[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005052666A1 - Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法 - Google Patents

Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法 Download PDF

Info

Publication number
WO2005052666A1
WO2005052666A1 PCT/JP2004/013971 JP2004013971W WO2005052666A1 WO 2005052666 A1 WO2005052666 A1 WO 2005052666A1 JP 2004013971 W JP2004013971 W JP 2004013971W WO 2005052666 A1 WO2005052666 A1 WO 2005052666A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical
light
chip
optical signal
Prior art date
Application number
PCT/JP2004/013971
Other languages
English (en)
French (fr)
Inventor
Motoo Asai
Hiroaki Kodama
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to EP04788130A priority Critical patent/EP1688770B1/en
Priority to JP2005515738A priority patent/JPWO2005052666A1/ja
Publication of WO2005052666A1 publication Critical patent/WO2005052666A1/ja
Priority to US11/402,084 priority patent/US7437030B2/en
Priority to US11/964,761 priority patent/US7526152B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • Substrate for mounting IC chip substrate for mother-board, device for optical communication, method for manufacturing substrate for mounting IC-chip, and method for manufacturing substrate for mother-board
  • the present invention relates to a substrate for mounting an IC chip, a substrate for a mother board, a device for optical communication, a method for manufacturing a substrate for mounting an IC chip, and a method for manufacturing a substrate for a mother board.
  • the optical fiber has features such as (1) low loss, (2) high band, (3) small diameter 'lightweight, (4) non-induction, (5) resource saving, etc.
  • An optical fiber having this feature The number of repeaters can be significantly reduced compared with the conventional communication system using metallic cable, and the construction and maintenance become easy, and the communication system becomes more economical and highly reliable. You can
  • an optical fiber can simultaneously multiplex and transmit light of many different wavelengths that are equal to light of only one wavelength with one optical fiber, a large-capacity optical fiber can be used for various applications.
  • a transmission path can be realized, and video services and the like can be accommodated.
  • optical communication using an optical fiber is not limited to communication with the backbone network, but also between the backbone network and the terminal equipment (PC, mopile, game, etc.). It is proposed to use for communication and communication between terminal devices.
  • the terminal device can It is necessary to attach a device that converts optical signals to electrical signals, such as a converter or an electrical ⁇ optical converter (hereinafter also referred to as “photo-Z electrical conversion”).
  • a device that converts optical signals to electrical signals such as a converter or an electrical ⁇ optical converter (hereinafter also referred to as “photo-Z electrical conversion”).
  • an optical element such as a light receiving element for processing an optical signal, a light emitting element, and the like are separately mounted.
  • the present inventors first form a laminated circuit of a conductor circuit and an insulating layer on both sides of a substrate, form a solder resist layer on the outer layer, and mount an optical chip on which an optical element is mounted.
  • An IC chip mounting substrate having an optical path for transmitting an optical signal formed through the IC chip mounting substrate is proposed (see, for example, Patent Document 1).
  • a microlens can be used, and as a method of forming the microlens, a microlens utilizing anisotropic etching of silicon and a technique of photolithography A method of forming is disclosed (see, for example, Patent Documents 2 and 3).
  • microlenses and microlens array formed by such a method can be fixed on a package substrate or a printed wiring board using an adhesive.
  • Non-patent documents 1 and 2 are also disclosed (for example, Non-patent documents 1 and 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-329891
  • Patent Document 2 Japanese Patent Application Laid-Open No. 06-230203
  • Patent Document 3 Japanese Patent Application Laid-Open No. 06-326285
  • Non-Patent Document 1 DL MacFarlane, 2 others, "Microjet Fabrication by Microjet (Microjet Fabrication Microlens Arrays), (IEEE Photonic T echnol Lett), United States, 1994, 6th, 9th, p. 1112-1114
  • Non-Patent Document 2 Ishii, et al., "Ink-jet Fabrication of Polymer Microlens for Optical IZO Chip Mounting by Ink Jet” ( Jpn J Appl Phys Part 1), 2000, 39, 3 B, p.
  • the light signal of the light emitting element is emitted with a spread angle depending on the position, the number, etc., the shape of the micro lens itself, etc. Due to the small area, etc., transmission of the optical signal may not be performed between the optical element and the optical waveguide, or between the optical elements, or transmission loss may be too large.
  • the present inventors formed an IC chip mounting substrate on which an optical element is mounted and an optical signal passage region is provided, and an optical waveguide.
  • the present invention has been carried out in order to achieve optical communication with excellent connection reliability, through a substrate for a mother board provided with an optical signal passage region and an optical communication device using these. Completed.
  • the substrate for mounting an IC chip is a substrate for mounting an IC chip on which an optical element is mounted while a conductor circuit and an insulating layer are laminated and formed on both sides of the substrate.
  • An optical signal passage area is provided on the IC chip mounting substrate,
  • a microlens is disposed at an end of the light signal passing area on the opposite side to the optical element side, and it is characterized in that
  • the optical signal passage region be provided so as to penetrate the substrate and the insulating layer.
  • the optical element is a multi-channel optical element, and the optical signal passage area is composed of a plurality of independent optical paths.
  • the optical element is a multichannel optical element
  • the optical signal transmitting region is the multichannel optical element It is also desirable that the optical signal or the optical signal to the multi-channel optical element be composed of one optical path that can be transmitted.
  • one optical path through which the optical signal from the multi-channel optical element or the optical signal to the multi-channel optical element can be transmitted has a shape in which a part of the wall surfaces of a plurality of cylinders is connected. At least one of the plurality of cylinders desired does not transmit an optical signal and is preferably a dummy cylinder.
  • the wall surface of the light signal transmitting region is made of resin or metal.
  • the wall surface of the area should have a surface roughness Ra of 0.1-5 m.
  • the optical element is preferably a light receiving element and Z or a light emitting element.
  • the optical element is a light emitting element, and light power emitted from the light emitting element is collimated light through the microlens.
  • the light emitting element is the light receiving element, and the spot area of the light receiving portion of the light receiving element overlaps the light receiving portion by 22% or more with respect to light incident on the light receiving element through the microlens. Also desirable.
  • the microlens is disposed directly on an end of the light signal passing area subjected to the water repellent treatment or the hydrophilic treatment. It is desirable that the surface on which the micro lens is disposed at the end of the light signal passage area and the micro lens be disposed is subjected to a water repelling process or a hydrophilic process. In addition, it is desirable that particles be blended in the microlens.
  • the conductor circuit and the insulating layer are laminated on at least one surface of the substrate and an optical waveguide is formed, and an optical element or an optical element is formed on at least one surface.
  • a substrate for mounting an IC chip on which an optical element is mounted which is a substrate for a mother board,
  • An optical signal passage area is provided on the mother board,
  • a microlens is disposed at an end of the optical signal passing area on the side on which the optical element or the IC chip mounting substrate is mounted.
  • the optical signal transmitting region be provided so as to penetrate the substrate and the insulating layer.
  • the optical element is a multi-channel optical element, and the optical signal passage area is composed of a plurality of independent optical paths.
  • the optical element is a multi-channel optical element
  • the optical signal passage area is an optical signal from the multi-channel optical element or the multi-channel optical element It is also desirable that it be composed of one optical path that can transmit an optical signal.
  • one optical path through which the optical signal from the multi-channel optical element or the optical signal to the multi-channel optical element can be transmitted has a shape in which a part of the wall surfaces of a plurality of cylinders is connected. At least one of the plurality of cylinders desired does not transmit an optical signal and is preferably a dummy cylinder.
  • the wall surface of the light signal passing area is made of resin or metal.
  • the wall surface of the area should have a surface roughness Ra of 0.1 to 5 m.
  • the light power emitted from the optical waveguide be collimated light via the microlens. It is also desirable that the light incident on the optical waveguide be overlapped with the spot area force in the core of the optical waveguide by 35% or more.
  • the micro lens directly disposed at the end of the light signal passing area subjected to the water repellent treatment or the hydrophilic treatment
  • the surface on which the microphone lens is disposed at the end of the light signal passing area via the lens marker, and the surface on which the microphone lens is disposed is subjected to water repellent treatment or hydrophilic treatment!
  • a device for optical communication according to a third aspect of the present invention is characterized in that the substrate for mounting an IC chip according to the first aspect of the present invention is mounted on a substrate for a mother board according to the second aspect of the present invention.
  • a device for optical communication comprises a conductive circuit and an insulating layer on at least one side of a substrate.
  • An optical communication device in which an optical element or an IC chip mounting substrate on which an optical element is mounted is mounted on a mother board substrate on which an optical waveguide is formed.
  • At least one microlens is disposed on an optical path connecting the optical waveguide and the optical element,
  • the light incident on the optical waveguide or the optical element is configured to be condensed through a microlens.
  • optical communication device of the fourth aspect of the present invention is provided with at least two of the above-mentioned microlenses,
  • the light emitted from the optical waveguide or the optical element be condensed or collimated light.
  • a light emitting element is formed on a substrate for a mother board on which a conductor circuit and an insulating layer are laminated and formed on at least one surface of a substrate and an optical waveguide is formed.
  • a device for optical communication in which a mounted IC chip mounting substrate and an IC chip mounting substrate on which a light receiving element is mounted are mounted.
  • the mother board substrate has an optical signal transmission region optically connected to each end of the optical waveguide, and a side optically connected to the optical waveguide in the optical signal transmission region.
  • a micro lens is disposed at the end opposite to the light emitting element, and the substrate for mounting an IC chip on which the light emitting element is mounted forms an optical signal transmitting region optically connected to the light emitting element.
  • a microlens is disposed at an end of the light signal passing area opposite to the end optically connected to the light emitting element, and the IC chip mounting substrate on which the light receiving element is mounted is the light receiving element.
  • an optical signal passing area optically connected to the light receiving element, and a microlens is disposed at an end of the optical signal passing area opposite to the side optically connected to the light receiving element, From the above light emitting element
  • the emitted light is collimated through the micro lens disposed on the IC chip mounting substrate on which the light emitting element is mounted, and the collimated light power is one of the micro lenses disposed on the substrate for the mother board.
  • the light is condensed through the light waveguide and enters one end of the optical waveguide, and then the light is transmitted through the optical waveguide and emitted from the other end of the optical waveguide.
  • the collimated light becomes collimated light through the other micro lens arranged on the substrate for the mother board, and the collimated light is arranged on the substrate for mounting an IC chip on which the light receiving element is mounted. It is characterized in that it is configured to be condensed by a lens and to be incident on the light receiving element.
  • a sixth method of manufacturing a substrate for mounting an IC chip of the present invention is
  • the light signal passing region passing through the multilayer wiring board includes a plurality of independent light paths. It is desirable to form an optical signal passage area which may be a hole.
  • a multi-channel optical element is used as an optical signal passage region penetrating the multilayer wiring board. It is desirable to form an optical signal passage area which is also configured as a single optical path capable of transmitting an optical signal to the optical signal or to the multichannel optical element.
  • the metal of the metal is used so that the wall surface of the optical signal transmitting region is composed of a metal layer.
  • the resin layer forming step so that the wall surface of the light signal passing region is composed of the resin layer in the step (b).
  • the surface of the resin layer formed in the above-mentioned resin layer forming step be a rough surface.
  • the process of (c) above is performed. It is desirable that the water repellent treatment or the hydrophilic treatment be performed on the portion where the micro lens is provided before the micro lens is provided.
  • a seventh aspect of the present invention is a method of manufacturing a mother board according to the present invention.
  • An optical wiring board manufacturing process comprising forming a conductor circuit and an insulating layer sequentially on at least one side of a substrate, forming an optical waveguide on the substrate and Z or the insulating layer, and forming an optical wiring board,
  • an optical signal passage area composed of a plurality of independent optical paths is formed as the optical signal passage area. It is desirable to
  • the optical signal from the multi-channel optical element or the multi-channel optical element is used as the optical signal passage area in the step (b). It is desirable to form an optical signal passage area composed of one optical path capable of transmitting an optical signal to the channel optical element.
  • the metal layer is formed such that the wall surface of the optical signal transmitting region is formed of a metal layer, in the step (b).
  • the resin layer forming step be performed so that the wall surface of the light signal passing region is composed of the resin layer in the step (b).
  • the surface of the resin layer formed in the above-mentioned resin layer forming step be a rough surface.
  • the portion where the microlens is provided is provided in the step (c), before the microlens is provided. Water-repellent treatment or hydrophilic treatment is desirable. Effect of the invention
  • the IC chip mounting substrate according to the first aspect of the present invention has the micro lens disposed at the end of the light signal passing area, so that the light signal incident on the light receiving element, the light emission By the light signal emitted from the element passing through the microlens, the diffusion of the light signal can be suppressed, and the input / output signal of the optical element can be efficiently transmitted. Therefore, it is possible to realize a substrate for mounting an IC chip with reduced transmission loss that causes loss in optical signals.
  • optical signal transmission it is possible to more reliably transmit an optical signal between the optical element disposed on the IC chip mounting substrate and an optical component or the like mounted on an external substrate such as the second substrate of the present invention described later. It is possible to carry out optical communication with high reliability of optical signal transmission.
  • input / output signals of the optical element can be transmitted through the optical signal passage area.
  • the reliability of electrical signal transmission in which the distance between the IC chip and the optical element is short is excellent.
  • the substrate for mounting an IC chip of the present invention electronic components and optical elements necessary for optical communication can be integrated, which can contribute to thinning and downsizing of the terminal device for optical communication.
  • the substrate for the mother board of the second invention of the present invention is provided with the micro lens at the end of the light signal passing area, and thus the light guide formed on the substrate for the mother board.
  • the optical signal is more reliably transmitted between the optical waveguide formed on the above-mentioned substrate for the mother board and the optical element etc. mounted on the above-mentioned substrate for mounting IC chip of the present invention, etc. It is possible to realize optical communication with high reliability of optical signal transmission.
  • the end portion of the optical signal passage area is masked. Since the aperture lens is disposed, an optical signal can be reliably transmitted through the optical signal passage area and the optical waveguide.
  • the substrate for mother board according to the present invention, electronic components and optical waveguides necessary for optical communication can be integrated, which contributes to thinning and downsizing of the optical communication terminal device.
  • the device for optical communication according to the third aspect of the present invention has the substrate for mounting an IC chip according to the present invention mounted on the substrate for the mother board according to the present invention, so that it is excellent in optical signal transmission capability.
  • the optical communication device of the fourth aspect of the present invention is excellent in optical signal transmission capability because the microphone lens is disposed on the optical path connecting the optical waveguide and the optical element.
  • the optical communication device is an IC in which a light receiving element is mounted and an optical signal passage region is formed on a mother board on which an optical waveguide and an optical signal passage region are formed.
  • a chip mounting substrate and an IC chip mounting substrate on which a light emitting element and an optical signal passage area are formed are mounted, and a microphone lens having a predetermined function is disposed at a predetermined position.
  • the sixth method of producing an IC chip mounting substrate according to the present invention has the above-described configuration, so that the first IC chip mounting substrate according to the present invention, that is, an optical signal provided on the substrate and the insulating layer. It is possible to preferably manufacture a substrate for mounting an IC chip that transmits input / output signals of an optical element through the passage region. Therefore, by using the manufacturing method of the sixth aspect of the present invention, it is possible to manufacture an IC chip mounting substrate excellent in optical signal transmission performance.
  • the method for manufacturing a mother board according to the seventh invention of the present invention has the above-described structure, and therefore, the method is provided for the mother board according to the second invention, that is, the substrate and the insulating layer. It is possible to preferably manufacture a mother board for transmitting an optical signal through the optical signal transmitting region and the optical waveguide. Therefore, by using the manufacturing method of the seventh aspect of the present invention, it is possible to manufacture a mother-board substrate excellent in optical signal transmission.
  • the substrate for mounting an IC chip is a substrate for mounting an IC chip on which a conductor circuit and an insulating layer are formed by lamination on both sides of the substrate, and an optical element is mounted.
  • An optical signal passage area is provided on the IC chip mounting substrate,
  • a microlens is disposed at an end of the light signal passing area on the opposite side to the optical element side, and it is characterized in that
  • the optical chip is mounted on the IC chip mounting substrate according to the first aspect of the present invention, and the optical signal transmitting region is provided on the IC chip mounting substrate (substrate, insulating layer). Input and output signals of the optical element can be transmitted through the optical signal passage area.
  • the reliability of electrical signal transmission in which the distance between the IC chip and the optical element is short, is excellent.
  • the first IC chip mounting substrate according to the present invention on which an IC chip is mounted since electronic parts and optical elements necessary for optical communication can be integrated, it is possible to reduce the thickness and size of the optical communication terminal device. Can contribute to
  • the micro lens is disposed at the end of the light signal passing area on the opposite side to the optical element side, light is incident on the light receiving element.
  • the diffusion of the optical signal can be suppressed, and the input / output signal of the optical element can be efficiently transmitted. Therefore, it is possible to realize a substrate for mounting an IC chip in which the transmission loss less than the loss of the optical signal is suppressed.
  • an optical signal passage area is formed, and at least one end of the optical signal passage area is provided with a microlens.
  • a solder resist layer may be further formed on the outermost layer of the substrate on which the conductor circuit and the insulating layer are formed on both sides of the substrate. Yes.
  • microlenses are formed at the end of the light signal passing region. Will be installed.
  • the solder resist layer is usually penetrated as well.
  • the light signal passage area is formed, and in this case, the micro lens disposed at the end of the light signal passage area is disposed inside the portion passing through the solder resist layer of the light signal passage area. It will be.
  • the micro lens is disposed at the end of the part passing through the solder resist layer of the light signal transmission area, and the micro lens is disposed at the end of the light signal transmission area. It shall be included in the aspect of the substrate for mounting an IC chip.
  • the micro lens is not particularly limited, and examples thereof include those generally used for optical lenses, and specific examples of the material include optical glass and resins for optical lenses.
  • the above-mentioned resin for optical lenses is not particularly limited as long as it has low absorption in the communication wavelength band, and, for example, thermosetting resin, thermoplastic resin, photosensitive resin, thermosetting resin. Examples thereof include resins in which a part of the resin is sensitized.
  • acrylic resin such as PMMA (polymethyl methacrylate), deuterated PMMA, deuterated fluorinated PMMA, and the like
  • polyimide resin such as fluorinated polyimide
  • epoxy resin epoxy resin
  • UV curable epoxy resin Fat silicone resin
  • silicone resin such as deuterated silicone resin
  • a polymer produced by chlorobutene or the like can be mentioned.
  • the refractive index of the micro lens is not particularly limited, and may be the same as or higher than the refractive index of the light signal transmission region.
  • the refractive index of the micro lens When the refractive index of the micro lens is the same as the refractive index of the light signal passing area, the reflection of the light signal does not occur at the interface between the two, so that the light signal can be transmitted more reliably. In the case where the refractive index of the micro lens is larger than the refractive index of the light signal passing area, in the case where the light signal can be condensed more in a desired direction, the light signal can be transmitted more reliably. it can.
  • the shape of the micro lens for example, a convex lens having a convex surface only on one side, etc. may be mentioned.
  • the curvature radius of the convex surface of the lens takes into consideration the design of the light signal passing area. And may be selected appropriately. Specifically, for example, when it is necessary to increase the focal length, it is desirable to increase the radius of curvature when it is necessary to shorten the focal length where it is desirable to reduce the radius of curvature.
  • the shape of the micro lens is not limited to a convex lens, as long as it can condense an optical signal in a desired direction.
  • the microlens provided at the end of the optical signal passing region opposite to the optical element has a transmittance of 70% or more of the communication wavelength light. It is desirable to have one.
  • the transmission factor of the communication wavelength light is less than 70%, it is also a force that may lead to a decrease in the transmission of the optical signal due to a large loss of the optical signal.
  • the transmittance is more preferably 90% or more.
  • the transmission factor of communication wavelength light refers to the transmission factor of communication wavelength light per length lmm. Specifically, for example, when light of intensity I is incident on a micro lens and is emitted 1 mm through the micro lens, the intensity of the emitted light is I.
  • the above-mentioned transmittance refers to the transmittance measured at 25-30 ° C.
  • particles are blended in the above-mentioned micro lens.
  • particles such as resin particles, inorganic particles and metal particles are blended.
  • the strength of the microlens is improved, and the shape is more reliably maintained.
  • the coefficient of thermal expansion is consistent with the components of the substrate for mounting an IC chip. It is possible to cause cracks and the like due to the difference in thermal expansion coefficient.
  • the refractive index of the resin component of the micro lens and the refractive index of the particle be approximately the same. Therefore, it is desirable that the particles contained in the micro lens be a mixture of two or more types of particles having different refractive indices so that the refractive index of the particles is approximately the same as the refractive index of the resin component.
  • the particles contained in the microlens may be silica particles having a refractive index of 1.46 and a titanium particle having a refractive index of 2.65. -Mix particles with particles and dissolve them into particles.
  • Examples of the method of mixing the particles include a method of kneading, and a method of dissolving and mixing two or more types of particles and then forming into particles.
  • thermosetting resin for example, a thermosetting resin, a thermoplastic resin, a photosensitive resin, a resin in which a part of a thermosetting resin is photosensitized, a thermosetting resin, etc.
  • thermosetting resin examples include a resin complex of fat and thermoplastic resin, a complex of photosensitive resin and thermoplastic resin, and the like.
  • thermosetting resins such as epoxy resin, silicone resin, phenol resin, polyimide resin, bismaleimide resin, polyphenylene resin, polyolefin resin, fluorine resin, etc.
  • Resins acrylic resins obtained by reacting the thermosetting groups of these thermosetting resins (for example, epoxy groups in epoxy resins) with methacrylic acid, acrylic acid, etc.
  • acrylic groups phenolic resins, Thermoplastic resins such as polyethersulfone (PES), polysulfone (PSF), polytetrafluoroethylene (PPS), polyphenol sulfide (PPES), polyphenol ether (PPE), polyetherimide (Pi), etc .; acrylic It is also possible to use photosensitive resins such as resins and the like.
  • thermosetting resin comprises a resin composite of the above-mentioned thermosetting resin and the above-mentioned thermoplastic resin, or a resin composite of the above-mentioned photosensitive resin and the above-mentioned thermoplastic resin to which the above-mentioned acrylic group is imparted. It's about using things. Further, as the above-mentioned resin particles, resin particles which also have a rubber power can be used.
  • aluminum compounds such as alumina and aluminum hydroxide
  • calcium compounds such as calcium carbonate and calcium hydroxide
  • potassium compounds such as potassium carbonate
  • magnesia examples thereof include those made of dolomite, magnesium compounds such as basic magnesium carbonate, silica compounds such as silica, zeolites such as zeolite, titanium compounds such as titanium oxide, and the like. Also, mix silica and titanium at a certain ratio and melt and homogenize.
  • inorganic particles those which can also be used as phosphorus or phosphorus compound can also be used.
  • metal particles examples include those made of gold, silver, copper, palladium, nickel, platinum, iron, zinc, lead, aluminum, magnesium, calcium and the like.
  • resin particles, inorganic particles and metal particles may be used alone or in combination of two or more.
  • the shape of the above-mentioned particles is not particularly limited, and examples thereof include a sphere, an oval sphere, a fractured shape, and a polyhedron shape. Among these, spherical or oval spherical is desirable. Spherical or ellipsoidal particles have no corners, so the micro lens is less likely to crack.
  • the loss of light signal beyond which light is reflected by the particles is reduced.
  • the particle diameter of the particles is not particularly limited, but the upper limit thereof is preferably 0.8 ⁇ m and the lower limit thereof is preferably 0.01 ⁇ m.
  • the inner diameter of the application nozzle of the ink jet apparatus and the inner diameter of the nozzle of the dispenser are the current minimum dimensions of 20 ⁇ m.
  • the force particle diameter is in the above range, the nozzle can be coated without clogging. You are.
  • the lower limit of the particle diameter is more preferably 0.1 ⁇ m.
  • the above-mentioned particle diameter power It is more desirable that the particle diameter be in this range from the viewpoint of the stability of the viscosity in the application by the ink jet apparatus, the dispenser and the like and the variation in the amount of application.
  • the desirable lower limit of the compounding amount of the particles contained in the microlens is 5% by weight, and the more desirable lower limit is 10% by weight.
  • the desirable upper limit of the compounding amount of the particles is 60 times. The upper limit is 50% by weight. If the compounding amount of the particles is less than 5% by weight, the effect of compounding the particles may not be obtained, and if the compounding amount of the particles exceeds 60% by weight, the transmission of the light signal may be inhibited. It is because there is.
  • microlens array in which a plurality of lenses which are not necessarily required to have individual shapes are integrally formed.
  • this microlens array may be disposed at a predetermined end of the optical signal passage region using an optical adhesive.
  • the shape of the micro lens array is not particularly limited, and may be appropriately selected in consideration of the design of the substrate for mounting an IC chip, the shape of the light signal passing region, and the like.
  • the lens diameter 220 ⁇ m it is possible to use a microlens array in which micro lenses of m, lens sag height of 5 to 50 m (preferably 5 to 20 ⁇ m) are arranged in parallel at a pitch of 250 ⁇ m.
  • the material of the microlens is glass or quartz, for example, anisotropic etching or photolithography can be used as a method of producing the microlens array, and the material of the microlens can be used.
  • anisotropic etching or photolithography can be used as a method of producing the microlens array, and the material of the microlens can be used.
  • resin it is possible to use a method of pouring material resin into a mold and applying heat and load to produce.
  • micro lens array The specific shape of the micro lens array will be briefly described with reference to the drawings.
  • the microlens array that can be used in the first invention is not limited to one having the following shape.
  • FIGS. 1 (a) to 1 (c) are cross-sectional views schematically showing an example of a micro lens array. That is, the micro lens array that can be used in the first invention is shown in FIG. 1 (a).
  • the microlens array 11 may be provided with a plurality of convex lenses having a convex surface on the upper surface of the plate, or as shown in (b), the upper surface of the plate has a quadrangular prism.
  • It may be a microlens array 12 in which a plurality of lenses having a shape in which a part of a sphere is placed on the upper surface is provided, as shown in (c), a concave shape having a concave surface on the upper surface of a plate-like body. More than one lens It may be a microlens array 13.
  • optical adhesive is not particularly limited, and optical adhesives such as epoxy resin, acrylic resin, and silicone resin can be used.
  • the properties of the above-mentioned optical adhesive are viscosity: 0.2-1.
  • the thickness of the optical adhesive is preferably 50 / z m or less.
  • the microlenses be disposed directly at the end of the light signal transmitting region subjected to the hydrophilic treatment or the water repellent treatment.
  • the sag height variation is It is because it can be suppressed.
  • the end of the light signal passing area is disposed through a lens marker, and the surface on which the micro lens is disposed is subjected to water repelling treatment or hydrophilic treatment! / I also want to be angry. Also in this case, the same effect can be obtained.
  • water repellent treatment examples include treatment with a water repellent coating material such as a fluorine-based polymer coating agent (surface tension 10-12 mNZm), water repellent treatment with CF plasma, and the like.
  • a water repellent coating material such as a fluorine-based polymer coating agent (surface tension 10-12 mNZm), water repellent treatment with CF plasma, and the like.
  • a mask is opened in which the portion corresponding to the portion of the IC chip mounting substrate on which the micro lens is formed (that is, the end of the optical signal passage region) is opened. Then, the water repellent coating agent is applied by spray coating or spin coating, and then the water repellent coating agent is naturally dried and the mask is removed to complete the treatment with the water repellent coating agent.
  • the thickness of the water repellent coating agent layer is usually about: L m.
  • the mask corresponding to the portion forming the microlens (ie, the end of the light signal passage area) is opened, and then the CF plasma treatment is performed, and then the mask is removed. End the water repellent treatment more.
  • a mask is opened by opening the portion corresponding to the portion forming the micro lens (that is, the end of the light signal passing area), and then o plasma treatment is performed, and then the mask is removed.
  • the wetting angle of the portion where the micro lens is disposed is 30 to 60 degrees, and the resin coating amount is changed. Even with the same diameter, I could not change the height of the sag.
  • the wetting angle of the treated portion is 100 to 105 degrees, and the average sag height is 10.01 m (standard deviation ⁇ : 0.14), average diameter It was possible to form micro lenses of 220, 87 ⁇ ⁇ ( ⁇ : 2. 70).
  • the wetting angle is 80-95 degrees, the average sag height 10. 01 ⁇ ⁇ ⁇ ( ⁇ : 0.34), average diameter 221
  • the wetting angle is 3 to 10 degrees, and a microlens having an average sag height of 10. 04 ⁇ ⁇ ⁇ ( ⁇ : 0.25) and an average diameter of 221, 4 7 ⁇ ( ⁇ : 3. 36) may be formed. did it.
  • the microlens may be disposed via a lens marker.
  • the lens marker is a cylindrical base or the like for forming a micro lens, and specific examples thereof include those disclosed in JP-A-2002-331532. Further, as a method of forming a lens marker, for example, a photosensitive material film having the same refractive index as that of the microphone lens is formed at the end of the light signal passing region, and a photoconductive material film is formed on the photosensitive material film. A method of forming a lens marker film having an alignment mark at the center thereof and a microlens pattern transferred by performing exposure and development processing using a mask can be mentioned.
  • a liquid resin for lens is injected onto the lens marker having a micro lens pattern to form a liquid mic mouth lens.
  • a method of forming a micro lens by irradiating the ultraviolet ray or the like to harden the liquid micro lens can be used.
  • the microlens be disposed on a lens marker that has been subjected to water repellant treatment or hydrophilic treatment!
  • the resin composition (resin composition for lens) used to form the microlens may not spread uniformly, which may cause the microlens having a desired shape to be formed.
  • the above-described water repellent treatment or hydrophilic treatment the dirt on the surface of the lens marker can be removed, and the above-mentioned resin composition for a lens can be uniformly spread over the lens. It is.
  • the lens marker is desirable for the lens marker to be more hydrophilic than the water repellant treatment.
  • the hydrophilic treatment it is for the lens dropped when the microlens is placed on the lens marker
  • Resin composition force Spreads immediately on the entire surface of the lens marker and also immediately stops spreading of the resin at the outer periphery of the lens force, so it is suitable for forming a microlens of a predetermined shape by surface tension. It is a force.
  • the substrate for mounting an IC chip according to the first aspect of the present invention is provided with an optical signal passage region.
  • the above-mentioned IC chip is not Information can be exchanged between optical components mounted on the surface or in the inside of the mounting substrate through the optical signal passage area using an optical signal.
  • first IC chip mounting substrate of the present invention having an optical element mounted thereon
  • the other substrate of the first invention mother substrate of the present invention having another optical component (such as an optical waveguide, etc.) mounted thereon.
  • optical signals can be communicated between the optical element mounted on the first IC chip mounting substrate of the present invention and the optical component mounted on the external substrate. It can be performed by an optical signal through the over area.
  • the resin composition may be filled in part or all of the above-mentioned optical signal transmitting region. This is because a decrease in the strength of the IC chip mounting substrate can be prevented.
  • the solder resist layer may be formed on the outermost layer of the IC chip mounting substrate and the light signal passing region is provided so as to penetrate the solder resist layer.
  • the solder resist layer may be formed.
  • the part penetrating through may be filled with the above-mentioned resin composition or may not be filled.
  • the fat component of the above-mentioned fat composition is not particularly limited as long as it has low absorption in the communication wavelength band, and as a specific example, for example, the same as the fat used in the above-mentioned microlens Etc.
  • the above-mentioned fat composition may contain particles such as fat particles, inorganic particles and metal particles, for example. By including these particles, the thermal expansion coefficient can be matched between the light signal transmission region and the substrate, insulating layer, solder resist layer, etc., and depending on the type of particles, flame retardancy is imparted. You can also
  • the particles include the same as the particles contained in the microlenses.
  • an optical element is mounted on the substrate for mounting an IC chip of the first present invention, and the optical element is desirably a light receiving element and Z or a light emitting element or the like.
  • the light receiving element include a PD (photodiode), an APD (avalanche photo diode), and the like.
  • Examples of the material of the light receiving element include Si, Ge, InGaAs and the like.
  • Examples of the light emitting element include LD (semiconductor laser), DFB-LD (distributed feedback type semiconductor laser), LED (light emitting diode), infrastructure type or oxide confinement type VCSEL (surface emitting semiconductor laser), etc. Can be mentioned.
  • LD semiconductor laser
  • DFB-LD distributed feedback type semiconductor laser
  • LED light emitting diode
  • VCSEL surface emitting semiconductor laser
  • Materials of the light emitting device include compounds of gallium, arsenic and phosphorus (GaAsP), compounds of gallium, aluminum and arsenic (GaAlAs), compounds of gallium and arsenic (Ga As), indium, gallium and arsenic Compounds (InGaAs), compounds of indium, gallium, arsenic and phosphorus (InGaAsP) and the like can be mentioned.
  • GaAlAs can be used when the communication wavelength is in the 0. band, and when the communication wavelength is in the 1.3 m band or the 1.55 m band.
  • InGaAs or InGaAsP can be used for
  • Each of the light emitting element and the light receiving element may be a multi-channel array element.
  • all channels may be enabled and used, or only some of the plurality of channels may be enabled and used.
  • the mounting position of the optical element is preferably on the surface of the IC chip mounting substrate. As described above, in the case where the optical element is mounted on the surface of the IC chip mounting substrate, it is necessary to replace only the optical element when a problem occurs in one optical element.
  • the optical element When a wire bonding type optical element is mounted as the optical element, the optical element may be sealed with a resin. Furthermore, in this case, only the optical element may be resin-sealed, or the whole may be resin-sealed, including other mounting components such as an IC chip.
  • an underfill may be sealed to the optical element or only the periphery of the optical element may be sealed. The whole may be covered by a cover case. This makes it possible to prevent foreign matter from entering the light path.
  • the value of the refractive index of the underfill when sealing the underfill should be appropriately selected according to the design.
  • the IC chip mounting substrate when a light emitting element is mounted as the optical element, light emitted from the optical element is collimated through the microlens. It is desirable to be light. It is a force that can be reliably transmitted to an external substrate such as the mother-board substrate of the second invention of the present invention described later.
  • the collimated light refers to the radius of the region where the light intensity distribution is lZe 2 or more of the light intensity peak in an arbitrary plane perpendicular to the light transmission direction away from the microlens by 1 mm or more in the light transmission direction. ) Refers to light with a value of 10%.
  • the spot area of the light receiving portion of the light receiving element and the light receiving portion with respect to the light incident on the light receiving element through the micro lens It is desirable that they overlap. This is because the optical signal is transmitted to the light receiving element more reliably.
  • the spot area is an area having a light intensity of 1 / e 2 or more of the light intensity peak on a plane including the light receiving surface of light.
  • the spot area in the light receiving portion of the light receiving element is entirely included in the light receiving portion.
  • the conductor circuits sandwiching the substrate are connected through through holes, and the conductor circuits sandwiching the insulating layer are via holes. Connected through! Hope to beat ⁇ . High density wiring of IC chip mounting substrate It is also a force that can be miniaturized while realizing it.
  • FIGS. 2-4 is a cross-sectional view schematically showing an example of the first IC chip mounting substrate of the present invention.
  • the first embodiment of the substrate for mounting an IC chip of the present invention can be roughly divided into three types according to the form of the optical signal passage region.
  • the optical signal passage region has a collective through hole structure (hereinafter also referred to as the IC chip mounting substrate in the first embodiment) or the individual through hole structure (in the following, the IC chip mounting in the second embodiment). It can be divided into three forms in the case of a concave substrate (hereinafter also referred to as a substrate for mounting an IC chip of the third embodiment).
  • the optical element is a multichannel optical element
  • the optical signal passage area is an optical signal from the multichannel optical element or the multichannel. It is desirable to have an embodiment wherein the optical signal to the channel optical element can be transmitted from one optical path.
  • one optical path through which the optical signal from the multi-channel optical element or the optical signal to the multi-channel optical element can be transmitted has a shape in which a part of the wall surfaces of a plurality of cylinders are connected.
  • the plurality of cylinders desired at least one does not transmit an optical signal, and more preferably is a dummy cylinder.
  • the optical element is a multichannel optical element, and the optical signal passage area is constituted by a plurality of independent optical paths! / It is desirable to have one or more embodiments.
  • FIG. 2 shows an example of the IC chip mounting board of the first embodiment.
  • the solder resist layer is formed as the outermost layer, and an optical signal passing area passing through the solder resist layer is formed, and the end of the portion passing through the solder resist layer of the optical signal passing area is formed.
  • the drawing shows a substrate for mounting an IC chip in which micro lenses are provided at the end opposite to the side where the optical element is mounted.
  • the conductor circuit 124 and the insulating layer 122 are stacked on both sides of the substrate 121, and between the conductor circuits sandwiching the substrate 121 and the insulating layer 122.
  • the conductor circuits sandwiching the electrodes are electrically connected by through holes 129 and via holes 127, respectively.
  • the solder resist layer 134 is formed on the outermost layer.
  • an optical signal passage region 142 is provided to penetrate the substrate 121, the insulating layer 122, and the solder resist layer 134.
  • the resin composition 147 is filled in a portion penetrating the substrate 121, the insulating layer 122 and the solder resist layer 134.
  • the diameter of the portion penetrating the solder resist layer 134 is the same as the diameter of the portion penetrating the substrate 121 and the insulating layer 122, and the shape of the longitudinal cross section of the portion penetrating the solder resist layer 134 is rectangular. is there.
  • the four-channel light receiving element 139 is exposed via the solder connection portion 144 so that each of the light receiving portions 139 a-139 d faces the light signal passing region 142. While being mounted, the IC chip 140 is surface mounted via the solder connection portion 143. In addition, solder bumps 137 are formed on the solder resist layer 134 on the other surface of the IC chip mounting substrate 120.
  • the input signal to the four-channel light receiving element 139 can be transmitted through the light signal passing area 142.
  • the optical signal passage area 142 is sized to transmit optical signals for four channels, and is collectively formed so as to penetrate the substrate 121, the insulating layer 122 and the solder resist layer 134.
  • the portion penetrating the solder resist layer 134 of the optical signal transmitting region 142 may be filled with the resin composition, or may be formed by an air gap.
  • a metal layer conductor layer
  • a micro lens array 146 in which four lenses 146 a to 146 d are arranged in parallel is used. It is disposed via (not shown).
  • each of the lenses 146a to 146d is disposed at a position corresponding to each channel 139a to 139d of the light receiving element 139. Therefore, the light signal to the light receiving element 139 is transmitted to each lens 1 constituting the microlens array 146.
  • microlenses may be individually disposed at predetermined positions individually or directly via an adhesive.
  • the reason why the number of microlenses is four is that the number of channels of the light receiving element is four, and in the substrate for mounting an IC chip, the number of microlenses is the number of channels of the optical element. It is desirable that they be identical.
  • the portion to which the micro lens is disposed be subjected to a water repellent treatment as well as the hydrophilic treatment. Note that these surface treatments will be described in detail later.
  • an electric signal transmitted through an external optical component has a microlens 146 a-146 d and an optical signal.
  • the light is transmitted to the light receiving element 139 (the light receiving portion 139a) through the signal passing area 142 and converted into an electric signal by the light receiving element 139, and then the IC through the solder connection portion 143, the conductor circuit 124, and the via hole 127 and the like. It is sent to the chip 140 and processed.
  • the substrate for mounting an IC chip in the substrate for mounting an IC chip according to the first aspect of the present invention, in the light receiving element mounted at a position close to the IC chip, optical Z electrical signal conversion is performed, so that the signal transmission distance is short. It is highly reliable and can support high-speed communication.
  • solder bumps 137 are formed on the solder resist layer 134 via the metal plating layer, an electric signal between the IC chip 140 and the external substrate etc. Transmission can also be performed via solder bumps 137.
  • the IC chip mounting substrate can be connected to an external substrate such as a mother board via the solder bumps, and in this case, The IC chip mounting substrate can be placed at a predetermined position by the self-alignment function of the solder.
  • the above-mentioned self-alignment action is an action in which the solder has a more stable shape in the vicinity of the center of the opening for forming a solder bump due to the fluidity of the solder itself during the reflow process. Is repelled by the solder resist layer, and the In the case of sticking to the surface, it is considered to occur due to the surface tension acting to become spherical.
  • the optical chip when transmitting an optical signal between the optical element mounted on the IC chip mounting substrate and an external optical component through the light signal passing region, the optical chip is mounted on the IC chip mounting substrate. If the mounting position of the optical element is correct, accurate transmission of an optical signal can be performed between the IC chip mounting substrate and the external substrate.
  • the diameter of the micro lens disposed at the end of the light signal passing area corresponds to the pitch between the channels in the array element.
  • the pitch between the channels in the array element For example, in the case of using a 250 m pitch relief element, it is preferable to use 100 to 240 m force, preferably 180 to 230 m force. If the distance is less than 100 m, the desired focal length may not be obtained, and if it exceeds 240 m, adjacent microlenses may be in contact with each other, and the microlens may not be arranged at a predetermined position. .
  • 100-490 m force S desired 180-480 / z m is more desirable. If it is less than 100 / z m, it may not be possible to obtain a desired focal length, and if it exceeds 490 m, adjacent microlenses will be in contact with each other, and it will not be possible to place the microlens in a predetermined position. There is a case.
  • Examples of the shape of the optical signal passage region of the collective through hole structure include a cylinder, a prism, an elliptic cylinder, and a columnar body having a bottom surface surrounded by a straight line and a circular arc.
  • the size of the optical signal passage region of the collective through hole structure is preferably 100 m-5 mm in length and width respectively.
  • the diameter of the bottom surface is desirably within the above range. It is desirable that the lengths of parts orthogonal to this be within the above range. If it is less than 100 / zm, the transmission of the optical signal may be impeded, while if it exceeds 5 mm, the transmission loss of the optical signal is not improved and it becomes difficult to miniaturize the above IC chip mounting substrate .
  • the shape of the light signal passing region of the collective through hole structure for example, a shape in which a plurality of cylinders are arranged in parallel and a part of side surfaces of adjacent cylinders are connected can be mentioned.
  • a dummy cylinder which does not function as an optical signal passage region is actually formed in a part thereof.
  • a dummy cylinder be formed. The reason for this will be described in detail later, because it is suitable for forming an optical signal passage area of a desired shape.
  • cylinders having a bottom diameter of 300 ⁇ m are arranged in parallel at a center-to-center distance of 250 ⁇ m, and a part of the side surface is
  • the optical element is a 4-channel VCSEL with a spread angle of 24 degrees, and the refractive index of the resin composition filled in the optical signal passage area is 1.5, and it is located in the lower part of the optical element.
  • the refractive index of the resin composition filled in the optical signal passage area is 1.5, and it is located in the lower part of the optical element.
  • the spread angle of the VCSEL is the angle at which the light of the light output power of 1Ze 2 of the maximum light output power is emitted.
  • the optical signal passing area of the collective through hole structure with a diameter of 550 ⁇ m or more is It became clear that the optical signal can be transmitted without reflection on the wall of the optical signal passage area and interference between the signal light.
  • the shape of the part passing through the solder resist layer of the optical signal passing region is particularly limited. It is possible to cite the same shape as that of the part penetrating through the substrate and the insulating layer described above.
  • the shape of the vertical cross section may be a trapezoidal shape in which the substrate and the insulating layer side become short sides.
  • the wall surface of the light signal passing area may be made of resin or metal.
  • the wall surface of the optical signal transmitting region is made of the same material as the substrate and the insulating layer. Therefore, when the substrate and the insulating layer are made of resin, the wall surface of the light signal passing area is made of resin even if the resin layer is not formed. It becomes.
  • a resin layer may be separately formed on the wall surface of the optical signal passage area, in which case the resin layer functions as a cladding and the inside of the optical signal passage area should be filled.
  • the fat composition is configured to act as a core!
  • the wall surface of the above-mentioned optical signal transmitting region is made of metal
  • examples of the material thereof include copper, nickel, chromium, titanium, noble metals and the like.
  • this metal layer may be formed of one layer. Or two or more layers of force may also be configured.
  • the metal layer functions as a through hole, that is, sandwiches the substrate. It can play a role of electrically connecting between the conductive circuits and between the conductive circuits sandwiching the substrate and the insulating layer.
  • the metal layer may be formed of a metal having gloss.
  • the material of the metal layer is a metal having a gloss, in some cases, even if the light signal is reflected by the wall surface of the light signal transmission region, attenuation of the signal strength or the like occurs.
  • metals having the above gloss examples include gold, silver, nickel, platinum, aluminum, rhodium and the like. Further, as the metal having the above gloss, for example, copper, palladium and the like can also be used. However, since these materials are prone to formation of an acid coating that oxidizes or reduces the surface gloss of the formed metal layer, removing the acid coating can reduce the surface gloss of the metal layer. You need to raise it. In addition, as the metal having gloss, other metals may be used as long as they have specular gloss or sharpness gloss which is not limited to those described above.
  • the light signal passing region is configured such that the light signal is not reflected by the wall surface thereof. This is because attenuation of the signal strength due to reflection on the wall can be avoided.
  • the surface roughness Ra of the wall surface is an upper limit with a lower limit of 0.1 ⁇ m. Is preferably 5 ⁇ m, the lower limit is 0.5 ⁇ m, and the upper limit is 3 ⁇ m. Within this range, the adhesion of the resin composition will be improved.
  • the surface roughness Ra is a value calculated based on the arithmetic mean roughness described in JIS B 0601.
  • the roughened surface may form a roughened surface directly on the metal forming the wall surface of the light signal passing area, for example, by etching or the like, or, for example, in the light signal passing area of the light signal passing area. It may be formed by providing a roughened layer made of tin, titanium, zinc or the like on the metal layer formed on the wall surface.
  • the adhesion of the resin composition filled in the optical signal transmitting region can be improved.
  • an epoxy substrate having a sufficient size of 0.8 mm in thickness is prepared, a through hole having the following shape and surface roughness is formed in the epoxy substrate, and a resin in the through hole is formed. Fill the composition. Then, the filling property of the resin composition, the reliability in the temperature cycle test, and the light transmission property were evaluated for the through holes (light signal passing area) filled with the resin composition.
  • the filling property of the resin composition was determined by cross-cutting the epoxy substrate and observing the cross section under a microscope, and a portion where the resin composition was not filled was generated. It was evaluated based on whether or not the force at which voids are generated in the fat composition.
  • the reliability during the temperature cycle test is that the temperature cycle test is performed for 500 cycles and 1000 cycles, respectively, in the liquid bath with one cycle of 3 minutes at ⁇ 55 ° C. and 3 minutes at 125 ° C.
  • the force and force of peeling and cracking occurring in the resin composition filled by cross-cutting the epoxy substrate were observed with a microscope.
  • sample substrate A As a set of five sets (sample substrate A), an epoxy substrate is drilled with a diameter of 300 ⁇ m to form five through holes with a center-to-center distance of 250 m, with part of the side surfaces Connecting force S formed of 20 through holes (sample substrate B), epoxy substrate with 20 through holes having a cross-sectional shape combining straight lines and arcs using a diameter of 500 ⁇ m / relator. Forty pieces of each (sample substrate C) were prepared.
  • the wall surface of the through holes is subjected to an electroless plating process and an electrolytic copper plating process to form a metal layer.
  • each sample substrate A-C is subjected to an etching process to obtain a surface roughness Ra of the surface of the metal layer of 0.05 m, 0.8 m, 0.4 m, 1.1 m, 2.5.
  • Four sheets were prepared, each of which was adjusted to m, 2.8 ⁇ , 3.2 ⁇ , 4.7 ⁇ , 5. and 6.2 m.
  • the surface roughness Ra was adjusted by changing the surface roughness time and the surface temperature, and the surface roughness Ra was measured based on JIS B 0601.
  • Example 1 The resin composition used in Example 1 to be described later was the same as used in forming the light signal passage region. The same one as the fat composition was used.
  • the surface roughness Ra is 0.05 ⁇ m or 6.
  • an epoxy substrate having a thickness of 0.8 mm having a sufficient size is prepared, a through hole having the following shape and surface roughness is formed in the epoxy substrate, and a resin in the through hole is formed. Fill the composition. Then, the filling property of the resin composition, the reliability in the temperature cycle test, and the light transmission property were evaluated for the through holes (light signal passing area) filled with the resin composition.
  • sample substrate D an epoxy substrate is drilled with a diameter of 300 ⁇ m to form five through holes with a center-to-center distance of 250 m, and part of the side surfaces
  • Connecting force S formed of 20 through holes epoxy substrate with 20 through holes having a cross-sectional shape combining straight lines and arcs using a diameter of 500 ⁇ m / relator Twenty-four samples (sample substrate F) were prepared.
  • the resin composition having a refractive index of 1.51 after curing was filled in the through holes and cured. Thereafter, the through holes were formed again by the same method as described above so that the resin composition remained on the wall surfaces of the through holes. Thereafter, for each sample substrate D-F, a rod-shaped grinding wheel having a predetermined number of counts is inserted into the through hole, and the surface roughness Ra of the surface of the resin layer is set to 0.90 m by polishing.
  • Four sheets were prepared, each of which was adjusted to any of 0.15 ⁇ m, 0.3 m, 2.4 m, 4. ⁇ ⁇ ⁇ and 6.5 m.
  • an evaluation sample was completed by filling and curing the resin composition with a refractive index of 1.53 after curing in the through holes.
  • the previously filled resin composition can function as a clad, and the later-filled resin yarn composition can function as a core.
  • the roughened surface can be formed by masking particles other than the opening of the through hole for an optical path and injecting particles or an aqueous solution containing the particles to the resin layer.
  • the resin layer does not serve as a light path
  • the diameter is about 0.1 to 20 / zm
  • the resin layer is transparent and it is transparent because it does not serve as an optical path. There is no need.
  • the surface roughness Ra was either 0.99 ⁇ m or 6.
  • the wall surface of the light signal passing region has a surface roughness Ra within the above-mentioned range.
  • the metal layer may be a single layer or a plurality of two or more layers.
  • FIG. 3 shows a substrate for mounting an IC chip according to the second embodiment.
  • a solder resist layer is formed as the outermost layer, and an optical signal transmitting region passing through the solder resist layer is formed, and an end portion of the portion passing through the solder resist layer of the optical signal passing region.
  • the substrate for mounting an IC chip according to the second embodiment that is, the substrate for mounting an IC chip having an optical signal passing region with an individual through hole structure, is compared with the substrate for mounting an IC chip according to the embodiment shown in FIG.
  • the configuration is the same except that the shape of the optical signal passage area is different. Therefore, here, only the shape of the optical signal passage area will be described in detail.
  • the resin composition 247 is filled in a portion penetrating the substrate 221, the insulating layer 222 and the solder resist layer 234.
  • the diameter of the portion penetrating the solder resist layer 234 is the same as the diameter of the portion penetrating the substrate 221 and the insulating layer 222, and the shape of the longitudinal section of the portion penetrating the solder resist layer 234 is rectangular. is there.
  • the four-channel light receiving element 239 is a solder connection portion 244 so that each of the light receiving portions 239a to 239d faces each of the light signal passing regions 242a to 242d. It is surface mounted through.
  • the input signal to the four-channel light receiving element 239 can be transmitted through any of the light signal passing areas 242a-24d.
  • the respective optical signal passage areas are individually formed independently so as to transmit optical signals from the respective light receiving sections 239a to 239d of the four channels of the light receiving elements.
  • the portions of the optical signal transmitting regions 242 a-242 d penetrating the solder resist layer 234 may be filled with the resin composition as shown in FIG. It is also good.
  • a metal layer may be formed around the portion of the optical signal transmitting region 242 a-242 d which penetrates the substrate 221 and the insulating layer 222.
  • the metal layer is formed, as the material etc., the same ones as those described in the first embodiment can be mentioned.
  • microlenses 246a to 246d are disposed at the end of the light signal passing region 242a to 242d opposite to the side on which the light receiving element 239 is mounted.
  • the light signal to the light receiving element 239 passes through the microlenses 246a to 246d.
  • the transmission loss of the optical signal can be suppressed by arranging the microlenses 246a-246d at one end of each of the optical signal transmitting regions 242a-242d.
  • microlenses 246a to 246d are disposed directly on the resin composition 247 formed on the portion passing through the substrate 221, the insulating layer 222 and the solder resist layer 234 of the optical signal transmitting region 242a to 242d. .
  • a microphone lens array in which four lenses are arranged in parallel may be disposed via an adhesive.
  • the micro lens When the micro lens is directly disposed, it is desirable that the micro lens be directly disposed at the end of the light signal passing area subjected to the water repellent treatment or the hydrophilic treatment.
  • the lower limit of the diameter of the cross section of each light signal passage area is preferably 100 m, and the upper limit thereof is preferably 500 ⁇ m. If the diameter is less than 100 ⁇ m, the optical path may be blocked, and it is difficult to fill the optical signal transmitting region with the uncured resin composition. On the other hand, even if the diameter is larger than 500 m, the transmission of the optical signal is not improved so much, which may be a cause of inhibiting the degree of freedom in the design of the conductor circuit etc. constituting the IC chip mounting substrate. is there.
  • the more desirable lower limit is 250 m, and the more desirable upper limit is 350 m. This is because both the optical signal transmission property and the design freedom are excellent, and no inconvenience occurs when the uncured resin composition is filled.
  • the diameter of the cross section of the portion passing through the substrate and the insulating layer of the light signal passing region is the diameter of the cross section when the light signal passing region is cylindrical, and the diameter of the cross section when the light signal passing region is elliptical.
  • the length of the section and the length of the section are also referred to.
  • the diameter of the cross section is not constant, it means the diameter of the cross section on the incident end side.
  • the cross section of the light signal passing area means a cross section in a direction parallel to the main surface of the IC chip mounting substrate, and the vertical cross section of the light signal passing area is a direction perpendicular to the main surface. I say a cross section.
  • the electric signal transmitted through the external optical component has the microlenses 246 a-46 d and the light.
  • the light is transmitted to the light receiving element 239 (the light receiving portion 239a) through the signal passing area 242 and converted into an electric signal by the light receiving element 239, and then an IC chip through the solder connection portion 243, the conductor circuit 224, the via hole 227 and the like. It will be sent to 240 for processing.
  • the substrate for mounting an IC chip of the above-described embodiment for example, when the thickness of the substrate for mounting an IC chip is 0.4 mm and the distance between the channels of the VCSEL is 250 ⁇ m, the optical signal can be transmitted without being reflected by the wall surface of the optical signal passage region, and the thickness of the IC chip mounting substrate is 1. If it is 2 mm and the distance between each channel of the VCSEL is 500 m, the optical signal passing area of the individual through hole structure having a diameter of 400 m or more is not reflected by the wall surface of the optical signal passing area. It became clear that it could be transmitted.
  • the substrate for mounting an IC chip in the substrate for mounting an IC chip according to the first aspect of the present invention, in the light receiving element mounted at a position close to the IC chip, optical Z electrical signal conversion is performed, so that signal transmission distance is short. It is highly reliable and can support high-speed communication.
  • the substrate is disposed at the end of the optical signal passage region.
  • the diameter of the micro lens to be provided may be appropriately determined depending on the pitch between the channels in the array element. For example, in the case of using an array element of 250 / zm pitch, 100 to 190 ⁇ m is desirable. In this case, the diameter of the light signal passage area is preferably 150 to 200 ⁇ m.
  • the diameter of the light signal passage area is preferably 150 to 450 m.
  • the reason why the diameter of the individually formed optical signal passage region is preferably 150 m or more is as follows.
  • the optical signal transmitting region of the above-described embodiment is filled with a resin yarn composite as required. Force to be Formed
  • the through hole is usually formed using a drill, and when forming the through hole by drilling, it is difficult to form a through hole whose diameter is less than 150 m.
  • each optical signal passage region of the individual through hole structure examples include a cylinder, a prism, an elliptic cylinder, and a columnar body having a bottom surface surrounded by a straight line and an arc.
  • FIG. 4 shows a substrate for mounting an IC chip according to the third embodiment.
  • a solder resist layer is formed as the outermost layer, and an optical signal transmission region passing through the solder resist layer is formed, and an end portion of the portion passing through the solder resist layer of the optical signal passage region.
  • the conductor circuit 324 and the insulating layer 322 are laminated on both sides of the substrate 321, and between the conductor circuits sandwiching the substrate 321 and the insulating layer 322.
  • the conductor circuits are electrically connected by through holes 329 and via holes 327.
  • a solder resist layer 334 is formed on the outermost layer.
  • a light signal passing area 342 in the shape of a recess is formed.
  • the four-channel light receiving element 339 and the IC chip 340 are mounted by force wire bonding 349 respectively, and further, optical signal passage A portion of the area 342 is filled with the resin composition 347.
  • solder bumps 337 are formed on the solder resist layer 334 on the side where the optical signal transmission region is formed.
  • the IC chip may be mounted on the surface opposite to the side where the optical signal passage area is formed.
  • the input signal to the four-channel light receiving element 339 is transmitted through the light signal passing area 342.
  • the light signal passing region 342 is formed in a concave shape in a part of the insulating layer 322 and the solder resist layer 334 so as to transmit light signals for four channels.
  • the portion penetrating the solder resist layer 334 of the optical signal transmitting region 342 may be filled with the resin composition, or may be formed by an air gap. .
  • microlenses 346 a to 346 d are disposed at the end of the light signal passing area 342 opposite to the side on which the light receiving element 339 is mounted.
  • each of the micro lenses 346a to 346d is individually disposed at a position corresponding to each channel 339a to 339d of the light receiving element 339.
  • the light signal to the light receiving element 339 passes through the micro lenses 346a to 346d.
  • the microlenses 346a to 346d at one end of the light signal passage area 342, the transmission loss of the light signal can be suppressed.
  • microlenses 346 a-346 d are disposed directly on the resin composition 347 filled in the light signal passing area 342.
  • a microphone lens array in which four lenses are arranged in parallel may be disposed via an adhesive.
  • the electric signal transmitted through the external optical component has the microlenses 346a to 46d and the light.
  • the light is transmitted to the light receiving element 339 (light receiving unit 339a) through the signal passing area 342 and converted into an electric signal by the light receiving element 339, and then the IC chip 340 through the wire bonding 349, the conductor circuit 324, the via hole 327 and the like. And will be processed.
  • the light receiver mounted at a position close to the IC chip In the device, since optical-electrical signal conversion is performed, the reliability of signal transmission in which the transmission distance of the electric signal is short can be excellent, and higher speed communication can be supported.
  • solder bumps 337 are formed on the solder resist layer 334 via the metal plating layer, an electric signal between the IC chip 340 and the external substrate etc. Transmission can also be performed via solder bumps 337.
  • the substrate for mounting an IC chip can be connected to an external substrate such as a mother board via the solder bumps, and in this case, The IC chip mounting substrate can be placed at a predetermined position by the self-alignment function of the solder.
