WO2005057662A3 - Method and apparatus for fabricating ultra-shallow junction metal-oxide semiconductor integrated circuit devices. - Google Patents
Method and apparatus for fabricating ultra-shallow junction metal-oxide semiconductor integrated circuit devices. Download PDFInfo
- Publication number
- WO2005057662A3 WO2005057662A3 PCT/IB2004/003991 IB2004003991W WO2005057662A3 WO 2005057662 A3 WO2005057662 A3 WO 2005057662A3 IB 2004003991 W IB2004003991 W IB 2004003991W WO 2005057662 A3 WO2005057662 A3 WO 2005057662A3
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- source
- integrated circuit
- oxide semiconductor
- semiconductor integrated
- drain
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract 4
- 229910044991 metal oxide Inorganic materials 0.000 title abstract 2
- 150000004706 metal oxides Chemical class 0.000 title abstract 2
- 239000004065 semiconductor Substances 0.000 title abstract 2
- 239000000758 substrate Substances 0.000 abstract 4
- 125000006850 spacer group Chemical group 0.000 abstract 2
- 238000000137 annealing Methods 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6653—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03300257 | 2003-12-10 | ||
EP03300257.7 | 2003-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005057662A2 WO2005057662A2 (en) | 2005-06-23 |
WO2005057662A3 true WO2005057662A3 (en) | 2005-10-13 |
Family
ID=34673636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2004/003991 WO2005057662A2 (en) | 2003-12-10 | 2004-12-03 | Method and apparatus for fabricating ultra-shallow junction metal-oxide semiconductor integrated circuit devices. |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200534339A (en) |
WO (1) | WO2005057662A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107104051B (en) * | 2016-02-22 | 2021-06-29 | 联华电子股份有限公司 | Semiconductor element and manufacturing method thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6180472B1 (en) * | 1998-07-28 | 2001-01-30 | Matsushita Electrons Corporation | Method for fabricating semiconductor device |
US6211027B1 (en) * | 1999-11-19 | 2001-04-03 | United Microelectronics Corp. | Method for manufacturing PMOS transistor |
US20010025994A1 (en) * | 2000-03-23 | 2001-10-04 | Kazuhiko Yoshino | Process for producing semiconductor device and semiconductor device |
US6319798B1 (en) * | 1999-09-23 | 2001-11-20 | Advanced Micro Devices, Inc. | Method for reducing lateral dopant gradient in source/drain extension of MOSFET |
US6335252B1 (en) * | 1999-12-06 | 2002-01-01 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device manufacturing method |
US20020001910A1 (en) * | 1999-02-24 | 2002-01-03 | Chin-Lai Chen | Method of forming a mos transistor of a semiconductor |
US6429084B1 (en) * | 2001-06-20 | 2002-08-06 | International Business Machines Corporation | MOS transistors with raised sources and drains |
US20030098486A1 (en) * | 2001-11-26 | 2003-05-29 | Fujitsu Limited | Semiconductor device manufacture method including process of implanting impurity into gate electrode independently from source /drain and semiconductor device manufactured by the method |
US20030170958A1 (en) * | 2002-03-05 | 2003-09-11 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing semiconductor device |
US6630385B1 (en) * | 2001-04-27 | 2003-10-07 | Advanced Micro Devices, Inc. | MOSFET with differential halo implant and annealing strategy |
US20030193066A1 (en) * | 2002-04-16 | 2003-10-16 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US6642122B1 (en) * | 2002-09-26 | 2003-11-04 | Advanced Micro Devices, Inc. | Dual laser anneal for graded halo profile |
US6660605B1 (en) * | 2002-11-12 | 2003-12-09 | Texas Instruments Incorporated | Method to fabricate optimal HDD with dual diffusion process to optimize transistor drive current junction capacitance, tunneling current and channel dopant loss |
-
2004
- 2004-12-03 WO PCT/IB2004/003991 patent/WO2005057662A2/en active Application Filing
- 2004-12-07 TW TW093137840A patent/TW200534339A/en unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6180472B1 (en) * | 1998-07-28 | 2001-01-30 | Matsushita Electrons Corporation | Method for fabricating semiconductor device |
US20020001910A1 (en) * | 1999-02-24 | 2002-01-03 | Chin-Lai Chen | Method of forming a mos transistor of a semiconductor |
