[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005055484A1 - 無線通信装置、無線通信方法、及び無線通信システム - Google Patents

無線通信装置、無線通信方法、及び無線通信システム Download PDF

Info

Publication number
WO2005055484A1
WO2005055484A1 PCT/JP2004/018033 JP2004018033W WO2005055484A1 WO 2005055484 A1 WO2005055484 A1 WO 2005055484A1 JP 2004018033 W JP2004018033 W JP 2004018033W WO 2005055484 A1 WO2005055484 A1 WO 2005055484A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
antenna
signal
wireless
wireless communication
Prior art date
Application number
PCT/JP2004/018033
Other languages
English (en)
French (fr)
Inventor
Atsushi Ohta
Takeshi Onizawa
Takafumi Fujita
Wenjie Jiang
Satoshi Kurosaki
Daisei Uchida
Yusuke Asai
Syuji Kubota
Satoru Aikawa
Takatoshi Sugiyama
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to JP2005515986A priority Critical patent/JP4188372B2/ja
Publication of WO2005055484A1 publication Critical patent/WO2005055484A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting

Definitions

  • Wireless communication device wireless communication method, and wireless communication system
  • the present invention uses the same frequency channel, transmits independent data from a plurality of different transmitting antennas, receives signals using a plurality of receiving antennas, and uses a transfer function matrix between the respective transmitting and receiving antennas.
  • the present invention relates to a receiving technique for achieving good transmission characteristics while suppressing a circuit scale.
  • OFDM orthogonal frequency division multiplexing
  • transmission diversity gain can be gained at the base station side, and good characteristics can be obtained while suppressing the circuit scale on the wireless terminal side.
  • Transmission technology is used particularly for performing high-speed transmission of a high-speed wireless access system (or wireless LAN system) using the 2.4 GHz band and the 5 GHz band.
  • MIMO Multiple-Input Multiple-Output
  • This MIMO technology means that the transmitting station transmits different independent signals on the same channel from multiple transmitting antennas, and the receiving station receives signals using the same multiple antennas. A transfer function matrix is obtained, and an independent signal transmitted from each antenna card is estimated on the transmitting station side using the matrix to reproduce data.
  • N signals are transmitted using N transmission antennas and signals are received using M antennas.
  • NXM transmission paths between the antennas of the transmitting and receiving stations, and the signals are transmitted from the i-th transmitting antenna and received by the j-th receiving antenna.
  • H the matrix of M rows and N columns that uses this as the (Li) -th component.
  • Tx i 1 2 3 N be a column vector with components (t, t, t, t)
  • R is the received signal at the jth receive antenna
  • Rx j 1 2 3 is a column vector with (r, r, r,.
  • the thermal noise term H ⁇ n is sufficiently small and If it can be assumed that the components are uniform, good characteristics can be expected. However, in general, this assumption does not hold, and the expected value of the absolute value of the thermal noise H 1 Xn for each transmission antenna differs for a certain transfer function matrix. Furthermore, if the transfer function matrix H is a matrix whose inverse matrix is zero (or its determinant is very small), the estimation of the transmitted signal becomes very unstable. In such a situation, there is a possibility that the reception characteristics are significantly deteriorated. As a method for solving such a problem, for example, the MMSE (Minimum Mean Square Error) method is cited as an example.
  • MMSE Minimum Mean Square Error
  • the inverse matrix of the transfer function matrix H is used in order to remove the interference between the sequences of each signal sequence and separate the signals, but this is only the mutual interference between the signal sequences.
  • the objective is to eliminate the noise, but not to maximize the diversity gain due to combining between the receiving antennas.
  • S / N ratio signal-to-noise level ratio
  • This method is called an E-SDM (Eigenbeam-Space Division Multiplexing) method (for example, see Non-Patent Document 2).
  • This E-SDM scheme assumes that the transfer function matrix H is known on the transmitting side. Based on the matrix H, the product of the Hermitian conjugate matrix H of this matrix H and H, that is, the NXN matrix H H Transmits the signal UX Tx (k) that has been subjected to digital transformation.
  • the signal transmitted from the i-th transmitting antenna is [UXTx] (where [X] represents the ⁇ th component of vector X). If a signal that has been subjected to a series transformation including the preamble signal is transmitted, the transfer function matrix obtained by channel estimation will be HXU even if the actual transfer function matrix is H at the receiving station.
  • Equation 3 The matrix ⁇ on the right side of this (Equation 3) is a diagonal matrix of ⁇ X ⁇ , and the diagonal components of the matrix are non-zero (each component is called an eigenvalue, and ⁇ 1, ⁇ 2, ⁇ 3. The other diagonal components are zero.
  • Equation 1 is also converted as follows.
  • this ⁇ —SDM method is equivalent to the phased array antenna technology in which a signal is converted on the transmitting side so that the transmitted signal has directivity. it can. As a result, it is possible to obtain the diversity gain together while avoiding interference between the transmission antennas, so that very good characteristics can be expected.
  • FIG. 17 shows a configuration of a transmitting section of a first wireless station in the related art.
  • 100 is a data division circuit
  • 101-1 to 101-3 is a preamble addition circuit
  • 102-1 to 102-3 is a modulation circuit
  • 103 is a transmission signal conversion circuit
  • 104-1 to 104-3 is a wireless circuit.
  • 105-1-1 105-3 is a transmitting antenna
  • 106 is a matrix operation circuit # 1
  • 107 is a transfer function matrix management circuit.
  • the transfer function matrix ⁇ managed by the transfer function matrix management circuit 107 is input to the matrix operation circuit 106.
  • the matrix operation circuit # 1 (106) for the input matrix ⁇ , an Hermitian conjugate matrix ⁇ ⁇ , their product ⁇ ⁇ ⁇ ⁇ , and a u Is input to the transmission signal conversion circuit 103.
  • the data division circuit 100 separates the data into three systems. For example, the data of the first system is input to the brimble adding circuit 101-1 and is input to the modulation circuit (Ch 1) 102-1 with the preamble added.
  • the modulation circuit (Chi) 102-1 performs predetermined modulation, and the modulated signal is input to the transmission signal conversion circuit 103.
  • the transmission signal Tx including the preamble signal is subjected to a digital transformation and input to the radio section 104-1 as the UX Tx. After that, it is converted to a radio frequency by radio section 104-1 and transmitted from transmitting antenna 105-1.
  • the data of the second system is transmitted individually via 101-2-105-2, and the data of the third system is transmitted individually via 101-3-105-3.
  • FIG. 18 shows a configuration of a receiving unit of a second wireless station in the related art. In FIG.
  • 111—111—111—3 is a receiving antenna
  • 112—1—112—3 is a radio unit
  • 113 is a channel estimation circuit
  • 114 is a received signal management circuit
  • 115 is a transfer function matrix management circuit
  • 116 is Matrix arithmetic circuits # 2 and 117 are matrix arithmetic circuits # 3 and 118, a hard decision circuit
  • 119 is a data synthesis circuit.
  • the first to third receiving antennas 111-1 to 111-3 individually receive received signals.
  • the received signal is input to the channel estimation circuit 113 via the radio section 112-1 112-3.
  • the transfer function between each transmitting antenna and the receiving antenna is obtained here by the channel estimation circuit 113.
  • the acquired information h of each transfer function is managed as a transfer function matrix H by the transfer function matrix management circuit 115.
  • the transfer function H is obtained by multiplying the transfer function of the actual transmission path by the unitary transformation matrix.
  • the (1, 1) component is ⁇
  • the (2, 2) component is ⁇
  • the (3, 3) component is ⁇ .
  • the data signal following the preamble signal is input to the reception signal management circuit 114 one symbol at a time.
  • the received signal (r, r, r) T (T is the row vector power sequence
  • FIG. 19 shows a transmission flow of the first wireless station in the related art.
  • step S100 When data is input (step S100), the transmitting station divides the data into N data sequences (step S101), and adds a preamble signal to each of these signals (step S102).
  • the modulation process is performed individually (step S103).
  • the modulated signal is subjected to a unitary conversion (step S104), the signal after the unitary conversion is converted to a radio frequency by the radio unit, and the signal is transmitted (step S105).
  • FIG. 20 shows a reception flow of the second wireless station in the related art.
  • the receiving station Upon receiving the wireless packet (step S110), the receiving station detects a preamble (step S111) and performs channel estimation (step S112). Here, all the transfer functions between each transmitting antenna and receiving antenna are acquired.
  • a signal received subsequent to the preamble signal is managed as a received signal vector Rx having, as a component, a received signal r at each receiving antenna for each symbol (step S114).
  • the matrix operation H H X Rx is performed, and each component of the obtained vector is divided by the diagonal components ⁇ 1- ⁇ 3 of the matrix ((step S115).
  • a hard decision process is performed (step S116), and the estimation of the signal transmitted from each transmitting antenna of the corresponding symbol is determined (step S117). If the received data continues, the process returns to the processing step S114, and the processing steps S114 to S117 are repeated.
  • the reception data is completed (step S118)
  • the reception data of each series is reconstructed, and the data on the transmission side is reproduced to output the data (step S119).
  • Tokubi 1 S. Kurosaki, Y. Asai, T. Sugiyama and M. Umehira, A
  • Non-Patent Document 2 Shimo et al., “Eigen-Spatial Division Multiplexing (E—SDM) in MIMO Channel”, IEICE, RCS2002-53, May 2002
  • the transmitting station first performs channel estimation by some method, obtains the transfer function matrix H, and obtains the utliary matrix U based on this.
  • wireless packets transmitted continuously are subjected to the same dictionary conversion.
  • the signals of each signal sequence are each assigned a unique eigenvalue (row
  • 1H HH XH is assumed to be a square matrix with ⁇ rows and ⁇ columns), so that individual modulation schemes can be adopted or transmitted by a method called the water injection theorem on the transmitting side. It is common to adjust the power distribution. In other words, it is premised that signal sequences are handled individually and independently to efficiently extract the characteristics of each sequence. However, such control is complicated and negotiates between transmitting and receiving stations. As a simple method for avoiding these, it is conceivable to transmit all the signal of the signal sequence with the same output and using a single modulation mode. However, in this case, the characteristic of a signal sequence having a large variation in the value of each eigenvalue, especially the minimum eigenvalue, is greatly deteriorated.
  • a signal sequence with a high BER in the entire frequency domain # 1 has a partial packet error rate (PER) with a code error of 20% and a signal sequence with a low BER in the entire frequency domain
  • PER partial packet error rate
  • # 2 the partial PER with a code error in # 2 is 0.0001%. If the number of superimposed MIMOs is 2, the average PER of the entire system is the sum of the PER of each signal sequence and divided by 2, which is almost 10%. In other words, if there is a bad signal sequence, the PER as a whole system will be pulled by this.
  • the present invention has been made in view of such circumstances, and when performing wireless communication using MIMO technology, while achieving the good characteristics of the E-SDM method, the accuracy is low. It is an object of the present invention to simply provide a wireless communication device, a wireless communication method, and a wireless communication system that can realize stable characteristics even when a digital transformation matrix is used.
  • a wireless communication method and a wireless communication device capable of randomizing code errors of each signal sequence and efficiently improving the PER characteristic of the entire system are provided. It is to provide easily.
  • this device for randomization should be used for discriminating products as long as it can be dealt with only by changing the transmitting terminal side instead of changing the air interface specification for communication. Still preferred Yes.
  • the present invention is a wireless communication device used in a wireless communication system configured by a first wireless station and a second wireless station,
  • the first radio station has N or more first antenna groups (N is an integer greater than 1).
  • Division means for dividing user data to be transmitted into N systems (N ⁇ N> 1, where N is an integer);
  • Means for constructing a wireless data packet composed of N series of signal sequences obtained by adding N types of known pattern signals to the user data divided into the N series,
  • Conversion means for converting to a sequence of numbers
  • a wireless communication device is provided.
  • the second wireless station includes M (M is greater than 1 and an integer) second antenna groups, and an i-th antenna in the first antenna group and a second antenna group in the second antenna group.
  • j means for obtaining a transfer function h between the antenna and an approximate value thereof,
  • Means for calculating a matrix product of the two matrices that is, a matrix H H XH of N rows and N columns; anda means for calculating a unitary matrix U for diagonalizing the matrix H H XH,
  • the conversion means is
  • the acquisition means uses a plurality of signals of known patterns provided to the second wireless control packet, and obtains the j-th (l ⁇ j ⁇ M, including means for calculating the transfer function h between the antenna and the i-th (l ⁇ N, i is an integer) antenna used for reception by the first radio station
  • the function of the first wireless station is to provide the transmitting side with a simple realization method for obtaining a transfer function matrix.
  • a signal sequence including N known patterns is used as the first wireless control packet by using the N first antenna groups.
  • K subcarriers (K is an integer greater than 1) are used.
  • Orthogonal frequency division multiplexing (OFDM) modulation may be used.
  • a radio control packet and / or user data containing control information in which a plurality of signal sequences are not superimposed, that is, only one signal sequence is received from the second radio station.
  • the reception status of the signal of the known pattern received by each reception antenna is transmitted by the second radio station of the ks (l ⁇ ks ⁇ K, where is an integer) subcarrier Transfer function between antenna j (l ⁇ j ⁇ M, where j is an integer) used for antenna and antenna i (l ⁇ N, i is an integer) used for reception by the first radio station h [ks]
  • ks' is an integer subcarrier transmitted by the jth antenna of the second radio station
  • the transfer function h [ks ′ ] between the j-th antenna and the i-th antenna of the first wireless station is determined by the j-th antenna of the second wireless station.
  • Ks ⁇ ks and ks ⁇ ks transmitted by the antenna (l ⁇ ks ⁇ K, l ⁇ ks ⁇ K, ks, ks is an integer) and the transfer function h [ksl for the ks subcarrier and the ks subcarrier ] And h [ks2] include transfer function obtaining means for obtaining h [ks ′ ] by interpolation or extrapolation.
  • the transfer function acquisition means is provided on the first wireless station side. May be provided to the second wireless station.
  • the present invention is also a wireless communication device for receiving a wireless signal from the wireless communication device at the second wireless station,
  • the second wireless station includes M (M is an integer of 1 or more) second antenna group, means for individually receiving a wireless signal using the second antenna group,
  • Output means for synthesizing all demodulated signal sequences and outputting them as user data.
  • the present invention also provides a wireless communication system including the above-described transmitting-side wireless communication device and the above-described receiving-side wireless communication device.
  • the demodulation means includes:
  • a transfer function h between an i-th antenna in the first antenna group and a j-th antenna in the second antenna group is defined as a signal of a known pattern given to the received signal as a reference signal.
  • a predetermined operation is performed on an M-by-N matrix H having the transfer function h as the (j, i) -th component, and ⁇
  • the output means is the output means
  • the calculating means includes:
  • Means for calculating a matrix product of the two matrices that is, an N-by-N matrix H H XH; and means for calculating an inverse matrix of the matrix H H XH, that is, (H H XH) 1
  • the calculating means includes:
  • the function of the second radio station is to provide a simple means for implementing the ZF method on the receiving station side by utilizing the fact that the matrix is a square matrix.
  • the calculating means includes:
  • the transmission signal of the k-th symbol transmitted from the n-th antenna of the first antenna group is denoted by t (k), and the reception of the k-th symbol actually received by the m-th antenna of the second antenna group If a signal is expressed as r (k), then (t (k), t (10,..., T (k)) T
  • a received signal vector Rx (k) expressed by: and a matrix operator F, a vector FX Rx (k) —Tx (k) and a vector of Hermitian conjugate of the vector (FX Rx (k) ⁇ Tx (k) ) H vector product of (FX Rx (k) -Tx ( k)) H X to the expected value across multiple symbols (FX Rx (k) -Tx ( k)) and the minimization child is expected Means for selecting the matrix operator F;
  • the function of the second wireless station is to provide the receiving station with a means for using the MMSE method instead of the ZF method.
  • the matrix operator F may be obtained by an MMSE (Minimum Mean Square Error) method.
  • the wireless communication device As a preferred example of the wireless communication device,
  • J, i means for transmitting a second radio control packet containing information on the transfer function as a response to the first radio control packet
  • an orthogonal frequency division multiplexing (OFDM) modulation method using K subcarriers (K is an integer greater than 1) may be used.
  • a signal of the ks subcarrier is converted to a second signal corresponding to a subcarrier number ks.
  • Transmission means for transmitting using a predetermined one of the antenna groups may be provided.
  • a means may be provided for notifying the first wireless station that the second wireless station has the transmitting means.
  • the present invention also provides a wireless communication method for performing communication between a first wireless station and a second wireless station,
  • the first radio station has N or more first antenna groups (N is an integer greater than 1).
  • the second wireless station includes M (M is an integer greater than 1) second antenna groups,
  • the transmitting step includes:
  • the obtaining step uses the signals of a plurality of known patterns given to the second wireless control packet, and determines the j-th (l ⁇ j ⁇ M, where j is an integer) and calculating a transfer function h between the ith (l ⁇ i ⁇ N, i is an integer) antenna used for reception by the first wireless station.
  • a signal sequence including N known patterns is used as a first wireless control packet by using the N first antenna groups. Sending,
  • an orthogonal frequency division multiplexing (OFDM) modulation method using K subcarriers (K is larger than 1 and an integer) may be used.
  • a radio control packet and / or user data containing control information in which a plurality of signal sequences are not superimposed, that is, only one signal sequence is received from the second radio station.
  • the reception status of the signal of the known pattern received by each reception antenna is transmitted by the second radio station of the ks (l ⁇ ks ⁇ K, where is an integer) subcarrier
  • the transfer function h [ks] between the j-th antenna (l ⁇ j ⁇ M, where j is an integer) used for antenna and the i-th (l ⁇ N, i is an integer) antenna used for reception by the first radio station And a transfer function obtaining step of obtaining
  • ks' is an integer subcarrier transmitted by the jth antenna of the second radio station
  • the transfer function h [ks ′ ] between the j-th antenna and the i-th antenna of the first wireless station is represented by j-th and
  • the method may include a step of notifying the second wireless station that the transfer function acquiring step is to be performed on the first wireless station.
  • the present invention also provides a radio signal transmitted by the radio communication method to the second radio station.
  • the second radio station includes M (M is an integer of 1 or more) second antenna groups, and individually receives a radio signal using the second antenna group; and A demodulation step of separating and demodulating a signal of each received signal sequence using the signal of the known pattern as a reference signal,
  • An output step of synthesizing all demodulated signal sequences and outputting them as user data is
  • the demodulation step includes:
  • a transfer function h between an i-th antenna in the first antenna group and a j-th antenna in the second antenna group is defined as a signal of a known pattern given to the received signal as a reference signal.
  • a predetermined operation is performed on an M-by-N matrix H having the transfer function h as the (j, i) -th component, and ⁇
  • the method includes a step of combining N transmission signals provided by each element of the vector obtained by the operation with all the received symbols and outputting the resultant as the user data.
  • the calculation step includes:
  • the calculation step includes: For an N-by-N matrix H having the transfer function h as the (j, i) -th component, an inverse matrix H— 1 of the matrix H
  • T is a row vector force conversion to a column vector m 1 2
  • the transmission signal of the k-th symbol transmitted from the n-th antenna of the first antenna group is set to t (k), and the second antenna group
  • the received signal of the k-th symbol actually received by the m-th antenna of notation is denoted by r (k), (t
  • T indicates conversion to row vector power column vector
  • the vector! 7 X Rx (k) the vector product of Tx (k) and the vector of Hermitian conjugates (FX Rx (k) -Tx (k)) H of the vector (FX Rx (k ) -Tx (k)) H X (FX Rx (k) —select matrix operator F such that it is expected to minimize the expected value over multiple symbols of Tx (k)) ,
  • the matrix operator F may be obtained by an MMSE (Minimum Mean Square Error) method.
  • the second wireless station side includes:
  • a signal of the ks subcarrier is converted to a second signal corresponding to a subcarrier number ks.
  • a transmission step of transmitting using a predetermined one of the antenna groups may be performed!
  • a step of notifying the first wireless station that the second wireless station performs the transmitting step may be included.
  • a wireless communication device used in a wireless communication system that performs wireless communication using an orthogonal frequency division multiplexing (OFDM) modulation scheme using a plurality of subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • the dividing means divides user data to be transmitted into N systems individually for each subcarrier,
  • the conversion means the information of the n-th (n is an integer of 1 or more) symbol of the N series of signal sequences in a certain subcarrier is (x (n), x (n), ..., ⁇ (n) ⁇ And these
  • N N is an integer
  • k means using R for k, at least means for converting the vector x (n) to RX x (n), and ksks means for transmitting the first component of the converted column vector in each subcarrier as described in the first one.
  • the antenna is transmitted from the i-th antenna of the antenna group.
  • the conversion unit includes a first antenna group for each subcarrier. Convert the signal of the n-th symbol transmitted from the i-th antenna into [RX x (n)] sks 1
  • the second radio station includes M (M is an integer of 1 or more) second antenna groups,
  • Means for calculating a matrix product of the two matrices i.e., an N-by-N square matrix H H XH, and means for calculating an N-by-N columnary matrix U for diagonalizing the matrix H H XH, Further comprising
  • the conversion means converts the signal of the n-th symbol transmitted from the i-th antenna of the first antenna group in each subcarrier to [U X R X x (n)].
  • the second wireless station includes M (M is an integer of 1 or more) second antenna groups,
  • Means for calculating a matrix product of the two matrices i.e., an N-by-N square matrix H H XH, and means for calculating an N-by-N columnary matrix U for diagonalizing the matrix H H XH, Further comprising
  • the conversion means is a matrix having N rows and N columns, and for an integer j such that N ⁇ j ⁇ l, a matrix in which only the (j, j) -th component is 1 and other components are 0 is expressed as Then, the signal of the n-th symbol transmitted from the i-th antenna (N ⁇ i ⁇ l: i is an integer) of the first antenna group in each subcarrier is converted into [UXTXRX x (n)]. To do.
  • the number of transmitting antennas is increased from the number of signal sequences to be superimposed, and the MIMO channels that have the number of transmitting antennas have poor neutral characteristics!
  • the channels are truncated, and the above processing is performed using only channels with good characteristics. Provides a simple implementation method for implementing it can.
  • the rotation matrix group ⁇ R ⁇ is obtained by appropriately replacing columns of a unit matrix of N rows and N columns.
  • R One of the selected matrices is R, and for the integer j such that N> j ⁇ l, only the (j + 1 J) and (1, ⁇ ) components are 1 and the other components are 1.
  • the rotation matrix R used for a subcarrier in which user information is
  • Each matrix of the transposed matrix group ⁇ R ⁇ is rearranged appropriately, and paired in order with N subcarrier periods.
  • the rotation matrix group ⁇ R ⁇ includes columns of a unit matrix of N rows and N columns as appropriate.
  • bit strings of each signal sequence divided into N systems are adjacent at N subcarrier periods (N is an integer greater than 1).
  • the present invention is also a wireless communication system having the above wireless communication device in the first wireless station,
  • the second wireless station includes M (M is an integer of 1 or more) second antenna group, means for individually receiving a wireless signal using the second antenna group,
  • a wireless communication method used in a wireless communication system that performs wireless communication using an orthogonal frequency division multiplexing (OFDM) modulation scheme using a plurality of subcarriers,
  • OFDM orthogonal frequency division multiplexing
  • user data to be transmitted is divided into N systems individually for each subcarrier
  • the information of the n-th (ns is an integer of 1 or more) symbol of the N series of signal sequences in a certain subcarrier is ( ⁇ ( ⁇ ), ⁇ ( ⁇ ), ⁇ And this s 1 s 2 s N s
  • N-row column vector force x (n) having these as each component, then N-row N-column unit row s
  • N N> 1: N is an integer obtained by replacing the columns or columns of the unit matrix as appropriate
  • the step of transforming the vector x (n) to R x x (n) is reduced by a small k s k s
  • the transmitting means transmits the ⁇ th component of the converted column vector in each subcarrier from the i-th antenna of the first antenna group.
  • the signal of the n-th symbol transmitted from the i-th antenna of the first antenna group in each subcarrier is converted into [RX x (n)].
  • the second radio station includes M (M is an integer of 1 or more) second antenna groups,
  • the signal of the n-th symbol transmitted from the i-th antenna of the first antenna group in each subcarrier is converted into [U XR X x (n)].
  • the second wireless station includes M (M is an integer of 1 or more) second antenna groups,
  • the second wireless station includes M (M is an integer of 1 or more) second antenna groups,
  • the transfer function matrix when performing highly efficient wireless communication using MIMO technology, if the transfer function matrix can be estimated with high accuracy, it is equivalent to the E-SDM method. Even when the transfer function matrix cannot be estimated with high accuracy while realizing good characteristics, it is possible to obtain an effect that stable characteristics can be exhibited even in the case where the transfer function matrix cannot be accurately estimated.
  • the antenna used when transmitting each signal sequence is replaced for each subcarrier, thereby averaging and randomizing errors for each signal sequence, and coding gain in error correction. Can be improved.
  • the MIMO technology when performing high-efficiency wireless communication using MIMO technology, it becomes possible to equalize the reception characteristics of a plurality of signal sequences to be superimposed and to randomize code errors on a transmission path.
  • the MIMO technology when combined with the E-SDM scheme, the MIMO technology has a property that the reception characteristics tend to vary greatly between the signal sequences to be superimposed. By averaging the errors and randomizing the errors, as a result, the effect of improving the error correction gain and improving the packet error rate characteristics as a whole can be obtained.
  • the number of transmitting antennas is increased from the number of signal sequences to be superimposed, and the MIMO channels that have the number of transmitting antennas have poor neutral characteristics! Processing can also be performed.
  • FIG. 1 is a block diagram showing a configuration example of a receiving unit of a second wireless station in the wireless communication system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of a transmission unit of first and second wireless stations in the wireless communication system according to the embodiment.
  • FIG. 3 is a diagram showing transmission units of first and second wireless stations in the wireless communication system according to the embodiment. Block diagram showing a configuration example
  • FIG. 4 is a flowchart showing the content of a receiving process of a second wireless station in the wireless communication system according to the embodiment.
  • FIG. 5 is a flowchart showing the details of a channel estimation process in a first wireless station in the wireless communication method according to the embodiment.
  • FIG. 6 is a flowchart showing processing contents when a second wireless station receives a wireless control packet in the wireless communication method according to the embodiment.
  • FIG. 7 is a flowchart showing the details of a channel estimation process in a first wireless station in the wireless communication method according to the embodiment.
  • FIG. 8 is a flowchart showing processing content when a second wireless station receives a wireless control packet in the wireless communication method according to the embodiment.
  • FIG. 9 is a block diagram showing a configuration example of a transmission / reception unit of a wireless station in the wireless communication system according to the embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a transmission unit of the first wireless station according to the second embodiment of the present invention.
  • FIG. 10 A diagram showing a configuration example of a receiving unit of a second wireless station according to the embodiment.
  • FIG. 12 is a diagram showing a second configuration example of the transmitting unit of the first wireless station according to the embodiment.
  • FIG. 13 is a diagram showing a third configuration example of the transmitting unit of the first wireless station according to the embodiment.
  • FIG. 14 is a diagram showing a transmission flow of the first wireless station according to the embodiment.
  • FIG. 15 is a diagram showing a second transmission flow of the first wireless station according to the embodiment.
  • FIG. 16 is a diagram showing a third transmission flow of the first wireless station according to the embodiment.
  • FIG. 17 is a diagram illustrating a configuration of a transmission unit of a first wireless station in the related art.
  • FIG. 18 is a diagram illustrating a configuration of a receiving unit of a second wireless station in the related art.
  • FIG. 19 is a diagram showing a transmission flow of the first wireless station in the related art.
  • FIG. 20 is a diagram showing a reception flow of the second wireless station in the related art.
  • FIG. 21 is a diagram 1 showing frequency dependence of characteristics of each signal sequence when both OFDM modulation and MIMO technology are used.
  • FIG. 22 is a diagram illustrating frequency dependence of characteristics of each signal sequence when both OFDM modulation and MIMO technology are used. Explanation of reference numerals
  • FIG. 1 is a diagram illustrating a configuration of a receiving unit of a second wireless station in the wireless communication system according to the first embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a first wireless station having N (N is greater than 1 !, an integer) or more first antenna groups, and M (M is an integer greater than 1). And a second wireless station having the second antenna group.
  • 51-1—51-3 is a receiving antenna
  • 52-1—52-3 is a radio section
  • 53 is a channel estimation circuit
  • 54 is a received signal management circuit
  • 55 is a transfer function matrix management circuit
  • 56 is a matrix operation.
  • Circuits # 2 and 57 are matrix operation circuits # 3 and 58, a hard decision circuit
  • 59 is a data synthesis circuit.
  • the basic circuit configuration is the same as the conventional receiving unit configuration shown in FIG. 18, the processing contents of the matrix calculation circuits # 2 (56) and # 3 (57) are different.
  • the process performed in the matrix operation circuit # 2 (56) is a process of obtaining the following matrix for the estimated transfer function matrix H.
  • H H Hermitian conjugate matrix of transfer function matrix
  • matrix (H H XH) " 1 XH H is input to matrix operation circuit # 3 (57). Power. Also. The matrix operation circuit # 3 (57) obtains the product of this matrix and the received signal level Rx (H H XH) —1 XH H X Rx by calculation.
  • a process of obtaining the inverse matrix H ⁇ 1 of the transfer function matrix H in the matrix operation circuit # 2 (56) is performed. Further, matrix operation circuit # 2 (56) force inputs the matrix H 1 for the matrix operation circuit # 3 (57), the matrix operation circuit # 3 (57), the product of this matrix and the received signal vector Rx H— 1 X Rx is calculated.
  • the matrix operation circuit # 2 (56) for the transmission signal vector Tx (k), the reception signal vector Rx (k), and the matrix operator F, (FX Rx (k) -Tx (k)) H X (FX Rx (k)-Tx (k)) Performs processing to find the matrix operator F that is expected to minimize the expected value of a physical quantity over multiple symbols.
  • the matrix F is input to the matrix operation circuit # 3 (57) from the matrix operation circuit # 2 (56), and the product FX of the matrix and the reception signal vector Rx is input to the matrix operation circuit # 3 (57). Rx is obtained by calculation.
  • this matrix operator F is known as a matrix used in the MMSE method in the conventional method, and uses a preamble signal of a received signal to perform (FX Rx (k) -Tx (k) ) H X (FX Rx (k) -Tx (k)) can be obtained by minimizing it.
  • the hard decision circuit 58 can be selected when the transfer function matrix and each component of the estimated transmission signal vector do not match the transmission signal point which originally takes a discrete value. This is for performing processing for determining a signal at a transmission signal point. This includes, for example, when performing error correction coding and decoding, performing a process of performing error correction using a signal once subjected to soft decision, and determining a signal point as a result. .
  • FIG. 2 and FIG. 3 are diagrams showing a configuration example of the transmission unit of the first and second wireless stations.
  • 60 is a data division circuit
  • 61-1—61-3 is a preamble assignment circuit
  • 62-1—62-3 is a modulation circuit
  • 63 is a transmission signal conversion circuit
  • 64-1—64-3 is wireless Section
  • 65-1—65-3 is transmission un
  • Reference numeral 66 denotes a matrix operation circuit
  • 67 denotes a transfer function matrix management circuit
  • 68 denotes a channel estimation circuit
  • 69 denotes a control information termination circuit
  • 60 denotes a control information generation circuit.
  • the configuration of the transmitting side may be the same as the conventional method, but in this figure, the channel estimation circuit 68 or the control information termination circuit 69 and the control information
  • the generation circuit 70 has been added.
  • the first wireless station when the first wireless station transmits a wireless data packet, it transmits a control signal for requesting transmission of a signal for estimating a transfer function matrix prior to transmission of the wireless data packet. Generate it at 70 and send it. The signal at this time may be transmitted using a single antenna power without necessarily transmitting using a plurality of transmission antennas.
  • the control information terminating circuit 19 when the control information terminating circuit 19 recognizes that this signal has been received, the control information generating circuit 20 generates a control signal, and outputs the signal to which the three preamble signals are added. Transmit from the transmitting antenna 65-1—65-3.
  • the first radio station receiving this signal inputs the preamble signal to the channel estimation circuit 68 via the radio sections 64-1 to 64-3, and the channel estimation circuit 68 acquires the transfer function matrix H. This is input to the transfer function matrix management circuit 67.
  • a control signal is generated by the control information generation circuit 70 prior to the transmission, and three preamble signals are added.
  • the signal is transmitted from three transmitting antennas 65-1—65-3.
  • the second radio station inputs the preamble signal to the channel estimation circuit 68 via the radio sections 64-1 to 64-3, and the channel estimation circuit 68 acquires the transfer function matrix H.
  • This information is input to the control information generation circuit 70, and the control information generation circuit 70 generates a control signal including information on the transfer function matrix, and transmits the control signal.
  • the first wireless station When the first wireless station recognizes that this signal has been received by the control information terminating circuit 69, it extracts information on the contained transfer function matrix and sends it to the transfer function matrix management circuit 67. input.
  • the control signal including the information on the transfer function matrix may be transmitted from a single antenna, which does not necessarily need to be transmitted using a plurality of transmission antennas.
  • a signal defined as a "first control packet” or a "second control packet” It is not necessary to exchange prior to transmission of a wireless data packet.
  • a transfer function matrix can be acquired every time data is received.
  • IEEE802.11a in 5GHz band (or 2.4GHz band in
  • the transfer function matrix H can be estimated in a radio control packet for ACK return without using MIMO technology.
  • the signal for that is not a change to the existing IEEE802.1 la (or IEEE802.1 lg) compliant wireless LAN air interface, but the method is preferred.
  • the OFDM modulation technology used in IEEE802.11a (or IEEE802.11g) compliant systems is used.
  • the OFDM modulation technology a plurality of subcarriers are sequentially arranged orthogonally on a frequency axis, and communication is performed using the fast Fourier transform technology.
  • a transfer function matrix H is obtained for each subcarrier, and channel separation processing is performed within the same subcarrier.
  • the value of the transfer function matrix H is different between different subcarriers, but the correlation is stronger between adjacent subcarriers. .
  • the transfer function between the i-th transmitting antenna and the j-th receiving antenna at subcarrier number n is h (n)
  • information transfer for adjacent subcarriers is performed.
  • Expression (6) is obtained by setting h (to every other subcarrier (that is, two subcarrier periods).
  • Equations (7) and (8) are obtained when h (n) is distributed every other subcarrier (ie, every three subcarriers).
  • the even subcarrier uses the first transmitting antenna
  • the odd subcarrier uses the second transmitting antenna, or a multiple of three.
  • Subcarriers that are multiples of 3 + 1 are transmitted using the second transmit antenna
  • subcarriers that are multiples of 3 + 2 are transmitted using the third transmit antenna, and so on.
  • Part of the elements of the transfer function matrix can be obtained for each, and the remaining elements can be estimated using Equations (6)-(8).
  • the poor estimation accuracy only slightly reduces the large gain obtained by simply applying the present invention, and does not fall below the characteristics when the present invention is not applied.
  • the channel estimation processing is adaptively performed using the correlation of the transfer function between adjacent subcarriers.
  • FIG. 4 is a diagram showing a reception flow of the second wireless station in the wireless communication system according to the embodiment of the present invention. Also in this figure, the difference from FIG. 20 of the conventional method is only the contents of the matrix calculation process # 2 performed in process S74 and the matrix calculation process # 3 in process S76.
  • H H , H H XH, (H H XH) ⁇ 1 are sequentially obtained, and finally (H H XH) ⁇ is obtained.
  • (H H XH) 1 XH H X Rx is obtained by calculation! /
  • the matrix operation circuit # 2 (56), Te calculated the inverse matrix H 1 of the transfer function matrix H
  • the matrix operation circuit # 3 (57) obtained by calculating the H.
  • the matrix operation circuit # 2 (56) receives! /, And (FX Rx (k) -Tx (k)) H X (FX Rx (k) Tx (k))
  • the matrix operator F which is expected to minimize the expected value over a plurality of symbols, is obtained, and the matrix operation circuit # 3 (57) can also obtain the FX Rx by the operation.
  • the transmission flow of the transmission unit of the first wireless station may be basically the same as that in FIG. 19, but as an example of performing channel estimation on the transmission side, the following points are different. explain.
  • FIG. 5 is a diagram showing a channel estimation process in the first wireless station of the wireless communication method according to the embodiment of the present invention.
  • a wireless data packet to be transmitted is input to the first wireless station (S21)
  • a wireless control packet is transmitted before transmitting the wireless data packet (S22).
  • the radio control packet waiting process S23
  • the radio control packet if the radio control packet is normally received (S24), the signal is received by a plurality of receiving antennas (S25), and the transfer function matrix H is determined by channel estimation. Is calculated (S26). If the wireless control packet has not been normally received in the process S24, the process returns to the process S22 to retransmit the wireless control packet.
  • FIG. 6 is a diagram showing a flow at the time of receiving a radio control packet in the second radio station in the radio communication method according to the embodiment of the present invention.
  • This wireless communication method includes a first wireless station having N (N is an integer greater than 1) or more first antenna groups and a M (M is an integer greater than 1 and an integer) second antenna group. The communication is performed with a second wireless station provided with.
  • the packet is a radio control packet (S32)
  • the signal type is confirmed (S33), and transmission of a radio control packet to which a predetermined preamble signal is added from each of a plurality of transmission antenna cards is requested. If it is (S34), a radio control packet to which a predetermined preamble signal is added is transmitted from each of the plurality of transmission antennas (S35).
  • FIG. 7 is a diagram showing a channel estimation process in the first wireless station of the wireless communication method according to the embodiment of the present invention.
  • the radio data to be transmitted is When a data packet is input (S41), a radio control packet to which a known preamble signal is added is transmitted using N transmission antennas before transmitting this radio data packet (S42). After the radio control packet waiting process (S43), if the radio control packet is normally received (S44), the radio control packet is terminated (S45) and stored in this! Information about the transfer function matrix H is extracted and set in the transfer function matrix management circuit on the transmission side (S46). If it is determined in step S44 that the wireless control packet cannot be normally received, the process returns to step S42 to retransmit the wireless control packet.
  • FIG. 8 is a diagram showing a flow at the time of receiving a wireless control packet in the second wireless station in the wireless communication method according to the embodiment of the present invention.
  • S51 when a signal is received (S51), it is determined whether or not the signal is a wireless control packet (S52). If the signal is a wireless data packet, normal reception processing is performed (S58). On the other hand, if the packet is a wireless control packet (S52), the signal type is confirmed (S53) . If the signal requests information on the transfer function matrix (S54), the signal is received by multiple receiving antennas. A transfer function matrix H is obtained by channel estimation using a known preamble pattern for each of the obtained signals (S55). Thereafter, a radio control packet containing the acquired transfer function matrix information is generated and transmitted (S56). On the other hand, in the processing S54, in the case was the normal control information (S54), performs the normal control information processing (S57) 0
  • the first wireless station does not necessarily need to transmit the wireless control packet every time data is transmitted. For example, if a certain amount of time has passed since the last time the transfer function was obtained, it may be transmitted as necessary.
  • FIG. 9 shows a configuration of a transmission / reception unit of a wireless station in the wireless communication system according to the embodiment of the present invention.
  • 31-a-31-b is a receiving antenna
  • 32-a-32-b is a radio section
  • 33-a-33-b is FFT circuit
  • 34 is a channel estimation circuit
  • 35 is a channel separation circuit
  • 36-1-a—36-Ka and 36-1-b—36-Kb are subcarrier demodulation circuits
  • 37-a—37-b is P / S conversion circuit
  • 38 is a data synthesis circuit
  • 39 is a transfer function complementer circuit
  • 40 is a transfer function management circuit # 2
  • 41 is a matrix operation circuit
  • 42 is a data division circuit
  • 43-a-43-b is S / P Conversion circuit
  • 44-a-44-b is a preamble adding circuit
  • 45-1-a-45-Ka and 45-1-b-45-Kb are subcarrier modulation circuits
  • 46 is a transmission signal conversion circuit
  • 47-a a-47-b indicates an IFFT circuit
  • 48-a-48-b indicates
  • the FFT circuit (33-a-32-b) passes through the radio section (32-a-32-b) for each receiving antenna.
  • the signal for each subcarrier is separated on the frequency axis.
  • the separated signals are input to the channel estimation circuit 34, and the respective transfer function information is obtained from the known preamble signal in the received signal. If the received signal is a signal obtained by superimposing two signal sequences, the channel separation circuit 35 separates the signals of each sequence based on the transfer function information obtained by the channel estimation circuit 34. Then, the result is input to the subcarrier demodulation circuits (36-1-a-36-Ka and 36-1-b-36-Kb).
  • the processing in the subcarrier demodulation circuits (36-1-a-36-Ka and 36-1-b-36-Kb) is performed by estimating a transmission signal for each subcarrier and appropriately performing error correction processing and the like. Is what you do.
  • the demodulated signal, which was separated for each subcarrier, is subjected to normal-to-serial conversion by the P / S converter (37-a-37-b), and data is reproduced by the data synthesizer 38 Is output.
  • the channel separation circuit 35 performs processing such as maximum ratio combining on the signals of the respective receiving antennas for each subcarrier, and generates a subcarrier demodulation circuit (36-1-a- 36-Ka).
  • the information which becomes a part of the transfer function matrix of MIMO is input from the channel estimation circuit 34 to the transfer function complementing circuit 39.
  • the transfer function completion circuit 39 generates and complements the components of the toothless transfer function matrix by an interpolation operation represented by (Equation 6) and the like.
  • the processing for transmitting a signal from the wireless station is also divided into a case where two signal sequences are superimposed and transmitted and a case where a single signal is transmitted.
  • the P conversion circuit (43-a-43-b) further distributes the signal for each subcarrier.
  • a known preamble signal is added to each subcarrier signal by a preamble adding circuit (44-a-44-b), and a subcarrier modulation circuit (45-1-a-45-Ka and 45-1-ka) is added.
  • b—45-Kb) is subjected to a predetermined modulation and input to the transmission signal conversion circuit 46.
  • the transmission signal conversion circuit 46 generates a signal converted by using the digital conversion matrix for each subcarrier generated by the matrix operation circuit 41, and converts the converted signal into an IFFT circuit (47-a-47- Enter in b).
  • the IFFT circuit (47-a—47-b) converts the signal separated on the frequency axis into a signal on the time axis, and transmits the signal to the transmitting antenna (48-a—48-b) via the radio section (48-a—48-b).
  • the transmission signal conversion circuit 46 converts the signals transmitted from the transmission antenna 49_a into odd subcarriers and the signals transmitted from the transmission antenna 49-b into even subcarriers.
  • the present embodiment relates to a technique for exchanging antennas used for transmitting each signal sequence for each subcarrier when using the MIMO technique in the OFDM modulation scheme.
  • FIG. 14 is a diagram showing a transmission flow of the first wireless station (transmitting station) in the second embodiment of the present invention.
  • step S1 When data is input (step S1), the input data is divided into N data sequences (step S2), and a preamble signal is added to each of these signals (step S3), and this is performed. Then, modulation processing is performed individually for each stream (step S4).
  • the modulated signal as the transmission signal conversion process # 1, the matrix R corresponding to each subcarrier
  • a conversion process for shuffling (exchanging) the correspondence between the signal sequence and the transmitting antenna is performed using k (step S5), and the converted signal is converted to a radio frequency by the radio unit and the signal is transmitted ( Step S6).
  • the reception flow of the second wireless station (receiving station) is the same as that of the conventional method shown in FIG. 20, and there is no difference.
  • step S5 for example, when the number of signal sequences to be superimposed is 3, the following three matrices R, R, R, R
  • Transformation R means that # 1 in the signal sequence in ⁇ is replaced with # 2, and # 2 is replaced with # 3.
  • This rotation matrix is basically obtained by a process in which each row is appropriately replaced with R shown in (Equation 9).
  • a method of generating such a matrix for a square matrix of ⁇ rows and ⁇ columns for an integer j such that N> j ⁇ l, only the (j + l, j) and ( ⁇ , ⁇ ) components are Let ⁇ be a matrix of ⁇ rows and ⁇ columns where 1 and other components are 0, and for an integer k such that N ⁇ k ⁇ 2
  • R k P k — ⁇ R x
  • subcarrier # 1 ⁇ subcarrier # 4 ⁇ subcarrier # 7 ⁇ subcarrier
  • Subcarrier # 1 Use matrix R,
  • Subcarrier # 2 using matrix R,
  • Subcarrier # 3 using matrix R,
  • Subcarrier # 4 Use matrix R,
  • Subcarrier # 5 using matrix R,
  • Subcarrier # 6 Using matrix R,
  • Subcarrier # 7 Use matrix R,
  • Subcarrier # 8 Use matrix R
  • Subcarrier # 9 Use matrix R,
  • Subcarrier # 10 Use matrix R,
  • Subcarrier # 11 Use matrix R,
  • Subcarrier # 12 Use matrix R,
  • FIG. 15 shows a transmission flow of a first wireless station (transmitting station) in one specific example.
  • the difference from the transmission flow shown in FIG. 14 is that transmission signal conversion processing # 2 (step S8) is performed between processing steps S5 and S6.
  • transmission signal conversion processing # 2 step S8
  • step S8 After applying a rotation matrix corresponding to each subcarrier to the transmission signal vector X for each subcarrier in the processing step S5, a process of further applying an individual query transformation matrix for each subcarrier is performed (step S8).
  • the transmission signal vector becomes U XRX x.
  • the signal given by each component of this vector for each subcarrier is transmitted from each radio unit and antenna (step S6)
  • FIG. 16 shows a transmission flow of the first wireless station in one specific example.
  • the difference from the transmission flow shown in FIG. 14 is that transmission signal conversion processing # 3 (step S9) and transmission signal conversion processing # 4 (step S10) are performed between processing steps S5 and S6. is there.
  • the vector R Xx is multiplied by the matrix given by (Equation 13) (step S9).
  • steps S5 and S8 in FIG. 15 and steps S5, S9, and S10 in FIG. 16 are processed in order here. Conversion processing may be performed.
  • rotation matrix described above is one example, and other rotation matrices may be used, or sub-carriers may be made to correspond to sub-carriers in a different order from that described above. Furthermore, since the transfer function matrix H is different for each subcarrier, the corresponding UTF is also individual for each subcarrier. This query transformation matrix is obtained separately from the processing flow shown in FIG. 16, as in the conventional method.
  • FIG. 10 is a diagram illustrating a configuration example of a transmission unit of the first wireless station according to the present embodiment.
  • 1 is a data division circuit
  • 2 ⁇ 1 ⁇ 2 ⁇ 3 is a preamble adding circuit
  • 3 ⁇ 1 ⁇ 3 ⁇ 3 is a modulation circuit
  • 4 is a transmission signal conversion circuit # 1
  • 5 ⁇ 1 ⁇ 5 ⁇ 3 is a transmission signal conversion circuit.
  • the radio section, 6- 1-6-3 indicates an antenna.
  • the user data When the user data is input to the data division circuit 1, it is divided into three signal sequences in this figure, and each of them is input to the preamble adding circuits 2-1 to 2-3. Here, a different predetermined preamble signal is provided for each signal sequence.
  • the three signal sequences generated by adding the preamble signal are independently subjected to predetermined modulation by the modulation circuits 3-1 to 1-3-3.
  • each signal sequence is modulated for each subcarrier.
  • R for subcarrier # 1 R for subcarrier # 2, subkey
  • the transform R is the signal sequence # 1 in MIMO
  • subcarrier # 1 and subcarrier # 2 use different antennas for transmitting each signal sequence.
  • the signals converted by the transmission signal conversion circuit 4 in this way are transmitted from the antennas 6-1-6-3 via the wireless units 5-1-5-3.
  • pilot subcarriers accommodating known signals are included, but the numbering here has been described as excluding pilot subcarriers.
  • FIG. 11 shows a configuration example of a receiving unit of a second wireless station in the wireless communication method according to the present embodiment.
  • 21-1-21-3 is an antenna
  • 22-1-22-3 is a radio unit
  • 23 is a channel estimation circuit
  • 24 is a received signal management circuit
  • 25 is a transfer function matrix management circuit
  • 26 is a matrix.
  • Arithmetic circuits (reception) # 1, 27 are matrix operation circuits (reception) # 2, 28 are hard decision circuits
  • 29 is a data synthesis circuit.
  • the radio units 22-1 through 22-3 individually perform data reception processing.
  • the received signals are input to the channel estimation circuit 23.
  • an individual transfer function is calculated for each path and for each subcarrier such as a known signal portion included in the received signal, for example, a preamble signal.
  • This information is input to the transfer function matrix management circuit 25 and is managed as a transfer function matrix H.
  • the matrix operation circuit (reception) # 1 (26) performs a matrix operation for preparation for demodulation as necessary.
  • the matrix H H which is the matrix of the Hermitian conjugate of the matrix H
  • H H XH the product of H H (H H XH) sequentially calculates the 1 XH H.
  • the following description will proceed assuming a non-square matrix.
  • the data following the preamble signal or the like is once managed by the reception signal management circuit 24, and the product of the matrix (H H XH) —ix H 11 and the reception signal Rx is calculated by a matrix operation circuit (reception). # 2 Ask in (27).
  • the hard decision circuit 28 performs a hard decision process on the obtained signal and sends the signal. Estimate the communication signal.
  • the data combining circuit combines the reproduced signal sequences separated into the respective signal systems, reproduces the user data on the transmission side, and outputs the data.
  • other methods including the force MMSE method, the MLD method, and a combination method thereof performed using the ZF method as an example may be used.
  • the application in the subcarrier unit which is mainly described in the case of applying to the OFDM modulation scheme, is possible.
  • the application is also possible in the single carrier modulation scheme. It is possible.
  • FIG. 12 shows a second configuration example of the transmitting unit of the first wireless station in the wireless communication method according to the present embodiment.
  • the data division circuit 1 the preamble adding circuit 2-1 to 2-3, the modulation circuit 3-1 to 3-3, the transmission signal conversion circuit # 1 (4), the radio section 5-1 One 5-3, antenna 6-1-6-3 are the same as those in Fig. 10, and in addition to this, channel estimation circuit 7, transfer function matrix management circuit 8, matrix operation circuit # 1 (9), matrix operation Circuit # 2 (10) and transmission signal conversion circuit # 2 (11) are provided.
  • the signal received by the antenna 6-1-16-3 should be transmitted.
  • a known signal portion included in the received signal for example, a transfer function such as a preamble signal is calculated for each path and each subcarrier such as a preamble signal.
  • This information is input to the transfer function matrix management circuit 8, and is managed as a transfer function matrix H for each subcarrier.
  • the matrix operation circuit # 1 (9) the matrices H H and H H XH, which are Hermitian conjugate matrices of the matrix H, are sequentially calculated. Based on the results, calculates the matrix operation circuits # 2 (10), the matrix H H XH diagonalization possible Yunitari matrix U in each subcarrier.
  • the eigenvalue of the (i, i) component of the matrix diagonalized by the unitary transformation matrix is adjusted so that the absolute value of the eigenvalue increases (or decreases) as the value of i is smaller. .
  • the transmission signal conversion circuit # 2 (11) In this section the digital transformation process is performed, and this is transmitted via the radio unit 5-1-1-3 and the antenna 6--1-6-3. I believe.
  • the processing on the receiving side performs the same processing as in the case of FIG.
  • FIG. 13 shows a third configuration example of the transmitting unit of the first wireless station in the wireless communication method according to the present embodiment.
  • the data division circuit 1, the preamble addition circuit 2-1 to 2-3, the modulation circuit 3-1 to 3-3, the transmission signal conversion circuit # 1 (4), the radio section 5 1-5-3, antenna 6-1-6-3, channel estimation circuit 7, transfer function matrix management circuit 8, matrix operation circuit # 1 (9), and matrix operation circuit # 2 (10) are shown in Fig. 12.
  • a transmission signal conversion circuit # 3 (12) and a transmission signal conversion circuit # 4 (13) are provided.
  • the radio section 5-1-5-3 and antenna 6-1-6-3 which were three systems, have been expanded to four systems, and the radio section 5 — 4 and antenna 6 — 4 are added. Accordingly, the degree of the matrix processed in the matrix operation circuit # 2 (10) from the channel estimation circuit 7 is partially changed.
  • transmission signal conversion circuit # 3 (12) converts the conversion matrix represented by (Equation 13) above. Integrate. The meaning of this operation is to simply convert a transmission vector formed from three components into a transmission vector of four components.
  • the reason why the matrix power is three rows is that the number of superimposed signal sequences of MIMO is three, but the power of antennas for signal transmission is three.
  • the number of superpositions is M and the number of antennas for signal transmission is N
  • the matrix of the upper M rows is a unit matrix of M rows and M columns
  • the lower (N-M) columns Becomes a matrix of all zeros.
  • a series of processing is individually performed for each subcarrier.
  • the signal conversion circuit # 4 (13) is a separate function block, a separate conversion matrix that summarizes these may be created separately, and the conversion processing may be performed collectively in one function block. .
  • the reception characteristics of a plurality of signal sequences to be superimposed are made uniform, and the signals are placed on a transmission path. Code errors can be randomized.
  • the MIMO technique has a property that large variations in reception characteristics tend to occur between signal sequences to be superimposed. By averaging the reception characteristics for each signal sequence and randomizing the errors, it is possible to improve the error correction gain and to improve the packet error rate characteristics as a whole.
  • each circuit in the transmission unit shown in Fig. 10 each circuit in the reception unit shown in Fig. 11, each circuit in the transmission unit shown in Fig. 12, and each circuit in the transmission unit shown in Fig. 13 are dedicated hardware. It is composed of a memory and a CPU (Central Processing Unit) that can be realized by hardware, and a program (not shown) for realizing the functions of these circuits is loaded into the memory. The function may be realized by executing the function.
  • a CPU Central Processing Unit
  • the functions of the respective circuits in the transmitter shown in FIG. 10, the respective circuits in the receiver shown in FIG. 11, the respective circuits in the transmitter shown in FIG. 12, and the respective circuits in the transmitter shown in FIG. 13 are realized.
  • a computer program is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read and executed by a computer system. Necessary processing may be performed for each circuit in the receiving unit, each circuit in the transmitting unit shown in FIG. 12, and each circuit in the transmitting unit shown in FIG.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the "computer-readable recording medium” is a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a DVD-ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system. That means.
  • a “computer-readable recording medium” is a program that is dynamically stored for a short time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, it shall include programs that hold programs for a certain period of time, such as volatile memory in a computer system that becomes a server or a client in that case (transmission medium or transmission wave).
  • the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and further, a program which can realize the above-mentioned functions in combination with a program already recorded in a computer system. It may be a difference file (difference program).
  • the transfer function matrix when performing highly efficient wireless communication using MIMO technology, if the transfer function matrix can be accurately estimated, good characteristics equivalent to the E-SDM method can be realized. However, even if the transfer function matrix cannot be estimated with high accuracy, the effect can be obtained if stable characteristics can be exhibited.
  • the antenna used when transmitting each signal sequence is replaced for each subcarrier, thereby averaging and randomizing errors for each signal sequence, and coding gain in error correction. Can be improved. That is, when performing high-efficiency wireless communication using MIMO technology, there is an effect that it is possible to equalize reception characteristics for each of a plurality of signal sequences to be superimposed and to randomize code errors on a transmission path.
  • INDUSTRIAL APPLICABILITY The present invention is used for performing high-speed transmission of a high-speed wireless access system (or wireless LAN system) using a 2.4 GHz band or a 5 GHz band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

 第一の無線局と第二の無線局との間で通信を行う無線通信方法において、前記第一の無線局はNtx(>1)本以上のアンテナ群を備え、送信すべきユーザデータをN系統に分割するステップと、前記N系統に分割されたユーザデータにN種類の既知のパターンの信号を付与して得られるN系統の信号系列により構成される無線データパケットを構築するステップと、N系統の前記既知のパターンを含む信号系列にそれぞれ個別の係数を乗算する処理を、係数の異なる組み合わせで複数回行い、各係数の組み合わせ毎に係数が乗算された前記N系統の信号系列を合成して該N系統の信号系列からNtx系統の信号系列に変換する変換ステップとを有する。これにより、簡易なZF法を利用しながらも、受信局側における受信ダイバーシチ利得を最大限に引き出すための送信側技術の簡易な実現手段を提供できる。

Description

明 細 書
無線通信装置、無線通信方法、及び無線通信システム
技術分野
[0001] 本発明は、同一の周波数チャネルを用い、異なる複数の送信アンテナより独立な データを送信し、複数の受信アンテナを用いて信号を受信し、各送受信アンテナ間 の伝達関数行列をもとに受信局側でデータの復調を行うことにより無線通信を実現 する高速無線アクセスシステム (または無線 LANシステム)において、回路規模を抑 制しながら良好な伝送特性を実現するための受信技術に関する。また、直交周波数 分割多重(OFDM:Orthogonal Frequency Division Multiplexing)変調方式を併用す る場合に、基地局側にて送信ダイバーシチ利得を稼ぎ、無線端末側の回路規模を 抑えながら良好な特性を引き出すための送信技術に関する。本発明は、特に、 2.4GHz帯および 5GHz帯等を用いた高速無線アクセスシステム (または無線 LANシ ステム)の伝送速度の高速ィ匕を行うために利用される。
背景技術
[0002] 近年、 2.4GHz帯または 5GHz帯を用いた高速無線アクセスシステムとして、
IEEE802.11g規格、 IEEE802.11a規格などに準拠した無線 LANシステムの普及が目 覚しい。これらのシステムでは、最大で 54Mbpsの伝送速度を実現している力 無線 LANの普及に伴 、更なる伝送速度の高速化が求められて!/、る。
そのための技術としては、 MIMO (Multiple-Input Multiple- Output)技術が有力であ る。この MIMO技術とは、送信局側において複数の送信アンテナから同一チャネル上 で異なる独立な信号を送信し、受信局側において同じく複数のアンテナを用いて信 号を受信し、各送信アンテナ Z受信アンテナ間の伝達関数行列を求め、この行列を 用いて送信局側で各アンテナカゝら送信した独立な信号を推定し、データを再生する ものである。
[0003] ここで、 N本の送信アンテナを用いて N系統の信号を送信し、 M本のアンテナを用い て信号を受信する場合を考える。まず、送受信局の各アンテナ間には N X M個の伝 送のパスが存在し、第 i送信アンテナから送信され第 j受信アンテナで受信される場合 の伝達関数を hとし、これを第 (Li)成分とする M行 N列の行列を Hと表記する。さらに、 ,
第 i送信アンテナからの送信信号を tとし (t , t , t ,· · · t )を成分とする列ベクトルを Tx i 1 2 3 N
、第 j受信アンテナでの受信信号を rとし (r , r , r ,··· r )を成分とする列ベクトルを Rx j 1 2 3
、第 j受信アンテナの熱雑音を nとし (η , η, η,··· n )を成分とする列ベクトルを nと表 j 1 2 3
記する。
この場合、以下の関係式が成り立つ。
[0004] [数 1]
Rx-HxTx + n …(1)
[0005] したがって、受信局側で受信した信号 Rxをもとに、送信信号 Txを推定する技術が 求められている。この MIMO技術の最も基本的なものとしては、一般に ZF (Zero Forcing)法と呼ばれる方法があげられる(例えば、非特許文献 1を参照。 )0
ここでは、上記の(式 1)に対し、伝達関数行列の逆行列 H—1を求め、これを式の両 辺の左カゝら掛け合わせる処理を行う。この結果、以下の式が得られる。
[0006] [数 2]
H~lxRx = Tx + H~] … (2)
[0007] つまり、各受信アンテナで受信した信号を合成し、所望の送信アンテナから以外の 信号による干渉を除去する処理を行うと、実際の送信信号ベクトル Txに微小な熱雑 音項 H_1Xnが加わった信号点が得られることになる。ここで、送信信号として、 BPSK、 QPSK、 16QAM、 64QAM等の多値変調を施した信号を用いる場合は、送信信号とし て取り得る信号点は不連続である。したがって、 H— とユークリッド距離が最も近 Vヽ点を送信コンスタレーシヨン上で検索する硬判定処理を行!ヽ、真の送信信号を推 定する。
[0008] 以上の ZF法においては、熱雑音項 H— nが十分に小さぐ且つ各送信アンテナ毎 の成分が均等であると仮定できる場合には良好な特性が期待できる。しかし、一般に はこの仮定は成り立たず、ある伝達関数行列に対して送信アンテナ毎の熱雑音 H 1 X nの絶対値の期待値は異なる。さらには、もし伝達関数行列 Hが逆行列がゼロとな る行列 (ないしはその行列式が非常に小さい)の場合には、送信信号の推定が非常 に不安定になる。この様な状況においては、受信特性が大幅に劣化する可能性があ る。このような問題点を解決するための方法として、例えば、 MMSE (Minimum Mean Square Error)法などがその一例にあげられる。
[0009] MMSE法の場合には、(式 1)の両辺の左からかける演算子を伝達関数行列 Hの逆 行列ではなぐ別の行列演算子 Fを用いる。この行列演算子 Fは、送信信号の第 kシ ンボルにおける送信信号ベクトルを Tx(k)、受信信号の第 kシンボルにおける受信信 号ベクトルを Tx(k)とした場合に、(F X Rx(k)— Tx(k)) H X (F X Rx(k)— Tx(k))の複数シン ボルに渡る期待値を最小化することが期待されるように行列演算子 Fを選択する。実 際には、この行列演算子 Fを既知のプリアンブル信号部を用いて推定し、そこで推定 された行列演算子 Fを以降のデータに対する復調において利用する。
[0010] 以上に説明したように、 MIMO技術を適用して通信を行うことにより伝送容量を増大 させることは可能であるが、複数の送信アンテナから送信される別々の信号はお互い に干渉となり得るため、受信側で複数のアンテナを用いることにより本来であれば受 信ダイバーシチ利得が期待されるのに、この干渉を相互にキャンセルする処理にお V、てダイバーシチ利得を最大化することができな 、。
即ち、上記 ZF法においては、各信号系列の系列間の干渉を除去し信号を分離す るため、伝達関数行列 Hの逆行列を用いているが、これは、あくまでも各信号系列間 の相互干渉を除去するのが目的であり、受信アンテナ間の合成によるダイバーシチ 利得を最大にするものではない。本来であれば、信号分離後の各信号系列の S/N 比 (信号対雑音レベル比)を最大にすることを方針として掲げて信号分離処理を行う のが好ましい。この S/N比を最大にする、すなわち受信側で最大比合成処理を実現 するためには、送信側において、受信端にて各信号系列が直交するように信号を調 整して送信する必要がある。この方法は、 E— SDM (Eigenbeam- Space Division Multiplexing)方式と呼ばれて 、る(例えば、非特許文献 2参照)。 [0011] この E— SDM方式では、送信側において伝達関数行列 Hが既知であることを前提 とする。この行列 Hをもとに、この行列のエルミート共役の行列 HHと Hの積すなわち N X Nの行列 HH X Hを対角化するュ-タリー行列 Uを求め、送信信号ベクトル Tx(k)に 対してュ-タリ変換を行った信号 U X Tx(k)を送信する。ここで第 i送信アンテナから 送信する信号は [UXTx] (ここで [X]はベクトル Xの第减分を表す)である。プリアン ブル信号も含めてュ-タリ変換した信号を送信すれば、受信局側では実際の伝達関 数行列が Hであったとしても、チャネル推定により得られる伝達関数行列は H X Uと なる。
[0012] ここで、このュ-タリ変換行列 Uと行列 Hには以下の関係式が成り立つ。
[0013] [数 3]
Figure imgf000006_0001
… (3)
この(式 3)の右辺の行列 Λは Ν X Νの対角行列であり、行列の対角成分が非ゼロ であり(各成分は固有値と呼ばれ、 λ 1 ,λ2 ,λ 3 ···と表記しておく)、その他の対角成 分がゼロとなる。この方式を用いた場合には(式 1)も以下の様に変換されている。
[0014] [数 4]
Figure imgf000006_0002
両辺の左力 推定された伝達関数行列 Η X Uのエルミート共役の行列をかけると、 式は以下の様に変換される。
[0015] [数 5]
(H U)H xRx = AxTx + (HxU)n x"… C5) これは、 N系統の信号系列は完全に直交した状態にあることを意味する。また、右 辺に現れた行列は、推定された伝達関数行列より(式 3)により直接的に求めることが できる。このため、もともとの行列 Hが逆行列を持つ力持たないかに依存せず、(式 3) 及び (式 5)によりゼロ以外の固有値をもつ信号系列に対して、安定して送信信号 Tx を推定することが可能である。
[0016] この Ε— SDM方式では、送信側にお!、て信号を変換することにより、送信信号に指 向性を持たせるフェーズドアレーアンテナ技術と等価的なことを行っているものと理 解できる。これにより、各送信アンテナ間の干渉を回避しながら、ダイバーシチ利得を あわせて得ることができるために、非常に良好な特性が期待できる。
[0017] ここで、図 17に従来技術における第一の無線局の送信部の構成を示す。図におい て、 100はデータ分割回路、 101— 1— 101— 3はプリアンブル付与回路、 102—1—1 02— 3は変調回路、 103は送信信号変換回路、 104-1— 104-3は無線部、 105—1 一 105— 3は送信アンテナ、 106は行列演算回路 # 1、 107は伝達関数行列管理回 路を示す。なお、ひとつの例として、送信局が 3つの送信アンテナを用いて 3系統の データを送信する場合を例にとって説明する。
[0018] まず、伝達関数行列管理回路 107が管理する伝達関数行列 Ηを行列演算回路 10 6に対して入力する。行列演算回路 # 1 (106)では、入力された行列 Ηに対し、エル ミート共役な行列 ΗΗ、それらの積 ΗΗ Χ Η、及びこれを対角化するュ-タリー行列 U を求め、これを送信信号変換回路 103に入力する。次に、データが入力されると、デ ータ分割回路 100はデータを 3系統に分離する。例えば、第 1系統のデータはブリア ンブル付与回路 101— 1に入力され、プリアンブルが付与された状態で変調回路 (Ch 1) 102—1に入力される。
[0019] 変調回路 (Chi) 102— 1では所定の変調を実施し、変調された信号は送信信号変 換回路 103に入力される。送信信号変換回路 103では、プリアンブル信号を含め送 信信号 Txに対してュ-タリ変換を実施し、 U X Txとして無線部 104— 1に入力される 。その後、無線部 104-1にて無線周波数に変換され、送信アンテナ 105-1より送信 される。同様に、第 2系統のデータは 101— 2— 105—2、第 3系統のデータは 101—3 一 105— 3を経由して、それぞれ個別に送信される。 [0020] 図 18に従来技術における第二の無線局の受信部の構成を示す。図 18において、 111— 1一 111— 3は受信アンテナ、 112— 1— 112— 3は無線部、 113はチャネル推 定回路、 114は受信信号管理回路、 115は伝達関数行列管理回路、 116は行列演 算回路 # 2、 117は行列演算回路 # 3、 118は硬判定回路、 119はデータ合成回路 を示す。
[0021] 第 1の受信アンテナ 111—1から第 3の受信アンテナ 111—3は、それぞれ個別に受 信信号を受信する。無線部 112— 1一 112— 3を経由して、受信した信号はチャネル 推定回路 113に入力される。送信側で付与した所定のプリアンブル信号の受信状況 から、チャネル推定回路 113にて各送信アンテナと受信アンテナ間の伝達関数をこ こで取得する。取得された各伝達関数の情報 h,は伝達関数行列管理回路 115にて 伝達関数行列 Hとして管理される。
ここで、この伝達関数 Hは、実際の伝送路の伝達関数にュニタリ変換行列を乗算し たものが得られることになる。
[0022] 行列演算回路 # 2 (116)では、伝達関数行列管理回路 115で管理された伝達関 数行列 Hをもとに、 HH及び ΗΗ Χ Η (=Λ)を演算により求める。ここで、行列 Λの各対 角成分は、(1, 1)成分が λ 、(2,2)成分が λ 、(3,3)成分が λ であるとする。
1 2 3
なお、 HH X Hで固有値え - λ を求める他に、近似値として、前記伝達関数を用
1 3
いて、 eh e2からえを求めてもかまわない。
この結果は、行列演算回路 # 3 (117)に入力される。一方、プリアンブル信号に後 続するデータ信号は、 1シンボル分ずつ受信信号管理回路 114に入力される。受信 信号管理回路 114では、各アンテナの受信信号 (r , r , r )T(Tは行ベクトル力 列
1 2 3
ベクトルへの変換を示す)を成分とした受信信号ベクトル Rxとしてー且管理される。こ の受信信号ベクトルは、行列演算回路 # 3 (117)にて行列 HHとの積をとる。この様に して得られたベクトルに対して、第 1成分に対しては λ 1で除算を、第 2成分に対して は λ 2で除算を、第 3成分に対しては λ 3で除算を行い、送信信号ベクトルの第 1次 推定を行う。この結果は、硬判定回路 118に入力され、その結果がデータ合成回路 1 19に入力される。全シンボルに渡り復調されたデータは、各系統毎の信号が適宜合 成されてもとのデータを再生し、出力される。 [0023] 図 19に、従来技術における第一の無線局の送信フローを示す。データが入力され ると (ステップ S 100)、送信局では N系統のデータ系列に分割され (ステップ S101)、 これらの信号にはそれぞれプリアンブル信号が付与され (ステップ S102)、これに各 系列毎に個別に変調処理を行う (ステップ S103)。変調された信号には、ュ-タリ変 換が実施され (ステップ S 104)、ュニタリ変換後の信号が無線部にて無線周波数に 変換され信号が送信される (ステップ S 105)。
[0024] 図 20に、従来技術における第二の無線局の受信フローを示す。受信局では無線 パケットを受信すると (ステップ S 110)、プリアンブルを検出し (ステップ S111)、チヤ ネル推定を実施する (ステップ S112)。ここでは、各送信アンテナおよび受信アンテ ナ間の伝達関数を全て取得する。この伝達関数を各成分とする伝達関数行列 Hに 対し、エルミート共役な行列 HH、及びこれらの積である行列 ΗΗ Χ Η ( = Λ)を演算に より求める(ステップ S 113)。
[0025] 一方、プリアンブル信号に後続して受信される信号は、 1シンボル毎に各受信アン テナでの受信信号 rを成分としてもつ受信信号ベクトル Rxとして管理される (ステップ S 114)。これに対し、行列演算 HH X Rxを実施し、更に得られたベクトルの各成分を 行列 Λの対角成分 λ 1— λ 3で除算する (ステップ S115)。この結果をもって、硬判 定処理を行 ヽ (ステップ S116)、該当するシンボルの各送信アンテナから送信された 信号推定を確定させる (ステップ S117)。更に受信データが継続する場合には処理 ステップ S114に戻り、処理ステップ S 114— S 117を繰り返す。受信データが終わつ た場合 (ステップ S118)、一連の各系統の受信データを再構成し、送信側でのデー タを再現してデータを出力する (ステップ S 119)。
特干文献 1 : S. Kurosaki, Y. Asai, T. Sugiyama and M. Umehira, A
SDM-COFDM Scheme Employing a Simple Feed-Forward Inter-Channel
Interference Cancellerfor MIMO Based Broadband Wireless LANs", IEICE TRANS. COMMUN., V0I.E86 B. No.l, January, 2003
非特許文献 2:宫下他「MIMOチャネルにおける固有ビーム空間分割多重 (E— SD M)方式」,信学技法, RCS2002-53, 2002年 5月
発明の開示 発明が解決しょうとする課題
[0026] この E— SDM法の最大の問題点は、送信局側でチャネル推定を正確に実施し、 UH
X HH X H X Uの非対角成分が綺麗にゼロとなる状況で運用しなければならな 、点で ある。
例えば、連続的に無線パケットを送信しつづける場合を考える。送信局は、最初に 何らかの方法によりチャネル推定を行 ヽ伝達関数行列 Hを取得し、これをもとにュ- タリ行列 Uを求める。連続して送信する無線パケットには、当然ながら同一のュ-タリ 変換が施されること〖こなる。
[0027] しかし、時間と共に伝達関数行列 Hは変動するため、変動後の伝達関数行列 H'に 対しては、 UH X H' H X H' X Uの非対角成分は綺麗にゼロとはならない。この非対角 成分は、チャネル間干渉となるため、干渉信号の影響で急激に特性が劣化する。し たがって、算出したュ-タリ変換 Uが非常に高い精度でなければ良好な特性が望め ないことになる。
[0028] また、この Ε— SDM方式では、各信号系列の信号はそれぞれ固有値え 一え (行
1 Ν 列 HH X Hは Ν行 Ν列の正方行列と仮定する)に対応した特性をもっために、それぞ れ個別の変調方式を採用したり、送信側にて注水定理と呼ばれる手法で送信電力 の配分を調整したりするのが一般的である。言い換えれば、信号系列は個別に独立 に扱うことで各系列の特性を効率的に引き出すことが前提となる。しかし、この様な制 御は複雑であり、また送受信局間でのネゴシエーションが必要となったりする。これら を回避する簡易な方法としては、全ての信号系列の信号を同一の出力で、且つ単一 の変調モードを用いて送信することが考えられる。しかし、この場合には各固有値の 値のばらつきが大きぐ特に最小固有値となる信号系列の特性は大幅に劣化する。
[0029] 以上は E— SDMを想定した場合である力 ここで OFDM変調方式と組み合わせた MIMO技術の一般的な特性について考えてみる。 OFDM変調を用いる場合、複数 のサブキャリア毎にこの信号系列毎の品質のばらつきが発生する。図 21及び図 22 に OFDM変調及び MIMO技術を併用した場合の各信号系列の特性の周波数依存 性を示す。各図において、横軸は周波数を表し、実効的にはサブキャリアの番号を 意味する。縦軸は伝送品質に相当するものとして BER (Bit Error Rate)を表している [0030] 例えば E— SDMを用いた場合や、周波数間の相関が強い場合、図 21の様に各信 号系列の特性には大きな差が存在する。例えば、全周波数領域で BERが高い信号 系列 # 1の中に符号誤りがある部分的なパケット誤り率(PER: Packet Error Rate)が 20%であり、逆に全周波数領域で BERが低い信号系列 # 2の中に符号誤りがある部 分的な PERが 0.0001%であったとする。 MIMOの重畳数が 2である場合、システム 全体の平均 PERは各信号系列の PERを足して 2で割ったものとなり、ほぼ 10%となる 。つまり、品質の悪い信号系列が存在すると、システム全体としての PERはこれに足 を引っ張られることになる。
[0031] 一方、図 22に示す様に、信号系列 # 1と信号系列 # 2の特性がある周波数で逆転 し、それぞれが特定の周波数領域で大幅に劣化している場合を考える。この様に、 特性が劣化した周波数領域では、誤り訂正前の誤りがバースト的であるため、誤り訂 正処理を行っても訂正不可能となる確率が高い。つまり、全体から見れば部分的で あつたとしても、周波数軸上である程度の区間に渡り連続的に品質が劣化した状態 が続くと、誤り訂正の効果が薄れ、各信号系列の部分的な PER特性の劣化として現 れること〖こなる。
以上説明した様に、 OFDM変調と MIMO技術を併用する場合、特に E-SDM方 式を用いる場合には、システム全体の PER特性を向上させるためには、特定の信号 系列の符号誤りがバースト的とならず、ランダム化されていることが好ましい。
[0032] 本発明は、このような事情に鑑みてなされたものであり、 MIMO技術を用いた無線通 信を行う際に、 E— SDM方法の良好な特性を実現しながらも、精度の低いュ-タリ変 換行列を用いた場合でも、安定した特性を実現可能な無線通信装置、無線通信方 法及び無線通信システムを簡易に提供することを目的とする。
また、 OFDM変調と MIMO技術を併用する無線通信を行う際に、各信号系列の 符号誤りをランダム化し、システム全体の PER特性を効率的に改善可能な、無線通 信方法、及び無線通信装置を簡易に提供することにある。また、このランダム化のた めの工夫は、通信を行うためのエアインタフェース規定を変えるものではなぐ送信端 末側の変更のみで対応できるものであれば、製品の差別ィ匕を行う上で、なお好まし い。
課題を解決するための手段
[0033] 上記の問題を解決するために、本発明は、第一の無線局と第二の無線局とにより 構成された無線通信システムにおいて使用される無線通信装置であって、
前記第一の無線局は N (N は 1より大きい整数)本以上の第一のアンテナ群を備
tx tx
え、
送信すべきユーザデータを N系統 (N ≥N> 1、 Nは整数)に分割する分割手段と、
tx
前記 N系統に分割されたユーザデータに N種類の既知のパターンの信号を付与し て得られる N系統の信号系列により構成される無線データパケットを構築する手段と、
N系統の前記既知のパターンを含む信号系列にそれぞれ個別の係数を乗算する 処理を、係数の異なる組み合わせで複数回行い、各係数の組み合わせ毎に係数が 乗算された前記 N系統の信号系列を合成して該 N系統の信号系列力 N 系統の信
tx
号系列に変換する変換手段と、
前記変換手段により変換された信号を前記第一のアンテナ群から送信する送信手 段と
を有することを特徴とする無線通信装置を提供する。
[0034] 好適な態様としては、
前記第二の無線局は M (Mは 1より大き 、整数)本の第二のアンテナ群を備え、 前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 hまたはその近似値を取得する手段と、
J,i
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート
J,i
共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出する手段と、 前記行列 HH X Hを対角化するュ-タリ行列 Uを算出する手段と、を更に有し、 前記変換手段は、
N系統の前記信号系列の第 k(kは 1以上の整数)シンボルの情報をそれぞれ {x
1
(k),x (10, · · · , x (k)}とした場合、第 kシンボルの各情報を要素とする列ベクトル x(k)と
2 N
前記行列 Uの積により与えられる列ベクトル、即ち U X x(k)を算出する手段を含み、 前記送信手段は、
前記列ベクトル U X x(k)の第 i行成分 [U X
Figure imgf000013_0001
ナより送信する手段を含む。
この場合、 MIMO技術の適用において、簡易な ZF法等を利用しながらも、受信局 側における受信ダイバーシチ利得を最大限に引き出すための送信側技術の簡易な 実現手段を提供可能である。
[0035] 好適例として、
前記無線データパケットの送信に先立ち、制御情報を収容した第一の無線制御パ ケットを送信する手段と、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを N本以 上のアンテナを用いて受信する手段と、を更に有し、
前記取得手段は、前記第二の無線制御パケットに付与された複数系統の既知のパ ターンの信号を用いて、各アンテナでの受信信号から第二の無線局が送信に用いた 第 j (l≤j≤M、; jは整数)アンテナと第一の無線局が受信に用いた第 i (l≤ N、 iは 整数)アンテナ間の伝達関数 hを算出する手段を含む
J,i
ようにでさる。
この第一の無線局側の機能は、送信側にぉ 、て伝達関数行列を取得するための 簡易な実現方法を提供するものである。
[0036] 別の好適例として、前記無線データパケットの送信に先立ち、第一の無線制御パケ ットとして N系統の既知のパターンを含む信号系列を N本の前記第一のアンテナ群を 用いて送信する手段と、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを受信 する手段と、
前記第二の無線制御パケットに収容された前記第一のアンテナ群の内の第 iアンテ ナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達関数 h に関する情報を
J,i
取得する手段と、
を含むことようにできる。
[0037] 前記無線局間の通信において K本のサブキャリア(Kは 1より大きい整数)を用いた 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)変調方 式を用いても良い。
この場合の好適例として、前記第二の無線局より、信号系列が複数重畳されていな い即ち 1系統のみの信号系列で構成される制御情報を収容した無線制御パケットお よび/またはユーザデータを収容した無線データパケットを受信した際に、各受信ァ ンテナで受信された既知のパターンの信号の受信状態力 第 ks (l≤ks≤K、 は 整数)サブキャリアの第二の無線局が送信に用いた第 j (l≤j≤M、; jは整数)アンテナ と第一の無線局が受信に用いた第 i (l≤ N、 iは整数)アンテナ間の伝達関数 h [ks]
, を取得する伝達関数取得手段を含む。
また別の好適例として、前記第二の無線局の第 jアンテナで送信されな力つた第 ks ' (l≤ks '≤K、 ks 'は整数)サブキャリアにおける、前記第二の無線局の第 jアンテナと 前記第一の無線局の第 iアンテナ間の伝達関数 h [ks']を、前記第二の無線局の第 jァ
ンテナで送信された ks≠ks,及び ks≠ks,(l≤ks≤K、 l≤ks≤K、 ks、 ksは整数) なる第 ksサブキャリア及び第 ksサブキャリアに対する前記伝達関数 h [ksl]及び h [ks2] の内挿または外揷値により h [ks']を取得する伝達関数取得手段を含む。
これは、送信側において伝達関数行列を取得するための簡易な実現方法を提供 するものである。なお、この手段を用いる場合には、既存の無線 LANシステムに MIMO技術を適用する拡張を行う場合であっても、既存のフレームフォーマットを変 更することも、特殊な制御メッセージを新規に追加する必要もなぐノックワードコン パチビリティを維持しながら実現可能であるという効果も同時に得ることが可能である なお、これらの好適例において、前記第一の無線局側に前記伝達関数取得手段を 有することを、前記第二の無線局側に通知する手段を有しても良 、。
本発明はまた、上記無線通信装置からの無線信号を前記第二の無線局において 受信するための無線通信装置であって、
前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、 前記第二のアンテナ群を用いて個別に無線信号を受信する手段と、
受信信号に付与された既知のパターンの信号を参照信号として、受信した各信号 系列の信号を分離して復調する復調手段と、
復調した全ての信号系列を合成し、ユーザデータとして出力する出力手段と を備えることを特徴とする無線通信装置も提供する。
なお、本発明は、上記送信側の無線通信装置と、上述の受信側の無線通信装置と を有する無線通信システムも提供する。
[0039] 典型例として、前記復調手段は、
受信信号に付与された既知のパターンの信号を参照信号として、前記第一のアン テナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達 関数 hを取得する手段と、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し所定の演算を行い、 Ν
系統の送信信号の信号点に対応するベクトルを求める演算手段と、を含み、
前記出力手段は、
前記演算で得られたベクトルの各要素で与えられる N系統の送信信号を、受信した 全てのシンボルに対して合成し、前記ユーザデータとして出力する手段を含む。
[0040] 前記演算手段は、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート
共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出する手段と、 前記行列 HH X Hの逆行列即ち(HH X H) 1を算出する手段と、
さらにこれらを用いて行列 (HH X H) 1 X HHを算出する手段と、
前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 を示す)で表される受信信号べ外ル Rx(k)に対し、 (HH X H) 1 X HH X Rx(k)を演算す る手段と、
を含むようにしても良い。
[0041] また、前記演算手段は、
前記伝達関数 hを第 (j,i)成分とする N行 N列の行列 Hに対し、該行列 Ηの逆行列 Η—1
を算出する手段と、 前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 m 1 2
を示す)で表される受信信号べ外ル Rx(k)に対し、 H— 1 X Rx(k)を演算する手段と、 を含むようにしても良い。
この第二の無線局の機能は、受信局側において ZF法を実施する際に、行列が正 方行列であることを利用して簡易に実施するための手段を提供するためのものである
[0042] また、前記演算手段は、
前記第一のアンテナ群の第 nアンテナより送信された第 kシンボルの送信信号を t (k)とし、さらに前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンポ ルの受信信号を r (k)と表記した場合、 (t (k),t (10, · · · , t (k))T(Tは行べ外ルカも列 m 1 2 N
ベクトルへの変換を示す)で表される送信信号ベクトル Tx(k)、 (r (k),r (k), - - - ,r (k))T
1 2
で表される受信信号ベクトル Rx(k)、及び行列演算子 Fに対し、ベクトル F X Rx(k)— Tx(k)及び該ベクトルのエルミート共役のベクトル(F X Rx(k)-Tx(k)) Hのベクトル積 (F X Rx(k)-Tx(k)) H X (F X Rx(k)-Tx(k))の複数シンボルに渡る期待値を最小化するこ とが期待されるように行列演算子 Fを選択する手段と、
各シンボルに対して F X Rx(k)を演算する手段と、
を含むようにしても良い。
この第二の無線局側の機能は、受信局側にお!、て ZF法の代わりに MMSE法を用 いるための手段を提供するためのものである。
前記行列演算子 Fを MMSE (Minimum Mean Square Error)方式で求めても良い。
[0043] 上記無線通信装置の好適例として、
前記第二の無線局側に、
前記第一の無線局からの第一の無線制御パケットを受信した際に、
該第一の無線制御パケットに対する応答として、複数系統の既知のパターンを含む 第二の無線制御パケットを送信する手段を有する。
[0044] また別の好適例として、
前記第二の無線局側に、 前記第一の無線局からの N系統の既知のパターンを含む第一の無線制御パケット を受信した際に、
前記 N系統の既知のパターンの信号を用いて、前記伝達関数 hを算出する手段と
J,i 該第一の無線制御パケットに対する応答として、前記伝達関数に関する情報を収 容した第二の無線制御パケットを送信する手段と、
を有する。
[0045] 前記無線局間の通信にお 、て K本のサブキャリア(Kは 1より大き 、整数)を用いた 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)変調方 式を用いても良い。
この場合、前記第二の無線局側に、
信号系列を複数重畳せずに前記第一の無線局に対して前記無線制御パケットまた は無線データパケットを送信する際に、第 ksサブキャリアの信号を、サブキャリア番号 ksに対応した第二のアンテナ群の中の所定の一つのアンテナを用いて送信する送 信手段を有しても良い。
ここで、前記第二の無線局側に前記送信手段を有することを、前記第一の無線局 側に通知する手段を有するようにしても良 、。
[0046] 本発明はまた、第一の無線局と第二の無線局との間で通信を行う無線通信方法に おいて、
前記第一の無線局は N (N は 1より大きい整数)本以上の第一のアンテナ群を備
tx tx
え、
送信すべきユーザデータを N系統に分割する分割ステップと、
前記 N系統に分割されたユーザデータに N種類の既知のパターンの信号を付与し て得られる N系統の信号系列により構成される無線データパケットを構築するステツ プと、
N系統の前記既知のパターンを含む信号系列にそれぞれ個別の係数を乗算する 処理を、係数の異なる組み合わせで複数回行い、各係数の組み合わせ毎に係数が 乗算された前記 N系統の信号系列を合成して該 N系統の信号系列力 N 系統の信
tx 号系列に変換する変換ステップと、
前記変換ステップにおいて変換された信号を前記第一のアンテナ群力 送信する 送信ステップと
を有することを特徴とする無線通信方法を提供する。
[0047] 典型例として、前記第二の無線局は M (Mは 1より大きい整数)本の第二のアンテナ 群を備え、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 hまたはその近似値を取得するステップと、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート ,
共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出するステップと、 前記行列 HH X Hを対角化するュ-タリ行列 Uを算出するステップと、を更に有し、 前記変換ステップは、
N系統の前記信号系列の第 k(kは 1以上の整数)シンボルの情報をそれぞれ {x
(k),x (10, · · · , x (k)}とした場合、第 kシンボルの各情報を要素とする列ベクトル x(k)と 前記行列 Uの積により与えられる列ベクトル、即ち U X x(k)を算出するステップを含み
前記送信ステップは、
前記列ベクトル U X x(k)の第 i行成分 [U X x(k)]を第一のアンテナ群の中の第 iアンテ ナより送信するステップを含む。
[0048] 好適例として、前記無線データパケットの送信に先立ち、制御情報を収容した第一 の無線制御パケットを送信するステップと、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを N本以 上のアンテナを用いて受信するステップと、を更に有し、
前記取得ステップは、前記第二の無線制御パケットに付与された複数系統の既知 のパターンの信号を用いて、各アンテナでの受信信号から第二の無線局が送信に 用いた第 j (l≤j≤M、; jは整数)アンテナと第一の無線局が受信に用いた第 i (l≤i≤ N、 iは整数)アンテナ間の伝達関数 hを算出するステップを含む。 [0049] 別の好適例として、前記無線データパケットの送信に先立ち、第一の無線制御パケ ットとして N系統の既知のパターンを含む信号系列を N本の前記第一のアンテナ群を 用いて送信するステップと、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを受信 するステップと、
前記第二の無線制御パケットに収容された前記第一のアンテナ群の内の第 iアンテ ナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達関数 h に関する情報を ,
取得するステップと、
を含む。
[0050] 前記無線局間の通信にお 、て K本のサブキャリア(Kは 1より大き 、整数)を用いた 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)変調方 式を用いても良い。
この場合の好適例として、前記第二の無線局より、信号系列が複数重畳されていな い即ち 1系統のみの信号系列で構成される制御情報を収容した無線制御パケットお よび/またはユーザデータを収容した無線データパケットを受信した際に、各受信ァ ンテナで受信された既知のパターンの信号の受信状態力 第 ks (l≤ks≤K、 は 整数)サブキャリアの第二の無線局が送信に用いた第 j (l≤j≤M、; jは整数)アンテナ と第一の無線局が受信に用いた第 i (l≤ N、 iは整数)アンテナ間の伝達関数 h [ks] , を取得する伝達関数取得ステップを含む。
また別の好適例として、前記第二の無線局の第 jアンテナで送信されな力つた第 ks ' (l≤ks '≤K、 ks 'は整数)サブキャリアにおける、前記第二の無線局の第 jアンテナと 前記第一の無線局の第 iアンテナ間の伝達関数 h [ks']を、前記第二の無線局の第 jァ ,
ンテナで送信された ks≠ks,及び ks≠ks,(l≤ks≤K、 l≤ks≤K、 ks、 ksは整数) なる第 ksサブキャリア及び第 ksサブキャリアに対する前記伝達関数 h [ksl]及び h [ks2] の内挿または外揷値により h [ks']を取得する伝達関数取得ステップを含む。
これらの好適例にぉ 、て、前記第一の無線局側で前記伝達関数取得ステップを実 行することを、前記第二の無線局側に通知するステップを有しても良 、。
[0051] 本発明はまた、上記無線通信方法で送信された無線信号を前記第二の無線局に ぉ 、て受信するための無線通信方法であって、
前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、 前記第二のアンテナ群を用いて個別に無線信号を受信するステップと、 受信信号に付与された既知のパターンの信号を参照信号として、受信した各信号 系列の信号を分離して復調する復調ステップと、
復調した全ての信号系列を合成し、ユーザデータとして出力する出力ステップと を備えることを特徴とする無線通信方法を提供する。
[0052] 典型例として、前記復調ステップは、
受信信号に付与された既知のパターンの信号を参照信号として、前記第一のアン テナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達 関数 hを取得するステップと、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し所定の演算を行い、 Ν
系統の送信信号の信号点に対応するベクトルを求める演算ステップと、を含み、 前記出力ステップは、
前記演算で得られたベクトルの各要素で与えられる N系統の送信信号を、受信した 全てのシンボルに対して合成し、前記ユーザデータとして出力するステップを含む。
[0053] 好適例として、前記演算ステップは、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート
共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出するステップと、 前記行列 HH X Hの逆行列即ち(HH X H) 1を算出するステップと、
さらにこれらを用いて行列 (HH X H) 1 X HHを算出するステップと、
前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 を示す)で表される受信信号べ外ル Rx(k)に対し、 (HH X H) 1 X HH X Rx(k)を演算す るステップと、
を含む。
[0054] 別の好適例として、前記演算ステップは、 前記伝達関数 hを第 (j,i)成分とする N行 N列の行列 Hに対し、該行列 Hの逆行列 H—1
J,i
を算出するステップと、
前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 m 1 2
を示す)で表される受信信号ベクトル Rx(k)に対し、 H 1 X Rx(k)を演算するステップと、 を含む。
[0055] また別の好適例として、 前記演算ステップは、前記第一のアンテナ群の第 nアンテ ナより送信された第 kシンボルの送信信号を t (k)とし、さらに前記第二のアンテナ群の 第 mアンテナで実際に受信された第 kシンボルの受信信号を r (k)と表記した場合、 (t
m
(k),t (k), - - - ,t (k))T(Tは行ベクトル力 列ベクトルへの変換を示す)で表される送信
1 2 N
信号ベクトル Tx(k)、 (r (k),r (k), - - - ,r (k))Tで表される受信信号ベクトル Rx(k)、及び
1 2 M
行列演算子 Fに対し、ベクトル!7 X Rx(k)— Tx(k)及び該ベクトルのエルミート共役のベ タトル(F X Rx(k)-Tx(k)) Hのベクトル積 (F X Rx(k)-Tx(k)) H X (F X Rx(k)— Tx(k))の複 数シンボルに渡る期待値を最小化することが期待されるように行列演算子 Fを選択す るステップと、
各シンボルに対して F X Rx(k)を演算するステップと、
を含む。
この場合、前記行列演算子 Fを MMSE (Minimum Mean Square Error)方式で求めて も良い。
[0056] また別の好適例として、前記第二の無線局側で、
前記第一の無線局からの N系統の既知のパターンを含む第一の無線制御パケット を受信した際に、
前記 N系統の既知のパターンの信号を用いて、前記伝達関数 hを算出するステツ
J,i
プと、
該第一の無線制御パケットに対する応答として、前記伝達関数に関する情報を収 容した第二の無線制御パケットを送信するステップと、
を実行する
[0057] 別の典型例として、前記第二の無線局側で、 前記第一の無線局からの第一の無線制御パケットを受信した際に、 該第一の無線制御パケットに対する応答として、複数系統の既知のパターンを含む 第二の無線制御パケットを送信するステップを実行する。
[0058] また別の典型例として、前記無線局間の通信において K本のサブキャリア (Kは 1よ り大き 、整数)を用いた直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)変調方式 用 ヽる。
この場合、前記第二の無線局側で、
信号系列を複数重畳せずに前記第一の無線局に対して前記無線制御パケットまた は無線データパケットを送信する際に、第 ksサブキャリアの信号を、サブキャリア番号 ksに対応した第二のアンテナ群の中の所定の一つのアンテナを用いて送信する送 信ステップを実行しても良!、。
ここで、前記第二の無線局側で前記送信ステップを実行することを、前記第一の無 線局側に通知するステップを有しても良 、。
[0059] 本発明の無線通信装置の別の典型的態様としては、
複数のサブキャリアを用いた直交周波数分割多重 (OFDM)変調方式を用いて無線 通信を行う無線通信システムで使用される無線通信装置であり、
前記分割手段は、各サブキャリア毎に個別に、送信すべきユーザデータを N系統 に分割し、
前記変換手段は、あるサブキャリアにおける N系統の前記信号系列の第 n (nは 1 以上の整数)シンボルの情報がそれぞれ {x (n ),x (n ), · · · ,χ (n )}であり且つこれら
1 s 2 s N s
を各成分として持つ N行の列ベクトル力 x(n )であった場合、 N行 N列の単位行列また s
は該単位行列の列を適宜入れ替えて得られる N (N > 1 :Nは整数)種類の回転行
R R R
列群を {R } (N ≥k≥l:kは整数)と表記した際に、各サブキャリアに対応した所定の k R
kに対する Rを用い、前記ベクトル x(n )を R X x(n )に変換する手段を少なくとも含み k s k s 前記送信手段は、各サブキャリアにおける該変換された列ベクトルの第减分を前 記第 1のアンテナ群の第 iアンテナより送信するようにする。
[0060] 好適例として、前記変換手段は、各サブキャリアにおける前記第 1のアンテナ群の 第 iアンテナより送信される第 nシンボルの信号を [R X x(n )]となる様に変換するよ s k s 1
うにする。
このような構成により、 MIMO技術を用いる際に、サブキャリア毎に各信号系列を 送信する際に用いるアンテナを入れ替え、その結果として信号系列毎の誤りを平均 化およびランダム化し、誤り訂正における符号化利得を向上させる。従来方式とは、 各サブキャリアに対応した所定の kに対し、そのサブキャリアにおいて前記第 1のアン テナ群の第 iアンテナより送信される第 nシンボルの信号を、回転行列 Rを使用して [
s k
R Χ χ(η )]となる様に変換する点、各サブキャリアにおいて該変換された信号 [R Χ χ k s i k
(n )]を前記第 1のアンテナ群の第 iアンテナより送信する点で異なっている。
s 1
これにより、 MIMO技術を用いた高能率な無線通信を行う際に、重畳する複数の 信号系列毎の受信特性を均一化し、伝送路上における符号誤りをランダム化するこ とが可能となる。特に、 E-SDM方式と組み合わせた場合には、 MIMO技術の持つ 性質として、重畳する信号系列間に受信特性の大きなばらつきが発生するという傾 向があつたが、本発明により信号系列毎の受信特性を平均化し、エラーをランダム化 することにより、その結果、誤り訂正の利得を向上させ、全体としてのパケット誤り率特 性を改善する効果を得ることができる。
別の好適例として、前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテ ナ群を備え、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 hまたはその近似値を取得する手段と、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Hのェルミ
ート共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N行 N列の正方行列 HH X Hを算出する手段と、 前記行列 HH X Hを対角化する N行 N列のュ-タリー行列 Uを算出する手段と、 を更に備え、
前記変換手段は、各サブキャリアにおける前記第 1のアンテナ群の第 iアンテナより 送信される第 nシンボルの信号を [U X R X x(n )]となる様に変換するようにする。
s k s 1 これにより、 MIMO技術に組み合わせて E— SDM方式を用いる際に、重畳する信 号系列の特性に大きな差が生じるのに対し、この特性を均一化し、その結果として信 号系列毎の誤りを平均化およびランダム化し、誤り訂正における符号化利得を向上 させるための簡易な実現方法を提供できる。
別の好適例として、前記第二の無線局は M(Mは 1以上の整数)本の第二のアンテ ナ群を備え、
N >Nであり、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 h またはその近似値を取得する手段と、
前記伝達関数 h を第 (j,i)成分とする M行 N 列の行列 Hに対し、該行列 Hのェルミ ート共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N 行 N 列の正方行列 HHXHを算出する手段と、 前記行列 HHXHを対角化する N 行 N 列のュ-タリー行列 Uを算出する手段と、 を更に備え、
前記変換手段は、 N 行 N列の行列で且つ N≥j≥lなる整数 jに対し第 (j,j)成分の みが 1で他の成分が 0である行列を Tと表記した際に、各サブキャリアにおける前記第 1のアンテナ群の第 iアンテナ (N ≥i≥l:iは整数)より送信される第 nシンボルの信 号を [U X T X R X x(n )]となる様に変換するようにする。
このような構成により、各サブキャリアに対応した所定の kに対し前記第 1のアンテナ 群の第 i(N ≥i≥l:iは整数)アンテナより送信される第 nシンボルの信号を、伝達関 数行列 Hの HH X Hを対角化するュ-タリー行列 Uと、アンテナを入れ替える回転行 列 Rと、アンテナ数を拡張する行列 Tとにより、 [UXTXR Xx(n)]となる様に変換し
、該変換された信号 [UXTXR Xx(n)]を前記第 1のアンテナ群の第アンテナより 送信する。
これにより、重畳する信号系列数よりも送信アンテナの本数を増やし、送信アンテナ 数分だけ存在する MIMOのチャネルの中力 特性の悪!、チャネルを切り捨て、特性 の良いチャネルのみを用いて上記の処理を実施するための簡易な実現方法を提供 できる。
[0063] 典型例として、前記回転行列群 {R }は、 N行 N列の単位行列の列を適宜入れ替え
k
て得られる行列の中力 選び出したひとつの行列を Rとし、 N>j≥lなる整数 jに対 し第 (j+ 1 J)成分及び第( 1 ,Ν)成分のみが 1で且つ他の成分力^である Ν行 Ν列の行 列を Ρとし、更に N≥k≥2なる整数 kに対し R =Pk_1 XRとして与えられる合計 N個の
k 1
行列により構成され、
ユーザ情報が収容されるサブキャリアに対して用いる前記回転行列 Rを、前記回
k
転行列群 {R }の各行列を適当に並べ替えたものを Nサブキャリア周期で順番に対
k
応させる。
これにより、上述の回転行列として用いる行列を生成するための簡易な実現方法を 提供できる。
[0064] 別の典型例として、前記回転行列群 {R }は、 N行 N列の単位行列の列を適宜入れ
k
替えて得られる行列の中力 選び出したひとつの行列を Rとし、 N>j≥lなる整数 j に対し第 (j+ 1 J)成分及び第( 1 ,Ν)成分のみが 1で且つ他の成分が 0である Ν行 Ν列 の行列を Ρとし、更に N≥k≥2なる整数 kに対し R =Pk_1 XRとして与えられる合計 N
k 1
個の行列により構成され、
OFDM変調された信号をサブキャリア上にマッピングする際に、前記 N系統に分割 された各信号系列のビット列が Nサブキャリア周期 (Nは 1より大きな整数)で隣接す
U il
る様にインタリーブ処理を施す場合には、ユーザ情報が収容されるサブキャリアに対 して用いる前記回転行列 Rを、前記回転行列群 {R }の各行列をそれぞれ N個ずつ
k k U 用意したものを適当に並べ替えて N X Nサブキャリア周期で順番に対応させる。 これによつてもまた、上述の回転行列として用いる行列を生成するための簡易な実 現方法を提供できる。
[0065] 本発明はまた、上述の無線通信装置を前記第一の無線局に有する無線通信シス テムであって、
前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、 前記第二のアンテナ群を用いて個別に無線信号を受信する手段と、
受信信号に付与された既知のパターンの信号を参照信号として、前記の各信号系 列の信号を分離して復調する手段と、
復調した全ての信号系列を合成し、ユーザデータとして出力する手段と を備えることを特徴とする無線通信システムを提供する。
[0066] 本発明の無線通信方法の別の典型的態様としては、
複数のサブキャリアを用いた直交周波数分割多重 (OFDM)変調方式を用いて無 線通信を行う無線通信システムで使用される無線通信方法であり、
前記分割ステップでは、各サブキャリア毎に個別に、送信すべきユーザデータを N 系統に分割し、
前記変換ステップでは、あるサブキャリアにおける N系統の前記信号系列の第 n (n s は 1以上の整数)シンボルの情報がそれぞれ {χ (η ),χ (η ), · · · ,χ (η )}であり且つこ s 1 s 2 s N s
れらを各成分として持つ N行の列ベクトル力x(n )であった場合、 N行 N列の単位行 s
列または該単位行列の列を適宜入れ替えて得られる N (N > 1 :Nは整数)種類の
R R R
回転行列群を {R } (N ≥k≥l:kは整数)と表記した際に、各サブキャリアに対応した k R
所定の kに対する Rを用い、前記ベクトル x(n )を R X x(n )〖こ変換するステップを少 k s k s
なくとも含み、
前記送信手段は、各サブキャリアにおける該変換された列ベクトルの第减分を前 記第 1のアンテナ群の第 iアンテナより送信する。
[0067] 好適例として、前記変換ステップは、各サブキャリアにおける前記第 1のアンテナ群 の第 iアンテナより送信される第 nシンボルの信号を [R X x(n )]となる様に変換する s k s
[0068] また別の好適例として、 前記第二の無線局は M (Mは 1以上の整数)本の第二のァ ンテナ群を備え、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 h またはその近似値を取得するステップと、
前記伝達関数 h を第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Hのェルミ
ート共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N行 N列の正方行列 HH X Hを算出するステップと、 前記行列 HH X Hを対角化する N行 N列のュ-タリー行列 Uを算出するステップと、 を更に備え、
前記変換ステップは、各サブキャリアにおける前記第 1のアンテナ群の第 iアンテナ より送信される第 nシンボルの信号を [U XR X x(n )]となる様に変換する。
[0069] また別の好適例として、前記第二の無線局は M (Mは 1以上の整数)本の第二のァ ンテナ群を備え、
N >Nであり、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 h またはその近似値を取得するステップと、
前記伝達関数 h を第 (j,i)成分とする M行 N 列の行列 Hに対し、該行列 Hのェルミ ート共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N 行 N 列の正方行列 HH X Hを算出するステップ と、
前記行列 HH X Hを対角化する N 行 N 列のュ-タリー行列 Uを算出するステップ と、
を更に備え、
前記変換ステップは、 N 行 N列の行列で且つ N≥j≥lなる整数 jに対し第 (j,j)成分 のみが 1で他の成分力^である行列を Tと表記した際に、各サブキャリアにおける前記 第 1のアンテナ群の第 iアンテナ (N ≥i≥l :iは整数)より送信される第 nシンボルの 信号を [U X T X R X x(n )]となる様に変換する。
[0070] 典型的には、前記第二の無線局は、 M (Mは 1以上の整数)本の第二のアンテナ群 を備え、
前記第二のアンテナ群を備え用いて個別に無線信号を受信するステップと、 受信信号に付与された既知のパターンの信号を参照信号として、前記の各信号系 列の信号を分離して復調するステップと、
復調した全ての信号系列を合成し、ユーザデータとして出力するステップと を実行する。 発明の効果
[0071] 以上詳細に説明したように、本発明によれば、 MIMO技術を用いた高能率な無線 通信を行う際に、伝達関数行列を精度良く推定できた場合には E— SDM法と等価な 良好な特性を実現しながらも、伝達関数行列を精度良く推定できな!ヽ場合であって も安定した特性を示すことが可能であるという効果を得ることができる。
また、 OFDM変調方式に MIMO技術を用いる際に、サブキャリア毎に各信号系列 を送信する際に用いるアンテナを入れ替えることにより、信号系列毎の誤りを平均化 およびランダム化し、誤り訂正における符号化利得を向上させることができる。
例えば MIMO技術を用いた高能率な無線通信を行う際に、重畳する複数の信号 系列毎の受信特性を均一化し、伝送路上における符号誤りをランダム化することが 可能となる。特に、 E— SDM方式と組み合わせた場合には、 MIMO技術の持つ性質 として、重畳する信号系列間に受信特性の大きなばらつきが発生するという傾向があ つたが、本発明により信号系列毎の受信特性を平均化し、エラーをランダム化するこ とにより、その結果、誤り訂正の利得を向上させ、全体としてのパケット誤り率特性を 改善する効果を得ることができる。
また、 MIMO技術に組み合わせて E— SDM方式を用いる際に、通常重畳する信号 系列の特性に大きな差が生じるのに対し、この特性を均一化し、その結果として信号 系列毎の誤りを平均化およびランダム化し、誤り訂正における符号化利得を向上さ せるための簡易な実現方法を提供できる。
また、重畳する信号系列数よりも送信アンテナの本数を増やし、送信アンテナ数分 だけ存在する MIMOのチャネルの中力 特性の悪!、チャネルを切り捨て、特性の良 V、チャネルのみを用いて上記の処理を実施することもできる。
図面の簡単な説明
[0072] [図 1]本発明の第 1実施形態に係る無線通信システムおける第二の無線局の受信部 の構成例を示すブロック図。
[図 2]同実施形態に係る無線通信システムおける第一及び第二の無線局の送信部の 構成例を示すブロック図。
[図 3]同実施形態に係る無線通信システムおける第一及び第二の無線局の送信部の 構成例を示すブロック図
[図 4]同実施形態に係る無線通信システムおける第二の無線局の受信処理の内容を 示すフローチャート。
[図 5]同実施形態に係る無線通信方法における第一の無線局でのチャネル推定処 理の内容を示すフローチャート。
[図 6]同実施形態に係る無線通信方法における第二の無線局での無線制御パケット 受信時の処理内容を示すフローチャート。
[図 7]同実施形態に係る無線通信方法における第一の無線局でのチャネル推定処 理の内容を示すフローチャート。
[図 8]同実施形態に係る無線通信方法における第二の無線局での無線制御パケット 受信時の処理内容を示すフローチャート。
[図 9]同実施形態に係る無線通信システムにおける無線局の送受信部の構成例を示 すブロック図。
圆 10]本発明の第 2実施形態に係る第一の無線局の送信部の構成例を示す図。 圆 11]同実施形態に係る第二の無線局の受信部の構成例を示す図。
圆 12]同実施形態に係る第一の無線局の送信部の、第 2の構成例を示す図。
圆 13]同実施形態に係る第一の無線局の送信部の、第 3の構成例を示す図。
圆 14]同実施形態に係る第一の無線局の送信フローを示す図。
圆 15]同実施形態に係る第一の無線局の第 2の送信フローを示す図。
圆 16]同実施形態に係る第一の無線局の第 3の送信フローを示す図。
圆 17]従来技術における第一の無線局の送信部の構成を示す図。
圆 18]従来技術における第二の無線局の受信部の構成を示す図。
圆 19]従来技術における第一の無線局の送信フローを示す図。
圆 20]従来技術における第二の無線局の受信フローを示す図。
[図 21]OFDM変調及び MIMO技術を併用した場合の各信号系列の特性の周波数 依存性を示す図その 1。
[図 22]OFDM変調及び MIMO技術を併用した場合の各信号系列の特性の周波数 依存性を示す図その 2。 符号の説明
1···データ分割回路
2— 1— 2— 3···プリアンブル付与回路
3— 1一 3— 3···変調回路
4…送信信号変換回路 #1
5 - 1一 5 - 4…無線部
6— 1— 6— 4· "アンテナ
7···チャネル推定回路
8···伝達関数行列管理回路 9···行列演算回路 #1
10…行列演算回路 #2
11…送信信号変換回路 #2 12…送信信号変換回路 #3 13…送信信号変換回路 #4
21— 1一 21— 3···アンテナ
22— 1— 22— 3···無線部
23…チャネル推定回路
24…受信信号管理回路
25…伝達関数行列管理回路 26···行列演算回路 (受信) #1 27…行列演算回路 (受信) #2 28…硬判定回路
29…データ合成回路
31— a— 31— b · · ·受信アンテナ 32 - a— 32 - b…無線部
33— a— 33— b"-FFT回路
34…チャネル推定回路
35…チャネル分離回路 — 1— a— 36— K a,36— 1— b— 36— K b…サブキャリア復調回路 - a— 37 - b". PZS変換回路
…データ合成回路
· ··伝達関数補完回路
…伝達関数管理回路 # 2
…行列演算回路
…データ分割回路
— a— 43— 変換回路
— a— 44— b…プリアンブル付与回路
— 1— a— 45— K a,45— 1— b— 45— K b…サブキャリア変調回路 …送信信号変換回路
- a 47 - b"'IFFT回路
— a— 48— b…無線部
a— 49 b…送信アンテナ
— 1—51—3 …受信アンテナ
- 1一 52—3 …無線部
…チャネル推定回路
…受信信号管理回路
…伝達関数行列管理回路
…行列演算回路 # 2
…行列演算回路 # 3
…硬判定回路
…データ合成回路
…データ分割回路
— 1— 61— 3…プリアンブル付与回路
— 1— 62— 3…変調回路
…送信信号変換回路
- 1一 64 - 3…無線部 65— 1— 65— 3· ··送信アンテナ
66· ··行列演算回路
67· ··伝達関数行列管理回路
68· ··チャネル推定回路
69· ··制御情報終端回路
70· ··制御情報生成回路
発明を実施するための最良の形態
[0074] 以下、本発明の実施形態を、図面を参照して説明する。
<第 1実施形態 >
図 1は、本発明の第 1実施形態に係る無線通信システムにおける第二の無線局の 受信部の構成を示す図である。本発明の実施形態に係る無線通信システムは、 N (N は 1より大き!、整数)本以上の第一のアンテナ群を備えた第一の無線局と、 M (Mは 1 より大きい整数)本の第二のアンテナ群を備えた第二の無線局とにより構成されてい る。
なお、ひとつの例として、送信局が 3つの送信アンテナを用いて 3系統のデータを 送信する場合を例にとって説明する。図において、 51-1— 51-3は受信アンテナ、 52-1— 52-3は無線部、 53はチャネル推定回路、 54は受信信号管理回路、 55は伝達 関数行列管理回路、 56は行列演算回路 # 2、 57は行列演算回路 # 3、 58は硬判定 回路、 59はデータ合成回路を示す。基本的な回路構成は図 18に示した従来の受信 部構成と変わらないが、行列演算回路 # 2 (56)、及び行列演算回路 # 3 (57)の処理 内容が異なっている。
[0075] 例えば、一例として、行列演算回路 # 2 (56)において行う処理は、推定後の伝達関 数行列 Hに対して以下の行列を求める処理である。
(1) HH:伝達関数行列 Hのエルミート共役な行列
(2) HH X H
(3) (HH X H)— 行列 (2)の逆行列
(4) (HH X H)— 1 X HH:行列 (3)と行列 (1)の積
これらの演算結果として、行列演算回路 # 3 (57)に対して行列 (HH X H)"1 X HHを入 力する。また。行列演算回路 # 3 (57)では、この行列と受信信号べ外ル Rxとの積 (HH X H)— 1 X HH X Rxを演算により求める。
[0076] 同様に、一例として、行列演算回路 # 2 (56)において伝達関数行列 Hの逆行列 H—1 を求める処理を行う。また、行列演算回路 # 2 (56)力 は行列演算回路 # 3 (57)に 対して行列 H 1を入力し、行列演算回路 # 3 (57)では、この行列と受信信号ベクトル Rxとの積 H— 1 X Rxを演算により求める。
なお、これらの演算((HH X H)— 1 X HH X Rxまたは H— 1 X Rx)は、(式 1)の熱雑音の項 が無視可能である場合の送信信号ベクトル Txの解を求める操作に相当する。したが つて、これらの演算もしくはそれと等価な演算を複数のステップに分解して順次処理 することによって送信信号ベクトル Txを求めることも、当然可能である。
[0077] 同様に、一例として、行列演算回路 # 2 (56)において、送信信号ベクトル Tx(k)、受 信信号ベクトル Rx(k)、及び行列演算子 Fに対し、 (F X Rx(k)-Tx(k))H X (FX Rx(k) - Tx(k))で与えられる物理量の複数シンボルに渡る期待値を最小化することが期待さ れる行列演算子 Fを求める処理を行う。また、行列演算回路 # 2 (56)からは行列演算 回路 # 3 (57)に対して行列 Fを入力し、行列演算回路 # 3 (57)では、この行列と受信 信号ベクトル Rxとの積 F X Rxを演算により求める。
[0078] なお、この行列演算子 Fは従来方式における MMSE法で用いられる行列として知ら れており、受信信号のプリアンブル信号を利用して、プリアンブル信号に対する(F X Rx(k)-Tx(k)) H X (F X Rx(k)-Tx(k))を最小にする様にして求めることが可能である。 またここで硬判定回路 58とは、伝達関数行列および受信信号ベクトル力 推定した 送信信号ベクトルの各成分が、本来は離散的な値をとる送信信号点と一致しなかつ た場合に、選択可能な送信信号点に信号を確定させる処理を行うためのものである 。これは、例えば誤り訂正符号化'復号ィ匕を行う場合において、一旦、軟判定を行つ た信号を用いて誤り訂正を行 、、その結果として信号点を確定させる場合の処理も 含んでいる。
[0079] 図 2及び図 3は、第一及び第二の無線局の送信部の構成例を示す図である。図に おいて、 60はデータ分割回路、 61-1— 61-3はプリアンブル付与回路、 62-1— 62-3は 変調回路、 63は送信信号変換回路、 64-1— 64-3は無線部、 65-1— 65-3は送信アン テナ、 66は行列演算回路、 67は伝達関数行列管理回路、 68はチャネル推定回路、 69は制御情報終端回路、 60は制御情報生成回路を示す。送信側の構成は、従来方 式と同一であっても構わないが、本図では伝達関数行列 Hの取得方法を明示するた めに、チャネル推定回路 68、または制御情報終端回路 69及び制御情報生成回路 70 が追カ卩されている。
[0080] 図 2においては、第一の無線局が無線データパケットを送信する際に、これに先行 して伝達関数行列の推定用の信号を送信することを要求する制御信号を制御情報 生成回路 70にて生成し、これを送信する。この際の信号は、必ずしも複数の送信アン テナを用いて送信する必要はなぐ単一アンテナ力 送信しても構わない。第二の無 線局では、この信号を受信したことを制御情報終端回路 19にて認識すると、制御情 報生成回路 20より制御信号を生成し、 3系統のプリアンブル信号が付与された信号 を 3本の送信アンテナ 65-1— 65-3より送信する。この信号を受信した第一の無線局 は、無線部 64-1— 64-3を経由してプリアンブル信号をチャネル推定回路 68に入力し 、チャネル推定回路 68にて伝達関数行列 Hを取得する。これを伝達関数行列管理回 路 67に入力する。
[0081] 図 3においては、第一の無線局が無線データパケットを送信する際に、これに先行 して制御情報生成回路 70より制御信号を生成し、 3系統のプリアンブル信号が付与さ れた信号を 3本の送信アンテナ 65-1— 65-3より送信する。第二の無線局は、無線部 64-1— 64-3を経由してプリアンブル信号をチャネル推定回路 68に入力し、チャネル 推定回路 68にて伝達関数行列 Hを取得する。この情報は、制御情報生成回路 70に 入力され、この伝達関数行列に関する情報を含んだ制御信号を制御情報生成回路 70にて生成し、これを送信する。
[0082] 第一の無線局では、この信号を受信したことを制御情報終端回路 69にて認識する と、収容されていた伝達関数行列に関する情報を取り出し、これを伝達関数行列管 理回路 67に入力する。なお、上記伝達関数行列に関する情報を含んだ制御信号は 、必ずしも複数の送信アンテナを用いて送信する必要はなぐ単一アンテナから送信 しても構わない。
[0083] さらに、「第一の制御パケット」または「第二の制御パケット」として規定した信号を、 無線データパケットの送信に先立ち交換することは、必ずしも必要ではない。
一つの例として、 MIMO技術を用いながら双方向で定常的にデータの送受信を行 う場合には、伝達関数行列はデータの受信毎に取得可能である。
[0084] また別の例として、 5GHz帯における IEEE802.11a (ないしは 2. 4GHz帯における
IEEE802.11g)準拠の無線 LANの場合を説明する。この無線 LANシステムでは MIMO 技術は用いられておらず、将来的な拡張として MIMO技術が期待されているのである 1S ノ ックワードコンパチビリティの観点から、拡張されたシステムであっても、最低限 、 IEEE802.11a (または IEEE802.11g)準拠の信号の送受信は可能となる。
この IEEE802.11a (または IEEE802.11g)準拠システムでは、ユーザデータを収容し た無線データパケットを送信すると、受信に成功した受信局は受信成功を示す ACK( Acknowledgement)信号として、比較的信頼性の高!、伝送モードを用いて無線制御 パケットを返送する。 MIMO技術を用いて無線データパケットを送信する場合であつ ても、制御信号の安定送受信の観点力も無線制御パケットの転送には MIMO技術を 用いない、即ち複数の系統の信号系列を同一周波数チャネル上に重畳することなく 転送することが期待される。つまり、継続的にデータ通信を行う場合には、データ( MIMO適用)→ACK (MIMO非適用)→データ(MIMO適用)→ACK (MIMO非適用) →· · ·との繰り返しになると考えられる。
[0085] このケースにおいては、 MIMO技術を用いない ACK返送用の無線制御パケットにお いて伝達関数行列 Hの推定ができることが理想的である。また、そのための信号が、 既存の IEEE802.1 la (または IEEE802.1 lg)準拠の無線 LANのエア'インタフェースに なんら変更をカ卩えて 、な 、方法が好まし 、。
これを実現するために、 IEEE802.11a (または IEEE802.11 g)準拠システムで採用し ている OFDM変調技術を利用する。 OFDM変調技術では、複数のサブキャリアを周 波数軸上に直交するように連続的に並べ、高速フーリエ変換技術を利用して通信を 行う。
[0086] MIMO技術を適用する場合には、各サブキャリア毎に伝達関数行列 Hを求め、同一 サブキャリア内にとじてチャネル分離処理を行う。この際、異なるサブキャリア同士で は伝達関数行列 Hの値は異なるが、隣接したサブキャリア間ではその相関は強くなる 。この特性を利用して、例えばサブキャリア番号 nにおける第 i送信アンテナと第 j受信 アンテナ間の伝達関数を h (n)とすると、隣接サブキャリアに関する情報力 内挿によ
り以下のような近似を行うことが可能である。
[0087] [数 6] hj,i(n) {hj,i(n1) + hj,i(n+1)}/2 · · · (6)
[0088] [数 7] hj {n) = {h i(n-l)x2+hj,i(n+2)x1}/3 · · - (7)
[0089] [数 8] hj(i(n) = {hjf iCn-2)xi+hj)i(n+1)X2}/3 - · - (8)
[0090] ここで式(6)は、サブキャリア上でひとつおき(つまり 2サブキャリア周期)に h ( が
j,i 分かる場合に、その間の伝達関数を求める場合に利用できる。また、式(7)および式 (8)は、サブキャリア上でふたつおき(つまり 3サブキャリア周期)に h (n)が分力る場合
に、その間の伝達関数を求める場合に利用できる。
[0091] これを利用するためには、送信側で MIMO非適用の信号を送る際に、例えば偶数 サブキャリアは第 1送信アンテナ、奇数サブキャリアは第 2送信アンテナを用いたり、 3 の倍数となるサブキャリアは第 1送信アンテナ、 3の倍数 + 1となるサブキャリアは第 2 送信アンテナ、 3の倍数 +2となるサブキャリアは第 3送信アンテナを用いて送信する などすれば、各サブキャリア毎に伝達関数行列の要素の一部分を取得可能であり、 残りの要素を式 (6)—式 (8)などを用いて推定することが可能である。
なお、同様の処理は、 4サブキャリア周期以上の場合 (即ち、 4系統以上の信号系 列を重畳する場合)であっても適用可能である。
[0092] また、内挿で求まらな 、ような端の方のサブキャリア(例えば第 1サブキャリア等)に 関しては、外挿等の他の方法で近似しても構わない。 この技術の注目すべき点は、このサブキャリアを内挿により用いる提案自体は過去 に あり、 Jan Boerらによ 非特午文献「Jan Boer et. al., Backwards compatibility —How to make a MIMO-OFDM system backwards compatible and coexistence with l la/g at the link level.-", IEEE802.i l- 03/714r0, September, 2003」でも提案されて いる。
[0093] しかし、これらは N系統の信号系列を重畳した信号を受信する受信局においてチヤ ネル推定するためのものであり、受信した信号の復調処理そのものに利用されてい た。
一般に、隣接サブキャリア間での伝達関数の相関はそれほど強いわけではないの で、これを利用して行う復調処理は受信特性を大幅に劣化させることになり、あまり実 用的な技術とは言えない。しかし、これを送信側で行うュ-タリ変換の行列を求める ために用いることに限定すれば、仮にュ-タリ変換行列の推定精度が低くても復調 処理には何ら問題は生じない。
[0094] 言い換えると、推定精度の悪さは、単に本発明を適用することによる大きな利得を 若干下げる程度にとどまり、本発明不適用時の特性を下回ることはない。
なお、全ての無線局がこの機能を実装するとは限らない場合には、通信開始時に 無線局間でネゴシエーションを行い、 MIMO非適用時の信号の送信の仕方をお互い に通知することが好ましい。このネゴシエーション結果にあわせて、適応的に、隣接 サブキャリア間での伝達関数の相関を利用してチャネル推定処理を行うようにする。
[0095] 図 4は、本発明の実施形態に係る無線通信システムにおける第二の無線局の受信 フローを示す図である。本図においても、従来方式の図 20との差分は、処理 S74で行 う行列演算処理 # 2と、処理 S76における行列演算処理 # 3の内容のみである。 一例として、行列演算回路 # 2 (56)において行う処理は、 HH、 HH X H、(HH X H)— 1を 順次求め、最終的に(HH X H)— を求める。行列演算回路 # 3 (57)では、(HH X H) 1 X HH X Rxを演算により求めて!/、る。
[0096] 別例として、行列演算回路 # 2 (56)にお 、て伝達関数行列 Hの逆行列 H 1を求め、 行列演算回路 # 3 (57)では、 H を演算により求められる。また、行列演算回路 # 2 (56)にお!/、て、(F X Rx(k)-Tx(k)) H X (F X Rx(k) Tx(k))で与えられる物理量の 複数シンボルに渡る期待値を最小化することが期待される行列演算子 Fを求め、行 列演算回路 # 3 (57)では、 F X Rxを演算により求めることもできる。
一方、第一の無線局の送信部の送信フローは基本的には図 19の内容と同様であ つても構わないが、送信側でチャネル推定を行う場合の一例として、以下に、異なる 点について説明する。
[0097] 図 5は、本発明の実施形態に係る無線通信方法の第一の無線局でのチャネル推 定処理を示す図である。第一の無線局において、送信すべき無線データパケットが 入力された場合 (S21)、この無線データパケットの送信に先立ち、無線制御パケット を送信する(S22)。これにより第二の無線局に対し、複数の送信アンテナからそれぞ れ所定のプリアンブル信号を付与した無線制御パケットの送信を要求する。無線制 御パケットの待ち受け処理の後(S23)、無線制御パケットが正常に受信された場合に は(S24)、その信号を複数の受信アンテナで受信し (S25)、チャネル推定により伝達 関数行列 Hを算出する(S26)。処理 S24において無線制御パケットが正常に受信でき なかった場合には、処理 S22に戻り、無線制御パケットの再送信を行う。
[0098] 図 6は、本発明の実施形態に係る無線通信方法の第二の無線局での無線制御パ ケット受信時のフローを示す図である。この無線通信方法は、 N (Nは 1より大きい整数 )本以上の第一のアンテナ群を備えた第一の無線局と、 M (Mは 1より大き 、整数)本 の第二のアンテナ群を備えた第二の無線局との間で通信を行うものである。
図 6において、信号を受信すると (S31)、無線制御パケットか否かを判断し (S32)、 無線データパケットである場合には通常の受信処理を行う(S37)。
[0099] 一方、無線制御パケットであった場合には (S32)、信号種別を確認し (S33)、複数の 送信アンテナカゝらそれぞれ所定のプリアンブル信号を付与した無線制御パケットの 送信を要求するものであった場合に (S34)、複数の送信アンテナからそれぞれ所定 のプリアンブル信号を付与した無線制御パケットを送信する(S35)。
一方、通常の制御情報であった場合には (S34)、通常の制御情報処理を行う(S36)
[0100] 図 7は、本発明の実施形態に係る無線通信方法の第一の無線局でのチャネル推 定処理を示す図である。図 7において、第一の無線局において、送信すべき無線デ ータパケットが入力された場合 (S41)、この無線データパケットの送信に先立ち、 N本 の送信アンテナを用いてそれぞれ既知プリアンブル信号が付与された無線制御パケ ットを送信する(S42)。無線制御パケットの待ち受け処理の後(S43)、無線制御バケツ トが正常に受信された場合には (S44)、その無線制御パケットを終端処理し (S45)、こ の中に収容されて!、る伝達関数行列 Hに関する情報を取り出し、送信側の伝達関数 行列管理回路内に設定する(S46)。処理 S44において無線制御パケットが正常に受 信できな力つた場合には、処理 S42に戻り、無線制御パケットの再送信を行う。
[0101] 図 8は、本発明の実施形態に係る無線通信方法の第二の無線局での無線制御パ ケット受信時のフローを示す図である。図 8において、信号を受信すると(S51)、無線 制御パケットか否かを判断し (S52)、無線データパケットである場合には通常の受信 処理を行う(S58)。一方、無線制御パケットであった場合には (S52)、信号種別を確 認し (S53)、伝達関数行列に関する情報を要求する信号であった場合には (S54)、 複数の受信アンテナで受信された信号に対しそれぞれ既知のプリアンブルパターン を利用し、チャネル推定により伝達関数行列 Hを取得する(S55)。その後、取得され た伝達関数行列情報を収容した無線制御パケットを生成し、これを送信する(S56)。 一方、処理 S54において、通常の制御情報であった場合には (S54)、通常の制御情 報処理を行う (S57) 0
以上、図 5から図 8までの説明において、第一の無線局は必ずしもデータの送信毎 に無線制御パケットを送信する必要はない。例えば、最後に伝達関数を取得してか ら一定以上の時間がたった場合など、必要に応じて送信すれば良 、。
[0102] なお、 MIMO技術の適用領域として、現在、 5GHz帯及び 2.4GHz帯を用いた高速無 線 LANシステムの拡張が注目されている。このような無線 LANシステムでは、通常、 第一の無線局の機能と第二の無線局の機能をひとつの無線局内に実装するのがー 般的であり、また OFDM変調方式を用いている。
そこで、図 9に本発明の実施形態に係る無線通信システムにおける無線局の送受 信部の構成を示す。なお、本図では簡単のために送受信アンテナが共に 2系統の場 合 (N=M=2)の場合を例として用いて 、る。
[0103] 図 9において、 31-a— 31-bは受信アンテナ、 32-a— 32-bは無線部、 33-a— 33-bは FFT回路、 34はチャネル推定回路、 35はチャネル分離回路、 36-1-a— 36-K-a及び 36-1-b— 36-K-bはサブキャリア復調回路、 37-a— 37-bは P/S変換回路、 38はデー タ合成回路、 39は伝達関数補完回路、 40は伝達関数管理回路 # 2、 41は行列演算 回路、 42はデータ分割回路、 43-a— 43-bは S/P変換回路、 44-a— 44-bはプリアンプ ル付与回路、 45-1-a— 45-K-a及び 45-1-b— 45-K-bはサブキャリア変調回路、 46は 送信信号変換回路、 47-a— 47-bは IFFT回路、 48-a— 48-bは無線部、 49-a— 49_bは 送信アンテナを示す。
[0104] まず、受信アンテナ (31-a— 31-b)にて信号を受信すると、各受信アンテナ毎に無 線部(32-a— 32-b)を経由して、 FFT回路(33-a— 33-b)にて各サブキャリア毎の信号 に周波数軸上で分離する。この分離された信号はチャネル推定回路 34に入力され、 受信信号の中の既知のプリアンブル信号よりそれぞれの伝達関数情報を取得する。 受信された信号が、 2系列の信号系列を重畳した信号であれば、チャネル分離回 路 35では、チャネル推定回路 34にて求めた伝達関数情報をもとに、各系列の信号の 分離処理を行 、、この結果をサブキャリア復調回路(36-1-a— 36-K-a及び 36-1-b— 36-K-b)に入力する。
[0105] サブキャリア復調回路(36-1-a— 36-K-a及び 36-1-b— 36-K-b)での処理は、各サ ブキャリア毎に送信信号を推定し、適宜、誤り訂正処理等を行うものである。復調され た信号は、サブキャリア毎に分離されていたものを P/S変換回路 (37-a— 37-b)にて ノ ラレル'シリアル変換が行われ、データ合成回路 38にてデータが再生され、出力さ れる。
一方、信号系列が重畳されていない信号であれば、チャネル分離回路 35では各受 信アンテナの信号をサブキャリア毎に最大比合成等の処理を行い、サブキャリア復調 回路(36-1-a— 36-K-a)に入力する。この際、チャネル推定回路 34からは、 MIMOの 伝達関数行列の一部分となる情報を伝達関数補完回路 39に入力する。伝達関数補 完回路 39では、(式 6)等で表される内挿演算によって歯抜け状の伝達関数行列の 成分を生成'補完する。
[0106] ここで得られた伝達関数行列 Hの情報は伝達関数行列管理回路 # 2 (40)に記録さ れる。この行列は信号受信毎に逐次更新され、最新の情報のみが記録されている。 行列演算回路 41では、伝達関数行列管理回路 40で管理された伝達関数行列 Hに対 し、 HH、 HH X Hを順次求め、最終的には HH X Hに対する固有ベクトルを求めることか ら HH X Hを対角化するュ-タリ変換行列 Uを求める。
この無線局が信号を送信する場合の処理も、 2系統の信号系列を重畳して送信す る場合と 1系統の信号を送信する場合とで処理が分かれる。
[0107] ユーザデータを高速で転送するような 2系統の信号を重畳して送信する場合、デー タがデータ分割回路 42に入力されると、これを 2系統の信号系列に分割し、 S/P変換 回路 (43-a— 43-b)ではさらに各サブキャリア毎に信号を振り分ける。この各サブキヤ リアの信号には、プリアンブル付与回路(44-a— 44-b)にて既知のプリアンブル信号 が付与され、サブキャリア変調回路(45-1-a— 45-K-a及び 45-1-b— 45-K-b)にて所 定の変調が施され、送信信号変換回路 46に入力される。
[0108] 送信信号変換回路 46では、行列演算回路 41で生成した各サブキャリア毎のュ-タ リ変換行列を用いて変換された信号を生成し、これを IFFT回路 (47-a— 47-b)に入力 する。 IFFT回路 (47-a— 47-b)では、周波数軸上に分離された信号を時間軸上の信 号に変換し、無線部 (48-a— 48-b)を経由して送信アンテナ (49-a— 49-b)から送信さ れる。
[0109] 一方、 1系統の信号を送信する場合には、例えばデータ分割回路 42からは S/P変換 回路 (43-a)と S/P変換回路 (43-b)に同一の信号を入力するが、送信アンテナ 49_aか ら送信する信号は奇数サブキャリア、送信アンテナ 49-bから送信する信号は偶数サ ブキャリアとなるように、送信信号変換回路 46にて、サブキャリア変調回路のうちの 45-l-a、 45-3-a、 45-5-a- · ·、 45-2-b、 45-4-b、 45-6-b- · ·のみの信号を有効とし(す なわち 45- 2- a、 45- 4- a、 45- 6- a' · ·、 45- 1- b、 45- 3- b、 45- 5- b' · ·の信号は廃棄)、 IFFT回路(47-a— 47-b)に出力する。その他の処理については、従来通りの処理と する。
なお、以上の処理において、第一の無線局から第二の無線局へ信号を送信する場 合の伝達関数と、その逆方向の伝達関数との間に所定の差分が存在する場合には 、送信側でュ-タリ変換を取得するために用いる伝達関数に対して、この差分を補正 する処理を追加することもできる。 [0110] <第 2実施形態 >
以下、本発明の第 2実施形態について説明する。本実施形態は、 OFDM変調方 式に MIMO技術を用いる際に、サブキャリア毎に各信号系列を送信する際に用いる アンテナを入れ替える技術に関するものである。
ここでは説明を簡単にするため、 3つの信号系列を重畳して伝送を行う場合を想定 し、アンテナ数を 3本または 4本とした例を用いて説明する。
図 14は、本発明の第 2実施形態における第一の無線局 (送信局)の送信フローを 示す図である。
データが入力されると (ステップ S1)、入力されたデータは N系統のデータ系列に分 割され (ステップ S 2)、これらの信号にはそれぞれプリアンブル信号が付与され (ステ ップ S3)、これに各系列毎に個別に変調処理を行う(ステップ S4)。変調された信号 には、送信信号変換処理 # 1として、サブキャリア毎に、各サブキャリアに対応した行 列 R
kを用いて信号系列と送信アンテナの対応をシャッフル (入換え)するための変換 処理が実施され (ステップ S5)、変換後の信号が無線部にて無線周波数に変換され 信号が送信される (ステップ S6)。なお、第二の無線局 (受信局)の受信フローは、図 20に示した従来方式と同様であり、異なる点はない。
[0111] ここで、送信信号変換処理 # 1 (ステップ S5)における変換処理においては、例え ば重畳する信号系列の数が 3である場合には、以下に示す 3つの行列 R、 R、 Rを
1 2 3 用いる。
[0112] [数 9]
0 0
0 1 0
0 1
• · · (9)
[0113] [数 10]
Figure imgf000043_0001
(10)
[0114] [数 11]
Figure imgf000043_0002
(11) ひとつの例として、サブキャリア #1に対しては Rを、サブキャリア #2に対しては R
1 2 を、サブキャリア #3に対しては Rを、サブキャリア #4に対しては Rを、サブキャリア
3 1
#5に対しては Rを' ··と順番に入れ替えながら変換を行う。ここでの処理は、例えば
2
変換 Rとは、 ΜΙΜΟにおける信号系列の #1を #2に置き換え、 #2を #3に置き換
2
え、 #3を #1に置き換えるという処理に対応する。つまり、サブキャリア #1とサブキヤ リア #2の様に隣接するサブキャリア間では、各信号系列を送信するアンテナが異な るようにしている。
[0115] この回転行列は、基本的には (式 9)に示された Rに対し、各行を適宜入れ替えた処 理により求められる。 Ν行 Ν列の正方行列に対してこの様な行列を生成する方法とし ては、 N>j≥lなる整数 j対し第 (j+l,j)成分及び第(Ι,Ν)成分のみが 1で且つ他の成 分が 0である Ν行 Ν列の行列を Ρとし、更に N≥k≥2なる整数 kに対し
[0116] [数 12]
Rk = Pk— χ Rx
•(12) により計 N個の行列として求めることができる。
なお、 は式(9)の様に単位行列である必要はなぐ単位行列の行 (または列)を 適当に入れ替えたものであっても構わな!/、。
[0117] ここで、既存の無線 LANシステムとして IEEE802.11aないしは IEEE802.11g準 拠のシステムを考えた場合、 OFDM変調の 48本あるデータ伝送用のサブキャリアに 対し、 3サブキャリア周期でデータビット列の順番を入れ替えるインターリーブ処理を 行っている。
[0118] つまり、サブキャリア # 1→サブキャリア # 4→サブキャリア # 7→ サブキャリア
# 2→サブキャリア # 5→サブキャリア # 8→ サブキャリア # 3→サブキャリア # 6
→サブキャリア # 9→· · ·サブキャリア # 48→サブキャリア # 1 · · ·の順番で、データ のビット列が並ぶことになる。上述例において、(式 9)から (式 11)の回転行列を用いる 場合、サブキャリア # 1とサブキャリア # 4には同一の回転行列が用いられることにな る。この場合には、回転行列によるシャッフルの効果は得られなくなるため、この様な 場合には工夫が必要である。例えば、
サブキャリア # 1:行列 R使用、
サブキャリア # 2:行列 R使用、
2
サブキャリア # 3:行列 R使用、
3
サブキャリア # 4 :行列 R使用、
2
サブキャリア # 5:行列 R使用、
3
サブキャリア # 6:行列 R使用、
サブキャリア # 7:行列 R使用、
3
サブキャリア # 8:行列 R使用
サブキャリア # 9:行列 R使用、
2
サブキャリア # 10 :行列 R使用、
サブキャリア # 11 :行列 R使用、
2
サブキャリア # 12 :行列 R使用、
3
[0119] の様な順番で、 3種類の回転行列を用いながら、 9サブキャリア周期となる様に調整 し、インタリーブ周期である 3サブキャリア周期で回転行列が重ならな 、様に調整を行 これにより、インタリーブを行う場合であっても本発明の効果を得られるようにするこ とがでさる。
[0120] 図 15は、一具体例における第一の無線局(送信局)の送信フローを示す。図 14に 示す送信フローとの差分は、処理ステップ S5と処理ステップ S6の間に送信信号変換 処理 # 2 (ステップ S8)を行っている点である。ここでは、処理ステップ S 5でサブキヤリ ァ毎に各サブキャリアに対応した回転行列を送信信号ベクトル Xにかけた後、サブキ ャリア毎に個別のュ-タリー変換行列をさらにかける処理を行う(ステップ S8)。これに よって、送信信号ベクトルは U XRX xとなる。各サブキャリア毎にこのベクトルの各成 分で与えられる信号を、各無線部及びアンテナより送信することになる (ステップ S6)
[0121] 図 16は、一具体例における第一の無線局の送信フローを示す。図 14に示す送信 フローとの差分は、処理ステップ S5と処理ステップ S6の間に送信信号変換処理 # 3 (ステップ S9)及び送信信号変換処理 # 4 (ステップ S 10)を行って 、る点である。ここ では、処理ステップ S5でサブキャリア毎に個別の回転行列を送信信号ベクトル Xにか けた後、ベクトル R X xに (式 13)で与えられる行列をかける(ステップ S9)。
[0122] [数 13]
( \ 0 0
0 1 0
0 0 1
0 0ノ
•••(13) これにより、例えば 3つの信号系列を送信するために 3行 1列の列ベクトルであった ものを、 4行 1列の列ベクトルに変換する。その後、 4行 4列のサブキャリア毎に個別の ュ-タリー変換行列 Uをさらにかける送信信号変換処理 # 4を行う (ステップ S10)。こ れによって、送信信号べクトルは11 丁 !^ となる。このベクトルの各成分で与えら れる信号を、各無線部及びアンテナより送信することになる (ステップ S6)。
また、図 15におけるステップ S5と S8,および図 16におけるステップ S5と S9と S10 は、ここでは順番に処理を行うとしたが、これらをまとめた変換行列を別途作成してお き、一括して変換処理を行っても構わない。
[0123] なお、以上に示した回転行列はひとつの例であり、その他の回転行列を用いてもよ いし、また、上述したものとは異なる順番でサブキャリアに対応させても構わない。さら に、伝達関数行列 Hは、各サブキャリア毎に異なるため、これに対応したュ-タリー変 換行列も各サブキャリア毎に個別のものとなる。このュ-タリー変換行列は、従来方 式と同様に、図 16に示した処理フローとは別に求めておくことになる。
[0124] 以上の方式を無線通信装置として実現するための構成例を以下に図を示して説明 する。
図 10は、本実施形態における第一の無線局の送信部の構成例を示す図である。 図 10において、 1はデータ分割回路、 2—1— 2— 3はプリアンブル付与回路、 3—1 一 3—3は変調回路、 4は送信信号変換回路 # 1、 5—1— 5—3は無線部、 6—1— 6—3 はアンテナを示す。
[0125] ユーザデータがデータ分割回路 1に入力されると、本図では 3つの信号系列に分 割され、それぞれがプリアンブル付与回路 2— 1一 2— 3に入力される。ここでは、信号 系列毎に異なった所定のプリアンブル信号が付与される。プリアンブル信号が付与さ れて生成された 3つの信号系列は、それぞれが独立に変調回路 3— 1一 3— 3で所定 の変調が施される。なお、ここでは OFDM変調を行うため、各信号系列はサブキヤリ ァ毎に変調が施される。
[0126] これらの信号は、送信信号変換回路 # 1 (4)にてサブキャリア毎に所定の変換が行 われる。変換された信号は、無線部 5—1— 5— 3を経由して、アンテナ 6—1— 6— 3より 送信される。
[0127] ここでは、例えば(式 9)一(式 11)に示す 3つの行列 R
1、 R
2、 Rを用いる。ひとつの 3
例として、サブキャリア # 1に対しては Rを、サブキャリア # 2に対しては Rを、サブキ
1 2 ャリア # 3に対しては Rを、サブキャリア # 4に対しては Rを、サブキャリア # 5に対し ては Rを' · ·と順番に入れ替えながら変換を行う。
2
[0128] ここでの処理は、例えば変換 Rとは、 MIMOにおける信号系列の # 1を # 2に置き
2
換え、 # 2を # 3に置き換え、 # 3を # 1に置き換えるという処理に対応する。つまり、 サブキャリア # 1とサブキャリア # 2の様に隣接するサブキャリア間では、各信号系列 を送信するアンテナが異なるようにして 、る。
[0129] この様にして送信信号変換回路 4にて変換された信号は、無線部 5— 1一 5— 3を介 してアンテナ 6—1— 6— 3からそれぞれ送信される。
[0130] なお、 OFDM変調方式を用いる場合、複数のサブキャリア内にはユーザデータの 含まれな!/、既知信号が収容されたパイロットサブキャリアが含まれる場合があるが、こ こでの番号付けはパイロットサブキャリアを除外しているものとして説明した。
[0131] また、図 11は、本実施形態の無線通信方法における第二の無線局の受信部の構 成例を示す。
図 11において、 21— 1— 21— 3はアンテナ、 22— 1— 22— 3は無線部、 23はチヤネ ル推定回路、 24は受信信号管理回路、 25は伝達関数行列管理回路、 26は行列演 算回路 (受信) # 1、 27は行列演算回路 (受信) # 2、 28は硬判定回路、 29はデータ 合成回路を示す。
[0132] アンテナ 21— 1— 21— 3を介して、無線部 22— 1一 22— 3は個別にデータの受信処 理を行う。それぞれ受信した信号はチャネル推定回路 23に入力される。ここでは、受 信信号に含まれる既知信号部分、例えばプリアンブル信号など力 各パス毎及び各 サブキャリア毎に個別の伝達関数を算出する。この情報は伝達関数行列管理回路 2 5に入力され、伝達関数行列 Hとして管理される。行列演算回路 (受信) # 1 (26)で は、必要に応じて復調のための準備の行列演算を行う。例えば、行列が正方行列で あれば行列 Hの逆行列のみを、それ以外の場合には、行列 Hのエルミート共役の行 列である行列 HHを、更に (HH X H)、この逆行列と HHの積 (HH X H) 1 X HHを順次 計算する。以降の説明は、非正方行列の場合を仮定して進める。
[0133] プリアンブル信号などに後続するデータに対しては、受信信号管理回路 24で一旦 管理し、行列 (HH X H)— i x H11とこの受信信号 Rxとの積を行列演算回路 (受信) # 2 (27)で求める。硬判定回路 28では、求まった信号に対して硬判定処理を実施し、送 信信号を推定する。データ合成回路では、各信号系統に分離された再生信号系列 をそれぞれ合成し、送信側でのユーザデータを再生し、データを出力する。以上の 説明は、 ZF法を例にとって行った力 MMSE法、 MLD法、また、それらの組み合わ せ方法等を含むその他の方式を用いても構わな 、。
更に、本発明の実施形態例においては、 OFDM変調方式に適用する場合を中心 に説明を行っている力 サブキャリア単位での適用が可能であり、当然ながら、シング ルキャリア変調方式においても適用が可能である。
[0134] また、図 12は、本実施形態の無線通信方法における第一の無線局の送信部の第 2の構成例を示す。図 12に示す例においては、データ分割回路 1、プリアンブル付 与回路 2— 1一 2— 3、変調回路 3— 1一 3— 3、送信信号変換回路 # 1 (4)、無線部 5— 1 一 5— 3、アンテナ 6—1— 6— 3は図 10と同様であり、これにカ卩えて、チャネル推定回路 7、伝達関数行列管理回路 8、行列演算回路 # 1 (9)、行列演算回路 # 2 (10)、送 信信号変換回路 # 2 (11)が設けられて 、る。
[0135] なお、ユーザデータを含む信号を送信しょうとする第一の無線局においても、第二 の無線局より信号を受信する際には、アンテナ 6— 1一 6— 3で受信した信号を無線部 5—1— 5— 3を介してチャネル推定回路 7に入力する。ここでは、図 11に示した受信 部と同様に受信信号に含まれる既知信号部分、例えばプリアンブル信号など力 各 パス毎且つサブキャリア毎の伝達関数を算出する。
[0136] この情報は伝達関数行列管理回路 8に入力され、各サブキャリア毎に伝達関数行 列 Hとして管理される。行列演算回路 # 1 (9)においては、行列 Hのエルミート共役 の行列である行列 HH及び HH X Hを順次計算する。この結果をもとに、行列演算回 路 # 2 (10)では、行列 HH X Hを対角化可能なュニタリー行列 Uを各サブキャリア毎 に算出する。
この際、ュ-タリ変換行列により対角化された行列の第 (i,i)成分の固有値は、 iの値 力 S小さいほど固有値の絶対値が大きくなる (又は小さくなる)様に調整する。以上の様 にして得られた各サブキャリア毎のュ-タリ変換行列 Uを用い、図 12の場合に送信 信号変換回路 4から出力される信号に対して、送信信号変換回路 # 2 (11)ではュ- タリ変換処理を施し、これを無線部 5—1— 5— 3及びアンテナ 6—1— 6— 3を介して送 信する。
受信側の処理は図 11の場合と同様の処理を行う。
[0137] また、図 13は、本実施形態の無線通信方法における第一の無線局の送信部の第 3の構成例を示す。図 13に示す構成例においては、データ分割回路 1、プリアンプ ル付与回路 2— 1一 2— 3、変調回路 3— 1一 3— 3、送信信号変換回路 # 1 (4)、無線部 5—1— 5—3、アンテナ 6—1— 6—3、チャネル推定回路 7、伝達関数行列管理回路 8、 行列演算回路 # 1 (9)、及び行列演算回路 # 2 (10)は、図 12に示す構成例と共通 である。これに加えて、送信信号変換回路 # 3 (12)、送信信号変換回路 # 4 (13)が 設けられている。
[0138] また、図 10及び図 12に示す構成例では、 3系であった無線部 5—1— 5— 3及びアン テナ 6—1— 6— 3は 4系統に拡張され、無線部 5— 4及びアンテナ 6— 4が追加されて ヽ る。これに伴い、チャネル推定回路 7から行列演算回路 # 2 (10)内で処理される行 列の次数も一部変更されて 、る。
[0139] 図 13に示す構成例おいては、送信信号変換回路 4から出力される信号に対して、 送信信号変換回路 # 3 (12)では上述の (式 13)で表される変換行列を積算する。こ の演算の意味するところは、単に 3つの成分より形成される送信ベクトルを 4つの成分 の送信ベクトルに変換するという点である。行列力 行 3列であるのは、 MIMOの信 号系列の重畳数が 3であるのに対し信号送信のためのアンテナ数力 であるためで ある。一般に、重畳数が M、信号送信のためのアンテナ数が Nであれば N行 M列の 行列で、且つ上側 M行の行列が M行 M列の単位行列、下側(N - M)列が全てゼロ の行列となって ヽる。これにより送信アンテナの本数分の成分 (即ちュ-タリ変換行 列と同じ次数)を持った送信信号ベクトルが得られ、送信信号変換回路 # 4 (13)で はこの送信信号ベクトルにュ-タリ変換処理を施し、これを無線部 5—1— 5— 4及びァ ンテナ 6—1— 6— 4を介して送信する。なお、受信側の処理は図 11の場合と同様の処 理を行う。
さらに、本図に示す構成例においても、一連の処理は各サブキャリア毎に個別に行 う。また、図 12における送信信号変換回路 # 1 (4)と送信信号変換回路 # 2 (11)、 および図 13における送信信号変換回路 # 1 (4)と送信信号変換回路 # 3 (12)と送 信信号変換回路 # 4 (13)は、それぞれ別の機能ブロックとしたが、これらをまとめた 変換行列を別途作成しておき、一つの機能ブロックにまとめて一括の変換処理を行 つても構わない。
[0140] 以上詳細に説明した様に、本発明によれば、 MIMO技術を用いた高能率な無線 通信を行う際に、重畳する複数の信号系列毎の受信特性を均一化し、伝送路上に おける符号誤りをランダム化することが可能となる。特に、 OFDM変調方式を用いた E— SDM方式と組み合わせた場合には、 MIMO技術の持つ性質として、重畳する 信号系列間に受信特性の大きなばらつきが発生するという傾向があつたが、本発明 により信号系列毎の受信特性を平均化し、エラーをランダム化することにより、その結 果、誤り訂正の利得を向上させ、全体としてのパケット誤り率特性を改善する効果を 得ることができる。
[0141] また、図 10に示す送信部内の各回路、図 11に示す受信部内の各回路、図 12に示 す送信部内の各回路、図 13に示す送信部内の各回路は、専用のハードウェアによ り実現されるものであってもよぐメモリおよび CPU (中央処理装置)により構成し、こ れらの各回路の機能を実現するためのプログラム(図示せず)をメモリにロードして実 行することによりその機能を実現させるものであってもよい。
[0142] また、図 10に示す送信部内の各回路、図 11に示す受信部内の各回路、図 12に示 す送信部内の各回路、図 13に示す送信部内の各回路の機能を実現するためのプロ グラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録され たプログラムをコンピュータシステムに読み込ませ、実行することにより、図 10に示す 送信部内の各回路、図 11に示す受信部内の各回路、図 12に示す送信部内の各回 路、図 13に示す送信部内の各回路に必要な処理を行ってもよい。なお、ここでいう「 コンピュータシステム」とは、 OSや周辺機器等のハードウェアを含むものとする。
[0143] また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気 ディスク、 ROM, DVD-ROM, CD— ROM等の可搬媒体、コンピュータシステムに 内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可 能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介し てプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保 持するもの (伝送媒体ないしは伝送波)、その場合のサーバやクライアントとなるコン ピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持して 、るも のも含むものとする。また上記プログラムは、前述した機能の一部を実現するための ものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されて V、るプログラムとの組み合わせで実現できるもの、 、わゆる差分ファイル (差分プログ ラム)であっても良い。
[0144] また、以上説明した実施の形態例は全て本発明を例示的に示すものであって限定 的に示すものではなぐ本発明は他の種々の変形態様及び変更態様で実施すること が出来る。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ 規定されるものである。
産業上の利用可能性
[0145] 本発明によれば、 MIMO技術を用いた高能率な無線通信を行う際に、伝達関数行 列を精度良く推定できた場合には E— SDM法と等価な良好な特性を実現しながらも 、伝達関数行列を精度良く推定できな ヽ場合であっても安定した特性を示すことが 可能であると 、う効果を得ることができる。
また、 OFDM変調方式に MIMO技術を用いる際に、サブキャリア毎に各信号系列 を送信する際に用いるアンテナを入れ替えることにより、信号系列毎の誤りを平均化 およびランダム化し、誤り訂正における符号化利得を向上させることができる。即ち、 MIMO技術を用いた高能率な無線通信を行う際に、重畳する複数の信号系列毎の 受信特性を均一化し、伝送路上における符号誤りをランダム化することが可能となる 効果を有するので、本発明は、 2.4GHz帯または 5GHz帯等を用いた高速無線ァク セスシステム(又は無線 LANシステム)の伝送速度の高速ィ匕を行うためにお ヽて利 用される。

Claims

請求の範囲
[1] 第一の無線局と第二の無線局とにより構成された無線通信システムにおいて使用 される無線通信装置であって、
前記第一の無線局は N (N は 1より大きい整数)本以上の第一のアンテナ群を備
tx tx
え、
送信すべきユーザデータを N系統 (N ≥N> 1、 Nは整数)に分割する分割手段と、
tx
前記 N系統に分割されたユーザデータに N種類の既知のパターンの信号を付与し て得られる N系統の信号系列により構成される無線データパケットを構築する手段と、
N系統の前記既知のパターンを含む信号系列にそれぞれ個別の係数を乗算する 処理を、係数の異なる組み合わせで複数回行い、各係数の組み合わせ毎に係数が 乗算された前記 N系統の信号系列を合成して該 N系統の信号系列力 N 系統の信
tx
号系列に変換する変換手段と、
前記変換手段により変換された信号を前記第一のアンテナ群から送信する送信手 段と
を有することを特徴とする無線通信装置。
[2] 前記第二の無線局は M (Mは 1より大きい整数)本の第二のアンテナ群を備え、 前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 hまたはその近似値を取得する取得手段と、
J,i
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート
J,i
共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出する手段と、 前記行列 HH X Hを対角化するュ-タリ行列 Uを算出する手段と、を更に有し、 前記変換手段は、
N系統の前記信号系列の第 k(kは 1以上の整数)シンボルの情報をそれぞれ {x
1
(k),x (10, · · · , x (k)}とした場合、第 kシンボルの各情報を要素とする列ベクトル x(k)と
2 N
前記行列 Uの積により与えられる列ベクトル、即ち U X x(k)を算出する手段を含み、 前記送信手段は、
前記列ベクトル U X x(k)の第 i行成分 [U X x(k)]を第一のアンテナ群の中の第 iアンテ ナより送信する手段を含むことを特徴とする請求項 1に記載の無線通信装置。
[3] 前記無線データパケットの送信に先立ち、制御情報を収容した第一の無線制御パ ケットを送信する手段と、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを N本以 上のアンテナを用いて受信する手段と、を更に有し、
前記取得手段は、前記第二の無線制御パケットに付与された複数系統の既知のパ ターンの信号を用いて、各アンテナでの受信信号から第二の無線局が送信に用いた 第 j (l≤j≤M、; jは整数)アンテナと第一の無線局が受信に用いた第 i (l≤ N、 iは 整数)アンテナ間の伝達関数 hを算出する手段を含む
ことを特徴とする請求項 2に記載の無線通信装置。
[4] 前記無線データパケットの送信に先立ち、第一の無線制御パケットとして N系統の 既知のパターンを含む信号系列を N本の前記第一のアンテナ群を用いて送信する 手段と、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを受信 する手段と、
前記第二の無線制御パケットに収容された前記第一のアンテナ群の内の第 iアンテ ナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達関数 hに関する情報を ,
取得する手段と、
を含むことを特徴とする請求項 2に記載の無線通信装置。
[5] 前記無線局間の通信にお 、て K本のサブキャリア(Kは 1より大き 、整数)を用いた 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)変調方 式を用いたことを特徴とする請求項 2に記載の無線通信装置。
[6] 前記第二の無線局より、信号系列が複数重畳されていない即ち 1系統のみの信号 系列で構成される制御情報を収容した無線制御パケットおよび/またはユーザデータ を収容した無線データパケットを受信した際に、各受信アンテナで受信された既知の パターンの信号の受信状態から第 ks (l≤ks≤K、 ksは整数)サブキャリアの第二の 無線局が送信に用いた第 j (l≤j≤M、; jは整数)アンテナと第一の無線局が受信に用 いた第 i (l≤ N、 iは整数)アンテナ間の伝達関数 h [ks]を取得する伝達関数取得手 段
を含むことを特徴とする請求項 5に記載の無線通信装置。
[7] 前記第二の無線局の第 jアンテナで送信されな力つた第 ks' (l≤ks '≤K、 ks 'は整 数)サブキャリアにおける、前記第二の無線局の第 jアンテナと前記第一の無線局の 第 iアンテナ間の伝達関数 h [ks']を、前記第二の無線局の第 jアンテナで送信された ks ,
≠ks,及び ks≠ks, (l≤ks≤K、 l≤ks≤K、 ks、 ksは整数)なる第 ksサブキャリア 及び第 ksサブキャリアに対する前記伝達関数 h [ksl]及び h [ks2]の内挿または外揷値 により h [ks']を取得する伝達関数取得手段
を含むことを特徴とする請求項 5に記載の無線通信装置。
[8] 前記第一の無線局側に前記伝達関数取得手段を有することを、前記第二の無線 局側に通知する手段を有することを特徴とする請求項 6に記載の無線通信装置。
[9] 前記第一の無線局側に前記伝達関数取得手段を有することを、前記第二の無線 局側に通知する手段を有することを特徴とする請求項 7に記載の無線通信装置。
[10] 請求項 1記載の無線通信装置からの無線信号を前記第二の無線局において受信 するための無線通信装置であって、
前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、 前記第二のアンテナ群を用いて個別に無線信号を受信する手段と、
受信信号に付与された既知のパターンの信号を参照信号として、受信した各信号 系列の信号を分離して復調する復調手段と、
復調した全ての信号系列を合成し、ユーザデータとして出力する出力手段と を備えることを特徴とする無線通信装置。
[11] 前記復調手段は、
受信信号に付与された既知のパターンの信号を参照信号として、前記第一のアン テナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達 関数 hを取得する手段と、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し所定の演算を行い、 Ν ,
系統の送信信号の信号点に対応するベクトルを求める演算手段と、を含み、 前記出力手段は、 前記演算で得られたベクトルの各要素で与えられる N系統の送信信号を、受信した 全てのシンボルに対して合成し、前記ユーザデータとして出力する手段を含む ことを特徴とする請求項 10に記載の無線通信装置。
[12] 前記演算手段は、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート
J,i
共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出する手段と、 前記行列 HH X Hの逆行列即ち(HH X H) 1を算出する手段と、
さらにこれらを用いて行列 (HH X H) 1 X HHを算出する手段と、
前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 m 1 2
を示す)で表される受信信号べ外ル Rx(k)に対し、 (HH X H) 1 X HH X Rx(k)を演算す る手段と、
を含むことを特徴とする請求項 11記載の無線通信装置。
[13] 前記演算手段は、
前記伝達関数 hを第 (j,i)成分とする N行 N列の行列 Hに対し、該行列 Ηの逆行列 Η—1
J,i
を算出する手段と、
前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 m 1 2
を示す)で表される受信信号べ外ル Rx(k)に対し、 H— 1 X Rx(k)を演算する手段と、 を含むことを特徴とする請求項 11記載の無線通信装置。
[14] 前記演算手段は、
前記第一のアンテナ群の第 nアンテナより送信された第 kシンボルの送信信号を t (k)とし、さらに前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンポ ルの受信信号を r (k)と表記した場合、 (t (k),t (10, · · · , t (k))T(Tは行べ外ルカも列
m 1 2 N
ベクトルへの変換を示す)で表される送信信号ベクトル Tx(k)、 (r (k),r (k), - - - ,r (k))T
1 2
で表される受信信号ベクトル Rx(k)、及び行列演算子 Fに対し、ベクトル F X Rx(k)— Tx(k)及び該ベクトルのエルミート共役のベクトル(F X Rx(k)-Tx(k)) Hのベクトル積 (F X Rx(k)-Tx(k)) H X (F X Rx(k)-Tx(k))の複数シンボルに渡る期待値を最小化するこ とが期待されるように行列演算子 Fを選択する手段と、
各シンボルに対して F X Rx(k)を演算する手段と、
を含むことを特徴とする請求項 11記載の無線通信装置。
[15] 前記行列演算子 Fを MMSE (Minimum Mean Square Error)方式で求めることを特徴 とする請求項 14に記載の無線通信装置。
[16] 前記第二の無線局側に、
前記第一の無線局からの第一の無線制御パケットを受信した際に、
該第一の無線制御パケットに対する応答として、複数系統の既知のパターンを含む 第二の無線制御パケットを送信する手段を有することを特徴とする請求項 10に記載 の無線通信装置。
[17] 前記第二の無線局側に、
前記第一の無線局からの N系統の既知のパターンを含む第一の無線制御パケット を受信した際に、
前記 N系統の既知のパターンの信号を用いて、前記伝達関数 hを算出する手段と
, 該第一の無線制御パケットに対する応答として、前記伝達関数に関する情報を収 容した第二の無線制御パケットを送信する手段と、
を有することを特徴とする請求項 11に記載の無線通信装置。
[18] 前記無線局間の通信において K本のサブキャリア(Kは 1より大きい整数)を用いた 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)変調方 式を用いたことを特徴とする請求項 10に記載の無線通信装置。
[19] 前記第二の無線局側に、
信号系列を複数重畳せずに前記第一の無線局に対して前記無線制御パケットまた は無線データパケットを送信する際に、第 ksサブキャリアの信号を、サブキャリア番号 ksに対応した第二のアンテナ群の中の所定の一つのアンテナを用いて送信する送 信手段
を有することを特徴とする請求項 18に記載の無線通信装置。
[20] 前記第二の無線局側に前記送信手段を有することを、前記第一の無線局側に通 知する手段を有することを特徴とする請求項 19に記載の無線通信装置。
[21] 請求項 1に記載の無線通信装置を送信側に、請求項 10に記載の無線通信装置を 受信側に有する無線通信システム。
[22] 第一の無線局と第二の無線局との間で通信を行う無線通信方法において、
前記第一の無線局は N (N は 1より大きい整数)本以上の第一のアンテナ群を備
tx tx
え、
送信すべきユーザデータを N系統に分割する分割ステップと、
前記 N系統に分割されたユーザデータに N種類の既知のパターンの信号を付与し て得られる N系統の信号系列により構成される無線データパケットを構築するステツ プと、
N系統の前記既知のパターンを含む信号系列にそれぞれ個別の係数を乗算する 処理を、係数の異なる組み合わせで複数回行い、各係数の組み合わせ毎に係数が 乗算された前記 N系統の信号系列を合成して該 N系統の信号系列力 N 系統の信
tx
号系列に変換する変換ステップと、
前記変換ステップにおいて変換された信号を前記第一のアンテナ群力 送信する 送信ステップと
を有することを特徴とする無線通信方法。
[23] 前記第二の無線局は M (Mは 1より大きい整数)本の第二のアンテナ群を備え、 前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 hまたはその近似値を取得する取得ステップと、
J,i
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート
J,i
共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出するステップと、 前記行列 HH X Hを対角化するュ-タリ行列 Uを算出するステップと、を更に有し、 前記変換ステップは、
N系統の前記信号系列の第 k(kは 1以上の整数)シンボルの情報をそれぞれ {x
1
(k),x (10, · · · , x (k)}とした場合、第 kシンボルの各情報を要素とする列ベクトル x(k)と 前記行列 Uの積により与えられる列ベクトル、即ち U X x(k)を算出するステップを含み
前記送信ステップは、
前記列ベクトル U X x(k)の第 i行成分 [U X x(k)]を第一のアンテナ群の中の第 iアンテ ナより送信するステップを含むことを特徴とする請求項 22に記載の無線通信方法。
[24] 前記無線データパケットの送信に先立ち、制御情報を収容した第一の無線制御パ ケットを送信するステップと、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを N本以 上のアンテナを用いて受信するステップと、を更に有し、
前記取得ステップは、前記第二の無線制御パケットに付与された複数系統の既知 のパターンの信号を用いて、各アンテナでの受信信号から第二の無線局が送信に 用いた第 j (l≤j≤M、; jは整数)アンテナと第一の無線局が受信に用いた第 i (l≤i≤ N、 iは整数)アンテナ間の伝達関数 hを算出するステップを含む
ことを特徴とする請求項 23に記載の無線通信方法。
[25] 前記無線データパケットの送信に先立ち、第一の無線制御パケットとして N系統の 既知のパターンを含む信号系列を N本の前記第一のアンテナ群を用いて送信するス テツプと、
前記第一の無線制御パケットに対する応答である第二の無線制御パケットを受信 するステップと、
前記第二の無線制御パケットに収容された前記第一のアンテナ群の内の第 iアンテ ナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達関数 h に関する情報を ,
取得するステップと、
を含むことを特徴とする請求項 23に記載の無線通信方法。
[26] 前記無線局間の通信にお 、て K本のサブキャリア(Kは 1より大き 、整数)を用いた 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)変調方 式を用いたことを特徴とする請求項 23に記載の無線通信方法。
[27] 前記第二の無線局より、信号系列が複数重畳されていない即ち 1系統のみの信号 系列で構成される制御情報を収容した無線制御パケットおよび/またはユーザデータ を収容した無線データパケットを受信した際に、各受信アンテナで受信された既知の パターンの信号の受信状態から第 ks (l≤ks≤K、 ksは整数)サブキャリアの第二の 無線局が送信に用いた第 j (l≤j≤M、; jは整数)アンテナと第一の無線局が受信に用 いた第 i (l≤ N、 iは整数)アンテナ間の伝達関数 h [ks]を取得する伝達関数取得ス テツプ
を含むことを特徴とする請求項 26に記載の無線通信方法。
[28] 前記第二の無線局の第 jアンテナで送信されな力つた第 ks' (l≤ks '≤K、 ks 'は整 数)サブキャリアにおける、前記第二の無線局の第 jアンテナと前記第一の無線局の 第 iアンテナ間の伝達関数 h [ks']を、前記第二の無線局の第 jアンテナで送信された ks
J,i
≠ks,及び ks≠ks, (l≤ks≤K、 l≤ks≤K、 ks、 ksは整数)なる第 ksサブキャリア
1 2 1 2 1 2 1
及び第 ksサブキャリアに対する前記伝達関数 h [ksl]及び h [ks2]の内挿または外揷値
2 J,i j,i
により h LKS」を取得する伝達関数取得ステップ
J,i
を含むことを特徴とする請求項 26に記載の無線通信方法。
[29] 前記第一の無線局側で前記伝達関数取得ステップを実行することを、前記第二の 無線局側に通知するステップを有することを特徴とする請求項 27に記載の無線通信 方法。
[30] 前記第一の無線局側で前記伝達関数取得ステップを実行することを、前記第二の 無線局側に通知するステップを有することを特徴とする請求項 28に記載の無線通信 方法。
[31] 請求項 22記載の無線通信方法で送信された無線信号を前記第二の無線局にお V、て受信するための無線通信方法であって、
前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、 前記第二のアンテナ群を用いて個別に無線信号を受信するステップと、 受信信号に付与された既知のパターンの信号を参照信号として、受信した各信号 系列の信号を分離して復調する復調ステップと、
復調した全ての信号系列を合成し、ユーザデータとして出力する出力ステップと を備えることを特徴とする無線通信方法。
[32] 前記復調ステップは、 受信信号に付与された既知のパターンの信号を参照信号として、前記第一のアン テナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアンテナとの間の伝達 関数 hを取得するステップと、
J,i
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し所定の演算を行い、 Ν
J,i
系統の送信信号の信号点に対応するベクトルを求める演算ステップと、を含み、 前記出力ステップは、
前記演算で得られたベクトルの各要素で与えられる N系統の送信信号を、受信した 全てのシンボルに対して合成し、前記ユーザデータとして出力するステップを含む ことを特徴とする請求項 31に記載の無線通信方法。
[33] 前記演算ステップは、
前記伝達関数 hを第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Ηのエルミート
J,i
共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N行 N列の行列 HH X Hを算出するステップと、 前記行列 HH X Hの逆行列即ち(HH X H) 1を算出するステップと、
さらにこれらを用いて行列 (HH X H) 1 X HHを算出するステップと、
前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 m 1 2
を示す)で表される受信信号べ外ル Rx(k)に対し、 (HH X H) 1 X HH X Rx(k)を演算す るステップと、
を含むことを特徴とする請求項 32記載の無線通信方法。
[34] 前記演算ステップは、
前記伝達関数 hを第 (j,i)成分とする N行 N列の行列 Hに対し、該行列 Ηの逆行列 Η—1
J,i
を算出するステップと、
前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンボルの受信信 号を r (k)とした場合、 (r (k),r (k), - - - ,r (k))T(Tは行ベクトル力 列ベクトルへの変換 m 1 2
を示す)で表される受信信号ベクトル Rx(k)に対し、 H 1 X Rx(k)を演算するステップと、 を含むことを特徴とする請求項 32記載の無線通信方法。
[35] 前記演算ステップは、 前記第一のアンテナ群の第 nアンテナより送信された第 kシンボルの送信信号を tn (k)とし、さらに前記第二のアンテナ群の第 mアンテナで実際に受信された第 kシンポ ルの受信信号を r (k)と表記した場合、 (t (k),t (10, · · · , t (k))T(Tは行べ外ルカも列
m 1 2 N
ベクトルへの変換を示す)で表される送信信号ベクトル Tx(k)、 (r (k),r (k), - - - ,r (k))T
1 2
で表される受信信号ベクトル Rx(k)、及び行列演算子 Fに対し、ベクトル F X Rx(k)— Tx(k)及び該ベクトルのエルミート共役のベクトル(F X Rx(k)-Tx(k)) Hのベクトル積 (F X Rx(k)-Tx(k)) H X (F X Rx(k)-Tx(k))の複数シンボルに渡る期待値を最小化するこ とが期待されるように行列演算子 Fを選択するステップと、
各シンボルに対して F X Rx(k)を演算するステップと、
を含むことを特徴とする請求項 32記載の無線通信方法。
[36] 前記行列演算子 Fを MMSE (Minimum Mean Square Error)方式で求めることを特徴 とする請求項 35に記載の無線通信方法。
[37] 前記第二の無線局側で、
前記第一の無線局からの第一の無線制御パケットを受信した際に、
該第一の無線制御パケットに対する応答として、複数系統の既知のパターンを含む 第二の無線制御パケットを送信するステップを実行することを特徴とする請求項 31に 記載の無線通信方法。
[38] 前記第二の無線局側で、
前記第一の無線局からの N系統の既知のパターンを含む第一の無線制御パケット を受信した際に、
前記 N系統の既知のパターンの信号を用いて、前記伝達関数 hを算出するステツ
J,i
プと、
該第一の無線制御パケットに対する応答として、前記伝達関数に関する情報を収 容した第二の無線制御パケットを送信するステップと、
を実行することを特徴とする請求項 32に記載の無線通信方法。
[39] 前記無線局間の通信にお 、て K本のサブキャリア(Kは 1より大き 、整数)を用いた 直交周波数分割多重(OFDM : Orthogonal Frequency Division Multiplexing)変調方 式を用いたことを特徴とする請求項 31に記載の無線通信方法。
[40] 前記第二の無線局側で、
信号系列を複数重畳せずに前記第一の無線局に対して前記無線制御パケットまた は無線データパケットを送信する際に、第 ksサブキャリアの信号を、サブキャリア番号 ksに対応した第二のアンテナ群の中の所定の一つのアンテナを用いて送信する送 信ステップ
を実行することを特徴とする請求項 39に記載の無線通信方法。
[41] 前記第二の無線局側で前記送信ステップを実行することを、前記第一の無線局側 に通知するステップを有することを特徴とする請求項 40に記載の無線通信方法。
[42] 複数のサブキャリアを用いた直交周波数分割多重 (OFDM)変調方式を用いて無 線通信を行う無線通信システムで使用される無線通信装置であり、
前記分割手段は、各サブキャリア毎に個別に、送信すべきユーザデータを N系統 に分割し、
前記変換手段は、あるサブキャリアにおける N系統の前記信号系列の第 n (nは 1 以上の整数)シンボルの情報がそれぞれ {x (n ),x (n ), · · · ,χ (n )}であり且つこれら
1 s 2 s N s
を各成分として持つ N行の列ベクトル力x(n )であった場合、 N行 N列の単位行列また s
は該単位行列の列を適宜入れ替えて得られる N (N > 1 :Nは整数)種類の回転行
R R R
列群を {R } (N ≥k≥l:kは整数)と表記した際に、各サブキャリアに対応した所定の k R
kに対する Rを用い、前記ベクトル x(n )を R X x(n )に変換する手段を少なくとも含み k s k s 前記送信手段は、各サブキャリアにおける該変換された列ベクトルの第减分を前 記第 1のアンテナ群の第 iアンテナより送信する
ものであることを特徴とする請求項 1に記載の無線通信装置。
[43] 前記変換手段は、各サブキャリアにおける前記第 1のアンテナ群の第アンテナより 送信される第 nシンボルの信号を [R X x(n )]となる様に変換することを特徴とする s k s
請求項 42に記載の無線通信装置。
[44] 前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 h またはその近似値を取得する手段と、
J,l
前記伝達関数 h を第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Hのェルミ
J,i
ート共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N行 N列の正方行列 HH X Hを算出する手段と、 前記行列 HH X Hを対角化する N行 N列のュ-タリー行列 Uを算出する手段と、 を更に備え、
前記変換手段は、各サブキャリアにおける前記第 1のアンテナ群の第 iアンテナより 送信される第 nシンボルの信号を [U XR X x(n )]となる様に変換する
ことを特徴とする請求項 42に記載の無線通信装置。
[45] 前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、
N >Nであり、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 h またはその近似値を取得する手段と、
J,i
前記伝達関数 h を第 (j,i)成分とする M行 N 列の行列 Hに対し、該行列 Hのェルミ ート共役な行列 HHを算出する手段と、
前記二つの行列の行列積即ち N 行 N 列の正方行列 HH X Hを算出する手段と、 前記行列 HH X Hを対角化する N 行 N 列のュ-タリー行列 Uを算出する手段と、 を更に備え、
前記変換手段は、 N 行 N列の行列で且つ N≥j≥lなる整数 jに対し第 (j,j)成分の みが 1で他の成分が 0である行列を Tと表記した際に、各サブキャリアにおける前記第 1のアンテナ群の第 iアンテナ (N ≥i≥l :iは整数)より送信される第 nシンボルの信 号を [U X T X R X x(n )]となる様に変換する
ことを特徴とする請求項 42に記載の無線通信装置。
[46] 前記回転行列群 {R }は、 N行 N列の単位行列の列を適宜入れ替えて得られる行 列の中から選び出したひとつの行列を Rとし、 N>j≥lなる整数 jに対し第 (j+l,j)成 分及び第( 1 ,Ν)成分のみが 1で且つ他の成分力 ^である Ν行 Ν列の行列を Ρとし、更 に N≥k≥2なる整数 kに対し R =Pト1 XRとして与えられる合計 N個の行列により構 成され、
ユーザ情報が収容されるサブキャリアに対して用いる前記回転行列 Rを、前記回
k
転行列群 {R }の各行列を適当に並べ替えたものを Nサブキャリア周期で順番に対
k
応させること
を特徴とする請求項 42から 45のいずれかに記載の無線通信装置。
[47] 前記回転行列群 {R }は、 N行 N列の単位行列の列を適宜入れ替えて得られる行
k
列の中から選び出したひとつの行列を Rとし、 N>j≥lなる整数 jに対し第 (j+l,j)成 分及び第( 1 ,Ν)成分のみが 1で且つ他の成分力 ^である Ν行 Ν列の行列を Ρとし、更 に N≥k≥2なる整数 kに対し R =Pト1 XRとして与えられる合計 N個の行列により構
k 1
成され、
OFDM変調された信号をサブキャリア上にマッピングする際に、前記 N系統に分割 された各信号系列のビット列が Nサブキャリア周期 (Nは 1より大きな整数)で隣接す
U il
る様にインタリーブ処理を施す場合には、ユーザ情報が収容されるサブキャリアに対 して用いる前記回転行列 R
kを、前記回転行列群 {R }の
k 各行列をそれぞれ N
U個ずつ 用意したものを適当に並べ替えて N X Nサブキャリア周期で順番に対応させること を特徴とする請求項 42から 45のいずれかに記載の無線通信装置。
[48] 請求項 22に記載の無線通信方法であって、
複数のサブキャリアを用いた直交周波数分割多重 (OFDM)変調方式を用いて無 線通信を行う無線通信システムで使用される無線通信方法であり、
前記分割ステップでは、各サブキャリア毎に個別に、送信すべきユーザデータを N 系統に分割し、
前記変換ステップでは、あるサブキャリアにおける N系統の前記信号系列の第 n (n
s は 1以上の整数)シンボルの情報がそれぞれ {χ (η ),χ (η ), · · · ,χ (η )}であり且つこ s 1 s 2 s N s
れらを各成分として持つ N行の列ベクトル力x(n )であった場合、 N行 N列の単位行
s
列または該単位行列の列を適宜入れ替えて得られる N (N > 1 :Nは整数)種類の
R R R
回転行列群を {R } (N ≥k≥l:kは整数)と表記した際に、各サブキャリアに対応した
k R
所定の kに対する Rを用い、前記ベクトル x(n )を R X x(n )〖こ変換するステップを少
k s k s
なくとも含み、 前記送信手段は、各サブキャリアにおける該変換された列ベクトルの第减分を前 記第 1のアンテナ群の第 iアンテナより送信する、
ことを特徴とする無線通信方法。
[49] 前記変換ステップは、各サブキャリアにおける前記第 1のアンテナ群の第 iアンテナ より送信される第 nシンボルの信号を [R X x(n )]となる様に変換することを特徴とす る 48に記載の無線通信方法。
[50] 前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 h またはその近似値を取得するステップと、
前記伝達関数 h を第 (j,i)成分とする M行 N列の行列 Hに対し、該行列 Hのェルミ
ート共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N行 N列の正方行列 HH X Hを算出するステップと、 前記行列 HH X Hを対角化する N行 N列のュ-タリー行列 Uを算出するステップと、 を更に備え、
前記変換ステップは、各サブキャリアにおける前記第 1のアンテナ群の第 iアンテナ より送信される第 nシンボルの信号を [U XR X x(n )]となる様に変換する
ことを特徴とする請求項 48に記載の無線通信方法。
[51] 前記第二の無線局は M (Mは 1以上の整数)本の第二のアンテナ群を備え、
N >Nであり、
各サブキャリア毎に個別に、
前記第一のアンテナ群の内の第 iアンテナと前記第二のアンテナ群の内の第 jアン テナとの間の伝達関数 h またはその近似値を取得するステップと、
前記伝達関数 h を第 (j,i)成分とする M行 N 列の行列 Hに対し、該行列 Hのェルミ ート共役な行列 HHを算出するステップと、
前記二つの行列の行列積即ち N 行 N 列の正方行列 HH X Hを算出するステップ と、
前記行列 HH X Hを対角化する N 行 N 列のュ-タリー行列 Uを算出するステップ と、
を更に備え、
前記変換ステップは、 N 行 N列の行列で且つ N≥j≥lなる整数 jに対し第 (j,j)成分 tx
のみが 1で他の成分力^である行列を Tと表記した際に、各サブキャリアにおける前記 第 1のアンテナ群の第 iアンテナ (N ≥i≥l :iは整数)より送信される第 nシンボルの tx S 信号を [U X T X R X x(n )]となる様に変換する
k s i
ことを特徴とする請求項 48に記載の無線通信方法。
[52] 前記回転行列群 {R }は、 N行 N列の単位行列の列を適宜入れ替えて得られる行
k
列の中から選び出したひとつの行列を Rとし、 N>j≥lなる整数 jに対し第 (j+l,j)成 分及び第( 1 ,Ν)成分のみが 1で且つ他の成分力 ^である Ν行 Ν列の行列を Ρとし、更 に N≥k≥2なる整数 kに対し R =Pト1 XRとして与えられる合計 N個の行列により構
k 1
成され、
ユーザ情報が収容されるサブキャリアに対して用いる前記回転行列 Rを、前記回
k
転行列群 {R }の各行列を適当に並べ替えたものを Nサブキャリア周期で順番に対
k
応させること
を特徴とする請求項 48から 51のいずれかに記載の無線通信方法。
[53] 前記回転行列群 {R }は、 N行 N列の単位行列の列を適宜入れ替えて得られる行
k
列の中から選び出したひとつの行列を Rとし、 N>j≥lなる整数 jに対し第 (j+l,j)成 分及び第( 1 ,Ν)成分のみが 1で且つ他の成分力 ^である Ν行 Ν列の行列を Ρとし、更 に N≥k≥2なる整数 kに対し R =Pト1 XRとして与えられる合計 N個の行列により構
k 1
成され、
OFDM変調された信号をサブキャリア上にマッピングする際に、前記 N系統に分割 された各信号系列のビット列が Nサブキャリア周期 (Nは 1より大きな整数)で隣接す
U il
る様にインタリーブ処理を施す場合には、ユーザ情報が収容されるサブキャリアに対 して用いる前記回転行列 Rを、前記回転行列群 {R }の各行列をそれぞれ N個ずつ
k k U 用意したものを適当に並べ替えて N X Nサブキャリア周期で順番に対応させること を特徴とする請求項 48から 51のいずれかに記載の無線通信方法。
PCT/JP2004/018033 2003-12-05 2004-12-03 無線通信装置、無線通信方法、及び無線通信システム WO2005055484A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515986A JP4188372B2 (ja) 2003-12-05 2004-12-03 無線通信装置、無線通信方法、及び無線通信システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-408240 2003-12-05
JP2003408240 2003-12-05
JP2004009313 2004-01-16
JP2004-009313 2004-01-16

Publications (1)

Publication Number Publication Date
WO2005055484A1 true WO2005055484A1 (ja) 2005-06-16

Family

ID=34656239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018033 WO2005055484A1 (ja) 2003-12-05 2004-12-03 無線通信装置、無線通信方法、及び無線通信システム

Country Status (2)

Country Link
JP (1) JP4188372B2 (ja)
WO (1) WO2005055484A1 (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020096A (ja) * 2005-07-11 2007-01-25 Toshiba Corp 放送用中継装置
JP2008301359A (ja) * 2007-06-01 2008-12-11 Sumitomo Electric Ind Ltd 通信装置及びアダプティブアンテナ信号処理方法
JP2009004886A (ja) * 2007-06-19 2009-01-08 Samsung Electronics Co Ltd 通信装置、及び送信レート設定方法
JP2009506656A (ja) * 2005-08-22 2009-02-12 クゥアルコム・インコーポレイテッド 無線通信システムにおけるアンテナダイバーシティを与える方法および装置
JP2009049604A (ja) * 2007-08-16 2009-03-05 Samsung Electronics Co Ltd 送信装置、及びビームフォーミング行列生成方法
JP2010273388A (ja) * 2010-08-25 2010-12-02 Kddi Corp 伝送路推定装置および伝送路推定プログラム
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8681764B2 (en) 2005-11-18 2014-03-25 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261727A (ja) * 2001-03-01 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号伝送装置
JP2003060605A (ja) * 2001-08-15 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号受信回路及びofdm信号送受信回路
JP2003204314A (ja) * 2002-01-08 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> 搬送波周波数誤差補正回路及び無線信号送受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261727A (ja) * 2001-03-01 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号伝送装置
JP2003060605A (ja) * 2001-08-15 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号受信回路及びofdm信号送受信回路
JP2003204314A (ja) * 2002-01-08 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> 搬送波周波数誤差補正回路及び無線信号送受信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI J. ET AL: "Multi-Stage Low Complexity Maximum Likelihood Detection for OFDM/SDMA Wireless LANs", IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS 2001, vol. 4, 14 June 2001 (2001-06-14), pages 1152 - 1156, XP010553509 *
MIYASHITA K. ET AL: "High Data-rate Transmission with Eigenbeam-space Division Multiplexing (E-SDM) in a MIMO Channel", VEHCULAR TECHNOLOGY CONFERENCE 2002 FALL, vol. 3, 28 September 2002 (2002-09-28), pages 1302 - 1306, XP010608639 *
PAMMER V. ET AL: "A Low Complexity Suboptimal MIMO Receiver: The Combined ZF-MLD Algorithm", RERSONAL: INDOOR AND MOBILE RADIO COMMUNICATION, vol. 3, 10 September 2003 (2003-09-10), pages 2271 - 2275, XP010678035 *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8547951B2 (en) 2005-03-16 2013-10-01 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
JP2007020096A (ja) * 2005-07-11 2007-01-25 Toshiba Corp 放送用中継装置
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
JP2014003625A (ja) * 2005-08-22 2014-01-09 Qualcomm Incorporated 無線通信システムにおけるアンテナダイバーシティを与える方法および装置
JP2016129337A (ja) * 2005-08-22 2016-07-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無線通信システムにおけるアンテナダイバーシティを与える方法および装置
JP2009506656A (ja) * 2005-08-22 2009-02-12 クゥアルコム・インコーポレイテッド 無線通信システムにおけるアンテナダイバーシティを与える方法および装置
JP2012100288A (ja) * 2005-08-22 2012-05-24 Qualcomm Inc 無線通信システムにおけるアンテナダイバーシティを与える方法および装置
JP2015053704A (ja) * 2005-08-22 2015-03-19 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無線通信システムにおけるアンテナダイバーシティを与える方法および装置
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
JP2015222947A (ja) * 2005-08-22 2015-12-10 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無線通信システムにおけるアンテナダイバーシティを与える方法および装置
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8681764B2 (en) 2005-11-18 2014-03-25 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
JP2008301359A (ja) * 2007-06-01 2008-12-11 Sumitomo Electric Ind Ltd 通信装置及びアダプティブアンテナ信号処理方法
JP2009004886A (ja) * 2007-06-19 2009-01-08 Samsung Electronics Co Ltd 通信装置、及び送信レート設定方法
JP2009049604A (ja) * 2007-08-16 2009-03-05 Samsung Electronics Co Ltd 送信装置、及びビームフォーミング行列生成方法
JP2010273388A (ja) * 2010-08-25 2010-12-02 Kddi Corp 伝送路推定装置および伝送路推定プログラム

Also Published As

Publication number Publication date
JPWO2005055484A1 (ja) 2007-07-05
JP4188372B2 (ja) 2008-11-26

Similar Documents

Publication Publication Date Title
WO2005055484A1 (ja) 無線通信装置、無線通信方法、及び無線通信システム
TWI436609B (zh) 在封閉迴路傳輸中用於反饋之方法及裝置
US7352819B2 (en) Multiantenna communications apparatus, methods, and system
US7236748B2 (en) Closed loop feedback in MIMO systems
US7362822B2 (en) Recursive reduction of channel state feedback
US7443341B2 (en) Method for deriving weight vectors to be used at the time of transmitting signals from a plurality of antennas, and transmitting apparatus and communication system utilizing said method
US8265177B2 (en) System and method for wireless communication of uncompressed high definition video data using beambook-constructed beamforming signals
US8289869B2 (en) Wireless communication system, wireless communication device and wireless communication method, and computer program
US7539253B2 (en) Interpolation in channel state feedback
EP2474116B1 (en) Flexible sdma and interference suppression
US8040856B2 (en) System and method for wireless communication of uncompressed high definition video data using a beamforming acquisition protocol
US8885465B2 (en) Method and system for utilizing tone grouping with givens rotations to reduce overhead associated with explicit feedback information
RU2351070C2 (ru) Пространственная обработка с помощью управляющих матриц для псевдослучайного управления передачей в многоантенной системе связи
US7899413B2 (en) Radio apparatus
EP2583385A1 (en) Alternate feedback types for downlink multiple user mimo configurations
KR20050060105A (ko) Tdd mimo 시스템들을 위한 채널 추정 및 공간프로세싱 방법
US20060209975A1 (en) Multiple antenna communication system
JP4402098B2 (ja) 送信装置及び送信指向性制御方法
JP4765336B2 (ja) 無線通信装置及び無線通信方法
JP2007019880A (ja) 通信装置、基地局装置及び通信方法
US7949070B2 (en) Method and apparatus for executing MIMO eigenmode transmission
JP4476873B2 (ja) 無線通信装置および無線通信方法
JP5258033B2 (ja) 送信装置、受信装置、無線通信装置及び無線通信システム並びに通信方法
JP4246169B2 (ja) 無線通信装置および無線通信方法
JP2007110203A (ja) 無線通信システム、無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005515986

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 04819929

Country of ref document: EP

Kind code of ref document: A1