以外実施例 1と 同じ光スィッチについて、セットバック量 δを 0.5 mm、 0.7 mm及び 0.75 mmとして、す なわち [ (b—s)— (a+s) ]を 0.25 mm、 0.45 mm及び 0.5 mmとして、動作をテストした。そ の結果、セットバック量 δ力 0.7 mm及び 0.75 mm、すなわち [ (b— s)— (a+s) ]が 0.45 mm及び 0.5 mmの場合、ノンラッチ動作が確実に再現された力 セットバック量 δ力 0.5 mm、すなわち [ (b—s)— (a+s) ]が 0.25 mmの場合、磁気吸引力が不十分で、ノン ラッチ動作が常に再現された訳ではなかった。これより、エアーギャップ Gaの幅(a + s )とエアーギャップ Gbの幅(b s)との差(b— a 2s)は 0.3 mm以上であるのが好まし!/、こ とが分かる。また透過光の損失は実施例 1と同様に少な力つた。
[0061] 実施例 3
図 6に示す光スィッチの動作をテストした。可動ブロック 5は 1.9 mmの厚さ、 3 mmの X 軸方向幅及び 2.5 mmの Y軸方向幅を有していた。 SS400 (JIS規格)からなる先端ョー ク部材 Id, leの吸着面は幅 2 mm及び厚さ 1.9 mmで、可動ブロック 5に対して Y軸方 向に対向していた。各コイル 9a, 9bの卷数は 500ターンであった。ホームポジションに おいて、先端ヨーク部材 Idと可動ブロック 5との間のエアーギャップ Gaの幅 aを 0.075 mmとし、先端ヨーク部材 leと可動ブロック 5とのエアーギャップ Gbの幅 bを 0.325 mmと し、可動ブロック 5と固定ブロック 6とのエアーギャップの幅を 0.35 mmとした。可動ブロ ック 5の移動距離 sは 0.25 mmとした。
両コイル 9a, 9bに同量の電流を流し、可動ブロック 5と先端ヨーク部材との磁気吸引 力をそれぞれホームポジション及びメークポジションで測定した。結果を図 10に示す 。約 65 Α·Τでホームポジションにおける磁気吸引力が 0となり、それを超える電流を流 すとメークポジションに切り換ることが分かる。またメークポジションにあっても、電流を 遮断すると磁気吸弓 I力はプラスになり、ホームポジションに自動的に復帰することが 分かる。また透過光の損失は実施例 1と同様に少な力つた。

Claims

請求の範囲
[1] 可動光ファイバと固定光ファイバとの結合を切り替える光スィッチであって、前記可 動光ファイバの先端に固定された軟磁性可動ブロックと、前記固定光ファイバが固定 されているとともに、前記可動ブロックに対向する位置に固定された軟磁性固定プロ ックと、前記可動ブロックを前記固定ブロックに対して移動させるためのァクチユエ一 タと、前記可動ブロックを前記固定ブロックに対して位置決めする手段とを有し、前記 ァクチユエータは、前記可動ブロックをその移動方向に挟む一対の腕部を基部の両 端に有するヨークと、前記ヨークの基部に装着された永久磁石と、少なくとも一方の腕 部に配置されたコイルとを具備し、前記可動ブロックの位置にかかわらず、前記永久 磁石により生じる磁束は、一方の腕部と前記可動ブロックとの間の第一のギャップの 方が他方の腕部と前記可動ブロックとの間の第二のギャップより多いことを特徴とする 光スィッチ。
[2] 請求項 1に記載の光スィッチにおいて、前記可動ブロックの移動方向における前記 第一及び第二のギャップの幅が異なることを特徴とする光スィッチ。
[3] 可動光ファイバと固定光ファイバとの結合を切り替える光スィッチであって、前記可 動光ファイバの先端に固定された軟磁性可動ブロックと、前記固定光ファイバが固定 されているとともに、前記可動ブロックに対向する位置に固定された軟磁性固定プロ ックと、前記可動ブロックを前記固定ブロックに対して移動させるためのァクチユエ一 タと、前記可動ブロックを前記固定ブロックに対して位置決めする手段とを有し、前記 ァクチユエータは、前記可動ブロックをその移動方向に挟む一対の腕部を基部の両 端に有するヨークと、前記固定ブロックと前記ヨークとの間に固定された永久磁石と、 前記ヨークに設けられたコイルとを具備し、前記可動ブロックは一方の腕部に最接近 するホームポジションと他方の腕部に最接近するメークポジションとの間を移動し、前 記ホームポジションにおける前記可動ブロックと前記一方の腕部及び前記他方の腕 部との間の第一及び第二のギャップの幅をそれぞれ a及び bとし、前記可動ブロックの 移動距離を sとすると、前記メークポジションにおける前記第一のギャップの幅 (a+s) は前記第二のギャップの幅 (b— s)より小さ 、ことを特徴とする光スィッチ。
[4] 請求項 3に記載の光スィッチにおいて、前記メークポジションにおける前記第一のギ ヤップの幅(a+s)と前記第二のギャップの幅(b— s)との差(b— a— 2s)が 0.3 mm以上で あることを特徴とする光スィッチ。
[5] 可動光ファイバと固定光ファイバとの結合を切り替える光スィッチであって、前記可 動光ファイバの先端に固定された軟磁性可動ブロックと、前記固定光ファイバが固定 されているとともに、前記可動ブロックに対向する位置に固定された軟磁性固定プロ ックと、前記可動ブロックを前記固定ブロックに対して移動させるためのァクチユエ一 タと、前記可動ブロックを前記固定ブロックに対して位置決めする手段とを有し、前記 ァクチユエータは、前記可動ブロックをその移動方向に挟む一対の腕部を基部の両 端に有するヨークと、前記ヨークに装着された永久磁石と、少なくとも一方の腕部に配 置されたコイルとを具備し、前記永久磁石は一対の腕部の中間の長手方向中心線よ りずれて ヽることを特徴とする光スィッチ。
[6] 請求項 1一 5のいずれかに記載の光スィッチにおいて、前記可動ブロックは一方の 腕部に最接近するホームポジションと他方の腕部に最接近するメークポジションとの 間を移動し、前記コイルが励磁されて磁束を発生すると、前記可動ブロックと一方の 腕部との間の第一のギャップを通る全磁束量が、前記可動ブロックと他方の腕部との 間の第二のギャップを通る全磁束量より少なくなり、前記可動ブロックは前記メークポ ジシヨンに保持されるが、前記コイルが無励磁になると前記可動ブロックは前記ホー ムポジションに戻ることを特徴とする光スィッチ。
[7] 請求項 3、 4及び 6の!、ずれかに記載の光スィッチにお 、て、前記ホームポジション における前記第一及び第二のギャップの幅をそれぞれ a及び bとし、前記可動ブロック の移動距離を sとすると、 δ = (b-s) -aで表されるセットバック量 δ力 SOより大きいことを 特徴とする光スィッチ。
[8] 請求項 1一 7のいずれかに記載の光スィッチにおいて、前記ヨークの各腕部に前記 コイルが配置されて 、ることを特徴とする光スィッチ。
[9] 請求項 1一 8のいずれかに記載の光スィッチにおいて、前記可動ブロック及び前記 固定ブロックの少なくとも一方が軟磁性フェライトからなることを特徴とする光スィッチ
[10] 請求項 9に記載の光スィッチにお 、て、前記軟磁性フェライトがマンガン '亜鉛フェ ライトであることを特徴とする光スィッチ。
PCT/JP2004/019046 2003-12-19 2004-12-20 光スイッチ WO2005059623A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005516381A JP3900301B2 (ja) 2003-12-19 2004-12-20 光スイッチ
US10/547,391 US7336865B2 (en) 2003-12-19 2004-12-20 Optical switch

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-422686 2003-12-19
JP2003422686 2003-12-19
JP2004-009955 2004-01-19
JP2004009955 2004-01-19

Publications (1)

Publication Number Publication Date
WO2005059623A1 true WO2005059623A1 (ja) 2005-06-30

Family

ID=34703300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019046 WO2005059623A1 (ja) 2003-12-19 2004-12-20 光スイッチ

Country Status (3)

Country Link
US (1) US7336865B2 (ja)
JP (1) JP3900301B2 (ja)
WO (1) WO2005059623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205723A (ja) * 2017-05-30 2018-12-27 東日本電信電話株式会社 切替スイッチの切替機構

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001344A2 (en) * 2006-06-27 2008-01-03 Waterfall Solutions Ltd One way secure link
IL180020A (en) 2006-12-12 2013-03-24 Waterfall Security Solutions Ltd Encryption -and decryption-enabled interfaces
IL180748A (en) * 2007-01-16 2013-03-24 Waterfall Security Solutions Ltd Secure archive
US8223205B2 (en) * 2007-10-24 2012-07-17 Waterfall Solutions Ltd. Secure implementation of network-based sensors
US8285090B2 (en) * 2010-03-19 2012-10-09 Rockwell Automation Technologies, Inc. Serial optical data transmission system with displaceable optical pathway
US8447148B1 (en) 2010-03-29 2013-05-21 Sandia Corporation Latching micro optical switch
US9755552B2 (en) * 2012-03-27 2017-09-05 Hitachi Metals, Ltd. Frequency converter
US9635037B2 (en) 2012-09-06 2017-04-25 Waterfall Security Solutions Ltd. Remote control of secure installations
WO2014141000A1 (en) * 2013-03-12 2014-09-18 Koninklijke Philips N.V. A horseshoe magnet for a biosensor
US9419975B2 (en) 2013-04-22 2016-08-16 Waterfall Security Solutions Ltd. Bi-directional communication over a one-way link
IL235175A (en) 2014-10-19 2017-08-31 Frenkel Lior Secure desktop remote control
IL250010B (en) 2016-02-14 2020-04-30 Waterfall Security Solutions Ltd Secure connection with protected facilities
KR102481506B1 (ko) * 2017-07-17 2022-12-26 엘지이노텍 주식회사 렌즈 구동 장치, 광출력 모듈 및 라이다

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140913A (ja) * 1989-10-26 1991-06-14 Matsushita Electric Works Ltd 光ファイバーリレー
JPH0675177A (ja) * 1992-08-25 1994-03-18 Sumitomo Electric Ind Ltd 光スイッチ
JPH11119125A (ja) * 1997-10-15 1999-04-30 Hitachi Ltd 光スイッチ
JP2001004935A (ja) * 1999-06-23 2001-01-12 Hitachi Cable Ltd 光スイッチ
US20030133648A1 (en) * 2001-11-15 2003-07-17 Yasuyuki Mitsuoka Optical switch and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101940C (zh) 1994-04-22 2003-02-19 欧姆龙株式会社 光开关器
JP3062881B2 (ja) * 1998-05-12 2000-07-12 株式会社日立製作所 光スイッチ
JP2000034711A (ja) 1998-07-17 2000-02-02 Buishunu:Kk 車止め
US6807331B2 (en) * 2000-09-19 2004-10-19 Newport Opticom, Inc. Structures that correct for thermal distortion in an optical device formed of thermally dissimilar materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140913A (ja) * 1989-10-26 1991-06-14 Matsushita Electric Works Ltd 光ファイバーリレー
JPH0675177A (ja) * 1992-08-25 1994-03-18 Sumitomo Electric Ind Ltd 光スイッチ
JPH11119125A (ja) * 1997-10-15 1999-04-30 Hitachi Ltd 光スイッチ
JP2001004935A (ja) * 1999-06-23 2001-01-12 Hitachi Cable Ltd 光スイッチ
US20030133648A1 (en) * 2001-11-15 2003-07-17 Yasuyuki Mitsuoka Optical switch and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205723A (ja) * 2017-05-30 2018-12-27 東日本電信電話株式会社 切替スイッチの切替機構

Also Published As

Publication number Publication date
JPWO2005059623A1 (ja) 2007-07-12
US7336865B2 (en) 2008-02-26
US20060165347A1 (en) 2006-07-27
JP3900301B2 (ja) 2007-04-04

Similar Documents

Publication Publication Date Title
US6169826B1 (en) Optical switch
WO2005059623A1 (ja) 光スイッチ
EP0264619B1 (en) Polarized magnetic drive for electromagnetic switching device
US7106159B2 (en) Mobile magnet actuator
US4610504A (en) Fibre-optic switching means
US5150090A (en) Electromagnetic polar relay
EP0169714B1 (en) Polarized electromagnetic relay
US20040067010A1 (en) Optical switch
CN100483177C (zh) 光开关
CN113359240A (zh) 非锁定型光开关
KR100753586B1 (ko) 광 디바이스
JP3859120B2 (ja) 光スイッチ
JPS5831563B2 (ja) 光スイッチ
CN215005969U (zh) 非锁定型光开关
JPH05289004A (ja) 光スイッチ
JP2004070162A (ja) 磁気回路及びそれを用いた機械式光スイッチ
JP2007017562A (ja) 多チャンネル光スイッチ
JP3619440B2 (ja) 光スイッチングシステム
JPH04145409A (ja) 光スイッチ
JP2005215270A (ja) 光スイッチ
JP2003202509A (ja) 磁性材料及び磁歪アクチュエータ並びに磁歪アクチュエータを用いた光スイッチ
JPS58219501A (ja) 光スイツチ
JPH03140913A (ja) 光ファイバーリレー
JPH03166509A (ja) 光ファイバーリレー
JPH03166508A (ja) 光ファイバーリレー

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005516381

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048049296

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006165347

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547391

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10547391

Country of ref document: US

122 Ep: pct application non-entry in european phase