US6319798B1 (en) * | 1999-09-23 | 2001-11-20 | Advanced Micro Devices, Inc. | Method for reducing lateral dopant gradient in source/drain extension of MOSFET |
US6211027B1 (en) * | 1999-11-19 | 2001-04-03 | United Microelectronics Corp. | Method for manufacturing PMOS transistor |
US6335252B1 (en) * | 1999-12-06 | 2002-01-01 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device manufacturing method |
US20010025994A1 (en) * | 2000-03-23 | 2001-10-04 | Kazuhiko Yoshino | Process for producing semiconductor device and semiconductor device |
US6630385B1 (en) * | 2001-04-27 | 2003-10-07 | Advanced Micro Devices, Inc. | MOSFET with differential halo implant and annealing strategy |
US6429084B1 (en) * | 2001-06-20 | 2002-08-06 | International Business Machines Corporation | MOS transistors with raised sources and drains |
US20030098486A1 (en) * | 2001-11-26 | 2003-05-29 | Fujitsu Limited | Semiconductor device manufacture method including process of implanting impurity into gate electrode independently from source /drain and semiconductor device manufactured by the method |
US20030170958A1 (en) * | 2002-03-05 | 2003-09-11 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing semiconductor device |
US20030193066A1 (en) * | 2002-04-16 | 2003-10-16 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US6642122B1 (en) * | 2002-09-26 | 2003-11-04 | Advanced Micro Devices, Inc. | Dual laser anneal for graded halo profile |
US6660605B1 (en) * | 2002-11-12 | 2003-12-09 | Texas Instruments Incorporated | Method to fabricate optimal HDD with dual diffusion process to optimize transistor drive current junction capacitance, tunneling current and channel dopant loss |
Also Published As
Publication number | Publication date |
---|---|
WO2005057662A2 (en) | 2005-06-23 |
TW200534339A (en) | 2005-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1469509A4 (en) | Method and device for processing substrate, and apparatus for manufacturing semiconductor device | |
TW200601463A (en) | Method and apparatus for a semiconductor device with a high-k gate dielectric | |
EP1434282A3 (en) | Protective layer for an organic thin-film transistor | |
TW200511508A (en) | Semiconductor device, method for manufacturing the semiconductor device, and integrated circuit including the semiconductor device | |
TW200726826A (en) | Composition and method for selectively etching gate spacer oxide material | |
TW200503272A (en) | Semiconductor device and its manufacturing method | |
TW200802628A (en) | Semiconductor structure and fabrications thereof | |
TW200514199A (en) | Dual fully-silicided gate MOSFETS | |
WO2006096749A3 (en) | Semiconductor device manufacture using a sidewall spacer etchback | |
TW200721494A (en) | Method of manufacturing semiconductor device | |
TW200509244A (en) | A selective etch process for making a semiconductor device having a high-k gate dielectric | |
TW200802558A (en) | Methods for contact resistance reduction of advanced CMOS devices | |
WO2005057663A3 (en) | Method and apparatus for fabrication of metal-oxide semiconductor integrated circuit devices | |
WO2005062345A3 (en) | A method of forming a silicon oxynitride layer | |
WO2005094534A3 (en) | A semiconductor device having a silicided gate electrode and method of manufacture therefor | |
WO2007092657A3 (en) | Semiconductor device and method for incorporating a halogen in a dielectric | |
TW200742070A (en) | Method for forming a semiconductor device having a fin and structure thereof | |
WO2006014783A3 (en) | Method for manufacturing a semiconductor device having silicided regions | |
TW200512882A (en) | Method and apparatus for fabricating CMOS field effect transistors | |
TWI350554B (en) | Method for manufacturing semiconductor device and substrate processing apparatus | |
TW200507262A (en) | BiCMOS integration scheme with raised extrinsic base | |
SG126911A1 (en) | Semiconductor device and fabrication method | |
TW200611306A (en) | Semiconductor device and method for forming the same | |
TW200605155A (en) | A method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode | |
WO2004077502A3 (en) | Ecr-plasma source and methods for treatment of semiconductor structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |