[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005049858A1 - ヘモグロビン含有試料中の基質の測定方法 - Google Patents

ヘモグロビン含有試料中の基質の測定方法 Download PDF

Info

Publication number
WO2005049858A1
WO2005049858A1 PCT/JP2004/017196 JP2004017196W WO2005049858A1 WO 2005049858 A1 WO2005049858 A1 WO 2005049858A1 JP 2004017196 W JP2004017196 W JP 2004017196W WO 2005049858 A1 WO2005049858 A1 WO 2005049858A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemoglobin
concentration
sample
polyoxyethylene alkyl
alkyl ether
Prior art date
Application number
PCT/JP2004/017196
Other languages
English (en)
French (fr)
Inventor
Yuriko Taniguchi
Kazunori Saito
Original Assignee
Daiichi Pure Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pure Chemicals Co., Ltd. filed Critical Daiichi Pure Chemicals Co., Ltd.
Priority to US10/579,765 priority Critical patent/US20070154976A1/en
Priority to JP2005515649A priority patent/JPWO2005049858A1/ja
Priority to EP04818961A priority patent/EP1693462A4/en
Publication of WO2005049858A1 publication Critical patent/WO2005049858A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/725Haemoglobin using peroxidative activity

Definitions

  • the present invention relates to a method for measuring a substrate in a sample using an enzymatic reaction, which method reduces interference of hemoglobin coexisting in the sample with the measurement system and accurately measures the substrate in the sample. And its measuring reagent.
  • a specific component in a biological sample for example, serum
  • a specific reaction with a specific component of interest or a component derived from the specific component hereinafter, sometimes collectively referred to as a “substrate”.
  • a specific reaction is measured by a specific reaction with a specific component of interest or a component derived from the specific component (hereinafter, sometimes collectively referred to as a “substrate”).
  • a specific reaction is measured by a specific reaction with a specific component of interest or a component derived from the specific component (hereinafter, sometimes collectively referred to as a “substrate”).
  • an enzymatic method is used in which an enzymatic reaction is carried out using an enzyme to be produced and the resulting product is measured to determine the amount.
  • hydrogen peroxide producing enzyme such as oxidase (hereinafter sometimes referred to as “oxidase enzyme”) acts on a substrate, and the produced hydrogen peroxide is converted to peroxidase and oxidizable color.
  • oxidase enzyme acts on a substrate, and the produced hydrogen peroxide is converted to peroxidase and oxidizable color.
  • a method of using a reagent to lead to a color forming system and colorimetrically determining the color is widely used.
  • Examples of the substrate in the method for measuring a substrate using the oxidase enzyme include glucose, cholesterol, neutral fat, phospholipid, free fatty acid, uric acid, creatine, sialic acid, polyamine, and sugar hemoglobin. And it is actually measured in the area of laboratory tests.
  • the measurement method is based on an oxidation reaction by an oxidase enzyme as a basic principle, the measured value is immediately measured by interference with in vivo reducing substances such as ascorbic acid, pyrilrubin, and hemoglobin that coexist in the sample. There is a problem in that a negative error is generated.
  • pyrilrubin and hemoglobin themselves absorb in the visible region, they may overlap with the measurement wavelength at the time of colorimetry, causing errors, and the absorption of pyrilrubin or hemoglobin itself from external light or measurement. Changes over time depending on the components in the reagent It is also known to affect measurement results. In addition to the above, it is also known that they are susceptible to turbidity interference due to lipids and the like.
  • hemoglobin mixed into biological samples is usually used not only in the case of diseases associated with very small amounts of hemolysis, but also in blood sampling.
  • biological samples serum, plasma, urine, saliva, cerebrospinal fluid, etc.
  • secondary leakage may occur in the sample.
  • whole blood, blood cells, or hemolysates obtained by processing these are used as samples, hemoglobin is naturally mixed. Therefore, reducing the interference of hemoglobin in a method for measuring a substrate using an oxidase enzyme has become an important issue.
  • the detection wavelength at the time of colorimetric quantification is limited, and the measuring device is also limited.
  • turbidity when mixed with a sample, turbidity may occur or the enzyme activity may be affected.
  • Patent Document 3 a method of using a combination of two kinds of anionic surfactants is also known (see Patent Document 3).
  • an enzyme protein by an anionic surfactant is used.
  • Patent Document 1 JP-A-9-119932
  • Patent Document 2 JP-A-3-10696
  • Patent Document 3 JP-A-8-89288
  • the present invention provides a method for measuring a substrate in a sample using an enzymatic reaction, which reduces the interference of hemoglobin coexisting in the sample with the measurement system and is applicable to various automatic analyzers. It is an object of the present invention to provide a simple and efficient method for measuring a substrate in a sample and a reagent for the measurement.
  • the present inventors have proposed a method for measuring a substrate in a sample using an enzymatic reaction to reduce interference of hemoglobin coexisting in the sample with a measurement system.
  • the inventors have found that the treatment of a sample with a specific anionic surfactant can reduce the interference of hemoglobin on the measurement system, and completed the present invention.
  • the present invention provides a method for preparing a sample by allowing peroxidase corresponding to a substrate to act thereon and optically measuring the generated hydrogen peroxide using peroxidase and an acidophilic coloring reagent.
  • the hemoglobin-containing sample was subjected to polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl ether ether sulfates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl sulfosuccinates, polyoxyethylene alkyl sulfosuccinates, and polyoxyethylene alkyl sulfosuccinates.
  • an anionic surfactant selected from oxyethylene alkyl ether carboxylate, polyoxyethylene alkyl ether sulfonate, triethanolamine lauryl sulfate, alkyl sulfosuccinic acid and alkyl phenyl ether sulfonate. Do, hemo There is provided a method for determining a substrate of Robin containing sample.
  • the present invention also provides (A) polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl ether ether sulfates, polyoxyethylene alkyl ether phosphoric acids, polyoxyethylene alkyl sulfosuccinic acids, polyoxyethylene alkyl ether carboxylic acids.
  • Anionic surfactants selected from acid salts, polyoxyethylene alkyl ether sulfonates, triethanolamine peryl sulfate, alkyl sulfosuccinic acids and alkylphenol sulfonates; (B) acting on the substrate; And (c) a reagent for measuring a substrate in a hemoglobin-containing sample containing peroxidase and an oxidizable color reagent.
  • the present invention also provides at least (1) a surfactant, (2) a proteolytic enzyme that acts on a sugarcane protein to produce an exo-fur peptide, and (3) a protease that acts on a fructosyl peptide.
  • a surfactant (2) a proteolytic enzyme that acts on a sugarcane protein to produce an exo-fur peptide
  • a protease that acts on a fructosyl peptide.
  • Glycated protein, glycated peptide or saccharide characterized by containing an enzyme that produces hydrogen oxide It is intended to provide a method for measuring the concentration of a functionalized amino acid or the concentration ratio thereof.
  • the present invention also measures hemoglobin in a sample containing at least a hemoglobin pretreated with a surfactant, and further acts on the hemoglobin measurement reaction solution with a protease that produces fructosyl valyl histidine.
  • the present invention also provides a method for measuring hemoglobin concentration, hemoglobin Ale concentration, and hemoglobin Ale concentration ratio, wherein the hemoglobin Ale concentration is measured.