  • a cylinder, a prism, an elliptic cylinder, and a plurality of cylinders are arranged in parallel, and a shape in which part of side faces of cylinders adjacent to each other is connected.
  • a columnar body having a bottom surface surrounded by a straight line and a circular arc.
  • the area of the cross section of the above-mentioned recessed portion shaped optical signal transmitting region is desirably 100 mm 2 or more. More preferably, it is 200 mm 2 or more. This size is suitable for transmitting an optical signal that is not reflected by the wall surface of the optical signal transmission area.
  • the light receiving element or the like mounted in the recessed portion of the optical signal transmitting region is the outermost layer on the interlayer resin insulating layer. It may be connected by wire bonding to a conductor circuit etc. formed on
  • the IC chip mounting substrate on which the light receiving element is mounted as the optical element has been described.
  • a light emitting element may be mounted instead of the light receiving element as an optical element.
  • the configuration of the IC chip mounting board is the same as the above except that the light receiving element is replaced with the light emitting element. The configuration is sufficient.
  • the substrate for mounting an IC chip of the first present invention is, as an optical element, as shown in FIG. Both the light emitting element and the light receiving element are mounted!
  • a conductor circuit 424 and an insulating layer 422 are laminated on both sides of the substrate 421, and the conductor circuits sandwiching the substrate 421 and the insulating layer 422 are sandwiched.
  • the conductor circuits are electrically connected by through holes 429 and via holes 427, respectively.
  • a solder resist layer 434 is formed on the outermost layer.
  • an optical signal passage region 442 is provided to penetrate the substrate 421, the insulating layer 422 and the solder resist layer 434.
  • a portion penetrating the substrate 421, the insulating layer 422 and the solder resist layer 4434 is filled with the resin composition 447, and a portion penetrating the substrate 421 and the insulating layer 422.
  • a metal layer 445 is formed around the resin composition 447.
  • the diameter of the portion penetrating the solder resist layer 434 is the same as the diameter of the portion penetrating the substrate 421 and the insulating layer 422, and the shape of the longitudinal section of the portion penetrating the solder resist layer 434 is rectangular. is there.
  • optical signal transmitting region 442 penetrating the solder resist layer 434 may be filled with the resin composition as shown in FIG. 5 or may be formed by an air gap.
  • a metal layer 445 may be formed around the portion passing through the substrate 421 and the insulating layer 422 of the optical signal transmission region 442 without having to be formed.
  • microlenses 446a and 446b are disposed at the end opposite to the side on which the optical elements (the light emitting element 438 and the light receiving element 439) of the light signal passing area 442 are mounted. It is done.
  • the light signal entering the light signal passing area 442 and the light signal exiting from the light signal passing area 442 pass through the microlenses 446a and 446b.
  • the transmission loss of the light signal can be suppressed.
  • microlenses 446 a and 446 b are a substrate 421 of the light signal passing area 442, an insulating layer 42. 2 and the solder resist layer 434 are directly provided on the resin composition 447 formed on the part passing through.
  • a light emitting element 438 and a light receiving element 439 are soldered on one surface of the IC chip mounting substrate 420 so that each of the light emitting portion 438 a and the light receiving portion 439 a faces the light signal passing area 442.
  • the IC chip 440 is surface-mounted via a solder connection portion 443 while being surface-mounted via the 444.
  • solder bumps 437 are formed on the solder resist layer 434 on the other surface of the IC chip mounting substrate 420.
  • the electric signal sent out from the IC chip 440 is a light emitting element 438 [A light emitting element after being sent through the solder connection portions 443, 444, the conductor circuit 424, the no ho ho no 427, the snoley ho lore 429, etc.
  • the light signal converted at 438 to an optical signal and emitted from the light emitting element 438 (light emitting portion 438a) is sent out to an external optical element (optical fiber, optical waveguide, etc.) via the optical signal passing area 442 and the micro lens 446a. It will be.
  • an optical fiber, an optical waveguide or the like can be used.
  • An optical signal to which an external force is also transmitted via a light receiving element 439 (light receiving unit 439a) via a micro lens 446b and an optical signal passing area 442 is transmitted to the light receiving element 439.
  • And is sent to the IC chip 440 through the solder connection portions 443, 444, the conductor circuit 424, the via hole 427, the through hole 429, and the like.
  • the reliability of signal transmission in which the transmission distance of the electric signal is short is excellent, and high speed is achieved. It can correspond to communication.
  • the solder bumps 437 are formed on the solder resist layer 434 through the metal-plated layer, the electric signal from which the IC chip force is also transmitted is as described above. After being converted into light signals, they are not only sent out through the light signal passage area 442 etc. but also sent to the external substrate etc. through the solder bumps 437.
  • the substrate for mounting an IC chip can be connected to an external substrate such as a mother board via the solder bumps, and in this case, The IC chip mounting substrate can be placed at a predetermined position by the self-alignment function of the solder.
  • FIG. 5 shows a substrate for mounting an IC chip on which a light emitting device and a light receiving device of one channel are mounted, the substrate for mounting an IC chip on which both the light emitting device and the light receiving device are mounted. Also, multi-channel optical elements can be implemented.
  • the structure of the optical signal passage area may be a single through hole structure, or an individual through hole structure.
  • the light receiving element and the light emitting element can be mounted on the substrate for mounting an IC chip having the recessed portion shaped light signal passing area.
  • the IC chip mounting substrate according to the first aspect of the present invention having such a configuration can be manufactured, for example, using the method for manufacturing an IC chip mounting substrate according to the sixth aspect of the present invention.
  • the method for producing a substrate for mounting an IC chip according to the sixth aspect of the present invention is
  • the method of manufacturing a substrate for mounting an IC chip according to the sixth aspect of the present invention includes a step of forming an optical signal passage region and a step of disposing a microlens at an end of the optical signal passage region. Therefore, the IC chip mounting substrate according to the first aspect of the present invention, that is, the IC chip mounting substrate for transmitting an input / output signal of an optical element through an optical signal passage region can be suitably manufactured. Therefore, by using the manufacturing method of the sixth aspect of the present invention, an IC chip mounting substrate excellent in optical signal transmission performance can be manufactured.
  • a multilayer wiring board manufacturing process for manufacturing a multilayer wiring board will be described in order of processes.
  • a multilayer wiring board can be manufactured through the following steps (1) to (9).
  • a conductor circuit is formed on the insulating substrate.
  • the insulating substrate include a glass epoxy substrate, a polyester substrate, a polyimide substrate, a bismaleimide-titadine (BT) resin substrate, a thermosetting polyurethane ether substrate, a copper-clad laminate, an RCC substrate, and the like. It can be mentioned.
  • a ceramic substrate such as an aluminum nitride substrate, a silicon substrate, a glass substrate or the like may be used.
  • the conductor circuit can be formed, for example, by forming a solid conductor layer on the surface of the insulating substrate by electroless plating or the like and then performing an etching process. In addition, it may be formed by subjecting a copper clad laminate or an RCC substrate to an etching process.
  • connection between the conductor circuits sandwiching the insulating substrate is made by through holes
  • Through holes are formed by performing electroless plating and the like.
  • the diameter of the through hole for through holes is usually 100 to 300 m.
  • Examples of the roughening formation treatment include blackening (oxidation)-reduction treatment, etching treatment using an etching solution containing a cupric complex and an organic acid salt, Cu-Ni-P needle-like alloy plating, and the like. Treatment etc.
  • the lower limit of the average roughness of the rough surface is usually 0.1 ⁇ m, and the upper limit is preferably 5 / z m.
  • the lower limit of the average roughness is preferably 2 m and the upper limit is preferably 4 m, in consideration of the adhesion between the conductor circuit and the insulating layer, and the influence on the electrical signal transmission capability of the conductor circuit.
  • This roughening treatment may be carried out before the resin filler is filled in the through holes to form a roughened surface on the wall surfaces of the through holes. This is because the adhesion between the through hole and the resin filler is improved.
  • thermosetting resin a thermosetting resin, a photosensitive resin, a resin in which a photosensitive group is provided to a part of the thermosetting resin, or the like, on a substrate on which a conductor circuit is formed, Or a non-hardened resin layer consisting of a resin-resin composite containing a resin and a thermoplastic resin, or a resin layer consisting of a thermoplastic resin Form.
  • the same resin as the resin used for the substrate can be used to form these resin layers.
  • the uncured resin layer may be formed by applying an uncured resin with a roll coater, a curtain coater or the like, or by thermocompression bonding an uncured (semi-cured) resin film. it can.
  • the resin layer made of the above-mentioned thermoplastic resin can be formed by thermocompression bonding of a resin molded product formed into a film shape.
  • the pressure bonding of a resin film which is desired for the method of thermocompression bonding of an uncured (semi-cured) resin film, can be performed using, for example, a vacuum laminator or the like.
  • the pressure bonding conditions are not particularly limited, and if selected appropriately in consideration of the composition of the resin film, etc., the pressure is normally reduced, the pressure is 0.25-1, OMPa, and the temperature is 40-70. C, vacuum degree 13-1300 Pa, time 10- 120 seconds preferably to be performed.
  • thermosetting resin examples include epoxy resin, phenol resin, polyimide resin, polyester resin, bismaleimide resin, polyolefin-based resin, polyethylene terephthalate resin, and polyphenylene resin. Resins, fluorine resins and the like can be mentioned.
  • epoxy resin examples include, for example, novolac type epoxy resin such as phenol novolac type and cresol nopolac type, and cycloaliphatic epoxy resin modified with dicyclopentadiene.
  • Examples of the photosensitive resin include acrylic resin and the like.
  • thermosetting group of the thermosetting resin described above is caused to undergo an acrylation reaction with methacrylic acid or acrylic acid. And the like.
  • thermoplastic resin examples include: phenoxyseins, polyethersulphone (PES), polysulphone (PSF), polyselenone (PPS), polyphenylene sulfide (PPES), polyphenylene ether ( PPE) polyether imide (PI) etc. are mentioned.
  • thermosetting resin photosensitive photosensitive resin including a resin in which a photosensitive group is added to a part of the thermosetting resin
  • thermoplastic resin a thermoplastic resin
  • specific combination of a thermosetting resin and a thermoplastic resin for example, Phenol resin z Polyether sulfone, Polyimide resin Z Polysulfone, Epoxy resin Z Polyether sulfone, Epoxy resin Z Phenoxy resin etc.
  • specific combinations of photosensitive resin and thermoplastic resin include, for example, acrylic resin Z phenoxy resin, epoxy resin Z acrylic resin in which a part of the epoxy group is acrylated, and the like.
  • the resin layer may be composed of two or more different resin layers.
  • the above-mentioned resin layer may be formed using a resin composition for rough surface formation.
  • the above-mentioned resin composition for forming a rough surface is, for example, an uncured heat-resistant resin which is hardly soluble in a rough solution which is at least one selected from an acid, an alkali and an oxidizing agent.
  • a substance which is soluble in at least one kind of crude solution which is selected from acid, alkali and oxidizing agent is dispersed.
  • the uncured resin insulating layer is cured and the via hole is formed. Form an opening for insulating layer.
  • through holes for through holes are formed as needed.
  • the via holes be formed by laser processing.
  • a photosensitive resin used as the material of the insulating layer, it may be formed by exposure and development.
  • a via hole is formed in the resin layer made of a thermoplastic resin to form an insulating layer.
  • the via holes can be formed by laser processing.
  • the through holes for through holes may be formed by drilling, laser processing, or the like.
  • Examples of the laser used for the above laser processing include a carbon dioxide gas laser, an ultraviolet laser, and an excimer laser. Among these, excimer lasers and short pulse carbon dioxide gas lasers are preferred.
  • a thin film conductor layer is formed on the surface of the insulating layer.
  • the thin film conductor layer can be formed by methods such as electroless plating and sputtering.
  • Examples of the material of the thin film conductor layer include copper, nickel, tin, zinc, cobalt, thallium, lead and the like.
  • copper, copper and nickel are preferred from the viewpoint of excellent electrical characteristics, economy and the like.
  • the thickness of the thin film conductor layer in the case of forming the thin film conductor layer by electroless plating, the lower limit of the thickness is preferably 0.33 1 1 and the upper limit is preferably 2 O / z m. . More preferably, the lower limit is 0.6 m and the upper limit is 1. In the case of sputtering, 0.1–1. O / z m is desirable.
  • a rough surface may be formed on the surface of the insulating layer.
  • the adhesion between the insulating layer and the thin film conductor layer can be improved.
  • the thin film conductor layer is formed on the insulating layer, the thin film conductor layer is also formed on the wall surfaces of the through holes. Depending on the situation, it may be a hole.
  • a plating resist is formed on a part of the insulating layer on the surface of which the thin film conductor layer is formed.
  • the above-mentioned plating resist can be formed, for example, by adhering a photosensitive dry film, followed by closely arranging a photomask which is also equal in strength to a glass substrate on which a plating resist notar is drawn, and performing exposure and development processing.
  • electrolytic plating is performed using the thin film conductor layer as a lead and the electrolytic plating layer is formed in the above-mentioned non-coated portion. Copper plating is desirable as the electrolytic plating
  • the thickness of the above-mentioned electrolytic plating layer is preferably 5 to 20 m.
  • a conductor circuit (including via holes) can be formed by removing the plating resist and the thin film conductor layer under the plating resist.
  • the removal of the plating resist can be carried out, for example, by using an alkaline aqueous solution or the like.
  • the removal of the thin film conductor layer can be achieved by removing a mixture of sulfuric acid and hydrogen peroxide, sodium persulfate, ammonium persulfate,
  • the etching may be performed using an etching solution such as diiron or copper borate.
  • the catalyst on the insulating layer may be removed using an acid or an oxidizing agent! /. It is because the fall of an electrical property can be prevented.
  • the conductor circuit may be formed using a method of applying an etching process.
  • a resin filler may be filled in the through holes.
  • a covering layer may be formed to cover the surface layer portion of the resin filler layer by performing electroless plating or the like.
  • a lidding layer when a lidding layer is formed, the surface of the lid plating layer is subjected to a roughening treatment, if necessary, and the above (3) and (4) are carried out.
  • An insulating layer is formed by repeating the steps of In this process, through holes may or may not be formed.
  • the conductor circuit and the insulating layer may be laminated by repeating the steps (5) to (8).
  • the manufacturing method of the multilayer wiring board detailed here is a semi-additive method
  • the manufacturing method of the multilayer wiring board manufactured at the process of said (a) is not limited to a semi-additive method
  • the full additive method, subtra It can be carried out using the active method, the batch lamination method, the conformal method, etc.
  • thermosetting resin photosensitive resin, resin in which a photosensitive group is added to a part of thermosetting resin, resin composite containing these and thermoplastic resin, etc.
  • insulating layer Form an insulating layer using The material of the insulating layer is not limited to them, and may be, for example, an insulating material such as ceramic, silicon, glass and the like.
  • the step (b) above ie, the multilayer wiring board
  • An optical signal passage region forming step of forming an optical signal passage region passing through the through hole or forming an optical signal passage region of a recess shape in a part of the multilayer wiring board is performed.
  • each of the through hole and the recess which functions as an optical signal passage area formed in this step is hereinafter also referred to as an optical path through hole and an optical path recess.
  • an optical path through hole or an optical path recess is formed in the multilayer wiring board manufactured through the above-described steps.
  • the formation of the through hole for an optical path and the recess for an optical path is performed by, for example, drilling, router processing, laser processing, mold cover, or the like.
  • Examples of the laser used in the laser processing include the same ones as the lasers used in the formation of the via hole opening.
  • the formation position of the through hole for an optical path is not particularly limited, and may be appropriately selected in consideration of the design of a conductor circuit, the mounting position of an IC chip, an optical element, and the like.
  • the optical path through hole is desirably formed for each optical element such as a light receiving element or a light emitting element, or may be formed for each signal wavelength.
  • the above-mentioned optical path concave portion is formed so that an IC chip can be further mounted therein along with an optical element such as a light receiving element or a light emitting element.
  • the optical path recess may be formed.
  • the opening penetrating the insulating layer is preferably formed by a force drill which can be formed by the same method as the above-described method for forming the via hole.
  • the following method when forming an optical path through hole having a shape in which a part of the wall surfaces of a plurality of cylinders is connected as an optical path through hole of the collective through hole structure, the following method is used. Is desirable. That is, it is desirable to form cylinders that are not adjacent to each other first, and then form a cylinder in which part of the side surfaces are connected between the cylinders that are not adjacent to each other. Therefore, in the case of forming an optical path through hole having a shape in which part of wall surfaces of a plurality of cylinders are connected, it is desirable that the number of cylinders be an odd number.
  • the space between the pad (electrode) for mounting the optical element and the through hole for an optical path functioning as an optical signal passage area is small in the design.
  • the through holes if the through holes are out of position, or if the through holes are larger than the design, the through holes will act on the pads and the pads will peel off. The area of the node may be reduced.
  • the present inventors verify the relationship between the formation sequence of through holes and the positional deviation of the through holes in the case of forming an optical path through hole having a shape in which a part of the wall surfaces of a plurality of cylinders is connected. Since the test was conducted, the test is described with reference to Figure 20-1, and the data are shown below. Here, the examination was conducted by forming an optical path through hole that can be optically connected to the 4-channel optical element.
  • One (d) is a schematic diagram for explaining a test method for verifying the relationship between the formation order of the through holes and the positional deviation of the through holes.
  • the diameter of the imaginary circle was measured by three-point plot, and it was calculated by using this as the diameter of the through hole.
  • the positional deviation of the through hole is calculated by calculating the amount of deviation of the actual center position of the remaining through holes from the designed center position based on the position of the through hole formed first, and the maximum value thereof is calculated.
  • a drill with a diameter of 300 ⁇ m should be used so that the distance between centers becomes 250 m, and five through holes are shown in Fig. 20-1 (a). It was formed in the order of the numbers shown. In addition, five through holes were formed by connecting part of the side surfaces.
  • the average hole diameter is 298. 2 m (standard deviation ⁇ : 4.1 m), and the maximum displacement amount is 8.4 ⁇ m.
  • a drill with a diameter of 300 ⁇ m should be used to provide a center-to-center distance of 250 m, and five through holes as shown in Fig. 20-1 (b). It was formed in the order of the numbers shown. In addition, five through holes were formed by connecting part of the side surfaces.
  • the average hole diameter was 298. 52 m (standard deviation ⁇ : 4.3 m), and the maximum displacement amount was te at 7.3 ⁇ m.
  • the average hole diameter was 301 m (standard deviation ⁇ : 6.3 m), and the maximum displacement amount was 1 7.9 ⁇ m.
  • five through holes are arranged so that the center-to-center distance is 250 ⁇ m, using a drill with a diameter of 150 m as a comparison target. They were formed in the order of the numbers shown in).
  • five independent through holes are formed, and the five through holes are formed as one set of through holes.
  • the average hole diameter is 148.6 m (standard deviation ⁇ : 3.9 m), and the maximum displacement amount is 7.4 ⁇ m.
  • FIGS. 20-2 (e) and (f) are schematic views for explaining an optical path for transmitting an optical signal having a collective through-hole structure.
  • the collective through holes include a cylinder, a prism, an elliptic cylinder, a columnar body having a bottom surrounded by a straight line and an arc, and a plurality of cylinders are arranged in parallel. Shapes in which parts are connected (see Fig. 20-1 (a) and 1 (c)) may be mentioned.
  • Figure 20-2 (e) shows an example of the bottom surface surrounded by straight lines and arcs, with semi-circles at both ends of the rectangle.
  • the optical path through hole of the collective through hole structure having such a bottom surface shape can be formed by a router card using a drill with a diameter of 300 m. It can also be formed by mold molds
  • FIG. 20-2 (f) shows a shape in which a corner of a rectangle is chamfered so as to have a 1Z4 arc, as an example of a bottom surface surrounded by a straight line and an arc.
  • the optical path through hole of the collective through hole structure having such a bottom surface shape can be formed by router force using a drill with a diameter of 100 m. It can also be formed by mold molding.
  • the through holes for an optical path as shown in FIGS. 20-2 (e) and (f) can be formed by one-time router processing or mold processing.
  • the through hole for the optical path can be formed in one process, it is necessary for the optical path for the shape as shown in FIG. 20-1 (a) 1 (c), which requires a plurality of forming processes.
  • variations in position accuracy and the size of the through holes for the optical path are less likely to occur.
  • the filling properties of the resin composition to be filled in the through hole for an optical path it is as shown in FIG. 20-1 (a) 1 (c) formed through a plurality of drilling steps.
  • the vicinity of the portion where the adjacent cylindrical through holes are connected has a convex shape, so When filled with the composition, force may generate voids.
  • the through hole for an optical path as shown in FIGS. 20-2 (e) and (f) formed in one drilling step, It was impossible for voids to occur.
  • the light path through hole having the shape shown in FIG. 20-1 (a) and the light path through hole having the shape shown in FIG. 20-2 (e) and (f) After filling and curing the fat composition, cross-cutting was performed, and the presence or absence of generation of voids was confirmed with a microscope.
  • the incidence rate was 1.7%, while the incidence rate was SO% for the optical path through holes having the shapes shown in Figure 20-2 (e) and (f). From this point of view, from the viewpoint of the filling property of the resin composition, the shape as shown in FIGS. 20-2 (e) and (f) is shown in FIG. 20-1 (a)-(c). It became clear that it is more desirable than such a shape.
  • the wall surfaces such as the optical path through holes may be subjected to desmearing as required.
  • the desmear treatment can be performed, for example, by treatment with a permanganic acid solution, plasma treatment, corona treatment, or the like.
  • the wall surfaces such as the through holes for the optical path may be roughened as necessary.
  • a rough surface formation step may be performed. This is because the adhesion with the metal layer and the resin composition can be improved.
  • the rough surface is formed by, for example, an acid such as sulfuric acid, hydrochloric acid or nitric acid; an oxidizing agent such as chromic acid, chromium sulfuric acid or permanganate or the like to form a through hole for an optical path such as a substrate or insulating layer. It can be carried out by dissolving the exposed portion. It can also be performed by plasma treatment or corona treatment.
  • an acid such as sulfuric acid, hydrochloric acid or nitric acid
  • an oxidizing agent such as chromic acid, chromium sulfuric acid or permanganate or the like to form a through hole for an optical path such as a substrate or insulating layer. It can be carried out by dissolving the exposed portion. It can also be performed by plasma treatment or corona treatment.
  • the lower limit of the surface roughness Ra of the rough surface is preferably 0.5 ⁇ m, and the upper limit is preferably 5 ⁇ m.
  • the more desirable lower limit of the surface roughness Ra is 1 ⁇ m, and the more desirable upper limit is 3 ⁇ m. If it is this range, it is the force which will be excellent in adhesion nature with a metal layer and a resin composition.
  • the formation of the metal layer can be performed, for example, by a method such as electroless plating, sputtering, vacuum deposition or the like.
  • a catalyst core is applied to the wall surface of the optical path through hole etc. After that, the substrate on which the optical path through hole etc. is formed is electroless plated. And so on.
  • electroless plating and sputtering may be used to form a metal layer of two or more layers, or electroless plating or sputtering followed by electrolytic plating to form a metal layer of two or more layers. You may
  • the metal layer may be a metal layer having a gloss.
  • a metal layer is formed on the wall surface of the through hole for an optical path and the like, and the outermost layer is formed on the outermost insulating layer formed in the step (a). It is desirable to form a conductor circuit.
  • the metal layer is also formed on the entire surface of the insulating layer.
  • a plating resist is formed on the metal layer formed on the surface of the insulating layer.
  • the formation of a plating resist can be achieved, for example, by applying a photosensitive dry film, followed by closely placing a photomask such as a glass substrate on which a plating resist pattern is drawn, and performing exposure and development processing. It is good.
  • electrolytic plating is performed using the metal layer formed on the insulating layer as a plating lead, and an electrolytic plating layer is formed on the portion where no resist is formed, and then the above-mentioned plating resist is formed.
  • An independent conductor circuit is formed on the outermost insulating layer by removing the metal layer under the plating resist and the plating resist.
  • the metal layer is made of the same material as the conductor circuit. And is desirable.
  • a roughened surface may be formed on the wall surface of the metal layer.
  • the formation of the above-mentioned roughened surface is, for example, blackening (oxidation) reduction treatment, etching treatment using an etching solution containing a cupric complex and an organic acid salt, etc., Cu—Ni—P needle-like alloy plating It can be performed using the processing by
  • the wall surface of the through hole for an optical path formed by the method for manufacturing a substrate for mounting an IC chip of the sixth invention may be made of resin.
  • the wall surface of the optical path through hole and the like may be formed even if the process is not particularly performed in this process. It will be constituted by the effect.
  • the resin layer forming step may be separately performed so that the wall surface of the optical path through hole and the like is formed of the resin layer.
  • the composition of the resin composition to be filled in the resin layer on the wall surface and in the optical signal transmitting region be substantially the same except for the difference in refractive index. It is a force that improves the adhesion between the two.
  • the surface of the resin layer may be treated with a primer to improve the adhesion between the two.
  • the shape is similar to the cross section of the optical path through hole formed first.
  • the optical path through holes of the individual through hole structure may be formed.
  • a specific method for filling the uncured resin yarn or composition is not particularly limited, and for example, methods such as printing and potting can be used.
  • the uncured resin composition When the uncured resin composition is filled by printing, the uncured resin composition may be printed at one time or may be divided and printed twice or more. Also, printing may be performed on both sides of the multilayer wiring board.
  • the uncured resin composition when the uncured resin composition is filled, the uncured resin composition in an amount slightly larger than the inner product of the above-mentioned through holes for optical path etc. is filled, and after the filling is completed, the optical path is completed. It may be possible to remove excess resin composition spilled out from through holes and the like.
  • the removal of the excess resin composition can be performed, for example, by polishing or the like.
  • the fat composition may be in a semi-cured state or may be in a completely cured state. It may be selected appropriately in consideration of it.
  • the resin composition filled in the optical path concave portion is sealed on the surface of the multilayer wiring board so as not to spread without limitation on the surface of the multilayer wiring board. You may form a frame.
  • a conductor circuit is formed on the surface of the insulating layer.
  • a metal layer is formed on the surface of the outermost insulating layer at the same time in the metal layer forming step, and an independent conductor circuit can be formed by performing the above-described process.
  • the conductor circuit can be formed on the surface of the insulating layer by the method described above.
  • the thin film conductor layer may be thickened by electrolytic plating, if necessary, and then etched.
  • the above-mentioned optical signal passage area may be performed, and then the conductor circuit may be formed by etching.
  • the optical element is mounted before the resin composition is filled.
  • the IC chip in the recess for the optical path, it is also necessary to mount the IC chip as well.
  • mounting of the IC chip can be done according to the design. It is not necessary to mount it in the recess for the optical path! ,.
  • a part of the conductor circuit is exposed on the bottom surface of the optical path recess so as to be a connection terminal to an optical element or the like. After that, a plating layer may be formed on the exposed portion of the conductor circuit, if necessary.
  • the optical element and the IC chip are electrically connected to the conductor circuit of the multilayer wiring board.
  • it may be connected by wire bonding to a conductor circuit formed on the outermost insulating layer.
  • the attachment of the optical element and the IC chip can be performed by, for example, a eutectic bonding method, a solder bonding method, a resin bonding method, or the like.
  • an optical element or the like may be attached using silver paste or gold paste.
  • a conventionally known method that is, a nail head 'bonding method or an edge bonding method can be used.
  • the optical element or the like may be mounted by tape bonding, flip chip bonding or the like.
  • the solder resist layer can be formed by performing the following steps (1) and (2).
  • a layer of a solder resist composition is formed on the outermost layer of a multilayer wiring board on which through holes for optical paths and the like have been formed.
  • the layer of the above-mentioned solder resist composition is formed using, for example, a solder resist composition composed of polyphenylene ether resin, polyolefin resin, fluorine resin, thermoplastic elastomer, epoxy resin, polyimide resin and the like. can do.
  • an opening (hereinafter, also referred to as an opening for an optical path) communicating with the through hole for an optical path or the like is formed.
  • it can be formed by exposure development processing, laser processing, or the like.
  • the opening for an optical path it is desirable to simultaneously form an opening for forming a solder bump (IC chip or an opening for mounting an optical element).
  • the formation of the opening for the optical path and the formation of the opening for forming the solder bump may be performed separately.
  • a resin film having an opening at a desired position is prepared in advance, and the resin film is attached to form an opening for an optical path and an opening for forming a solder bump. You may form a solder resist layer.
  • a solder resist layer having an opening communicating with the optical path through hole is formed on the multilayer wiring board in which the optical path through hole is formed. It can be formed.
  • an uncured resin composition may be filled into the opening for an optical path formed in the above-mentioned sonoreder resist layer by the same method as the above-mentioned through hole for an optical path or the like. After the opening for the optical path of the solder resist layer is filled with the uncured resin composition as described above, the uncured resin composition is subjected to a curing treatment to pass an optical signal composed of the resin composition. It can form a region.
  • the metal layer is also formed on the wall surface of the light path opening formed in the solder resist layer May be formed.
  • the exposed surface of the resin composition exposed to the equal force of the through hole for an optical path be polished to make the exposed surface flat.
  • polishing treatment can be performed by, for example, puff polishing, polishing by sandpaper, mirror polishing, clean polishing, lapping or the like.
  • chemical polishing may be performed using an acid, an oxidizing agent, a chemical solution or the like.
  • polishing may be performed by combining two or more of these methods.
  • the microlens when the resin composition is filled in the light signal passing area, it may be directly arranged on the resin composition. In addition, it may be disposed in the above-mentioned optical signal passage area via an adhesive layer. Also, the micro lens array may be disposed via the adhesive layer.
  • an appropriate amount of uncured resin for optical lens is dropped on the resin composition, and the dropped uncured optical lens is dropped.
  • a method of curing the resin may be mentioned.
  • an apparatus such as a dispenser, an inkjet, a micropipette, or a microsyringe can be used.
  • the uncured optical lens resin dropped onto the resin composition using such an apparatus tends to become spherical due to its surface tension, and therefore becomes hemispherical on the resin composition, and then becomes By subjecting the hemispherical uncured resin for an optical lens to a curing treatment, hemispherical microlenses can be formed on the resin composition.
  • the diameter of the microlens formed in this manner and the shape of the curved surface, etc. are appropriately determined according to the wettability between the resin composition and the uncured resin for an optical lens, as appropriate. It can control by adjusting the viscosity etc. of the resin for use.
  • the light path opening may Let's set up the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the micro lens may be directly disposed on the resin composition filled in the optical path through hole inside the optical path opening.
  • the resin composition filled in the through hole for the optical path, the resin composition filled in the opening for the optical path, and The micro lens may be disposed between the
  • a resin for an optical lens is formed at the end of the above-mentioned opening for optical path.
  • the same method as the method of arranging the micro lens by using When the resin composition is filled in the above-mentioned opening for an optical path, for example, after producing a multilayer wiring board having an optical path through hole in which the resin composition is filled in the inner part, light is produced.
  • a microlens is disposed on the resin composition filled in the through hole for a passage using the resin for an optical lens in the same manner as the method described above, and then a solder having an opening for an optical path is formed.
  • a layer is formed, and the resin composition is further filled in the optical path opening, whereby the resin composition filled in the optical path through hole and the resin composition filled in the optical path opening are A method of arranging a lens can be used.
  • the order of the micro lens arrangement and the formation of the solder resist layer may be reversed.
  • the optical path through hole is formed in the step described above.
  • the conductor circuit portion exposed by forming the opening for forming the solder bump is covered with a corrosion resistant metal such as nickel, noradium, gold, silver, platinum or the like, if necessary, to form a semiconductor pad.
  • a corrosion resistant metal such as nickel, noradium, gold, silver, platinum or the like.
  • metals such as nickel gold, nickel silver, nickel palladium, nickel-palladium-gold, and the like.
  • the coating layer can be formed, for example, by plating, vapor deposition, electrodeposition, etc. Among these, it is desirable to form by coating in terms of excellent uniformity of the coating layer.
  • the formation of the solder pad may be performed before the micro-lens disposing step of (C).
  • solder bump is formed by reflow.
  • an optical element (light receiving element and light emitting element) is mounted on the solder resist layer.
  • the mounting of the optical element can be performed, for example, via the above-mentioned solder bumps.
  • the optical element may be attached at the time of filling the solder paste, and the optical element may be mounted simultaneously with the reflow.
  • the optical element may be mounted using a conductive adhesive or the like.
  • the substrate for mounting an IC chip of the first aspect of the present invention described above can be suitably manufactured.
  • the conductor circuit and the insulating layer are laminated on at least one surface of the substrate, and an optical waveguide is formed, and an optical element or an optical element is formed on at least one surface.
  • An optical signal passage area is provided on the mother board,
  • a microlens is disposed at an end of the optical signal passing area on the side on which the optical element or the IC chip mounting substrate is mounted.
  • the optical waveguide is formed in the substrate for the mother board of the second present invention, and the optical signal transmitting region is provided on the substrate for the mother board, the optical waveguide and the optical signal transmission can be obtained. An optical signal can be transmitted through the area.
  • the micro lens is disposed at the end of the above-mentioned light signal passing area on the side of mounting the IC chip mounting substrate etc.
  • diffusion of the optical signal can be suppressed, and the input / output signals of the optical waveguide can be efficiently transmitted. Become. Therefore, it is possible to reduce the transmission loss that would cause losses to the optical signal.
  • the first board substrate can be realized.
  • An optical waveguide is formed on the mother-board substrate of the second present invention, and an optical signal can be transmitted through the optical waveguide.
  • optical waveguide examples include organic optical waveguides made of polymer materials and the like, inorganic optical waveguides made of quartz glass, compound semiconductors and the like, and the like. Of these, organic optical waveguides that are compatible with polymer materials are desirable. It has excellent adhesion to the insulating layer and is easy to process.
  • the polymer material is not particularly limited as long as it has low absorption in the communication wavelength band, and a thermosetting resin, a thermoplastic resin, a photosensitive resin, and a part of the thermosetting resin are photosensitive.
  • the resin include a hardened resin, a resin complex of a thermosetting resin and a thermoplastic resin, and a complex of a photosensitive resin and a thermoplastic resin.
  • acrylic resin such as PMMA (polymethyl methacrylate), deuterated PMMA, deuterofluorinated PMMA, polyimide resin such as fluorinated polyimide, epoxy resin, UV curable epoxy
  • silicone resins such as resin, polyolefin-based resin, deuterated silicone resin and the like, polymers produced by producing siloxane resin and benzocyclobutene.
  • the material is preferably an acrylic resin, an epoxy resin, or a UV curable epoxy resin, and the optical waveguide is a single mode optical waveguide.
  • the material is desirably polyimide resin, silicone resin, or siloxane resin.
  • the thickness of the core portion of the above-mentioned optical waveguide it is desirable that its width be 1 1 100 m and its desired width be 1 1 100 m. If the width is less than 1 m, the formation may not be easy. On the other hand, if the width exceeds 100 m, the reason for inhibiting the degree of freedom in the design of conductor circuits and the like constituting the multilayer printed wiring board Can be
  • the ratio of the thickness to the width of the core portion of the optical waveguide is preferably closer to 1: 1. This is usually because the planar shape of the light receiving portion of the light receiving element or the light emitting portion of the light emitting element is circular. It is also a force.
  • the ratio of the thickness to the width is not particularly limited, and may be about 1: 2 to about 2: 1.
  • the thickness and width of the core portion thereof should be 5 to 15 m. It is particularly desirable that the distance is more than the desired 10 m. In the case where the optical waveguide is a multimode optical waveguide at a communication wavelength of 0.85 m, it is more desirable that the thickness and width of the core portion be 20 to 80 ⁇ m 50 ⁇ m Particularly desirable.
  • particles may be blended in the above-mentioned optical waveguide. This is because the inclusion of the particles causes a crack in the optical waveguide. That is, when particles are not blended in the optical waveguide, a crack is generated in the optical waveguide due to the difference in thermal expansion coefficient between the optical waveguide and another layer (substrate, insulating layer, etc.). However, if the difference in thermal expansion coefficient with the other layers is reduced by combining particles in the optical waveguide to adjust the thermal expansion coefficient, the optical waveguide may crack. It is because
  • the optical waveguide may contain particles such as resin particles, inorganic particles and metal particles in addition to the above-mentioned resin component. By including these particles, it is possible to achieve matching of the thermal expansion coefficient between the optical waveguide and the insulating layer, the solder resist layer, and the like.
  • the specific material and shape of the above-mentioned particles may be the same as the particles contained in the micro-lenses constituting the IC chip mounting substrate of the first present invention.
  • the particle diameter of the particles is shorter than the communication wavelength. This is because the particle size may interfere with the transmission of the light signal as V longer than the communication wavelength.
  • the lower limit of the particle size is 0.11 ⁇ m and the upper limit is 0.8 ⁇ m. If the particles are out of this range, the particle size distribution becomes too broad, and when mixed in the resin composition, the dispersion of viscosity of the resin composition becomes large, and the resin composition is prepared. In such cases, it may be difficult to prepare a resin composition having a predetermined viscosity.
  • the lower limit of the above-mentioned particle diameter is 0.1 ⁇ m and the upper limit thereof is 0.8 ⁇ m. If it is in this range, the resin composition is applied using spin coating, roll coating, etc. In addition, when preparing the fat composition in which the particles are mixed, it becomes easy to adjust to a predetermined viscosity.
  • the above-mentioned particle size has a lower limit of 0. 1 and an upper limit of 0.6 m. This range is particularly suitable for application of the resin composition and formation of the core of the optical waveguide. Furthermore, the variation among the formed optical waveguides, in particular, the variation of the core portion is minimized, which is a force that makes the characteristics of the optical communication device particularly excellent.
  • particles having two or more different particle sizes may be included as long as the particles have a particle size in this range.
  • particles of two or more different particle diameters may be contained.
  • the compounding amount of the above particles is such that the desirable lower limit is 10% by weight, and the more desirable lower limit is 20% by weight.
  • the desirable upper limit of the above particles is 80% by weight, and the more desirable upper limit is 70% by weight. If the compounding amount of the particles is less than 10% by weight, the effect of compounding the particles may not be obtained, and if the compounding amount of the particles exceeds 80% by weight, the transmission of the light signal may be inhibited. It's Ka-oh.
  • the shape of the above-mentioned optical waveguide is not particularly limited, but a sheet-like shape is preferable because the formation thereof is easy.
  • the above-mentioned particles may be blended in both the core and the clad, but no particles are blended in the core. It is desirable that the particles be blended only in the cladding that covers the periphery of the core. The reasons are as follows.
  • an air layer may be formed at the interface between the particles and the resin component depending on the adhesion between the particles and the resin component of the optical waveguide. While the direction of refraction of light changes due to this air layer, and the transmission loss of the optical waveguide may increase, when particles are compounded only in the cladding part, the particles described above are compounded As a result, the problem that the transmission loss of the optical waveguide becomes large does not occur, and a crack occurs in the optical waveguide.
  • an optical path conversion mirror be formed in the above-mentioned optical waveguide.
  • Light path change The optical path can be changed to a desired angle by forming a conversion mirror.
  • the formation of the optical path conversion mirror can be performed by cutting one end of the optical waveguide as described later. it can.
  • a member having an optical path conversion part may be disposed at the tip of the end of the optical waveguide.
  • the optical path conversion mirror may be a mirror on which a metal film is vapor-deposited.
  • the configuration other than the optical waveguides such as the substrate, the insulating layer, and the light signal passage region is substantially the same as the configuration of the first IC chip mounting substrate of the present invention except for the size.
  • the wall surface of the optical signal passage region is made of resin or metal. Further, the wall surface of the optical signal passage region is The surface roughness Ra is preferably 0.1 to 5 m.
  • the light emitted from the above-mentioned optical waveguide becomes collimated light through the above-mentioned micro lens. Further, it enters the above-mentioned optical waveguide through the above-mentioned micro lens For light, it is also desirable that the spot area force at the core of the optical waveguide be 35% or more overlapped with the core.
  • the microlens is directly disposed at an end of the light signal passing region subjected to the water repellent treatment or the hydrophilic treatment.
  • particles are blended.
  • FIGS. 6 and 7 are cross-sectional view schematically showing an example of the second substrate of the present invention.
  • the second embodiment of the mother-board substrate according to the present invention can be roughly divided into two forms according to the form of the optical signal passage area.
  • the optical signal passage region has a collective through hole structure (hereinafter, also referred to as a mother board in the first embodiment) or in the case of an individual through hole structure (in the following, the first one board of the second embodiment).
  • a collective through hole structure hereinafter, also referred to as a mother board in the first embodiment
  • an individual through hole structure in the following, the first one board of the second embodiment.
  • the optical element is a multi-layer substrate.
  • the optical signal passing region is formed of one optical path through which the optical signal from the multi-channel optical element or the optical signal to the multi-channel optical element can be transmitted, and the microlens Preferred is one having an embodiment in which is a microlens array having a plurality of lenses.
  • one optical path through which the optical signal from the multi-channel optical element or the optical signal to the multi-channel optical element can be transmitted has a shape in which a part of the wall surfaces of a plurality of cylinders are connected.
  • the plurality of cylinders desired at least one does not transmit an optical signal, and more preferably is a dummy cylinder.
  • the optical element is a multichannel optical element, and the optical signal passage area is formed of a plurality of independent optical paths. Preferred to have.
  • FIG. 6 shows the mother board of the first embodiment.
  • the conductor circuits 524 and the insulating layer 522 are laminated on both sides of the substrate 521, and the conductor circuits sandwiching the substrate 521 and the insulating layer 522 are sandwiched.
  • the conductor circuits are electrically connected by through holes 529 and via holes 527, respectively.
  • a solder resist layer 534 is formed on the outermost layer.
  • an optical signal transmission region 542 is provided so as to penetrate the substrate 521, the insulating layer 522, and the solder resist layer 534.
  • a resin composition 547 is filled in a portion penetrating the substrate 521, the insulating layer 522 and the solder resist layer 534.
  • the diameter of the portion penetrating the solder resist layer 534 is the same as the diameter of the portion penetrating the substrate 521 and the insulating layer 522, and the shape of the longitudinal cross section of the portion penetrating the solder resist layer 534 is rectangular. is there.
  • a metal layer may be formed on the wall surface of the light signal passing area.
  • an optical waveguide 550 including four cores 551a to 551d and a clad 552 is formed on the outermost insulating layer 522 on one side (the lower side in the figure) of the mother board 520. There is.
  • an optical path conversion mirror is formed at each end of the cores 551a to 551d, An optical signal can be transmitted between the optical waveguide and the optical signal passage area 542.
  • the optical signal passage area 542 is so sized as to transmit the optical signal transmitted through any of the four cores so as to penetrate the substrate 521, the insulating layer 522 and the solder resist layer 534. It is formed at once!
  • the portion of the optical signal transmitting region 542 penetrating the solder resist layer 534 may be filled with the resin composition as shown in FIG. 6, or may be formed by an air gap.
  • a metal layer may be formed around the portion of the optical signal transmission region 542 which penetrates the substrate 521 and the insulating layer 522.
  • solder bumps 537 are formed on the solder resist layer 534 on the opposite side of the side of the substrate 520 for the mother board on which the optical waveguide is formed.
  • a micro lens array 546 in which four lenses 546a to 546d are arranged in parallel is used. It is disposed via (not shown).
  • each of the lenses 546a to 546d is disposed at a position corresponding to each of the cores 551a to 551d having an optical path conversion mirror formed at an end.
  • the optical signal transmitted through the optical waveguide 550 will pass through the respective lenses 546a to 546d constituting the microlens array 546, and thus the microlens 546a at one end of the optical signal passage area 542 -By arranging the 546d, it is possible to reduce the transmission loss of the optical signal.
  • microlens 546 instead of the microlens 546, four microlenses may be individually disposed at predetermined positions.
  • the microlens When the microlens is disposed directly at the end of the light signal passage area, the microlens is disposed at the end of the light signal passage area subjected to the water repelling treatment or the hydrophilic treatment. Is desirable.
  • the solder bumps 537 are formed on the solder resist layer 534 via the metal mounting layer, the solder bumps and the external substrate such as the IC chip mounting substrate can be used. It can be connected and can transmit an electrical signal with an external substrate. Further, in the case of connecting the external substrate to the above-mentioned substrate for the mother board via the solder bumps, the external substrate can be disposed at a predetermined position by the self-alignment operation.
  • the diameter of the micro lens disposed at the end of the optical signal transmission region is appropriately determined according to the pitch between the cores. You should decide.
  • examples of the shape of the light signal passing region of the collective through hole structure include the same shape as the shape of the light signal passing region of the IC chip mounting substrate of the first embodiment described above.
  • the size of the light signal passage area is preferably 100 ⁇ m ⁇ 5 mm in each of the vertical and horizontal directions. Specifically, in the case where the light signal passage area is cylindrical, if the diameter of the bottom surface is in the above range and if it is any of the above-mentioned various pillars, the longest part of the bottom surface and It is desirable that the lengths of parts orthogonal to this be within the above range.
  • the diameter of the cross section is less than 100 m, the transmission of the optical signal may be impeded, while if it exceeds 5 mm, no improvement in the transmission loss of the optical signal is observed. Miniaturization becomes difficult.
  • the light signal passage region is a light emitted from the optical waveguide (core) or a light incident on the optical waveguide (core). It is desirable to have a size that does not reflect on the wall or cause interference between adjacent optical signals. This is because there is no reflection on the wall of the light signal passage area or no transmission loss due to interference between signal light.
  • the optical waveguide is a four-channel optical waveguide, and the cross-sectional size of each core is 50 x 50.
  • the refractive index of the core is 1.52
  • the refractive index of the cladding is 1.50
  • the refractive index of the resin composition filled in the optical signal transmitting region is 1.50.
  • the optical signal passage area of the through hole structure has a cross-sectional shape larger than the shape in which a semicircle with a radius of 112.
  • the thickness of the mother board is 1.2 mm, and the distance between the cores is 500 ⁇ m, a square of 400 ⁇ 1600 ⁇ m
  • an optical signal passing area of a collective through hole structure having a cross-sectional shape larger than the shape in which a semicircle with a radius of 200 / zm is attached to both sides of the light, reflection on the wall of the light signal passing area It became clear that it was possible to transmit an optical signal without
  • FIG. 7 shows a substrate for a mother board according to the second embodiment.
  • the substrate for the mother board according to the second embodiment that is, the substrate for mounting an IC chip according to the embodiment having an optical signal passage region having an individual through hole structure, is compared with the substrate for mounting an IC chip according to the embodiment shown in FIG.
  • the configuration is the same except that the shape of the optical signal passage area is different. Therefore, only the shape of the optical signal passage area will be described in detail here.
  • a resin composition 647 is filled in a portion penetrating the substrate 621, the insulating layer 622 and the solder resist layer 634.
  • the diameter of the portion penetrating the solder resist layer 634 is the same as the diameter of the portion penetrating the substrate 621 and the insulating layer 622, and the shape of the longitudinal cross section of the portion penetrating the solder resist layer 634 is rectangular. is there.
  • an optical waveguide 650 consisting of four cores 651a to 651d and a clad 652 is formed. There is.
  • an optical path conversion mirror is formed at each end of the cores 651a to 651d, and an optical signal can be transmitted between the cores 651a to 651d of the optical waveguide and the optical signal passing areas 642a to 642d. It is configured to be able to.
  • the optical signal passage area 642 is individually and independently formed so that each of the optical signals transmitted through the four cores can be transmitted.
  • the portions of the optical signal transmitting regions 642a to 642d penetrating the solder resist layer 634 may be filled with the resin composition as shown in FIG. 7 or may be formed by an air gap.
  • a metal layer 645 may be formed around the portion of the optical signal passage region 642 which penetrates the substrate 621 and the insulating layer 622.
  • microlenses 646a to 646d are disposed at the ends opposite to the side on which the optical waveguides 650 of the light signal passing areas 642a to 642d are formed.
  • an optical signal transmitted through the optical waveguide 650 and an optical signal transmitted toward the optical waveguide 650 pass through the microlenses 646a to 646d.
  • the microlenses 646a to 646d at one end of the optical signal passage area 642, the transmission loss of the optical signal can be suppressed.
  • microlenses 646a to 646d are directly disposed on the resin composition 647 formed in a portion penetrating the substrate 621, the insulating layer 622, and the solder resist layer 634 of the optical signal transmitting region 642a to 642d. .
  • a microphone lens array in which four lenses are arranged in parallel may be disposed via an adhesive.
  • the solder bumps 637 are formed on the solder resist layer 634 via the metal mounting layer, the solder bumps and the external substrate such as the IC chip mounting board can be used. It can be connected and can transmit an electrical signal with an external substrate.
  • the external substrate can be disposed at a predetermined position by the self-alignment operation.
  • the diameter of the micro lens disposed at the end of the optical signal transmission region is appropriately determined according to the pitch between the cores. You should decide.
  • examples of the shape of the light signal passage region of the individual through hole structure include the same shape as the shape of the light signal passage region of the IC chip mounting substrate of the second embodiment described above.
  • the lower limit of the diameter of the cross section is 100 m.
  • the upper limit which is desired is preferably 500 ⁇ m.
  • the diameter of the cross section is less than 100 ⁇ m, the optical path may be clogged, and it may be difficult to fill the optical signal passing area with the ineffective resin composition.
  • the diameter is larger than 500 m, the transmission of the optical signal is not improved so much, which may hinder the degree of freedom in the design of the conductor circuit and the like constituting the IC chip mounting substrate. It is.
  • the optical signal passage region is formed of light emitted from the optical waveguide (core) and light incident on the optical waveguide (core). Do not reflect off the wall, preferably has such a size. This is because there is no transmission loss due to the reflection on the wall surface of the optical signal passage area.
  • the optical waveguide is a four-channel optical waveguide, and the cross-sectional size of each core is 50 ⁇ 50.
  • the refractive index of the core is 1.52
  • the refractive index of the cladding is 1.50
  • the refractive index of the resin composition filled in the optical signal transmitting region is 1.50.
  • the diameter 191 In the case of an optical signal passage area of an individual through hole structure of ⁇ m or more, the optical signal can be transmitted without being reflected by the wall surface of the optical signal passage area, and the thickness of the substrate for the mother board is 0.8 mm In the case where the distance between the cores is 500 m, if the light signal passing area has an individual through hole structure with a diameter of 391 m or more, the light signal is transmitted without being reflected by the wall surface of the light signal passing area. It became clear that it could be done.
  • a seventh aspect of the present invention there is provided a method of manufacturing a substrate for a mother board according to the seventh invention,
  • a conductor circuit and an insulating layer are sequentially laminated and formed on both sides of the substrate,
  • An optical wiring board manufacturing process in which an optical waveguide is formed on the substrate and Z or the insulating layer to form an optical wiring board;
  • a manufacturing method of a substrate for mother board characterized by including.
  • the seventh method of the present invention for manufacturing a mother board substrate comprises the steps of: forming an optical signal transmitting region and an optical waveguide; and disposing a microlens at an end of the optical signal transmitting region.
  • the substrate for the mother board of the present invention that is, the substrate for the mother board for transmitting the optical signal through the optical signal transmitting region and Z or the optical waveguide is preferably manufactured. It can be built. Therefore, by using the method for manufacturing a mother board according to the seventh aspect of the present invention, it is possible to manufacture a mother board excellent in optical signal transmission performance.
  • the step of manufacturing the optical wiring board and the step of forming the optical signal passage area are not necessarily performed in this order. Depending on your design, you can combine them as appropriate!
  • the seventh method of the present invention for producing a mother board substrate first, the step (a), that is, the optical wiring board production step, and the step (b), that is, the optical signal passing area forming step And in parallel, depending on the design.
  • conductor circuits are formed on both sides of the substrate.
  • a roughened surface is formed on the surface of the conductor circuit and the wall surface of the through hole as necessary.
  • the insulating layer and the conductor circuit are laminated and formed on the substrate on which the conductor circuit is formed.
  • the insulating layer and the conductor circuit are formed using the same method as the steps (3) to (8) in the multilayer wiring board manufacturing step of the method for manufacturing an IC chip mounting substrate of the sixth invention. It may be formed in layers.
  • the substrate and the insulating layer Through holes may be formed, or a capping layer may be formed.
  • the step of laminating the insulating layer and the conductor circuit may be performed only once or a plurality of times.
  • a subtractive method may be used as in the case of manufacturing the substrate for mounting an IC chip.
  • an optical path resin layer is formed inside, or a metal layer or resin layer is formed on the wall surface of the optical path through hole.
  • the optical path through hole functions as an optical signal passage area.
  • the formation of the optical signal passage region penetrating the substrate or the like may be performed after the formation of the optical waveguide in the following step (3).
  • the formation of the optical path through hole can be performed, for example, by drilling, laser processing, or the like.
  • the thing similar to the laser used when forming the opening for via holes is mentioned, for example.
  • the through holes for an optical path may be formed as a collective through hole and an individual through hole according to the design.
  • an optical waveguide is formed at a predetermined position according to the design on the substrate and on Z or the insulating layer.
  • the formation of the above-mentioned optical waveguide can be carried out by attaching the optical waveguide, which has been formed into a predetermined shape, through an adhesive in advance when the material is made of an inorganic material such as quartz glass. .
  • an optical waveguide made of the above-mentioned inorganic material can be made of a liquid phase material such as LiNbO or LiTaO.
  • an optical waveguide having a polymer material force (1) a method of attaching a film for forming an optical waveguide which has been previously formed into a film on a release film or the like on an insulating layer. And (2) a method of directly forming an optical waveguide on the insulating layer or the like by sequentially laminating a lower clad, a core and an upper clad on the insulating layer.
  • the same method can be used in the case of forming the optical waveguide on the release film and in the case of forming the optical waveguide on the insulating layer or the like.
  • a lower clad is formed on a release film, an insulating layer, etc. (hereinafter referred to simply as release film etc.), and (ii) next, the lower portion
  • the core resin composition is applied onto the clad, and, if necessary, a curing treatment is applied to form a core-forming resin layer.
  • a resin layer for forming a mask is formed on the above-mentioned resin layer for core formation, and then, the resin layer for forming this mask is subjected to an exposure and development treatment to form a core-forming resin layer.
  • a mask etching resist
  • the resin layer for core formation is subjected to reactive ion etching to remove the resin layer for core formation in the mask non-formed portion, and a core is formed on the lower clad.
  • an upper cladding is formed on the lower cladding so as to cover the above-mentioned core, to form an optical waveguide.
  • the method using this reactive ion etching can form an optical waveguide with excellent dimensional reliability. Moreover, this method is also excellent in reproducibility.
  • a lower clad is first formed on a release film and the like, and (ii) a resin composition for a core is then applied on the lower clad, and further, If necessary, a semi-curing treatment is performed to form a layer of the core-forming resin composition.
  • this exposure development method has a small number of steps, it can be suitably used when mass-producing optical waveguides. In addition, since the number of heating steps is small, stress is less likely to occur in the optical waveguide.
  • the optical waveguide can be formed on the substrate based on the alignment mark, it is possible to accurately align the optical element and the core of the optical waveguide by passive alignment.
  • a lower clad is formed on a release film or the like, and (ii) next, a groove for core formation is formed by forming a mold in the lower clad. Do. (Iii) Furthermore, a core resin composition is filled by printing into the above-mentioned grooves, and then a curing treatment is performed to form a core. (Iv) Finally, an upper cladding is formed on the lower cladding so as to cover the above-mentioned core, to form an optical waveguide.
  • This mold forming method can be suitably used when mass-producing optical waveguides, and optical waveguides excellent in dimensional reliability can be formed. Moreover, this method is also excellent in reproducibility.
  • a lower clad is formed on a release film and the like, and (ii) a resin composition for a resist is applied on the lower clad, By performing exposure and development processing, a core-forming resist is formed on the non-core-forming portion on the lower cladding.
  • the core resin composition is applied to the portion on the lower clad where the resist is not formed, and (iv) the core resin composition is cured and then the core forming resist is peeled off. Form a core on the lower cladding. (V) Finally, an upper clad is formed on the lower clad so as to cover the above-mentioned core, to form an optical waveguide.
  • This resist formation method can be suitably used when mass-producing optical waveguides, and optical waveguides excellent in dimensional reliability can be formed. Also, this method is excellent in reproducibility.
  • the mold forming method is more effective than the exposure development method. desirable. The reason is as follows.
  • a groove for forming a core is formed in the lower clad by forming a mold, and then a core is formed by a forming method of forming a core in the groove, all particles mixed in the core are formed. Since the surface of the core is flat and excellent in optical signal transmission ability because it enters into the core, when the core is formed by the exposure development method, the core surface after development is viewed from the core surface. A part of the particle may protrude, or an indentation may be formed on the surface of the core, and an unevenness may be formed on the surface of the core, and the unevenness prevents the light from being reflected in a desired direction. As a result, the transmission of the optical signal may be reduced.
  • an optical path conversion mirror is formed in the above-mentioned optical waveguide.
  • the optical path conversion mirror may be formed before attaching the optical waveguide on the insulating layer, or may be formed after attaching it on the insulating layer, but the optical waveguide is formed directly on the insulating layer It is desirable to form an optical path conversion mirror in advance except in the case.
  • the work can be easily performed, and there is no risk of damaging or damaging other members constituting the multilayer printed wiring board, the board, the conductor circuit, the insulating layer, etc. at the time of the work. It is.
  • the method for forming the optical path conversion mirror is not particularly limited, and a conventionally known method can be used. Specifically, machining with a V-shaped 90 ° diamond saw or blade, reactive ion etching, laser ablation, etc. can be used. Also, instead of forming an optical path conversion mirror, an optical path conversion member may be embedded.
  • the angle formed between the surface of the lower clad in contact with the substrate or the insulating layer and the optical path conversion surface may be 45 degrees, or 135 degrees. It may be
  • optical waveguide and the optical path conversion mirror may be formed, for example, on the basis of an alignment mark previously formed on the mother board, in the optical signal passage area, and the like.
  • the optical waveguide is the substrate and It may be formed between the insulating layers or between the insulating layers.
  • an optical waveguide between a substrate and an insulating layer
  • a method similar to the process of the above (3) is carried out.
  • the optical waveguide can be formed at the above-mentioned position by forming the optical waveguide in the conductor circuit non-forming portion of the above and then forming the insulating layer by the same method as the process of the above (2).
  • an optical waveguide is formed between insulating layers, at least one insulating layer is laminated on a substrate on which a conductor circuit is formed in the same manner as in the steps (1) and (2). After that, an optical waveguide is formed on the insulating layer in the same manner as the step (3), and then, the same steps as the step (2) are repeated to form an optical waveguide between the insulating layers. Can be formed.
  • a layer of a solder resist composition is formed on the outermost layer of the substrate on which the optical waveguide is formed.
  • the layer of the solder resist composition is formed by using the same resin composition as the resin composition used in forming the solder resist layer according to the sixth method of the present invention for producing a substrate for mounting an IC chip. It can be formed.
  • an optical waveguide may be formed on the entire outermost layer of the substrate in the step (3) to allow the optical waveguide to function as a solder resist layer.
  • the formation of the opening for forming the solder bump and the opening for the optical path is the same method as the method for forming the opening for forming the solder bump in the method of manufacturing a substrate for mounting an IC chip in the seventh invention. Processing can be performed using laser processing or the like.
  • the formation of the solder bump formation opening and the formation of the light path opening may be performed simultaneously or separately.
  • a resin composition containing a photosensitive resin is applied as the material, and exposure development processing is performed to form an opening for forming a solder bump and an opening for an optical path. Desirable to choose a method to form.
  • solder resist layer when forming a solder resist layer, a resin that has an opening at a desired position in advance.
  • the solder resist layer having an opening for forming a solder bump and an opening for an optical path may be formed by producing an illuminant and attaching the resin film.
  • the optical path opening is formed in this step.
  • the optical path opening is formed to communicate with the optical path through hole.
  • an opening for forming a solder bump may be formed also on the solder resist layer on the opposite side to the surface facing the IC chip mounting substrate.
  • the conductor circuit portion exposed by forming the above-mentioned opening for forming a solder bump is covered with a corrosion resistant metal such as nickel, noradium, gold, silver, platinum, etc., if necessary.
  • the method for manufacturing the IC chip mounting substrate according to the sixth aspect of the present invention may be performed in the same manner as the method described above.
  • an uncured resin composition is filled in the optical path opening formed in the process of (5) above, and then a curing treatment is performed to form an optical path. Form a resin layer. It is desirable that the uncured resin yarn filled in this step be the same as the resin composition filled in the above-mentioned through hole for an optical path.
  • the optical path through hole and the optical path opening are formed to form the optical waveguide on the side facing the IC chip mounting substrate and the opposite side across the substrate, the optical path
  • the above-mentioned through hole for an optical path may be filled with an uncured resin thread or composition into the through hole for an optical path and the opening for an optical path.
  • the above-mentioned opening for optical path may be simultaneously filled and then subjected to curing treatment, or after forming an optical path through hole in the optical wiring board, filling and curing treatment of the uncured resin composition are carried out, Thereafter, a solder resist layer having an optical path opening may be formed, and filling and curing treatment of the uncured resin composition may be performed.
  • solder pads are filled with the solder paste through the mask in which the openings are formed in the portions corresponding to the solder pads, and then the solder bumps are formed by reflow.
  • solder bumps By forming such solder bumps, it becomes possible to mount an IC chip mounting substrate and various surface mount electronic components via the solder bumps.
  • this solder bump does not form a solder bump if it is formed as necessary, it is actually carried out through the bumps of the IC chip mounting substrate to be mounted and various surface mount electronic components. It can be disguised.
  • solder resist layer on the opposite side to the surface facing the IC chip mounting substrate it is not necessary to form an external connection terminal in particular, and if necessary, pins may be provided or solder balls may be formed. It is good also as PGA or BGA by doing.
  • the adhesive layer may be provided directly on the resin composition. You may arrange
  • a microlens array may be disposed via an adhesive layer.
  • the step (c) (step of disposing the micro lens) may be performed before forming the solder pad or the solder bump.
  • solder pads and solder bumps are formed to form a mother-board- substrate. Complete the production of the circuit board.
  • solder pads and solder bumps can be formed by the same method as that used in the method for producing an IC chip mounting substrate of the sixth aspect of the present invention.
  • a device for optical communication according to the first aspect of the present invention wherein the IC chip mounting substrate of the first aspect of the present invention on which an IC chip is mounted. Is a feature.
  • the output signal from the light emitting element mounted on the IC chip mounting substrate and the input signal to the light receiving element are transmitted through the mother board substrate. be able to.
  • the substrate for mounting an IC chip according to the first aspect of the present invention is mounted on the substrate according to the second aspect of the present invention, the optical signal transmission performance is excellent.
  • the end portion of the optical signal passing area formed on the IC chip mounting substrate opposite to the substrate for the mother board, and the substrate for the mother board It is desirable that a micro lens be disposed at an end of the light signal passing area formed on the side facing the IC chip mounting substrate.
  • FIG. 8 is a cross-sectional view schematically showing an example of the third embodiment of the optical communication device of the present invention.
  • FIG. 8 a device for optical communication 760 in which an IC chip mounting substrate 2720 on which a light receiving element 2739 is mounted and an IC chip mounting substrate 1720 on which a light emitting device 1738 is mounted is mounted on a substrate 720 for mother board. It is shown.
  • the conductor circuits 1724 and the insulating layer 1722 are laminated on both sides of the substrate 1721, and between the conductor circuits sandwiching the substrate 1721 and the conductor circuits sandwiching the insulating layer 1722 Are electrically connected by through holes and via holes 1727, respectively (not shown). Also, a solder resist layer 1734 is formed on the outermost layer.
  • an optical signal transmitting region 1742 is provided so as to penetrate the substrate 1721, the insulating layer 1722, and the solder resist layer 1734.
  • the optical signal passage area 1742 includes a substrate 1721, an insulating layer 1722, and a solder resist.
  • the part penetrating the layer 1734 is filled with the resin composition 1747.
  • a light emitting element 1738 is surface mounted via a solder connection portion 1744 so that the light emitting portion 1738a faces the light signal passing area 1742.
  • an IC chip is surface-mounted via a solder connection portion on the same side as the side on which the light emitting element 1738 of the IC chip mounting substrate 1720 is mounted.
  • the conductor circuit 2744 and the insulating layer 2 722 are laminated on both surfaces of the substrate 2721, and the insulating layer 2722 is sandwiched between the conductor circuits sandwiching the substrate 2721.
  • the conductor circuits are electrically connected by through holes and via holes 2727, respectively (not shown).
  • a solder resist layer 2734 is formed on the outermost layer.
  • an optical signal passage region 2742 is provided to penetrate the substrate 2721, the insulating layer 2722 and the solder resist layer 2734.
  • a resin composition 2747 is filled in a portion penetrating the substrate 2721, the insulating layer 2722 and the solder resist layer 2734.
  • a light receiving element 2739 is surface mounted via a solder connection portion 1744 so that the light receiving portion 2739a faces the light signal passing area 2742. Further, although not shown, an IC chip is surface-mounted via a solder connection portion on the same side as the side on which the light receiving element 2739 of the IC chip mounting substrate 2720 is mounted.
  • the conductor circuits 744 and the insulating layer 722 are laminated on both sides of the substrate 721, and the conductor circuits with the substrate 721 between them and the conductor circuits with the insulating layer 722 between them.
  • the vias are electrically connected by through holes 729 and via holes (not shown), respectively.
  • a solder resist layer 734 is formed on the outermost layer.
  • an optical signal passage region 742 is provided to penetrate the substrate 721, the insulating layer 722 and the solder resist layer 734.
  • a resin composition 747 is filled in a portion penetrating the substrate 721, the insulating layer 722 and the solder resist layer 734.
  • the diameter of the portion penetrating the solder resist layer 734 is the same as the diameter of the portion penetrating the substrate 721 and the insulating layer 722, and the portion of the portion penetrating the solder resist layer 734
  • the shape of the longitudinal cross section is rectangular.
  • An optical waveguide 750 consisting of a core 751 and a clad 752 is formed on the outermost insulating layer 722 on the side opposite to the side on which the IC chip mounting substrate 1720 of the substrate 720 for the mother board is mounted and the opposite side. It is formed.
  • an optical path conversion mirror is formed, and it is configured to be able to transmit an optical signal between the optical waveguide 750 and the optical signal passing area 742.
  • microlenses 746a and 746b are disposed at the end of the optical signal passage area 742 on the opposite side to the side where the optical waveguide 750 is formed.
  • each of the micro lenses 746a and 746b is disposed at a position corresponding to each end of the core 751 having an optical path conversion mirror formed at the end.
  • the IC chip mounting substrates 1720 and 2720 are soldered to the solder connection parts 1744 and 2744 on the surface opposite to the side on which the optical waveguide 750 of the substrate 720 for the mother board is formed. Is implemented via.
  • each of the IC chip mounting substrates 1720 and 2720 is mounted at a predetermined position by a self-alignment operation.
  • an electric signal from an IC chip (not shown) mounted on the IC chip mounting substrate 1720 is converted into an optical signal by the light emitting element 1738.
  • the light signal emitted from the light emitting element 1738 (light emitting portion 1738a) is an optical signal passing area 1746, a micro lens 1746, a micro lens 746a, an optical signal passing area 742, an optical waveguide 750, an optical signal passing area 742, a micro lens
  • the light is transmitted to the light receiving element 2739 (the light receiving portion 2739a) through the micro lens 746 and the light signal passing area 2742, and further converted into an electric signal by the light receiving element 2739, and then mounted on the IC chip mounting substrate 2720 Since the optical signal is transmitted through the micro lens which is transmitted and processed to the IC chip (not shown), the optical signal can be transmitted reliably.
  • the embodiment of the device for optical communication according to the third aspect of the present invention may not be limited to the embodiment as shown in FIG. 8, and may be, for example, the embodiment as shown in FIG. .
  • FIG. 9 schematically shows another example of the third embodiment of the optical communication device of the present invention.
  • an IC chip mounting substrate 1820 on which a light emitting element 1838 is mounted and an IC chip mounting substrate 2820 on which a light receiving element 2839 is mounted are mounted on a substrate 820 for mother board. It is shown.
  • the optical communication device 860 is different from the optical communication device 760 shown in FIG. 8 in the structure of the IC chip mounting substrates 1820 and 2820, but the structure of the substrate 820 for the mother board is The structure is the same as the board substrate 720.
  • optical communication device 860 will be described here focusing on the structure of the IC chip mounting substrates 1820 and 2820.
  • conductor circuits 1844 and an insulating layer 1822 are stacked on both sides of the substrate 1821, and between conductor circuits sandwiching the substrate 1821 and conductor circuits sandwiching the insulating layer 1822. Are electrically connected by through holes 1829 and via holes 1827, respectively. Also, a solder resist layer 1834 is formed on the outermost layer.
  • the IC chip mounting substrate 1820 is provided with a recessed optical signal passage area 1842.
  • a light emitting element 1838 and an IC chip are mounted by wire bonding 1849 in the optical signal passage area 1842, and a resin composition 1847 is filled in the optical signal passage area. ing.
  • a microlens 1846 is disposed at the end of the light signal passage area 1842 opposite to the side where the light emitting element 1838 is mounted.
  • conductor circuits 2844 and insulating layers 2 822 are stacked on both sides of the substrate 2821, and the insulating layers 2822 are sandwiched between the conductor circuits sandwiching the substrate 2821.
  • the conductor circuits are electrically connected by through holes 2829 and via holes 2827, respectively.
  • a solder resist layer 2834 is formed on the outermost layer.
  • the IC chip mounting substrate 2820 is provided with a recess-shaped optical signal passage region 2842.
  • a light receiving element 2839 and an IC chip (not shown) Bonding is carried out by 2848, and further, the light transmitting region is filled with a resin composition 2847!
  • a microlens 2846 is disposed at the end of the light signal passage area 2842 opposite to the side on which the light receiving element 2839 is mounted.
  • the mother-board substrate 820 has the same configuration as the mother-board substrate shown in FIG.
  • the IC chip mounting substrate 1820, 2820 is soldered through the solder connection portions 1843, 2843 on the opposite side to the side on which the optical waveguide 850 of the mother-board substrate 820 is formed. Has been implemented.
  • each of the IC chip mounting substrates 1820 and 2820 is mounted at a predetermined position by a self-alignment operation.
  • an electric signal from an IC chip (not shown) mounted on the IC chip mounting substrate 1820 is converted into an optical signal by the light emitting element 1838.
  • the light signal emitted from the light emitting element 1838 (light emitting portion 1838a) is an optical signal passing area 1842, a micro lens 1846, a micro lens 846 a, an optical signal passing area 842, an optical waveguide 850, an optical signal passing area 842, a micro lens
  • the light is transmitted to the light receiving element 2839 (the light receiving portion 2839a) through the micro lens 2846 and the light signal passing area 2842 and is further converted into an electric signal by the light receiving element 2839, and then mounted on the IC chip mounting substrate 2820 It is transmitted to the IC chip (not shown) and processed.
  • the optical signal since the optical signal is transmitted through the micro lens disposed at the end of the optical signal passage area, the optical signal can be transmitted reliably. .
  • one channel optical element (light emitting element, light receiving element) is mounted on the IC chip mounting substrate, and (1) An optical signal passage area for transmitting an optical signal in one channel is formed on each of the IC chip mounting substrate and the mother board.
  • the third embodiment of the device for optical communication according to the present invention is not limited to the embodiments as shown in FIGS. It is sufficient that the IC chip mounting substrate of the present invention is mounted.
  • a multi-channel optical element may be mounted on the IC chip mounting substrate. Further, a multi-channel optical element may be formed on each of the IC chip mounting substrate and the mother board substrate. An optical signal passage region of a collective through hole structure, an optical signal passage region of an individual through hole structure, etc. are formed to transmit optical signals.
  • the IC chip mounting substrate in which the optical signal transmission region of the through hole structure is formed and the concave optical signal transmission region A substrate for mounting an IC chip, such as a substrate for mounting an IC chip on which an optical chip is formed, having a different structure for transmitting an optical signal may be mounted on one substrate for a single mother board.
  • the microlens array may be disposed on the substrate for mounting the IC chip and the substrate for mounting the mother board, or the microlens array via an adhesive.
  • the thickness of the substrate for mounting an IC chip and the substrate for a mother board will be described.
  • PD light receiving diameter: ⁇ 60-80 m
  • micro lens array with a pitch of 250 m as a micro lens (diameter: 100-240 m, sag height: 3-120 ⁇ m)
  • an optical waveguide with a core size of 50 x 50 m as the optical waveguide use an in-bra type VCSEL (a spread angle of 8 degrees, a light emitting area diameter of 15 m) as the light emitting element.
  • the thickness of the mounting substrate is preferably 0.5 to 1.6 mm.
  • the thickness of the substrate for mounting an IC chip is preferably 0.5 to 0.9 mm. Furthermore, in the case of using an acid narrowing type (spreading angle 25 degrees, light emitting area diameter ⁇ 18 m) as a light emitting element, the thickness of the substrate for mounting an IC chip is desirably about 0.5 mm. If it is less than 0.5 mm, warpage of the substrate is likely to occur.
  • the thickness of the mother board is preferably 0.5-0.75 mm.
  • the micro lens have a diameter of 200 to 240 m and a sag height of 5 to 50 m.
  • an optical signal passing area of a collective through hole structure in which a four-channel light receiving element 2739 having a light receiving diameter ⁇ m is mounted as an IC chip mounting substrate 2720 and whose plan view shape is a rectangle of corner arcs.
  • the planar shape is a rectangle with corner arcs
  • an IC chip mounting substrate with a thickness of 0.7 mm in which an optical signal passage region of a collective through hole structure is formed and a substrate 720 for a mother board width X thickness 50 x 50 m core force thickness 50
  • An optical board having a thickness of 0.7 mm and an optical signal passing area sandwiched between m clads and an optical signal passing area having a collective through hole structure whose rectangular planar shape is a rectangular shape of a corner arc is formed.
  • IC chip mounting substrate 1720 Desirable shapes of the formed micro-lens 1746, the micro-lens 2746 formed on the IC chip mounting substrate 2720, and the micro-lenses 746a and 746b formed on the mother board 720, in particular, the diameter of the micro-lens is 220 ⁇ m
  • the desired sag height of the micro lens in the case of the above was clarified by simulation.
  • the micro lens 2746 disposed on the IC chip mounting substrate 2720 is intended to focus the light signal on the light receiving area 1739 a of the light receiving element 2739, and is used for the IC chip mounting substrate 1720.
  • the microlenses 1746 disposed are intended to collimate the light signal, and each of the microlenses 746a and 746b disposed on the substrate 720 for the mother board is an optical signal of the microlenses 746a. It is an object of the present invention to focus light toward the core 751 of the optical waveguide 750, and an object of the microlens 746b is to make the light signal into a collimated light.
  • the microlens 1746 disposed on the IC chip mounting substrate 1720 is a power before the IC chip mounting substrate 1720 is manufactured and then mounted on the mother-board substrate. It was evaluated by finding the focusing distance from the meter's NFP (Your Field Pattern).
  • the micro lens 746a disposed on the mother board 720 mounts the IC chip mounting board 1720 on the mother board 720, and the NFP of the end of the optical waveguide 750 on the side facing the light emitting element evaluated.
  • the micro lens 746b disposed on the mother board is evaluated by NFP in the mounting area of the IC chip mounting board 2720.
  • the micro lens 2746 disposed on the IC chip mounting substrate 2720 was evaluated by NFP in the mounting region of the light receiving element 2739, with the IC chip mounting substrate 2720 on which the light receiving element 2739 is not mounted.
  • the upper limit of the sag height is preferably 12 ⁇ m and the lower limit is preferably 10 ⁇ m.
  • the transmitted light can be reliably collimated.
  • microlens 746a had a focal length of 0.75 ⁇ 0.05 mm.
  • the micro lens 1746 disposed on the IC chip mounting substrate 1720 on which the light emitting element is mounted has a sag height upper limit of 10 ⁇ m and a lower limit of 8 ⁇ m, which is preferably within this range. It was clear that the transmission light could be reliably collimated if it was an enclosure.
  • the upper limit of the sag height of the micro lens 2746 disposed on the IC chip mounting substrate 2720 on which the light receiving element is mounted is 12 ⁇ m and the lower limit is 10 ⁇ m. Within this range, it has become clear that transmission light can be reliably collimated light. Furthermore, it was also clear that with the micro lens 2746, it is desirable that the focal length be 0.75 ⁇ 0.05 mm.
  • the upper limit of the sag height of the microlens 746b disposed on the mother board 720 is 10 ⁇ m, and the lower limit is preferably 8 ⁇ m. It became clear that it was possible to make it a collimated light.
  • the thickness of the IC chip mounting substrate and the mother board is made constant to explain the desired sag height of the microlens.
  • the desired sag height is the IC chip mounting substrate and the mother chip. It will change according to the thickness of the board for board
  • the device for optical communication according to the third aspect of the present invention has the substrate for mounting an IC chip according to the first aspect of the present invention mounted on the mother board according to the second aspect of the present invention. is there.
  • the spot area force in the core of the optical waveguide is desirably overlapped with the core by 35% or more with respect to light incident on the optical waveguide through the microlens.
  • the optical element is a light receiving element, and the spot area of the light receiving portion of the light receiving element overlaps the light receiving portion by 22% or more with respect to light incident on the light receiving element via the microlens. Is desirable.
  • the device for optical communication according to the present invention (for example, the embodiment shown in FIG. 8), light is emitted relative to the transmission loss at the time of light signal transmission via the optical waveguide between the light emitting element and the light receiving element. How much light emitted from the element can be condensed and incident on the core of the optical waveguide, and core power How much emitted light is condensed and incident on the light receiving portion of the light receiving element The ability to do so is an important factor.
  • the length of the optical waveguide formed on the mother board is changed to 5, 50, and 100 cm, and when transmitting optical signals with a transmission speed of 2.5 Gbps and 10 Gbps, the optical waveguide
  • the degree of overlap between the spot area of the light incident on the core and the core, and the degree of overlap between the spot area of the light incident on the light receiving portion of the light receiving element and the light receiving portion were evaluated. Moreover, the above evaluation was performed using the device for optical communication of the form shown in FIG.
  • a four-channel light receiving element 2739 having a light receiving diameter ⁇ 80 m is mounted, and a collective through hole structure having a rectangular shape in plan view of a corner arc.
  • a 0.7 mm thick IC chip mounting substrate on which a light signal passage region is formed and a micro lens is disposed light emission of 4 channels with a spread angle of 24 degrees as an IC chip mounting substrate 1720
  • An element 1738 is mounted, and an optical signal passing area of a collective through hole structure whose planar shape is a rectangular shape of a corner arc is formed, and a 0.7 mm thick IC chip mounted with a microlens is formed.
  • 08 dBZ cm is formed by sandwiching a clad with a clad of 50 ⁇ 50 m in core thickness and 50 m in core force and 50 m in core force as a substrate 720 for mother board using the substrate.
  • Optical signal passing area of collective through hole structure whose shape is rectangular of corner arc Were evaluated using a device for optical communication using a 0.7 mm thick substrate for a mother board on which microlenses were formed.
  • the resin composition is filled in all the light signal passing regions, and the transmittance thereof is 90% Z mm.
  • metal mirrors are formed at both ends of the optical waveguide, and the transmission loss due to the reflection at this mirror is 0.5 dB.
  • the transmission loss due to each component in the device for optical communication is ldB between the light emitting element and the optical waveguide and between the optical waveguide and the light receiving element, respectively, 5 cm and 50 cm.
  • the optical waveguide force of 100 cm is 0.4 dB, 4 dB, and 8 dB, respectively, and the optical path conversion mirror is as described above.
  • the degree of overlap between the spot area of the light incident on the light receiving part of the light receiving element and the light receiving part is as follows: (1) Transmission speed: 2.5 Gbps, light waveguide 5 cm: light enters the light receiving part of the light receiving element When the spot area of the light and the light receiving part overlap by 22% or more, the transmission loss in the light receiving part becomes 7.3 dB or less, and optical signal transmission becomes possible. (2) In the case of 10 Gbps transmission speed and 5 cm of optical waveguide When the spot area and the light receiving portion overlap by 32% or more, the transmission loss in the light receiving portion becomes 5.3 dB or less, and optical signal transmission becomes possible.
  • the above-mentioned microlenses are interposed.
  • the spot area force in the core of the optical waveguide overlaps with the core by 35% or more.
  • the optical element is a light receiving element.
  • the spot area force in the light receiving portion of the light receiving element be overlapped with the light receiving portion by 22% or more.
  • the device for optical communication according to the third aspect of the present invention can be obtained by separately manufacturing the substrate for mounting an IC chip according to the first aspect of the present invention and the substrate for the mother board according to the second aspect of the present invention. After that, they can be manufactured by connecting the two via solder or the like.
  • the IC chip mounting substrate on which the solder bumps are formed and the mother board substrate on which the solder bumps are formed are disposed opposite to each other at predetermined positions in a predetermined direction, and then, By reflowing, both can be connected to make a device for optical communication.
  • solder bumps may be formed only on one of the facing surfaces of the substrate for mounting an IC chip and the substrate for a mother board.
  • both can be electrically connected.
  • the IC chip mounting substrate on which the optical element is mounted is mounted before forming the optical waveguide. Then, through the process of attaching an optical waveguide, a device for optical communication can be manufactured.
  • the optical waveguide alignment can be performed by the active alignment, which enables the alignment of the optical waveguide by the passive alignment using the alignment mark. It can be made smaller.
  • the mounting of the IC chip mounting substrate may be performed, for example, on the basis of an alignment mark previously formed on the mother-board substrate or in an optical signal passing region.
  • the device for optical communication according to the fourth aspect of the present invention has an optical element or an optical element on a substrate for a mother board on which a conductor circuit and an insulating layer are laminated and formed on at least one surface of a substrate and an optical waveguide is formed.
  • An optical communication device on which an IC chip mounting substrate on which elements are mounted is mounted.
  • At least one microlens is disposed on an optical path connecting the optical waveguide and the optical element,
  • the light incident on the optical waveguide or the optical element is configured to be condensed through a microlens.
  • the microphone lens is disposed on the optical path connecting the optical waveguide and the optical element, and the light incident on the optical waveguide or the optical element is Since the light is condensed through the aperture lens, the optical signal can be reliably transmitted to the optical waveguide and the optical element, and the optical signal transmission capability is excellent.
  • the device for optical communication comprises a substrate for a mother board and an IC chip mounting substrate on which an optical element or an optical element is mounted.
  • examples of the mother-board substrate include the same ones as the mother-board substrate that constitutes the third optical communication device of the present invention.
  • an optical element constituting the device for optical communication of the third invention the same one as the IC chip mounting substrate, etc. It can be mentioned.
  • an optical element or a substrate for mounting an IC chip at least one microlens is disposed on the optical path connecting the optical waveguide and the optical element, The light incident on the optical waveguide or the optical element is configured to be condensed through a micro lens.
  • the device for optical communication according to the fourth aspect of the present invention at least one microlens disposed on the optical path connecting the optical waveguide and the optical element is the device for optical communication according to the third aspect of the present invention
  • the light signal passage area may not be disposed at the end of the light signal passage area but may be disposed inside the light signal passage area.
  • the micro lens is formed inside the light signal passing area. An embodiment will be described.
  • FIG. 21 is a cross-sectional view schematically showing one example of the embodiment of the fourth optical communication device of the present invention.
  • FIG. 21 shows an optical communication device 960 in which a light emitting element 938 and a light receiving element 939 are directly mounted on a motherboard 920 for mother board.
  • the conductor circuits 944 and the insulating layer 922 are laminated on both sides of the substrate 921 and between the conductor circuits with the substrate 921 interposed therebetween and between the conductor circuits with the insulating layer 922 interposed therebetween. They are electrically connected by through holes 929 and via holes (not shown), respectively. Also, a solder resist layer 934 is formed on the outermost layer.
  • an optical signal transmission region 942 is provided to penetrate the substrate 921, the insulating layer 922 and the solder resist layer 934.
  • a part of the part penetrating the substrate 921 and the insulating layer 922 is filled with the resin composition 947.
  • Microlenses 946a and 946b are disposed inside the light signal passage area 942 and at the end of the light receiving element 947 opposite to the side where the optical waveguide 750 is formed.
  • each of the micro lenses 946 a and 946 b is disposed at a position corresponding to each end of the core 951.
  • an optical waveguide 950 consisting of a core 951 and a cladding 952 is provided. It is formed.
  • an optical path conversion mirror is formed, and it is configured to be able to transmit an optical signal between the optical waveguide 950 and the optical signal passage area 942.
  • a position of the light emitting element 938 and the light receiving element 939 is provided at the position corresponding to the light signal passing area 942.
  • Each is mounted via a solder connection 944.
  • each of the light emitting element 938 and the light receiving element 939 is mounted at a predetermined position by self-alignment.
  • the light signal emitted from the light emitting element 938 is an optical signal passing area 942 made of air, a microlens 946a, and a resin composition.
  • the optical signal can be transmitted reliably.
  • the microlens 946a condenses the light signal from the light emitting element 938 toward the core 951 of the optical waveguide 950, and the microlens 946b receives the light signal from the core 951 of the optical waveguide 950. Since the light is focused toward 939, the optical signal can be transmitted reliably as described above.
  • the substrate for the mother board constituting the device for optical communication according to the fourth aspect of the present invention is a mother board in which the optical waveguide is formed in the outermost layer facing the optical element or the IC chip mounting substrate. It may be a board for board! Embodiments of the optical communication device having such a configuration will be described with reference to the drawings.
  • FIG. 22 is a cross-sectional view schematically showing an example of the fourth embodiment of the optical communication device according to the present invention.
  • an IC chip mounting substrate 4120 on which the light emitting element 4138 is mounted and an IC chip mounting substrate 5120 on which the light receiving element 5139 is mounted are mounted on the mother board 1120.
  • a communication device 3160 is shown.
  • the conductor circuits 3144 and the insulating layer 3122 are stacked on both sides of the substrate 3121 and the conductor circuits with the substrate 3121 interposed therebetween and the conductor circuits with the insulating layer 3122 interposed therebetween. Are electrically connected by through holes 3129 and via holes (not shown), respectively.
  • an optical waveguide 3150 composed of a core 3151 and a clad 3 152 is formed in a part of the outermost layer on the side on which the IC chip mounting substrate is mounted, and each of the end portions of the optical waveguide 3150 is formed.
  • An optical path conversion mirror is formed, and it is configured to be able to transmit an optical signal between a light emitting element and a light receiving element mounted on an IC chip mounting substrate described later.
  • an optical waveguide 3150 is formed on the outermost layer of the substrate 3120 for the mother board.
  • a solder resist layer is formed in the area other than the above.
  • the substrate for mother board 3120 is not formed with an optical signal passage region, and no microlens is provided.
  • a mounting substrate 5120 is mounted.
  • each of the IC chip mounting substrates 4120 and 5120 has the same configuration as that of the IC chip mounting substrates 1720 and 2720 shown in FIG. Therefore, the description of the IC chip mounting substrate is omitted.
  • the number of connections between the IC chip mounting substrates 4120 and 5120 shown in FIG. 22 and the IC chip mounting substrates 1720 and 2720 shown in FIG. This is because the drawings are drawn so as to clarify the aspect, and the substantial configuration is the same.
  • the light signal emitted from the light emitting element 4138 is an optical signal passing area 4142, a microlens 4146a, an optical waveguide 3150, a microlens 5146a, Also, the light is transmitted to the light receiving element 51 39 (light receiving unit 5139a) via the light signal passing area 5142.
  • the microlens 4146 a condenses the optical signal from the light emitting element 4138 toward the core 3151 of the optical waveguide 3150, and the microlens 5146 b receives the optical signal from the core 31 51 of the optical waveguide 3150. Since light is condensed toward the element 5139, an optical signal can be reliably transmitted between the light emitting element and the light receiving element.
  • the device for optical communication according to the fourth aspect of the present invention, at least two of the micro lenses are provided.
  • the light emitted from the optical waveguide or the optical element be condensed or collimated light.
  • the light emitted from the optical waveguide or the optical element becomes condensed or collimated light. Since the light is likely to be transmitted between the optical element and the optical waveguide where light is not reflected on the wall surface of the over area, the attenuation of the light signal due to the reflection on the wall surface of the light signal passing area is beyond generation. An optical signal is transmitted between the optical element and the optical waveguide more reliably.
  • FIG. 23 is a cross-sectional view schematically showing an example of the fourth embodiment of the optical communication device of the present invention.
  • an IC chip mounting board 4220 on which a light emitting element 4238 is mounted and an IC chip mounting board 5220 on which a light receiving element 5239 is mounted are mounted on a mother board 1220.
  • a communication device 3260 is shown.
  • the configuration of the mother-board substrate 3220 is the same as the configuration of the mother-board substrate 3120 shown in FIG. 22, and thus the description thereof will be omitted.
  • the IC chip mounting board 4220 on which the light emitting element 4 238 is mounted and the IC chip mounting board on which the light receiving element 5239 is mounted. And 5220 have been implemented.
  • each of the IC chip mounting boards 4220 and 5220 has the same configuration as the IC chip mounting boards 4120 and 5120 shown in FIG. 22 except that the arrangement position of the micro lens is different. There is. Therefore, only the arrangement position of the micro lens will be described here.
  • the microlens is disposed only at the end of the optical signal passing region opposite to the optical element mounting side, whereas in the IC chip mounting substrate 4220, The microlenses 4246a and 4246b are disposed at both ends of the light signal passage area 4242, and the microlenses 5246a and 5246b are disposed at both ends of the light signal passage area 5242 on the IC chip mounting substrate 5220. .
  • the light signal emitted from the light emitting element 4238 is a microlens 4246b, a light signal passing area 4242, a microlens 4246a, an optical waveguide 3250
  • the light is transmitted to the light receiving element 5239 (light receiving unit 5239a) through the micro lens 5246a, the light signal passing area 5242, and the micro lens 5246b.
  • the microlens 4246 b collimates the light signal from the light emitting element 4238 into collimated light
  • the microphone lens 4246 a converges the light signal toward the core 3251 of the optical waveguide 3250.
  • the micro lens 5246 a collimates the light signal from the core 3251 of the optical waveguide 3250 and the micro lens 5246 b focuses the light signal toward the light receiving element 5239 so that the light signal can be transmitted reliably. it can.
  • the embodiment as shown in FIG. 8 is also one of the embodiments of the present invention. If an IC chip mounting substrate on which an optical element is mounted is mounted on the substrate, at least one micro lens is disposed on the optical path connecting the optical waveguide and the optical element!
  • the microlens may not necessarily be provided on each of the mother board substrate and the IC chip mounting substrate.
  • the embodiment is substantially the same as the device for optical communication shown in FIG. 8, and an embodiment in which the microlens is disposed only on the substrate side of the mother board, or shown in FIG.
  • This embodiment is substantially the same as the device for optical communication, and is an embodiment in which a microlens is disposed only on the substrate for mounting an IC chip (see FIG. 24), and the device for optical communication shown in FIG.
  • an IC chip mounting substrate on which a light emitting element is mounted, and an end of an optical signal passing region on the side opposite to the IC chip mounting substrate on which a light receiving element of a mary board substrate is mounted.
  • An embodiment or the like in which a microlens is disposed only on the side is also an example of the fourth optical communication device of the present invention.
  • Examples of the method for producing the optical communication device of the fourth aspect of the present invention include the same method as the method for producing the optical communication device of the third aspect of the present invention.
  • the conductor circuit and the insulating layer are laminated on at least one surface of the substrate, and the light emitting element is mounted on the mother board substrate on which the optical waveguide is formed.
  • a device for optical communication in which an IC chip mounting substrate and an IC chip mounting substrate on which a light receiving element is mounted are mounted.
  • the mother board substrate has an optical signal transmission region optically connected to each end of the optical waveguide, and a side optically connected to the optical waveguide in the optical signal transmission region.
  • a microlens is disposed at the end opposite to the
  • the IC chip mounting substrate on which the light emitting element is mounted is optically connected to the light emitting element
  • the light signal passing area is formed, and a microlens is disposed at the end of the light signal passing area opposite to the side optically connected to the light emitting element, and the light receiving element is mounted.
  • the substrate for mounting an IC chip has an optical signal passage area optically connected to the light receiving element, and a side opposite to the side optically connected to the light receiving element of the optical signal passage area.
  • a microlens is disposed at an end portion, and light emitted from the light emitting element becomes collimated light through the microlens disposed on the IC chip mounting substrate on which the light emitting element is mounted, and this collimated light
  • the light is collected through one of the microlenses disposed on the mother board, and after being incident on one end of the optical waveguide, the light is transmitted through the optical waveguide and from the other end of the optical waveguide.
  • Launch The collimated light becomes collimated light through the other micro lens arranged on the substrate for the mother board, and the collimated light is arranged on the substrate for mounting an IC chip on which the light receiving element is mounted. It is characterized in that it is configured to be condensed by a lens and to be incident on the light receiving element.
  • the device for optical communication according to the fifth aspect of the present invention is an IC in which a light receiving element is mounted on a mother board substrate on which an optical waveguide and an optical signal transmitting region are formed, and an optical signal transmitting region is formed.
  • a chip mounting substrate and an IC chip mounting substrate on which a light emitting element and an optical signal passage area are formed are mounted, and a microphone lens having a predetermined function is disposed at a predetermined position.
  • the device for optical communication comprises a substrate for a mother board and an IC chip mounting substrate on which an optical element (a light receiving element or a light emitting element) is mounted.
  • examples of the mother-board substrate include the same ones as the mother-board substrate that constitutes the third optical communication device of the present invention.
  • examples of the IC chip mounting substrate on which the optical element is mounted include the same ones as the IC chip mounting substrate constituting the optical communication device of the third aspect of the present invention.
  • an optical signal transmission area optically connected to each end of the optical waveguide is formed, and the optical signal transmission area is optically connected to the optical waveguide in the optical signal transmission area.
  • a micro lens is disposed at the end opposite to the side where the light emitting element is mounted, and the micro lens on the side on which the light emitting element mounting IC chip mounting substrate is mounted receives the optical signal transmitted from the light emitting element.
  • the micro lens on the side of mounting the substrate for mounting the light receiving element mounting IC chip can make the light emitted core force be collimated light It is.
  • an optical signal passing area optically connected to the light emitting element is formed, and the light emitting element on the optical signal passing area is optically coupled.
  • a microlens is disposed at an end opposite to the connected side, and the microlens can collimate light emitted from the light emitting element.
  • an optical signal passing area optically connected to the light receiving element is formed, and the light receiving element optically connected to the light receiving element in the light signal passing area.
  • a micro lens is disposed at the end opposite to the side, and the micro lens is capable of condensing the light transmitted through the substrate for the mother board on the light emitting element.
  • the light emitted from the light emitting element is a micro lens disposed on the IC chip mounting substrate on which the light emitting element is mounted.
  • This collimated light power is condensed through one of the microlenses disposed on the substrate for the mother board, is incident on one end of the optical waveguide, and is then transmitted through the optical waveguide.
  • the other end of the optical waveguide emits collimated light through the other microlens disposed on the mother board, and the collimated light is an IC on which the light receiving element is mounted.
  • the light Since the light is collected by the micro lens disposed on the chip mounting substrate and is incident on the light receiving element, the light signal is transmitted on the wall surface of the light signal passing area in light signal transmission between the light emitting element and the light receiving element. Reflection Since the Rukoto is Rukoto Nag transmission, it is possible to attenuation due to reflection to transmit reliably optical signal Nag is there.
  • the devices for optical communication according to various embodiments have been described as the devices for optical communication according to the third to fifth aspects of the present invention.
  • the specific structure of the device for optical communication according to the above-described embodiment will be compared and considered.
  • the device for optical communication 760 of the embodiment shown in FIG. 8 the device for optical communication 76 of the embodiment shown in FIG. 24 (the device for optical communication 3160 shown in FIG. 22, a diagram Taking the device 3260 for optical communication shown in FIG. 23 as an example, light emitted from the light emitting element is condensed by the core of the optical waveguide through the microlens, and light emitted from the optical waveguide is received through the microlens.
  • the shapes of the microlenses that collect light from the light receiving unit of the above were compared.
  • the distance between the microlenses is different.
  • the microlenses were designed so that the light signal was collimated light.
  • a substrate for mounting an IC chip on which a light emitting element is mounted 250 ⁇ m, 4 channels, a spread angle are provided on a substrate for mounting an IC chip having a thickness of 550 ⁇ m. It is flip-chip mounted with a VCSEL power gap of 50 degrees at 4 degrees, and has a cross-sectional shape with a semicircle with a radius of 150 meters at each end of the rectangle of 300 x 750 meters, and a refractive index of 1. It was decided to use one in which an optical signal passage area filled with 50 transparent epoxy resins was formed.
  • a PD force gap of 250 ⁇ m, 4 channels, a light receiving diameter of 80 ⁇ m and a thickness of 1950 111 on a 1-chip chip mounting substrate As a substrate for mounting an IC chip on which a light receiving element is mounted, a PD force gap of 250 ⁇ m, 4 channels, a light receiving diameter of 80 ⁇ m and a thickness of 1950 111 on a 1-chip chip mounting substrate. It is flip-chip mounted at 50 ⁇ m, and it has a cross-sectional shape with a 150 m semicircle with a radius of 150 m at each of the 300 x 750 m rectangular ends, and a transparent epoxy resin with a refractive index of 1.5 inside it. It was decided to use the one in which the filled optical signal passage area is formed.
  • a core of 50 x 50 / zm is formed as 4 channels as an optical waveguide, and a clad is formed around it, and the thickness of the upper and lower parts of this clad core is 50 m.
  • each of the 300 X 750 ⁇ m rectangular ends has a cross-sectional shape with a 150 m semicircle with a radius of 150 m, and has a transparent epoxy resin with a refractive index of 1.5 inside It was decided to use the one in which the filled optical signal passage area is formed.
  • the thickness of the mother board is 450 ⁇ m for the optical communication devices 760, 3160, and 3260, and 150 ⁇ m for the optical communication device 76 (for the optical communication devices).
  • the gap between the mone board and the IC chip mounting board is 300 ⁇ m for the optical communication devices 760, 3160, and 3260.
  • Optical communication device 76 (100 ⁇ m for this.
  • the microlens was designed to satisfy the above-mentioned requirements.
  • the ratio of height to diameter of the microlens (height Z diameter) differs depending on the arrangement position of the microlens and the optical waveguide.
  • the optical communication device 760 has a smaller height-to-diameter ratio (height Z diameter) of the microphone lens than the optical communication device 3260. This is because it is necessary to shorten the focal length of the lens when the distance to the optical element or the optical waveguide cover or the micro lens is short, and therefore the radius of curvature of the micro lens must be increased.
  • the optical communication device 3260 collects the light signals from the light emitting element.
  • the height-to-diameter ratio (height / diameter) of the microlens (micro-lens 4246 b) disposed for light emission is the same as that of the micro-lens (micro-lens 1746, This is also larger than that of 4146 ab), which clearly indicates that the absolute value of the radius of curvature needs to be increased when the microlens is disposed near the light emitting element.
  • the positional accuracy between the optical element and the optical waveguide for example, the structure shown in FIG. 8 is obtained.
  • the optical communication device 760 In the optical communication device 760,
  • the optical waveguide film is attached by passive alignment, when going through the process of mounting the optical element, the optical waveguide film is referred to the alignment marks formed on the upper surface and the lower surface of the mother board. As it is attached, a positional deviation of about 10-15 m in design force will occur between the optical waveguide and the optical element.
  • the positional deviation between the optical waveguide and the optical element occurs in the manufacturing process of the device 3260 for optical communication as shown in FIG. 23 as well, and the optical waveguide is formed by anisotropic alignment. In the case of forming an optical waveguide by approximately 5 to 6 m and active alignment, a positional deviation of approximately 8 to 10 m is generated. ,
  • the positional deviation of the active alignment is greater because the head of the mounting device can not suppress the tip of the optical waveguide (the optical path conversion mirror forming portion).
  • positional deviation from the design of the optical waveguide and the optical element unavoidably occurs in the manufacturing process.
  • the focal point of the micro lens is the core of the optical waveguide, the light receiving portion of the light receiving element, etc. no matter how the micro lens is accurately designed. It deviates from the
  • the focal length is shorter when the curvature radius of the micro lens is large, even a slight positional deviation is greatly affected by the positional deviation.
  • positional deviations of components that occur unavoidably at the time of manufacturing a device for optical communication It is also desirable to be able to ensure excellent optical signal transmission performance that is not affected by the influence of light, and to reduce the radius of curvature of the microlens means to extend the focal distance of the microlens. Therefore, it is desirable that an optical signal passage area be formed on the IC chip mounting board and the motherboard board by securing the distance between the micro lens and the optical waveguide or optical element. It can be said.
  • the optical communication device shown in FIG. 8 is considered to be preferable to the optical communication device 3260 shown in FIG. 23 as the optical communication device, and the optical communication shown in FIG. Device 76 (the device is considered to be more desirable than the device 3160 for optical communication shown in FIG. 22).
  • Bisphenol A type epoxy resin (epoxy equivalent 469, 30 parts by weight of epoxy resin 1001 manufactured by Yuka Shell Epoxy Co., Ltd.) Creso novolak type epoxy resin (epoxy equivalent 215, large Nippon Ink Chemical Industries Co., Ltd.
  • Epicron N-673 40 parts by weight, pheno-novolak resin containing triazine structure (phenolic hydroxyl group equivalent weight 120, phenolite KA- 7052 manufactured by Dainippon Ink and Chemicals, Inc.) 30 parts by weight 20 parts by weight of ethyl diglycol acetate, 20 parts by weight of sorbene toner The mixture is heated and dissolved with stirring, to which 15 parts by weight of terminal epoxy-polybutadiene rubber (Denrex R-45 EPT, manufactured by Nagase Chemicals Industries Co., Ltd.) and 2-phenyl-4, 5-bis (hydroxymethyl) imidazole pulverized product are added.
  • An epoxy resin composition was prepared by adding 5 parts by weight, 2 parts by weight of finely divided silica, and 0.5 parts by weight of a silicone antifoaming agent.
  • the resulting epoxy resin composition is coated on a 38 ⁇ m-thick PET film using a roll coater so as to have a dry thickness of 50 ⁇ m, and then dried at 80 ° C. to 120 ° C. for 10 minutes
  • the resin film for insulating layer was produced by
  • CE 170 parts by weight and 1.5 parts by weight of leveling agent (Penenol S4 manufactured by San Nopco) in a container and mixed by stirring, a resin filled with a fat of 45-49 Pa's at 23 ⁇ 1 ° C. A filler was prepared.
  • leveling agent Penenol S4 manufactured by San Nopco
  • a filler was prepared as a curing agent.
  • 6.5 parts by weight of imidazole curing agent (2E4MZ-CN, manufactured by Shikoku Kasei Co., Ltd.) was used.
  • a copper-clad laminate in which an 18 m copper foil 28 is laminated on both sides of an insulating substrate 21 made of glass epoxy resin or BT (bismaleimide triazine) resin having a thickness of 0.7 mm as a starting material See Figure 10 (a)).
  • the copper-clad laminate was drilled, subjected to electroless plating, and etched in a pattern to form conductor circuits 24 and through holes 29 on both sides of the substrate 21.
  • a reduction treatment was carried out using an aqueous solution containing 6 g ZD as a reduction bath, and a rough surface (not shown) was formed on the surface of the conductor circuit 24 containing the through holes 29 (see FIG. 10 (b)).
  • the resin filler was pressed into the through holes using a squeegee, and then dried at 100 ° C. for 20 minutes.
  • a mask with an opening at a portion corresponding to the conductor circuit non-formation portion is placed on the substrate, and a resin filler is also filled in the conductor circuit non-formation portion which is a recess using a squeegee.
  • a layer of the resin filler 30 ′ was formed (see FIG. 10 (c)).
  • the surface of the conductor circuit 24 and the through holes 29 are obtained by belt sander polishing using # 600 belt-abrasive paper (manufactured by Sankyo Riken Co., Ltd.) on one side of the substrate after the treatment of (3) above. Polishing was performed so as not to leave the resin filler 30 'on the land surface, and then puff polishing was performed to remove the damage caused by the belt sander polishing. Such a series of polishing other than the substrate I did the same for the other side.
  • the surface layer portion of the resin filler 30 formed on the through holes 29 and the conductor circuit non-formed portion and the surface of the conductor circuit 24 are planarized, and the resin filler 30 and the conductor circuit 24 are sided.
  • the surface firmly adheres via a rough surface (not shown), and the inner wall surface of the through hole 29 and the resin filler 30 firmly via a rough surface (not shown).
  • An insulating substrate closely attached was obtained (see Fig. 10 (d)). By this process, the surface of the resin filler layer 30 and the surface of the conductor circuit 24 become flush.
  • the resin film for insulating layer slightly larger than the substrate manufactured in A above is placed on the substrate, and the pressure is 0.4 MPa, the temperature is 80 ° C., and the pressure bonding time is 10 seconds.
  • the insulating layer 22 was formed by affixing using a vacuum laminator apparatus according to the following method (see FIG. 10 (e)).
  • the resin film for an insulating layer was subjected to main pressure bonding under the conditions of a vacuum degree of 65 Pa, a pressure of 0.4 MPa, a temperature of 80 ° C. and a time of 60 seconds, and then heat cured at 170 ° C. for 30 minutes.
  • a wavelength of 10.4 ⁇ m (with a beam diameter of 4. O mm with a CO gas laser) is formed through a mask in which a through hole with a thickness of 1.2 mm is formed on the insulating layer 22.
  • the substrate on which the via hole 26 is formed is immersed in an 80 ° C. solution containing 60 g Zl of permanganic acid for 10 minutes to dissolve and remove epoxy resin particles present on the surface of the insulating layer 22. (See illustration on the surface including the inner wall surface of the via hole opening 26 by Not formed).
  • a catalyst nucleus is applied to the surface of the insulating layer 22 (including the inner wall surface of the opening 26 for via hole) by applying a palladium catalyst to the surface of the roughened (rough 3 m deep) substrate. Deposited (not shown). That is, palladium chloride (PdCl.sub.2) and salted stannous
  • the catalyst is immersed in a catalyst solution containing SnCl 2) to precipitate palladium metal.
  • the substrate is immersed in an electroless copper plating aqueous solution of the following composition, and the thickness of the surface of the insulating layer 22 (including the inner wall surface of the opening 26 for via hole) is 0.6- 3.
  • a thin film conductor layer (electroless copper plating film) 32 of O 2 / zm was formed (see FIG. 11 (a)).
  • the plating resist 23 is peeled and removed with 5% NaOH, and then the thin film conductor layer under the plated resist 23 is etched with a mixed solution of sulfuric acid and hydrogen peroxide to dissolve it. Then, an 18 ⁇ m thick conductor circuit 24 (including via holes 27) consisting of a thin film conductor layer (electroless copper plating film) 32 and an electrolytic copper plating film 33 was formed (see FIG. 11 (d)). ).
  • a roughened surface (not shown) is formed on the surface of the conductor circuit 24 using an etching solution similar to the etching solution used in the step (5), and then the above ((14) 6)-In the same manner as in the step (8), the insulating layer 22 having the via holes 26 and the rough surface (not shown) formed on the surface was laminated (FIG. 12 (a)) reference).
  • a catalyst is applied to the surface of the insulating layer 22 (including the inner wall surface of the via hole opening 26) by the same method as the method used in the step (9), and The substrate is immersed in the same electroless copper plating solution as the electroless plating solution used in the step (10), and a thin film conductor layer is formed on the surface of the insulating layer 22 (including the inner wall surface of the via hole 26).
  • (Electroless copper plating film) 32 was formed (see FIG. 12 (b)).
  • the plating resist 23 is provided by the same method as that used in the step (11), and plating is performed using the same method as that used in the step (12).
  • a 20 ⁇ m-thick electrolytic copper plating film 33 was formed on the portion where the resist 23 was not formed (see FIG. 12 (c)).
  • an optical path through hole 31 (a rectangular shape with a plan view shape of a corner arc (vertical 240 / z mX horizontal lOOO / zm)) penetrating through the substrate 21 and the insulating layer 22 is formed by drilling.
  • the wall surface of the through hole 31 was desmeared (see FIG. 12 (d)).
  • the optical path through hole 31 having the collective through hole structure is formed.
  • the resin is filled in the through hole 31 for an optical path, and then it is performed at 120 ° C. for 1 hour. And hardened at 150 ° C. for 1 hour, after which the resin protruding from the light path through hole 31 was polished using # 3000 abrasive paper, and further alumina particles of 0.05 m were obtained.
  • the resin composition layer 47 was formed by polishing using the above to flatten the surface.
  • the refractive index after curing of this epoxy resin is 1.50.
  • the above solder resist composition is applied to a thickness of 30 m on both sides of the substrate on which the resin composition layer 42 a is formed, and the temperature is 70 ° C. for 20 minutes, and 30 ° C. The drying process was performed for 1 minute to form a layer 34 'of the solder resist composition (see FIG. 13 (a)).
  • solder resist layer 34 having a formation opening 48 and an optical path opening 31b and having a thickness of 20 m was formed (see FIG. 13 (b)).
  • solder resist composition it is possible to use a solder resist composition for sale.
  • the microlenses 46a to 46d were disposed at the end opposite to the side by using the ink jet apparatus according to the following method (see FIG. 14 (a)).
  • a UV curable epoxy resin (transmittance 94% Z mm, refractive index 1.53) is prepared at a viscosity of 20 cps at room temperature (25 ° C.)
  • this resin is contained in the resin container of the ink jet yacht device.
  • the temperature is adjusted to 40 ° C., and the viscosity is adjusted to 8 cps.
  • the resin composition layer 47 is coated at a predetermined position on the end thereof, and irradiated with UV light (500 mW Z minutes).
  • microlenses 46a to 46d each having a diameter of 220 ⁇ m and a sag height of 9 ⁇ m were disposed.
  • this step may be performed before the step (23).
  • solder paste is printed on the solder bump forming opening 47 formed in the solder resist layer 34, and the light emitting portion 38a of the light emitting element 38 is attached while being aligned, 200 ° C.
  • the light emitting element 38 was mounted by reflowing, and the solder bumps 37 were formed in the openings 48 for forming solder bumps.
  • ground silica having a particle size distribution of 0.1 to 0.8 m is added to an epoxy resin (90% Z mm transmittance, 73 ppm CTE), and the transmittance 80% Z mm, CTE 30 ppm, viscosity
  • this underfill resin is applied around the light emitting element to allow open penetration into the gap (50 m) between the light emitting element and the solder resist layer, and The underfill resin was cured at 120 ° C. for 1 hour and at 150 ° C. for 2 hours to form an underfill with a refractive index of 1.50.
  • a flip chip type VCSEL manufactured by ULM Photonics Co., Ltd.
  • ULM Photonics Co., Ltd. a flip chip type VCSEL (manufactured by ULM Photonics Co., Ltd.) was used as the light emitting element 38.
  • this light emitting element was used as a 4-channel array element with a pitch of 250 m.
  • the resin composition is filled in a portion penetrating the substrate, the insulating layer and the solder resist layer in the optical signal transmitting region.
  • the substrate for mounting an IC chip of the present example may be manufactured through the following steps.
  • a solid electrolytic plating layer is formed by the same method as the step (16) in which a plating resist is not formed on the thin film conductor layer.
  • the optical path through holes are formed, and the resin composition is filled and cured so that the thin film conductor layer and the electrolytic plating layer are also formed.
  • polishing is performed, and then the thin film conductor layer and the electrolytic plating layer are etched to form a conductor circuit, and the steps after the step (19) are performed to form a substrate for mounting an IC chip. May be manufactured.
  • Example 2 In the process of (24) of Example 1, when the microlens was disposed at the end of the resin composition layer 47, the particle size distribution of the epoxy resin used in Example 1 was 0.1 to 0.8.
  • a substrate for mounting an IC chip was obtained in the same manner as in Example 1, except that a mixture of 20 wt% of crushed silica particles of m (transmission rate: 84% Z mm) was used.
  • Example 2 In the process of (24) of Example 1, when the microlens was disposed at the end of the resin composition layer 47, the particle size distribution of the epoxy resin used in Example 1 was 0.1 to 0.8.
  • a substrate for mounting an IC chip was obtained in the same manner as in Example 1, except that a mixture of 40 wt% of crushed silica particles of m (transmission rate: 82% Z mm) was used.
  • Example 2 In the process of (24) of Example 1, when the microlens was disposed at the end of the resin composition layer 47, the particle size distribution of the epoxy resin used in Example 1 was 0.1 to 0.8.
  • a substrate for mounting an IC chip was obtained in the same manner as in Example 1, except that 50 wt% of crushed silica particles of m were blended (transmission rate: 82% Z mm).
  • Example 2 In the process of (24) of Example 1, when the microlens was disposed at the end of the resin composition layer 47, the particle size distribution of the epoxy resin used in Example 1 was 0.1 to 0.8.
  • a substrate for mounting an IC chip was obtained in the same manner as in Example 1, except that 60 wt% of crushed silica particles of m were blended (transmission rate: 82% Z mm).
  • Example 2 In the process of (24) of Example 1, when the microlens was disposed at the end of the resin composition layer 47, the particle size distribution of the epoxy resin used in Example 1 was 0.1 to 0.8. Crushed form of m A substrate for mounting an IC chip was obtained in the same manner as in Example 1, except that 70 wt% of the silica particles (70% transmittance) was used.
  • a substrate for mounting an IC chip was obtained in the same manner as in each of the examples 1-17 except that in each of the examples 17, the microlens was disposed using a dispenser instead of the inkjet device.
  • the resin was used with a viscosity of 20 cps.
  • epoxy resin (91% Z mm transmittance, 72 ppm CTE) is poured into a micro-lens arrayed mold and cured at 120 ° C for 1 hour and at 150 ° C for 2 hours. After that, the cured resin was removed from the mold to produce a microlens array.
  • an epoxy resin (viscosity 500 cps, refractive index 1.45-1.55, transmittance 91% Z mm) is used as an adhesive at the end of the optical signal passage area where the microlens array is disposed. , CTE 70 ppm) was applied using a dispenser.
  • a protective tape was attached to the microlens array, and was suctioned with a suction tip of a flip chip device by suction and nore, and mounted using alignment marks on the substrate with an accuracy of 10 m or less. Further, the adhesive was cured at 120 ° C. for 10 minutes.
  • the thickness of the adhesive was about 10 m.
  • the protective tape is attached to the microlens array and then disposed.
  • the microlens array it is possible to place the microlens array without attaching the protective tape between the chucks of the flip chip device. Good.
  • Example 1 when forming the through hole for an optical path, using an drill having a diameter of 150 / zm, an example of forming an through hole for an optical path at a 250 / zm pitch is formed. Same as 1 Thus, a substrate for mounting an IC chip was obtained. In the substrate for mounting an IC chip manufactured in the present embodiment, an optical signal passage region in the form of an individual through hole is formed.
  • a drill having a diameter of 150 m is used to form a through hole for an optical path.
  • a drill having a diameter of about 100 to 400 m may be used.
  • a drill with a diameter of 300 m may be used to form individual through holes with a pitch of 500 m.
  • Example 1 except that in the process of (17) of Example 1, a drill with a diameter of 300 / zm was used to form an optical path through hole, and five optical path through holes were formed at a pitch of 250 m.
  • a substrate for mounting an IC chip was obtained in the same manner as in.
  • a collective through-hole-shaped optical signal passage region is formed in which dummy cylinders are formed in a part of the side surfaces of the cylinders adjacent to each other.
  • the Rukoto Here, the through holes for the optical path were formed in the order shown in FIG. 20 (a).
  • the conductor circuit and the insulating layer are laminated on both sides of the substrate in the same manner as (1) to (17) in Example 1 (except for the drilling process), and then drilling is performed. An optical path recess was formed through the two insulating layers.
  • a nickel plating layer and a gold plating layer are formed on the surface of the conductor circuit exposed on the bottom of the recess for an optical path in the same manner as in the step (23) of Example 1, and then light emission is performed.
  • the element and the IC chip were mounted on the bottom of the optical path recess by wire bonding.
  • a resin composition containing an epoxy resin similar to the resin composition used in the step (18) of Example 1 is filled in the optical path recess using a squeegee and dried. After that, the surface layer was flattened by puff polishing. Further, the resin composition layer was formed by curing treatment.
  • microlenses were disposed at the end of the exposed side of the resin composition layer formed in the light signal transmission region by the following method.
  • solder bumps were formed in the openings for forming solder bumps, to obtain a substrate for mounting an IC chip.
  • the IC chip mounting and resin sealing are carried out for the IC chip mounting substrate of Example 1 16 thus obtained, and the light emission of the optical signal passing region of the IC chip mounting substrate is performed.
  • a detector was attached to the end opposite to the element mounting side, a 2.5 Gbps optical signal was emitted from the light emitting element, and the optical signal was detected by the detector, and a desired optical signal could be detected. . Therefore, it became clear that in the substrate for mounting an IC chip manufactured in the present embodiment, an optical signal can be reliably transmitted through the optical signal transmitting region and the microlens.
  • the IC chip mounting substrate according to Example 1 12 was examined for the coatability of the resin when the microlens was disposed. The results were as described in Example 1-14 and Example 7-11.
  • microlenses of a desired shape can be disposed with less variation in the amount of resin coating.
  • the resin is used. Although there were slight variations in the amount of coating, it was possible to dispose one that could be used as a micro lens.
  • the IC chip mounting substrate was cross-cut, and the occurrence of cracks in the IC chip mounting substrate including the micro lens and the light signal passing region was observed. Even if there was no crack, it did not occur.
  • Example 1-16 Further, the IC chip mounting substrate according to Example 1-16 was subjected to a total of 5 reflow processes, and the presence or absence of generation of cracks in the microlens after each reflow process was observed. As a result, no crack was observed under any conditions.
  • reflow processing was performed with a temperature profile with a peak temperature of 260 ° C, over 220 ° C for one time within 30 seconds, and a residual heat temperature of 170 to 200 ° C for over 1 minute, assuming mounting of Pb solder.
  • Example 1 In Example 1, the particle size distribution 0.1% to 0.8m of the pulverized shape blended in the same epoxy resin as the epoxy resin used to dispose the microlenses. Silica was compounded in the amount (% by weight) shown in Table 2 to prepare a transmittance measurement sample, and the influence of the number of times of reflow on the transmittance of the microlens was evaluated. The results are shown in Table 2.
  • the transmittance measurement sample was prepared at 10 mm in length ⁇ 10 mm in width ⁇ 100 m in height, and was measured using a spectrophotometer (UV-3101PC, manufactured by Shimadzu Corporation).
  • Test example 5 To 7 test examples
  • a resin film for an insulating layer was produced in the same manner as in step A of Example 1. [0440] B. Preparation of resin composition for filling through holes
  • the resin composition for filling through holes was prepared in the same manner as in step B of Example 1.
  • a copper-clad laminate in which an 18 m copper foil 78 is laminated on both sides of an insulating substrate 71 made of glass epoxy resin or BT (bismaleimide triazine) resin having a thickness of 0.7 mm as a starting material See Figure 15 (a)).
  • this copper-clad laminate was drilled, subjected to electroless plating, and etched in a pattern to form conductor circuits 74 and through holes 79 on both sides of the substrate 71.
  • the reduction treatment was carried out using an aqueous solution containing 6 g ZD as a reduction bath, and a rough surface (not shown) was formed on the surface of the conductor circuit 74 containing the through holes 79 (see FIG. 15 (b)).
  • the resin filler was pressed into the through holes using a squeegee, and then dried at 100 ° C. for 20 minutes.
  • a mask with an opening at a portion corresponding to the conductor circuit non-formation portion is placed on the substrate, and a resin filler is also filled in the conductor circuit non-formation portion which is a recess using a squeegee.
  • a layer of the resin filler 80 ' was formed by drying at 20 ° C for 20 minutes (see Fig. 15 (c)).
  • the surface of the conductor circuit 74 or the through hole 79 is obtained by belt sander polishing using # 600 belt-abrasive paper (manufactured by Sankyo Riken Co., Ltd.) on one side of the substrate which has been subjected to the treatment of (3) Polishing was performed so that the resin filler 80 'did not remain on the land surface, and then puff polishing was performed to remove the damage caused by the belt sander polishing. Such a series of polishing was similarly performed on the other surface of the substrate.
  • etching solution an etching solution (MEC etch bond, manufactured by MEC Co., Ltd.) containing 10 parts by weight of an imidazole copper ( ⁇ ) complex, 7 parts by weight of glycolic acid and 5 parts by weight of potassium chloride was used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明の目的は、光信号通過領域が形成されており、光信号の伝送損失を抑えることが可能となるとともに、より確実に光信号を伝送することができ、信頼性に優れるICチップ実装用基板を提供することにあり、本発明のICチップ実装用基板は、基板の両面に導体回路と絶縁層とが積層形成されるとともに、光学素子が実装されたICチップ実装用基板であって、ICチップ実装用基板には、光信号通過領域が設けられており、前記光信号通過領域の前記光学素子側と反対側の端部には、マイクロレンズが配設されていることを特徴とする。

Description

ICチップ実装用基板、マザ一ボード用基板、光通信用デバイス、 ICチッ プ実装用基板の製造方法、および、マザ一ボード用基板の製造方法
技術分野
[0001] 本発明は、 ICチップ実装用基板、マザ一ボード用基板、光通信用デバイス、 ICチッ プ実装用基板の製造方法、および、マザ一ボード用基板の製造方法に関する。 背景技術
[0002] 近年、通信分野を中心として光ファイバに注目が集まっている。特に IT (情報技術) 分野においては、高速インターネット網の整備に、光ファイバを用いた通信技術が必 要となる。
光ファイバは、(1)低損失、(2)高帯域、(3)細径'軽量、(4)無誘導、(5)省資源等 の特徴を有しており、この特徴を有する光ファイバを用いた通信システムでは、従来 のメタリックケーブルを用いた通信システムに比べ、中継器数を大幅に削減すること ができ、建設、保守が容易になり、通信システムの経済化、高信頼性ィ匕を図ることが できる。
[0003] また、光ファイバは、一つの波長の光だけでなぐ多くの異なる波長の光を 1本の光フ アイバで同時に多重伝送することができるため、多様な用途に対応可能な大容量の 伝送路を実現することができ、映像サービス等にも対応することができる。
[0004] そこで、このようなインターネット等のネットワーク通信においては、光ファイバを用い た光通信を、基幹網の通信のみならず、基幹網と端末機器 (パソコン、モパイル、ゲ ーム等)との通信や、端末機器同士の通信にも用いることが提案されている。
[0005] このように基幹網と端末機器との通信等に光通信を用いる場合、端末機器において 情報 (信号)処理を行う ICが、電気信号で動作するため、端末機器には、光→電気 変換器や電気→光変換器等の光信号と電気信号とを変換する装置 (以下、光 Z電 気変翻とも 、う)を取り付ける必要がある。
そこで、従来の端末機器では、例えば、 ICチップを実装したパッケージ基板、光信号 を処理する受光素子や発光素子等の光学素子等を別々に実装し、これらに電気配 線や光導波路を接続し、信号伝送および信号処理を行って!ヽた。
[0006] このような従来の端末機器において、 ICチップを実装したパッケージ基板、光信号を 処理する受光素子や発光素子等の光学素子等を別々に実装した場合には、装置自 体が大きくなり、端末機器の小型化を図ることが難しかった。
[0007] そこで、本発明者らは、先に、基板の両面に導体回路と絶縁層とが積層形成され、最 外層にソルダーレジスト層が形成されるともに、光学素子が実装された ICチップ実装 用基板であって、この ICチップ実装用基板を貫通する光信号伝送用光路が形成さ れた ICチップ実装用基板を提案して ヽる (例えば、特許文献 1参照)。
[0008] 一方、光学部品間の光結合効率を高めるためには、マイクロレンズを用いることがで き、マイクロレンズの形成方法としては、シリコン異方性エッチング、フォトリソグラフィ の技術を利用したマイクロレンズの形成方法が開示されている(例えば、特許文献 2、 3参照)。
このような方法で形成したマイクロレンズや、マイクロレンズアレイは接着剤を用いて パーケージ基板やプリント配線板上に固定することができる。
[0009] また、基板上に直接榭脂を塗布した後、硬化させることによりマイクロレンズを形成す る方法として、マイクロジェット (インクジェット)を用いてマイクロレンズを形成する方法 も開示されている (例えば、非特許文献 1、 2参照)。
[0010] 特許文献 1:特開 2002-329891号公報
特許文献 2:特開平 06— 230203号公報
特許文献 3:特開平 06- 326285号公報
非特許文献 1 : D. L. MacFarlane、外 2名, 「マイクロジェットによるマイクロレンズの 作 (Microjet Fabrication oi Microlens Arraysノ」, (IEEE Photonic T echnol Lett) ,米国, 1994年,第 6卷,第 9号, p. 1112—1114
非特許文献 2 :石井、外 3名, 「光 IZOチップ実装のための高分子マイクロレンズのィ ンクジェットによる製作 (Ink— Jet Fabrication of Polymer Microlens for O ptical-l/O Chip Packaging)」, (Jpn J Appl Phys Part 1) , 2000年,第 39卷,第 3B号, p. 1490-1493
発明の開示 発明が解決しょうとする課題
[0011] 上述したように、既にマイクロレンズを形成する技術については開示されているものの 、光学素子を実装した ICチップ実装用基板や、この ICチップ実装用基板等を実装す るための光導波路が形成されたマザ一ボード用基板等にマイクロレンズを取り付ける 場合の取り付け位置にっ 、ては、何ら開示されて 、なかった。
また。 ICチップ実装用基板にマイクロレンを取り付ける際に、その位置や個数等や、 マイクロレンズ自体の形状等によっては、発光素子力 の光信号は広がり角度をもつ て発光されること、受光素子の受光エリアが小さいこと等に起因して、光学素子と光 導波路との間や、光学素子同士の間で光信号の伝送が行われな力つたり、伝送損失 が大きくなりすぎたりすることがあった。
課題を解決するための手段
[0012] そこで、本発明者らは、接続信頼性に優れる光通信を達成するために、光学素子が 実装されるとともに光信号通過領域が設けられた ICチップ実装用基板、光導波路が 形成されるとともに光信号通過領域が設けられたマザ一ボード用基板、および、これ らを用いた光通信用デバイスお ヽて、接続信頼性に優れる光通信を達成するために 鋭意検討を行い、本発明を完成した。
[0013] 即ち、第一の本発明の ICチップ実装用基板は、基板の両面に導体回路と絶縁層と が積層形成されるとともに、光学素子が実装された ICチップ実装用基板であって、 ICチップ実装用基板には、光信号通過領域が設けられており、
上記光信号通過領域の上記光学素子側と反対側の端部には、マイクロレンズが配 設されて!/ヽることを特徴とする。
[0014] 第一の本発明の ICチップ実装用基板において、上記光信号通過領域は、上記基板 および上記絶縁層を貫通するように設けられて 、ることが望まし 、。
[0015] 第一の本発明の ICチップ実装用基板において、上記光学素子はマルチチャンネル 光学素子であり、上記光信号通過領域は複数の独立した光路から構成されているこ とが望ましい。
[0016] また、第一の本発明の ICチップ実装用基板において、上記光学素子はマルチチヤ ンネル光学素子であり、上記光信号通過領域は、上記マルチチャンネル光学素子か らの光信号または上記マルチチャンネル光学素子への光信号が伝送可能な一の光 路から構成されて ヽることも望ま 、。
この場合、上記マルチチャンネル光学素子からの光信号または上記マルチチャンネ ル光学素子への光信号が伝送可能な一の光路は、複数の円柱の壁面の一部が繋 力 た形状を有していることが望ましぐ上記複数の円柱のうち、少なくとも 1個は、光 信号を伝送しな 、ダミー円柱であることが望ま 、。
[0017] また、第一の本発明の ICチップ実装用基板においては、上記光信号通過領域の壁 面が、榭脂または金属により構成されていることが望ましぐまた、上記光信号通過領 域の壁面は、表面粗さ Raが 0. 1— 5 mであることが望ましい。
[0018] また、第一の本発明の ICチップ実装用基板においては、上記光学素子は、受光素 子および Zまたは発光素子であることが望まし 、。
[0019] また、第一の本発明の ICチップ実装用基板は、上記光学素子が発光素子であり、上 記発光素子から出射した光力 上記マイクロレンズを介してコリメート光となることが望 ましぐまた、上記光学素子が受光素子であり、上記マイクロレンズを介して上記受光 素子へ入射する光について、上記受光素子の受光部におけるスポット領域が、上記 受光部と 22%以上重なって 、ることも望ま 、。
[0020] また、第一の本発明の ICチップ実装用基板において、上記マイクロレンズは、撥水 処理または親水処理が施された上記光信号通過領域の端部に直接配設されている 力 または、上記光信号通過領域の端部にレンズマーカを介して配設され、上記マイ クロレンズが配設されて ヽる面には、撥水処理または親水処理が施されて ヽることが 望ましぐまた、上記マイクロレンズには、粒子が配合されていることが望ましい。
[0021] 第二の本発明のマザ一ボード用基板は、基板の少なくとも片面に導体回路と絶縁層 とが積層形成されるとともに、光導波路が形成され、少なくとも一方の面に、光学素子 、または、光学素子が実装された ICチップ実装用基板を実装することができるマザ一 ボード用基板であって、
マザ一ボード用基板には、光信号通過領域が設けられており、
上記光信号通過領域の上記光学素子または上記 ICチップ実装用基板を実装する 側の端部には、マイクロレンズが配設されていることを特徴とする。 [0022] 第二の本発明のマザ一ボード用基板において、上記光信号通過領域は、上記基板 および上記絶縁層を貫通するように設けられて 、ることが望ま 、。
[0023] 第二の本発明のマザ一ボード用基板において、上記光学素子はマルチチャンネル 光学素子であり、上記光信号通過領域は複数の独立した光路から構成されているこ とが望ましい。
[0024] 第二の本発明のマザ一ボード用基板において、上記光学素子はマルチチャンネル 光学素子であり、上記光信号通過領域は、上記マルチチャンネル光学素子からの光 信号または上記マルチチャンネル光学素子への光信号が伝送可能な一の光路から 構成されて ヽることも望ま ヽ。
この場合、上記マルチチャンネル光学素子からの光信号または上記マルチチャンネ ル光学素子への光信号が伝送可能な一の光路は、複数の円柱の壁面の一部が繋 力 た形状を有していることが望ましぐ上記複数の円柱のうち、少なくとも 1個は、光 信号を伝送しな 、ダミー円柱であることが望ま 、。
[0025] また、第二の本発明のマザ一ボード用基板においては、上記光信号通過領域の壁 面が、榭脂または金属により構成されていることが望ましぐまた、上記光信号通過領 域の壁面は、表面粗さ Raは、 0. 1一 5 mであることが望ましい。
[0026] また、第二の本発明のマザ一ボード用基板においては、上記光導波路から出射した 光力 上記マイクロレンズを介してコリメート光となることが望ましぐまた、上記マイク 口レンズを介して上記光導波路へ入射する光について、上記光導波路のコアにおけ るスポット領域力 上記コアと 35%以上重なっていることも望ましい。
[0027] また、第二の本発明のマザ一ボード用基板において、上記マイクロレンズは、撥水処 理または親水処理が施された上記光信号通過領域の端部に直接配設されているか 、または、上記光信号通過領域の端部にレンズマーカを介して配設され、上記マイク 口レンズが配設されて ヽる面には、撥水処理または親水処理が施されて!/ヽることが望 ましぐまた、上記マイクロレンズには、粒子が配合されていることが望ましい。
[0028] 第三の本発明の光通信用デバイスは、第一の本発明の ICチップ実装用基板が、第 二の本発明のマザ一ボード用基板に実装されてなることを特徴とする。
[0029] 第四の本発明の光通信用デバイスは、基板の少なくとも片面に導体回路と絶縁層と が積層形成されるとともに、光導波路が形成されたマザ一ボード用基板に、光学素 子、または、光学素子が実装された ICチップ実装用基板が実装された光通信用デバ イスであって、
上記光導波路と上記光学素子とを結ぶ光路上に、少なくとも 1つのマイクロレンズが 配設されており、
上記光導波路または上記光学素子に入射する光は、マイクロレンズを介して集光さ れるように構成されて 、ることを特徴とする。
[0030] 第四の本発明の光通信用デバイスは、上記マイクロレンズが少なくとも 2っ配設され ており、
上記光導波路または上記光学素子から出射した光が、集光またはコリメート光となる ことが望ましい。
[0031] 第五の本発明の光通信用デバイスは、基板の少なくとも片面に導体回路と絶縁層と が積層形成されるとともに、光導波路が形成されたマザ一ボード用基板に、発光素 子が実装された ICチップ実装用基板と受光素子が実装された ICチップ実装用基板 とが実装された光通信用デバイスであって、
上記マザ一ボード用基板は、上記光導波路の両端のそれぞれに光学的に接続され た光信号通過領域が形成されるとともに、上記光信号通過領域の上記光導波路と光 学的に接続された側と反対側の端部にマイクロレンズが配設されており、 上記発光素子が実装された ICチップ実装用基板は、上記発光素子と光学的に接続 された光信号通過領域が形成されるとともに、上記光信号通過領域の上記発光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、 上記受光素子が実装された ICチップ実装用基板は、上記受光素子と光学的に接続 された光信号通過領域が形成されるとともに、上記光信号通過領域の上記受光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、 上記発光素子から出射した光は、上記発光素子が実装された ICチップ実装用基板 に配設されたマイクロレンズを介してコリメート光となり、このコリメート光力 上記マザ 一ボード用基板に配設された一方のマイクロレンズを介して集光されて、上記光導波 路の一端に入射した後、上記光導波路内を伝送し、上記光導波路の他端から出射 した光が、上記マザ一ボード用基板に配設された他方のマイクロレンズを介してコリメ ート光となり、このコリメート光が上記受光素子が実装された ICチップ実装用基板に 配設されたマイクロレンズで集光されて上記受光素子に入射するように構成されてい ることを特徴とする。
[0032] 第六の本発明の ICチップ実装用基板の製造方法は、
(a)基板の両面に導体回路と絶縁層とを順次積層形成し、多層配線板とする多層配 線板製造工程と、
(b)上記多層配線板を貫通する光信号通過領域を形成するか、または、上記多層配 線板の一部に凹部形状の光信号通過領域を形成する光信号通過領域形成工程と、
(c)上記光信号通過領域の端部にマイクロレンズを配設するマイクロレンズ配設工程 と
を含むことを特徴とする。
[0033] 第六の本発明の ICチップ実装用基板の製造方法では、上記 (b)の工程において、 上記多層配線板を貫通する光信号通過領域として、複数の独立した光路から構成さ れる貫通孔カもなる光信号通過領域を形成することが望ましい。
[0034] また、第六の本発明の ICチップ実装用基板の製造方法では、上記 (b)の工程にお いて、上記多層配線板を貫通する光信号通過領域として、マルチチャンネル光学素 子からの光信号またはマルチチャンネル光学素子への光信号が伝送可能な一の光 路カも構成される光信号通過領域を形成することが望ましい。
[0035] また、第六の本発明の ICチップ実装用基板の製造方法では、上記 (b)の工程にお V、て、上記光信号通過領域の壁面が金属層から構成されるように金属層形成工程を 行うことが望ましぐこの場合、上記金属層形成工程で形成する金属層の表面を粗ィ匕 面とすることが望ましい。
また、上記 ICチップ実装用基板の製造方法では、上記 (b)の工程において、上記光 信号通過領域の壁面が榭脂層から構成されるように榭脂層形成工程を行うことも望 ましぐこの場合、上記榭脂層形成工程で形成する榭脂層の表面を粗ィ匕面とすること が望ましい。
[0036] また、第六の本発明の ICチップ実装用基板の製造方法では、上記 (c)の工程にぉ ヽ て、上記マイクロレンズを配設する前に、上記マイクロレンズを配設する部位に、撥水 処理または親水処理を施しておくことが望ま ヽ。
[0037] 第七の本発明のマザ一ボード用基板の製造方法は、
(a)基板の少なくとも片面に導体回路と絶縁層とを順次積層形成するとともに、 上記基板上および Zまたは上記絶縁層上に光導波路を形成し、光配線板とする光 配線板製造工程と、
(b)上記光配線板に光信号通過領域を形成する光信号通過領域形成工程と、
(c)上記光信号通過領域の一端にマイクロレンズを配設するマイクロレンズ配設工程 と
を含むことを特徴とする。
[0038] 第七の本発明のマザ一ボード用基板の製造方法では、上記 (b)の工程において、上 記光信号通過領域として、複数の独立した光路から構成される光信号通過領域を形 成することが望ましい。
[0039] また、第七の本発明のマザ一ボード用基板の製造方法では、上記 (b)の工程にぉ ヽ て、上記光信号通過領域として、マルチチャンネル光学素子からの光信号またはマ ルチチャンネル光学素子への光信号が伝送可能な一の光路から構成される光信号 通過領域を形成することが望まし ヽ。
[0040] また、第七の本発明のマザ一ボード用基板の製造方法では、上記 (b)の工程にぉ ヽ て、上記光信号通過領域の壁面が金属層から構成されるように金属層形成工程を行 うことが望ましぐこの場合、上記金属層形成工程で形成する金属層の表面を粗化面 とすることが望ましい。
また、上記マザ一ボード用基板の製造方法では、上記 (b)の工程において、上記光 信号通過領域の壁面が榭脂層から構成されるように榭脂層形成工程を行うことも望 ましぐこの場合、上記榭脂層形成工程で形成する榭脂層の表面を粗ィ匕面とすること が望ましい。
[0041] また、第七の本発明のマザ一ボード用基板の製造方法では、上記 (c)の工程におい て、上記マイクロレンズを配設する前に、上記マイクロレンズを配設する部位に、撥水 処理または親水処理を施しておくことが望ま ヽ。 発明の効果
[0042] 第一の本発明の ICチップ実装用基板は、上述したように、上記光信号通過領域の端 部にマイクロレンズが配設されているため、受光素子に入射する光信号や、発光素 子から出射する光信号がマイクロレンズを通過することにより、光信号の拡散を抑える ことができ、光学素子の入出力信号を効率よく伝送することが可能となる。従って、光 信号に損失が発生しにくぐ伝送損失を抑えた ICチップ実装用基板を実現すること ができる。
また、上記 ICチップ実装用基板に配設された光学素子と後述する第二の本発明の マザ一ボード用基板等の外部基板等に実装した光学部品等との間で、より確実に光 信号の伝送を行うことが可能となり、光信号の伝送の信頼性が高い光通信を実現す ることがでさる。
[0043] さらに、第一の本発明の ICチップ実装用基板では、上記光信号通過領域を介して、 上記光学素子の入出力信号を伝送することができる。また、この ICチップ実装用基 板に ICチップが実装された場合には、 ICチップと光学素子との距離が短ぐ電気信 号伝送の信頼性に優れることとなる。
また、本発明の ICチップ実装用基板では、光通信に必要な電子部品や光学素子を 一体ィ匕することができるため、光通信用端末機器の薄型化、小型化に寄与すること ができる。
[0044] 第二の本発明のマザ一ボード用基板は、上述したように、上記光信号通過領域の端 部にマイクロレンズが配設されているため、マザ一ボード用基板に形成された光導波 路に入射する光信号や、該光導波路力 出射する光信号がマイクロレンズを通過す ることにより、光信号の拡散を抑えることができ、光学素子の入出力信号を効率よく伝 送することが可能となる。従って、光信号に損失が発生しにくぐ伝送損失を抑えたマ ザ一ボード用基板を実現することができる。
また、上記マザ一ボード用基板に形成された光導波路と上述した第一の本発明の IC チップ実装用基板等に実装した光学素子等との間で、より確実に光信号の伝送を行 うことが可能となり、光信号の伝送の信頼性が高い光通信を実現することができる。
[0045] さらに、第二の本発明のマザ一ボード用基板では、光信号通過領域領域の端部にマ イク口レンズが配設されているため、上記光信号通過領域および上記光導波路を介 して、光信号を確実に伝送することができる。
また、本発明のマザ一ボード用基板では、光通信に必要な電子部品や光導波路を 一体ィ匕することができるため、光通信用端末機器の薄型化、小型化に寄与すること ができる。
[0046] 第三の本発明の光通信用デバイスは、本発明のマザ一ボード用基板に本発明の IC チップ実装用基板が実装されたものであるため、光信号の伝送能に優れることとなる
[0047] 第四の本発明の光通信用デバイスは、光導波路と光学素子とを結ぶ光路上にマイク 口レンズが配設されているため、光信号の伝送能に優れることとなる。
[0048] 第五の本発明の光通信用デバイスは、光導波路と光信号通過領域とが形成された マザ一ボード用基板に、受光素子が実装されるとともに光信号通過領域が形成され た ICチップ実装用基板と、発光素子が実装されるとともに光信号通過領域が形成さ れた ICチップ実装用基板とが実装されており、所定の位置に所定の機能を有するマ イク口レンズが配設されているため、発光素子から出射した光が、光信号通過領域お よび光導波路を介して、受光素子に伝送される際に、この光は、光信号通過領域の 壁面で反射されることとなく伝送されることとなる。従って、反射による減衰なぐ発光 素子との受光素子との間での光信号の伝送能に優れることとなる。
[0049] 第六の本発明の ICチップ実装用基板の製造方法は、上述した構成力 なるため、第 一の本発明の ICチップ実装用基板、即ち、基板および絶縁層に設けられた光信号 通過領域を介して光学素子の入出力信号の伝送を行う ICチップ実装用基板を好適 に製造することができる。従って、第六の本発明の製造方法を用いることにより、光信 号の伝送性に優れた ICチップ実装用基板を製造することができる。
[0050] 第七の本発明の本発明のマザ一ボード用基板の製造方法は、上述した構成からな るため、第二の本発明のマザ一ボード用基板、即ち、基板および絶縁層に設けられ た光信号通過領域および光導波路を介して光信号の伝送を行うマザ一ボード用基 板を好適に製造することができる。従って、第七の本発明の製造方法を用いることに より、光信号の伝送性に優れたマザ一ボード用基板を製造することができる。 発明を実施するための最良の形態
[0051] まず、第一の本発明の ICチップ実装用基板について説明する。
第一の本発明の ICチップ実装用基板は、基板の両面に導体回路と絶縁層とが積層 形成されるとともに、光学素子が実装された ICチップ実装用基板であって、
ICチップ実装用基板には、光信号通過領域が設けられており、
上記光信号通過領域の上記光学素子側と反対側の端部には、マイクロレンズが配 設されて!/ヽることを特徴とする。
[0052] 第一の本発明の ICチップ実装用基板は、光学素子が実装されるとともに、該 ICチッ プ実装用基板 (基板、絶縁層)に光信号通過領域が設けられているため、上記光信 号通過領域を介して、上記光学素子の入出力信号を伝送することができる。また、こ の ICチップ実装用基板に ICチップが実装された場合、 ICチップと光学素子との距離 が短ぐ電気信号伝送の信頼性に優れることとなる。
また、 ICチップを実装した第一の本発明の ICチップ実装用基板では、光通信に必要 な電子部品や光学素子を一体ィ匕することができるため、光通信用端末機器の薄型化 、小型化に寄与することができる。
[0053] さらに、第一の本発明の ICチップ実装用基板では、上記光信号通過領域の上記光 学素子側と反対側の端部にマイクロレンズが配設されているため、受光素子に入射 する光信号や、発光素子から出射する光信号がマイクロレンズを通過することにより、 光信号の拡散を抑えることができ、光学素子の入出力信号を効率よく伝送することが 可能となる。従って、光信号に損失が発生しにくぐ伝送損失を抑えた ICチップ実装 用基板を実現することができる。
また、上記 ICチップ実装用基板に配設された光学素子と外部基板等に実装した光 学部品等との間で、より確実に光信号の伝送を行うことが可能となり、光信号の伝送 の信頼性が高 、光通信を実現することができる。
[0054] 第一の本発明の ICチップ実装用基板においては、光信号通過領域が形成されてお り、この光信号通過領域の少なくとも一端に、マイクロレンズが配設されている。
また、第一の本発明の ICチップ実装用基板では、その両面に導体回路と絶縁層とが 積層形成された基板の最外層に、さらに、ソルダーレジスト層が形成されていてもよ い。
[0055] ここでは、まず、第一の本発明の ICチップ実装用基板における光信号通過領域の端 部にマイクロレンズが配設された態様について、ソルダーレジスト層が形成されてい る場合と、形成されていない場合とに分けて、簡単に説明しておく。
第一の本発明の ICチップ実装用基板において、基板の両面に絶縁層が積層形成さ れ、最外層にソルダーレジスト層が形成されていない場合には、光信号通過領域の 端部にマイクロレンズが配設されて 、ることとなる。
[0056] これに対して、基板の両面に絶縁層が積層形成され、さら〖こ、最外層にソルダーレジ スト層が形成されている場合には、通常、上記ソルダーレジスト層をも貫通するように 光信号通過領域が形成されていることとなり、この場合、光信号通過領域の端部に 配設されたマイクロレンズは、光信号通過領域のソルダーレジスト層を貫通する部分 の内部に配設されることとなる。
さら〖こ、第一の本発明の ICチップ実装用基板において、最外層にソルダーレジスト 層が形成され、このソルダーレジスト層をも貫通するように光信号通過領域が形成さ れている場合には、光信号通過領域のソルダーレジスト層を貫通する部分の端部に マイクロレンズが配設されて 、る態様も、光信号通過領域の端部にマイクロレンズが 配設された第一の本発明の ICチップ実装用基板の態様に含むこととする。
[0057] また、本明細書では、光学素子への入力信号や光学素子からの出力信号を伝送す るために ICチップ実装用基板や後述するマザ一ボード用基板に設けられた領域のこ とを光信号通過領域と 、うこととする。
[0058] 上記マイクロレンズとしては特に限定されず、通常、光学レンズに使用されているもの 等が挙げられ、その材質の具体例としては、光学ガラス、光学レンズ用榭脂等が挙げ られる。また、上記光学レンズ用榭脂としては、通信波長帯での吸収が少ないもので あれば特に限定されず、例えば、熱硬化性榭脂、熱可塑性榭脂、感光性榭脂、熱硬 化性榭脂の一部が感光化された榭脂等が挙げられる。
具体的には、例えば、 PMMA (ポリメチルメタタリレート)、重水素化 PMMA、重水素 フッ素化 PMMA等のアクリル榭脂;フッ素化ポリイミド等のポリイミド榭脂;エポキシ榭 脂; UV硬化性エポキシ榭脂;重水素化シリコーン榭脂等のシリコーン榭脂;ベンゾシ クロブテンカ 製造されるポリマー等が挙げられる。
[0059] 上記マイクロレンズの屈折率は特に限定されず、上記光信号通過領域の屈折率と同 一であってもよぐ大きくてもよい。
上記マイクロレンズの屈折率が上記光信号通過領域の屈折率と同一である場合には 、両者の界面で光信号の反射が発生しないため、より確実に光信号の伝送を行うこと ができ、上記マイクロレンズの屈折率が上記光信号通過領域の屈折率より大き!、場 合には、所望の方向に光信号をより集光させることができるため、より確実に光信号 の伝送を行うことができる。
[0060] また、上記マイクロレンズの形状としては、例えば、片面にのみ凸面を有する凸形状 レンズ等が挙げられ、この場合、上記レンズの凸面の曲率半径は、光信号通過領域 の設計等を考慮して適宜選択すればよい。具体的には、例えば、焦点距離を長くす る必要があるときには、曲率半径を小さくすることが望ましぐ焦点距離を短くする必 要があるときには、曲率半径を大きくすることが望ましい。
なお、上記マイクロレンズの形状は、凸形状レンズに限定されるわけではなぐ光信 号を所望の方向に集光することができる形状であればょ 、。
[0061] 第一の本発明の ICチップ実装用基板において、光信号通過領域の光学素子と反対 側の端部に配設されるマイクロレンズは、その通信波長光の透過率が 70%以上であ ることが望ましい。
通信波長光の透過率が 70%未満では、光信号の損失が大きぐ光信号の伝送性の 低下に繋がることがある力もである。上記透過率は、 90%以上であることがより望まし い。
なお、本明細書において、通信波長光の透過率とは、長さ lmmあたりの通信波長光 の透過率をいう。具体的には、例えば、強さ Iの光がマイクロレンズに入射し、該マイ クロレンズを lmm通過して出てきたとした際に、出てきた光の強さが Iである場合に
2
下記式(1)により算出される値である。
[0062] 透過率(%) = (Ι Ζΐ ) Χ 100· · · (1)
2 1
[0063] なお、上記透過率とは、 25— 30°Cで測定した透過率をいう。
[0064] また、上記マイクロレンズには粒子が配合されていることが望ましぐ具体的には、例 えば、榭脂粒子、無機粒子、金属粒子等の粒子が配合されていることが望ましい。粒 子を含ませることにより、マイクロレンズの強度が向上し、形状がより確実に維持され ることとなるととも〖こ、上記 ICチップ実装用基板の構成部材との間で熱膨張係数を整 合させることができ、熱膨張係数の差に起因したクラック等がより発生しに《なるから である。
[0065] 上記マイクロレンズに粒子が含まれている場合、該マイクロレンズの榭脂成分の屈折 率と、上記粒子の屈折率とは同程度であることが望ましい。そのため、マイクロレンズ に含まれる粒子は、屈折率の異なる 2種類以上の粒子を混ぜ合わせて、粒子の屈折 率が榭脂成分の屈折率と同程度になるようにしたものであることが望ましい。
具体的には、例えば、榭脂成分が屈折率 1. 53のエポキシ榭脂である場合、マイクロ レンズに含まれる粒子は、屈折率が 1. 46のシリカ粒子と屈折率が 2. 65のチタ-ァ 粒子とを混ぜ合わせて、溶解して粒子としたもの等が望ま 、。
なお、粒子を混ぜ合わせる方法としては、混練する方法、 2種類以上の粒子を溶かし て混ぜ合わせた後、粒子状にする方法等が挙げられる。
[0066] 上記榭脂粒子としては、例えば、熱硬化性榭脂、熱可塑性榭脂、感光性榭脂、熱硬 化性榭脂の一部が感光性化された榭脂、熱硬化性榭脂と熱可塑性榭脂との榭脂複 合体、感光性榭脂と熱可塑性榭脂との複合体等からなるものが挙げられる。
[0067] 具体的には、例えば、エポキシ榭脂、シリコーン榭脂、フエノール榭脂、ポリイミド榭脂 、ビスマレイミド榭脂、ポリフエ-レン榭脂、ポリオレフイン榭脂、フッ素榭脂等の熱硬 化性榭脂;これらの熱硬化性榭脂の熱硬化基 (例えば、エポキシ榭脂におけるェポ キシ基)にメタクリル酸やアクリル酸等を反応させ、アクリル基を付与した榭脂;フエノ キシ榭脂、ポリエーテルスルフォン(PES)、ポリスルフォン(PSF)、ポリフエ-レンス ルホン(PPS)、ポリフエ-レンサルファイド(PPES)、ポリフエ-ルエーテル(PPE)、 ポリエーテルイミド (Pi)等の熱可塑性榭脂;アクリル榭脂等の感光性榭脂等力もなる ものが挙げられる。
また、上記熱硬化性榭脂と上記熱可塑性榭脂との榭脂複合体や、上記アクリル基を 付与した榭脂ゃ上記感光性榭脂と上記熱可塑性榭脂との榭脂複合体からなるもの を用いることちでさる。 また、上記榭脂粒子としては、ゴム力もなる榭脂粒子を用いることもできる。
[0068] また、上記無機粒子としては、例えば、アルミナ、水酸ィ匕アルミニウム等のアルミ-ゥ ム化合物、炭酸カルシウム、水酸ィ匕カルシウム等のカルシウム化合物、炭酸カリウム 等のカリウム化合物、マグネシア、ドロマイト、塩基性炭酸マグネシウム等のマグネシ ゥム化合物、シリカ、ゼォライト等のケィ素化合物、チタ-ァ等のチタン化合物等から なるものが挙げられる。また、シリカとチタユアとを一定の割合で混ぜ、溶融させて均 一化したものを用いてもょ 、。
また、上記無機粒子として、リンやリンィ匕合物力もなるものを用いることもできる。
[0069] 上記金属粒子としては、例えば、金、銀、銅、ノ ラジウム、ニッケル、白金、鉄、亜鉛、 鉛、アルミニウム、マグネシウム、カルシウム等からなるものが挙げられる。
これらの榭脂粒子、無機粒子および金属粒子は、単独で用いても良いし、 2種以上 併用してちょい。
[0070] また、上記粒子の形状は特に限定されず、例えば、球状、楕円球状、破砕状、多面 体状等が挙げられる。これらのなかでは、球状、または、楕円球状が望ましい。球状 や楕円球状の粒子には角がないため、マイクロレンズにクラック等がより発生しにくい 力 である。
さらに、上記粒子の形状が球状または楕円球状である場合には、該粒子で光が反射 しにくぐ光信号の損失が低減されることとなる。
[0071] また、上記粒子の粒径 (粒子の最大長さ)は特に限定されないが、その上限は 0. 8 μ m、その下限は 0. 01 μ mが望ましい。
インクジェット装置の塗布ノズルの内径や、ディスペンサーのノズル内径寸法は、 20 μ mが現在の最小寸法である力 粒径が上記範囲にある場合には、ノズルが詰まる ことなく、塗布することができるカゝらである。
また、上記粒径の下限は 0. 1 μ mであることがより望ましい。
上記粒径力 この範囲にあることはインクジェット装置やディスペンサー等による塗布 での粘度の安定性や、塗布量のバラツキの観点からより望ま 、からである。
[0072] 上記マイクロレンズに含まれる粒子の配合量の望ましい下限は 5重量%であり、より 望ましい下限は 10重量%である。一方、上記粒子の配合量の望ましい上限は 60重 量%であり、より望ましい上限は 50重量%である。粒子の配合量が 5重量%未満であ ると、粒子を配合させる効果が得られないことがあり、粒子の配合量が 60重量%を超 えると、光信号の伝送が阻害されることがあるからである。
[0073] また、上記マイクロレンズは、必ずしも個別形状を有するものである必要はなぐ複数 のレンズが一体的に構成されたマイクロレンズアレイを用いることもできる。
なお、上記マイクロレンズアレイを用いる場合、このマイクロレンズアレイは、光学接着 剤を用いて光信号通過領域の所定の端部に配設すればょ 、。
また、マイクロレンズアレイの形状は特に限定されず、 ICチップ実装用基板の設計や 光信号通過領域の形状等を考慮して適宜選択すればよい。具体的には、例えば、 光信号通過領域がマルチチャンネル光学素子力 の光信号または上記マルチチヤ ンネル光学素子への光信号が伝送可能な一の光路から構成されている場合には、 レンズ径 220 μ m、レンズのサグ高さ 5— 50 m (望ましくは 5— 20 μ m)のマイクロレ ンズが、ピッチ 250 μ mで並列に配置されたマイクロレンズアレイを用いることができ る。
[0074] 上記マイクロレンズアレイを作製する方法としては、上記マイクロレンズの材質がガラ スゃ石英の場合には、例えば、異方性エッチングやフォトリソグラフィ等を用いること ができ、上記マイクロレンズの材質が榭脂の場合には、金型に材料榭脂を流し込み、 熱と荷重とを加えて作製する方法等を用いることができる。
[0075] 上記マイクロレンズアレイの具体的な形状について、図面を参照しながら簡単に説明 しておく。なお、第一の本発明で用いることができるマイクロレンズアレイは、下記の 形状を有するものに限定されるわけではない。
図 1 (a)—(c)は、それぞれマイクロレンズアレイの一例を模式的に示す断面図である 即ち、第一の本発明で用いることができるマイクロレンズアレイは、図 1 (a)に示すよう に、板状体の上面に凸面を有する凸形状のレンズが複数設けられたマイクロレンズァ レイ 11であってもよいし、(b)に示すように板状体の上面に、四角柱の上面に球の一 部が載置された形状のレンズが複数設けられたマイクロレンズアレイ 12であってもよ いし、 (c)に示すように、板状体の上面に凹面を有する凹形状のレンズが複数設けら れたマイクロレンズアレイ 13であってもよい。
[0076] 上記光学接着剤としては特に限定されず、エポキシ榭脂系、アクリル榭脂系、シリコ 一ン榭脂系等の光学接着剤を用いることができる。
上記光学接着剤の特性は、粘度: 0. 2-1. OPa- s,屈折率: 1. 4一 1. 6、光透過率 : 80%Zmm以上、熱膨張係数(CTE) :4. 0 X 10— 5— 9. 0 X 10— 5 (Z°C)であること が望ましい。
また、上記光学接着剤の厚さは、 50 /z m以下であることが望ましい。
[0077] また、上記マイクロレンズは、親水処理または撥水処理が施された上記光信号通過 領域の端部に直接配設されて ヽることが望ま ヽ。
上記光信号通過領域の端部の濡れ性によっては、マイクロレンズの形状、特にサグ 高さにバラツキが発生しやすいのに対し、親水処理または撥水処理を施すことにより 、サグ高さのバラツキを抑えることができるからである。
また、上記光信号通過領域の端部にレンズマーカを介して配設され、上記マイクロレ ンズが配設されて ヽる面には、撥水処理または親水処理が施されて!/ヽることも望まし い。この場合も、同様の効果を得ることができるからである。
[0078] 上記撥水処理としては、例えば、フッ素系ポリマーコーティング剤(表面張力 10— 12 mNZm)等の撥水コート材による処理、 CFプラズマによる撥水処理等が挙げられ、
4
上記親水処理としては、 o
2プラズマによる親水処理等が挙げられる。
上記撥水処理や親水処理の具体的な方法について簡単に説明しておく。
上記撥水コート剤による処理を行う場合には、まず、 ICチップ実装用基板のマイクロ レンズを形成する部分 (即ち、光信号通過領域の端部)に対応する部分が開口した マスクを行い、次に、スプレイ塗布やスピンコータでの塗布により撥水コート剤を塗布 し、その後、撥水コート剤を自然乾燥させ、さらにマスクを剥がすことにより撥水コート 剤による処理を終了する。なお、撥水コート剤層の厚さは、通常、: L m程度である。 ここでは、メッシュ版やレジスト形成したマスクを用いればょ 、。
[0079] また、上記 CFプラズマによる撥水処理を行う場合には、まず、 ICチップ実装用基板
4
のマイクロレンズを形成する部分 (即ち、光信号通過領域の端部)に対応する部分が 開口したマスクを行い、次に、 CFプラズマ処理を行い、さらにマスクを剥がすことに より撥水処理を終了する。
ここでは、レジスト形成したマスクを用いればよ!、。
また、上記 Oプラズマによる親水処理を行う場合には、まず、 ICチップ実装用基板の
2
マイクロレンズを形成する部分 (即ち、光信号通過領域の端部)に対応する部分が開 口したマスクを行い、次に、 oプラズマ処理を行い、さらにマスクを剥がすことにより
2
親水処理を終了する。
ここでは、メタル版やレジスト形成したマスクを用いればよ!、。
[0080] 上述したような撥水処理や親水処理の効果について、マイクロレンズを光信号通過 領域の端部に直接配設した場合を例に説明する。すなわち、 380plの光学レンズ用 榭脂をインクジェットで塗布し、直径 220 μ m、サグ高さ 10 μ mのマイクロレンズを形 成した場合の形状 (マイクロレンズの径、および、サグ高さ)を検証してみたところ以下 のような結果が得られた。
即ち、いずれの表面処理も行わな力つた場合には、マイクロレンズを配設する部分( 光信号通過領域の端部)の濡れ角は 30— 60度であり、榭脂の塗布量をふやしても、 同一径でサグ高さを変化することはできな力つた。
一方、フッ素系ポリマーコーティング剤による処理を施した場合には、処理した部分 の濡れ角は 100— 105度であり、平均サグ高さ 10. 01 m (標準偏差 σ : 0. 14)、 平均直径 220、 87 πι ( σ : 2. 70)のマイクロレンズを形成することができた。
また、 CFプラズマによる撥水処理を 150— 300秒間施した場合には、処理した部分
4
の濡れ角は 80— 95度であり、平均サグ高さ 10. 01 ^ πι ( σ : 0. 34)、平均直径 221
、 80 πι ( σ : 4. 72)のマイクロレンズを形成することができた。
また、 Οプラズマによる親水処理を 30— 120秒間施した場合には、処理した部分の
2
濡れ角は 3— 10度であり、平均サグ高さ 10. 04 ^ πι ( σ : 0. 25)、平均直径 221、 4 7 μ ΐη ( σ : 3. 36)のマイクロレンズを形成することができた。
従って、撥水処理または親水処理を施すことにより、より形状の均一なマイクロレンズ を形成することができ、撥水コート材による処理、 Οプラズマによる親水処理、 CFプ
2 4 ラズマによる撥水処理の順で効果が高いことが明ら力となった。
[0081] また、本発明の ICチップ実装用基板において、光信号通過領域の端部にマイクロレ ンズを配設する場合、該マイクロレンズは、レンズマーカを介して配設されていてもよ い。
上記レンズマーカは、マイクロレンズを形成するための円柱状等の土台であり、具体 例としては、例えば、特開 2002-331532号公報に開示されたもの等が挙げられる。 また、レンズマーカを形成する方法としては、例えば、光信号通過領域の端部に、マ イク口レンズと同一の屈折率を有する感光性材料膜を形成し、この感光性材料膜上 に、フォトマスクを用いて露光、現像処理を施すことにより、その中心にァライメントマ ークを有し、マイクロレンズパターンが転写されたレンズマーカ用膜を形成する方法 等が挙げられる。
なお、このようなレンズマーカ上に、マイクロレンズを配設する方法としては、マイクロ レンズパターンを有するレンズマーカ上に、レンズ用液状榭脂を射出して、液状のマ イク口レンズを形成し、その後、紫外線等を照射して液状のマイクロレンズを硬化する ことによりマイクロレンズを形成する方法等を用いることができる。
また、レンズマーカを形成されている場合、上記マイクロレンズは、撥水処理または親 水処理が施されたレンズマーカに配設されて 、ることが望まし!/、。
レンズマーカ表面が汚れて 、た場合、マイクロレンズの形成に用いる榭脂組成物(レ ンズ用榭脂組成物)が均一に広がらず、所望の形状のマイクロレンズを形成すること ができない原因になることがあるが、上述した撥水処理や親水処理を施すことにより、 レンズマーカ表面の汚れを除去することができ、上記レンズ用榭脂組成物をレンズマ 一力上に均一に広げることができる力もである。
さら〖こは、レンズマーカには、撥水処理よりも親水処理が施されていることが望ましい 親水処理が施されている場合、レンズマーカ上にマイクロレンズを配設する際に滴下 したレンズ用榭脂組成物力 レンズマーカ上の全体に広がりやすぐまた、レンズマ 一力の外周でその樹脂の広がりが確実に停止するため、表面張力により所定の形状 のマイクロレンズを形成するのに適して 、る力らである。
第一の本発明の ICチップ実装用基板には、光信号通過領域が設けられている。 このような光信号通過領域が設けられた ICチップ実装用基板では、上記 ICチップ実 装用基板の表面または内部に、実装された光学部品同士の情報の授受を、この光 信号通過領域を介して光信号により行うことができる。
また、光学素子を実装した第一の本発明の ICチップ実装用基板を、他の面側を別の 光学部品 (例えば、光導波路等)を実装した第二の本発明のマザ一ボード用基板等 と半田等を介して接続することにより、第一の本発明の ICチップ実装用基板に実装し た光学素子と上記外部基板に実装した光学部品との間の情報の授受を、光信号通 過領域を介して光信号により行うことができる。
[0083] 上記光信号通過領域の一部または全部には榭脂組成物が充填されていてもよい。 I Cチップ実装用基板の強度の低下を防ぐことができるからである。
また、上記光信号通過領域に榭脂組成物が充填されていると、該光信号通過領域 にゴミゃ異物が入り込むことを防止することができるため、ゴミゃ異物等の存在に起因 して光信号の伝送が阻害されることを防止することができる。
[0084] また、 ICチップ実装用基板の最外層にソルダーレジスト層が形成されており、上記光 信号通過領域が上記ソルダーレジスト層を貫通するように設けられている場合には、 上記ソルダーレジスト層を貫通する部分には、上記榭脂組成物が充填されて!ヽても よぐ充填されていなくてもよい。
[0085] 上記榭脂組成物の榭脂成分としては、通信波長帯での吸収が少ないものであれば 特に限定されず、具体例としては、例えば、上記マイクロレンズに用いる榭脂と同様 のもの等が挙げられる。
[0086] また、上記榭脂組成物には、上記榭脂成分以外に、例えば、榭脂粒子、無機粒子、 金属粒子等の粒子が含まれて 、てもよ 、。これらの粒子を含ませることにより光信号 通過領域と、基板、絶縁層、ソルダーレジスト層等との間で熱膨張係数の整合を図る ことができ、また、粒子の種類によっては難燃性を付与することもできる。
上記粒子の具体例としては、上記マイクロレンズに含まれる粒子と同様のもの等が挙 げられる。
なお、上記光信号通過領域の形状等ついては、後に詳述する。
[0087] また、第一の本発明の ICチップ実装用基板には、光学素子が実装されており、この 光学素子は、受光素子および Zまたは発光素子等であることが望まし 、。 上記受光素子としては、例えば、 PD (フォトダイオード)、 APD (アバランシェフオトダ ィオード)等が挙げられる。
これらは、上記 ICチップ実装用基板の構成や、要求特性等を考慮して適宜使い分け ればよい。
上記受光素子の材料としては、 Si、 Ge、 InGaAs等が挙げられる。
これらのなかでは、受光感度に優れる点力 InGaAsが望まし!/、。
[0088] 上記発光素子としては、例えば、 LD (半導体レーザ)、 DFB-LD (分布帰還型一半 導体レーザ)、 LED (発光ダイオード)、インフラ型または酸化狭窄型の VCSEL (面 発光半導体レーザ)等が挙げられる。
これらは、上記 ICチップ実装用基板の構成や要求特性等を考慮して適宜使 ヽ分け ればよい。
[0089] 上記発光素子の材料としては、ガリウム、砒素およびリンの化合物(GaAsP)、ガリウ ム、アルミニウムおよび砒素の化合物(GaAlAs)、ガリウムおよび砒素の化合物(Ga As)、インジウム、ガリウムおよび砒素の化合物(InGaAs)、インジウム、ガリウム、砒 素およびリンの化合物(InGaAsP)等が挙げられる。
これらは、通信波長を考慮して使い分ければよぐ例えば、通信波長が 0. 帯 の場合には GaAlAsを使用することができ、通信波長が 1. 3 m帯や 1. 55 m帯 の場合には、 InGaAsや InGaAsPを使用することができる。
なお、これらの発光素子および受光素子のそれぞれは、マルチチャンネルのアレイ 素子であってもよい。
また、マルチチャンネルのアレイ素子を使用する場合、全てのチャンネルを有効にし て使用してもよいし、複数のチャンネルのうち一部のチャンネルのみを有効にして使 用してちょい。
[0090] 上記光学素子の実装位置は、上記 ICチップ実装用基板の表面であることが望ましい 。上述したように、光学素子が ICチップ実装用基板の表面に実装されている場合は 、一の光学素子に不都合が発生した際に、その光学素子のみを取り替えればよいか らである。
また、上記 ICチップ実装用基板の表面には、コンデンサ等の電子部品も実装されて いることが望ましい。上記光学素子の場合と同様、不都合の発生した部品のみを取り 替えることができる力らである。
[0091] また、光学素子としてワイヤボンディング型の光学素子を実装した場合には、この光 学素子を榭脂封止してもよい。さら〖こ、この場合は、光学素子のみを榭脂封止しても よ!、し、 ICチップ等の他の実装部品を含めて全体を榭脂封止してもょ 、。
また、光学素子としてフリップチップ型の光学素子を実装した場合には、この光学素 子に対して、アンダーフィルを封止してもよいし、光学素子の周囲のみ封止してもよく 、さらに、全体をカバーケースで覆ってもよい。これにより、光路にゴミゃ異物が入り込 むことを防止することができる。なお、アンダーフィルを封止する力否力 封止する場 合のアンダーフィルの屈折率の値等は、設計に応じて適宜選択すればよ!、。
[0092] また、第一の本発明の ICチップ実装用基板においては、上記光学素子として発光素 子が実装されている場合、上記光学素子から出射した光は、上記マイクロレンズを介 してコリメート光となることが望ましい。後述する第二の本発明のマザ一ボード用基板 等の外部基板に確実に伝送されることとなる力 である。
上記コリメート光とは、マイクロレンズから光の伝送方向に lmm以上離れた、光の伝 送方向に垂直な任意の平面において、光強度分布が光強度ピークの lZe2以上の 領域の半径 (スポット半径)が、士 10%の値を有する光のことをいう。
[0093] また、第一の本発明の ICチップ実装用基板においては、上記マイクロレンズを介して 上記受光素子へ入射する光について、上記受光素子の受光部におけるスポット領域 力 上記受光部と 22%以上重なっていることが望ましい。より確実に光信号が、受光 素子へと伝送されることとなるからである。
なお、上記スポット領域とは、光の受光面を含む平面上において、光強度ピークの 1 /e2以上の光強度を有する領域のことを 、う。
また、上記受光素子の受光部におけるスポット領域は、上記受光部内に全部含まれ ることが特に望ましい。
[0094] また、第一の本発明の ICチップ実装用基板においては、上記基板を挟んだ導体回 路間がスルーホールを介して接続され、上記絶縁層を挟んだ導体回路間がバイァホ ールを介して接続されて!ヽることが望ま ヽ。 ICチップ実装用基板の高密度配線を 実現しつつ、その小型化を図ることができる力もである。
[0095] 以下、第一の本発明の ICチップ実装用基板の実施形態について、図面を参照しな 力 説明する。なお、図 2— 4のそれぞれは、第一の本発明の ICチップ実装用基板 の一例を模式的に示す断面図である。
第一の本発明の ICチップ実装用基板の実施形態は、光信号通過領域の形態により 、大きく 3つの形態に分けることができる。
即ち、光信号通過領域が一括貫通孔構造の場合 (以下、第一の実施形態の ICチッ プ実装用基板ともいう)、個別貫通孔構造の場合 (以下、第二の実施形態の ICチップ 実装用基板ともいう)、凹部形状の場合 (以下、第三の実施形態の ICチップ実装用 基板ともいう)の 3つの形態に分けることができる。
[0096] また、第一の実施形態の ICチップ実装用基板としては、上記光学素子がマルチチヤ ンネル光学素子であり、上記光信号通過領域が、上記マルチチャンネル光学素子か らの光信号または上記マルチチャンネル光学素子への光信号が伝送可能な一の光 路から構成されて ヽる実施形態を有するものが望まし 、。
また、この場合、上記マルチチャンネル光学素子からの光信号または上記マルチチ ヤンネル光学素子への光信号が伝送可能な一の光路は、複数の円柱の壁面の一部 が繋がった形状を有していることが望ましぐ上記複数の円柱のうち、少なくとも 1個は 、光信号を伝送しな 、ダミー円柱であることがより望ま 、。
[0097] また、第二の実施形態の ICチップ実装用基板としては、上記光学素子がマルチチヤ ンネル光学素子であり、上記光信号通過領域が複数の独立した光路から構成され構 成されて!/ヽる実施形態を有するものが望ま ヽ。
[0098] 図 2には、第一の実施形態の ICチップ実装用基板の一例を示す。なお、図 2には、 最外層にソルダーレジスト層が形成されるとともに、ソルダーレジスト層を貫通する光 信号通過領域が形成され、この光信号通過領域のソルダーレジスト層を貫通する部 分の端部であって、光学素子が実装された側と反対側の端部にマイクロレンズが配 設された形態の ICチップ実装用基板を示す。
図 2に示すように、 ICチップ実装用基板 120は、基板 121の両面に導体回路 124と 絶縁層 122とが積層形成され、基板 121を挟んだ導体回路間、および、絶縁層 122 を挟んだ導体回路間は、それぞれ、スルーホール 129およびバイァホール 127により 電気的に接続されている。また、最外層にはソルダーレジスト層 134が形成されてい る。
この ICチップ実装用基板 120では、基板 121、絶縁層 122およびソルダーレジスト層 134を貫通するように光信号通過領域 142が設けられて 、る。
[0099] この光信号通過領域 142には、基板 121、絶縁層 122およびソルダーレジスト層 13 4を貫通する部分に榭脂組成物 147が充填されている。
そして、ソルダーレジスト層 134を貫通する部分の径は、基板 121および絶縁層 122 を貫通する部分の径と同じとなっており、ソルダーレジスト層 134を貫通する部分の 縦断面の形状は矩形状である。
[0100] ICチップ実装用基板 120の一の面には、受光部 139a— 139dのそれぞれが光信号 通過領域 142に対向するように、 4チャンネルの受光素子 139が半田接続部 144を 介して表面実装されるとともに、 ICチップ 140が半田接続部 143を介して表面実装さ れている。また、 ICチップ実装用基板 120の他の面のソルダーレジスト層 134には、 半田バンプ 137が形成されている。
[0101] 従って、 4チャンネルの受光素子 139への入力信号は、光信号通過領域 142を介し て伝送することができる。ここで、光信号通過領域 142は、 4チャンネル分の光信号を 伝送することができる大きさで、基板 121、絶縁層 122およびソルダーレジスト層 134 を貫通するように一括形成されて 、る。
なお、光信号通過領域 142のソルダーレジスト層 134を貫通する部分は、図 2に示し たように榭脂組成物が充填されていてもよいし、空隙により形成されていてもよい。ま た、光信号通過領域 142の基板 121および絶縁層 122を貫通する部分の周囲には 金属層 (導体層)形成されて!ヽてもよ ヽ。
[0102] また、このような光信号通過領域 142の受光素子 139が実装された側と反対側の端 部には、 4つのレンズ 146a— 146dが並列に配置されたマイクロレンズアレイ 146が 接着剤(図示せず)を介して配設されている。ここで、レンズ 146a— 146dのそれぞれ は、受光素子 139の各チャンネル 139a— 139dに対応する位置に配置されている。 従って、受光素子 139への光信号は、マイクロレンズアレイ 146を構成する各レンズ 1 46a— 146dを通過することとなり、このように、光信号通過領域 142の一端にマイクロ レンズアレイ 146を配設することにより、光信号の伝送損失を抑えることができる。 なお、マイクロレンズアレイ 146に代えて、 4つのマイクロレンズが所定の位置に個別 に、直接または接着剤を介して、配設されていてもよい。なお、マイクロレンズの数が 4つとなっているのは、受光素子のチャンネル数が 4つであるからであり、上記 ICチッ プ実装用基板においては、マイクロレンズの数は、光学素子のチャンネル数は同一 であることが望ましい。
また、マイクロレンズが直接配設されている場合、マイクロレンズが配設される部位に は、親水処理も撥水処理が施されていることが望ましい。なお、これらの表面処理に ついては後に詳述する。
[0103] このような構成力もなる ICチップ実装用基板 120において、外部の光学部品(光ファ ィバゃ光導波路等)を介して伝送されてきた電気信号は、マイクロレンズ 146a— 146 dおよび光信号通過領域 142を介して受光素子 139 (受光部 139a)に伝送され、こ の受光素子 139で電気信号に変換された後、半田接続部 143、導体回路 124、バイ ァホール 127等を介して ICチップ 140に送られ、処理されることとなる。
[0104] 第一の本発明の ICチップ実装用基板では、 ICチップに近い位置に実装された受光 素子において、光 Z電気信号変換を行うため、電気信号の伝送距離が短ぐ信号伝 送の信頼性に優れ、より高速通信に対応することができる。
[0105] また、 ICチップ実装用基板 120では、ソルダーレジスト層 134に金属めつき層を介し て半田バンプ 137が形成されているため、 ICチップ 140と外部基板等との間での電 気信号の伝送は、半田バンプ 137を介しても行うことができる。
[0106] このように半田バンプが形成されている場合には、上記 ICチップ実装用基板をマザ 一ボード用基板等の外部基板と半田バンプを介して接続することができ、この場合に は、半田が有するセルファライメント作用により上記 ICチップ実装用基板を所定の位 置に配置することができる。
[0107] なお、上記セルフアラインメント作用とは、リフロー処理時に半田が自己の有する流動 性により半田バンプ形成用開口の中央付近により安定な形状で存在しょうとする作 用をいい、この作用は、半田がソルダーレジスト層にはじかれるとともに、半田が金属 に付く場合には、球形になろうとする表面張力が強く働くために起こるものと考えられ る。
このセルファライメント作用を利用した場合、上記半田バンプを介して、上記 ICチップ 実装用基板を外部基板に接続する際に、リフロー前には両者に位置ズレが発生して いたとしても、リフロー時に上記 ICチップ実装用基板が移動し、該 ICチップ実装用基 板を外部基板上の正確な位置に取り付けることができる。
従って、上記 ICチップ実装用基板に実装された光学素子と、外部の光学部品とを光 信号通過領域を介して、光信号の伝送を行う場合に、上記 ICチップ実装用基板に実 装された光学素子の実装位置が正確であれば、上記 ICチップ実装用基板と上記外 部基板との間で正確な光信号の伝送を行うことができる。
[0108] このようなマルチチャンネルのアレイ素子が実装された ICチップ実装用基板におい て、光信号通過領域の端部に配設するマイクロレンズの径は、アレイ素子における各 チャンネル間のピッチに応じて適宜決定すればよぐ例えば、 250 mピッチのァレ ィ素子を用いる場合には、 100— 240 m力望ましく、 180— 230 m力 り望ましい 。 100 m未満では、所望の焦点距離を得ることができない場合があり、 240 mを 超えると隣合うマイクロレンズ同士が接触してしまい、マイクロレンズを所定の位置に 配置することができなくなる場合がある。
また、例えば、 500 mピッチのアレイ素子を用いる場合には、 100— 490 m力 S望 ましぐ 180— 480 /z mがより望ましい。 100 /z m未満では、所望の焦点距離を得るこ とができない場合があり、 490 mを超えると隣合うマイクロレンズ同士が接触してし まい、マイクロレンズを所定の位置に配置することができなくなる場合がある。
[0109] 上記一括貫通孔構造の光信号通過領域の形状としては、例えば、円柱、角柱、楕円 柱、直線と円弧とで囲まれた底面を有する柱状体等が挙げられる。
この場合、上記一括貫通孔構造の光信号通過領域の大きさは、縦、横のそれぞれが 100 m— 5mmであることが望ましい。具体的には、上記光信号通過領域が円柱状 である場合は、その底面の直径が上記範囲にあることが望ましぐ上述した各種柱状 である場合には、その底面の最も長 、部分およびこれに直交する部分の長さが共に 上記範囲にあることが望ましい。 100 /z m未満では、光信号の伝送が阻害されることがあり、一方、 5mmを超えても、 光信号の伝送損失の向上はみられず、上記 ICチップ実装用基板の小型化が難しく なる。
[0110] また、上記一括貫通孔構造の光信号通過領域の形状としては、例えば、複数の円柱 が並列に並べられ、互いに隣り合う円柱の側面の一部が繋がった形状も挙げられる また、この場合、その一部に、実際には、光信号通過領域として機能しないダミー円 柱が形成されていることが望ましい。特に、偶数チャンネルの光学素子に対応する光 信号通過領域を形成する場合には、ダミー円柱が形成されていることが望ましい。こ の理由については、後に詳述するが、所望の形状の光信号通過領域を形成するの に適しているからである。
上記円柱の側面の一部が繋がった形状の具体例としては、例えば、底面の直径が 3 00 μ mの円柱が、底面の中心間距離 250 μ mで並列に並べられ、側面の一部が繋 がった形状や、底面の直径が 550 μ mの円柱が、底面の中心間距離 500 μ mで並 列に並べられ、側面の一部が繋がった形状等が挙げられる。
なお、このような光信号通過領域の形成方法については、後述する。
[0111] また、上記 ICチップ実装用基板において、光信号通過領域を形成する場合、この光 信号通過領域は、発光素子力 出射した光や、受光素子に入射する光が壁面で反 射したり、隣接する光信号間で干渉が生じたりしないような大きさを有していることが 望ましい。光信号通過領域の壁面での反射や、信号光間の干渉に起因する伝送損 失が発生しないからである。
そこで、一括貫通孔構造の光信号通過領域の望ま 、断面形状にっ 、て検討した。
[0112] ここでは、光学素子が広がり角が 24度で 4チャンネルの VCSELであり、光信号通過 領域内に充填される榭脂組成物の屈折率が 1. 5であり、光学素子の下部にアンダ 一フィルか充填されており、このアンダーフィルの屈折率が 1. 5である発光素子が実 装された ICチップ実装用基板の場合にっ 、て検討した。
なお、 VCSELの広がり角とは、最大光出力パワーの lZe2の光出力パワーの光が出 射される角度をいう。 [0113] その結果、上述した形態の ICチップ実装用基板では、例えば、 ICチップ実装用基板 の厚さが 0. 8mmで、 VCSELの各チャンネル間の距離が 250 μ mである場合には、 直径 300 m以上の一括貫通孔構造の光信号通過領域であれば、光信号通過領 域の壁面での反射や信号光間での干渉が生じることなく光信号を伝送することがで き、 ICチップ実装用基板の厚さが 1. 7mmで、 VCSELの各チャンネル間の距離が 5 00 μ mである場合には、直径 550 μ m以上の一括貫通孔構造の光信号通過領域で あれば、光信号通過領域の壁面での反射や信号光間での干渉が生じることなく光信 号を伝送することができることが明ら力となった。
[0114] また、図 2に示したように、 ICチップ実装用基板にソルダーレジスト層が形成されてい る場合には、上記光信号通過領域のソルダーレジスト層を貫通する部分の形状は特 に限定されず、上述した基板および絶縁層を貫通する部分と同様の形状を挙げるこ とがでさる。
また、その縦断面の形状は、場合によっては、基板および絶縁層側が短辺となる台 形状であってもよい。
[0115] 上記光信号通過領域の壁面は、榭脂または金属により構成されていてもよい。
ここで、上記光信号通過領域の壁面は、通常、基板や絶縁層が露出しているため、 基板や絶縁層と同様の材質で構成されていることとなる。従って、基板や絶縁層が榭 脂からなるものである場合に、特に榭脂層を形成する等の処理を施さなくても、上記 光信号通過領域の壁面は、榭脂により構成されていることとなる。
ただし、上記光信号通過領域の壁面には、別途、榭脂層を形成してもよぐこの場合 には、榭脂層がクラッドとして機能し、上記光信号通過領域の内部に充填される榭脂 組成物がコアとして機能するように構成されて 、ることが望まし!/、。
[0116] また、上記光信号通過領域の壁面が、金属により構成されている場合、その材料とし ては、例えば、銅、ニッケル、クロム、チタン、貴金属等が挙げられる。
また、上記光信号通過領域の壁面が金属により構成されている場合、即ち、光信号 通過領域の壁面に金属層が形成されている場合、この金属層は、 1層から形成され ていてもよいし、 2層以上力も構成されていてもよい。
また、上記金属層は、場合によっては、スルーホールとしての役目、即ち、基板を挟 んだ導体回路間や、基板と絶縁層とを挟んだ導体回路間を電気的に接続する役目 を果たすことができる。
[0117] また、上記金属層は、光沢を有する金属により形成されていてもよい。上記金属層の 材料が、光沢を有する金属である場合、場合によっては、光信号が、光信号通過領 域の壁面で反射されても信号強度の減衰等が発生しに《なるからである。
上記光沢を有する金属としては、例えば、金、銀、ニッケル、白金、アルミニウム、ロジ ゥム等が挙げられる。また、上記光沢を有する金属としては、例えば、銅、パラジウム 等を用いることもできる。ただし、これらの材料は酸化されやすぐ形成した金属層の 表面の光沢度を低下させる酸ィ匕被膜が形成されやすいため、上記酸ィ匕被膜を除去 することにより金属層の表面の光沢度を上昇させる必要がある。なお、光沢を有する 金属としては、上述したものに限定されることはなぐ鏡面光沢または鮮明度光沢を 有するものであれば、その他の金属も用いることができる。
なお、第一の本発明の ICチップ実装用基板において、上記光信号通過領域は、そ の壁面で光信号が反射しな 、ように構成されて 、ることが望ま U、。壁面での反射に よる信号強度の減衰を回避することができるからである。
[0118] また、上記光信号通過領域の壁面には、粗ィ匕面が形成されていることが望ましぐこ の場合、壁面の表面粗さ Raは、下限が 0. 1 μ mで、上限が 5 μ mであることが望まし く、下限が 0. 5 μ mで、上限が 3 μ mであることがより望ましい。この範囲であれば、榭 脂組成物の密着性が向上することとなるからである。
なお、上記表面粗さ Raは、 JIS B 0601に記載されている算術平均粗さに準拠して 算出した値である。
上記粗化面は、例えば、上記光信号通過領域の壁面を構成する榭脂ゃ金属に直接 、エッチング等により粗ィ匕面を形成してもよいし、また、例えば、上記光信号通過領域 の壁面に形成された金属層上に、スズ、チタン、亜鉛等カゝらなる粗ィ匕層を設けること により形成してもよい。
上記被覆層や粗ィ匕層を設けることにより、光信号通過領域の内部に充填された榭脂 組成物の密着性を向上させることができる。
[0119] また、本発明者等は、光信号通過領域の壁面を粗ィ匕面とした場合において、表面粗 さ Raの大きさが、 ICチップ実装用基板に及ぼす影響を検証する試験を行ったので、 そのデータを以下に示す。
まず、光信号通過領域の壁面が金属から構成される場合につ!ヽて説明する。
[0120] まず、充分な大きさを有する厚さ 0. 8mmのエポキシ基板を用意し、このエポキシ基 板に下記の形状および表面粗さを有する貫通孔を形成し、さらに、貫通孔内に樹脂 組成物を充填する。そして、この榭脂組成物を充填した貫通孔 (光信号通過領域)に ついて、榭脂組成物の充填性、温度サイクル試験時の信頼性、および、光伝送性を 評価した。
なお、榭脂組成物の充填性は、エポキシ基板をクロスカットした後、その断面を顕微 鏡観察し、榭脂組成物が未充填の箇所が発生しているカゝ否カゝ、充填した榭脂組成物 にボイドが発生している力否かを基準に評価した。
また、温度サイクル試験時の信頼性は、液槽において、— 55°Cで 3分間および 125 °Cで 3分間を 1サイクルとする温度サイクル試験を、 500サイクルおよび 1000サイク ルのそれぞれ行い、その後、エポキシ基板をクロスカットして充填した榭脂組成物に 剥離やクラックが発生している力否力を顕微鏡観察した。
また、光伝送性は、エポキシ基板の表面から 50 mの位置に、広がり角度 24度の V CSELを載置し、この VCSELから 2. 5Gbpsの光を光信号通過領域を介して伝送し 、パワーメータで測定した伝送損失力 SldB以下であれば、光信号伝送可能と判断し た。
[0121] また、評価サンプルとしては、まず、エポキシ基板に直径 150 μ mのドリルを用いて、 中心間距離が 250 mとなるように 4つの貫通孔を形成し、この 4つの貫通孔を一組 として、 5組形成したもの(サンプル基板 A)、エポキシ基板に直径 300 μ mのドリルを 用いて、中心間距離が 250 mとなるように 5つの貫通孔を形成し、側面の一部が繋 力 Sつた一の貫通孔群を 20個形成したもの(サンプル基板 B)、エポキシ基板に直径 5 00 μ m/レータを用いて直線と円弧を組み合せた断面形状を有する貫通孔を 20個形 成したもの (サンプル基板 C)をそれぞれ 40枚ずつ準備した。
[0122] 次に、種々の貫通孔を形成した各サンプル基板 A— Cについて、貫通孔の壁面に、 無電解めつき銅めつき処理および電解銅めつき処理を施すことにより金属層を形成し た。
その後、各サンプル基板 A— Cについて、エッチング処理を施すことにより、金属層 の表面の表面粗さ Raを 0. 05 m、 0. 08 m、 0. 4 m、 1. 1 m、 2. 5 m、 2. 8 πι、 3. 2 πι、 4. 7 πι、 5. および 6. 2 mの!ヽずれ力に調整したものを 4枚ずつ作製した。
表面粗さ Raの調整は、粗ィ匕時間および粗ィ匕温度を変えることにより行った、また、表 面粗さ Raは、 JIS B 0601に基いて測定した。
次に、貫通孔内に樹脂組成物を充填、硬化させることにより評価サンプルを完成した なお、榭脂組成物としては、後述する実施例 1で、光信号通過領域を形成する際に 用いた榭脂組成物と同様のものを用いた。
[0123] 作製したサンプル基板のそれぞれについて、上述した榭脂組成物の充填性、温度サ イタル試験時の信頼性、および、光伝送性の評価を行った。結果は、以下の通りであ る。
榭脂組成物の充填性については、サンプル基板 A— Cの全てについて、表面粗さ R aを 6. とした基板では、未充填の箇所またはボイドが発生しているものがあった 力 他の表面粗さ Raを有する基板では、未充填の箇所ゃボイドは観察されな力つた
[0124] また、温度サイクル試験時の信頼性にっ 、ては、表面粗さ Raを 0. 05 μ mまたは 6.
2 mとしたサンプル基板 A— Cの全てにおいて、榭脂組成物の剥離やクラックが観 察された。
また、表面粗さ Raを 0. 08 μ mとしたサンプル基板 Α— C、および、表面粗さ Raを 0. 4 /ζ πι、 1. または 5. 3 mとしたサンプノレ基板 Cにつ!/、ては、 1000サイクノレ時 にお 、てのみ、榭脂組成物の剥離やクラックが観察された。
なお、その他のサンプル基板については、榭脂組成物の剥離やクラックが観察され なかった。
[0125] また、光伝送性については、全てのサンプル基板について、 2. 5Gbpsで光信号を 伝送することが可能であった。 [0126] 次に、光信号通過領域の壁面が榭脂から構成される場合について説明する。
この場合も、まず、充分な大きさを有する厚さ 0. 8mmのエポキシ基板を用意し、この エポキシ基板に下記の形状および表面粗さを有する貫通孔を形成し、さらに、貫通 孔内に樹脂組成物を充填する。そして、この榭脂組成物を充填した貫通孔 (光信号 通過領域)について、榭脂組成物の充填性、温度サイクル試験時の信頼性、および 、光伝送性を評価した。
[0127] また、評価サンプルとしては、まず、エポキシ基板に直径 150 μ mのドリルを用いて、 中心間距離が 250 mとなるように 4つの貫通孔を形成し、この 4つの貫通孔を一組 として、 5組形成したもの(サンプル基板 D)、エポキシ基板に直径 300 μ mのドリルを 用いて、中心間距離が 250 mとなるように 5つの貫通孔を形成し、側面の一部が繋 力 Sつた一の貫通孔群を 20個形成したもの(サンプル基板 E)、エポキシ基板に直径 5 00 μ m/レータを用いて直線と円弧を組み合せた断面形状を有する貫通孔を 20個形 成したもの (サンプル基板 F)をそれぞれ 24枚ずつ準備した。
[0128] 次に、種々の貫通孔を形成した各サンプル基板 D— Fについて、貫通孔内に硬化後 の屈折率が 1. 51の榭脂組成物を充填して硬化させた。その後、貫通孔の壁面に榭 脂組成物が残るように、再度、上記した方法と同様の方法で貫通孔を形成した。 その後、各サンプル基板 D— Fについて、貫通孔内に所定の番手を有する棒状の研 磨砥石を挿入し、研磨処理を施すことにより、榭脂層の表面の表面粗さ Raを 0. 09 m、 0. 15 ^ m, 0. 3 m、 2. 4 m、 4. Ο πιおよび 6. 5 mのいずれかに調整し たものを 4枚ずつ作製した。
次に、貫通孔内に硬化後の屈折率が 1. 53が榭脂組成物を充填、硬化させることに より評価サンプルを完成した。なお、先に充填した榭脂組成物は、クラッドとして機能 することが可能であり、後に充填した榭脂糸且成物はコアとして機能することが可能で ある。
[0129] なお、榭脂層の表面の表面粗さ Raを調整する方法としては、上述した棒状の研磨砥 石を用いる方法の他に、ブラスト加工や、予め榭脂層に粒子を配合しておき、この粒 子を有機溶剤等で溶解させることにより粗ィ匕面を形成する方法等を用いることができ る。 なお、上記ブラスト加工では、例えば、光路用貫通孔の開口部以外をマスクし、粒子 または粒子を含有した水溶液を榭脂層に噴射することにより、粗ィ匕面を形成すること ができる。
また、上記榭脂層は、光の経路とならないため、粒子を配合しておく場合、その直径 は、 0. 1— 20 /z m程度であればよぐまた、光路とならないため、透明である必要も ない。
[0130] 作製したサンプル基板のそれぞれについて、上述した榭脂組成物の充填性、温度サ イタル試験時の信頼性、および、光伝送性の評価を行った。結果は、以下の通りであ る。
榭脂組成物の充填性については、サンプル基板 D— Fの全てについて、表面粗さ Ra を 6. 5 μ mとした基板では、未充填の箇所またはボイドが発生しているものがあった 力 他の表面粗さ Raを有する基板では、未充填の箇所ゃボイドは観察されな力つた
[0131] また、温度サイクル試験時の信頼性については、表面粗さ Raを 0. 09 μ mまたは 6.
5 mとしたサンプル基板 D— Fの全てにおいて、榭脂組成物の剥離やクラックが観 察された。
また、表面粗さ Raを 0. 15 /z mとしたサンプル基板 D— Fについては、 1000サイクル 時にお 、てのみ、榭脂組成物の剥離やクラックが観察された。
なお、その他のサンプル基板については、榭脂組成物の剥離やクラックが観察され なかった。
[0132] また、光伝送性については、全てのサンプル基板について、 2. 5Gbpsで光信号を 伝送することが可能であった。
[0133] 以上のことからも、第一の本発明の ICチップ実装用基板において、上記光信号通過 領域の壁面は、表面粗さ Raは、上述した範囲にあることが望ましいことが明力となつ た。
また、上記金属層は、一層からなるものであってもよぐ二層以上の複数層からなるも のであってもよい。
[0134] 次に、第二の実施形態の ICチップ実装用基板について説明する。 図 3には、第二の実施形態の ICチップ実装用基板を示す。なお、図 3には、最外層 にソルダーレジスト層が形成されるとともに、ソルダーレジスト層を貫通する光信号通 過領域が形成され、この光信号通過領域のソルダーレジスト層を貫通する部分の端 部にマイクロレンズが配設された形態の ICチップ実装用基板を示す。
第二の実施形態の ICチップ実装用基板、即ち、個別貫通孔構造の光信号通過領域 を有する実施形態の ICチップ実装用基板は、図 2に記載した実施形態の ICチップ実 装用基板と比べて、光信号通過領域の形状が異なる以外はその構成は、同一である 。従って、ここでは、光信号通過領域の形状についてのみ詳細に説明することとする
[0135] 図 3に示すように、 ICチップ実装用基板 220では、基板 221、絶縁層 222およびソル ダーレジスト層 234を貫通するように 4つの独立した光信号通過領域 242a— 242dが 設けられている。
この光信号通過領域 242a— 242dは、基板 221、絶縁層 222およびソルダーレジス ト層 234を貫通する部分に榭脂組成物 247が充填されている。
そして、ソルダーレジスト層 234を貫通する部分の径は、基板 221および絶縁層 222 を貫通する部分の径と同じとなっており、ソルダーレジスト層 234を貫通する部分の 縦断面の形状は矩形状である。
[0136] ICチップ実装用基板 220の一の面には、受光部 239a— 239dのそれぞれが光信号 通過領域 242a— 242dのそれぞれに対向するように、 4チャンネルの受光素子 239 が半田接続部 244を介して表面実装されている。
従って、 4チャンネルの受光素子 239への入力信号は、光信号通過領域 242a— 24 2dのいずれかを介して伝送することができる。ここで、各光信号通過領域は、 4チャン ネルの受光素子が有する各受光部 239a— 239dからの光信号を伝送することができ るように、個別に独立して形成されている。
なお、光信号通過領域 242a— 242dのソルダーレジスト層 234を貫通する部分は、 図 3に示したように榭脂組成物が充填されて!ヽてもよ ヽし、空隙により形成されて ヽて もよい。また、光信号通過領域 242a— 242dの基板 221および絶縁層 222を貫通す る部分の周囲には金属層が形成されて 、てもよ 、。 上記金属層が形成されている場合、その材料等としては第一の実施形態で説明した ものと同様のもの等が挙げられる。
[0137] また、光信号通過領域 242a— 242dの受光素子 239が実装された側と反対側の端 部には、マイクロレンズ 246a— 246dが配設されている。
従って、受光素子 239への光信号は、マイクロレンズ 246a— 246dを通過することと なる。このように、光信号通過領域 242a— 242dの各一端にマイクロレンズ 246a— 2 46dを配設することにより、光信号の伝送損失を抑えることができる。
さらに、マイクロレンズ 246a— 246dは、光信号通過領域 242a— 242dの基板 221、 絶縁層 222およびソルダーレジスト層 234を貫通する部分に形成された榭脂組成物 247上に直接配設されて 、る。
なお、マイクロレンズ 246a— 246dに代えて、 4つのレンズが並列に配置されたマイク 口レンズアレイが接着剤を介して配設されて 、てもよ 、。
また、マイクロレンズが直接配設されている場合、上記マイクロレンズは、撥水処理ま たは親水処理が施された光信号通過領域の端部に直接配設されていることが望まし い。
[0138] また、各光信号通過領域の大きさは、その断面の径の下限は 100 mであることが 望ましぐその上限は 500 μ mであることが望ましい。上記径が 100 μ m未満では、 光路が塞がれてしまうおそれがあるとともに、該光信号通過領域に未硬化の榭脂組 成物を充填することが困難となることである。一方、上記径を 500 mより大きくしても 光信号の伝送性はあまり向上せず、 ICチップ実装用基板を構成する導体回路等の 設計の自由度を阻害する原因となることがあるからである。
より望ましい径の下限は 250 mであり、より望ましい径の上限は 350 mである。光 信号の伝送性と設計の自由度とがともに優れるとともに、未硬化の榭脂組成物を充 填する際にも不都合が発生しないからである。
なお、上記光信号通過領域の上記基板および上記絶縁層を貫通する部分の断面の 径とは、上記光信号通過領域が円柱状の場合にはその断面の直径、楕円柱状の場 合にはその断面の長径、四角柱状や多角柱状の場合にはその断面の最も長 、部分 の長さをいい、また、上記光信号通過領域が、その入射端側力も出射端側に向かつ て断面の径が一定でない場合には、入射端側の断面の径をいう。
また、本発明において、光信号通過領域の断面とは、 ICチップ実装用基板の主面に 平行な方向の断面をいい、光信号通過領域の縦断面とは、上記主面に垂直な方向 の断面をいう。
[0139] このような構成力もなる ICチップ実装用基板 220においても、外部の光学部品(光フ アイバゃ光導波路等)を介して伝送されてきた電気信号は、マイクロレンズ 246a— 2 46dおよび光信号通過領域 242を介して受光素子 239 (受光部 239a)に伝送され、 この受光素子 239で電気信号に変換された後、半田接続部 243、導体回路 224、バ ィァホール 227等を介して ICチップ 240に送られ、処理されることとなる。
[0140] また、上述したような個別貫通孔構造の光信号通過領域を形成する場合においても 、この光信号通過領域は、発光素子から出射した光や、受光素子に入射する光が反 射しな 、ような大きさを有して 、ることが望まし!/、。
そこで、個別貫通孔構造の光信号通過領域の望ま 、断面形状にっ 、て検討した。
[0141] ここでは、広がり角が 24度で 4チャンネルの VCSELであり、光信号通過領域内に充 填される榭脂組成物の屈折率 1. 5であり、光学素子の下部にアンダーフィルか充填 されており、このアンダーフィルの屈折率が通常 1. 5である発光素子が実装された IC チップ実装用基板の場合にっ 、て検討した。
[0142] その結果、上述した形態の ICチップ実装用基板では、例えば、 ICチップ実装用基板 の厚さが 0. 4mmで、 VCSELの各チャンネル間の距離が 250 μ mである場合には、 直径 150 m以上の個別貫通孔構造の光信号通過領域であれば、光信号通過領 域の壁面で反射することなく光信号を伝送することができ、 ICチップ実装用基板の厚 さが 1. 2mmで、 VCSELの各チャンネル間の距離が 500 mである場合には、直径 400 m以上の個別貫通孔構造の光信号通過領域であれば、光信号通過領域の 壁面で反射することなく光信号を伝送することができることが明らかとなった。
[0143] 第一の本発明の ICチップ実装用基板では、 ICチップに近い位置に実装された受光 素子において、光 Z電気信号変換を行うため、電気信号の伝送距離が短ぐ信号伝 送の信頼性に優れ、より高速通信に対応することができる。
[0144] このような実施形態の ICチップ実装用基板においても、光信号通過領域の端部に配 設するマイクロレンズの径は、アレイ素子における各チャンネル間のピッチに応じて 適宜決定すればよぐ例えば、 250 /z mピッチのアレイ素子を用いる場合には、 100 一 190 μ mが望ましい。なお、この場合、光信号通過領域の径は、 150— 200 μ m が望ましい。
また、例えば、 500 mピッチのアレイ素子を用いる場合には、 100— 490 m力 S望 ましぐ 180— 480 m力 Sより望ましい。なお、この場合、光信号通過領域の径は、 15 0— 450 mが望ましい。
[0145] また、個別に形成された光信号通過領域の径が 150 m以上が望ましい理由は以 下の通りである。
即ち、上記形態の光信号通過領域は、基板、絶縁層およびソルダーレジスト層を貫 通する貫通孔を形成した後、該貫通孔内に必要に応じて榭脂糸且成物を充填すること により形成するのである力 上記貫通孔は、通常ドリルを用いて形成され、ドリル加工 で貫通孔を形成する場合、その径が 150 m未満の貫通孔を形成することが困難だ 力 である。
また、上記個別貫通孔構造の各光信号通過領域の形状としては、例えば、円柱、角 柱、楕円柱、直線と円弧とで囲まれた底面を有する柱状体等が挙げられる。
[0146] 次に、第三の実施形態の ICチップ実装用基板について説明する。
図 4には、第三の実施形態の ICチップ実装用基板を示す。なお、図 4には、最外層 にソルダーレジスト層が形成されるとともに、ソルダーレジスト層を貫通する光信号通 過領域が形成され、この光信号通過領域のソルダーレジスト層を貫通する部分の端 部にマイクロレンズが配設された形態の ICチップ実装用基板を示す。
図 4に示すように、 ICチップ実装用基板 320は、基板 321の両面に導体回路 324と 絶縁層 322とが積層形成され、基板 321を挟んだ導体回路間、および、絶縁層 322 を挟んだ導体回路間は、スルーホール 329およびバイァホール 327により電気的に 接続されている。また、最外層にはソルダーレジスト層 334が形成されている。
さらに、 ICチップ実装用基板 320には、凹部形状の光信号通過領域 342が形成され ている。この光信号通過領域 342内には、 4チャンネルの受光素子 339と ICチップ 3 40とのそれぞれ力ワイヤボンディング 349により実装されており、さらに、光信号通過 領域 342の一部には、榭脂組成物 347が充填されている。
また、光信号通過領域を形成した側のソルダーレジスト層 334には、半田バンプ 337 が形成されている。
なお、 ICチップは、光信号通過領域が形成された側と反対側の表面に実装されてい てもよい。
[0147] 従って、 4チャンネルの受光素子 339への入力信号は、光信号通過領域 342を介し て伝送されることとなる。ここで、光信号通過領域 342は、 4チャンネル分の光信号を 伝送することができる大きさで、絶縁層 322およびソルダーレジスト層 334の一部に 凹部形状に形成されている。
なお、光信号通過領域 342のソルダーレジスト層 334を貫通する部分は、図 4に示し たように榭脂組成物が充填されて 、てもよ 、し、空隙により形成されて 、てもよ 、。
[0148] また、このような光信号通過領域 342の受光素子 339が実装された側と反対側の端 部には、マイクロレンズ 346a— 346dが配設されている。ここで、マイクロレンズ 346a 一 346dのそれぞれは、受光素子 339の各チャンネル 339a— 339dに対応する位置 に個別に配設されている。
従って、受光素子 339への光信号は、マイクロレンズ 346a— 346dを通過することと なる。このように、光信号通過領域 342の一端にマイクロレンズ 346a— 346dを配設 することにより、光信号の伝送損失を抑えることができる。
さらに、マイクロレンズ 346a— 346dは、光信号通過領域 342に充填された榭脂組成 物 347上に直接配設されて ヽる。
なお、マイクロレンズ 346a— 346dに代えて、 4つのレンズが並列に配置されたマイク 口レンズアレイが接着剤を介して配設されて 、てもよ 、。
[0149] このような構成力もなる ICチップ実装用基板 320においても、外部の光学部品(光フ アイバゃ光導波路等)を介して伝送されてきた電気信号は、マイクロレンズ 346a— 3 46dおよび光信号通過領域 342を介して受光素子 339 (受光部 339a)に伝送され、 この受光素子 339で電気信号に変換された後、ワイヤボンディング 349、導体回路 3 24、バイァホール 327等を介して ICチップ 340に送られ、処理されることとなる。
[0150] 第一の本発明の ICチップ実装用基板では、 ICチップに近い位置に実装された受光 素子において、光 z電気信号変換を行うため、電気信号の伝送距離が短ぐ信号伝 送の信頼性に優れ、より高速通信に対応することができる。
[0151] また、 ICチップ実装用基板 320では、ソルダーレジスト層 334に金属めつき層を介し て半田バンプ 337が形成されているため、 ICチップ 340と外部基板等との間での電 気信号の伝送は、半田バンプ 337を介しても行うことができる。
[0152] このように半田バンプが形成されている場合には、上記 ICチップ実装用基板をマザ 一ボード用基板等の外部基板と半田バンプを介して接続することができ、この場合に は、半田が有するセルファライメント作用により上記 ICチップ実装用基板を所定の位 置に配置することができる。
[0153] また、上記凹部形状の光信号通過領域の形状としては、例えば、円柱、角柱、楕円 柱、複数の円柱が並列に並べられ、互いに隣り合う円柱の側面の一部が繋がった形 状、直線と円弧とで囲まれた底面を有する柱状体等が挙げられる。
[0154] また、上記凹部形状の光信号通過領域について、その断面の面積は、 100mm2以 上が望ましい。より望ましくは、 200mm2以上である。この大きさであれば、光信号通 過領域の壁面で光信号が反射させることなぐ光信号を伝送させるのに適するからで ある。
[0155] また、図 4に示した ICチップ実装用基板 320では、凹部形状の光信号通過領域 342 内に実装された受光素子 339および ICチップ 340のそれぞれ力 凹部の底面に露 出した導体回路にワイヤボンディング 349により接続されているが、第三の実施形態 の ICチップ実装用基板では、凹部形状の光信号通過領域内に実装された受光素子 等は、最外層の層間榭脂絶縁層上に形成された導体回路等とワイヤボンディングに より接続されていてもよい。
[0156] ここまでの第一一第三の実施形態の ICチップ実装用基板の説明においては、光学 素子として、受光素子が実装された ICチップ実装用基板について説明したが、上記 した実施形態の ICチップ実装用基板では、光学素子として受光素子の代わりに発光 素子が実装されていてもよぐこの場合、 ICチップ実装用基板の構成は、受光素子を 発光素子に代える以外、上記と同様の構成であればよい。
[0157] また、第一の本発明の ICチップ実装用基板は、図 5に示すように、光学素子として、 発光素子と受光素子の両方が実装されて!、てもよ 、。
図 5に示すように、 ICチップ実装用基板 420は、基板 421の両面に導体回路 424と 絶縁層 422とが積層形成され、基板 421を挟んだ導体回路間、および、絶縁層 422 を挟んだ導体回路間は、それぞれ、スルーホール 429およびバイァホール 427により 電気的に接続されている。また、最外層にはソルダーレジスト層 434が形成されてい る。
この ICチップ実装用基板 420では、基板 421、絶縁層 422およびソルダーレジスト層 434を貫通するように光信号通過領域 442が設けられて 、る。
[0158] この光信号通過領域 442には、基板 421、絶縁層 422およびソルダーレジスト層 43 4を貫通する部分に榭脂組成物 447が充填されており、基板 421および絶縁層 422 を貫通する部分の榭脂組成物 447の周囲には金属層 445が形成されている。
そして、ソルダーレジスト層 434を貫通する部分の径は、基板 421および絶縁層 422 を貫通する部分の径と同じとなっており、ソルダーレジスト層 434を貫通する部分の 縦断面の形状は矩形状である。
従って、 ICチップ実装用基板 420に実装された光学素子 (発光素子 438および受光 素子 439)の入出力信号は、光信号通過領域 442を介して伝送されることとなる。 なお、光信号通過領域 442のソルダーレジスト層 434を貫通する部分は、図 5に示し たように榭脂組成物が充填されていてもよいし、空隙により形成されていてもよい。ま た、光信号通過領域 442の基板 421および絶縁層 422を貫通する部分の周囲には 金属層 445が形成されて 、なくてもょ ヽ。
[0159] また、このような光信号通過領域 442の光学素子 (発光素子 438、受光素子 439)が 実装された側と反対側の端部のそれぞれには、マイクロレンズ 446a、 446bが配設さ れている。
従って、光信号通過領域 442に入射する光信号や、光信号通過領域 442から出射 する光信号は、マイクロレンズ 446a、 446bを通過することとなる。
このように、光信号通過領域 442の端部にマイクロレンズ 446a、 446bを配設すること により、光信号の伝送損失を抑えることができる。
さらに、マイクロレンズ 446a、 446bは、光信号通過領域 442の基板 421、絶縁層 42 2およびソルダーレジスト層 434を貫通する部分に形成された榭脂組成物 447上に 直設配設されている。
[0160] ICチップ実装用基板 420の一の面には、発光部 438aおよび受光部 439aのそれぞ れが光信号通過領域 442に対向するように、発光素子 438および受光素子 439が 半田接続部 444を介して表面実装されるとともに、 ICチップ 440が半田接続部 443 を介して表面実装されている。また、 ICチップ実装用基板 420の他の面のソルダーレ ジスト層 434には、半田バンプ 437が形成されている。
[0161] また、 ICチップ 440から送り出された電気信号は、半田接続部 443、 444、導体回路 424、ノィァホーノレ 427、スノレーホ一ノレ 429等を介して発光素子 438【こ送られた後、 発光素子 438で光信号に変換され、発光素子 438 (発光部 438a)から発信した光信 号は、光信号通過領域 442およびマイクロレンズ 446aを介して外部の光学素子(光 ファイバや光導波路等)に送り出されることとなる。
[0162] このような構成力もなる ICチップ実装用基板 420において、光ファイバや光導波路等
(図示せず)を介して外部力も送られてきた光信号は、マイクロレンズ 446bおよび光 信号通過領域 442を介して受光素子 439 (受光部 439a)で受信した後、受光素子 4 39で電気信号に変換され、さらに、半田接続部 443、 444、導体回路 424、バイァホ ール 427、スルーホール 429等を介して ICチップ 440に送られることとなる。
[0163] また、 ICチップに近い位置に実装された受光素子および発光素子において、光 Z電 気信号変換を行うため、電気信号の伝送距離が短ぐ信号伝送の信頼性に優れ、よ り高速通信に対応することができる。
[0164] また、 ICチップ実装用基板 420では、ソルダーレジスト層 434に金属めつき層を介し て半田バンプ 437が形成されているため、 ICチップ力も送り出された電気信号は、上 述したように光信号に変換された後、光信号通過領域 442等を介して外部に送りだ されるだけでなく、半田バンプ 437を介しても外部基板等に送られることとなる。
[0165] このように半田バンプが形成されている場合には、上記 ICチップ実装用基板をマザ 一ボード用基板等の外部基板と半田バンプを介して接続することができ、この場合に は、半田が有するセルファライメント作用により上記 ICチップ実装用基板を所定の位 置に配置することができる。 [0166] なお、図 5には、 1チャンネルの発光素子および受光素子を実装した ICチップ実装用 基板を示しているが、発光素子および受光素子の両方が実装された形態の ICチップ 実装用基板においても、マルチチャンネルの光学素子を実装することできる。
また、マルチチャンネルの光学素子を実装する場合、光信号通過領域の構造は、一 括貫通孔構造であってもよ!、し、個別貫通孔構造であってもよ 、。
また、凹部形状の光信号通過領域を有する ICチップ実装用基板に受光素子と発光 素子とを実装することもできる。
[0167] このような構成力もなる第一の本発明の ICチップ実装用基板は、例えば、第六の本 発明の ICチップ実装用基板の製造方法を用いて製造することができる。
[0168] 次に、第六の本発明の ICチップ実装用基板の製造方法について説明する。
第六の本発明の ICチップ実装用基板の製造方法は、
(a)基板の両面に導体回路と絶縁層とを順次積層形成し、多層配線板とする多層配 線板製造工程と、
(b)上記多層配線板を貫通する光信号通過領域を形成するか、または、上記多層配 線板の一部に凹部形状の光信号通過領域を形成する光信号通過領域形成工程と、
(c)上記光信号通過領域の端部にマイクロレンズを配設するマイクロレンズ配設工程 と
を含むことを特徴とする。
[0169] 第六の本発明の ICチップ実装用基板の製造方法は、光信号通過領域を形成するェ 程と、該光信号通過領域の端部にマイクロレンズを配設する工程とを有しているため 、第一の本発明の ICチップ実装用基板、即ち、光信号通過領域を介して光学素子 の入出力信号の伝送を行う ICチップ実装用基板を好適に製造することができる。従 つて、第六の本発明の製造方法を用いることにより、光信号の伝送性に優れた ICチ ップ実装用基板を製造することができる。
[0170] まず、上記 (a)の工程、即ち、多層配線板を製造する多層配線板製造工程について 工程順に説明する。具体的には、例えば、下記(1)一(9)の工程を経ることにより多 層配線板を製造することができる。
( 1)絶縁性基板を出発材料とし、まず、該絶縁性基板上に導体回路を形成する。 上記絶縁性基板としては、例えば、ガラスエポキシ基板、ポリエステル基板、ポリイミド 基板、ビスマレイミドートリァジン (BT)榭脂基板、熱硬化性ポリフエ-レンエーテル基 板、銅張積層板、 RCC基板等が挙げられる。
また、窒化アルミニウム基板等のセラミック基板や、シリコン基板、ガラス基板等を用 いてもよい。
上記導体回路は、例えば、上記絶縁性基板の表面に無電解めつき処理等によりベタ の導体層を形成した後、エッチング処理を施すことにより形成することができる。また 、銅張積層板や RCC基板にエッチング処理を施すことにより形成してもよ 、。
[0171] また、上記絶縁性基板を挟んだ導体回路間の接続をスルーホールにより行う場合に は、例えば、上記絶縁性基板にドリルやレーザ等を用いてスルーホール用貫通孔を 形成した後、無電解めつき処理等を施すことによりスルーホールを形成しておく。な お、上記スルーホール用貫通孔の直径は、通常、 100— 300 mである。
また、スルーホールを形成した場合には、該スルーホール内に榭脂充填材を充填す ることが望ましい。
[0172] (2)次に、必要に応じて、導体回路の表面に粗化形成処理を施す。
上記粗化形成処理としては、例えば、黒化 (酸化) -還元処理、第二銅錯体と有機酸 塩とを含むエッチング液等を用いたエッチング処理、 Cu— Ni— P針状合金めつきによ る処理等が挙げられる。
ここで、粗化面を形成した場合、通常、該粗ィ匕面の平均粗度の下限は 0. 1 μ mが望 ましぐ上限は 5 /z mが望ましい。導体回路と絶縁層との密着性、導体回路の電気信 号伝送能に対する影響等を考慮すると上記平均粗度の下限は 2 mがより望ましぐ 上限は 4 mがより望ましい。
なお、この粗化形成処理は、スルーホール内に榭脂充填材を充填する前に行い、ス ルーホールの壁面にも粗ィ匕面を形成してもよ 、。スルーホールと榭脂充填材との密 着性が向上するからである。
[0173] (3)次に、導体回路を形成した基板上に、熱硬化性榭脂、感光性榭脂、熱硬化性榭 脂の一部に感光性基が付与された榭脂や、これらと熱可塑性榭脂と含む榭脂複合 体からなる未硬化の榭脂層を形成するか、または、熱可塑性榭脂からなる榭脂層を 形成する。なお、これらの榭脂層の形成には、例えば、基板に用いる榭脂と同様の榭 脂等を用いることもできる。
上記未硬化の榭脂層は、未硬化の榭脂をロールコーター、カーテンコーター等によ り塗布したり、未硬化(半硬化)の榭脂フィルムを熱圧着したりすることにより形成する ことができる。
また、上記熱可塑性榭脂からなる榭脂層は、フィルム状に成形した榭脂成形体を熱 圧着すること〖こより形成することができる。
[0174] これらのなかでは、未硬化(半硬化)の榭脂フィルムを熱圧着する方法が望ましぐ榭 脂フィルムの圧着は、例えば、真空ラミネータ等を用いて行うことができる。
また、圧着条件は特に限定されず、榭脂フィルムの組成等を考慮して適宜選択すれ ば、ょ ヽ力 通常 ίま、圧力 0. 25-1. OMPa、温度 40— 70。C、真空度 13— 1300Pa 、時間 10— 120秒程度の条件で行うことが望まし 、。
[0175] 上記熱硬化性榭脂としては、例えば、エポキシ榭脂、フエノール榭脂、ポリイミド榭脂 、ポリエステル榭脂、ビスマレイミド榭脂、ポリオレフイン系榭脂、ポリフエ二レンエーテ ル榭脂、ポリフエ二レン榭脂、フッ素榭脂等が挙げられる。
上記エポキシ榭脂の具体例としては、例えば、フエノールノボラック型、クレゾールノ ポラック型等のノボラック型エポキシ榭脂や、ジシクロペンタジェン変成した脂環式ェ ポキシ榭脂等が挙げられる。
[0176] 上記感光性榭脂としては、例えば、アクリル榭脂等が挙げられる。
また、上記熱硬化性榭脂の一部に感光性基が付与された榭脂としては、例えば、上 記した熱硬化性榭脂の熱硬化基とメタクリル酸やアクリル酸とをアクリル化反応させた もの等が挙げられる。
[0177] 上記熱可塑性榭脂としては、例えば、フエノキシ榭脂、ポリエーテルスルフォン (PES )、ポリスルフォン(PSF)、ポリフエ-レンスルフォン(PPS)ポリフエ-レンサルファイド (PPES)、ポリフエ-レンエーテル(PPE)ポリエーテルイミド(PI)等が挙げられる。
[0178] また、上記榭脂複合体としては、熱硬化性榭脂ゃ感光性榭脂 (熱硬化性榭脂の一部 に感光性基が付与された榭脂も含む)と熱可塑性榭脂とを含むものであれば特に限 定されず、熱硬化性榭脂と熱可塑性榭脂との具体的な組み合わせとしては、例えば フエノール榭脂 zポリエーテルスルフォン、ポリイミド榭脂 Zポリスルフォン、エポキシ 榭脂 Zポリエーテルスルフォン、エポキシ榭脂 Zフエノキシ榭脂等が挙げられる。ま た、感光性榭脂と熱可塑性榭脂との具体的な組み合わせとしては、例えば、アクリル 榭脂 Zフエノキシ榭脂、エポキシ基の一部をアクリルィ匕したエポキシ榭脂 Zポリエー テルスルフォン等が挙げられる。
また、上記榭脂層は、 2層以上の異なる榭脂層から構成されていてもよい。
[0179] また、上記榭脂層は、粗ィ匕面形成用榭脂組成物を用いて形成してもよい。
上記粗ィ匕面形成用榭脂組成物とは、例えば、酸、アルカリおよび酸化剤カゝら選ばれ る少なくとも 1種力 なる粗ィ匕液に対して難溶性の未硬化の耐熱性榭脂マトリックス中 に、酸、アルカリおよび酸化剤力も選ばれる少なくとも 1種力 なる粗ィ匕液に対して可 溶性の物質が分散されたものである。
なお、上記「難溶性」および「可溶性」という語は、同一の粗ィ匕液に同一時間浸漬した 場合に、相対的に溶解速度の早いものを便宜上「可溶性」といい、相対的に溶解速 度の遅 、ものを便宜上「難溶性」と呼ぶ。
[0180] (4)次に、その材料として熱硬化性榭脂ゃ榭脂複合体を用いた絶縁層を形成する場 合には、未硬化の榭脂絶縁層に硬化処理を施すとともに、バイァホール用開口を形 成し、絶縁層とする。また、この工程では、必要に応じて、スルーホール用貫通孔を 形成してちょい。
上記バイァホール用開口は、レーザ処理により形成することが望ましい。また、絶縁 層の材料として感光性榭脂を用いた場合には、露光現像処理により形成してもよい。
[0181] また、その材料として熱可塑性榭脂を用いた絶縁層を形成する場合には、熱可塑性 榭脂からなる榭脂層にバイァホール用開口を形成し、絶縁層とする。この場合、バイ ァホール用開口は、レーザ処理を施すことにより形成することができる。
また、この工程でスルーホール用貫通孔を形成する場合、該スルーホール用貫通孔 は、ドリル加工やレーザ処理等により形成すればょ ヽ。
[0182] 上記レーザ処理に使用するレーザとしては、例えば、炭酸ガスレーザ、紫外線レーザ 、エキシマレーザ等が挙げられる。これらのなかでは、エキシマレーザや短パルスの 炭酸ガスレーザが望まし 、。 [0183] (5)次に、バイァホール用開口の内壁を含む絶縁層の表面に、導体回路を形成する 導体回路を形成するにあたっては、まず、絶縁層の表面に薄膜導体層を形成する。 上記薄膜導体層は、無電解めつき、スパッタリング等の方法により形成することができ る。
[0184] 上記薄膜導体層の材質としては、例えば、銅、ニッケル、スズ、亜鉛、コバルト、タリウ ム、鉛等が挙げられる。
これらのなかでは、電気特性、経済性等に優れる点から銅や銅およびニッケル力ゝらな るものが望ましい。
また、上記薄膜導体層の厚さとしては、無電解めつきにより薄膜導体層を形成する場 合には、その厚さの下限は 0. 3 111カ望ましく、上限は 2. O /z mが望ましい。より望ま しくは下限が 0. 6 mであり、上限が 1. である。また、スパッタリングにより形成 する場合には、 0. 1-1. O /z mが望ましい。
[0185] また、上記薄膜導体層を形成する前に、絶縁層の表面に粗ィ匕面を形成しておいても よい。粗化面を形成することにより、絶縁層と薄膜導体層との密着性を向上させること ができる。特に、粗ィ匕面形成用榭脂組成物を用いて絶縁層を形成した場合には、酸 や酸化剤等を用いて粗化面を形成することが望まし ヽ。
[0186] また、上記 (4)の工程でスルーホール用貫通孔を形成した場合には、絶縁層上に薄 膜導体層を形成する際に、貫通孔の壁面にも薄膜導体層を形成することによりスル 一ホールとしてもよい。
[0187] (6)次いで、その表面に薄膜導体層が形成された絶縁層の一部にめっきレジストを 形成する。
上記めつきレジストは、例えば、感光性ドライフィルムを張り付けた後、めっきレジスト ノターンが描画されたガラス基板等力もなるフォトマスクを密着配置し、露光現像処 理を施すことにより形成することができる。
[0188] (7)その後、薄膜導体層をめつきリードとして電解めつきを行い、上記めつきレジスト 非形成部に電解めつき層を形成する。上記電解めつきとしては、銅めつきが望ましい また、上記電解めつき層の厚さ、 5— 20 mが望ましい。
[0189] その後、上記めつきレジストと該めっきレジスト下の薄膜導体層を除去することにより 導体回路 (バイァホールを含む)を形成することができる。
上記めつきレジストの除去は、例えば、アルカリ水溶液等を用いて行えばよぐ上記薄 膜導体層の除去は、硫酸と過酸化水素との混合液、過硫酸ナトリウム、過硫酸アンモ ユウム、塩化第二鉄、塩ィ匕第二銅等のエッチング液を用いて行えばよい。
また、上記導体回路を形成した後、必要に応じて、絶縁層上の触媒を酸や酸化剤を 用いて除去してもよ!/、。電気特性の低下を防止することができるからである。
また、このめつきレジストを形成した後、電解めつき層を形成する方法(工程 (6)およ び (7) )に代えて、薄膜導体層上の全面に電解めつき層を形成した後、エッチング処 理を施す方法を用いて導体回路を形成してもよ ヽ。
[0190] また、上記(4)および(5)の工程にお!、てスルーホールを形成した場合には、該スル 一ホール内に榭脂充填材を充填してもよ 、。
また、スルーホール内に榭脂充填材を充填した場合、必要に応じて、無電解めつき 等を行うことにより榭脂充填材層の表層部を覆う蓋めつき層を形成してもよい。
[0191] (8)次に、蓋めつき層を形成した場合には、必要に応じて、該蓋めっき層の表面に粗 化処理を行い、さら〖こ、上記(3)および (4)の工程を繰り返すことにより絶縁層を形成 する。なお、この工程では、スルーホールを形成してもよいし、形成しなくてもよい。 (9)さらに、必要に応じて、(5)—(8)の工程を繰り返すことにより、導体回路と絶縁層 とを積層形成してもよい。
[0192] このような(1)一(9)の工程を行うことにより、基板の両面に導体回路と絶縁層とが積 層形成された多層配線板を製造することができる。
なお、ここで詳述した多層配線板の製造方法は、セミアディテブ法であるが、上記 (a )の工程で製造する多層配線板の製造方法は、セミアディテブ法に限定されず、フル アディテブ法、サブトラクティブ法、一括積層法、コンフォーマル法等を用いて行うこと ちでさる。
また、ここでは、熱硬化性榭脂、感光性榭脂、熱硬化性榭脂の一部に感光性基が付 与された榭脂や、これらと熱可塑性榭脂と含む榭脂複合体等を用いて絶縁層を形成 する方法について説明した力 上記絶縁層の材料はこれらに限定されるわけではな ぐ例えば、セラミック、シリコン、ガラス等の絶縁材料であってもよい。
[0193] 第六の本発明の ICチップ実装用基板の製造方法では、上記 (a)の工程を経て、多 層配線板を製造した後、上記 (b)の工程、即ち、上記多層配線板を貫通する光信号 通過領域を形成するか、または、上記多層配線板の一部に凹部形状の光信号通過 領域を形成する光信号通過領域形成工程を行う。
なお、この工程で形成する光信号通過領域として機能することとなる貫通孔および凹 部のそれぞれを、以下、光路用貫通孔および光路用凹部ともいう。
[0194] まず、上述した工程を経て作製した多層配線板に、光路用貫通孔または光路用凹部 を形成する。
上記光路用貫通孔ゃ上記光路用凹部の形成は、例えば、ドリル加工、ルーター加工 、レーザ処理、金型カ卩ェ等により行う。
上記レーザ処理において使用するレーザとしては、上記バイァホール用開口の形成 において使用するレーザと同様のもの等が挙げられる。
上記光路用貫通孔の形成位置は特に限定されず、導体回路の設計、 ICチップや光 学素子等の実装位置等を考慮して適宜選択すればょ 、。
上記光路用貫通孔は、受光素子や発光素子等の光学素子ごとに形成することが望 ましぐまた、信号波長ごとに形成してもよい。
[0195] また、上記光路用凹部は、その内部に受光素子や発光素子等の光学素子とともに、 さらに、 ICチップを実装することができるように形成することが望ましい。
また、上記光路用凹部を形成する場合には、上述した多層配線板を作製する工程に おいて、絶縁層を形成する際に、各絶縁層を貫通する開口を形成しておき、絶縁層 の積層を完了した際に、光路用凹部が形成されているようにしてもよい。
なお、絶縁層を貫通する開口は、上述したバイァホール用開口を形成する方法と同 様の方法により形成することができる力 ドリルカ卩ェにより形成することが望ましい。
[0196] また、この工程において、一括貫通孔構造の光路用貫通孔として、複数の円柱の壁 面の一部が繋がった形状の光路用貫通孔を形成する場合には、以下、方法を用い ることが望ましい。 即ち、隣り合わない円柱を先に形成し、その後、隣り合わない円柱同士の間に、側面 の一部が繋がった円柱を形成することが望ましい。従って、複数の円柱の壁面の一 部が繋がった形状の光路用貫通孔を形成する場合、円柱の数は、奇数個であること が望ましい。
側面の一部が繋がった、隣り合う円柱を連続して形成しょうとすると、ドリルの先端が 既に形成された円柱の方向へ逃げようとしてドリルの先端ふれが発生し、ドリル加工 時の精度が低下することがあるからである。そして、このようにドリルカ卩ェ時の精度が 低下した場合、円柱の底面の大きさが、円柱ごとに大きく異なることとなる。
[0197] ICチップ実装用基板では、その設計上、光学素子を実装するためのパッド (電極)と 、光信号通過領域として機能する光路用貫通孔との隙間部分は、面積が小さぐ光 路用貫通孔を形成する際に、貫通孔の位置がずれたり、貫通孔が設計よりも大きくな つてしまったりした場合には、貫通孔がパッド部分に力かってしまい、パッドが剥れて しまったり、ノ ッドの面積が小さくなつてしまったりする場合がある。
ノッドが剥れてしまった場合には、光学素子との間で接続不良が発生し、パッドの面 積が小さくなつてしまった場合には、セルファライメント作用が機能せず、光学素子の 実装位置がズレてしまうことがあり、このように光学素子の実装位置がズレると光信号 の伝送損失が増大することとなる。
従って、複数の円柱の壁面の一部が繋がった形状の光路用貫通孔を形成する場合 には、上述した方法で、形成することが望ましいのである。
[0198] また、本発明者等は、複数の円柱の壁面の一部が繋がった形状の光路用貫通孔を 形成する場合における貫通孔の形成順序と、貫通孔の位置ズレの関係を検証する 試験を行ったので、図 20— 1を参照しながらその試験を説明するとともに、データを以 下に示す。なお、ここでは、 4チャンネルの光学素子と光学的に接続でき光路用貫通 孔を形成して検討を行った。
020-1 (a)一 (d)は、貫通孔の形成順序と、貫通孔の位置ズレの関係を検証する試 験の方法を説明するための模式図である。
[0199] まず、充分な大きさを有する厚さ 0. 8mmのエポキシ基板を 4枚用意し、このエポキシ 基板に下記の形状の貫通孔を形成する。そして、形成した貫通孔について、その穴 径と位置ズレ量とを測定した。
なお、穴径は、エポキシ基板の穴あけを行う側の表面を測定顕微鏡を用いて観察し
、 3点プロットにより仮想円の直径を測定し、これを貫通孔の穴径とすることにより算出 した。
また、貫通孔の位置ズレは、最初に形成した貫通孔の位置を基準に、残り貫通孔の 実際の中心位置の、設計上の中心位置からのズレ量を算出し、その最大値を貫通孔 の位置ズレ量とした。
[0200] まず、 1枚目のエポキシ基板には、直径 300 μ mのドリルを用いて、中心間距離が 25 0 m〖こなるよう〖こ、 5つの貫通孔を図 20— 1 (a)に示した番号の順序で形成した。な お、側面の一部が繋がった貫通孔群を 5つ形成した。
その結果、平均穴径は 298. 2 m (標準偏差 σ : 4. 1 m)、最大位置ズレ量は、 8 . 4 μ mで toつに。
[0201] また、 2枚目のエポキシ基板には、直径 300 μ mのドリルを用いて、中心間距離が 25 0 m〖こなるよう〖こ、 5つの貫通孔を図 20— 1 (b)に示した番号の順序で形成した。な お、側面の一部が繋がった貫通孔群を 5つ形成した。
その結果、平均穴径は 298. 52 m (標準偏差 σ : 4. 3 m)、最大位置ズレ量は、 7. 3 ^ mで teつた。
[0202] また、 3枚目のエポキシ基板には、直径 300 μ mのドリルを用いて、中心間距離が 25 0 mになるように、 4つの貫通孔を図 20— 1 (c)に示した番号の順序で形成した。な お、側面の一部が繋がった貫通孔群を 5つ形成した。
その結果、平均穴径は 301. 4 m (標準偏差 σ : 6. 3 m)、最大位置ズレ量は、 1 7. 9 μ mで teつた。
[0203] また、 4枚目のエポキシ基板には、比較対象として、直径 150 mのドリルを用いて、 中心間距離が 250 μ mになるように、 5つの貫通孔を図 20—1 (d)に示した番号の順 序で形成した。ここでは、独立した貫通孔を 5つ形成し、この 5つの貫通孔を 1セットの 貫通孔群として、貫通孔群を 5つ形成した。
その結果、平均穴径は 148. 6 m (標準偏差 σ : 3. 9 m)、最大位置ズレ量は、 7 . 4 μ mで toつに。 [0204] これらの結果から、隣り合わない貫通孔を先に形成し、その後、隣り合わない貫通孔 同士の間に、側面の一部が繋がった貫通孔を形成した場合には、独立した貫通孔を 形成する場合と比較して、平均穴径の標準偏差および最大位置ズレ量に大きな差が ないのに対し、隣り合う貫通孔を連続して形成した場合には、平均穴径の標準偏差 および最大位置ズレ量が大きくなつており、さらには、隣り合わない貫通孔を先に形 成し、その後、隣り合わない貫通孔同士の間に、側面の一部が繋がった貫通孔を形 成した場合と比較して平均穴径自体が大きくなつていることが明らかとなった。
[0205] また、その他の形状の一括貫通孔構造との比較についても簡単に説明しておく。
図 20— 2 (e)、(f)は、一括貫通孔構造の光信号伝送用光路を説明するための模式 図である。
上記一括貫通孔としては、上述したように、円柱、角柱、楕円柱、直線と円弧とで囲ま れた底面を有する柱状体、複数の円柱が並列に並べられ、互いに隣り合う円柱の側 面の一部が繋がった形状 (図 20-1 (a)一 (c)参照)等が挙げられる。
[0206] また、直線と円弧とで囲まれた底面を有する柱状体の具体的な形状としては、図 20— 2に平面図で示したような形状が挙げられる。
図 20— 2 (e)には、直線と円弧とで囲まれた底面の一例として、長方形の両端に半円 が付 、た形状を示して 、る。このような底面形状を有する一括貫通孔構造の光路用 貫通孔は、直径 300 mのドリルを用いたルータカ卩ェにより形成することができる。ま た、金型カ卩ェによっても形成することができる
また、図 20— 2 (f)には、直線と円弧と囲まれた底面の一例として、長方形の角部が、 1Z4円弧を有するように面取りされた形状を示している。このような底面形状を有す る一括貫通孔構造の光路用貫通孔は、直径 100 mのドリルを用いたルータ力卩ェに より形成することができる。金型カ卩ェによっても形成することができる。
[0207] 図 20—2 (e)、 (f)に示したような形態の光路用貫通孔は、 1回のルータ加工や金型 加工によって形成することができる。この場合、 1回の工程で光路用貫通孔を形成す ることができるため、複数回の形成工程を必要とする図 20— 1 (a)一 (c)に示したよう な形状の光路用貫通孔を形成する場合に比べて、位置精度や光路用貫通孔の大き さのバラツキがより発生しにく 、こととなる。 また、光路用貫通孔内に充填する榭脂組成物の充填性について比較してみると、複 数回の穴あけ工程を経て形成した図 20— 1 (a)一 (c)に示したような形状の光路用貫 通孔内に榭脂組成物を充填する場合、隣接する円柱状の貫通孔同士が繋がった部 分の近傍は、出っ張った形状を有していることとなるため、榭脂組成物を充填した場 合に、ボイドが発生する場合があった力 1回の穴あけ工程で形成した図 20— 2 (e)、 (f)に示したような形状の光路用貫通孔では、ボイドが発生することはな力つた。 具体的には、図 20— 1 (a)に示した形状を有する光路用貫通孔、および、図 20— 2 (e )、 (f)に示した形状を有する光路用貫通孔のそれぞれに榭脂組成物を充填し、硬化 させた後、クロスカットを行い、顕微鏡によりボイドの発生の有無を確認したところ、図 20— 1 (a)に示した形状を有する光路用貫通孔では、ボイドの発生率が 1. 7%であつ たのに対し、図 20— 2 (e)、(f)に示した形状を有する光路用貫通孔では、発生率力 SO %であった。このことから、榭脂組成物の充填性の観点からは、図 20— 2 (e)、(f)に 示したような形状のほうが、図 20— 1 (a)—(c)に示したような形状よりも望ましいことが 明らかとなった。
[0208] また、光路用貫通孔または光路用凹部(以下、両者を併せて光路用貫通孔等ともい う)形成後、必要に応じて、光路用貫通孔等の壁面にデスミア処理を行ってもよい。 上記デスミア処理は、例えば、過マンガン酸溶液による処理や、プラズマ処理、コロ ナ処理等を用いて行うことができる。
[0209] また、光路用貫通孔等形成後、必要に応じて、未硬化の榭脂組成物を充填する前に 、必要に応じて、光路用貫通孔等の壁面を粗ィ匕面とする粗ィ匕面形成工程を行っても よい。金属層ゃ榭脂組成物との密着性の向上を図ることができるからである。
上記粗ィ匕面の形成は、例えば、硫酸、塩酸、硝酸等の酸;クロム酸、クロム硫酸、過 マンガン酸塩等の酸化剤等により、基板や絶縁層等の光路用貫通孔を形成した際 に露出した部分を溶解することにより行うことができる。また、プラズマ処理やコロナ処 理等により行うこともできる。
上記粗ィ匕面の表面粗さ Raの下限は 0. 5 μ mが望ましぐ上限は 5 μ mが望ましい。 上記表面粗さ Raのより望ましい下限は 1 μ mであり、より望ましい上限は 3 μ mである 。この範囲であれば、金属層ゃ榭脂組成物との密着性に優れることとなる力 である [0210] 上記光路用貫通孔等を形成した後には、必要に応じて、上記光路用貫通孔等の壁 面が金属から構成されることとなるよう、その壁面に金属層を形成する金属層形成ェ 程を行ってもよい。
上記金属層の形成は、例えば、無電解めつき、スパッタリング、真空蒸着等の方法に より行うことができる。
具体的には、例えば、光路用貫通孔等を形成した後、該光路用貫通孔等の壁面に 触媒核を付与し、その後、光路用貫通孔等が形成された基板を無電解めつき浴に浸 漬する方法等を用いることができる。
また、無電解めつきやスパッタリングを組み合せて 2層以上力 なる金属層を形成し てもよいし、無電解めつきやスパッタリングの後、電解めつきを行って 2層以上力もなる 金属層を形成してもよい。
また、この工程で金属層を形成する場合、該金属層は、光沢を有する金属層であつ てもよい。
[0211] このような金属層形成工程においては、上記光路用貫通孔等の壁面に金属層を形 成するとともに、上記 (a)の工程で形成した最外層の絶縁層上に、最外層の導体回 路を形成することが望ましい。
具体的には、例えば、まず、無電解めつき等により光路用貫通孔等の壁面に金属層 を形成する際に、絶縁層の表面全体にも金属層を形成する。
[0212] 次に、この絶縁層の表面に形成した金属層上にめっきレジストを形成する。めっきレ ジストの形成は、例えば、感光性ドライフィルムを張り付けた後、めっきレジストパター ンが描画されたガラス基板等カゝらなるフォトマスクを密着載置し、露光現像処理を施 すことにより行えばよい。
[0213] さら〖こ、上記絶縁層上に形成した金属層をめつきリードとして電解めつきを行い、上 記めつきレジスト非形成部に電解めつき層を形成し、その後、上記めつきレジストと該 めっきレジスト下の金属層とを除去することにより、最外層の絶縁層上に独立した導 体回路を形成する。
従って、この場合、上記金属層は、上記導体回路と同様の材質力 なるものであるこ とが望ましい。
[0214] また、上記金属層を形成した後、上記金属層の壁面に粗化面を形成してもよい。上 記粗化面の形成は、例えば、黒化 (酸化) 還元処理、第二銅錯体と有機酸塩とを含 むエッチング液等を用いたエッチング処理、 Cu— Ni— P針状合金めつきによる処理等 を用いて行うことができる。
[0215] また、第六の本発明の ICチップ実装用基板の製造方法で形成する光路用貫通孔等 の壁面は、榭脂から構成されていてもよい。
上述した工程で、基板および絶縁層を形成する際に、これらの材料として榭脂を用 いた場合には、この工程で特に処理を施さなくても、光路用貫通孔等の壁面は、榭 月旨により構成されることとなる。
また、ここでは、光路用貫通孔等の壁面が榭脂層から構成されるように、別途、榭脂 層形成工程を行ってもよい。
別途、榭脂層を形成する場合には、具体的には、光路用貫通孔等を形成した後、こ の光路用貫通孔内に、榭脂を充填し、さらに、充填した榭脂の一部が残るように、再 度、光路用貫通孔等を形成することにより、光路用貫通孔等の壁面が榭脂から構成 されるちのとすることがでさる。
ここで、壁面の榭脂層と光信号通過領域内に充填する榭脂組成物の組成は、屈折 率が異なる以外は略同様とすることが望ましい。両者の密着性が向上することとなる 力 である。
また、両者の密着性を向上させるベぐ榭脂層の表面にプライマー処理を施してもよ い。
[0216] また、一旦、榭脂組成物を充填した後、再度、光路用貫通孔を形成する場合には、 その形状が、最初に形成した光路用貫通孔と断面形状が相似形になるように形成し てもよいし、例えば、一括貫通孔構造の光路用貫通孔内に充填した後、個別貫通孔 構造の光路用貫通孔を形成してもよい。
[0217] 次に、必要に応じて、上記貫通孔または凹部 (光路用貫通孔等)内に未硬化の榭脂 組成物を充填する榭脂組成物充填工程を行う。
光路用貫通孔等内に、未硬化の榭脂組成物を充填した後、硬化処理を施すことによ り、榭脂組成物により構成される光信号通過領域の基板および絶縁層を貫通する部 分を形成することができる。
具体的な未硬化の榭脂糸且成物の充填方法としては特に限定されず、例えば、印刷 ゃポッティング等の方法を用いることができる。
なお、未硬化の榭脂組成物の充填を印刷により行う場合、未硬化の榭脂組成物は一 回で印刷してもよいし、 2回以上に分けて印刷してもよい。また、多層配線板の両面 力も印刷を行ってもよい。
[0218] また、未硬化の榭脂組成物の充填を行う際には、上記光路用貫通孔等の内積よりも 少し多い量の未硬化の榭脂組成物を充填し、充填終了後、光路用貫通孔等から溢 れた余分な榭脂組成物を除去してもよ ヽ。
上記余分な榭脂組成物の除去は、例えば、研磨等により行うことができる。また、余 分な榭脂組成物を除去する場合、榭脂組成物の状態は半硬化状態であっても良い し、完全に硬化した状態であってもよぐ榭脂組成物の材料等を考慮して適宜選択 すればよい。
[0219] また、光路用凹部を形成した場合には、該光路用凹部内に充填する榭脂組成物が、 多層配線板の表面で無制限に広がらないように、多層配線板の表面に封止枠を形 成しておいてもよい。
[0220] このような貫通孔形成工程と、必要に応じて行う、粗化面形成工程および金属層形 成工程や榭脂層形成工程と、榭脂組成物充填工程とを経ることにより、上記 (a)のェ 程を経て製造した多層配線板に、光信号通過領域を形成することができる。
また、ここまでは、上記 (a)の工程 (多層配線板製造工程)と上記 (b)の工程を別のェ 程として説明したが、その一部は並行して行われてもよい。
具体的には、例えば、上記 (b)の工程において、金属層形成工程を行う場合には、 上記多層配線板製造工程において、最外層の絶縁層を形成した後、その表面に導 体回路を形成せず、上記金属層形成工程において、同時に最外層の絶縁層の表面 にも金属層を形成し、上述した処理を行うことにより独立した導体回路を形成すること ができる。勿論、この場合、上記金属層形成工程を行わない場合であっても、上述し た方法により絶縁層の表面に導体回路を形成することができる。 また、例えば、上記多層配線板製造工程において、最外層の絶縁層上に薄膜導体 層を形成した後、必要に応じてこの薄膜導体層の厚付けを電解めつきにより行い、そ の後、エッチングにより導体回路を形成する前に、上述した光信号通過領域を行い、 その後で、エッチングにより導体回路を形成してもよい。
[0221] また、上記榭脂組成物充填工程を行う場合において、多層配線板に光路用凹部を 形成していた場合には、榭脂組成物を充填する前に、光学素子を実装しておく必要 があり、さら〖こ、光路用凹部内に ICチップを実装する場合には、併せて ICチップも実 装しておく必要がある。なお、 ICチップの実装は設計に応じて行えばよぐ必ずしも 光路用凹部内に実装しなくてもよ!、。
以下、光路用凹部内に光学素子および ICチップを実装する方法について説明する
[0222] まず、光路用凹部の底面に、光学素子等との接続端子となるよう、導体回路の一部 を露出させる。その後、この導体回路の露出した部分に、必要に応じて、めっき層を 形成しておいてもよい。
次に、光路用凹部の底面に光学素子および ICチップを取り付けた後、上記光学素 子および上記 ICチップと多層配線板の導体回路とを電気的に接続する。
また、場合によっては、最外層の絶縁層上に形成した導体回路と、ワイヤボンディン グにより接続してもよい。
[0223] 上記光学素子および上記 ICチップの取り付けは、例えば、共晶結合法、半田結合法 、榭脂結合法等により行うことができる。また、銀ペーストや金ペーストを用いて、光学 素子等を取り付けてもよい。
[0224] 上記光学素子および上記 ICチップと上記多層配線板の導体回路とを電気的に接続 する方法としては、ワイヤボンディングを用いることが望ましい。これは、光学素子等を 取り付ける際の設計の自由度が大きいとともに、経済的にも有利だ力もである。
上記ワイヤボンディングとしては、従来公知の方法、即ち、ネイルヘッド'ボンディング 法ゃゥエッジ.ボンディング法を用いることができる。
なお、光学素子等の実装は、テープボンディングゃフリップチップボンディング等によ り行ってもよい。 [0225] 上述した工程を経て、多層配線板に光路用貫通孔等を形成した後には、必要に応じ て、上記の工程で形成した貫通孔ゃ凹部 (光路用貫通孔等)に連通した開口を有す るソルダーレジスト層を形成するソルダーレジスト層形成工程を行う。
具体的には、例えば、下記(1)および(2)の工程を行うことによりソルダーレジスト層 を形成することができる。
[0226] (1)まず、光路用貫通孔等を形成した多層配線板の最外層にソルダーレジスト組成 物の層を形成する。
上記ソルダーレジスト組成物の層は、例えば、ポリフエ二レンエーテル榭脂、ポリオレ フィン榭脂、フッ素榭脂、熱可塑性エラストマ一、エポキシ榭脂、ポリイミド榭脂等から なるソルダーレジスト組成物を用いて形成することができる。
[0227] (2)次に、上記ソルダーレジスト組成物の層に、上記光路用貫通孔等に連通した開 口(以下、光路用開口とも ヽぅ)を形成する。
具体的には、例えば、露光現像処理やレーザ処理等により形成することができる。
[0228] また、上記光路用開口を形成する際には、同時に、半田バンプ形成用開口(ICチッ プゃ光学素子を実装するための開口)を形成することが望ましい。なお、上記光路用 開口の形成と、上記半田バンプ形成用開口の形成とは、別々に行ってもよい。
また、ソルダーレジスト層を形成する際に、予め、所望の位置に開口を有する榭脂フ イルムを作製し、該榭脂フィルムを張り付けることにより、光路用開口と半田バンプ形 成用開口とを有するソルダーレジスト層を形成してもよ 、。
[0229] このような(1)および(2)の工程を経ることにより、光路用貫通孔の形成された多層配 線板上に、該光路用貫通孔と連通した開口を有するソルダーレジスト層を形成するこ とがでさる。
[0230] また、上記ソノレダーレジスト層に形成した光路用開口には、上記光路用貫通孔等と 同様の方法で未硬化の榭脂組成物を充填してもよ ヽ。このようにソルダーレジスト層 の光路用開口に未硬化の榭脂組成物を充填した後、該未硬化の榭脂組成物の硬化 処理を施すことにより、榭脂組成物から構成される光信号通過領域を形成することが できる。
また、場合によっては、ソルダーレジスト層に形成した光路用開口の壁面にも金属層 を形成してもよい。
[0231] さらに、この工程では、光路用貫通孔等力 露出した榭脂組成物の露出面に研磨処 理を施し、その露出面を平坦にすることが望ましい。露出面を平坦にすることにより、 通信光の伝送が阻害されるおそれがより少なくなるからである。
上記研磨処理は、例えば、パフ研磨、紙やすり等による研磨、鏡面研磨、クリーン研 磨、ラッピング等により行うことができる。また、酸や酸化剤、薬液等を用いたィ匕学研 磨を行ってもよい。また、これらの方法を 2種以上組み合わせて研磨処理を行っても よい。
[0232] 次に、上記 (c)の工程、即ち、上記光信号通過領域の端部にマイクロレンズを配設す るマイクロレンズ配設工程を行う。
上記光信号通過領域の端部にマイクロレンズを配設するには、上記光信号通過領域 に榭脂組成物が充填されている場合、該榭脂組成物上に直接配設してもよぐまた、 接着層を介して上記光信号通過領域に配設してもよい。また、マイクロレンズアレイを 接着層を介して配設してもょ ヽ。
[0233] 上記榭脂組成物上にマイクロレンズを直接配設する方法としては、例えば、未硬化の 光学レンズ用榭脂を榭脂組成物上に適量滴下し、この滴下した未硬化の光学レンズ 用榭脂に硬化処理を施す方法が挙げられる。
上記方法において、未硬化の光学レンズ用榭脂を榭脂組成物上に適量滴下する際 には、ディスペンサー、インクジェット、マイクロピペット、マイクロシリンジ等の装置を 用いることができる。また、このような装置を用いて榭脂組成物上に滴下した未硬化 の光学レンズ用榭脂は、その表面張力により球形になろうとするため、上記榭脂組成 物上で半球状となり、その後、半球状の未硬化の光学レンズ用榭脂に硬化処理を施 すことで、榭脂組成物上に半球状のマイクロレンズを形成することができるのである。
[0234] なお、このようにして形成するマイクロレンズの直径や曲面の形状等は、榭脂組成物 と未硬化の光学レンズ用榭脂との濡れ性を考慮しながら、適宜未硬化の光学レンズ 用榭脂の粘度等を調整することで制御することができる。
[0235] また、第六の本発明の ICチップ実装用基板の製造方法において、ソルダーレジスト 層を形成した場合には、このマイクロレンズ配設工程では、上記光路用開口中にマイ クロレンズを酉己設してもょ 、。
ここで、光路用開口が空隙により構成されている場合には、上記光路用開口の内部 であって、上記光路用貫通孔に充填した榭脂組成物上に、マイクロレンズを直接配 設すればよぐまた、上記光路用開口に榭脂組成物が充填されている場合には、上 記光路用貫通孔に充填した榭脂組成物と、上記光路用開口中に充填する榭脂組成 物との間にマイクロレンズを配設すればよい。
[0236] 上記光路用開口中にマイクロレンズを配設する方法としては、光路用開口が空隙に より形成されている場合には、例えば、上述した光路用開口の端部に光学レンズ用 榭脂を用いてマイクロレンズを配設する方法と同様の方法等を用いることができる。 また、上記光路用開口中に榭脂組成物が充填されている場合には、例えば、その内 部に榭脂組成物が充填された光路用貫通孔を有する多層配線板を作製した後、光 路用貫通孔内に充填された榭脂組成物上に、上述した方法と同様の方法で、光学 レンズ用榭脂を用いてマイクロレンズを配設し、その後、光路用開口を有するソルダ 一レジスト層を形成し、さらに、該光路用開口内に榭脂組成物を充填することにより、 光路用貫通孔に充填した榭脂組成物と光路用開口に充填した榭脂組成物との間に マイクロレンズを配設する方法等を用いることができる。なお、この方法を用いる場合
、マイクロレンズの配設とソルダーレジスト層の形成との順序は逆であってもよ 、。
[0237] 第六の本発明の ICチップ実装用基板の製造方法では、このような (a)— (c)の工程 を行った後、上述した工程において光路用貫通孔を形成した場合には、下記の方法 を用いて光学素子の実装を行い、さらに、半田パッドや半田バンプの形成を行うこと により ICチップ実装用基板を製造することができる。
[0238] 即ち、上記半田バンプ形成用開口を形成することにより露出した導体回路部分を、 必要に応じて、ニッケル、ノラジウム、金、銀、白金等の耐食性金属により被覆し、半 田パッドとする。これらのなかでは、ニッケル 金、ニッケル 銀、ニッケル パラジウム 、ニッケル-パラジウム-金等の金属により被覆層を形成することが望まし 、。
上記被覆層は、例えば、めっき、蒸着、電着等により形成することができるが、これら のなかでは、被覆層の均一性に優れるという点からめっきにより形成することが望まし い。 なお、半田パッドの形成は、(C)のマイクロレンズ配設工程の前に行うこととしてもよい
[0239] さらに、上記半田パッドに相当する部分に開口部が形成されたマスクを介して、上記 半田パッドに半田ペーストを充填した後、リフローすることにより半田バンプを形成す る。
[0240] さらに、ソルダーレジスト層に光学素子 (受光素子および発光素子)を実装する。光 学素子の実装は、例えば、上記半田バンプを介して行うことができる。また、例えば、 上記半田バンプを形成する際に、半田ペーストを充填した時点で光学素子を取り付 けておき、リフローと同時に光学素子の実装を行ってもよい。
また、半田に代えて、導電性接着剤等を用いて光学素子を実装してもよい。
このような工程を経る第六の本発明の製造方法では、上述した第一の本発明の ICチ ップ実装用基板を好適に製造することができる。
[0241] 次に、第二の本発明のマザ一ボード用基板について説明する。
第二の本発明のマザ一ボード用基板は、基板の少なくとも片面に導体回路と絶縁層 とが積層形成されるとともに、光導波路が形成され、少なくとも一方の面に、光学素子 、または、光学素子が実装された ICチップ実装用基板を実装することができるマザ一 ボード用基板であって、
マザ一ボード用基板には、光信号通過領域が設けられており、
上記光信号通過領域の上記光学素子または上記 ICチップ実装用基板を実装する 側の端部には、マイクロレンズが配設されていることを特徴とする。
[0242] 第二の本発明のマザ一ボード用基板は、光導波路が形成されるとともに、該マザ一 ボード用基板に光信号通過領域が設けられているため、上記光導波路および上記 光信号通過領域を介して、光信号を伝送することができる。
[0243] さらに、第二の本発明のマザ一ボード用基板では、上記光信号通過領域の ICチップ 実装用基板等を実装する側の端部にマイクロレンズが配設されているため、光導波 路に入射する光信号や、光導波路から出射する光信号がマイクロレンズを通過する ことにより、光信号の拡散を抑えることができ、光導波路の入出力信号を効率よく伝 送することが可能となる。従って、光信号に損失が発生しにくぐ伝送損失を抑えたマ ザ一ボード用基板を実現することができる。
また、上記マザ一ボード用基板に形成された光導波路と ICチップ実装用基板等に実 装した光学部品等との間で、より確実に光信号の伝送を行うことが可能となり、光信 号の伝送の信頼性が高い光通信を実現することができる。
[0244] 第二の本発明のマザ一ボード用基板には、光導波路が形成されており、この光導波 路を介して光信号の伝送を行うことができる。
上記光導波路としては、ポリマー材料等力 なる有機系光導波路、石英ガラス、化合 物半導体等からなる無機系光導波路等が挙げられる。これらのなかでは、ポリマー材 料等力 なる有機系光導波路が望ましい。絶縁層との密着性に優れ、加工が容易だ 力 である。
上記ポリマー材料としては、通信波長帯での吸収が少な 、ものであれば特に限定さ れず、熱硬化性榭脂、熱可塑性榭脂、感光性榭脂、熱硬化性榭脂の一部が感光性 化された榭脂、熱硬化性榭脂と熱可塑性榭脂との榭脂複合体、感光性榭脂と熱可 塑性榭脂との複合体等が挙げられる。
[0245] 具体的には、 PMMA (ポリメチルメタタリレート)、重水素化 PMMA、重水素フッ素化 PMMA等のアクリル榭脂、フッ素化ポリイミド等のポリイミド榭脂、エポキシ榭脂、 UV 硬化性エポキシ榭脂、ポリオレフイン系榭脂、重水素化シリコーン榭脂等のシリコーン 榭脂、シロキサン榭脂、ベンゾシクロブテンカも製造されるポリマー等が挙げられる。 また、上記光導波路がマルチモードの光導波路である場合、その材料は、アクリル榭 脂やエポキシ榭脂、 UV硬化性エポキシ榭脂であることが望ましぐ上記光導波路が シングルモードの光導波路である場合、その材料は、ポリイミド榭脂やシリコーン榭脂 、シロキサン榭脂であることが望ましい。
[0246] また、上記光導波路のコア部の厚さは 1一 100 mが望ましぐその幅は 1一 100 mが望ましい。上記幅が 1 m未満では、その形成が容易でないことがあり、一方、上 記幅が 100 mを超えると、多層プリント配線板を構成する導体回路等の設計の自 由度を阻害する原因となることがある。
また、上記光導波路のコア部の厚さと幅との比は、 1 : 1に近いほうが望ましい。これは 、通常、上記受光素子の受光部や上記発光素子の発光部の平面形状が円形状だ 力もである。なお、上記厚さと幅との比は特に限定されるものではなぐ通常、約 1 : 2 一約 2 : 1程度であればよい。
[0247] さらに、上記光導波路が通信波長 1. 31 μ mまたは 1. 55 mのシングルモードの光 導波路である場合には、そのコア部の厚さおよび幅は 5— 15 mであることがより望 ましぐ 10 m程度であることが特に望ましい。また、上記光導波路が通信波長 0. 8 5 mでマルチモードの光導波路である場合には、そのコア部の厚さおよび幅は 20 一 80 μ mであることがより望ましぐ 50 μ m程度であることが特に望ましい。
[0248] また、上記光導波路には、粒子が配合されていてもよい。粒子が配合されることにより 、光導波路にクラックが発生しに《なるからである。即ち、光導波路に粒子が配合さ れていない場合には、光導波路と他の層(基板や絶縁層等)との熱膨張係数が異な ることに起因して光導波路にクラックが発生することがあるが、光導波路に粒子を配 合して熱膨張係数を調整することにより、上記他の層との熱膨張係数の差を小さくし た場合には、光導波路にクラックが発生しに《なるからである。
また、上記光導波路には、上記榭脂成分以外に、榭脂粒子、無機粒子、金属粒子等 の粒子が含まれていてもよい。これらの粒子を含ませることにより上記光導波路と、絶 縁層やソルダーレジスト層等との間で熱膨張係数の整合を図ることができるカゝらであ る。
なお、上記粒子の具体的な材料や形状としては、第一の本発明の ICチップ実装用 基板を構成するマイクロレンズに含まれる粒子と同様のものが挙げられる。
[0249] また、上記粒子の粒径は、通信波長より短!、ことが望ま 、。粒径が通信波長より長 V、と光信号の伝送を阻害することがあるからである。
上記粒径は、その下限が 0. 01 μ mで、上限が 0. 8 μ mであることがより望ましい。こ の範囲を外れる粒子を含んでいると、粒度分布が広くなりすぎて、榭脂組成物中に 混合した際に、該榭脂組成物の粘度のバラツキが大きくなり、榭脂組成物を調製する 場合の再現性が低くなり、所定の粘度を有する榭脂組成物を調製することが困難に なることがあるカゝらである。
[0250] 上記粒径は、その下限が 0. 1 μ mで、その上限が 0. 8 μ mであることがさらに望まし い。この範囲にあると、スピンコート、ロールコート等を用いて榭脂組成物を塗布する の適しており、また、粒子が混合された榭脂組成物を調製する際に、所定の粘度に 調製しやすくなる。
上記粒径は、その下限が 0. で、その上限が 0. 6 mであることが特に望ましい 。この範囲が、榭脂組成物の塗布、光導波路のコア部の形成に特に適している。さら に、形成した光導波路ごとのバラツキ、特に、コア部のバラツキが最も小さくなり、光 通信用デバイスの特性に特に優れることとなる力 である。
また、この範囲の粒径を有する粒子であれば、 2種類以上の異なる粒径の粒子が含 まれていてもよい。
また、上記範囲内の粒径を有する粒子であれば、 2種類以上の異なる粒径の粒子を 含有していてもよい。
[0251] 上記粒子の配合量は、その望ましい下限が 10重量%であり、より望ましい下限が 20 重量%である。一方、上記粒子の望ましい上限は 80重量%であり、より望ましい上限 は 70重量%である。粒子の配合量が 10重量%未満であると、粒子を配合させる効 果が得られないことがあり、粒子の配合量が 80重量%を超えると、光信号の伝送が 阻害されることがあるカゝらである。
[0252] また、上記光導波路の形状は特に限定されないが、その形成が容易であることから、 シート状が好ましい。
また、上記光導波路がコアとクラッドとから構成されているものである場合、上記粒子 は、コアとクラッドとの両方に配合されていてもよいが、コアには粒子が配合されてお らず、該コアの周囲を覆うクラッドにのみ粒子が配合されていることが望ましい。その 理由は以下のとおりである。
即ち、光導波路に粒子を配合する場合、該粒子と光導波路の榭脂成分との密着性 によっては、粒子と榭脂成分との界面に空気層が生じてしまうことがあり、この場合に は、この空気層により光の屈折方向が変わり、光導波路の伝送損失が大きくなること があるのに対し、クラッド部にのみ粒子が配合を配合した場合には、上述したような粒 子を配合することにより、光導波路の伝送損失が大きくなるというような問題が発生す ることがないとともに、光導波路でクラックが発生しに《なるからである。
[0253] また、上記光導波路には、光路変換ミラーが形成されていることが望ましい。光路変 換ミラーを形成することにより、光路を所望の角度に変更することが可能だ力 である 上記光路変換ミラーの形成は、後述するように、光導波路の一端を切削することによ り行うことができる。また、光導波路に光路変換ミラーを形成する代わりに、光導波路 の端部の先に、光路変換部を有する部材を配置してもよ 、。
また、上記光路変換ミラーは、金属膜が蒸着されたミラーであってもよい。
[0254] なお、基板や絶縁層、光信号通過領域等の光導波路以外の構成は、サイズを除き、 第一の本発明の ICチップ実装用基板の構成と略同様である。
従って、第二の本発明のマザ一ボード用基板においては、上記光信号通過領域の 壁面が、榭脂または金属により構成されていることが望ましぐまた、上記光信号通過 領域の壁面は、表面粗さ Raは、 0. 1一 5 mであることが望ましい。
また、上記マザ一ボード用基板においては、上記光導波路から出射した光が、上記 マイクロレンズを介してコリメート光となることが望ましぐまた、上記マイクロレンズを介 して上記光導波路へ入射する光について、上記光導波路のコアにおけるスポット領 域力 上記コアと 35%以上重なっていることも望ましい。
また、上記マザ一ボード用基板において、上記マイクロレンズは、撥水処理または親 水処理が施された上記光信号通過領域の端部に直接配設されていることが望ましく 、また、上記マイクロレンズには、粒子が配合されていることが望ましい。
[0255] 以下、第二の本発明のマザ一ボード用基板の実施形態について、図面を参照しな がら説明する。
なお、図 6、 7のそれぞれは、第二の本発明のマザ一ボード用基板の一例を模式的 に示す断面図である。
第二の本発明のマザ一ボード用基板の実施形態は、光信号通過領域の形態に併せ て、大きく 2つの形態に分けることができる。
即ち、光信号通過領域が一括貫通孔構造の場合 (以下、第一の実施形態のマザ一 ボード用基板ともいう)、個別貫通孔構造の場合、(以下、第二の実施形態のマザ一 ボード用基板ともいう)の 2つの形態に分けることができる。
[0256] また、第一の実施形態のマザ一ボード用基板としては、上記光学素子がマルチチヤ ンネル光学素子であり、上記光信号通過領域が、上記マルチチャンネル光学素子か らの光信号または上記マルチチャンネル光学素子への光信号が伝送可能な一の光 路から構成され、かつ、上記マイクロレンズが複数のレンズを有するマイクロレンズァ レイである実施形態を有するものが望まし 、。
また、この場合、上記マルチチャンネル光学素子からの光信号または上記マルチチ ヤンネル光学素子への光信号が伝送可能な一の光路は、複数の円柱の壁面の一部 が繋がった形状を有していることが望ましぐ上記複数の円柱のうち、少なくとも 1個は 、光信号を伝送しな 、ダミー円柱であることがより望ま 、。
[0257] また、第二の実施形態のマザ一ボード用基板としては、上記光学素子がマルチチヤ ンネル光学素子であり、上記光信号通過領域が複数の独立した光路から構成されて V、る実施形態を有するものが望ま 、。
[0258] 図 6には、第一の実施形態のマザ一ボード用基板を示す。
図 6に示すように、マザ一ボード用基板 520は、基板 521の両面に導体回路 524と絶 縁層 522とが積層形成され、基板 521を挟んだ導体回路間、および、絶縁層 522を 挟んだ導体回路間は、それぞれ、スルーホール 529およびバイァホール 527により 電気的に接続されている。また、最外層にはソルダーレジスト層 534が形成されてい る。
このマザ一ボード用基板 520では、基板 521、絶縁層 522およびソルダーレジスト層 534を貫通するように光信号通過領域 542が設けられて 、る。
[0259] この光信号通過領域 542には、基板 521、絶縁層 522およびソルダーレジスト層 53 4を貫通する部分に榭脂組成物 547が充填されている。
そして、ソルダーレジスト層 534を貫通する部分の径は、基板 521および絶縁層 522 を貫通する部分の径と同じとなっており、ソルダーレジスト層 534を貫通する部分の 縦断面の形状は矩形状である。
なお、上記光信号通過領域の壁面には、金属層が形成されていてもよい。
[0260] マザ一ボード用基板 520の片面側(図中、下側)の最外層の絶縁層 522上には、 4つ のコア 551a— 551dとクラッド 552とからなる光導波路 550が形成されている。
また、コア 551a— 551dのそれぞれの端部には、光路変換ミラーが形成されており、 光導波路と光信号通過領域 542との間で光信号を伝送することができるように構成さ れている。ここで、光信号通過領域 542は、 4つのコアのいずれを介して伝送された 光信号をも伝送することができる大きさで、基板 521、絶縁層 522およびソルダーレ ジスト層 534を貫通するように一括形成されて!、る。
なお、光信号通過領域 542のソルダーレジスト層 534を貫通する部分は、図 6に示し たように榭脂組成物が充填されていてもよいし、空隙により形成されていてもよい。ま た、光信号通過領域 542の基板 521および絶縁層 522を貫通する部分の周囲には 金属層が形成されて 、てもよ 、。
また、マザ一ボード用基板 520の光導波路が形成された側と反対側のソルダーレジ スト層 534には、半田バンプ 537が形成されている。
[0261] また、このような光信号通過領域 542の光導波路 550が形成された側と反対側の端 部には、 4つのレンズ 546a— 546dが並列に配置されたマイクロレンズアレイ 546が 接着剤(図示せず)を介して配設されている。ここで、レンズ 546a— 546dのそれぞれ は、端部に光路変換ミラーが形成されたコア 551a— 551dのそれぞれに対応する位 置に配置されている。
従って、光導波路 550を介して伝送されてきた光信号は、マイクロレンズアレイ 546を 構成する各レンズ 546a— 546dを通過することとなり、このように、光信号通過領域 5 42の一端にマイクロレンズ 546a— 546dを配設することにより、光信号の伝送損失を 抑えることができる。
なお、マイクロレンズ 546に代えて、 4つのマイクロレンズが所定の位置に個別に配設 されていてもよい。
また、上記マイクロレンズが光信号通過領域の端部に直接配設されている場合、この マイクロレンズは、撥水処理または親水処理が施された光信号通過領域の端部に配 設されていることが望ましい。
[0262] また、マザ一ボード用基板 520では、ソルダーレジスト層 534に金属めつき層を介し て半田バンプ 537が形成されているため、 ICチップ実装用基板等の外部基板と半田 バンプを介して接続することができ、外部基板との間で電気信号の伝送を行うことが できる。 また、上記マザ一ボード用基板に外部基板を半田バンプを介して接続する場合には 、該外部基板をセルファライメント作用により所定の位置に配置することができる。
[0263] このような複数のコアを有する光導波路が形成されたマザ一ボード用基板において、 光信号通過領域の端部に配設するマイクロレンズの径は、コア間のピッチに応じて適 宜決定すればよい。
また、上記一括貫通孔構造の光信号通過領域の形状としては、例えば、上述した第 一の実施形態の ICチップ実装用基板が有する光信号通過領域の形状と同様の形 状等が挙げられる。
[0264] 上記光信号通過領域の大きさは、縦、横のそれぞれが 100 μ m— 5mmであることが 望ましい。具体的には、上記光信号通過領域が円柱状である場合は、その底面の直 径が上記範囲にあることが望ましぐ上述した各種柱状である場合には、その底面の 最も長い部分およびこれに直交する部分の長さが共に上記範囲にあることが望まし い。
上記断面の径が 100 m未満では、光信号の伝送が阻害されることがあり、一方、 5 mmを超えても、光信号の伝送損失の向上はみられず、上記マザ一ボード用基板の 小型化が難しくなる。
[0265] また、上記マザ一ボード用基板において、光信号通過領域を形成する場合、この光 信号通過領域は、光導波路 (コア)から出射した光や、光導波路 (コア)に入射する光 が壁面で反射したり、隣接する光信号間で干渉が生じたりしないような大きさを有して いることが望ましい。光信号通過領域の壁面での反射や、信号光間の干渉に起因す る伝送損失が発生しな 、からである。
そこで、一括貫通孔構造の光信号通過領域の望ま 、断面形状にっ 、て検討した。
[0266] ここでは、光導波路は、 4チャンネルの光導波路で、各コアの断面サイズは、 50 X 50
/z mであり、コアの屈折率が 1. 52で、クラッドの屈折率が 1. 50であり、光信号通過 領域内に充填される榭脂組成物の屈折率 1. 50であるマザ一ボード用基板の場合 について検討した。
[0267] その結果、上述した形態のマザ一ボード用基板では、例えば、マザ一ボード用基板 の厚さが 0. 6mmで、各コア間の距離が 250 μ mである場合には、 225 X 900 m の四角形の両側に半径 112. 5 mの半円が付いた形状より大きな断面形状の一括 貫通孔構造の光信号通過領域であれば、光信号通過領域の壁面での反射や信号 光間での干渉が生じることなく光信号を伝送することができ、マザ一ボード用基板の 厚さが 1. 2mmで、各コア間の距離が 500 μ mである場合には、 400 X 1600 μ mの 四角形の両側に半径 200 /z mの半円が付いた形状より大きな断面形状の一括貫通 孔構造の光信号通過領域であれば、光信号通過領域の壁面での反射や信号光間 での干渉が生じることなく光信号を伝送することができることが明ら力となった。
[0268] 次に、第二の実施形態のマザ一ボード用基板について説明する。
図 7には、第二の実施形態のマザ一ボード用基板を示す。
第二の実施形態のマザ一ボード用基板、即ち、個別貫通孔構造の光信号通過領域 を有する実施形態の ICチップ実装用基板は、図 6に示した実施形態の ICチップ実装 用基板と比べて、光信号通過領域の形状が異なる以外は、その構成は同一である。 従って、ここでは、光信号通過領域の形状についてのみ詳細に説明することとする。
[0269] 図 7に示すように、マザ一ボード用基板 620では、基板 621、絶縁層 622およびソル ダーレジスト層 634を貫通するように 4つの独立した光信号通過領域 642a— 642dが 設けられている。
この光信号通過領域 642a— 642dは、基板 621、絶縁層 622およびソルダーレジス ト層 634を貫通する部分に榭脂組成物 647が充填されている。
そして、ソルダーレジスト層 634を貫通する部分の径は、基板 621および絶縁層 622 を貫通する部分の径と同じとなっており、ソルダーレジスト層 634を貫通する部分の 縦断面の形状は矩形状である。
[0270] マザ一ボード用基板 620の片面側(図中、下側)の最外層の絶縁層 622上には、 4つ のコア 651a— 651dとクラッド 652とからなる光導波路 650が形成されている。
また、コア 651a— 651dのそれぞれの端部には、光路変換ミラーが形成されており、 光導波路のコア 651a— 651dと光信号通過領域 642a— 642dとの間で光信号を伝 送することができるように構成されている。ここで、光信号通過領域 642は、 4つのコ ァを介して伝送されてきた光信号のそれぞれを伝送することができるように、個別に 独立して形成されている。 なお、光信号通過領域 642a— 642dのソルダーレジスト層 634を貫通する部分は、 図 7に示したように榭脂組成物が充填されていてもよいし、空隙により形成されていて もよい。また、光信号通過領域 642の基板 621および絶縁層 622を貫通する部分の 周囲には金属層 645が形成されて 、てもよ 、。
[0271] また、このような光信号通過領域 642a— 642dの光導波路 650が形成された側と反 対側の端部には、マイクロレンズ 646a— 646dが配設されている。
従って、光導波路 650を介して伝送されてきた光信号や、光導波路 650に向って伝 送される光信号は、マイクロレンズ 646a— 646dを通過することとなる。このように、光 信号通過領域 642の一端にマイクロレンズ 646a— 646dを配設することにより、光信 号の伝送損失を抑えることができる。
さらに、マイクロレンズ 646a— 646dは、光信号通過領域 642a— 642dの基板 621、 絶縁層 622およびソルダーレジスト層 634を貫通する部分に形成された榭脂組成物 647上に直接配設されて ヽる。
なお、マイクロレンズ 646a— 646d〖こ代えて、 4つのレンズが並列に配置されたマイク 口レンズアレイが接着剤を介して配設されて 、てもよ 、。
[0272] また、マザ一ボード用基板 620では、ソルダーレジスト層 634に金属めつき層を介し て半田バンプ 637が形成されているため、 ICチップ実装用基板等の外部基板と半田 バンプを介して接続することができ、外部基板との間で電気信号の伝送を行うことが できる。
また、上記マザ一ボード用基板に外部基板を半田バンプを介して接続する場合には 、該外部基板をセルファライメント作用により所定の位置に配置することができる。
[0273] このような複数のコアを有する光導波路が形成されたマザ一ボード用基板において、 光信号通過領域の端部に配設するマイクロレンズの径は、コア間のピッチに応じて適 宜決定すればよい。
また、上記個別貫通孔構造の光信号通過領域の形状としては、例えば、上述した第 二の実施形態の ICチップ実装用基板が有する光信号通過領域の形状と同様の形 状等が挙げられる。
[0274] また、上記光信号通過領域の大きさは、その断面の径の下限は 100 mであること が望ましぐその上限は 500 μ mであることが望ましい。上記断面の径が 100 μ m未 満では、光路が塞がれてしまうおそれがあるとともに、該光信号通過領域に未効果の 榭脂組成物を充填することが困難となることがある。一方、上記径を 500 mより大き くしても光信号の伝送性はあまり向上せず、 ICチップ実装用基板を構成する導体回 路等の設計の自由度を阻害する原因となることがあるからである。
[0275] また、上記マザ一ボード用基板において、光信号通過領域を形成する場合、この光 信号通過領域は、光導波路 (コア)から出射した光や、光導波路 (コア)に入射する光 が壁面で反射しな 、ような大きさを有して 、ることが望ま 、。光信号通過領域の壁 面での反射に起因する伝送損失が発生しないからである。
そこで、個別貫通孔構造の光信号通過領域の望ま 、断面形状にっ 、て検討した。
[0276] ここでは、光導波路は、 4チャンネルの光導波路で、各コアの断面サイズは、 50 X 50
/z mであり、コアの屈折率が 1. 52で、クラッドの屈折率が 1. 50であり、光信号通過 領域内に充填される榭脂組成物の屈折率 1. 50であるマザ一ボード用基板の場合 について検討した。
[0277] その結果、上述した形態のマザ一ボード用基板では、例えば、マザ一ボード用基板 の厚さが 0. 3mmで、各コア間の距離が 250 μ mである場合には、直径 191 μ m以 上の個別貫通孔構造の光信号通過領域であれば、光信号通過領域の壁面で反射 することなく光信号を伝送することができ、マザ一ボード用基板の厚さが 0. 8mmで、 各コア間の距離が 500 mである場合には、直径 391 m以上の個別貫通孔構造 の光信号通過領域であれば、光信号通過領域の壁面で反射することなく光信号を伝 送することができることが明ら力となった。
[0278] 次に、第七の本発明のマザ一ボード用基板の製造方法について説明する。
第七の本発明のマザ一ボード用基板の製造方法は、
(a)基板の両面に導体回路と絶縁層とを順次積層形成するとともに、
上記基板上および Zまたは上記絶縁層上に光導波路を形成し、光配線板とする光 配線板製造工程と、
(b)上記光配線板に光信号通過領域を形成する光信号通過領域形成工程と、
(c)上記光信号通過領域の少なくとも一端にマイクロレンズを配設するマイクロレンズ 配設工程と
を含むことを特徴とするマザ一ボード用基板の製造方法。
[0279] 第七の本発明のマザ一ボード用基板の製造方法は、光信号通過領域および光導波 路を形成する工程と、該光信号通過領域の端部にマイクロレンズを配設する工程とを 有しているため、第二の本発明のマザ一ボード用基板、即ち、光信号通過領域およ び Zまたは光導波路を介して光信号の伝送を行うマザ一ボード用基板を好適に製 造することができる。従って、第七の本発明のマザ一ボード用基板の製造方法を用 いることにより、光信号の伝送性に優れたマザ一ボード用基板を製造することができ る。
[0280] 以下、第七の本発明のマザ一ボード用基板の製造方法について、工程順に説明す る。
なお、第七の本発明のマザ一ボード用基板の製造方法において、上記光配線板製 造工程と上記光信号通過領域形成工程とは、必ずしもこの順序で行う必要はなぐマ ザ一ボード用基板の設計に応じて、適宜組み合せて行えばよ!、。
[0281] 第七の本発明のマザ一ボード用基板の製造方法では、まず、上記 (a)の工程、即ち 光配線板製造工程と、上記 (b)の工程、即ち光信号通過領域形成工程とを設計に 応じて、並行して行う。
具体的には、例えば、下記(1)一(8)の工程を行う。
[0282] (1)まず、第六の本発明の ICチップ実装用基板の製造方法の多層配線板製造工程 における(1)一 (2)の工程と同様にして、基板の両面に導体回路を形成するともに、 基板を挟んだ導体回路間を接続するスルーホールを形成する。また、この工程でも、 導体回路の表面やスルーホールの壁面に、必要に応じて、粗化面を形成する。
[0283] (2)次に、必要に応じて、導体回路を形成した基板上に絶縁層と導体回路とを積層 形成する。
具体的には、第六の本発明の ICチップ実装用基板の製造方法の多層配線板製造 工程における(3)— (8)の工程と同様の方法を用いて、絶縁層と導体回路とを積層 形成すればよい。
この工程においても、 ICチップ実装用基板を製造する場合と同様、基板と絶縁層と を貫通するスルーホールを形成したり、蓋めつき層を形成したりしてもよい。
なお、この絶縁層と導体回路とを積層する工程は、 1回のみ行ってもよいし、複数回 行ってもよい。
また、この工程で絶縁層上に導体回路を形成する方法としては、上記 ICチップ実装 用基板を製造する場合と同様、サブトラクティブ法を用いてもよい。
[0284] また、後述するように光導波路を形成する際に、該光導波路を ICチップ実装用基板 等に対向する側と基板を挟んで反対側の絶縁層上等に形成する場合には、このェ 程において、必要に応じてその内部に光路用榭脂層が形成されたり、その壁面に金 属層ゃ榭脂層が形成された光路用貫通孔を形成する。なお、この光路用貫通孔が 光信号通過領域として機能することとなる。
なお、光路用貫通孔 (光信号通過領域)の形成の具体的な方法としては、第六の本 発明の ICチップ実装用基板の製造方法の (b)の工程 (光信号通過領域形成工程)と 同様の方法を用いることができる。
また、この基板等を貫通する光信号通過領域の形成は、下記(3)の工程で光導波路 を形成した後に行ってもよ!ヽ。
[0285] また、光路用貫通孔の形成は、例えば、ドリル加工やレーザ処理等により行うことが できる。
また、上記レーザ処理で使用するレーザとしては、例えば、バイァホール用開口を形 成す際に用いるレーザと同様のもの等が挙げられる。
また、光路用貫通孔は、一括貫通孔、個別貫通孔のそれぞれを設計に応じて形成 すればよい。
[0286] (3)次に、基板上および Zまたは絶縁層上の設計に応じた所定の位置に光導波路 を形成する。
上記光導波路の形成は、その材料に石英ガラス等の無機材料を用いて行う場合、予 め、所定の形状に成形しておいた光導波路を接着剤を介して取り付けることにより行 うことができる。
また、上記無機材料からなる光導波路は、 LiNbO、 LiTaO等の無機材料を液相ェ
3 3
ピタキシャル法、化学堆積法 (CVD)、分子線ェピタキシャル法等により成膜させるこ とにより形成することができる。
[0287] また、ポリマー材料力もなる光導波路を形成する方法としては、(1)予め離型フィルム 上等にフィルム状に成形してお 、た光導波路形成用フィルムを絶縁層上に張り付け る方法や、(2)絶縁層上に下部クラッド、コア、上部クラッドを順次積層形成していくこ とにより、上記絶縁層等上に直接光導波路を形成する方法等が挙げられる。
なお、光導波路の形成方法としては、離型フィルム上に光導波路を形成する場合も、 絶縁層等上に光導波路を形成する場合も同様の方法を用いて行うことができる。
[0288] 具体的には、反応性イオンエッチングを用いた方法、露光現像法、金型形成法、レ ジスト形成法、これらを組み合せた方法等を用いることができる。
上記反応性イオンエッチングを用いた方法では、(i)まず、離型フィルムや絶縁層等( 以下、単に離型フィルム等という)の上に下部クラッドを形成し、(ii)次に、この下部ク ラッド上にコア用榭脂組成物を塗布し、さらに、必要に応じて、硬化処理を施すことに よりコア形成用榭脂層とする。(m)次に、上記コア形成用榭脂層上に、マスク形成用 の榭脂層を形成し、次いで、このマスク形成用の榭脂層に露光現像処理を施すこと により、コア形成用榭脂層上にマスク (エッチングレジスト)を形成する。
(iv)次に、コア形成用榭脂層に反応性イオンエッチングを施すことにより、マスク非形 成部分のコア形成用榭脂層を除去し、下部クラッド上にコアを形成する。(V)最後に 、上記コアを覆うように下部クラッド上に上部クラッドを形成し、光導波路とする。
この反応性イオンエッチングを用いた方法は、寸法信頼性に優れた光導波路を形成 することができる。また、この方法は、再現性にも優れている。
[0289] また、露光現像法では、(i)まず、離型フィルム等の上に下部クラッドを形成し、(ii)次 に、この下部クラッド上にコア用榭脂組成物を塗布し、さらに、必要に応じて、半硬化 処理を施すことによりコア形成用榭脂組成物の層を形成する。
(iii)次に、上記コア形成用榭脂組成物の層上に、コア形成部分に対応したパターン が描画されたマスクを載置し、その後、露光現像処理を施すことにより、下部クラッド 上にコアを形成する。(iv)最後に、上記コアを覆うように下部クラッド上に上部クラッド を形成し、光導波路とする。
この露光現像法は、工程数が少ないため、光導波路を量産する際に好適に用いるこ とができ、また、加熱工程が少ないため、光導波路に応力が発生しにくい。
また、ァライメントマークを基準に、基板上に、光導波路を形成することができるため、 光学素子と光導波路のコアとをパッシブァライメントにより精度よく位置合わせするこ とがでさる。
[0290] また、上記金型形成法では、(i)まず、離型フィルム等の上に下部クラッドを形成し、 ( ii)次に、下部クラッドに金型形成によりコア形成用の溝を形成する。(iii)さらに、上記 溝内にコア用榭脂組成物を印刷により充填し、その後、硬化処理を施すことによりコ ァを形成する。(iv)最後に、上記コアを覆うように下部クラッド上に上部クラッドを形成 し、光導波路とする。
この金型形成法は、光導波路を量産する際に好適に用いることができ、寸法信頼性 に優れた光導波路を形成することができる。また、この方法は、再現性にも優れてい る。
[0291] また、上記レジスト形成法では、(i)まず、離型フィルム等の上に下部クラッドを形成し 、(ii)さらに、この下部クラッド上にレジスト用榭脂組成物を塗布した後、露光現像処 理を施すことにより、上記下部クラッド上のコア非形成部分に、コア形成用レジスト形 成する。
(iii)次に、下部クラッド上のレジスト非形成部分にコア用榭脂組成物の塗布し、(iv)さ らに、コア用榭脂組成物を硬化した後、上記コア形成用レジストを剥離することにより 、下部クラッド上にコアを形成する。(V)最後に、上記コアを覆うように下部クラッド上 に上部クラッドを形成し、光導波路とする。
このレジスト形成法は、光導波路を量産する際に好適に用いることができ、寸法信頼 性に優れた光導波路を形成することができる。また、この方法は、再現性にも優れて いる。
[0292] これらの方法を用いてポリマー材料力もなる光導波路を形成する場合において、コア に粒子が配合された光導波路を形成する場合には、露光現像法に比べて、金型形 成法が望ましい。その理由は以下のとおりである。
即ち、下部クラッドに金型形成によりコア形成用の溝を形成し、その後、この溝内にコ ァを形成する金型形成法でコアを形成した場合には、コアに配合される粒子は全部 、コア中に入ってしまうこととなるため、コアの表面は平坦で光信号の伝送性に優れる のに対し、露光現像法でコアを形成した場合には、現像後のコアにおいて、コア表面 から粒子の一部が突出していたり、コア表面に粒子がとれた窪みが形成されていたり して、コアの表面に凹凸が形成されることがあり、この凹凸によって光が所望の方向 に反射しなくなり、その結果、光信号の伝送性が低下することがあるからである。
[0293] また、上記光導波路には、光路変換ミラーを形成する。
上記光路変換ミラーは、光導波路を絶縁層上に取り付ける前に形成しておいてもよ いし、絶縁層上に取り付けた後に形成してもよいが、該光導波路を絶縁層上に直接 形成する場合を除いて、予め光路変換ミラーを形成しておくことが望ましい。作業を 容易に行うことができ、また、作業時に多層プリント配線板を構成する他の部材、基 板や導体回路、絶縁層等に傷を付けたり、これらを破損させたりするおそれがないか らである。
上記光路変換ミラーを形成する方法としては特に限定されず、従来公知の形成方法 を用いることができる。具体的には、先端が V形 90度のダイヤモンドソーや刃物によ る機械加工、反応性イオンエッチングによる加工、レーザアブレーシヨン等を用いるこ とができる。また、光路変換ミラーを形成する代わりに光路変換部材を埋め込んでも よい。
また、光導波路に 90度光路変換ミラーを形成する場合には、下部クラッドの基板また は絶縁層と接する面と、光路変換面とのなす角は、 45度であってもよいし、 135度で あってもよい。
また、上記光導波路や上記光路変換ミラーの形成は、例えば、マザ一ボード用基板 上、光信号通過領域内等に予め形成しておいたァライメントマークを基準に行えばよ い。
[0294] なお、ここでは、基板上または最外層の絶縁層上に光導波路を形成する方法につい て説明したが、上記多層プリント配線板を製造する場合には、上記光導波路は、基 板と絶縁層との間や、絶縁層同士の間に形成する場合もある。
基板と絶縁層との間に光導波路を形成する場合には、上記(1)の工程で、その両面 に導体回路が形成された基板を作製した後、上記(3)の工程と同様の方法で基板上 の導体回路非形成部分に光導波路を形成し、その後、上記 (2)の工程と同様の方法 で絶縁層を形成することにより、上記した位置に光導波路を形成することができる。 また、絶縁層同士の間に光導波路を形成する場合には、上記(1)および(2)の工程 と同様にして導体回路が形成された基板上に少なくとも 1層の絶縁層を積層形成し た後、上記(3)の工程と同様にして絶縁層上に光導波路を形成し、その後、さらに、 上記(2)の工程と同様の工程を繰り返すことにより、絶縁層同士の間に光導波路を 形成することができる。
[0295] (4)次に、必要に応じて、光導波路を形成した基板の最外層にソルダーレジスト組成 物の層を形成する。
上記ソルダーレジスト組成物の層は、第六の本発明の ICチップ実装用基板製造方 法にぉ 、てソルダーレジスト層を形成する際に用いる榭脂組成物と同様の榭脂組成 物を用いて形成することができる。
なお、場合によっては、上記(3)の工程で基板の最外層全体に光導波路を形成し、 光導波路がソルダーレジスト層としての役割を果たすようにしてもょ 、。
[0296] (5)次に、 ICチップ実装用基板等と対向する側のソルダーレジスト層に半田バンプ形 成用開口(ICチップ実装用基板や各種表面実装型電子部品を実装するための開口 )と光路用開口とを形成する。
上記半田バンプ形成用開口と光路用開口との形成は、第七の本発明における ICチ ップ実装用基板の製造方法で半田バンプ形成用開口を形成する方法と同様の方法 、即ち、露光現像処理やレーザ処理等を用いて行うことができる。
なお、上記半田バンプ形成用開口の形成と、光路用開口の形成とは同時に行っても よいし、別々に行ってもよい。
[0297] これらのなかでは、ソルダーレジスト層を形成する際に、その材料として感光性榭脂 を含む榭脂組成物を塗布し、露光現像処理を施すことにより半田バンプ形成用開口 と光路用開口とを形成する方法を選択することが望まし ヽ。
露光現像処理により光路用開口を形成する場合には、開口形成時に、該光路用開 口の下に存在する光導波路に傷を付けるおそれがな!ヽからである。
また、ソルダーレジスト層を形成する際に、予め、所望の位置に開口を有する榭脂フ イルムを作製し、該榭脂フィルムを張り付けることにより、半田バンプ形成用開口と光 路用開口とを有するソルダーレジスト層を形成してもよ 、。
[0298] なお、光路用貫通孔を形成し、 ICチップ実装用基板に対向する側と基板を挟んだ反 対側に光導波路を形成した場合には、この工程で光路用開口を形成する際に、該 光路用開口を上記光路用貫通孔と連通するように形成する。
また、必要に応じて、 ICチップ実装用基板と対向する面と反対側のソルダーレジスト 層にも半田バンプ形成用開口を形成してもよい。
後工程を経ることにより、 ICチップ実装用基板と対向する面と反対側のソルダーレジ スト層にも外部接続端子を形成することができるからである。
[0299] (6)次に、上記半田バンプ形成用開口を形成することにより露出した導体回路部分 を、必要に応じて、ニッケル、ノラジウム、金、銀、白金等の耐食性金属により被覆し
、半田パッドとする。具体的には、第六の本発明の ICチップ実装用基板の製造方法 で用 、た方法と同様の方法を用いて行えばよ 、。
[0300] (7)次に、必要に応じて、上記(5)の工程で形成した光路用開口内に、未硬化の榭 脂組成物を充填し、その後、硬化処理を施すことにより光路用榭脂層を形成する。 なお、この工程で充填する未硬化の榭脂糸且成物は、上記光路用貫通孔内に充填す る榭脂組成物と同一のものであることが望ましい。
また、上述したように、 ICチップ実装用基板に対向する側と基板を挟んだ反対側に 光導波路を形成するために、光路用貫通孔と光路用開口とを形成した場合には、該 光路用貫通孔と該光路用開口とに未硬化の榭脂糸且成物を充填してもよぐここで、上 記未硬化の榭脂組成物を充填する場合には、上記光路用貫通孔と上記光路用開口 とに同時に充填し、その後硬化処理を施してもよいし、光配線板に光路用貫通孔を 形成した後、未硬化の榭脂組成物の充填と硬化処理とを行い、その後、光路用開口 を有するソルダーレジスト層を形成し、さらに、未硬化の榭脂組成物の充填と硬化処 理とを行ってもよい。
[0301] (8)次に、上記半田パッドに相当する部分に開口部が形成されたマスクを介して、上 記半田パッドに半田ペーストを充填した後、リフローすることにより半田バンプを形成 する。 このような半田バンプを形成することにより、該半田バンプを介して ICチップ実装用 基板や各種表面実装型電子部品を実装することが可能となる。なお、この半田バン プは、必要に応じて形成すればよぐ半田バンプを形成しない場合であっても、実装 する ICチップ実装用基板や各種表面実装型電子部品のバンプを介してこれらを実 装することができる。
また、 ICチップ実装用基板と対向する面と反対側のソルダーレジスト層では、特に、 外部接続端子を形成しなくてもよいし、必要に応じて、ピンを配設したり、半田ボール を形成したりすることにより、 PGAや BGAとしてもよい。
[0302] 次に、上記 (c)の工程、即ち、上述した工程を経て形成した光信号通過領域の一端 にマイクロレンズを配設するマイクロレンズ配設工程を行う。
上記マイクロレンズの配設にお 、て、上記光信号通過領域に榭脂組成物が充填され ている場合には、該榭脂組成物上に直接配設してもよぐまた、接着層を介して上記 光信号通過領域に配設してもよい。また、マイクロレンズアレイを接着層を介して配設 してちよい。
具体的な方法としては、上述した第六の本発明の ICチップ実装用基板の製造方法 の(c)の工程 (マイクロレンズ配設工程)で用いた方法と同様の方法を用いることがで きる。
なお、この(c)の工程 (マイクロレンズ配設工程)は、場合によっては、上記半田パッド や上記半田バンプを形成する前に行ってもよい。
[0303] 第七の本発明のマザ一ボード用基板の製造方法では、このような (a)— (c)の工程を 行った後、半田パッドや半田バンプの形成を行うことによりマザ一ボード用基板の製 造を完了する。
なお、半田パッドや半田バンプの形成方法としては、第六の本発明の ICチップ実装 用基板の製造方法で用いた方法と同様の方法により行うことができる。
[0304] 次に、第三の本発明の光通信用デバイスについて説明する。
第三の本発明の光通信用デバイスは、 ICチップが実装された第一の本発明の ICチ ップ実装用基板が、第二の本発明のマザ一ボード用基板に実装されてなることを特 徴とする。 [0305] 第三の本発明の光通信用デバイスでは、 ICチップ実装用基板に実装された発光素 子からの出力信号や、受光素子への入力信号をマザ一ボード用基板を介して伝送 することができる。
また、第二の本発明のマザ一ボード用基板に第一の本発明の ICチップ実装用基板 が実装されているため、光信号の伝送性に優れることとなる。
[0306] 第三の本発明の光通信用デバイスにおいては、 ICチップ実装用基板に形成された 光信号通過領域のマザ一ボード用基板に対向する側の端部、および、マザ一ボード 用基板に形成された光信号通過領域の ICチップ実装用基板に対向する側の端部に マイクロレンズが配設されて 、ることが望まし 、。
この部分にマイクロレンズが配設されて ヽる場合には、発光素子が実装された ICチッ プ実装用基板からの光信号を、マザ一ボード用基板に形成された光導波路を介して
、別の ICチップ実装用基板に実装された受光素子に確実に伝送することができるか らである。
[0307] 第三の本発明の光通信用デバイスの実施形態について、図面を参照しながら説明 する。
図 8は、第三の本発明の光通信用デバイスの実施形態の一例を模式的に示す断面 図である。
図 8には、マザ一ボード用基板 720に、受光素子 2739が実装された ICチップ実装 用基板 2720と発光素子 1738が実装された ICチップ実装用基板 1720とが実装され た光通信用デバイス 760が示されている。
[0308] ICチップ実装用基板 1720は、基板 1721の両面に導体回路 1724と絶縁層 1722と が積層形成され、基板 1721を挟んだ導体回路間、および、絶縁層 1722を挟んだ導 体回路間は、それぞれ、スルーホールおよびバイァホール 1727により電気的に接続 されている(図示せず)。また、最外層にはソルダーレジスト層 1734が形成されてい る。
[0309] この ICチップ実装用基板 1720では、基板 1721、絶縁層 1722およびソルダーレジ スト層 1734を貫通するように光信号通過領域 1742が設けられて 、る。
この光信号通過領域 1742には、基板 1721、絶縁層 1722およびソルダーレジスト 層 1734を貫通する部分に榭脂組成物 1747が充填されて 、る。
[0310] ICチップ実装用基板 1720の一の面には、発光部 1738aが光信号通過領域 1742 に対向するように、発光素子 1738が半田接続部 1744を介して表面実装されている 。また、図示していないが、 ICチップ実装用基板 1720の発光素子 1738が実装され た側と同じ側の面には、 ICチップが半田接続部を介して表面実装されている。
[0311] また、 ICチップ実装用基板 2720は、基板 2721の両面に導体回路 2744と絶縁層 2 722とが積層形成され、基板 2721を挟んだ導体回路間、および、絶縁層 2722を挟 んだ導体回路間は、それぞれ、スルーホールおよびバイァホール 2727により電気的 に接続されている(図示せず)。また、最外層にはソルダーレジスト層 2734が形成さ れている。
[0312] この ICチップ実装用基板 2720では、基板 2721、絶縁層 2722およびソルダーレジ スト層 2734を貫通するように光信号通過領域 2742が設けられて 、る。
この光信号通過領域 2742には、基板 2721、絶縁層 2722およびソルダーレジスト 層 2734を貫通する部分に榭脂組成物 2747が充填されている。
[0313] ICチップ実装用基板 2720の一の面には、受光部 2739aが光信号通過領域 2742 に対向するように、受光素子 2739が半田接続部 1744を介して表面実装されている 。また、図示していないが、 ICチップ実装用基板 2720の受光素子 2739が実装され た側と同じ側の面には、 ICチップが半田接続部を介して表面実装されている。
[0314] また、マザ一ボード用基板 720は、基板 721の両面に導体回路 744と絶縁層 722と が積層形成され、基板 721を挟んだ導体回路間、および、絶縁層 722を挟んだ導体 回路間は、それぞれ、スルーホール 729およびバイァホール(図示せず)により電気 的に接続されている。また、最外層にはソルダーレジスト層 734が形成されている。 このマザ一ボード用基板 720では、基板 721、絶縁層 722およびソルダーレジスト層 734を貫通するように光信号通過領域 742が設けられて 、る。
[0315] この光信号通過領域 742には、基板 721、絶縁層 722およびソルダーレジスト層 73 4を貫通する部分に榭脂組成物 747が充填されている。
そして、ソルダーレジスト層 734を貫通する部分の径は、基板 721および絶縁層 722 を貫通する部分の径と同じとなっており、ソルダーレジスト層 734を貫通する部分の 縦断面の形状は矩形状である。
[0316] マザ一ボード用基板 720の ICチップ実装用基板 1720、 2720が実装された側と反 対側の最外層の絶縁層 722上には、コア 751とクラッド 752とからなる光導波路 750 が形成されている。
また、光導波路 750のそれぞれの端部には、光路変換ミラーが形成されており、光導 波路 750と光信号通過領域 742との間で光信号を伝送することができるように構成さ れている。
[0317] また、このような光信号通過領域 742の光導波路 750が形成された側と反対側の端 部には、マイクロレンズ 746a、 746bが配設されている。ここで、マイクロレンズ 746a、 746bのそれぞれは、端部に光路変換ミラーが形成されたコア 751のそれぞれの端 部に対応する位置に配設されている。
[0318] そして、光通信用デバイス 760では、マザ一ボード用基板 720の光導波路 750が形 成された側と反対側の面に、 ICチップ実装用基板 1720、 2720が半田接続部 1744 、 2744を介して実装されている。
ここで、 ICチップ実装用基板 1720、 2720のそれぞれは、セルファライメント作用に より所定の位置に実装されて 、る。
[0319] このような構成カゝらなる光通信用デバイス 760では、 ICチップ実装用基板 1720に実 装された ICチップ(図示せず)からの電気信号が、発光素子 1738で光信号に変換さ れ、発光素子 1738 (発光部 1738a)から出射した光信号は、光信号通過領域 1746 、マイクロレンズ 1746、マイクロレンズ 746a、光信号通過領域 742、光導波路 750、 光信号通過領域 742、マイクロレンズ 746b、マイクロレンズ 746および光信号通過領 域 2742を介して受光素子 2739 (受光部 2739a)に伝送され、さらに受光素子 2739 で電気信号に変換された後、 ICチップ実装用基板 2720に実装された ICチップ(図 示せず)に伝送され、処理される配設されたマイクロレンズを介して、光信号が伝送さ れることとなるため、確実に光信号を伝送することができる。
[0320] また、第三の本発明の光通信用デバイスの実施形態は、図 8に示したよう実施形態 に限定されるわけではなぐ例えば、図 9に示すような実施形態であってもよい。 図 9は、第三の本発明の光通信用デバイスの実施形態の別の一例を模式的に示す 断面図である。
図 9には、マザ一ボード用基板 820に、発光素子 1838が実装された ICチップ実装 用基板 1820と受光素子 2839が実装された ICチップ実装用基板 2820とが実装され た光通信用デバイス 860が示されている。
[0321] 光通信用デバイス 860は、図 8に示した光通信用デバイス 760と比べて、 ICチップ実 装用基板 1820、 2820の構造が異なるものの、マザ一ボード用基板 820の構造は、 マザ一ボード用基板 720の構造と同一である。
従って、ここでは、 ICチップ実装用基板 1820、 2820の構造を中心に光通信用デバ イス 860の実施形態について説明することとする。
[0322] ICチップ実装用基板 1820は、基板 1821の両面に導体回路 1844と絶縁層 1822と が積層形成され、基板 1821を挟んだ導体回路間、および、絶縁層 1822を挟んだ導 体回路間は、それぞれ、スルーホール 1829およびバイァホール 1827により電気的 に接続されている。また、最外層にはソルダーレジスト層 1834が形成されている。
[0323] この ICチップ実装用基板 1820では、凹部形状の光信号通過領域 1842が設けられ ている。
この光信号通過領域 1842内には、発光素子 1838と ICチップ(図示せず)とがワイヤ ボンディング 1849により実装されており、さらに、光信号通過領域内には、榭脂組成 物 1847が充填されている。
また、このような光信号通過領域 1842の発光素子 1838が実装された側と反対側の 端部には、マイクロレンズ 1846が配設されている。
[0324] また、 ICチップ実装用基板 2820は、基板 2821の両面に導体回路 2844と絶縁層 2 822とが積層形成され、基板 2821を挟んだ導体回路間、および、絶縁層 2822を挟 んだ導体回路間は、それぞれ、スルーホール 2829およびバイァホール 2827により 電気的に接続されている。また、最外層にはソルダーレジスト層 2834が形成されて いる。
[0325] この ICチップ実装用基板 2820では、凹部形状の光信号通過領域 2842が設けられ ている。
この光信号通過領域 2842内には、受光素子 2839と ICチップ(図示せず)とがワイヤ ボンディング 2848により実装されており、さらに、光信号通過領域内には、榭脂組成 物 2847力充填されて!、る。
また、このような光信号通過領域 2842の受光素子 2839が実装された側と反対側の 端部には、マイクロレンズ 2846が配設されている。
[0326] また、マザ一ボード用基板 820は、上述したように、図 8に示したマザ一ボード用基板 と同様の構成を有している。
そして、光通信用デバイス 860では、マザ一ボード用基板 820の光導波路 850が形 成された側と反対側の面に、 ICチップ実装用基板 1820、 2820が半田接続部 1843 、 2843を介して実装されている。
ここで、 ICチップ実装用基板 1820、 2820のそれぞれは、セルファライメント作用に より所定の位置に実装されて 、る。
[0327] このような構成カゝらなる光通信用デバイス 860では、 ICチップ実装用基板 1820に実 装された ICチップ(図示せず)からの電気信号が、発光素子 1838で光信号に変換さ れ、発光素子 1838 (発光部 1838a)から出射した光信号は、光信号通過領域 1842 、マイクロレンズ 1846、マイクロレンズ 846a、光信号通過領域 842、光導波路 850、 光信号通過領域 842、マイクロレンズ 846b、マイクロレンズ 2846および光信号通過 領域 2842を介して受光素子 2839 (受光部 2839a)に伝送され、さらに受光素子 28 39で電気信号に変換された後、 ICチップ実装用基板 2820に実装された ICチップ( 図示せず)に伝送され、処理されることとなる。
このような光通信用デバイスでは、光信号通過領域の端部に配設されたマイクロレン ズを介して、光信号が伝送されることとなるため、確実に光信号を伝送することができ る。
[0328] また、図 8、 9に示した光通信用デバイスにおいては、 ICチップ実装用基板には、 1チ ヤンネル光学素子 (発光素子、受光素子)が実装されており、これに対応して、 1チヤ ンネルを光信号を伝送するための光信号通過領域が、 ICチップ実装用基板とマザ 一ボード用基板とのそれぞれに形成されて 、る。
しかしながら、第三の本発明の光通信用デバイスの実施形態は、図 8、 9に示したよう な実施形態に限定されるわけではなぐ第二の本発明のマザ一ボード用基板に第一 の本発明の ICチップ実装用基板が実装された形態であればよい。
[0329] 従って、 ICチップ実装用基板には、マルチチャンネルの光学素子が実装されていて もよぐまた、 ICチップ実装用基板およびマザ一ボード用基板のそれぞれには、マル チチャンネルの光学素子の光信号を伝送すベぐ一括貫通孔構造の光信号通過領 域や、個別貫通孔構造の光信号通過領域等が形成されて!、てもよ 、。
また、マザ一ボード用基板に複数の ICチップ実装用基板が実装されている場合、一 括貫通孔構造の光信号通過領域が形成された ICチップ実装用基板および凹部形 状の光信号通過領域が形成された ICチップ実装用基板等、光信号通過領域の構造 が異なる ICチップ実装用基板が、一のマザ一ボード用基板に実装されていてもよい さらに、第三の本発明の光通信用デバイスを構成する ICチップ実装用基板およびマ ザ一ボード用基板にお!、ても、マイクロレンズアレイが接着剤を介して配設されて ヽ てもよい。
[0330] 次に、図 8に示した実施形態の光通信用デバイスを例に、 ICチップ実装用基板およ びマザ一ボード用基板の望まし 、厚さにっ 、て説明する。
具体的には、例えば、受光素子として PD (受光径 φ 60— 80 m)、マイクロレンズと して、ピッチ 250 mのマイクロレンズアレイ(直径 100— 240 m、サグ高さ 3— 120 μ m)、光導波路としてコアサイズ 50 X 50 mの光導波路を用いる場合にぉ 、て、 発光素子としてインブラ型の VCSEL (広がり角度 8度、発光エリア径 φ 15 m)を用 いる場合には、 ICチップ実装用基板の厚さは、 0. 5— 1. 6mmが望ましい。また、発 光素子として酸化狭窄型 (広がり角度 15度、発光エリア径 φ 18 m)を用いる場合 には、 ICチップ実装用基板の厚さは、 0. 5-0. 9mmが望ましい。さらに、発光素子 として酸ィ匕狭窄型 (広がり角度 25度、発光エリア径 φ 18 m)を用いる場合には、 IC チップ実装用基板の厚さは、 0. 5mm程度が望ましい。 0. 5mm未満では、基板に 反りが発生しやすくなるからである。
マザ一ボード用基板の厚さは、 0. 5-0. 75mmが望ましい。
また、上記マイクロレンズは、上述した範囲のなかでも、その直径力 200— 240 m、 サグ高さ 5— 50 mであることが望ましい。 なお、上記 ICチップ実装用基板およびマザ一ボード用基板の望ましい厚さ、ならび に、マイクロレンズの望ましい形状は、光学設計ソフト ZEMAX(focus Software, I NC.製)によるシミュレーションにより明らかにした。
[0331] さら〖こ、第三の本発明の光通信用デバイスにおいて、配設されるマイクロレンズの望 ましい形状について、詳細に説明する。
ここでは、図 8に示した実施形態と略同様の実施形態の光通信用デバイスを例にし て説明する。
具体的には、 ICチップ実装用基板 2720として、受光径 φ m、 4チャンネルの受 光素子 2739が実装され、その平面視形状が角部円弧の長方形である一括貫通孔 構造の光信号通過領域が形成された厚さ 0. 7mmの ICチップ実装用基板を用い、 I Cチップ実装用基板 1720として、広がり角度 8度、 4チャンネルの発光素子 1738が 実装され、その平面形状が角部円弧の長方形である一括貫通孔構造の光信号通過 領域が形成された厚さ 0. 7mmの ICチップ実装用基板を用い、マザ一ボード用基板 720として、幅 X厚さ 50 X 50 mコア力 厚さ 50 mのクラッドに挟まれた光導波路 が形成され、その平面形状が角部円弧の長方形である一括貫通孔構造の光信号通 過領域が形成された厚さ 0. 7mmのマザ一ボード用基板を用いた光通信用デバイス について、 ICチップ実装用基板 1720に形成したマイクロレンズ 1746、 ICチップ実 装用基板 2720に形成したマイクロレンズ 2746、マザ一ボード用基板 720に形成し たマイクロレンズ 746a、 746bの望ましい形状、特に、それぞれマイクロレンズの直径 を 220 μ mとした場合の望ましいマイクロレンズのサグ高さをシミュレーションにより明 らかにした。
[0332] なお、 ICチップ実装用基板 2720に配設したマイクロレンズ 2746は、受光素子 2739 の受光エリア 1739aに光信号を集光させることを目的とするものであり、 ICチップ実 装用基板 1720に配設したマイクロレンズ 1746は、光信号をコリメート光とすることを 目的とするものであり、マザ一ボード用基板 720に配設したマイクロレンズ 746a、 74 6bのそれぞれは、マイクロレンズ 746aが光信号を光導波路 750のコア 751に向かつ て集光させることを目的とするものであり、マイクロレンズ 746bが光信号をコリメート光 とすることを目的とするものである。 [0333] また、各マイクロレンズの評価について、 ICチップ実装用基板 1720に配設したマイ クロレンズ 1746は、 ICチップ実装用基板 1720を作製した後、マザ一ボード用基板 に実装する前に、パワーメータの NFP (ユアフィールドパターン)から集光距離を求め ることにより評価した。また、マザ一ボード用基板 720に配設したマイクロレンズ 746a は、 ICチップ実装用基板 1720をマザ一ボード用基板 720に実装し、光導波路 750 の発光素子と対向する側の端部の NFPより評価した。また、マザ一ボード用基板に 配設したマイクロレンズ 746bは、 ICチップ実装用基板 2720の実装領域における NF Pより評価した。また、 ICチップ実装用基板 2720に配設したマイクロレンズ 2746は、 受光素子 2739が未実装の ICチップ実装用基板 2720を実装し、受光素子 2739の 実装領域における NFPより評価した。
[0334] その結果、マザ一ボード用基板 720に配設されたマイクロレンズ 746aは、そのサグ 高さの上限が 12 μ mで、下限が 10 μ mであることが望ましぐこの範囲であれば、伝 送光を確実にコリメート光とすることができることが明らかとなった。
さらに、マイクロレンズ 746aでは、その焦点距離が 0. 75±0. 05mmであることが望 ましいことも明ら力となった。
また、発光素子を実装した ICチップ実装用基板 1720に配設されたマイクロレンズ 17 46は、そのサグ高さの上限が 10 μ mで、下限が 8 μ mであることが望ましぐこの範 囲であれば、伝送光を確実にコリメート光とすることができることが明ら力となった。
[0335] また、受光素子を実装した ICチップ実装用基板 2720に配設されたマイクロレンズ 27 46は、そのサグ高さの上限が 12 μ mで、下限が 10 μ mであることが望ましぐこの範 囲であれば、伝送光を確実にコリメート光とすることができることが明ら力となった。さ らに、マイクロレンズ 2746では、その焦点距離が 0. 75±0. 05mmであることが望ま しいことも明ら力となった。
また、マザ一ボード用基板 720に配設されたマイクロレンズ 746bは、そのサグ高さの 上限が 10 μ mで、下限が 8 μ mであることが望ましぐこの範囲であれば、伝送光を 確実にコリメート光とすることができることが明ら力となった。
なお、図 9に示した実施形態の光通信用デバイスにおいても同様のことが明ら力とな つた o また、ここでは、 ICチップ実装用基板やマザ一ボード用基板の厚さを一定にしてマイ クロレンズの望ましいサグ高さを説明した力 勿論、望ましいサグ高さは、 ICチップ実 装用基板やマザ一ボード用基板の厚さに応じて変動することとなる
[0336] また、上述したマイクロレンズの望ましいサグ高さをシミュレーションした系と同様の系 を用いて、マイクロレンズの直径を 220 mに固定した場合において、マイクロレンズ のサグ高さを変化させた場合の、マザ一ボード用基板の望ましい厚さについて、さら に検討した。
その結果、マザ一ボード用基板の発光素子に対向する部分に形成したマイクロレン ズのサグ高さを 7— 19 μ mの範囲で変更して検討したところ、マザ一ボード用基板の 厚さは、 1. 525— 0. 325 /z m力望ましいこと力明力となった。
また、受光素子を実装した ICチップ実装用基板に形成したマイクロレンズのサグ高さ を 7— 19 mの範囲で変更して検討したところ、受光素子を実装した ICチップ実装 用基板の厚さは、 1. 525-0. 325 mが望ましいことが明ら力となった。
[0337] 第三の本発明の光通信用デバイスは、上述したように、第二の本発明のマザ一ボー ド用基板に、第一の本発明の ICチップ実装用基板を実装したものである。
従って、上記マザ一ボード用基板では、上記マイクロレンズを介して上記光導波路へ 入射する光について、上記光導波路のコアにおけるスポット領域力 上記コアと 35% 以上重なっていることが望ましぐ上記 ICチップ実装用基板では、上記光学素子が 受光素子であり、上記マイクロレンズを介して上記受光素子へ入射する光について、 上記受光素子の受光部におけるスポット領域が、上記受光部と 22%以上重なってい ることが望ましい。
[0338] 本発明の光通信用デバイス (例えば、図 8に示した実施形態)では、発光素子と受光 素子との間での光導波路を介した光信号伝送時の伝送損失に対して、発光素子か ら出射された光をどれだけ光導波路のコアに集光して入射することができるか、およ び、コア力 出射した光をどれだけ受光素子の受光部に集光して入射することができ るかが、影響を及ぼす要因となる。
そこで、光導波路のコアに入射する光のスポット領域とコアとの重なり度合い、および 、受光素子の受光部に入射する光のスポット領域と受光部との重なり度合いが、光信 号の伝送性を評価すべく下記の試験を行った。
ここでは、マザ一ボード用基板に形成する光導波路の長さを 5、 50、 100cmと変化さ せ、伝送速度 2. 5Gbpsおよび lOGbpsの光信号を伝送する際に、必要とされる光導 波路のコアに入射する光のスポット領域とコアとの重なり度合い、および、受光素子 の受光部に入射する光のスポット領域と受光部との重なり度合いを評価した。また、 上記した評価は、図 8に示した形態の光通信用デバイスを用いて行った。
[0339] 具体的には、 ICチップ実装用基板 2720として、受光径 φ 80 m、 4チャンネルの受 光素子 2739が実装され、その平面視形状が角部円弧の長方形である一括貫通孔 構造の光信号通過領域が形成されるとともに、マイクロレンズが配設された厚さ 0. 7 mmの ICチップ実装用基板を用い、 ICチップ実装用基板 1720として、広がり角度 2 4度、 4チャンネルの発光素子 1738が実装され、その平面形状が角部円弧の長方 形である一括貫通孔構造の光信号通過領域が形成されるとともに、マイクロレンズ配 設された厚さ 0. 7mmの ICチップ実装用基板を用い、マザ一ボード用基板 720とし て、幅 X厚さ 50 X 50 mコア力 厚さ 50 mのクラッドに挟まれた光導波路 (伝送損 失 : 0. 08dBZcm)が形成され、その平面形状が角部円弧の長方形である一括貫通 孔構造の光信号通過領域が形成されるとともに、マイクロレンズが配設された厚さ 0. 7mmのマザ一ボード用基板を用いた光通信用デバイスを用いて評価した。
なお、全ての光信号通過領域内には、榭脂組成物が充填されおり、その透過率は、 90%Zmmである。また、光導波路の両端には、金属ミラーが形成されており、このミ ラーでの反射に起因する伝送損失は、 0. 5dBである。
[0340] また、この光通信用デバイスにおける各構成部材に起因する伝送損失は、発光素子 と光導波路との間、および、光導波路と受光素子との間がそれぞれ ldBずつであり、 5cm、 50cm, 100cmの光導波路力 それぞれ 0. 4dB、 4dB、 8dBであり、光路変 換ミラーは、上記したとおりである。
[0341] そして、伝送速度 2. 5Gbps、 lOGbpsの場合において、光通信用デバイス全体の許 容伝送損失が、それぞれ、 18dB、 14dBであることから、光導波路および受光部に おける許容損失と、光導波路のコアに入射する光のスポット領域とコアとの重なり度 合い、および、受光素子の受光部に入射する光のスポット領域と受光部との重なり度 合いを算出すると以下の結果が得られた。
[0342] 受光素子の受光部に入射する光のスポット領域と受光部との重なり度合いについて は、(1)伝送速度 2. 5Gbps、光導波路 5cmの場合は、受光素子の受光部に入射す る光のスポット領域と受光部とが 22%以上重なると、受光部での伝送損失が 7. 3dB 以下となるため、光信号伝送が可能となり、(2)伝送速度 10Gbps、光導波路 5cmの 場合は、スポット領域と受光部とが 32%以上重なると、受光部での伝送損失が 5. 3d B以下となるため、光信号伝送が可能となり、(3)伝送速度 2. 5Gbps、光導波路 50c mの場合は、スポット領域と受光部とが 30%以上重なると、受光部での伝送損失が 5 . 5dB以下となるため、光信号伝送が可能となり、(4)伝送速度 2. 5Gbps、光導波路 100cm,および、伝送速度 10Gbps、光導波路 50cmの場合は、スポット領域と受光 部とが 43%以上重なると、受光部での伝送損失が 3. 5dB以下となるため、光信号伝 送が可能となり、(5)伝送速度 10Gbps、光導波路 100cmの場合は、スポット領域と 受光部とが 66%以上重なると、受光部での伝送損失が 1. 5dB以下となるため、光信 号伝送が可能となることが明らかとなった。
[0343] また、光導波路のコアに入射する光のスポット領域とコアとの重なり度合いについて は、(1)伝送速度 2. 5Gbps、光導波路 5cmの場合は、光導波路のコアに入射する 光のスポット領域とコアとが 35%以上重なると、コアでの伝送損失が 7. 3dB以下とな るため、光信号伝送が可能となり、(2)伝送速度 10Gbps、光導波路 5cmの場合は、 スポット領域とコアとが 43. 5%以上重なると、コアでの伝送損失が 5. 3dB以下となる ため、光信号伝送が可能となり、(3)伝送速度 2. 5Gbps、光導波路 50cmの場合は 、スポット領域とコアとが 42%以上重なると、コアでの伝送損失が 5. 5dB以下となる ため、光信号伝送が可能となり、(4)伝送速度 2. 5Gbps、光導波路 100cm、および 、伝送速度 10Gbps、光導波路 50cmの場合は、スポット領域とコアとが 49%以上重 なると、コアでの伝送損失が 3. 5dB以下となるため、光信号伝送が可能となり、 (5) 伝送速度 10Gbps、光導波路 100cmの場合は、スポット領域とコアとが 66%以上重 なると、コアでの伝送損失が 1. 5dB以下となるため、光信号伝送が可能となることが 明らかとなった。
[0344] これらの結果から、上記マザ一ボード用基板では、上記マイクロレンズを介して上記 光導波路へ入射する光について、上記光導波路のコアにおけるスポット領域力 上 記コアと 35%以上重なっていることが望ましぐ上記 ICチップ実装用基板では、上記 光学素子が受光素子であり、上記マイクロレンズを介して上記受光素子へ入射する 光について、上記受光素子の受光部におけるスポット領域力 上記受光部と 22%以 上重なって 、ることが望まし 、ことが明ら力となった。
[0345] 次に、第三の本発明の光通信用デバイスの製造方法について説明する。
第三の本発明の光通信用デバイスは、上述した製造方法により、第一の本発明の IC チップ実装用基板と第二の本発明のマザ一ボード用基板とを別々に製造した後、そ の後、両者を半田等を介して接続することにより製造することができる。
具体的には、半田バンプが形成された ICチップ実装用基板と、半田バンプが形成さ れたマザ一ボード用基板とをそれぞれ所定の位置に、所定の向きで対向配置し、そ の後、リフローすることにより両者を接続し、光通信用デバイスとすることができる。 なお、上記 ICチップ実装用基板およびマザ一ボード用基板のそれぞれの対向する 面のうち、どちらか一方の面にのみ半田バンプが形成されて 、てもよ 、。
この場合も両者を電気的に接続することができるからである。
[0346] また、上記光通信用デバイスを製造する際には、必ずしも ICチップ実装用基板とマ ザ一ボード用基板とを完成させた後、その後、両者を接続する方法をとる必要はなく 、下記のような方法を用いることもできる。
即ち、マザ一ボード用基板の製造工程において、基板の少なくとも片面に導体回路 と絶縁層とを積層形成した後、光導波路を形成する前に、光学素子が実装された IC チップ実装用基板を実装し、その後、光導波路を張り付ける工程を経て、光通信用 デバイスを製造することもできる。
この場合、ァライメントマークを用いたパッシブァライメントによる光導波路の位置合わ せもできる力 アクティブァライメントにより光導波路の位置合わせを行うことができる ため、光導波路の位置ずれ (設計力も誤差)をより小さくすることができる。
また、上記 ICチップ実装用基板の実装は、例えば、マザ一ボード用基板上や光信号 通過領域内に予め形成しておいたァライメントマークを基準に行えばよい。
[0347] 次に、第四の本発明の光通信用デバイスについて説明する。 第四の本発明の光通信用デバイスは、基板の少なくとも片面に導体回路と絶縁層と が積層形成されるとともに、光導波路が形成されたマザ一ボード用基板に、光学素 子、または、光学素子が実装された ICチップ実装用基板が実装された光通信用デバ イスであって、
上記光導波路と上記光学素子とを結ぶ光路上に、少なくとも 1つのマイクロレンズが 配設されており、
上記光導波路または上記光学素子に入射する光は、マイクロレンズを介して集光さ れるように構成されて 、ることを特徴とする。
[0348] 第四の本発明の光通信用デバイスは、光導波路と光学素子とを結ぶ光路上にマイク 口レンズが配設されており、上記光導波路または上記光学素子に入射する光は、マ イク口レンズを介して集光されることとなるため、光導波路や光学素子に確実に光信 号伝送することができ、光信号の伝送能に優れることとなる。
[0349] 第四の本発明の光通信用デバイスは、マザ一ボード用基板と光学素子または光学 素子を実装した ICチップ実装用基板とから構成されている。
ここで、上記マザ一ボード用基板としては、第三の本発明の光通信用デバイスを構 成するマザ一ボード用基板と同様のもの等が挙げられる。
また、上記光学素子や、上記光学素子を実装した ICチップ実装用基板としては、第 三の本発明の光通信用デバイスを構成する光学素子や、 ICチップ実装用基板と同 様のもの等が挙げられる。
このようなマザ一ボード用基板、光学素子や ICチップ実装用基板から構成されてい る場合、上記光導波路と上記光学素子とを結ぶ光路上に、少なくとも 1つのマイクロ レンズが配設されており、上記光導波路または上記光学素子に入射する光は、マイ クロレンズを介して集光されるように構成されて ヽることとなる。
[0350] 第四の本発明の光通信用デバイスでは、上記光導波路と上記光学素子とを結ぶ光 路上に配設されている少なくとも 1つのマイクロレンズは、第三の本発明の光通信用 デバイスのように、光信号通過領域の端部に配設されておらず、光信号通過領域の 内部に配設されていてもよい。
以下、図面を参照しながらマイクロレンズが光信号通過領域の内部に形成された実 施形態について説明する。
図 21は、第四の本発明の光通信用デバイスの実施形態の一例を模式的に示す断 面図である。
図 21には、マザ一ボード用基板 920に、発光素子 938と受光素子 939とが直接実装 された光通信用デバイス 960が示されている。
[0351] マザ一ボード用基板 920は、基板 921の両面に導体回路 944と絶縁層 922とが積層 形成され、基板 921を挟んだ導体回路間、および、絶縁層 922を挟んだ導体回路間 は、それぞれ、スルーホール 929およびバイァホール(図示せず)により電気的に接 続されている。また、最外層にはソルダーレジスト層 934が形成されている。
このマザ一ボード用基板 920では、基板 921、絶縁層 922およびソルダーレジスト層 934を貫通するように光信号通過領域 942が設けられて 、る。
[0352] この光信号通過領域 942には、基板 921および絶縁層 922を貫通する部分の一部 に榭脂組成物 947が充填されて 、る。
そして、光信号通過領域 942の内部であって、受光素子 947の光導波路 750が形成 された側と反対側の端部には、マイクロレンズ 946a、 946bが配設されている。ここで 、マイクロレンズ 946a、 946bのそれぞれは、コア 951のそれぞれの端部に対応する 位置に配設されている。
[0353] マザ一ボード用基板 920の発光素子 938および受光素子 939がが実装された側と 反対側の最外層の絶縁層 922上には、コア 951とクラッド 952とからなる光導波路 95 0が形成されている。
また、光導波路 950のそれぞれの端部には、光路変換ミラーが形成されており、光導 波路 950と光信号通過領域 942との間で光信号を伝送することができるように構成さ れている。
[0354] また、マザ一ボード用基板 920の光導波路 950が形成された側と反対側の表面であ つて、光信号通過領域 942に対応する位置には、発光素子 938および受光素子 93 9のそれぞれが、半田接続部 944を介して実装されている。
ここで、発光素子 938および受光素子 939のそれぞれは、セルファライメント作用に より所定の位置に実装されて 、る。 [0355] このような構成力もなる光通信用デバイス 960では、発光素子 938 (発光部 938a)か ら出射した光信号は、空気からなる光信号通過領域 942、マイクロレンズ 946a、榭脂 組成物が充填された光信号通過領域 942、光導波路 750、榭脂組成物が充填され た光信号通過領域 942、マイクロレンズ 946b、空気からなる光信号通過領域 942を 介して受光素子 939 (受光部 939a)に伝送されることとなるため、確実に光信号を伝 送することができる。
ここで、マイクロレンズ 946aは、発光素子 938からの光信号を光導波路 950のコア 9 51に向って集光させ、また、マイクロレンズ 946bは、光導波路 950のコア 951からの 光信号を受光素子 939に向って集光させるため、上述したように確実に光信号を伝 送することができるのである。
[0356] また、第四の本発明の光通信用デバイスを構成するマザ一ボード用基板は、光学素 子または ICチップ実装用基板と対向する側の最外層に光導波路が形成されたマザ 一ボード用基板であってもよ!ヽ。このような構成を有する光通信用デバイスの実施形 態について、図面を参照しながら説明する。
図 22、 23を参照しながら説明する。図 22は、第四の本発明の光通信用デバイスの 実施形態の一例を模式的に示す断面図である。
[0357] 図 22には、マザ一ボード用基板 3120に、発光素子 4138が実装された ICチップ実 装用基板 4120と、受光素子 5139が実装された ICチップ実装用基板 5120とが実装 された光通信用デバイス 3160が示されている。
[0358] マザ一ボード用基板 3120は、基板 3121の両面に導体回路 3144と絶縁層 3122と が積層形成され、基板 3121を挟んだ導体回路間、および、絶縁層 3122を挟んだ導 体回路間は、それぞれ、スルーホール 3129およびバイァホール(図示せず)により電 気的に接続されている。
また、 ICチップ実装用基板を実装する側の最外層の一部には、コア 3151とクラッド 3 152とからなる光導波 3150が形成されており、この光導波路 3150の端部のそれぞ れには、光路変換ミラーが形成されており、後述する ICチップ実装用基板に実装さ れた発光素子ゃ受光素子との間で光信号を伝送することができるように構成されて いる。また、マザ一ボード用基板 3120の最外層であって、光導波路 3150を形成し た領域以外の領域には、ソルダーレジスト層が形成されて ヽる。
なお、マザ一ボード用基板 3120は、図 8に示したマザ一ボード用基板 920と異なり、 光信号通過領域は形成されておらず、また、マイクロレンズも配設されていない。
[0359] また、マザ一ボード用基板 3120の光導波路 3150が形成された側には、発光素子 4 138が実装された ICチップ実装用基板 4120と、受光素子 5139が実装された ICチ ップ実装用基板 5120とが実装されている。
ここで、 ICチップ実装用基板 4120、 5120のそれぞれは、図 8に示した ICチップ実装 用基板 1720、 2720と同様の構成を有している。従って、 ICチップ実装用基板の説 明を省略する。図 22に示した ICチップ実装用基板 4120、 5120と図 8に示した ICチ ップ実装用基板 1720、 2720とでマザ一ボード用基板との接続部の個数が異なるの は、光導波路の態様が明確になるように図面を描画しているからであり、その実質的 な構成は同一である。
[0360] このような構成力もなる光通信用デバイス 3160では、発光素子 4138 (発光部 4138 a)から出射した光信号は、光信号通過領域 4142、マイクロレンズ 4146a、光導波路 3150、マイクロレンズ 5146a、および、光信号通過領域 5142を介して受光素子 51 39 (受光部 5139a)に伝送されることとなる。
ここで、マイクロレンズ 4146aは、発光素子 4138からの光信号を光導波路 3150のコ ァ 3151に向って集光させ、また、マイクロレンズ 5146bは、光導波路 3150のコア 31 51からの光信号を受光素子 5139に向って集光させるため、発光素子と受光素子と の間で確実に光信号を伝送することができる。
[0361] また、第四の本発明の光通信用デバイスでは、上記マイクロレンズが少なくとも 2つ配 設されており、
上記光導波路または上記光学素子から出射した光が、集光またはコリメート光となる ことが望ましい。
この場合の具体的な実施形態としては、例えば、図 8に示したようなマザ一ボード用 基板に ICチップ実装用基板が実装された形態等が挙げられる。
このような実施形態の光通信用デバイスでは、光導波路または上記光学素子力 出 射した光が、集光またはコリメート光となるため、光信号伝送時において、光信号通 過領域の壁面で光が反射することなぐ光学素子と光導波路との間で伝送されること となりやすいため、光信号通過領域の壁面での反射に起因する光信号の減衰が発 生しにくぐより確実に光学素子と光導波路との間で光信号が伝送されることとなる。
[0362] また、他の実施形態としては、例えば、図 23に示したような実施形態が挙げられる。
図 23は、第四の本発明の光通信用デバイスの実施形態の一例を模式的に示す断 面図である。
[0363] 図 23には、マザ一ボード用基板 3220に、発光素子 4238が実装された ICチップ実 装用基板 4220と、受光素子 5239が実装された ICチップ実装用基板 5220とが実装 された光通信用デバイス 3260が示されている。
[0364] ここで、マザ一ボード用基板 3220の構成は、図 22に示したマザ一ボード用基板 312 0の構成と同一であるため、その説明を省略する。
また、マザ一ボード用基板 3220の光導波路 3250が形成された側には、発光素子 4 238が実装された ICチップ実装用基板 4220と、受光素子 5239が実装された ICチ ップ実装用基板 5220とが実装されている。
[0365] ここで、 ICチップ実装用基板 4220、 5220のそれぞれは、マイクロレンズの配設位置 が異なる以外は、図 22に示した ICチップ実装用基板 4120、 5120と同様の構成を 有している。従って、ここでは、マイクロレンズの配設位置のみ説明する。
ICチップ実装用基板 4120、 5120では、光信号通過領域の光学素子を実装した側 と反対側の端部にのみマイクロレンズが配設されているのに対し、 ICチップ実装用基 板 4220では、光信号通過領域 4242の両端部にマイクロレンズ 4246a、 4246b力 S配 設されており、 ICチップ実装用基板 5220では、光信号通過領域 5242の両端部に マイクロレンズ 5246a、 5246bが配設されている。
[0366] このような構成力もなる光通信用デバイス 3260では、発光素子 4238 (発光部 4238 a)から出射した光信号は、マイクロレンズ 4246b、光信号通過領域 4242、マイクロレ ンズ 4246a、光導波路 3250、マイクロレンズ 5246a、光信号通過領域 5242、およ び、マイクロレンズ 5246bを介して受光素子 5239 (受光部 5239a)に伝送される。 ここで、マイクロレンズ 4246bは、発光素子 4238からの光信号をコリメート光とし、マ イク口レンズ 4246aは、光導波路 3250のコア 3251に向力つて光信号を集光させ、ま た、マイクロレンズ 5246aは、光導波路 3250のコア 3251からの光信号をコリメート光 とし、マイクロレンズ 5246bは、光信号を受光素子 5239に向って集光させるため、確 実に光信号を伝送することができる。
[0367] また、上述したように、図 8に示したような実施形態も、本発明の実施形態の一つであ るが、第四の本発明の光通信用デバイスにおいて、マザ一ボード用基板に光学素子 が実装された ICチップ実装用基板が実装されている場合には、光導波路と光学素 子とを結ぶ光路上にマイクロレンズが少なくとも 1っ配設されて!/、ればよぐ必ずしも マザ一ボード用基板と ICチップ実装用基板とのそれぞれにマイクロレンズが配設され ていなくてもよい。
具体的には、例えば、図 8に示した光通信用デバイスと略同様の実施形態であって、 マザ一ボード用基板側にのみマイクロレンズが配設された実施形態や、図 8に示した 光通信用デバイスと略同様の実施形態であって、 ICチップ実装用基板側にのみマイ クロレンズが配設された実施形態(図 24参照)、また、図 8に示した光通信用デバイス と略同様の実施形態であって、発光素子が実装された ICチップ実装用基板と、マザ 一ボード用基板の受光素子が実装された ICチップ実装用基板と対向する側の光信 号通過領域の端部とにのみマイクロレンズが配設された実施形態等も、第四の本発 明の光通信用デバイスの一例として挙げられる。
[0368] このような第四の本発明の光通信用デバイスを製造する方法としては、第三の本発 明の光通信用デバイスを製造する方法と同様の方法等が挙げられる。
[0369] 次に、第五の本発明の光通信用デバイスについて説明する。
第五の本発明の光通信用デバイスは、基板の少なくとも片面に導体回路と絶縁層と が積層形成されるとともに、光導波路が形成されたマザ一ボード用基板に、発光素 子が実装された ICチップ実装用基板と受光素子が実装された ICチップ実装用基板 とが実装された光通信用デバイスであって、
上記マザ一ボード用基板は、上記光導波路の両端のそれぞれに光学的に接続され た光信号通過領域が形成されるとともに、上記光信号通過領域の上記光導波路と光 学的に接続された側と反対側の端部にマイクロレンズが配設されており、
上記発光素子が実装された ICチップ実装用基板は、上記発光素子と光学的に接続 された光信号通過領域が形成されるとともに、上記光信号通過領域の上記発光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、 上記受光素子が実装された ICチップ実装用基板は、上記受光素子と光学的に接続 された光信号通過領域が形成されるとともに、上記光信号通過領域の上記受光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、 上記発光素子から出射した光は、上記発光素子が実装された ICチップ実装用基板 に配設されたマイクロレンズを介してコリメート光となり、このコリメート光力 上記マザ 一ボード用基板に配設された一方のマイクロレンズを介して集光されて、上記光導波 路の一端に入射した後、上記光導波路内を伝送し、上記光導波路の他端から出射 した光が、上記マザ一ボード用基板に配設された他方のマイクロレンズを介してコリメ ート光となり、このコリメート光が上記受光素子が実装された ICチップ実装用基板に 配設されたマイクロレンズで集光されて上記受光素子に入射するように構成されてい ることを特徴とする。
[0370] 第五の本発明の光通信用デバイスは、光導波路と光信号通過領域とが形成された マザ一ボード用基板に、受光素子が実装されるとともに光信号通過領域が形成され た ICチップ実装用基板と、発光素子が実装されるとともに光信号通過領域が形成さ れた ICチップ実装用基板とが実装されており、所定の位置に所定の機能を有するマ イク口レンズが配設されているため、発光素子から出射した光が、光信号通過領域お よび光導波路を介して、受光素子に伝送される際に、この光は、光信号通過領域の 壁面で反射されることとなく伝送されることとなる。従って、第五の本発明の光通信用 デバイスでは、反射による減衰なぐ発光素子との受光素子との間での光信号の伝 送能に優れることとなる。
[0371] 第五の本発明の光通信用デバイスは、マザ一ボード用基板と光学素子 (受光素子ま たは発光素子)を実装した ICチップ実装用基板とから構成されている。
ここで、上記マザ一ボード用基板としては、第三の本発明の光通信用デバイスを構 成するマザ一ボード用基板と同様のもの等が挙げられる。
また、上記光学素子を実装した ICチップ実装用基板としては、第三の本発明の光通 信用デバイスを構成する ICチップ実装用基板と同様のもの等が挙げられる。 [0372] 上記マザ一ボード用基板では、上記光導波路の両端のそれぞれに光学的に接続さ れた光信号通過領域が形成されるとともに、上記光信号通過領域の上記光導波路と 光学的に接続された側と反対側の端部にマイクロレンズが配設されており、さらに、 発光素子実装 ICチップ実装用基板を実装する側のマイクロレンズは、発光素子から 伝送されてきた光信号を
光導波路のコアに集光することができるものであり、また、受光素子実装 ICチップ実 装用基板を実装する側のマイクロレンズは、コア力も出射された光をコリメート光とす ることができるものである。
[0373] また、発光素子を実装した ICチップ実装用基板では、上記発光素子と光学的に接続 された光信号通過領域が形成されるとともに、上記光信号通過領域の上記発光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、さらに、 このマイクロレンズは、発光素子から出射された光をコリメート光とすることができるも のである。
また、受光素子を実装した ICチップ実装用基板では、上記受光素子と光学的に接続 された光信号通過領域が形成されるとともに、上記光信号通過領域の上記受光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、さらに、 このマイクロレンズは、マザ一ボード用基板力 伝送されてきた光を上記発光素子に 集光することができるものである。
[0374] このような構成力もなる第五の本発明の光通信用デバイスは、上記発光素子から出 射した光は、上記発光素子が実装された ICチップ実装用基板に配設されたマイクロ レンズを介してコリメート光となり、このコリメート光力 上記マザ一ボード用基板に配 設された一方のマイクロレンズを介して集光されて、上記光導波路の一端に入射した 後、上記光導波路内を伝送し、上記光導波路の他端力 出射した光が、上記マザ一 ボード用基板に配設された他方のマイクロレンズを介してコリメート光となり、このコリメ ート光が上記受光素子が実装された ICチップ実装用基板に配設されたマイクロレン ズで集光されて上記受光素子に入射するため、発光素子と受光素子との間での光 信号伝送において、光信号通過領域の壁面で光信号が反射することなぐ伝送され ることとなるため、反射による減衰がなぐ確実に光信号を伝送することができるので ある。
[0375] このような第五の本発明の光通信用デバイスを製造する方法としては、第三の本発 明の光通信用デバイスを製造する方法と同様の方法等が挙げられる。
[0376] 以上、ここまで、第三一第五の本発明の光通信用デバイスとして、様々な実施形態 の光通信用デバイスについて説明してきた。そこで、ここでは、上述した実施形態の 光通信用デバイスの具体的構造について、比較、考察してみる。
[0377] 具体的には、図 8に示した実施形態の光通信用デバイス 760、図 24に示した実施形 態の光通信用デバイス 76( 、図 22に示した光通信用デバイス 3160、図 23に示し た光通信用デバイス 3260を例にとり、発光素子から出射した光がマイクロレンズを介 して光導波路のコアで集光し、光導波路から出射した光がマイクロレンズを介して受 光素子の受光部の集光するようなマイクロレンズの形状を比較した。
カロえて、光学素子と光導波路との光路上に 2個のマイクロレンズが配設されて 、る実 施形態 (光通信用デバイス 760、および、光通信用デバイス 3260)では、マイクロレ ンズ間の光信号がコリメート光になるようにマイクロレンズを設計した。
[0378] こられの光通信用デバイスについて、発光素子が実装された ICチップ実装用基板と しては、厚さ 550 μ mの ICチップ実装用基板に、 250 μ m、 4チャンネル、広がり角 2 4度の VCSEL力 ギャップ 50 mでフリップチップ実装され、さらに、 300 X 750 mの長方形の両端のそれぞれに半径 150 mの半円が付いた断面形状を有し、内 部に屈折率 1. 50の透明エポキシ榭脂が充填された光信号通過領域が形成された ものを用いることとした。
また、受光素子が実装された ICチップ実装用基板としては、厚さ 1950 111の1じチッ プ実装用基板に、 250 μ m、 4チャン才ヽノレ、受光咅径 80 μ mの PD力 ギャップ 50 μ mでフリップチップ実装され、さらに、 300 X 750 mの長方形の両端のそれぞれに 半径 150 mの半円が付いた断面形状を有し、内部に屈折率 1. 50の透明エポキシ 榭脂が充填された光信号通過領域が形成されたものを用いることとした。
また、マザ一ボード用基板としては、光導波路として 50 X 50 /z mのコアが 4チャンネ ル形成され、その周囲にクラッドが形成され、このクラッドのコアの上下の部分の厚さ が 50 mである光導波路が配設され、光信号通過領域が形成されている場合 (光通 信用デバイス 760、 760' の場合)、 300 X 750 μ mの長方形の両端のそれぞれに 半径 150 mの半円が付いた断面形状を有し、内部に屈折率 1. 50の透明エポキシ 榭脂が充填された光信号通過領域が形成されたものを用いることとした。
また、マザ一ボード用基板の厚さは、光通信用デバイス 760、 3160、 3260では 450 μ mとし、光通信用デバイス 76( では 150 μ mとした。
そして、マザ一ボード用基板に ICチップ実装用基板を実装した際の、マザ一ボード 用基板と ICチップ実装用基板とのギャップは、光通信用デバイス 760、 3160、 3260 では 300 μ mとし、光通信用デバイス 76( では 100 μ mとした。
[0379] そして、各部材カこのような形状を有する光通信用デバイスについて、上述した要件 を満足するようにマイクロレンズの設計をした。
その結果、上述した要件を満足するマイクロレンズの形状にっ 、て次のような結果が 得られた。結果を表 1に示す。なお、表中には、マイクロレンズの直径、高さ、および、 高さと直径の比(高さ Z直径)を示した。そして、高さと直径の比(高さ Z直径)が大き ければ大き!、ほど、マイクロレンズは曲率半径が大き!、ことなる。
[0380] [表 1] マイクロレンズ
直径 r¾さ 高さノ直径 の符号
1 746 220 33 0. 1 5 光通信用デバイスフ60 746a 220 1 3 0. 059 (図 8) フ 46b 220 30 0. 1 36
2746 220 1 1 0. 05
4246b 38 1 9 0. 5 光通信用デバイス 3260 4246a 200 65 0. 325 (図 23) 5246a 21 0 58 0. 276
5246b 1 0 30 0. 21 4 光通信用デバイス 760' 1 746' 220 74 0. 336 (図 24) 2746' 220 80 0. 364 光通信用デバイス 31 60 41 6a 220 85 0. 386 (図 22) 41 46b 220 75 0. 341 [0381] 表 1の結果から、明らかなように、マイクロレンズを光学素子と光導波路との光路上に
2つのマイクロレンズをした例(光通信用デバイス 760、 3260)では、マイクロレンズや 光導波路の配設位置によって、マイクロレンズの高さと直径の比(高さ Z直径)が異な ることとなる。
具体的には、光通信用デバイス 760のほうが、光通信用デバイス 3260に比べて、マ イク口レンズの高さと直径の比(高さ Z直径)が小さくなる。これは、光学素子や光導 波路カゝらマイクロレンズまでの距離が短い場合には、レンズを焦点距離を短くする必 要があり、そのためマイクロレンズの曲率半径を大きくしなければならないからである
[0382] また、マイクロレンズを光学素子と光導波路との光路上に、 1つのマイクロレンズを配 設した例(光通信用デバイス 76( 、 3160)では、両者のマイクロレンズと高さと直径 の比(高さ Z直径)に、大きな差は見られな力つた。
一方、光通信用デバイス 76C 、 3160に配設したマイクロレンズと、光通信用デバイ ス 3260に配設したマイクロレンズを比較した場合、光通信用デバイス 3260では、発 光素子からの光信号を集光するために配設したマイクロレンズ (マイクロレンズ 4246 b)の高さと直径の比(高さ/直径)は、光通信用デバイス 76( 、 3160に配設したマ イク口レンズ(マイクロレンズ 1746、 4146ab)に比べて大きくなつていた。このことから も、発光素子の近い位置にマイクロレンズを配設した場合、その曲率半径の絶対値 は大きくする必要があることが明確である。
[0383] また、ここで、光通信用デバイスを構成する構成部材の位置精度、特に、光学素子と 光導波路との位置精度について検討してみると、例えば、図 8に示したような構造を 有する光通信用デバイス 760では、
(1)光導波路フィルムをパッシブァライメントで張り付けた後、光学素子を実装するェ 程を経る場合には、マザ一ボード用基板の上面や下面に形成したァライメントマーク を基準に光導波路フィルムを張り付けており、光導波路と光学素子との間で、概ね 1 0— 15 m程度の設計力 の位置ズレが生じることとなる。
(2)また、マザ一ボード用基板の上面や下面に形成したァライメントマークを基準にし て、榭脂組成物を塗布することにより光導波路を直接形成し、さらに光路変換ミラー を形成する場合には、光導波路と光学素子との間で、概ね 10— 20 m程度の設計 力 の位置ズレが生じることとなる。
(3)マザ一ボード用基板に光導波路を形成する前に、光学素子が実装された ICチッ プ実装用基板を実装し、アクティブァライメントで光導波路を形成する場合であっても 、光導波路と光学素子との間で、概ね 2 m程度の設計力 の位置ズレが生じること となる。
また、光導波路と光学素子とき位置ズレは、図 23に示したような光通信用デバイス 32 60でも、その製造工程において発生するものであり、ノ ッシブァライメントで光導波路 を形成する場合には、概ね 5— 6 m程度、アクティブァライメントで光導波路を形成 する場合には、概ね 8— 10 m程度の設計力もの位置ズレが発生することとなる。な 、
ここで、アクティブァライメントのほうが位置ズレが大きくなつているのは、取り付け装置 のヘッドで、光導波路の先端部 (光路変換ミラー形成部)を抑えることができな 、から である。
このように、光通信用デバイスにおいては、その製造工程において、光導波路と光学 素子との設計からの位置ズレが不回避的に発生するのである。
[0384] そして、このような設計からの位置ズレが発生した場合には、如何にマイクロレンズを 正確に設計したとしても、そのマイクロレンズの焦点は、光導波路のコアゃ受光素子 の受光部等からズレてしまうのである。
ここで、マイクロレンズの曲率半径が大きい場合のほうが、焦点距離が短いため、少し の位置ズレでも、その位置ズレの影響を大きく受けてしまうことになる。
また、マイクロレンズ自体も配設時において、若干の設計力もの誤差を生じることとな り、曲率半径が大きければ大きいほど、小さな誤差であっても、焦点距離が大きく変 動することとなる。
[0385] 従って、これらのことを勘案すると、光通信用デバイスを構成するマイクロレンズは、 高さと直径の比(高さ Z直径)は小さいほど、換言すれば、マイクロレンズの曲率半径 が小ほど、光通信用デバイスの製造時に不回避的に発生する構成部材の位置ズレ の影響を受けにくぐ優れた光信号伝送性を確保することができるという点力も望まし ぐまた、マイクロレンズの曲率半径を小さくするということは、マイクロレンズの焦点距 離を長くするということであるから、マイクロレンズと光導波路や光学素子との距離を 確保すベぐ ICチップ実装用基板やマザ一ボード用基板には光信号通過領域が形 成されて!/、ることが望まし 、と言える。
具体的には、光通信用デバイスとしては、図 8に示した光通信用デバイス 760のほう 力 図 23に示した光通信用デバイス 3260のよりも望ましいと考えられ、図 24に示し た光通信用デバイス 76( のほうが、図 22に示した光通信用デバイス 3160よりも望 まし 、と考えられるのである。
実施例
[0386] 以下、本発明をさらに詳細に説明する。
(実施例 1)
A.絶縁層用榭脂フィルムの作製
ビスフエノール A型エポキシ榭脂(エポキシ当量 469、油化シェルエポキシ社製ェピ コート 1001) 30重量部、クレゾ一ルノボラック型エポキシ榭脂(エポキシ当量 215、大 日本インキ化学工業社製 ェピクロン N-673) 40重量部、トリァジン構造含有フエノ 一ルノボラック榭脂 (フエノール性水酸基当量 120、大日本インキ化学工業社製 フ エノライト KA— 7052) 30重量部をェチルジグリコールアセテート 20重量部、ソルベン トナフサ 20重量部に攪拌しながら加熱溶解させ、そこへ末端エポキシィ匕ポリブタジェ ンゴム(ナガセ化成工業社製 デナレックス R— 45EPT) 15重量部と 2—フエ-ルー 4、 5—ビス (ヒドロキシメチル)イミダゾール粉砕品 1. 5重量部、微粉砕シリカ 2重量部、シ リコーン系消泡剤 0. 5重量部を添加しエポキシ榭脂組成物を調製した。
得られたエポキシ榭脂組成物を厚さ 38 μ mの PETフィルム上に乾燥後の厚さが 50 μ mとなるようにロールコーターを用いて塗布した後、 80— 120°Cで 10分間乾燥さ せることにより、絶縁層用榭脂フィルムを作製した。
[0387] B.貫通孔充填用榭脂組成物の調製
ビスフエノール F型エポキシモノマー(遊技盤かシェル社製、分子量: 310、 YL983U ) 100重量部、表面にシランカップリング剤がコーティングされた平均粒径が 1. 6 m で、最大粒子の直径が 15 μ m以下の SiO球状粒子(アドテック社製、 CRS 1101—
2
CE) 170重量部およびレべリング剤(サンノプコ社製 ペレノール S4) l. 5重量部を 容器にとり、攪拌混合することにより、その粘度が 23± 1°Cで 45— 49Pa' sの榭脂充 填材を調製した。なお、硬化剤として、イミダゾール硬化剤(四国化成社製、 2E4MZ -CN) 6. 5重量部を用いた。
[0388] C. ICチップ実装用基板の製造
(1)厚さ 0. 7mmのガラスエポキシ榭脂または BT (ビスマレイミドトリアジン)榭脂から なる絶縁性基板 21の両面に 18 mの銅箔 28がラミネートされている銅張積層板を 出発材料とした(図 10 (a)参照)。まず、この銅張積層板をドリル削孔し、無電解めつ き処理を施し、パターン状にエッチングすることにより、基板 21の両面に導体回路 24 とスルーホール 29とを形成した。
[0389] (2)スルーホール 29と導体回路 24とを形成した基板を水洗いし、乾燥した後、 NaO H (10gZD、NaClO (40g/l) , Na ΡΟ
2 3 4 (6gZDを含む水溶液を黒ィ匕浴 (酸ィ匕浴) とする黒化処理、および、 NaOH (10gZD、 NaBH
4 (6gZDを含む水溶液を還元浴 とする還元処理を行 、、スルーホール 29を含む導体回路 24の表面に粗ィ匕面(図示 せず)を形成した (図 10 (b)参照)。
[0390] (3)上記 Bに記載した榭脂充填材を調製した後、下記の方法により調製後 24時間以 内に、スルーホール 29内および基板 21の片面の導体回路非形成部と導体回路 24 の外縁部とに榭脂充填材 30' の層を形成した。
即ち、まず、スキージを用いてスルーホール内に榭脂充填材を押し込んだ後、 100 °C、 20分の条件で乾燥させた。次に、導体回路非形成部に相当する部分が開口し たマスクを基板上に載置し、スキージを用いて凹部となっている導体回路非形成部 にも榭脂充填材を充填し、 100°C、 20分の条件で乾燥させることにより榭脂充填材 3 0' の層を形成した(図 10 (c)参照)。
[0391] (4)上記(3)の処理を終えた基板の片面を、 # 600のベルト研磨紙 (三共理化学社 製)を用いたベルトサンダー研磨により、導体回路 24の表面やスルーホール 29のラ ンド表面に榭脂充填材 30' が残らないように研磨し、次いで、上記ベルトサンダー 研磨による傷を取り除くためのパフ研磨を行った。このような一連の研磨を基板の他 方の面についても同様に行った。
次いで、 100°Cで 1時間、 120°Cで 3時間、 150°Cで 1時間、 180°Cで 7時間の加熱 処理を行って榭脂充填材層 30を形成した。
[0392] このようにして、スルーホール 29や導体回路非形成部に形成された榭脂充填材 30 の表層部および導体回路 24の表面を平坦化し、榭脂充填材 30と導体回路 24の側 面とが粗ィ匕面(図示せず)を介して強固に密着し、また、スルーホール 29の内壁面と 榭脂充填材 30とが粗ィ匕面(図示せず)を介して強固に密着した絶縁性基板を得た( 図 10 (d)参照)。この工程により、榭脂充填材層 30の表面と導体回路 24の表面とが 同一平面となる。
[0393] (5)上記基板を水洗、酸性脱脂した後、ソフトエッチングし、次 、で、エッチング液を 基板の両面にスプレイで吹き付けて、導体回路 24の表面とスルーホール 29のランド 表面とをエッチングすることにより、導体回路 24の全表面に粗ィ匕面(図示せず)を形 成した。エッチング液として、イミダゾール銅 (Π)錯体 10重量部、グリコール酸 7重量 部、塩ィ匕カリウム 5重量部を含むエッチング液 (メック社製、メックエッチボンド)を使用 した。
[0394] (6)次に、上記 Aで作製した基板より少し大きめの絶縁層用榭脂フィルムを基板上に 載置し、圧力 0. 4MPa、温度 80°C、圧着時間 10秒の条件で仮圧着して裁断した後 、さらに、以下の方法により真空ラミネータ装置を用いて貼り付けることにより絶縁層 2 2を形成した (図 10 (e)参照)。
即ち、絶縁層用榭脂フィルムを基板上に、真空度 65Pa、圧力 0. 4MPa、温度 80°C 、時間 60秒の条件で本圧着し、その後、 170°Cで 30分間熱硬化させた。
[0395] (7)次に、絶縁層 22上に、厚さ 1. 2mmの貫通孔が形成されたマスクを介して、波長 10. 4 μ m( COガスレーザにて、ビーム径 4. Omm、トップハットモード、パルス幅 8
2
. 0 μ \マスクの貫通孔の径 1. Omm、 1ショッ卜の条件で絶縁層 22に、直径 80 mのバイァホーノレ用開口 26を形成した(図 10 (f)参照)。
[0396] (8)バイァホール用開口 26を形成した基板を、 60gZlの過マンガン酸を含む 80°C の溶液に 10分間浸漬し、絶縁層 22の表面に存在するエポキシ榭脂粒子を溶解除 去することにより、バイァホール用開口 26の内壁面を含むその表面に粗ィ匕面(図示 せず)を形成した。
[0397] (9)次に、上記処理を終えた基板を、中和溶液 (シプレイ社製)に浸漬して力も水洗 いした。
さらに、粗面化処理 (粗ィ匕深さ 3 m)した該基板の表面に、パラジウム触媒を付与す ることにより、絶縁層 22の表面 (バイァホール用開口 26の内壁面を含む)に触媒核を 付着させた (図示せず)。即ち、上記基板を塩化パラジウム (PdCl )と塩ィ匕第一スズ(
2
SnCl )とを含む触媒液中に浸漬し、パラジウム金属を析出させることにより触媒を付
2
与した。
[0398] (10)次に、以下の組成の無電解銅めつき水溶液中に、基板を浸漬し、絶縁層 22の 表面 (バイァホール用開口 26の内壁面を含む)に厚さ 0. 6-3. O /z mの薄膜導体層 (無電解銅めつき膜) 32を形成した(図 11 (a)参照)。
〔無電解めつき水溶液〕
NiSO 0. 003 mol/1
4
酒石酸 0. 200 mol/1
硫酸銅 0. 030 mol/1
HCHO 0. 050 mol/1
NaOH 0. 100 mol/1
a a ' —ビビリジル 100 mg/1
ポリエチレングリコール(PEG) 0. 10 g/1
〔無電解めつき条件〕
30°Cの液温度で 40分
[0399] (11)次に、薄膜導体層(無電解銅めつき膜) 32が形成された基板に市販の感光性ド ライフイルムを張り付け、マスクを載置して、 lOOmjZcm2で露光し、 0. 8%炭酸ナト リウム水溶液で現像処理することにより、厚さ 20 mのめつきレジスト 23を設けた(図 11 (b)参照)。
[0400] (12)ついで、基板を 50°Cの水で洗浄して脱脂し、 25°Cの水で水洗後、さらに硫酸 で洗浄してから、以下の条件で電解めつきを施し、めっきレジスト 23非形成部に、厚 さ 20 mの電解銅めつき膜 33を形成した(図 11 (c)参照)。 〔電解めつき液〕
硫酸 2. 24 mol/1
硫酸銅 0. 26 mol/1
添加剤 19. 5 ml/1
(アトテックジャパン社製、カバラシド HL)
〔電解めつき条件〕
電流密度 1 AZdm2
時間 65 分
温度 22 ± 2 °C
[0401] (13)さらに、めっきレジスト 23を 5%NaOHで剥離除去した後、そのめつきレジスト 2 3下の薄膜導体層を硫酸と過酸ィ匕水素との混合液でエッチング処理して溶解除去し 、薄膜導体層(無電解銅めつき膜) 32と電解銅めつき膜 33とからなる厚さ 18 μ mの 導体回路 24 (バイァホール 27を含む)を形成した(図 11 (d)参照)。
[0402] (14)さらに、上記(5)の工程で用いたエッチング液と同様のエッチング液を用いて、 導体回路 24の表面に粗化面(図示せず)を形成し、次いで、上記(6)—上記(8)の 工程と同様にしてバイァホール用開口 26を有し、その表面に粗ィ匕面(図示せず)が 形成された絶縁層 22を積層形成した (図 12 (a)参照)。
[0403] (15)次に、上記(9)の工程で用いた方法と同様の方法で、絶縁層 22 (バイァホール 用開口 26の内壁面を含む)の表面に触媒を付与し、さらに、上記(10)の工程で用い た無電解めつき液と同様の無電解銅めつき水溶液中に、基板を浸漬し、絶縁層 22の 表面 (バイァホール用開口 26の内壁面を含む)に薄膜導体層(無電解銅めつき膜) 3 2を形成した (図 12 (b)参照)。
[0404] (16)次に、上記(11)の工程で用いた方法と同様の方法で、めっきレジスト 23を設け 、さらに、上記(12)の工程で用いた方法と同様の方法で、めっきレジスト 23非形成 部に、厚さ 20 μ mの電解銅めつき膜 33を形成した(図 12 (c)参照)。
[0405] (17)次に、上記(13)の工程で用いた方法と同様の方法で、めっきレジスト 23の剥 離と、めっきレジスト 23下の薄膜導体層の除去とを行い、導体回路 24 (バイァホール 27を含む)を形成した。 さらに、上記 (2)の工程で用いた方法と同様の方法で、酸化還元処理を行い、導体 回路 24の表面を粗ィ匕面(図示せず)とした。
その後、ドリル加工により、基板 21および絶縁層 22を貫通する光路用貫通孔 31 (平 面視形状が角部円弧の長方形 (縦 240 /z mX横 lOOO /z m) )を形成し、さらに、光路 用貫通孔 31の壁面にデスミア処理を施した(図 12 (d)参照)。この場合、一括貫通孔 構造の光路用貫通孔 31が形成されることとなる。
[0406] (18)次に、榭脂を印刷機の穴埋めマスク上に載せて、スクリーン印刷を行うことによ り光路用貫通孔 31内に榭脂を充填した後、 120°Cで 1時間および 150°Cで 1時間の 条件で硬化処理を施し、その後、光路用貫通孔 31内から飛び出している榭脂を、 # 3000研磨紙を用いて研磨し、さらに、 0. 05 mのアルミナ粒子を用いて研磨して表 面を平坦ィ匕することにより、榭脂組成物層 47を形成した。
この工程で榭脂としては、エポキシ榭脂(透過率 91%Zmm、 CTE82ppm)に 0. 1 一 0. 8 mの粒度分布を有する粉砕シリカを 40重量%添カ卩して、透過率 82%Zm m、 CTE42ppmとし、粘度を 200000cpsに調整したをものを用いた。
なお、このエポキシ榭脂の硬化後の屈折率は、 1. 50である。
[0407] (19)次に、ジエチレングリコールジメチルエーテル(DMDG)に 60重量0 /0の濃度に なるように溶解させた、クレゾ一ルノボラック型エポキシ榭脂(日本化薬社製)のェポ キシ基 50%をアクリルィ匕した感光性付与のオリゴマー(分子量: 4000) 46. 67重量 部、メチルェチルケトンに溶解させた 80重量%のビスフエノール A型エポキシ榭脂( 油化シェル社製、商品名:ェピコート 1001) 15. 0重量部、イミダゾール硬化剤(四国 化成社製、商品名: 2E4MZ— CN) 1. 6重量部、感光性モノマーである 2官能アタリ ルモノマー(日本ィ匕薬社製、商品名: R604) 4. 5重量部、同じく多価アクリルモノマ 一 (共栄化学社製、商品名: DPE6A) 1. 5重量部、分散系消泡剤 (サンノプコ社製、 S-65) 0. 71重量部を容器にとり、攪拌、混合して混合組成物を調製し、この混合組 成物に対して光重合開始剤としてベンゾフヱノン(関東ィ匕学社製) 2. 0重量部、光増 感剤としてのミヒラーケトン(関東ィ匕学社製) 0. 2重量部、を加えることにより、粘度を 2 5°Cで 2. OPa · sに調整したソルダーレジスト組成物を得た。
なお、粘度測定は、 B型粘度計 (東京計器社製、 DVL— B型)で 60min— ^rpm)の場 合はローター No. 4、 6min (rpm)の場合はローター No. 3によった。
[0408] (20)次に、榭脂組成物層 42aを形成した基板の両面に、上記ソルダーレジスト組成 物を 30 mの厚さで塗布し、 70°Cで 20分間、 70°Cで 30分間の条件で乾燥処理を 行い、ソルダーレジスト組成物の層 34' を形成した(図 13 (a)参照)。
[0409] (21)次いで、半田バンプ形成用開口および光路用開口のパターンが描画された厚 さ 5mmのフォトマスクを ICチップ実装側のソルダーレジスト糸且成物の層 34' に密着 させて lOOOmjZcm2の紫外線で露光し、 DMTG溶液で現像処理し、開口を形成し た。なお、ここで形成した光路用開口の断面の径は、上記(14)の工程で形成した光 路用貫通孔の断面の径と同一である。
さらに、 80°Cで 1時間、 100°Cで 1時間、 120°Cで 1時間、 150°Cで 3時間の条件で それぞれ加熱処理を行ってソルダーレジスト組成物の層を硬化させ、半田バンプ形 成用開口 48、および、光路用開口 31bを有し、その厚さが 20 mのソルダーレジスト 層 34を形成した(図 13 (b)参照)。
また、上記ソルダーレジスト組成物としては、巿販のソルダーレジスト組成物を使用す ることちでさる。
[0410] (22)次に、上記(21)の工程で形成した光路用開口内に、上記(18)の工程で充填 したエポキシ榭脂と同様の榭脂をスクリーン印刷により充填し、硬化処理を施した後、 研磨処理を施すことによりその表面を平坦ィ匕し、榭脂組成物層 47を形成し、光信号 通過領域 42とした( 13 (c)参照)。
[0411] (23)次に、ソルダーレジスト層 34を形成した基板を、塩化ニッケル(2. 3 X 10_1mol ZD、次亜リン酸ナトリウム(2. 8 X 10—丄!!^丄 丄)、タエン酸ナトリウム(1. 6 X 10_1mol ZDを含む ρΗ=4. 5の無電解ニッケルめっき液に 20分間浸漬して、半田バンプ形 成用開口 48に厚さ 5 mのニッケルめっき層を形成した。さらに、その基板をシアン 化金カリウム(7. 6 X 10— 3molZD、塩化アンモ-ゥム(1. 9 X 10—molZD、タエン 酸ナトリウム(1. 2 X 10—molZD、次亜リン酸ナトリウム(1. 7 X 10—molZDを含む 無電解金めつき液に 80°Cの条件で 7. 5分間浸漬して、ニッケルめっき層上に、厚さ 0. 03 /z mの金めつき層を形成し、半田パッド 36とした。
[0412] (24)次に、光信号通過領域 42に形成された榭脂組成物層 47の光学素子を実装す る側と反対側の端部にインクジェット装置を用いて、下記の方法によりマイクロレンズ 4 6a— 46dを配設した(図 14 (a)参照)。
即ち、 UV硬化型エポキシ系榭脂 (透過率 94%Zmm、屈折率 1. 53)を室温(25°C )で、粘度 20cpsに調製した後、この榭脂をインクジヨット装置の榭脂容器内で、温度 40°C、粘度は 8cpsに調製し、その後、榭脂組成物層 47の端部の所定の位置に塗 布し、さら〖こ、 UV光(500mWZ分)を照射させて榭脂を硬化させることにより、直径 2 20 μ m、サグ高さ 9 μ mのマイクロレンズ 46a— 46dを配設した。
なお、本工程は、上記(23)の工程の前に行うこととしてもよい。
[0413] (25)次に、ソルダーレジスト層 34に形成した半田バンプ形成用開口 47に半田ぺー ストを印刷し、さらに、発光素子 38の発光部 38aの位置合わせを行いながら取り付け 、 200°Cでリフローすることにより、発光素子 38を実装するとともに、半田バンプ形成 用開口 48に半田バンプ 37を形成した。
その後、エポキシ系榭脂(透過率 90%Zmm、 CTE73ppm)に 0. 1— 0. 8 mの粒 度分布の粉砕シリカを 60重量%添カ卩して、透過率 80%Zmm、 CTE30ppm、粘度 50cpsに調整したアンダーフィル用榭脂を調製した後、このアンダーフィル用榭脂を 発光素子の周囲に塗布し、発光素子とソルダーレジスト層とのギャップ(50 m)に放 置浸透させ、さらに、このアンダーフィル用榭脂を 120°Cで 1時間および 150°Cで 2時 間の条件で硬化させることにより、屈折率 1. 50のアンダーフィルを形成した。
このような工程を経ることにより ICチップ実装用基板を得た(図 14 (b)参照)。
[0414] なお、本実施例では、発光素子 38として、フリップチップ型 VCSEL (ULM Photo nics社製)を用いた。そして、この発光素子をピッチ 250 mの 4チャンネルアレイ素 子として使用した。
なお、本実施例で製造した ICチップ実装用基板では、光信号通過領域の基板、絶 縁層およびソルダーレジスト層を貫通する部分は榭脂組成物が充填されている。
[0415] また、本実施例の ICチップ実装用基板を製造する際には、下記の工程を経て ICチッ プ実装用基板を製造してもよ ヽ。
即ち、上記(15)の工程で薄膜導体層を形成した後、この薄膜導体層上に、めっきレ ジストを形成することなぐ上記(16)の工程と同様の方法で、ベタの電解めつき層を 形成し、この状態で薄膜導体層および電解めつき層をも貫通するように、上記(17)、 (18)の工程と同様にして光路用貫通孔の形成ならびに榭脂組成物の充填、硬化お よび研磨を行い、その後、薄膜導体層および電解めつき層にエッチング処理を施す ことにより、導体回路を形成し、さら〖こ、(19)以降の工程を行うことにより、 ICチップ実 装用基板を製造してもよい。
[0416] (実施例 2)
実施例 1の(24)の工程において、榭脂組成物層 47の端部にマイクロレンズを配設 する際に、実施例 1で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕形 状のシリカ粒子を 20重量%配合したもの(透過率 84%Zmm)を用いた以外は、実 施例 1と同様にして ICチップ実装用基板を得た。
[0417] (実施例 3)
実施例 1の(24)の工程において、榭脂組成物層 47の端部にマイクロレンズを配設 する際に、実施例 1で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕形 状のシリカ粒子を 40重量%配合したもの(透過率 82%Zmm)を用いた以外は、実 施例 1と同様にして ICチップ実装用基板を得た。
[0418] (実施例 4)
実施例 1の(24)の工程において、榭脂組成物層 47の端部にマイクロレンズを配設 する際に、実施例 1で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕形 状のシリカ粒子を 50重量%配合したもの(透過率 82%Zmm)を用いた以外は、実 施例 1と同様にして ICチップ実装用基板を得た。
[0419] (実施例 5)
実施例 1の(24)の工程において、榭脂組成物層 47の端部にマイクロレンズを配設 する際に、実施例 1で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕形 状のシリカ粒子を 60重量%配合したもの(透過率 82%Zmm)を用いた以外は、実 施例 1と同様にして ICチップ実装用基板を得た。
[0420] (実施例 6)
実施例 1の(24)の工程において、榭脂組成物層 47の端部にマイクロレンズを配設 する際に、実施例 1で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕形 状のシリカ粒子を 70重量%配合したもの(透過率 81%Zmm)を用いた以外は、実 施例 1と同様にして ICチップ実装用基板を得た。
[0421] (実施例 7— 12)
実施例 1一 7のそれぞれにおいて、インクジェット装置の代えて、ディスペンサーを用 いてマイクロレンズを配設した以外は、実施例 1一 7のそれぞれと同様にして ICチッ プ実装用基板を得た。なお、ディスペンサーを用いる場合には、榭脂を粘度 20cps のまま用いた。
[0422] (実施例 13)
実施例 1の(24)の工程においてマイクロレンズを配設する際に、下記の方法により、 光信号通過領域の端部に接着層を介して 4つのレンズを有するマイクロレンズアレイ を配設した以外は実施例 1と同様にして ICチップ実装用基板を得た。
まず、エポキシ系榭脂(透過率 91%Zmm、 CTE72ppm)をマイクロレンズアレイ形 状に切削加工した金型に流し込み、 120°Cで 1時間、および、 150°Cで 2時間の硬化 処理を施した後、硬化した榭脂を金型から外すことにより、マイクロレンズアレイを作 製した。
[0423] 次に、マイクロレンズアレイを配設する光信号通過領域の端部に、接着剤として、ェ ポキシ系榭脂(粘度 500cps、屈折率 1. 45—1. 55、透過率 91%Zmm、 CTE70p pm)をディスペンサーを用いて塗布した。
さらに、マイクロレンズアレイに保護テープを張り、フリップチップ装置の吸引ノス、ノレで 吸着し、 10 m以下の精度で基板上のァライメントマークを用いて搭載した。さらに、 120°C、 10分間の条件で接着剤を硬化した。
なお、接着剤の厚さは約 10 mとした。
また、本実施例では、マイクロレンズアレイに保護テープを張り付けた後、配設してい るが、保護テープを張り付けることなぐマイクロレンズアレイをフリップチップ装置の チャックで挟み、酉己設してもよい。
[0424] (実施例 14)
実施例 1の(17)の工程において、光路用貫通孔を形成する際に、直径 150 /z mのド リルを用い、 250 /z mピッチで 4つの光路用貫通孔を形成した以外は、実施例 1と同 様にして ICチップ実装用基板を得た。本実施例で製造した ICチップ実装用基板で は、個別貫通孔形状の光信号通過領域が形成されることとなる。
なお、本実施例では、直径 150 mのドリルを用いて光路用貫通孔を形成している 1S 通常、直径 100— 400 m程度のドリルを用いればよい。具体的には、例えば、 直径 300 mのドリルを用いて 500 mピッチの個別貫通孔を形成してもよい。
[0425] (実施例 15)
実施例 1の(17)の工程において、光路用貫通孔を形成する際に、直径 300 /z mのド リルを用い、 250 mピッチで光路用貫通孔を 5個形成した以外は、実施例 1と同様 にして ICチップ実装用基板を得た。本実施例で製造した ICチップ実装用基板では、 互いに隣り合う円柱の側面の一部が繋がった形状で、その一部にダミー円柱が形成 された一括貫通孔形状の光信号通過領域が形成されることとなる。なお、ここで、光 路用貫通孔は、図 20 (a)に示した順序で形成した。
[0426] (実施例 16)
まず、実施例 1の(1)一(17)の工程と同様 (ドリル加工の工程を除く)にして、基板の 両面に導体回路と絶縁層とを積層形成した後、ドリル加工を行うことにより、 2層の絶 縁層を貫通する光路用凹部を形成した。
[0427] 次に、光路用凹部の底面に露出した導体回路の表面に、実施例 1の(23)の工程と 同様にして、ニッケルめっき層と金めつき層とを形成し、その後、発光素子と ICチップ とを光路用凹部の底面にワイヤボンディングにより実装した。
[0428] 次に、実施例 1の(18)の工程で用いた榭脂組成物と同様のエポキシ榭脂を含む榭 脂組成物を、スキージを用いて光路用凹部内に充填し、乾燥させた後、パフ研磨に よりその表層を平坦化した。さらに、硬化処理を施して榭脂組成物層を形成した。
[0429] 次に、実施例 1の(19)一(22)の工程と同様にして、半田バンプ形成用開口と光路 用凹部に連通した光路用開口とが形成されたソルダーレジスト組成物の層を形成し、 さらに、光路用開口内に榭脂組成物を充填することにより、光信号通過領域形成した
[0430] 次に、光信号通過領域に形成された榭脂組成物層の露出した側の端部にインクジ ット装置を用いて、下記の方法によりマイクロレンズを配設した。なお、マイクロレンズ の形成は、実施例 1の(24)の工程と同様の方法を用いて行った。
その後、実施例 1の(25)の工程と同様の方法を用いて、半田バンプ形成用開口に 半田バンプを形成し、 ICチップ実装用基板を得た。
[0431] このようにして得られた実施例 1一 16の ICチップ実装用基板について、 ICチップの 実装と榭脂封止とを行い、さらに、 ICチップ実装用基板の光信号通過領域の発光素 子実装側と反対側の端部に検出器を取り付け、発光素子から 2. 5Gbpsの光信号を 発信し、検出器で光信号を検出したところ、所望の光信号を検出することができた。 従って、本実施例で製造した ICチップ実装用基板では、光信号通過領域およびマイ クロレンズを介して確実に光信号を伝送することができることが明ら力となった。
[0432] また、実施例 1一 12に係る ICチップ実装用基板について、マイクロレンズを配設する 際の樹脂の塗布性について検討したところ、実施例 1一 4および実施例 7— 11に係 る ICチップ実装用基板では、榭脂の塗布量にバラツキが少なぐ所望の形状のマイ クロレンズを配設することができ、実施例 5、 6および 12に係る ICチップ実装用基板で は、榭脂の塗布量に若干のバラツキがあったものの、マイクロレンズとして使用するこ とができるものを配設することができた。
[0433] また、実施例 1一 16に係る ICチップ実装用基板について、— 55°Cで 3分間、 125°C で 3分間を 1サイクルとする液相温度サイクル試験を、それぞれの ICチップ実装用基 板【こつ 、て、 250サイクノレ、 500サイクノレ、および、 1000サイクノレ行った。
その後、 ICチップ実装用基板をクロスカットし、マイクロレンズ、光信号通過領域を含 む ICチップ実装用基板内でのクラックの発生を観察したところ ICチップ実装用基板 の!、ずれの箇所にお!ヽてもクラックは発生して 、なかった。
[0434] さらに、実施例 1一 16に係る ICチップ実装用基板について、計 5回のリフロー処理を 施し、各回のリフロー処理後におけるマイクロレンズでのクラックの発生の有無を観察 した。その結果、いずれの条件においてもクラックの発生は観察されな力つた。
なお、リフロー処理は、 Pb半田の実装を想定して、ピーク温度 260°C、 220°Cオーバ 一タイム 30秒以内、余熱温度 170— 200°Cで 1分以上の温度プロファイルで行った
[0435] また、マイクロレンズに粒子を配合した場合のマイクロレンズの伝送損失に対するリフ ロー処理の影響を確認すベぐ下記の試験を行った。
[0436] (試験例 1一 7)
実施例 1にお 、てマイクロレンズを配設するために用いたエポキシ榭脂と同様のェポ キシ榭脂に、実施例 1でも配合した粒度分布 0. 1-0. 8 mの粉砕形状のシリカを 表 2に示す配合量 (重量%)で配合して透過率測定サンプルを作成しマイクロレンズ の透過率に対するリフロー回数の影響を評価した。結果を表 2に示した。
なお、透過率測定サンプルは、縦 10mm X横 10mm X高さ 100 mで作製し、分光 光度計 (島津製作所社製、 UV-3101PC)を用いて測定した。
[0437] [表 2]
回 前粒子回リリ回リリ回フフ 3フロ 2ロ Tロフ 4ーーー I c c
)/o/ uuio
重量 ( ( ( ()) ()))//%/%%%/%mmmmmmmm
試験例 1
卜 in
試験例 2
試験例 3
試験例 4
試験例 5 試験例 7 回へ
to
ο in O o o o o
<o
Figure imgf000118_0001
表 2に示した結果から、リフロー処理を施すことにより、透過率は若干低下するものの 、リフロー処理を複数回繰り返しても透過率は、殆ど変化しないことが明ら力となった
(実施例 17)
A.絶縁層用榭脂フィルムの作製
実施例 1の Aの工程と同様にして絶縁層用榭脂フィルムを作製した。 [0440] B.貫通孔充填用榭脂組成物の調製
実施例 1の Bの工程と同様にして貫通孔充填用榭脂組成物を調整した。
[0441] C.マザ一ボード用基板の製造
(1)厚さ 0. 7mmのガラスエポキシ榭脂または BT (ビスマレイミドトリアジン)榭脂から なる絶縁性基板 71の両面に 18 mの銅箔 78がラミネートされている銅張積層板を 出発材料とした(図 15 (a)参照)。まず、この銅張積層板をドリル削孔し、無電解めつ き処理を施し、パターン状にエッチングすることにより、基板 71の両面に導体回路 74 とスルーホール 79とを形成した。
[0442] (2)スルーホール 79と導体回路 74とを形成した基板を水洗いし、乾燥した後、 NaO H (10gZD、NaClO (40g/l) , Na ΡΟ (6gZDを含む水溶液を黒ィ匕浴 (酸ィ匕浴)
2 3 4
とする黒化処理、および、 NaOH (10gZD、 NaBH
4 (6gZDを含む水溶液を還元浴 とする還元処理を行、、スルーホール 79を含む導体回路 74の表面に粗ィ匕面(図示 せず)を形成した (図 15 (b)参照)。
[0443] (3)上記 Bに記載した榭脂充填材を調製した後、下記の方法により調製後 24時間以 内に、スルーホール 79内および基板 71の片面の導体回路非形成部と導体回路 74 の外縁部とに榭脂充填材 80' の層を形成した。
即ち、まず、スキージを用いてスルーホール内に榭脂充填材を押し込んだ後、 100 °C、 20分の条件で乾燥させた。次に、導体回路非形成部に相当する部分が開口し たマスクを基板上に載置し、スキージを用いて凹部となっている導体回路非形成部 にも榭脂充填材を充填し、 100°C、 20分の条件で乾燥させることにより榭脂充填材 8 0' の層を形成した(図 15 (c)参照)。
[0444] (4)上記(3)の処理を終えた基板の片面を、 # 600のベルト研磨紙 (三共理化学社 製)を用いたベルトサンダー研磨により、導体回路 74の表面やスルーホール 79のラ ンド表面に榭脂充填材 80' が残らないように研磨し、次いで、上記ベルトサンダー 研磨による傷を取り除くためのパフ研磨を行った。このような一連の研磨を基板の他 方の面についても同様に行った。
次いで、 100°Cで 1時間、 120°Cで 3時間、 150°Cで 1時間、 180°Cで 7時間の加熱 処理を行って榭脂充填材層 80を形成した。 [0445] このようにして、スルーホール 79や導体回路非形成部に形成された榭脂充填材 80 の表層部および導体回路 74の表面を平坦化し、榭脂充填材 80と導体回路 74の側 面とが粗ィ匕面(図示せず)を介して強固に密着し、また、スルーホール 79の内壁面と 榭脂充填材 80とが粗ィ匕面(図示せず)を介して強固に密着した絶縁性基板を得た( 図 15 (d)参照)。この工程により、榭脂充填材層 80の表面と導体回路 74の表面とが 同一平面となる。
[0446] (5)上記基板を水洗、酸性脱脂した後、ソフトエッチングし、次 、で、エッチング液を 基板の両面にスプレイで吹き付けて、導体回路 74の表面とスルーホール 79のランド 表面と内壁とをエッチングすることにより、導体回路 74の全表面に粗ィ匕面(図示せず )を形成した。エッチング液として、イミダゾール銅 (Π)錯体 10重量部、グリコール酸 7 重量部、塩ィ匕カリウム 5重量部を含むエッチング液 (メック社製、メックエッチボンド)を 使用した。
[0447] (6)次に、上記 Aで作製した基板より少し大きめの絶縁層用榭脂フィルムを基板上に 載置し、圧力 0. 4MPa、温度 80°C、圧着時間 10秒の条件で仮圧着して裁断した後 、さらに、以下の方法により真空ラミネータ装置を用いて貼り付けることにより絶縁層 7 2を形成した (図 15 (e)参照)。
即ち、絶縁層用榭脂フィルムを基板上に、真空度 65Pa、圧力 0. 4MPa、温度 80°C 、時間 60秒の条件で本圧着し、その後、 170°Cで 30分間熱硬化させた。
[0448] (7)次に、絶縁層 72上に、厚さ 1. 2mmの貫通孔が形成されたマスクを介して、波長 10. 4 μ m( COガスレーザにて、ビーム径 4. Omm、トップハットモード、パルス幅 8
2
. 0 μ \マスクの貫通孔の径 1. Omm、 1ショッ卜の条件で絶縁層 72に、直径 80 mのバイァホーノレ用開口 76を形成した(図 15 (f)参照)。
[0449] (8)バイァホール用開口 76を形成した基板を、 60gZlの過マンガン酸を含む 80°C の溶液に 10分間浸漬し、絶縁層 72の表面に存在するエポキシ榭脂粒子を溶解除 去することにより、バイァホール用開口 76の内壁面を含むその表面に粗ィ匕面(図示 せず)を形成した。
[0450] (9)次に、上記処理を終えた基板を、中和溶液 (シプレイ社製)に浸漬して力も水洗 いした。 さらに、粗面化処理 (粗ィ匕深さ 3 m)した該基板の表面に、パラジウム触媒を付与す ることにより、絶縁層 72の表面 (バイァホール用開口 76の内壁面を含む)に触媒核を 付着させた (図示せず)。即ち、上記基板を塩化パラジウム (PdCl )と塩ィ匕第一スズ(
2
SnCl )とを含む触媒液中に浸漬し、パラジウム金属を析出させることにより触媒を付
2
与した。
[0451] (10)次に、以下の組成の無電解銅めつき水溶液中に、基板を浸漬し、絶縁層 72の 表面 (バイァホール用開口 76の内壁面を含む)に厚さ 0. 6-3. O /z mの薄膜導体層 (無電解銅めつき膜) 72を形成した(図 16 (a)参照)。
〔無電解めつき水溶液〕
NiSO 0. 003 mol/1
4
酒石酸 0. 200 mol/1
硫酸銅 0. 030 mol/1
HCHO 0. 050 mol/1
NaOH 0. 100 mol/1
a a ' —ビビリジル 100 mg/1
ポリエチレングリコール(PEG) 0. 10 g/1
〔無電解めつき条件〕
30°Cの液温度で 40分
[0452] (11)次に、薄膜導体層(無電解銅めつき膜) 82が形成された基板に市販の感光性ド ライフイルムを張り付け、マスクを載置して、 lOOmjZcm2で露光し、 0. 8%炭酸ナト リウム水溶液で現像処理することにより、厚さ 20 mのめつきレジスト 73を設けた(図 16 (b)参照)。
[0453] (12)ついで、基板を 50°Cの水で洗浄して脱脂し、 25°Cの水で水洗後、さらに硫酸 で洗浄してから、以下の条件で電解めつきを施し、めっきレジスト 73非形成部に、厚 さ 20 mの電解銅めつき膜 83を形成した(図 16 (c)参照)。
〔電解めつき液〕
硫酸 2. 24 mol/1
硫酸銅 0. 26 mol/1 添加剤 19. 5 ml/1
(アトテックジャパン社製、カバラシド HL)
〔電解めつき条件〕
電流密度 1 AZdm2
時間 65 分
温度 22 ± 2 °C
[0454] (13)さらに、めっきレジスト 73を 5%NaOHで剥離除去した後、そのめつきレジスト 7 3下の薄膜導体層を硫酸と過酸ィ匕水素との混合液でエッチング処理して溶解除去し 、薄膜導体層(無電解銅めつき膜) 82と電解銅めつき膜 83とからなる厚さ 18 μ mの 導体回路 74 (バイァホール 77を含む)を形成した(図 16 (d)参照)。
[0455] (14)さらに、上記(5)の工程で用いたエッチング液と同様のエッチング液を用いて、 導体回路 74の表面に粗化面(図示せず)を形成し、次いで、上記(6)—上記(8)の 工程と同様にしてバイァホール用開口 76を有し、その表面に粗ィ匕面(図示せず)が 形成された絶縁層 72を積層形成した。
[0456] (15)次に、上記(9)の工程で用いた方法と同様の方法で、絶縁層 72 (バイァホール 用開口 76の内壁面を含む)の表面に触媒を付与し、さらに、上記(10)の工程で用い た無電解めつき液と同様の無電解銅めつき水溶液中に、基板を浸漬し、絶縁層 72の 表面 (バイァホール用開口 76の内壁面を含む)に薄膜導体層(無電解銅めつき膜) 8 2を形成した (図 17 (a)参照)。
[0457] (16)次に、上記(11)の工程で用いた方法と同様の方法で、めっきレジスト 73を設け 、さらに、上記(12)の工程で用いた方法と同様の方法で、めっきレジスト 73非形成 部に、厚さ 20 μ mの電解銅めつき膜 83を形成した(図 17 (b)参照)。
[0458] (17)次に、上記(13)の工程で用いた方法と同様の方法で、めっきレジスト 73の剥 離と、めっきレジスト 73下の薄膜導体層の除去とを行い、導体回路 74 (バイァホール 77を含む)を形成した ( 17 (c)参照)。
さらに、上記 (2)の工程で用いた方法と同様の方法で、酸化還元処理を行い、導体 回路 74の表面を粗ィ匕面(図示せず)とした。
[0459] その後、ドリル加工により、基板 71および絶縁層 72を貫通する光路用貫通孔 31 (平 面視形状が角部円弧の長方形 (縦 240 /z m X横 1000 /z m) )を形成し、さらに、光路 用貫通孔 81の壁面にデスミア処理を施した(図 17 (d)参照)。この場合、一括貫通孔 構造の光路用貫通孔 81が形成されることとなる。
[0460] (18)次に、榭脂を印刷機の穴埋めマスク上に載せて、スクリーン印刷を行うことによ り光路用貫通孔 81内に榭脂を充填した後、 120°Cで 1時間および 150°Cで 1時間の 条件で硬化処理を施し、その後、光路用貫通孔 81内から飛び出している榭脂を、 # 3000研磨紙を用いて研磨し、さらに、 0. 05 mのアルミナ粒子を用いて研磨して表 面を平坦ィ匕することにより、榭脂組成物層 97を形成した(図 18 (a)参照)。
この工程で榭脂としては、エポキシ榭脂(透過率 91%Zmm、 CTE82ppm)に 0. 1 一 0. 8 μ mの粒度分布を有する粉砕シリカを 40重量%して、透過率 82%Zmm、 C TE42ppmとし、粘度を 200000cpsに調整したをものを用いた。
なお、このエポキシ榭脂は、硬化後の屈折率は 1. 50である。
[0461] (19)次に、内部に榭脂組成物層 97が形成された光路用貫通孔 96の端部に、下記 の方法を用いて、 4つのコア 51a— 51dが並列に配設され光導波路 50を形成した。 まず、コア形成用榭脂としてアクリル系榭脂(屈折率 1. 52、透過率 94%Zmm、 CT E72ppm)を、クラッド形成用榭脂としてアクリル系榭脂(屈折率 1. 51、透過率 93% Zmm、 CTE70ppm)に、 0. 1-0. 8 μ mの粒度分布を有する粉砕シリカを 25重量 %添カ卩して透過率を 81%Zmm、 CTEを 53ppm、粘度を lOOOcpsとしたものを準 備し 7こ。
[0462] 次に、光路用貫通孔の端部に、スピンコータ(lOOOpmZlOsec)を用いてクラッド形 成用榭脂を塗布し、 80°Cで 10分間のプリベータ、 2000mJの露光処理、 150°Cで 1 時間のポストベータを行い、厚さ 50 mの下部クラッドを形成した(図 18 (b)参照)。 次に、下部クラッド 52上に、スピンコータ(1200pmZl0sec)を用いてコア形成用榭 脂を塗布し、 80°Cで 10分間のプリベータ、 lOOOmJの露光処理、 1%TMHを用いた ディップによる 2分間の現像処理、 150°Cで 1時間のポストベータを行い、幅 50 /z m X厚さ 50 /z mのコア 51a— 51dを形成した(図 18 (c)参照)。
次に、スピンコータ(lOOOpmZlOsec)を用いてクラッド形成用榭脂を塗布し、 80°C で 10分間のプリベータ、 2000iuJの露光処理、 150°Cで 1時間のポストベータを行い 、コア上での厚さが 50 /z mの上部クラッドを形成し、コア 51a— 51dとクラッド 52とから なる光導波路 50とした。
その後、光導波路 50の両端部に、 90度の # 3000ブレードを用いたダイシング加工 を施し、さらに、光路変換ミラー面に CrZAuの金属蒸着を行い、金属蒸着層からな る反射面を有する 90度光路変換ミラーを形成した。なお、このようにして形成した光 路変換ミラーでの伝送損失は 1. 2dBであった。
[0463] (20)次に、実施例 1の(19)の工程と同様にして、ソルダーレジスト組成物を調製し、 その後、基板の両面に、上記ソルダーレジスト組成物を 30 mの厚さで塗布し、 70 °Cで 20分間、 70°Cで 30分間の条件で乾燥処理を行い、ソルダーレジスト組成物の 層 84' を形成した(図 18 (d)参照)。
[0464] (21)次いで、半田バンプ形成用開口および光路用開口のパターンが描画された厚 さ 5mmのフォトマスクを光導波路 50が形成された側と反対側のソルダーレジスト組成 物の層 84' に密着させて lOOOmiZcm2の紫外線で露光し、 DMTG溶液で現像処 理し、開口を形成した。なお、ここで形成した光路用開口の断面の径は、上記(14) の工程で形成した光路用貫通孔の断面の径と同一である。
さらに、 80°Cで 1時間、 100°Cで 1時間、 120°Cで 1時間、 150°Cで 3時間の条件で それぞれ加熱処理を行ってソルダーレジスト組成物の層を硬化させ、半田バンプ形 成用開口 98、および、光路用開口 81bを有し、その厚さが、光導波路形成領域で 20 μ m、光導波路非形成領域で 170 mのソルダーレジスト層 84を形成した(図 19 (a )参照)
[0465] (22)次に、上記(21)の工程で形成した光路用開口内に、上記(18)の工程で充填 したエポキシ榭脂を含む榭脂組成物と同様の榭脂組成物をスクリーン印刷により充 填し、硬化処理を施した後、研磨処理を施すことによりその表面を平坦化し、榭脂組 成物層 97を形成し、光信号通過領域 92とした(19 (b)参照)。
[0466] (23)次に、ソルダーレジスト層 34を形成した基板を、塩化ニッケル (2. 3 X 10_1mol ZD、次亜リン酸ナトリウム(2. 8 X 10—丄!!^丄 丄)、タエン酸ナトリウム(1. 6 X 10_1mol ZDを含む ρΗ=4. 5の無電解ニッケルめっき液に 20分間浸漬して、半田バンプ形 成用開口 98に厚さ 5 μ mのニッケルめっき層を形成した。さらに、その基板をシアン 化金カリウム(7. 6 X 10 molZD、塩化アンモ-ゥム(1. 9 X 10 molZD、タエン 酸ナトリウム(1. 2 X 10—molZD、次亜リン酸ナトリウム(1. 7 X 10—molZDを含む 無電解金めつき液に 80°Cの条件で 7. 5分間浸漬して、ニッケルめっき層上に、厚さ 0. 03 /z mの金めつき層を形成し、半田パッド 86とした。
[0467] (24)次に、光信号通過領域 92に形成された榭脂組成物層 97の光導波路が形成さ れた側と反対側の端部にインクジェット装置を用いて、下記の方法によりマイクロレン ズ 96a— 96dを配設した。
即ち、 UV硬化型エポキシ系榭脂 (透過率 94%Zmm、屈折率 1. 53)を室温(25°C )で、粘度 20cpsに調製した後、この榭脂をインクジヨット装置の榭脂容器内で、温度 40°C、粘度は 8cpsに調製し、その後、榭脂組成物層 47の端部の所定の位置に塗 布し、さら〖こ、 UV光(500mWZ分)を照射させて榭脂を硬化させることにより、直径 2 20 μ m、サグ高さ 10 μ mのマイクロレンズ 96a— 96dを配設した。
[0468] (25)次に、ソルダーレジスト層 84に形成した半田バンプ形成用開口 98に半田ぺー ストを印刷し、半田バンプ 87を形成し、マザ一ボード用基板を得た(図 19 (c)参照)。
[0469] また、本実施例のマザ一ボード用基板には、下記の工程を経てマザ一ボード用基板 を製造してもよい。
即ち、上記(15)の工程で薄膜導体層を形成した後、この薄膜導体層上に、めっきレ ジストを形成することなぐ上記(16)の工程と同様の方法で、ベタの電解めつき層を 形成し、この状態で薄膜導体層および電解めつき層をも貫通するように、上記(17)、 (18)の工程と同様にして光路用貫通孔の形成ならびに榭脂組成物の充填、硬化お よび研磨を行い、その後、薄膜導体層および電解めつき層にエッチング処理を施す ことにより、導体回路を形成し、さらに、(19)以降の工程を行うことにより、マザ一ボー ド用基板を製造してもよい。
[0470] (実施例 18)
実施例 17の(24)の工程において、榭脂組成物層 97の端部にマイクロレンズを配設 する際に、実施例 17で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕 形状のシリカ粒子を 20重量%配合したもの(透過率 84%Zmm)を用いた以外は、 実施例 1と同様にしてマザ一ボード用基板を得た。 [0471] (実施例 19)
実施例 17の(24)の工程において、榭脂組成物層 97の端部にマイクロレンズを配設 する際に、実施例 17で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕 形状のシリカ粒子を 40重量%配合したもの(透過率 82%Zmm)を用いた以外は、 実施例 1と同様にしてマザ一ボード用基板を得た。
[0472] (実施例 20)
実施例 17の(24)の工程において、榭脂組成物層 97の端部にマイクロレンズを配設 する際に、実施例 17で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕 形状のシリカ粒子を 50重量%配合したもの(透過率 82%Zmm)を用いた以外は、 実施例 1と同様にしてマザ一ボード用基板を得た。
[0473] (実施例 21)
実施例 17の(24)の工程において、榭脂組成物層 97の端部にマイクロレンズを配設 する際に、実施例 17で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕 形状のシリカ粒子を 60重量%配合したもの(透過率 82%Zmm)を用いた以外は、 実施例 1と同様にしてマザ一ボード用基板を得た。
[0474] (実施例 22)
実施例 17の(24)の工程において、榭脂組成物層 97の端部にマイクロレンズを配設 する際に、実施例 17で使用したエポキシ系榭脂に粒度分布 0. 1-0. 8 mの破砕 形状のシリカ粒子を 70重量%配合したもの(透過率 82%Zmm)を用いた以外は、 実施例 1と同様にしてマザ一ボード用基板を得た。
[0475] (実施例 23)
実施例 17の(24)の工程においてマイクロレンズを配設する際に、下記の方法により
、光信号通過領域の端部に接着層を介して 4つのレンズを有するマイクロレンズァレ ィを配設した以外は実施例 17と同様にしてマザ一ボード用基板を得た。
まず、エポキシ系榭脂(透過率 91%Zmm、 CTE72ppm)をマイクロレンズアレイ形 状に切削加工した金型に流し込み、 120°Cで 1時間、および、 150°Cで 2時間の硬化 処理を施した後、硬化した榭脂を金型から外すことにより、マイクロレンズアレイを作 製した。 [0476] 次に、マイクロレンズアレイを配設する光信号通過領域の端部に、接着剤として、ェ ポキシ系榭脂(粘度 500cps、屈折率 1. 45—1. 55、透過率 91%Zmm、 CTE70p pm)をディスペンサーを用いて塗布した。
さらに、マイクロレンズアレイに保護テープを張り、フリップチップ装置の吸引ノス、ノレで 吸着し、 10 m以下の精度で基板上のァライメントマークを用いて搭載した。さらに、 120°C、 10分間の条件で接着剤を硬化した。
なお、接着剤の厚さは約 5 μ mとした。
[0477] (実施例 24)
実施例 17の(17)の工程において、光路用貫通孔を形成する際に、直径 150 /z mの ドリルを用い、 250 mピッチで 4つの光路用貫通孔を形成した以外は、実施例 17と 同様にしてマザ一ボード用基板を得た。本実施例で製造したマザ一ボード用基板で は、個別貫通孔形状の光信号通過領域が形成されることとなる。
[0478] (実施例 25)
実施例 17の(17)の工程において、光路用貫通孔を形成する際に、直径 300 /z mの ドリルを用い、 250 mピッチで光路用貫通孔を 5個形成した以外は、実施例 17と同 様にしてマザ一ボード用基板を得た。本実施例で製造したマザ一ボード用基板では 、互いに隣り合う円柱の側面の一部が繋がった形状で、その一部にダミー円柱が形 成された一括貫通孔形状の光信号通過領域が形成されることとなる。なお、ここで、 光路用貫通孔は、図 20 (a)に示した順序で形成した。
[0479] このようにして得られた実施例 17— 25のマザ一ボード用基板では、光導波路の両端 のそれぞれに光学的に接続された光信号通過領域が形成されていることとなる。 そこで、一方の光信号通過領域の光導波路と接続された側と反対側の端部に、光信 号を導入することができるように光ファイバを取り付け、他方の光信号通過領域の光 導波路と接続された側と反対側の端部に検出器を取り付け、その後、光ファイバを介 して 2. 5Gbpsの光信号を送り、検出器で光信号を検出したところ、所望の光信号を 検出することができた。
従って、本実施例で製造したマザ一ボード用基板では、光導波路、光信号通過領域 およびマイクロレンズを介して確実に光信号を伝送することができることが明ら力とな つた o
[0480] また、実施例 17— 22に係るマザ一ボード用基板について、マイクロレンズを配設す る際の樹脂の塗布性について検討したところ、実施例 17— 20に係るマザ一ボード用 基板では、榭脂の塗布量にバラツキが少なぐ所望の形状のマイクロレンズを配設す ることができ、実施例 21、 22に係るマザ一ボード用基板では、榭脂の塗布量に若干 のバラツキがあったものの、マイクロレンズとして使用することができるものを配設する ことができた。
[0481] また、実施例 17— 25に係るマザ一ボード用基板について、— 55°Cで 3分間、 125°C で 3分間を 1サイクルとする液相温度サイクル試験を、それぞれの ICチップ実装用基 板【こつ 、て、 250サイクノレ、 500サイクノレ、および、 1000サイクノレ行った。
その後、マザ一ボード用基板をクロスカットし、マイクロレンズ、光信号通過領域およ び光導波路を含むマザ一ボード用基板内でのクラックの発生を観察したところマザ一 ボード用基板の 、ずれの箇所にぉ ヽてもクラックは発生して 、なかった。
[0482] さらに、実施例 17— 25に係るマザ一ボード用基板について、計 5回のリフロー処理 を施し、各回のリフロー処理後におけるマイクロレンズでのクラックの発生の有無を観 察した。その結果、いずれの条件においてもクラックの発生は観察されな力つた。 なお、リフロー処理は、 ICチップ実装用基板を評価する際の条件と同様の条件で行 つた o
[0483] (実施例 26)
実施例 1と同様の方法を用 、て製造した ICチップ実装用基板に ICチップを実装し、 その後榭脂封止を行!ヽ、発光素子を実装した ICチップ実装基板を得た。
また、発光素子に代えて受光素子を実装し、直径 220 m、サグ高さ 11 mのマイク 口レンズを配設した以外は、実施例 1と同様の方法を用いて ICチップ実装用基板を 製造し、その後、 ICチップの実装と榭脂封止とを行うことにより受光素子を実装した I Cチップ実装基板を得た。ここで、受光素子としては、フリップチップ型 PD (Microse mi社製)を、ピッチ 250 μ mの 4チャンネルアレイ素子として使用した。
また、実施例 17と同様の方法を用いて、マザ一ボード用基板を製造した。
[0484] 次に、発光素子を実装した ICチップ実装基板と、受光素子を実装した ICチップ実装 用基板とのそれぞれを、マザ一ボード用基板の所定の位置に対向配置させ、ピーク 温度 230°Cでリフローすることにより両基板の半田バンプ同士を接続して半田接続部 (SnZPb共晶半田)を形成した。ここで、マザ一ボード用基板の上面と、 ICチップ実 装用基板の下面とのギャップが 300 mとなるように実装した。
その後、それぞれの ICチップ実装基板の周囲にアンダーフィル用榭脂を塗布し、 12 0°Cで 1時間および 150°Cで 2時間の硬化処理を行うことにより、 ICチップ実装基板 の外周部のみを榭脂封止し、光通信用デバイスを得た (図 8参照)。
[0485] (実施例 27)
実施例 14と同様の方法を用いて製造した ICチップ実装用基板に ICチップを実装し 、その後榭脂封止を行い、発光素子を実装した ICチップ実装基板を得た。
また、発光素子に代えて受光素子を実装した以外は、実施例 14と同様の方法を用 いて ICチップ実装用基板を製造し、その後、 ICチップの実装と榭脂封止とを行うこと により受光素子を実装した ICチップ実装基板を得た。なお、この受光素子を実装した ICチップ実装基板を製造するに際して、その直径が 220 mのマイクロレンズは、そ のサグ高さが 11 mとなるように調整した。また、受光素子としては、フリップチップ型 PD (Microsemi社製)を、ピッチ 250 μ mの 4チャンネルアレイ素子として使用した。 また、実施例 17と同様の方法を用いて、マザ一ボード用基板を製造した。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。
[0486] (実施例 28)
実施例 16と同様の方法を用いて、発光素子を実装した ICチップ実装基板を得た。 また、発光素子に代えて受光素子を実装した以外は、実施例 16と同様の方法を用 いて ICチップ実装基板を得た。なお、この受光素子を実装した ICチップ実装基板を 製造するに際して、その直径が 220 mのマイクロレンズは、そのサグ高さが 11 m となるように調整した。また、受光素子としては、フリップチップ型 PD (Microsemi社 製)を、ピッチ 250 μ mの 4チャンネルアレイ素子として使用した。
また、実施例 17と同様の方法を用いて、マザ一ボード用基板を製造した。 次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。
[0487] (実施例 29)
実施例 1と同様の方法を用 、て製造した ICチップ実装用基板に ICチップを実装し、 その後榭脂封止を行!ヽ、発光素子を実装した ICチップ実装基板を得た。
また、発光素子に代えて受光素子を実装した以外は、実施例 1と同様の方法を用い て ICチップ実装用基板を製造し、その後、 ICチップの実装と榭脂封止とを行うことに より受光素子を実装した ICチップ実装基板を得た。なお、この受光素子を実装した I Cチップ実装基板を製造するに際して、その直径が 220 mのマイクロレンズは、そ のサグ高さが 11 mとなるように調整した。また、受光素子としては、フリップチップ型 PD (Microsemi社製)を、ピッチ 250 μ mの 4チャンネルアレイ素子として使用した。 また、実施例 24と同様の方法を用いて、マザ一ボード用基板を製造した。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。
[0488] (実施例 30)
実施例 14と同様の方法を用いて製造した ICチップ実装用基板に ICチップを実装し
、その後榭脂封止を行い、発光素子を実装した ICチップ実装基板を得た。
また、発光素子に代えて受光素子を実装した以外は、実施例 14と同様の方法を用 いて ICチップ実装用基板を製造し、その後、 ICチップの実装と榭脂封止とを行うこと により受光素子を実装した ICチップ実装基板を得た。なお、この受光素子を実装した
ICチップ実装基板を製造するに際して、その直径が 220 mのマイクロレンズは、そ のサグ高さが 11 mとなるように調整した。また、受光素子としては、フリップチップ型
PD (Microsemi社製)を、ピッチ 250 μ mの 4チャンネルアレイ素子として使用した。 また、実施例 24と同様の方法を用いて、マザ一ボード用基板を製造した。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。
[0489] (実施例 31)
実施例 16と同様の方法を用いて、発光素子を実装した ICチップ実装基板を得た。 また、発光素子に代えて受光素子を実装した以外は、実施例 16と同様の方法を用 いて ICチップ実装基板を得た。なお、この受光素子を実装した ICチップ実装基板を 製造するに際して、その直径が 220 mのマイクロレンズは、そのサグ高さが 11 m となるように調整した。また、受光素子としては、フリップチップ型 PD (Microsemi社 製)を、ピッチ 250 μ mの 4チャンネルアレイ素子として使用した。
また、実施例 24と同様の方法を用いて、マザ一ボード用基板を製造した。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。
[0490] (実施例 32)
実施例 1と略同様の方法を用いて、製造した ICチップ実装用基板に ICチップを実装 し、その後榭脂封止を行い、発光素子を実装した ICチップ実装基板を得た。ここで得 た ICチップ実装用基板は、基板、絶縁層およびソルダーレジスト層の合計厚さが 55 0 μ mであり、直径 220 μ m、サグ高さ 85 μ mのマイクロレンズが配設されている。ま た、光信号通過領域の断面形状は、 300 X 750 μ mの長方形の両側に半径 150 μ mの半円が付いた形状とした。なお、光路用貫通孔はルータ加工により形成した。 また、発光素子に代えて受光素子を実装した以外は、実施例 14と同様の方法を用 いて ICチップ実装用基板を製造し、その後、 ICチップの実装と榭脂封止とを行うこと により受光素子を実装した ICチップ実装基板を得た。ここで得た ICチップ実装用基 板は、基板、絶縁層およびソルダーレジスト層の合計厚さが 1950 mであり、直径 2 20 μ m、サグ高さ 75 μ mのマイクロレンズが配設されている。また、受光素子として は、フリップチップ型 PD (Microsemi社製)を、ピッチ 250 μ mの 4チャンネルアレイ 素子として使用した。また、光信号通過領域の断面形状は、 300 X 750 mの長方 形の両側に半径 150 mの半円が付いた形状とした。なお、光路用貫通孔はルータ 加工により形成した。 [0491] また、光導波路の形成位置を変え、光信号通過領域を形成しなかった以外は、実施 例 17と同様の方法を用いてマザ一ボード用基板を製造した。具体的には、基板の両 面に導体回路と絶縁層とを形成した後、光路変換ミラーの形成された光導波路フィ ルムを ICチップ実装用基板を実装する側の最外層の絶縁層上に張り付けた以外、 実施例 17と同様の方法を用いてマザ一ボード用基板を製造した。また、ここでは、基 板および絶縁層を貫通する光信号通過領域は形成しなかった。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。
[0492] (実施例 33)
実施例 1と略同様の方法を用いて、製造した ICチップ実装用基板に ICチップを実装 し、その後榭脂封止を行い、発光素子を実装した ICチップ実装基板を得た。ここで得 た ICチップ実装用基板は、基板、絶縁層およびソルダーレジスト層の合計厚さが 55 0 μ mであり、直径 220 μ m、サグ高さ 64 μ mのマイクロレンズが配設されている。ま た、光信号通過領域の断面形状は、 300 X 750 μ mの長方形の両側に半径 150 μ mの半円が付いた形状とした。なお、光路用貫通孔はルータ加工により形成した。 また、発光素子に代えて受光素子を実装し、マイクロレンズを配設しな力つた以外は 、実施例 1と同様の方法を用いて ICチップ実装用基板を製造し、その後、 ICチップの 実装と榭脂封止とを行うことにより受光素子を実装した ICチップ実装基板を得た。ここ で得た ICチップ実装用基板は、基板、絶縁層およびソルダーレジスト層の合計厚さ 力 950 /ζ πιであり、また、受光素子としては、フリップチップ型 PD (Microsemi社製 )を、ピッチ 250 mの 4チャンネルアレイ素子として使用した。また、光信号通過領 域の断面形状は、 300 X 750 μ mの長方形の両側に半径 150 μ mの半円が付いた 形状とした。なお、光路用貫通孔はルータ加工により形成した。
[0493] また、実施例 17と同様の方法を用いてマザ一ボード用基板を製造した。ここでは、基 板、絶縁層、および、光導波路を形成した側と反対側のソルダーレジスト層の合計厚 さが 450 mとなるようにマザ一ボード用基板を製造した。また、マイクロレンズは、受 光素子を実装した ICチップ実装用基板を実装する側の光信号通過領域の端部にの み配設し、そのサイズは、直径 220 μ m、サグ高さ 50 μ mとした。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。ここでは、マザ一ボード用基板の上面と、 ICチ ップ実装用基板の下面とのギャップが 300 μ mとなるように実装した。
[0494] (実施例 34)
実施例 1と略同様の方法を用いて、製造した ICチップ実装用基板に ICチップを実装 し、その後榭脂封止を行い、発光素子を実装した ICチップ実装基板を得た。ここで得 た ICチップ実装用基板は、基板、絶縁層およびソルダーレジスト層の合計厚さが 55 0 μ mであり、直径 220 μ m、サグ高さ 74 μ mのマイクロレンズが配設されている。ま た、光信号通過領域の断面形状は、 300 X 750 μ mの長方形の両側に半径 150 μ mの半円が付いた形状とした。なお、光路用貫通孔はルータ加工により形成した。 また、発光素子に代えて受光素子を実装した以外は、実施例 1と同様の方法を用い て ICチップ実装用基板を製造し、その後、 ICチップの実装と榭脂封止とを行うことに より受光素子を実装した ICチップ実装基板を得た。ここで得た ICチップ実装用基板 は、基板、絶縁層およびソルダーレジスト層の合計厚さが 1950 mであり、直径 220 μ m、サグ高さ 80 μ mのマイクロレンズが配設されている。また、受光素子としては、 フリップチップ型 PD (Microsemi社製)を、ピッチ 250 μ mの 4チャンネルアレイ素子 として使用した。また、光信号通過領域の断面形状は、 300 X 750 mの長方形の 両側に半径 150 mの半円が付いた形状とした。なお、光路用貫通孔はルータ加工 により形成した。
[0495] また、マイクロレンズを配設しな力つた以外は、実施例 17と同様の方法を用いてマザ 一ボード用基板を製造した。ここでは、基板、絶縁層、および、光導波路を形成した 側と反対側のソルダーレジスト層の合計厚さが 150 μ mとなるようにマザ一ボード用 基板を製造した。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。ここでは、マザ一ボード用基板の上面と、 ICチ ップ実装用基板の下面とのギャップが 100 mとなるように実装した。
[0496] なお、本実施例のように、マザ一ボード用基板の厚さが比較的薄い場合には、マザ 一ボード用基板の反りを防止すベぐ ICチップ実装用基板等を実装する側と反対側 の面等に補強材を配設してもょ 、。
[0497] (実施例 35)
マイクロレンズを配設しない以外は、実施例 1と略同様の方法を用いて、製造した IC チップ実装用基板に ICチップを実装し、その後榭脂封止を行い、発光素子を実装し た ICチップ実装基板を得た。ここで得た ICチップ実装用基板は、基板、絶縁層およ びソルダーレジスト層の合計厚さが 550 mであり、また、光信号通過領域の断面形 状は、 300 X 750 μ mの長方形の両側に半径 150 μ mの半円が付!、た形状とした。 なお、光路用貫通孔はルータカ卩ェにより形成した。
また、発光素子に代えて受光素子を実装するとともに、マイクロレンズを配設しなかつ た以外は、実施例 1と同様の方法を用いて ICチップ実装用基板を製造し、その後、 I Cチップの実装と榭脂封止とを行うことにより受光素子を実装した ICチップ実装基板 を得た。ここで得た ICチップ実装用基板は、基板、絶縁層およびソルダーレジスト層 の合計厚さが 1950 mであり、また、受光素子としては、フリップチップ型 PD (Micr osemi社製)を、ピッチ 250 mの 4チャンネルアレイ素子として使用した。また、光信 号通過領域の断面形状は、 300 X 750 μ mの長方形の両側に半径 150 μ mの半円 が付いた形状とした。なお、光路用貫通孔はルータ加工により形成した。
[0498] また、実施例 17と同様の方法を用いてマザ一ボード用基板を製造した。ここでは、基 板、絶縁層、および、光導波路を形成した側と反対側のソルダーレジスト層の合計厚 さが 450 mとなるようにマザ一ボード用基板を製造した。ここて、発光素子を実装し た ICチップ実装用基板を実装する側の端部配設したマイクロレンズのサイズは、直 径 220 m、サグ高さ 71 μ mとし、受光素子を実装した ICチップ実装用基板を実装 する側の光信号通過領域の端部に配設したマイクロレンズのサイズは、直径 220 μ m、サグ高さ 50 mとした。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。ここでは、マザ一ボード用基板の上面と、 ICチ ップ実装用基板の下面とのギャップが 100 mとなるように実装した。
[0499] (実施例 36)
(1)実施例 17の(1)一(17)の工程と同様の方法を用いて、基板上に導体回路と絶 縁層とを積層形成し、さら〖こ、光路用貫通孔を形成した。ここで、光路用貫通孔は、ド リルカ卩ェにかえてルータ加工により形成し、その断面形状を 340 X 1040の長方形の 両側に、半径 170 mの半円が付いた形状とした。
[0500] (2)次に、別途、 300 X 1000 X 500 μ mのマイクロレンズと同様の材質からなるレン ズ土台を 2つ作製し、さらに、この一のレンズ土台上には、直径 220 m、サグ高さ 5 3 μ mのマイクロレンズを 250 μ mピッチで 4個作製してマイクロレンズ部材 Αとし、他 のレンズ土台上には、直径 220 μ m、サグ高さ 45 μ mのマイクロレンズを 250 μ mピ ツチで 4個作製してマイクロレンズ部材 Bとした。
その後、マイクロレンズ部材ん Bを接着剤を介して、光路用貫通孔内に取り付けた。 ここで、マイクロレンズ部材は、その底面 (マイクロレンズを形成した側と反対側の面) と後工程で光導波路を形成する側の最外層の絶縁層の表面とが同一面を構成する ように配設した。
[0501] (3)次に、ソルダーレジスト組成物力 なるフィルムを張り付け、ソルダーレジスト組成 物の層を形成し、その後、実施例 17の(21)—(25)の工程と同様の方法を用いて光 信号通過領域、半田バンプ等を形成してマザ一ボード用基板を製造した。
本実施例で得られたマザ一ボード用基板では、光信号通過領域の内部にマイクロレ ンズが配設されて ヽることなる。
また、このマザ一ボード用基板は、基板、絶縁層、および、光導波路を形成した側と 反対側のソルダーレジスト層の合計厚さを 900 μ mとした。
[0502] (4)次に、上記工程を経て製造したマザ一ボード用基板に、フリップチップ型 VCSE L (ULM Photonics社製: 250 mピッチ、 4チャンネノレ)と、フリップチップ型 PD ( Microsemi社製: 250 μ mピッチ、 4チャンネル)とを実装し、光通信用デバイスを製 造した。ここで、 VCSELおよび PDのぞれぞれは、マザ一ボード用基板上面とのギヤ ップが 50 mとなるように実装した。 [0503] このようにして得られた実施例 26— 36に係る光通信用デバイスについて、 ICチップ 実装基板に実装した発光素子 (VCSEL)を発光させて発信した光信号を、発光素子 を実装した ICチップ実装用基板の光信号通過領域、マザ一ボード用基板に形成し た光信号通過領域および光導波路、発光素子を実装した ICチップ実装用基板の光 信号通過領域、ならびに、それぞれの光信号通過領域の端部に配設したマイクロレ ンズを介して、 ICチップ実装基板に実装した受光素子 (PINPD)で受光し、その後、 ICチップを経由した電気信号のアイパターンを確認したところ、 2. 5Gbpsでの伝送 を確認することができた。
従って、本実施例で製造した光通信用デバイスでは、光導波路、光信号通過領域お よびマイクロレンズを介して確実に光信号を伝送することができることが明らかとなつ た。
[0504] また、実施例 26— 36に係る光通信用デバイスについて、— 55°Cで 3分間、 125°Cで 3分間を 1サイクルとする液相温度サイクル試験を、それぞれの光通信用デバイスに ついて、 250サイクル、 500サイクル、および、 1000サイクル行った。
その後、光通信用デバイスをクロスカットし、マイクロレンズ、光信号通過領域、光導 波路を含む光通信用デバイス内でのクラックの発生を観察したところ光通信用デバイ スの 、ずれの箇所にお!ヽてもクラックは発生して 、なかった。
[0505] (比較例 1)
まず、実施例 1の(24)の工程 (マイクロレンズ配設工程)を行わなカゝつた以外は、実 施例 1と同様にして発光素子が実装された ICチップ実装用基板を製造した。その後 、 ICチップの実装と榭脂封止とを行い、 ICチップ実装基板とした。
この比較例 1に係る ICチップ実装用基板にっ 、て、実施例 1に係る ICチップ実装用 基板と同様にして光信号の伝送能を評価したところ、光信号の伝送エラーが発生す る場合があった。
[0506] (比較例 2)
また、実施例 17の(24)の工程 (マイクロレンズ配設工程)を行わなカゝつた以外は、実 施例 17と同様にしてマザ一ボード用基板を製造した。
この比較例 1に係るマザ一ボード用基板について、実施例 17に係るマザ一ボード用 基板と同様にして光信号の伝送能を評価したところ、光信号の伝送エラーが発生す る場合があった。
[0507] (比較例 3)
比較例 1と同様の方法を用いて、発光素子を実装した ICチップ実装基板を得た。 また、発光素子に代えて受光素子を実装した以外は、比較例 1と同様の方法を用い て ICチップ実装基板を得た。
また、比較例 2と同様の方法を用いて、マザ一ボード用基板を製造した。
次に、実施例 26と同様にして、それぞれの ICチップ実装用基板とマザ一ボード用基 板とを半田接続部を介して接続し、さらに、 ICチップ実装基板の周囲を榭脂封止す ることにより光通信用デバイスを得た。
[0508] 比較例 3で製造した光通信用デバイスについて、実施例 26に係る光通信用デバイス と同様にして、光信号の伝送性を評価した。
その結果、比較例 3に係る光通信用デバイスでは、発光素子から受光素子に向って 光信号伝送した際に、光信号の伝送エラーが発生する場合があった。
図面の簡単な説明
[0509] [図 1] (a)一(c)は、それぞれマイクロレンズアレイの一例を模式的に示す断面図であ る。
[図 2]第一の本発明の ICチップ実装用基板の一例を模式的に示す断面図である。
[図 3]第一の本発明の ICチップ実装用基板の一例を模式的に示す断面図である。
[図 4]第一の本発明の ICチップ実装用基板の一例を模式的に示す断面図である。
[図 5]第一の本発明の ICチップ実装用基板の一例を模式的に示す断面図である。
[図 6]第二の本発明のマザ一ボード用基板の一例を模式的に示す断面図である。
[図 7]第二の本発明のマザ一ボード用基板の一例を模式的に示す断面図である。
[図 8]第三の本発明の光通信用デバイスの実施形態の一例を模式的に示す断面図 である。
[図 9]第三の本発明の光通信用デバイスの実施形態の別の一例を模式的に示す断 面図である。
[図 10]第一の本発明の ICチップ実装用基板の製造方法の一部を模式的に示す断 面図である。
圆 11]第一の本発明の ICチップ実装用基板の製造方法の一部を模式的に示す断 面図である。
圆 12]第一の本発明の ICチップ実装用基板の製造方法の一部を模式的に示す断 面図である。
圆 13]第一の本発明の ICチップ実装用基板の製造方法の一部を模式的に示す断 面図である。
圆 14]第一の本発明の ICチップ実装用基板の製造方法の一部を模式的に示す断 面図である。
圆 15]第二の本発明のマザ一ボード用基板の製造方法の一部を模式的に示す断面 図である。
圆 16]第二の本発明のマザ一ボード用基板の製造方法の一部を模式的に示す断面 図である。
圆 17]第二の本発明のマザ一ボード用基板の製造方法の一部を模式的に示す断面 図である。
圆 18]第二の本発明のマザ一ボード用基板の製造方法の一部を模式的に示す断面 図である。
圆 19]第二の本発明のマザ一ボード用基板の製造方法の一部を模式的に示す断面 図である。
[図 20-1] (a)—(d)は、貫通孔の形成順序と、貫通孔の位置ズレの関係を検証する 試験の方法を説明するための模式図である。
圆 20- 2] (e)、(f)は、一括貫通孔構造の光信号伝送用光路を説明するための模式 図である。
圆 21]第四の本発明の光通信用デバイスの実施形態の一例を模式的に示す断面図 である。
圆 22]第四の本発明の光通信用デバイスの実施形態の一例を模式的に示す断面図 である。
圆 23]第四の本発明の光通信用デバイスの実施形態の一例を模式的に示す断面図 である。
[図 24]第四の本発明の光通信用デバイスの実施形態の一例を模式的に示す断面図 である。
符号の説明
11、 12、 13 マイクロレンズアレイ
120、 220、 320、 420 ICチップ実装用基板
121、 221、 321、 421 基板
122、 222、 322、 422 絶縁層
124、 224、 324、 424 導体回路
127、 227、 327、 427 ノ ィァホーノレ
129、 229、 329、 429 スノレーホ一ノレ
134、 234、 334、 434 ソノレダーレジスト層
138、 238、 338、 438 発光素子
139、 239、 339、 439 受光素子
142、 242、 342、 442 光信号通過領域
146、 246、 346、 446 マイクロレンズ
349 ワイヤボンディン
520、 620 マザ一ボー 'ド用基板
521、 621 基板
522、 622 絶縁層
524、 624 導体回路
527、 627 バイァホール
529、 629 スルーホール
534、 634 ソルダーレジスト層
538、 638 発光素子
539、 639 受光素子
642、 642 光信号通過領域
546、 646 マイクロレン 'ズ 720、 820 マザ一ボード用基板
760、 860 光通信用デバイス
1720、 1820、 2720、 2820 ICチップ実装用基板

Claims

請求の範囲
[I] 基板の両面に導体回路と絶縁層とが積層形成されるとともに、光学素子が実装され た ICチップ実装用基板であって、
ICチップ実装用基板には、光信号通過領域が設けられており、
前記光信号通過領域の前記光学素子側と反対側の端部には、マイクロレンズが配 設されていることを特徴とする ICチップ実装用基板。
[2] 前記光信号通過領域は、前記基板および前記絶縁層を貫通するように設けられて 、 る請求項 1に記載の ICチップ実装用基板。
[3] 前記光学素子はマルチチャンネル光学素子であり、前記光信号通過領域は複数の 独立した光路力 構成されている請求項 1または 2に記載の ICチップ実装用基板。
[4] 前記光学素子はマルチチャンネル光学素子であり、前記光信号通過領域は、前記 マルチチャンネル光学素子からの光信号または前記マルチチャンネル光学素子へ の光信号が伝送可能な一の光路力も構成されている請求項 1または 2に記載の ICチ ップ実装用基板。
[5] 前記マルチチャンネル光学素子からの光信号または前記マルチチャンネル光学素 子への光信号が伝送可能な一の光路は、複数の円柱の壁面の一部が繋がった形状 を有して!/ヽる請求項 4に記載の ICチップ実装用基板。
[6] 前記複数の円柱のうち、少なくとも 1個は、光信号を伝送しないダミー円柱である請 求項 5に記載の ICチップ実装用基板。
[7] 前記光信号通過領域の壁面が、金属により構成されている請求項 1一 6のいずれか に記載の ICチップ実装用基板。
[8] 前記光信号通過領域の壁面が、榭脂により構成されている請求項 1一 6のいずれか に記載の ICチップ実装用基板。
[9] 前記光信号通過領域の壁面は、表面粗さ Raが 0. 1— 5 μ mである請求項 1一 8のい ずれかに記載の ICチップ実装用基板。
[10] 前記光学素子は、受光素子および Zまたは発光素子である請求項 1一 9のいずれか
1に記載の ICチップ実装用基板。
[II] 前記光学素子が発光素子であり、前記発光素子から出射した光が、前記マイクロレ ンズを介してコリメート光となる請求項 1一 10のいずれかに記載の ICチップ実装用基 板。
[12] 前記光学素子が受光素子であり、前記マイクロレンズを介して前記受光素子へ入射 する光について、前記受光素子の受光部におけるスポット領域力 前記受光部と 22 %以上重なっている請求項 1一 10のいずれかに記載の ICチップ実装用基板。
[13] 前記マイクロレンズは、撥水処理または親水処理が施された前記光信号通過領域の 端部に直接配設されている力 または、
前記光信号通過領域の端部にレンズマーカを介して配設され、前記マイクロレンズ が配設される面には、撥水処理または親水処理が施されている請求項 1一 12のいず れかに記載の ICチップ実装用基板。
[14] 前記マイクロレンズには、粒子が配合されている請求項 1一 13のいずれかに記載の I Cチップ実装用基板。
[15] 基板の少なくとも片面に導体回路と絶縁層とが積層形成されるとともに、光導波路が 形成され、少なくとも一方の面に、光学素子、または、光学素子が実装された ICチッ プ実装用基板を実装することができるマザ一ボード用基板であって、
マザ一ボード用基板には、光信号通過領域が設けられており、
前記光信号通過領域の前記光学素子または前記 ICチップ実装用基板を実装する 側の端部には、マイクロレンズが配設されていることを特徴とするマザ一ボード用基 板。
[16] 前記光信号通過領域は、前記基板および前記絶縁層を貫通するように設けられて 、 る請求項 15に記載のマザ一ボード用基板。
[17] 前記光学素子はマルチチャンネル光学素子であり、前記光信号通過領域は複数の 独立した光路力も構成されている請求項 15または 16に記載のマザ一ボード用基板
[18] 前記光学素子はマルチチャンネル光学素子であり、前記光信号通過領域は、前記 マルチチャンネル光学素子からの光信号または前記マルチチャンネル光学素子へ の光信号が伝送可能な一の光路力 構成されている請求項 15または 16に記載のマ ザ一ボード用基板。
[19] 前記マルチチャンネル光学素子からの光信号または前記マルチチャンネル光学素 子への光信号が伝送可能な一の光路は、複数の円柱の壁面の一部が繋がった形状 を有して!/、る請求項 18に記載の ICチップ実装用基板。
[20] 前記複数の円柱のうち、少なくとも 1個は、光信号を伝送しないダミー円柱である請 求項 19に記載の ICチップ実装用基板。
[21] 前記光信号通過領域の壁面が、金属により構成されている請求項 15— 20のいずれ かに記載のマザ一ボード用基板。
[22] 前記光信号通過領域の壁面が、榭脂により構成されている請求項 15— 20のいずれ かに記載のマザ一ボード用基板。
[23] 前記光信号通過領域の壁面は、表面粗さ Raが 0. 1— 5 μ mである請求項 15— 22 の!、ずれかに記載のマザ一ボード用基板。
[24] 前記光導波路から出射した光が、前記マイクロレンズを介してコリメート光となる請求 項 15— 23のいずれかに記載のマザ一ボード用基板。
[25] 前記マイクロレンズを介して前記光導波路へ入射する光について、前記光導波路の コアにおけるスポット領域力 前記コアと 35%以上重なっている請求項 15— 23のい ずれかに記載のマザ一ボード用基板。
[26] 前記マイクロレンズは、撥水処理または親水処理が施された前記光信号通過領域の 端部に直接配設されている力 または、
前記光信号通過領域の端部にレンズマーカを介して配設され、前記マイクロレンズ が配設される面には、撥水処理または親水処理が施されている請求項 15— 25のい ずれかに記載のマザ一ボード用基板。
[27] 前記マイクロレンズには、粒子が配合されている請求項 15— 26のいずれかに記載 の ICチップ実装用基板。
[28] 請求項 1一 14のいずれか 1に記載の ICチップ実装用基板力 請求項 15— 27のい ずれ力 1に記載のマザ一ボード用基板に実装されてなることを特徴とする光通信用 デバイス。
[29] 基板の少なくとも片面に導体回路と絶縁層とが積層形成されるとともに、光導波路が 形成されたマザ一ボード用基板に、光学素子、または、光学素子が実装された ICチ ップ実装用基板が実装された光通信用デバイスであって、
前記光導波路と前記光学素子とを結ぶ光路上に、少なくとも 1つのマイクロレンズが 配設されており、
前記光導波路または前記光学素子に入射する光は、マイクロレンズを介して集光さ れるように構成されていることを特徴とする光通信用デバイス。
[30] 前記マイクロレンズが少なくとも 2っ配設されており、
前記光導波路または前記光学素子から出射した光が、集光またはコリメート光となる 請求項 29に記載の光通信用デバイス。
[31] 基板の少なくとも片面に導体回路と絶縁層とが積層形成されるとともに、光導波路が 形成されたマザ一ボード用基板に、発光素子が実装された ICチップ実装用基板と受 光素子が実装された ICチップ実装用基板とが実装された光通信用デバイスであって 前記マザ一ボード用基板は、前記光導波路の両端のそれぞれに光学的に接続され た光信号通過領域が形成されるとともに、前記光信号通過領域の前記光導波路と光 学的に接続された側と反対側の端部にマイクロレンズが配設されており、 前記発光素子が実装された ICチップ実装用基板は、前記発光素子と光学的に接続 された光信号通過領域が形成されるとともに、前記光信号通過領域の前記発光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、 前記受光素子が実装された ICチップ実装用基板は、前記受光素子と光学的に接続 された光信号通過領域が形成されるとともに、前記光信号通過領域の前記受光素子 と光学的に接続された側と反対側の端部にマイクロレンズが配設されており、 前記発光素子から出射した光は、前記発光素子が実装された ICチップ実装用基板 に配設されたマイクロレンズを介してコリメート光となり、このコリメート光力 前記マザ 一ボード用基板に配設された一方のマイクロレンズを介して集光されて、前記光導波 路の一端に入射した後、前記光導波路内を伝送し、前記光導波路の他端から出射 した光が、前記マザ一ボード用基板に配設された他方のマイクロレンズを介してコリメ ート光となり、このコリメート光が前記受光素子が実装された ICチップ実装用基板に 配設されたマイクロレンズで集光されて前記受光素子に入射するように構成されてい ることを特徴とする光通信用デバイス。
[32] (a)基板の少なくとも片面に導体回路と絶縁層とを順次積層形成し、多層配線板とす る多層配線板製造工程と、
(b)前記多層配線板を貫通する光信号通過領域を形成するか、または、前記多層配 線板の一部に凹部形状の光信号通過領域を形成する光信号通過領域形成工程と、
(c)前記光信号通過領域の端部にマイクロレンズを配設するマイクロレンズ配設工程 と
を含むことを特徴とする ICチップ実装用基板の製造方法。
[33] 前記 (b)の工程において、前記多層配線板を貫通する光信号通過領域として、複数 の独立した光路から構成される貫通孔からなる光信号通過領域を形成する請求項 3
2に記載の ICチップ実装用基板の製造方法。
[34] 前記 (b)の工程にぉ 、て、前記多層配線板を貫通する光信号通過領域として、マル チチャンネル光学素子からの光信号またはマルチチャンネル光学素子への光信号 が伝送可能な一の光路から構成される光信号通過領域を形成する請求項 32に記載 の ICチップ実装用基板の製造方法。
[35] 前記 (b)の工程にぉ 、て、前記光信号通過領域の壁面が金属層から構成されるよう に金属層形成工程を行う請求項 32— 34のいずれかに記載の ICチップ実装用基板 の製造方法。
[36] 前記金属層形成工程で形成する金属層の表面を粗化面とする請求項 35に記載の I
Cチップ実装用基板の製造方法。
[37] 前記 (b)の工程において、前記光信号通過領域の壁面が榭脂層から構成されるよう に榭脂層形成工程を行う請求項 32— 34のいずれか〖こ記載の ICチップ実装用基板 の製造方法。
[38] 前記榭脂層形成工程で形成する榭脂層の表面を粗化面とする請求項 37に記載の I
Cチップ実装用基板の製造方法。
[39] 前記 (c)の工程において、前記マイクロレンズを配設する前に、前記マイクロレンズを 配設する部位に、撥水処理または親水処理を施しておく請求項 32— 38のいずれか に記載の ICチップ実装用基板の製造方法。
[40] (a)基板の少なくとも片面に導体回路と絶縁層とを順次積層形成するとともに、 前記基板上および Zまたは前記絶縁層上に光導波路を形成し、光配線板とする光 配線板製造工程と、
(b)前記光配線板に光信号通過領域を形成する光信号通過領域形成工程と、
(c)前記光信号通過領域の一端にマイクロレンズを配設するマイクロレンズ配設工程 と
を含むことを特徴とするマザ一ボード用基板の製造方法。
[41] 前記 (b)の工程において、前記光信号通過領域として、複数の独立した光路から構 成される光信号通過領域を形成する請求項 40に記載の ICチップ実装用基板の製 造方法。
[42] 前記 (b)の工程にぉ 、て、前記光信号通過領域として、マルチチャンネル光学素子 からの光信号またはマルチチャンネル光学素子への光信号が伝送可能な一の光路 力 構成される光信号通過領域を形成する請求項 40に記載の ICチップ実装用基板 の製造方法。
[43] 前記 (b)の工程にぉ 、て、前記光信号通過領域の壁面が金属層から構成されるよう に金属層形成工程を行う請求項 40— 42のいずれか〖こ記載の ICチップ実装用基板 の製造方法。
[44] 前記金属層形成工程で形成する金属層の表面を粗化面とする請求項 43に記載の I
Cチップ実装用基板の製造方法。
[45] 前記 (b)の工程において、前記光信号通過領域の壁面が榭脂層から構成されるよう に榭脂層形成工程を行う請求項 40— 42のいずれか〖こ記載の ICチップ実装用基板 の製造方法。
[46] 前記榭脂層形成工程で形成する榭脂層の表面を粗ィ匕面とする請求項 45に記載の I
Cチップ実装用基板の製造方法。
[47] 前記(c)の工程において、前記マイクロレンズを配設する前に、前記マイクロレンズを 配設する部位に、撥水処理または親水処理を施しておく請求項 40— 46のいずれか に記載の ICチップ実装用基板の製造方法。
PCT/JP2004/013971 2003-11-27 2004-09-24 Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法 WO2005052666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04788130A EP1688770B1 (en) 2003-11-27 2004-09-24 Ic chip mounting board, substrate for mother board, device for optical communication, method for manufacturing substrate for mounting ic chip thereon, and method for manufacturing substrate for mother board
JP2005515738A JPWO2005052666A1 (ja) 2003-11-27 2004-09-24 Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法
US11/402,084 US7437030B2 (en) 2003-11-27 2006-04-12 Substrate for mounting IC chip, substrate for motherboard, device for optical communication, manufacturing method of substrate for mounting IC chip, and manufacturing method of substrate for motherboard
US11/964,761 US7526152B2 (en) 2003-11-27 2007-12-27 Substrate for mounting IC chip, substrate for motherboard, device for optical communication, manufacturing method of substrate for mounting IC chip, and manufacturing method of substrate for motherboard

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-397701 2003-11-27
JP2003397701 2003-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/402,084 Continuation US7437030B2 (en) 2003-11-27 2006-04-12 Substrate for mounting IC chip, substrate for motherboard, device for optical communication, manufacturing method of substrate for mounting IC chip, and manufacturing method of substrate for motherboard

Publications (1)

Publication Number Publication Date
WO2005052666A1 true WO2005052666A1 (ja) 2005-06-09

Family

ID=34631545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013971 WO2005052666A1 (ja) 2003-11-27 2004-09-24 Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法

Country Status (4)

Country Link
US (2) US7437030B2 (ja)
EP (1) EP1688770B1 (ja)
JP (1) JPWO2005052666A1 (ja)
WO (1) WO2005052666A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111327A1 (ja) * 2006-03-27 2007-10-04 Kyocera Corporation 光伝送基板及びその製造方法並びに光伝送装置
EP2000833A1 (en) * 2006-03-24 2008-12-10 Ibiden Co., Ltd. Photoelectric wiring board, optical communication device and method for manufacturing optical communication device
WO2012029370A1 (ja) * 2010-08-31 2012-03-08 京セラ株式会社 光伝送構造体およびその製造方法、ならびに光伝送モジュール
JP2012103720A (ja) * 2008-04-26 2012-05-31 Gwangju Inst Of Science & Technology 光配線構造物およびその製造方法
JP2012128225A (ja) * 2010-12-16 2012-07-05 Kyocera Corp 光伝送基板および光伝送モジュール
US9360638B2 (en) 2010-08-31 2016-06-07 Kyocera Corporation Optical transmission body, method for manufacturing the same, and optical transmission module
JP2017122754A (ja) * 2016-01-04 2017-07-13 株式会社エンプラス 光レセプタクル、光モジュールおよび測定方法
KR101919782B1 (ko) 2012-03-16 2019-02-08 엘지전자 주식회사 디스플레이 모듈 및 이를 구비한 이동 단말기
TWI708378B (zh) * 2014-12-18 2020-10-21 日商新力股份有限公司 固體攝像元件及電子裝置

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980886A3 (en) * 2002-04-01 2008-11-12 Ibiden Co., Ltd. Optical communication device and optical communication device manufacturing method
US7507598B2 (en) * 2003-06-06 2009-03-24 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor fabrication method and structure
EP1688770B1 (en) * 2003-11-27 2012-11-14 Ibiden Co., Ltd. Ic chip mounting board, substrate for mother board, device for optical communication, method for manufacturing substrate for mounting ic chip thereon, and method for manufacturing substrate for mother board
JP4587772B2 (ja) * 2004-10-22 2010-11-24 イビデン株式会社 多層プリント配線板
JP2006120956A (ja) 2004-10-22 2006-05-11 Ibiden Co Ltd 多層プリント配線板
JP4646618B2 (ja) 2004-12-20 2011-03-09 イビデン株式会社 光路変換部材、多層プリント配線板および光通信用デバイス
CN100489587C (zh) * 2005-01-28 2009-05-20 鸿富锦精密工业(深圳)有限公司 变折射率透镜模组
US20060289966A1 (en) * 2005-06-22 2006-12-28 Dani Ashay A Silicon wafer with non-soluble protective coating
JP2007033597A (ja) * 2005-07-25 2007-02-08 Seiko Epson Corp 光学シート、バックライトユニット、電気光学装置及び電子機器、並びに光学シートの製造方法及び光学シートの切断方法
EP1967876A4 (en) * 2005-12-27 2013-04-17 Ibiden Co Ltd OPTICAL AND ELECTRICAL COMPOSITE WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME
JP4882644B2 (ja) * 2006-08-10 2012-02-22 パナソニック電工株式会社 光電気変換装置
JP4793169B2 (ja) * 2006-08-24 2011-10-12 日立電線株式会社 接続体および光送受信モジュール
US7907801B2 (en) * 2007-01-17 2011-03-15 Ibiden Co., Ltd. Optical element, package substrate and device for optical communication
US7674987B2 (en) * 2007-03-29 2010-03-09 Ibiden Co., Ltd. Multilayer printed circuit board
US7783141B2 (en) * 2007-04-04 2010-08-24 Ibiden Co., Ltd. Substrate for mounting IC chip and device for optical communication
US7919849B2 (en) * 2007-04-04 2011-04-05 Ibiden Co., Ltd. Package substrate and device for optical communication
US7421160B1 (en) * 2007-04-10 2008-09-02 International Business Machines Corporation Coupling element alignment using waveguide fiducials
US7729570B2 (en) * 2007-05-18 2010-06-01 Ibiden Co., Ltd. Photoelectric circuit board and device for optical communication
TW200906263A (en) * 2007-05-29 2009-02-01 Matsushita Electric Ind Co Ltd Circuit board and method for manufacturing the same
JP5093482B2 (ja) * 2007-06-26 2012-12-12 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電材料、接続構造体及びその製造方法
US8440916B2 (en) * 2007-06-28 2013-05-14 Intel Corporation Method of forming a substrate core structure using microvia laser drilling and conductive layer pre-patterning and substrate core structure formed according to the method
US20090041409A1 (en) * 2007-08-06 2009-02-12 Xyratex Technology Limited electro-optical printed circuit board and a method of making an electro-optical printed circuit board
KR100924552B1 (ko) 2007-11-30 2009-11-02 주식회사 하이닉스반도체 반도체 패키지용 기판 및 이를 갖는 반도체 패키지
US9318441B2 (en) * 2007-12-14 2016-04-19 Stats Chippac, Ltd. Semiconductor device and method of forming sacrificial adhesive over contact pads of semiconductor die
JP5049145B2 (ja) * 2008-01-22 2012-10-17 日東電工株式会社 光導波路デバイスの製法
WO2009143462A2 (en) * 2008-05-22 2009-11-26 Vi Systems Gmbh Method for attaching optical components onto silicon-based integrated circuits
JP5093121B2 (ja) * 2009-01-06 2012-12-05 日立電線株式会社 光モジュール
JP2010211179A (ja) * 2009-02-13 2010-09-24 Hitachi Ltd 光電気複合配線モジュールおよびその製造方法
US8592691B2 (en) * 2009-02-27 2013-11-26 Ibiden Co., Ltd. Printed wiring board
JP4973761B2 (ja) * 2009-05-25 2012-07-11 株式会社デンソー 半導体装置
KR101079867B1 (ko) * 2009-11-13 2011-11-04 삼성전기주식회사 광기판 및 그 제조방법
JP5566720B2 (ja) * 2010-02-16 2014-08-06 日本特殊陶業株式会社 多層配線基板及びその製造方法
JP5505140B2 (ja) * 2010-07-05 2014-05-28 富士通株式会社 光モジュールおよび製造方法
DE102010026344A1 (de) * 2010-07-07 2012-01-12 Osram Opto Semiconductors Gmbh Leuchtdiode
JP5432077B2 (ja) * 2010-07-08 2014-03-05 セイコーインスツル株式会社 貫通電極付きガラス基板の製造方法及び電子部品の製造方法
JP5779855B2 (ja) * 2010-09-24 2015-09-16 富士通株式会社 光モジュールおよび製造方法
JP5861262B2 (ja) * 2011-03-26 2016-02-16 富士通株式会社 回路基板の製造方法及び電子装置の製造方法
US20120301630A1 (en) * 2011-05-25 2012-11-29 Chin-Chun Huang Method for forming flexible printed circuit board
CN102869197A (zh) * 2011-07-05 2013-01-09 毅嘉科技股份有限公司 形成可挠曲电路板的方法
KR20140072876A (ko) * 2011-09-13 2014-06-13 덴끼 가가꾸 고교 가부시키가이샤 Led 발광 소자 보유 기판용 클래드재 및 그 제조 방법
TWM428490U (en) * 2011-09-27 2012-05-01 Lingsen Precision Ind Ltd Optical module packaging unit
EP2770806A4 (en) * 2011-10-20 2015-10-21 Asahi Glass Co Ltd METHOD FOR FORMING DECLOUCHANT HOLES IN AN INSULATING SUBSTRATE, AND METHOD FOR PRODUCING AN INSULATING SUBSTRATE FOR AN INTERCALAR
TWI554799B (zh) * 2012-05-23 2016-10-21 鴻海精密工業股份有限公司 光傳輸連接組件及其使用之光電轉換模組
US10094988B2 (en) * 2012-08-31 2018-10-09 Micron Technology, Inc. Method of forming photonics structures
TWI452364B (zh) * 2012-11-01 2014-09-11 Unimicron Technology Corp 線路板及其製作方法與具有此線路板的光電裝置
TWM458672U (zh) * 2013-04-10 2013-08-01 Genesis Photonics Inc 光源模組
JP2014216375A (ja) * 2013-04-23 2014-11-17 イビデン株式会社 プリント配線板及び多層コア基板の製造方法
US9419156B2 (en) * 2013-08-30 2016-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Package and method for integration of heterogeneous integrated circuits
JP6287105B2 (ja) 2013-11-22 2018-03-07 ソニー株式会社 光通信デバイス、受信装置、送信装置及び送受信システム
JP6128046B2 (ja) * 2014-03-31 2017-05-17 ソニー株式会社 実装基板および電子機器
JP2015197544A (ja) * 2014-03-31 2015-11-09 ソニー株式会社 実装基板および電子機器
US9433101B2 (en) 2014-10-16 2016-08-30 International Business Machines Corporation Substrate via filling
JP2016156865A (ja) * 2015-02-23 2016-09-01 京セラ株式会社 光回路基板の製造方法
JP2016224288A (ja) * 2015-06-01 2016-12-28 富士通株式会社 製造方法、プリント基板および光デバイス
US9837347B2 (en) * 2015-08-14 2017-12-05 Dyi-chung Hu Coaxial copper pillar
JP2017088656A (ja) * 2015-11-04 2017-05-25 信越化学工業株式会社 難燃性樹脂組成物、難燃性樹脂フィルム及び半導体装置とその製造方法
RU2627281C2 (ru) * 2015-11-16 2017-08-04 Николай Андреевич Гаврилов Способ измерения электрических параметров и характеристик без демонтажа объекта исследования, а также устройства для его реализации
JP2017168548A (ja) 2016-03-15 2017-09-21 ソニー株式会社 ガラス配線基板及びその製造方法、部品実装ガラス配線基板及びその製造方法、並びに、表示装置用基板
US10690849B2 (en) * 2016-06-06 2020-06-23 The Trustees Of Columbia University In The City Of New York Integrated micro-lens waveguide and methods of making and using same
US10359565B2 (en) 2017-02-07 2019-07-23 Nokia Of America Corporation Optoelectronic circuit having one or more double-sided substrates
JP2018157089A (ja) * 2017-03-17 2018-10-04 イビデン株式会社 プリント配線板およびその製造方法
CN110612780B (zh) * 2017-05-23 2022-04-19 京瓷株式会社 多连配线基板、电子部件收纳用封装件以及电子装置
US10168495B1 (en) * 2017-06-28 2019-01-01 Kyocera Corporation Optical waveguide and optical circuit board
JP7209470B2 (ja) * 2018-03-13 2023-01-20 帝人株式会社 プリプレグ及び炭素繊維強化複合材料
US11862749B2 (en) * 2019-12-06 2024-01-02 Adesto Technologies Corporation Integrated module assembly for optical integrated circuits
US20220155539A1 (en) * 2020-11-19 2022-05-19 Intel Corporation High bandwidth optical interconnection architectures
US20220404551A1 (en) * 2021-06-16 2022-12-22 Intel Corporation Through-substrate optical vias
US11867956B2 (en) * 2021-08-19 2024-01-09 Advanced Semiconductor Engineering, Inc. Optoelectronic device
US12100698B2 (en) * 2021-08-19 2024-09-24 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof
CN116137121A (zh) * 2021-11-16 2023-05-19 宏启胜精密电子(秦皇岛)有限公司 具有发光二极管的显示模组及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555633A (ja) * 1991-08-29 1993-03-05 Sharp Corp 光学装置およびその製造方法
JP2000147275A (ja) * 1998-11-13 2000-05-26 Canon Inc 光ファイバ
JP2002120230A (ja) * 2000-10-13 2002-04-23 Canon Inc マイクロ構造体、及びその作製方法
JP2002329891A (ja) * 2000-12-22 2002-11-15 Ibiden Co Ltd Icチップ実装用基板、icチップ実装用基板の製造方法、および、光通信用デバイス
JP2002331532A (ja) * 2001-05-11 2002-11-19 Nippon Telegr & Teleph Corp <Ntt> マイクロレンズ形成方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274679A (ja) 1986-05-22 1987-11-28 Nec Corp 光結合素子
JPH03290606A (ja) * 1990-04-09 1991-12-20 Fujitsu Ltd 光半導体装置
JP2792722B2 (ja) 1990-07-16 1998-09-03 三菱電機株式会社 半導体発光装置
JPH05211202A (ja) 1991-06-27 1993-08-20 Motorola Inc 複合フリップ・チップ半導体装置とその製造およびバーンインの方法
JPH06230203A (ja) 1993-02-04 1994-08-19 Omron Corp 光学素子及びその製造方法、当該光学素子を製造するためのスタンパ並びに当該光学素子を使用した画像表示装置
JPH06281831A (ja) 1993-03-25 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> 電気配線・光配線混載フレキシブルプリント配線板及びその基板
JPH06326285A (ja) 1993-05-17 1994-11-25 Sanyo Electric Co Ltd マイクロレンズの製造方法
JPH08110436A (ja) * 1994-10-12 1996-04-30 Hitachi Ltd 光送信モジュール
JPH09281352A (ja) * 1996-04-10 1997-10-31 Fuji Xerox Co Ltd 光電気伝送路の形成方法及び光電気配線基板
JP3570882B2 (ja) 1997-03-13 2004-09-29 日本電信電話株式会社 光素子実装基板、該実装基板を用いた光モジュール、およびそれらの製造方法
JP3486325B2 (ja) 1997-06-26 2004-01-13 日本電信電話株式会社 ポリアミド酸溶液、ポリイミドフィルムおよびポリイミドフィルムの特性制御方法
JP3867409B2 (ja) 1998-08-25 2007-01-10 Jsr株式会社 光導波路の製造方法
JP2000081524A (ja) 1998-09-07 2000-03-21 Sony Corp 光送受信システム
JP2000199827A (ja) 1998-10-27 2000-07-18 Sony Corp 光導波装置およびその製造方法
US6334014B1 (en) 1998-11-02 2001-12-25 Canon Kabushiki Kaisha Optical fiber apparatus provided with demultiplexing/multiplexing unit on fiber's end portion, optical detecting apparatus provided with demultiplexing/multiplexing unit on its light receiving surface, and optical transmission system using the same
JP3257776B2 (ja) 1999-01-21 2002-02-18 日本電信電話株式会社 光モジュール実装構造
JP2000298352A (ja) 1999-04-14 2000-10-24 Jsr Corp 電子部品用材料およびその使用方法
JP2000321442A (ja) 1999-05-13 2000-11-24 Sumitomo Electric Ind Ltd 光部品
JP3532456B2 (ja) 1999-05-19 2004-05-31 日本電信電話株式会社 光学的信号の入出力機構を有する半導体装置
JP2001059923A (ja) 1999-06-16 2001-03-06 Seiko Epson Corp 光モジュール及びその製造方法、半導体装置並びに光伝達装置
JP2001033665A (ja) 1999-07-21 2001-02-09 Hitachi Ltd 光モジュール
JP2001042145A (ja) * 1999-07-28 2001-02-16 Canon Inc 光電気配線基板
JP2001185752A (ja) 1999-12-24 2001-07-06 Nippon Telegr & Teleph Corp <Ntt> 半導体装置とそれを用いた光信号入出力装置
JP2001278941A (ja) 2000-01-24 2001-10-10 Mitsui Chemicals Inc 光電変換素子封止材用ウレタン系樹脂組成物
JP2001298052A (ja) 2000-02-09 2001-10-26 Interuniv Micro Electronica Centrum Vzw 接着剤を用いた半導体素子のフリップチップアセンブリ方法
JP2001339077A (ja) * 2000-03-24 2001-12-07 Matsushita Electric Ind Co Ltd 半導体素子実装装置および光通信装置
US6465858B2 (en) 2000-03-24 2002-10-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device package for optical communication device
JP4463940B2 (ja) 2000-05-02 2010-05-19 富士通株式会社 薄膜多層回路基板
JP2002076376A (ja) 2000-08-30 2002-03-15 Matsushita Electric Ind Co Ltd 光受信装置および光送信装置
JP3764640B2 (ja) 2000-09-26 2006-04-12 京セラ株式会社 光モジュール及びその製造方法
JP2002107560A (ja) 2000-09-29 2002-04-10 Dainippon Printing Co Ltd 実装用基板
JP2002189137A (ja) 2000-12-20 2002-07-05 Nippon Telegr & Teleph Corp <Ntt> 光配線基板
JP2002267863A (ja) * 2001-03-13 2002-09-18 Fuji Xerox Co Ltd 光モジュールおよび電気・光配線基板
TW558647B (en) * 2001-05-09 2003-10-21 Nippon Sheet Glass Co Ltd Resin erecting lens array and method for fabricating the same
US6512861B2 (en) * 2001-06-26 2003-01-28 Intel Corporation Packaging and assembly method for optical coupling
JP4096565B2 (ja) * 2002-01-28 2008-06-04 富士ゼロックス株式会社 マイクロレンズアレーの製造方法、それに用いる電解液および製造装置
EP1980886A3 (en) 2002-04-01 2008-11-12 Ibiden Co., Ltd. Optical communication device and optical communication device manufacturing method
US7149376B2 (en) * 2002-08-27 2006-12-12 Ibiden Co., Ltd. Embedded optical coupling in circuit boards
US7070207B2 (en) 2003-04-22 2006-07-04 Ibiden Co., Ltd. Substrate for mounting IC chip, multilayerd printed circuit board, and device for optical communication
EP1688770B1 (en) * 2003-11-27 2012-11-14 Ibiden Co., Ltd. Ic chip mounting board, substrate for mother board, device for optical communication, method for manufacturing substrate for mounting ic chip thereon, and method for manufacturing substrate for mother board
JP2006120956A (ja) * 2004-10-22 2006-05-11 Ibiden Co Ltd 多層プリント配線板
JP4646618B2 (ja) * 2004-12-20 2011-03-09 イビデン株式会社 光路変換部材、多層プリント配線板および光通信用デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555633A (ja) * 1991-08-29 1993-03-05 Sharp Corp 光学装置およびその製造方法
JP2000147275A (ja) * 1998-11-13 2000-05-26 Canon Inc 光ファイバ
JP2002120230A (ja) * 2000-10-13 2002-04-23 Canon Inc マイクロ構造体、及びその作製方法
JP2002329891A (ja) * 2000-12-22 2002-11-15 Ibiden Co Ltd Icチップ実装用基板、icチップ実装用基板の製造方法、および、光通信用デバイス
JP2002331532A (ja) * 2001-05-11 2002-11-19 Nippon Telegr & Teleph Corp <Ntt> マイクロレンズ形成方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311375B2 (en) 2006-03-24 2012-11-13 Ibiden Co., Ltd. Optoelectronic wiring board, optical communication device, and method of manufacturing the optical communication device
EP2000833A1 (en) * 2006-03-24 2008-12-10 Ibiden Co., Ltd. Photoelectric wiring board, optical communication device and method for manufacturing optical communication device
EP2000833A4 (en) * 2006-03-24 2010-03-31 Ibiden Co Ltd PHOTOELECTRIC WIRING PANEL, OPTICAL COMMUNICATION DEVICE, AND METHOD OF MANUFACTURING OPTICAL COMMUNICATION DEVICE
US7734125B2 (en) 2006-03-24 2010-06-08 Ibiden Co., Ltd. Optoelectronic wiring board, optical communication device, and method of manufacturing the optical communication device
WO2007111327A1 (ja) * 2006-03-27 2007-10-04 Kyocera Corporation 光伝送基板及びその製造方法並びに光伝送装置
JP5244585B2 (ja) * 2006-03-27 2013-07-24 京セラ株式会社 光伝送基板及びその製造方法並びに光伝送装置
JP2012103720A (ja) * 2008-04-26 2012-05-31 Gwangju Inst Of Science & Technology 光配線構造物およびその製造方法
JPWO2012029370A1 (ja) * 2010-08-31 2013-10-28 京セラ株式会社 光伝送構造体およびその製造方法、ならびに光伝送モジュール
WO2012029370A1 (ja) * 2010-08-31 2012-03-08 京セラ株式会社 光伝送構造体およびその製造方法、ならびに光伝送モジュール
US9057827B2 (en) 2010-08-31 2015-06-16 Kyocera Corporation Optical transmission structure and method for manufacturing the same, and optical transmission module
US9360638B2 (en) 2010-08-31 2016-06-07 Kyocera Corporation Optical transmission body, method for manufacturing the same, and optical transmission module
JP2012128225A (ja) * 2010-12-16 2012-07-05 Kyocera Corp 光伝送基板および光伝送モジュール
KR101919782B1 (ko) 2012-03-16 2019-02-08 엘지전자 주식회사 디스플레이 모듈 및 이를 구비한 이동 단말기
TWI708378B (zh) * 2014-12-18 2020-10-21 日商新力股份有限公司 固體攝像元件及電子裝置
JP2017122754A (ja) * 2016-01-04 2017-07-13 株式会社エンプラス 光レセプタクル、光モジュールおよび測定方法

Also Published As

Publication number Publication date
EP1688770A4 (en) 2010-04-14
EP1688770A1 (en) 2006-08-09
EP1688770B1 (en) 2012-11-14
US7437030B2 (en) 2008-10-14
JPWO2005052666A1 (ja) 2008-03-06
US7526152B2 (en) 2009-04-28
US20060263003A1 (en) 2006-11-23
US20080118199A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2005052666A1 (ja) Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法
US8238700B2 (en) Multilayer printed circuit board
US7729570B2 (en) Photoelectric circuit board and device for optical communication
US8249402B2 (en) Multilayer printed circuit board
US8076782B2 (en) Substrate for mounting IC chip
US7919849B2 (en) Package substrate and device for optical communication
US7907801B2 (en) Optical element, package substrate and device for optical communication
JP4646618B2 (ja) 光路変換部材、多層プリント配線板および光通信用デバイス
US7674987B2 (en) Multilayer printed circuit board
JP4498102B2 (ja) 光電気配線板、および、光通信用デバイス
JP4916096B2 (ja) 光通信用デバイス
JP2004004428A (ja) 光通信用デバイスおよび光通信用デバイスの製造方法
JP2004004426A (ja) 光通信用デバイスおよび光通信用デバイスの製造方法
JP4014464B2 (ja) 光通信用デバイスおよび光通信用デバイスの製造方法
JP2006091753A (ja) Icチップ実装用基板および光通信用デバイス
JP2005157115A (ja) Icチップ実装用基板、マザーボード用基板、光通信用デバイス、icチップ実装用基板の製造方法、および、マザーボード用基板の製造方法
JP4562475B2 (ja) パッケージ基板および光通信用デバイス
JP4610275B2 (ja) 多層プリント配線板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004788130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11402084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004788130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005515738

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 11402084

Country of ref document: US