  • the present invention also provides a step of eluting hemoglobin from blood cells by mixing a sample containing blood cells and a reaction solution containing a surfactant, a step of diluting the reaction solution and optically determining the concentration of hemoglobin, A step of producing at least fructosyl valyl histidine by causing a protease to act on hemoglobin; a step of causing at least a fructosyl valyl histidine to act on this as a substrate to produce an enzyme that produces hydrogen peroxide;
  • the steps of applying peroxidase and an oxidizable color reagent, measuring the change in absorbance due to the formation of a colored compound to determine the hemoglobin Ale concentration, and the process of determining the hemoglobin and hemoglobin Ale concentration ratio It also provides methods for measuring hemoglobin concentration, hemoglobin Ale concentration, and hemoglobin Ale concentration ratio. It is.
  • the present invention also relates to polyoxyethylene derivatives, sulfates of polyoxyethylene alkyl ethers, phosphates, triethanolamine lauryl sulfate, alkyl sulfosuccinic acids and alkyl phenyl ether sulfonic acids.
  • An object of the present invention is to provide a method for pretreating a sample in the measurement of hemoglobin concentration, hemoglobin Ale concentration and hemoglobin Ale concentration ratio, characterized by using an ionic surfactant and a Z or anionic surfactant.
  • the present invention also provides at least a polyoxyethylene derivative, a sulfate of polyoxyethylene alkyl ether, and a phosphate ester in the step of eluting hemoglobin in blood cell strength and the step of determining hemoglobin concentration.
  • Concentration characterized by using a non-ionic surfactant selected from the group consisting of triethanolamine, lauryl sulfate, alkyl sulfosuccinic acids and alkyl phenyl ether sulfonates, and a Z or anionic surfactant. It provides a method.
  • the present invention further measures the hemoglobin Ale concentration ratio using an automatic biochemical analyzer.
  • the automatic biochemical analyzer When setting the operating conditions of the automatic biochemical analyzer for the purpose, (1) set the operating conditions for hemoglobin concentration measurement and hemoglobin Ale concentration measurement individually, and (2) set the hemoglobin concentration measuring reagent to hemoglobin Ale concentration. (3) The sample for hemoglobin concentration measurement and the sample for hemoglobin Ale concentration measurement can be shared. (4) The measurement wavelength for hemoglobin concentration measurement and hemoglobin Ale concentration measurement can be the same.
  • Another object of the present invention is to provide a method for measuring a hemoglobin Ale concentration ratio using an automatic biochemical analyzer.
  • the method for measuring a substrate of the present invention interference of hemoglobin coexisting in a sample can be reduced, and the substrate can be accurately measured. Further, since the method for measuring a substrate of the present invention can be measured by simple operations, it can be applied to various analysis methods and is extremely useful in the field of clinical tests.
  • the method for measuring a substrate of the present invention is performed in accordance with a known enzyme method except for treating a sample with a specific anionic surfactant for the purpose of reducing the interference of hemoglobin coexisting in the sample. Can be implemented.
  • the sample to which the present invention can be applied is not particularly limited as long as it is a sample containing hemoglobin.
  • Biological samples include whole blood, blood cells, serum, plasma, cerebrospinal fluid, sweat, urine, tears, saliva, skin, mucous membranes, hair, and the like. Of these, whole blood, blood cells, serum or plasma are preferred. These samples may be used for measurement as it is, or may be used for measurement after filtration or dialysis treatment. If necessary, the sample (substrate) may be concentrated, extracted, diluted, or the like.
  • the above-mentioned dilution can be performed with water or a buffer solution.
  • the type and concentration of the buffer solution such as phosphoric acid, phthalic acid, citric acid, tris, maleic acid, succinic acid, oxalic acid, tartaric acid, acetic acid, and good (MES, PIPES, ADA, etc.).
  • Buffers and the like can be used at a concentration of 0.000001-2 mol ZL, preferably 0.001-Imol ZL.
  • Specific anionic surfactants that can be used in the method for measuring a substrate of the present invention include polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, polyoxyethylene alkyl ether phosphates, Polyoxyethylene al Anionic surfactant selected from killsulfosuccinic acids, polyoxyethylene alkyl ether carboxylates, polyoxyethylene alkyl ether sulfonates, triethanolamine lauryl sulfate, alkyl sulfosuccinic acids, and alkylphenyl ether sulfonates Agents, preferably polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl ether ether sulfates, polyoxyethylene alkyl ether phosphoric acids or alkyl sulfosuccinic acids, and particularly preferably polyoxyethylene alkyl ether phosphoric acid. Acids, polyoxyethylene alkyl ether sulf
  • polyoxyethylene alkyl ether sulfates examples include-KKOR SBL-4N,-KKOR SBL-2T-36 (all manufactured by NOF Corporation), Emal 20T, Emal 327, and Emal 20C (all manufactured by Kao Corporation).
  • polyoxyethylene alkyl phenyl ether sulfates examples include -kkol SNP-4N (manufactured by NOF Corporation) and Emar NC35 (manufactured by Kao Corporation).
  • the polyoxyethylene alkyl ether phosphoric acid may be a phosphoric acid monoester, a phosphoric diester or a mixture thereof.
  • examples of the polyoxyethylene alkyl ether phosphoric acid include Plysurf A208B, Plysurf A219B, Plysurf A208S, and Plysurf A212C.
  • Plysurf A215C all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • polyoxyethylene alkyl ether phosphoric acids Plysurf A208B is preferred.
  • polyoxyethylene alkyl sulfosuccinic acids include Neo-Noditenol S-70, Neo-Hytenol L-30, and Neo-Hytenol LM-20 (all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • polyoxyethylene alkyl ether carboxylate examples include Kao-Akipo RLM-100NV (manufactured by Kao Corporation), Neohytenol ECL-30 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), ENJECOB 2PS30, ENJECOB 2PS45 (above, Shin-Nippon Chemical Co., Ltd.) And the like).
  • Polyoxyethylene alkyl ether sulfo Examples of the acids include Lionol OAI-N and Lionol OBI (all manufactured by Lion Corporation).
  • Examples of triethanolamine lauryl sulfate include Emal TD (manufactured by Kao Corporation).
  • Examples of the alkylsulfosuccinic acids include Perex CS (manufactured by Kao Corporation).
  • Examples of the alkyl phenyl ether sulfonates include Perex SSH (manufactured by Kao Corporation).
  • the treatment of the hemoglobin-containing sample can be performed by mixing the sample with the specific anionic surfactant.
  • the amount of the specific anionic surfactant to be used is 0.0001 to 10%, preferably 0.001 to 3%, as the concentration after being mixed with the above-mentioned samples such as whole blood, blood cells and serum.
  • the processing time and processing temperature of the hemoglobin-containing sample are not particularly limited. For example, when applied to an automatic analyzer, a processing time of 5 minutes and a processing temperature of 37 ° C. are preferable. In addition, a separate process can be performed before application to an automatic analyzer. Any of these processing conditions can be appropriately selected by experiments.
  • the pH, additives, and the like when a sample is treated with a specific anion-based surfactant are not restricted in the range that does not hinder the measurement of a substrate using an enzymatic reaction.
  • the substrate that can be measured by the substrate measurement method of the present invention is not limited as long as it can be measured by an enzymatic method using oxidase. Therefore, the term ⁇ substrate '' in the present invention includes a substance that can itself be a substrate for oxidase, and a case that a product generated by an enzymatic reaction or any treatment can be a substrate for oxidase (the specific component described above). (Corresponding to the component of the origin).
  • these substrates include sugars such as glucose, mannose, and galactose; lipids such as cholesterol, neutral fat, phospholipid, and free fatty acid; sugar-containing proteins such as saccharified albumin and sugar-containing hemoglobin; uric acid and urea , Creatine, sialic acid, polyamine and the like.
  • glucose, uric acid and the like correspond to a case in which the substance itself can be a substrate for oxidase, such as cholesterol obtained by treating ester-type cholesterol in serum with a hydrolase or cholesterol in serum.
  • the sugar-riding peptide and the sugar-riding amino acid obtained by treating the sugar-riding protein of the above with a proteolytic enzyme correspond to the case where a product produced by an enzymatic reaction or any treatment can be a substrate for oxidase.
  • a saccharide-forming peptide and a saccharide-forming substrate which are used as substrates for oxidase by treating saccharide-protein with a protease.
  • an amino acid is to be obtained will be further described as an example.
  • the proteolytic enzyme in this case is not particularly limited as long as it has proteolytic activity and peptide degrading activity, and may be of microbial origin, animal origin, plant origin, or the like. Efficiently and in a short time from a target sugar-containing protein (for example, hemoglobin Ale) to sugar-soluble peptide or sugar-containing amino acid, preferably fructosyl peptide or fructosyl amino acid, particularly preferably fructosyl valyl histidine or full Those that release ctucylvaline are used.
  • a target sugar-containing protein for example, hemoglobin Ale
  • sugar-soluble peptide or sugar-containing amino acid preferably fructosyl peptide or fructosyl amino acid, particularly preferably fructosyl valyl histidine or full Those that release ctucylvaline are used.
  • proteinase 1 trypsin, bromelain, carboxypeptidase, papain, pepsin, aminopeptidase, neutral proteinase, Toyoteam NEP (Toyobo Co., Ltd.) ), Acid protease, alkaline protease, morsin, AO protease, peptidase (above, manufactured by Kikkoman), Sumiteam CP, Sumiteam TP, Sumiteam LP50D (above, manufactured by Nippon Chemical Co., Ltd.), Samoaase PC10F, Protin PC, Protin PC10F, Protin PS10, Protin NY10, Protin NL10, Protin NC25 (above, manufactured by Daiwa Kasei Co., Ltd.), Actinase AS (manufactured by Kaken Pharmaceutical Co., Ltd.), Pronase E (manufactured by Roche),
  • proteases can be confirmed by allowing them to react with the target glycated protein or fructosyl peptide, and analyzing and comparing the samples before and after the action using capillary electrophoresis.
  • the proteases may be used alone or in combination of two or more. Of these, those derived from microorganisms of the genus Bacillus, Aspergillus or Streptomyces or produced by their genes, or those belonging to meta-oral proteases, neutral proteases, acidic proteases or basic proteases. preferable.
  • the concentration of the proteolytic enzyme is not particularly limited as long as it is a concentration that can efficiently release the target substrate. In consideration of the specific activity of the enzyme to be used, the concentration to be used can be appropriately set experimentally. There is no need to adjust the pH when treating with proteolytic enzymes. Alternatively, the pH may be adjusted to pH 3-11 with a suitable pH adjuster, for example, a buffer, so that the pH becomes suitable for the action of the enzyme to be used.
  • the processing temperature is preferably 10-40 ° C.
  • the oxidase that can be used in the method for measuring a substrate of the present invention is an enzyme having the ability to generate hydrogen peroxide by oxidizing a substrate to be measured, and a known oxidase can be used.
  • a known oxidase can be used.
  • These enzymes may be of microbial origin, animal origin, plant origin, etc., or may be those produced by genetic engineering. Furthermore, it does not matter whether or not there is chemical modification. These enzymes can be used alone or in combination of two or more, whether in the form of a solution or in a dry state, whether they are held or bound to an insoluble carrier.
  • the amount of these enzymes used varies depending on the type of the enzyme, but the concentration used can be appropriately set experimentally in consideration of the specific activity of the enzyme used, and is not particularly limited. It is preferably 0.001-1000 units / mL, particularly preferably 0.01-1000 units / mL.
  • the pH at the time of the action is adjusted with a buffer solution in consideration of the optimum pH of the enzyme to be used.
  • the working temperature is, for example, 10 to 40 ° C., and the temperature used for ordinary enzyme reactions can be appropriately selected.
  • the oxidase can be used in combination with other enzymes, coenzymes, oxidizable color reagents, and the like, if necessary.
  • Other enzymes include amino acid metabolizing enzymes using peroxidase, diaphorase or fructosyl valine as a substrate.
  • enzymes such as ascorbic acid oxidase and pyrylrubin oxidase can be used for the purpose of treating in vivo interference substances other than hemoglobin.
  • NAD nicotinamide adenine dinucleotide
  • NAD H nicotinamide adenine dinucleotide reduced form
  • NADP nicotinamide adenine dinucleotide phosphate
  • NADPH nicotinamide adenine dinucleotide reduced form phosphate
  • any reagent can be used as long as it reacts with hydrogen peroxide and forms a color. It may be something.
  • a combination of 4-aminoantipyrine with a phenol-based, naphthol-based or varin-based compound, a combination of 3-methyl-2-benzothiazolinone hydrazone with an ar-line-based compound, and the like can be mentioned.
  • phenolic compounds that can be combined with 4-aminoantipyrine include phenol, p-chlorophenol, 2,4-dichlorophenol, 2,4-dibromophenol, 2,4,6-trichlorophenol, and the like.
  • a-line compounds examples include N, N-dimethyla-line, N, N getyl-a-line, N, N dimethyl-m-toluidine, N, N-ethyl-m-toluidine, N-ethyl-N-sulfopropyl m -Toluidine, N-ethyl-N- (2-hydroxy-3sulfopropyl) m-Toluidine (TOOS), N-ethyl-N- (3-methylphenyl) N, acetylethylenediamine, 3-methyl-N-ethyl- N (Hydroxyethyl) -arline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -arline (ALOS), N-ethyl-N- (3-sulfopropyl) ary (ALPS), N, N dimethyl-m-cidine, N-ethyl-N- (2-hydroxy-3-sulf
  • a step of treating a sample with the anionic surfactant to reduce the interference of hemoglobin in the sample, and measuring hydrogen peroxide produced by the action of oxidase can be performed separately to measure the substrate, or the substrate can be measured by performing these steps continuously in one step.
  • the reaction temperature may be the same or different in these two steps, and is preferably a temperature at which the substrate measuring reagent of the present invention is in a solution state, for example, 10 to 40 ° C.
  • the method for measuring a substrate of the present invention reduces the interference of hemoglobin when measuring a substrate by an oxidase reaction, while treating a sample with the anionic surfactant according to the present invention.
  • the hemoglobin in the sample can be measured by measuring the absorbance in the absorption wavelength range of hemoglobin. This makes it possible to measure sugarcane hemoglobin (preferably hemoglobin Ale), and thus the case where hemoglobin Ale is measured by the method for measuring a substrate of the present invention will be described.
  • Hemoglobin Ale is formed by non-enzymatic glycation of hemoglobin contained in erythrocytes, and reflects the average blood glucose level for a certain period in the past, so it is regarded as an important index in clinical tests. Being done. Because hemoglobin Ale is expressed as a percentage (%) of the total hemoglobin abundance, the measurement is performed by (i) lysing red blood cells and releasing hemoglobin out of red blood cells to make it measurable.
  • a process for calculating the ratio (arithmetic process) is required.
  • the term “measurement of a substrate” in this specification refers to not only measurement of the abundance (for example, concentration) of a substrate in a sample, but also the proportion of the substrate in a specific reference substance (for example, ) Is included.
  • the anionic surfactant according to the present invention also has the ability to treat hemoglobin with methoxide! /, So that the absorbance in the absorption wavelength region of hemoglobin is measured, and the step (ii) can be performed without any problem. Can be implemented.
  • step (i) conventionally known various surfactants (for example, Triton X-100 which is a nonionic surfactant) can be used, but the anionic surfactant according to the present invention is used.
  • Agents particularly sulfates and phosphates of polyoxyethylene alkyl ethers, or anionic surfactants selected from lauryl sulfate triethanolamine, alkyl sulfosuccinates, alkylphenol ether sulfonates, etc. It can be used in the step i), and may be used alone or in combination with various conventionally known surfactants.
  • nonionic surfactant which can be used alone or in combination with the anionic surfactant according to the present invention in the step (i)
  • polyoxyethylene derivatives may be used.
  • Manolegens manufactured by Kao Corporation, Emanoregen 709, Emanolegen 108, Emanolegen A90, Emanolegen B66, etc.
  • -Coccoles -Coco Chemicals, -Cocole BC20TX, -Cocole OP-10, -Cocole BT9, etc.
  • Liponox Lion Corporation, Liponox NC80, Liponox OC100, etc.
  • Leocols (Lion Corporation, Leocol TD90, Leocol SC120, etc.)
  • Neugens (Daiichi Kogyo Seiyaku, Neugen EA120, Neugen ET147, etc.) , Evans (Daiichi Kogyo Seiyaku Co., Ltd., Evan 48
  • the glycoside peptide or amino acid derived from hemoglobin Ale is released from hemoglobin Ale by a protease, and fructosyl peptide oxidase or fructosyl amino acid oxidase is further converted. Can be implemented.
  • the force described in the step (iii) will be described in further detail.
  • the specificity is determined by the difference in reactivity of the oxidase enzyme to fructosyl valine and fructosylnolyl histidine, in which the amino-terminal palin of the hemoglobin 13 subunit is glycated, and ⁇ fructosyl lysine.
  • Determining power S there are 44 lysine residues in the hemoglobin molecule. Even if the reactivity to ⁇ fructosyl lysine is low, its effect cannot be ignored. In addition, the ⁇ -chain ⁇ -terminal palin of hemoglobin also binds to valine, a force that becomes fructosyl valine by sugar chain, and the amino acid is not histidine, so fructosyl valyl histidine is not generated. .
  • the measurement of fructosyl lysine should be eliminated as much as possible, and the fructosyl valyl histidyl peptide should be used more than the measurement of fructosyl valine alone. Measuring is more advantageous.
  • the protease is one that releases fructosyl valyl histidine peptide, preferably fructosyl valyl histidine, and the one in which fructosyl peptide oxidase acts on fructosyl valyl histidine. Most preferred.
  • Bacillus-derived enzymes include protin PC10F, protin N Enzymes derived from the genus Aspergillus, such as C25 (manufactured by Daiwa Kasei Co., Ltd.) and Toyoteam NEP (manufactured by Toyobo), include morphine (manufactured by Kikkoman), and enzymes derived from Streptococcus include actinase AS, actinase AF, and actinase.
  • Protease Type—XIV manufactured by Sigma
  • proteinsase K proteinsase K
  • These enzymes are preferably those belonging to metalloproteinases, neutral proteases, acidic proteases or basic proteases. The use concentration and use conditions are as described above.
  • Examples of the fructosyl peptide oxidase as described above include an enzyme obtained by modifying a fructosyl amino acid oxidase produced by a bacterium of the genus Corynebacterium (Japanese Patent Application Laid-Open No. 2001-95598), a fructosyl peptide oxidase derived from a filamentous fungus Oxidase (JP-A-2003-235585) and the like.
  • FPOX-CE or FPOX-EE are particularly suitable.
  • steps (i) to (iv) may be performed sequentially, but a plurality of steps may be performed simultaneously.
  • a reagent containing both the surfactant for hemolysis such as Triton X-100 and the anionic surfactant according to the present invention such as Plysurf A208B
  • (i) can be performed simultaneously, and if a protease such as proteinase K factorinase AS coexists, part of step (iii) can be performed simultaneously.
  • an automatic analyzer generally used in the field of clinical tests such as a Hitachi 7150 type automatic analyzer (hereinafter referred to as “biochemical automatic analysis”).
  • biochemical automatic analysis When measuring the hemoglobin Ale concentration ratio (%) (hereinafter sometimes referred to as “hemoglobin Ale (%)”) using an automated biochemical analyzer,
  • the reagent for measuring hemoglobin concentration can be shared as a constituent reagent for hemoglobin Ale concentration measurement.
  • the sample for hemoglobin concentration measurement and the sample for hemoglobin Ale concentration measurement can be shared.
  • the measurement wavelength of hemoglobin concentration measurement and hemoglobin Ale concentration measurement can be the same.
  • a method for measuring hemoglobin Ale value (%) using an automatic biochemical analyzer that features these (1) and (4) is also available. Provided.
  • the reagent of the present invention can be used for measuring the hemoglobin concentration and the hemoglobin Ale concentration using one reaction vessel, or for measuring using a biochemical automatic analyzer. It may be used in the so-called one-channel method in which the constituent reagents are continuously added.However, when setting the operating conditions of the automatic biochemical analyzer, the amount of reagent used for hemoglobin concentration measurement and hemoglobin Ale concentration measurement must be adjusted. U, prefer to set the conditions individually.
  • the reagent for measuring hemoglobin concentration can be shared as a constituent reagent for measuring hemoglobin Ale concentration, and a sample can also be shared.
  • the measurement wavelengths for hemoglobin concentration measurement and hemoglobin Ale concentration measurement can be the same.
  • the reagent for measuring a substrate of the present invention includes (A) polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl ether ether sulfates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl sulfosuccinates, and polyoxyethylene.
  • Anionic surfactants selected from alkyl ether carboxylate, polyoxyethylene alkyl ether sulfonate, triethanolamine lauryl sulfate, alkyl sulfosuccinate and alkyl phenyl ether sulfonate,
  • B substrate And
  • C a peroxidase and an oxidizable color reagent.
  • the sensitivity can be increased by further generating hydrogen peroxide from the product resulting from the action of the oxidase described in (B).
  • glucosylanidase may be included in darcosone produced when glycidylamide peptide or amino acid released from hemoglobin Ale and fructosyl peptide oxidase or fructosyl amino acid oxidase act (particularly, (2000-333696).
  • the saccharifying enzyme is at least one saccharifying enzyme selected from the group consisting of glucose oxidase, galactosidase, and viranose oxidase.
  • a pretreatment agent for extracting hemoglobin from erythrocytes and subjecting it to a reaction can be used.
  • enzymes for treating impurities in blood salts such as sodium salt sodium, potassium salt sodium, potassium ferrocyanide, etc., reaction modifiers, tetrazolium salts for avoiding the effects of reducing substances, preservatives Antibiotics, sodium azide sodium and the like.
  • the reagent for measuring a substrate of the present invention can be provided not only in a solution state but also in a dried state or a gel state.
  • an insoluble carrier in addition to filling in a glass bottle, a plastic container, or the like, it can be provided in a form of application to an insoluble carrier, impregnation, or the like.
  • the insoluble carrier include particles' spherical carrier such as latex, glass and colloid, flat carrier such as semiconductor and glass, film carrier such as paper and trocellulose, and fibrous carrier.
  • Hemoglobin concentrations of 0, 100, 300, and 500 mg / dL were prepared in hemoglobin-containing samples by adding 1 volume of physiological saline or human hemoglobin solution to 9 volumes of serum.
  • Example 1 0.5% Emar 20C (manufactured by Kao Corporation)
  • Example 5 0.05% Perex CS (manufactured by Kao Corporation)
  • Example 6 0.1% Perex SS-H (manufactured by Kao Corporation)
  • a hemoglobin-containing sample having a fructosyl valine (fV) concentration of 5 ⁇ mol / L and 10 ⁇ mol ZL was prepared using a diluted solution of hemoglobin physiological saline prepared so that the absorbance at 542 nm was 5 OD.
  • a physiological saline was used in place of the hemoglobin diluted saline.
  • fV was manufactured by Biotaest.
  • Example 7 0.2% Plysurf A208B (Daiichi Kogyo Seiyaku Co., Ltd.)
  • each sample was measured in the same manner as in Example 7, except that the second reagent was as follows.
  • Example 10 0.5% Plysurf A215C (manufactured by Daiichi Kogyo Seiyaku)
  • Example 11 0.2% Plysurf A208B (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
  • Example 12 0.5%-KKOR SBL-4N (manufactured by NOF CORPORATION)
  • Example 13 3.0% Emar NC35 (manufactured by Kao Corporation)
  • Toyozyme NEP was used after dialyzing 100,000 units ZmL of the concentrated solution against 20 mmol ZL of phosphate buffer (pH 5.5) containing 500 mmol ZL of NaCl at 4 ° C for 4 hours.
  • 240 ⁇ L of the first reagent was added, and the absorbance after heating at 37 ° C for 5 minutes was measured (absorbance ⁇ ).
  • 80 L of the second reagent was added, and the absorbance after heating at 37 ° C for 5 minutes was measured (absorbance IV). The absorbance was measured at a wavelength of 600 nm, and the same operation (reagent blank) was performed using physiological saline instead of the sample as a control.
  • the change in absorbance (absorbance V) based on the amount of fructosyl peptide in each sample was calculated using Formula B from the absorbance ⁇ and the absorbance IV of each sample.
  • Absorbance V Absorbance IV (Absorbance ⁇ X (20 + 240) / (20 + 240 + 80)) Above absorbance ⁇ is proportional to the total hemoglobin concentration in the sample, so hemoglobin Ale value (%) is known. Hemolysed blood (haemoglobin Ale value of 8.6%) was compared with absorbances III and V when the same operation was performed as above, and the hemoglobin Ale value (%) of each sample was calculated.
  • Example 9-13 and Comparative Example 6 The hemoglobin Ale value (%) obtained in Example 9-13 and Comparative Example 6 was measured with the hemoglobin Ale value (%) of each sample (reference example), which was measured using Ravidia Alc (manufactured by Fujirebio Co., Ltd.). Each was compared. Table 4 shows the results.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 試料中のヘモグロビンの干渉を軽減して種々の自動分析装置に適用できる簡便で効率の良い、試料中の基質を測定する方法及びその測定試薬を提供する。  基質に対応するオキシダーゼを作用させ、生成する過酸化水素をパーオキシダーゼ及び被酸化性呈色試薬を用いて光学的に測定することにより試料中の基質を測定する方法において、ヘモグロビン含有試料をポリオキシエチレンアルキルエーテル硫酸塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸塩類、ポリオキシエチレンアルキルエーテルリン酸類、ポリオキシエチレンアルキルスルホコハク酸類、ポリオキシエチレンアルキルエーテルカルボン酸塩類、ポリオキシエチレンアルキルエーテルスルホン酸塩類、ラウリル硫酸トリエタノールアミン、アルキルスルホコハク酸類及びアルキルフェニルエーテルスルホン酸塩類から選ばれる陰イオン系界面活性剤で処理することを特徴とする、ヘモグロビン含有試料中の基質の測定。

Description

明 細 書
ヘモグロビン含有試料中の基質の測定方法
技術分野
[0001] 本発明は、酵素反応を利用して試料中の基質を測定する方法において、試料中に 共存するヘモグロビンによる測定系への干渉を軽減し、試料中の基質を精度よく測 定する方法及びその測定用試薬に関する。
背景技術
[0002] 血液、尿などの生体試料中に存在する特定成分の測定は、その存在量の変動と疾 病との関連が解明されるに従い、疾患の診断、病態の解明、治療効果の判断などを 行う上で必須なものとなっている。現在、生体試料 (例えば血清)中の特定成分の測 定方法としては、目的とする特定成分もしくは当該特定成分由来の成分 (以下、総称 して「基質」ということがある)に特異的に反応する酵素を用いて酵素反応を行い、そ の結果生じる生成物を測定することにより定量する酵素法が一般的である。これら酵 素法のなかでも、ォキシダーゼのような過酸化水素生成酵素(以下、「ォキシダーゼ 酵素」ということがある)を基質に作用させ、生成する過酸化水素をパーォキシダーゼ 及び被酸化性呈色試薬を用いて発色系に導き、その呈色を比色定量する方法が広 く普及している。
[0003] 前記ォキシダーゼ酵素を利用する基質の測定方法における基質としては、例えば 、グルコース、コレステロール、中性脂肪、リン脂質、遊離脂肪酸、尿酸、クレアチュン 、シアル酸、ポリアミン、糖ィ匕ヘモグロビンなどを挙げることができ、臨床検査の領域 で実際に測定されている。
[0004] しかしながら、当該測定方法は、ォキシダーゼ酵素による酸化反応を基礎原理とし て成り立つているため、試料中に共存するァスコルビン酸、ピリルビン、ヘモグロビン 等の生体内還元物質による干渉を受けやすぐ測定値に負の誤差を生じるという問 題がある。また、ピリルビンやヘモグロビンは、それ自身が可視領域に吸収を有する ため、比色定量時の測定波長と重なり誤差の原因となることや、ピリルビンやへモグロ ビン自身の吸光が外部からの光あるいは測定試薬中の成分によって経時的に変化 し測定結果に影響を与えることも知られている。前述のほか、脂質等による濁りの干 渉を受けやす 、ことも知られて 、る。
[0005] 上記した物質のうち、ヘモグロビンの生体試料 (血清、血漿、尿、唾液、髄液等)へ の混入は、通常、極微量である力 溶血をともなう疾患などの場合のほかに、採血な ど測定用試料の採取条件、血液試料の調製、保存条件によっては二次的に試料中 に漏出することがある。また、全血や血球、或いはこれらを処理して得た溶血液を試 料とする場合には、自ずとヘモグロビンが混入する。従って、ォキシダーゼ酵素を利 用する基質の測定方法においてヘモグロビンの干渉を軽減させることは重要な課題 となっている。
[0006] 試料中の基質をォキシダーゼ酵素を用いて定量する際のヘモグロビンの干渉を軽 減する方法としては、ヘモグロビン自身の吸収波長を避けた特定波長で測定する方 法 (例えば、特許文献 1参照)、陽イオン系又は両性界面活性剤を用いる方法 (例え ば、特許文献 2参照)が知られている。
[0007] し力しながら、ヘモグロビン自身の吸収波長を避けて特定の検出波長で測定する 方法では、比色定量時の検出波長が限定されるとともに、測定装置も限定される。ま た、陽イオン系又は両性界面活性剤を用いる方法では、試料と混和した際に濁りを 生じたり、酵素活性に影響を与える場合がある。
[0008] 上記の他に、 2種類の陰イオン系界面活性剤を組み合わせて使用する方法も知ら れている(特許文献 3参照)が、この方法では、陰イオン系界面活性剤による酵素蛋 白質の変性を回避するために、特定量のアルキルスルホン酸塩及びアルキルナフタ レンスルホン酸塩を同時に使用する必要があった。
特許文献 1:特開平 9—119932号公報
特許文献 2:特開平 3— 10696号公報
特許文献 3:特開平 8- 89288号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、酵素反応を利用して試料中の基質を測定する方法において、試料中に 共存するヘモグロビンの測定系への干渉を軽減して種々の自動分析装置に適用で きる簡便で効率の良い、試料中の基質を測定する方法及びその測定用試薬を提供 することにある。
課題を解決するための手段
[0010] 本発明者らは、カゝかる実情に鑑み、酵素反応を利用して試料中の基質を測定する 方法にお 、て、試料中に共存するヘモグロビンの測定系への干渉を軽減する方法 につ 、て鋭意検討した結果、試料を特定の陰イオン系界面活性剤で処理することに より測定系へのヘモグロビンの干渉を軽減できることを見出し、本発明を完成した。
[0011] すなわち、本発明は、基質に対応するォキシダーゼを作用させ、生成する過酸ィ匕 水素をパーォキシダーゼ及び被酸ィ匕性呈色試薬を用いて光学的に測定することに より試料中の基質を測定する方法にぉ 、て、ヘモグロビン含有試料をポリオキシェチ レンアルキルエーテル硫酸塩類、ポリオキシエチレンアルキルフエ-ルエーテル硫酸 塩類、ポリオキシエチレンアルキルエーテルリン酸類、ポリオキシエチレンアルキルス ルホコハク酸類、ポリオキシエチレンアルキルエーテルカルボン酸塩類、ポリオキシ エチレンアルキルエーテルスルホン酸塩類、ラウリル硫酸トリエタノールァミン、アルキ ルスルホコハク酸類及びアルキルフエ-ルエーテルスルホン酸塩類から選ばれる陰 イオン系界面活性剤で処理することを特徴とする、ヘモグロビン含有試料中の基質 の測定方法を提供するものである。
[0012] 本発明はまた、(A)ポリオキシエチレンアルキルエーテル硫酸塩類、ポリオキシェ チレンアルキルフエ-ルエーテル硫酸塩類、ポリオキシエチレンアルキルエーテルリ ン酸類、ポリオキシエチレンアルキルスルホコハク酸類、ポリオキシエチレンアルキル エーテルカルボン酸塩類、ポリオキシエチレンアルキルエーテルスルホン酸塩類、ラ ゥリル硫酸トリエタノールァミン、アルキルスルホコハク酸類及びアルキルフエ-ルェ 一テルスルホン酸塩類カゝら選ばれる陰イオン系界面活性剤、 (B)基質に作用して過 酸化水素を生成するォキシダーゼ、並びに (C)パーォキシダーゼ及び被酸化性呈 色試薬を含むヘモグロビン含有試料中の基質測定用試薬を提供するものである。
[0013] 本発明はまた、少なくとも、(1)界面活性剤、(2)糖ィ匕蛋白質に作用してフル外シ ルペプチドを生成する蛋白質分解酵素及び(3)フルクトシルペプチドに作用して過 酸化水素を産する酵素を含むことを特徴とする糖化蛋白質、糖化ペプチドもしくは糖 化アミノ酸の濃度又はそれらの濃度比測定方法を提供するものである。
[0014] 本発明はまた、少なくとも界面活性剤で前処理されたヘモグロビンを含む試料中の ヘモグロビン測定を行 、、更にヘモグロビン測定用反応液にフルクトシルバリルヒス チジンを生成する蛋白質分解酵素を作用させ、ヘモグロビン Ale濃度測定を行うこと を特徴とするヘモグロビン濃度、ヘモグロビン Ale濃度及びヘモグロビン Ale濃度比 の測定方法を提供するものである。
[0015] 本発明はまた、血球を含む試料と界面活性剤を含む反応液を混合して血球からへ モグロビンを溶出させる工程、本反応液を希釈して光学的にヘモグロビンの濃度を 求める工程、ヘモグロビンに蛋白質分解酵素を作用させて少なくともフルクトシルバリ ルヒスチジンを産する工程、少なくともフルクトシルバリルヒスチジンにこれを基質とし て過酸ィヒ水素を産する酵素を作用させる工程、過酸ィヒ水素とパーォキシダーゼ及び 被酸化性呈色試薬を作用させる工程、呈色化合物の生成による吸光度変化を測定 しヘモグロビン Ale濃度を求める工程、並びにヘモグロビン濃度とヘモグロビン Ale 濃度力 ヘモグロビン Ale濃度比を求める工程力 なるヘモグロビン濃度、へモグロ ビン Ale濃度及びヘモグロビン Ale濃度比の測定方法を提供するものである。
[0016] 本発明はまた、ポリオキシエチレン誘導体、ポリオキシエチレンアルキルエーテルの 硫酸塩類、リン酸エステル類、ラウリル硫酸トリエタノールァミン、アルキルスルホコハ ク酸類及びアルキルフエニルエーテルスルホン酸類力 選ばれる非イオン系界面活 性剤及び Z又は陰イオン系界面活性剤を用いることを特徴とするヘモグロビン濃度、 ヘモグロビン Ale濃度及びヘモグロビン Ale濃度比の測定における試料の前処理 方法を提供するものである。
[0017] 本発明はまた、血球力もヘモグロビンを溶出させる工程、ヘモグロビンの濃度を求 める工程力 なるヘモグロビン濃度測定において、少なくともポリオキシエチレン誘導 体、ポリオキシエチレンアルキルエーテルの硫酸塩類、リン酸エステル類、ラウリル硫 酸トリエタノールァミン、アルキルスルホコハク酸類及びアルキルフエ-ルエーテルス ルホン酸類カゝら選ばれる非イオン性界面活性剤及び Z又は陰イオン系界面活性剤 を用いることを特徴とするヘモグロビン濃度測定方法を提供するものである。
[0018] 本発明は更に、生化学自動分析装置を用いてヘモグロビン Ale濃度比を測定する 目的で、生化学自動分析装置の操作条件を設定する際に、(1)ヘモグロビン濃度測 定とヘモグロビン Ale濃度測定の操作条件を個別に設定する、 (2)ヘモグロビン濃 度測定試薬をヘモグロビン Ale濃度測定用の構成試薬として共用できる、 (3)へモ グロビン濃度測定用とヘモグロビン Ale濃度測定用の試料を共用できる、(4)へモグ ロビン濃度測定とヘモグロビン Ale濃度測定の測定波長を同一にできることを特徴と する、生化学自動分析装置を用いてヘモグロビン Ale濃度比を測定する方法を提供 するものである。
発明の効果
[0019] 本発明の基質の測定方法によれば、試料中に共存するヘモグロビンの干渉を軽減 して、基質を精度よく測定することができる。また、本発明の基質の測定方法は、簡便 な操作で測定が可能であるため、種々の分析方法に適用でき、臨床検査の領域に おいて極めて有用である。
発明を実施するための最良の形態
[0020] 本発明の基質の測定方法は、試料中に共存するヘモグロビンの干渉を軽減する目 的で、試料を特定の陰イオン系界面活性剤で処理する以外は、公知の酵素法に準 じて実施することができる。
[0021] 本発明が適用可能な試料としては、ヘモグロビンを含有する試料であれば特に制 限はない。生体試料としては、全血、血球、血清、血漿、髄液、汗、尿、涙液、唾液、 皮膚、粘膜、毛髪等が挙げられる。このうち、全血、血球、血清又は血漿が好ましい。 これらの試料は、そのまま測定に供することはもちろん、ろ過や透析処理の後に測定 に供してもよぐまた必要であれば、試料 (基質)を濃縮、抽出、希釈等してもよい。
[0022] 前記した希釈は、水又は緩衝液で行うことができる。この場合の緩衝液の種類、濃 度に特に制限はなぐリン酸、フタル酸、クェン酸、トリス、マレイン酸、コハク酸、シュ ゥ酸、酒石酸、酢酸、グッド(MES、 PIPES, ADAなど)の緩衝液等を 0. 00001— 2 molZL、好ましくは 0. 001— ImolZLの濃度で使用することができる。
[0023] 本発明の基質の測定方法に使用できる特定の陰イオン系界面活性剤は、ポリオキ シエチレンアルキルエーテル硫酸塩類、ポリオキシエチレンアルキルフエニルエーテ ル硫酸塩類、ポリオキシエチレンアルキルエーテルリン酸類、ポリオキシエチレンアル キルスルホコハク酸類、ポリオキシエチレンアルキルエーテルカルボン酸塩類、ポリオ キシエチレンアルキルエーテルスルホン酸塩類、ラウリル硫酸トリエタノールァミン、ァ ルキルスルホコハク酸類及びアルキルフエニルエーテルスルホン酸塩類から選ばれ る陰イオン系界面活性剤であり、好ましくは、ポリオキシエチレンアルキルエーテル硫 酸塩、ポリオキシエチレンアルキルフエ-ルエーテル硫酸塩、ポリオキシエチレンァ ルキルエーテルリン酸類又はアルキルスルホコハク酸類であり、特に好ましくはポリオ キシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルエーテル硫酸塩 又はアルキルスルホコハク酸類であり、最も好ましくはポリオキシエチレンアルキルェ 一テルリン酸である。これら特定の陰イオン系界面活性剤は、市販品として入手可能 である。
ポリオキシエチレンアルキルエーテル硫酸塩類としては、例えば、 -ッコール SBL— 4N、 -ッコール SBL - 2T - 36 (以上、 日本油脂社製)、エマール 20T、エマール 32 7、エマール 20C (以上、花王社製)、ハイテノール 225L、 ノヽィテノール 325D、ハイ テノール NF13、ハイテノール NF15 (以上、第一工業製薬社製)、サンノール LMT 1430、サンノール DM1470 (以上、ライオン社製)などが挙げられる。ポリオキシェ チレンアルキルフエ-ルエーテル硫酸塩類としては、例えば、 -ッコール SNP— 4N ( 日本油脂社製)、エマール NC35 (花王社製)などが挙げられる。ポリオキシエチレン アルキルエーテルリン酸類は、リン酸モノエステル、リン酸ジエステル又はその混合物 でもよく、ポリオキシエチレンアルキルエーテルリン酸類としては、例えば、プライサー フ A208B、プライサーフ A219B、プライサーフ A208S、プライサーフ A212C、プラ ィサーフ A212E、プライサーフ A215C (以上、第一工業製薬社製)などが挙げられ る。これらのポリオキシエチレンアルキルエーテルリン酸のうちで、プライサーフ A208 Bが好ましい。ポリオキシエチレンアルキルスルホコハク酸類としては、例えば、ネオ ノヽィテノール S— 70、ネオハイテノール L— 30、ネオハイテノール LM— 20 (以上、第 一工業製薬社製)などが挙げられる。ポリオキシエチレンアルキルエーテルカルボン 酸塩類としては、例えば、カオ一アキポ RLM-100NV (花王社製)、ネオハイテノー ル ECL— 30 (第一工業製薬社製)、ェヌジェコブ 2PS30、ェヌジェコブ 2PS45 (以上 、新日本理ィ匕社製)などが挙げられる。ポリオキシエチレンアルキルエーテルスルホ ン酸類としては、例えば、リオノール OAI— N、リオノール OBI (以上、ライオン社製)な どが挙げられる。
[0025] ラウリル硫酸トリエタノールァミンとしては、例えば、エマール TD (花王社製)が挙げ られる。アルキルスルホコハク酸類としては、例えば、ペレックス CS (花王社製)が挙 げられる。アルキルフエ-ルエーテルスルホン酸塩類としては、例えば、ペレックス SS H (花王社製)が挙げられる。
[0026] ヘモグロビン含有試料の処理は、当該特定の陰イオン系界面活性剤と試料を混合 することにより行うことができる。特定の陰イオン系界面活性剤の使用量は、前記した 全血、血球、血清などの試料と混合した後の濃度として、 0. 0001— 10%、好ましく は 0. 001— 3%である。ヘモグロビン含有試料の処理の時間、処理の温度は特に制 限されず、例えば、自動分析装置へ適用する場合、処理時間 5分、処理温度 37°Cな どが好ましい。 また自動分析装置に適用する前に別途処理をすることもできる。これ ら処理の条件はいずれも実験によって適宜選択することができる。同様に特定の陰ィ オン系界面活性剤により試料を処理する際の pHや添加物等も、酵素反応を利用し て基質を測定する際の障害とならな 、範囲で制限がな!、。
[0027] 本発明の基質の測定方法で測定可能な基質は、ォキシダーゼを用いる酵素法で 測定できるものであれば制限されない。従って、本発明における「基質」には、それ自 体がォキシダーゼの基質になりうる物質である場合、及び酵素反応や何らかの処理 により生成した生成物がォキシダーゼの基質になりうる場合 (前述した特定成分由来 の成分に相当)が含まれる。これらの基質として、グルコース、マンノース、ガラクトー ス等の糖類;コレステロール、中性脂肪、リン脂質、遊離脂肪酸等の脂質類;糖化アル ブミン、糖ィ匕ヘモグロビン等の糖ィ匕蛋白質類;尿酸、尿素、クレアチュン、シアル酸、 ポリアミンなどを例示することができる。
[0028] これらのうち、グルコース、尿酸などが、それ自体がォキシダーゼの基質となりうる物 質である場合に該当し、血清中のエステル型コレステロールを加水分解酵素で処理 して得られるコレステロールや血清中の糖ィ匕蛋白質を蛋白質分解酵素で処理して得 られる糖ィ匕ペプチド及び糖ィ匕アミノ酸などが、酵素反応や何らかの処理により生成し た生成物がォキシダーゼの基質になりうる場合に該当する。 [0029] 酵素反応や何らかの処理により生成した生成物がォキシダーゼの基質になりうる場 合のうち、糖ィ匕蛋白質を蛋白質分解酵素で処理してォキシダーゼの基質となる糖ィ匕 ペプチド及び糖ィ匕アミノ酸を得ようとする場合を例にさらに説明する。
[0030] この場合の蛋白質分解酵素は、蛋白質分解活性、ペプチド分解活性を有していれ ば由来は微生物由来、動物由来、植物由来などの何れでもよく特に制限されない。 短時間で効率よく目的とする糖ィ匕蛋白質 (例えばヘモグロビン Ale)から糖ィ匕ぺプチ ド又は糖ィ匕アミノ酸、好ましくはフルクトシルペプチド又はフルクトシルアミノ酸、特に 好ましくはフルクトシルバリルヒスチジン又はフルクトシルバリンを遊離するものが使用 される。具体的には、プロティナ一ゼ1:、トリプシン、ブロメライン、カルボキシぺプチ ダーゼ、パパイン、ペプシン、アミノぺプチダーゼなど研究用試薬として広く市販され ているものや、ニュートラルプロティナーゼ、トヨチーム NEP (以上、東洋紡社製)、酸 性プロテアーゼ、アルカリプロテアーゼ、モルシン、 AOプロテアーゼ、ぺプチダーゼ (以上、キッコ一マン社製)、スミチーム CP、スミチーム TP、スミチーム LP50D (以上 、新日本化学工業社製)、サモアーゼ PC10F、プロチン PC、プロチン PC10F、プロ チン PS10、プロチン NY10、プロチン NL10、プロチン NC25 (以上、大和化成社製 )、ァクチナーゼ AS (科研製薬社製)、プロナーゼ E (ロシュ社製)、ゥマミザィム、プロ テアーゼ S「ァマノ」 G、プロテアーゼ A「ァマノ」 G、プロテアーゼ P「ァマノ」 3G (以上、 アマノエンザィム社製)など工業用として市販されているものが挙げられる。これら蛋 白質分解酵素は、 目的とする糖化蛋白質、フルクトシルペプチドと作用させ、作用の 前後の試料をキヤピラリー電気泳動を用いて分析、比較することにより効果を確認で きる。上記蛋白質分解酵素は、単独で用いても、また二種以上を組み合わせて用い てもよい。これらのなかで、バチルス属、ァスペルギルス属もしくはストレプトマイシス 属の微生物由来、あるいはその遺伝子により産生されるもの、又は、メタ口プロティナ ーゼ、中性プロテアーゼ、酸性プロテアーゼもしくは塩基性プロテアーゼに属するも のが好ましい。
[0031] 蛋白質分解酵素の濃度は、 目的とする基質を効率よく遊離できる濃度であれば特 に制限はない。使用する酵素の比活性などを考慮し、実験的に使用濃度を適宜設 定することができる。蛋白質分解酵素で処理するときの pHは、特に調整しなくてもよ いが、使用する酵素の作用に好適な pHとなるように、適当な pH調整剤、例えば緩衝 液によって pH3— 11に調整してもよい。処理温度は、 10— 40°Cが好ましい。
[0032] 本発明の基質の測定方法において使用できるォキシダーゼとしては、測定すべき 基質を酸ィヒして過酸ィヒ水素を生成する能力を有する酵素であり、公知のォキシダー ゼを使用できる。例えば、グルコースォキシダーゼ、ガラクトースォキシダーゼ、ゥリカ ーゼ、コレステロールォキシダーゼ、フルクトシルアミノ酸ォキシダーゼ(特開 2003— 79386号公報及び国際公開第 97Z20039号パンフレット)、ケトァミンォキシダーゼ (特開平 5—19219号公報)、フルクトシルペプチドォキシダーゼ(特開 2001— 9559 8号公報及び特開 2003— 235585号公報)などを挙げることができる。これらの酵素 は、微生物由来、動物由来、植物由来等のいずれでもよぐまた遺伝子操作により作 られたものでもよい。更に、化学修飾の有無も問わない。これらの酵素は、溶液状態 でも乾燥状態でもよぐ不溶性担体に保持又は結合されていてもよぐ単独で又は 2 種以上を組み合わせて使用することができる。
[0033] これらの酵素の使用量は、酵素の種類によっても異なるが、使用する酵素の比活性 などを考慮し、実験的に使用濃度を適宜設定することができ、特に制限はない。好ま しくは 0. 001— 1000単位 ZmL、特に好ましくは 0. 01— 1000単位/ mLである。 作用させるときの pHは、使用する酵素の至適 pHを考慮し、緩衝液を用いて調整す る。作用温度は、例えば、 10— 40°Cであり、通常の酵素反応に用いられる温度を適 宜選択できる。
[0034] 上記ォキシダーゼは、必要に応じて、他の酵素、補酵素、被酸化性呈色試薬等と 組み合わせて使用することができる。他の酵素としては、パーォキシダーゼ、ジァホラ ーゼ又はフルクトシルバリンを基質としな 、アミノ酸代謝酵素などが挙げられる。また 、ヘモグロビン以外の生体内干渉物質を処理する目的で、ァスコルビン酸ォキシダ ーゼ、ピリルビンォキシダーゼ等の酵素も使用できる。補酵素としてはニコチンアミド アデ-ンジヌクレオチド(NAD)、ニコチンアミドアデニンジヌクレオチド還元型(NAD H)、ニコチンアミドアデニンジヌクレオチドリン酸(NADP)、ニコチンアミドアデニンジ ヌクレオチド還元型リン酸(NADPH)、チォ NAD、チォ NADP等が挙げられる。
[0035] 被酸ィ匕性呈色試薬としては、過酸ィ匕水素と反応して呈色するものであれば如何な るものでもよい。例えば、 4ーァミノアンチピリンと、フエノール系、ナフトール系又はァ 二リン系化合物との組み合わせ、 3—メチルー 2—べンゾチアゾリノンヒドラゾンとァ-リン 系化合物との組み合わせなどが挙げられる。 4ーァミノアンチピリンと組み合わせること ができるフエノール系化合物としては、フエノール、 p クロ口フエノール、 2, 4—ジクロ 口フエノール、 2, 4 ジブロモフエノール、 2, 4, 6—トリクロ口フエノールなどが挙げら れ、ァ-リン系化合物としては、 N, N—ジメチルァ-リン、 N, N ジェチルァ-リン、 N , N ジメチルー m—トルイジン、 N, N—ジェチルー m—トルイジン、 N—ェチルー N—スル ホプロピル m—トルイジン、 N—ェチルー N—(2—ヒドロキシー 3 スルホプロピル) m— トルイジン(TOOS)、 N—ェチルー N— (3—メチルフエ-ル) N,ーァセチルエチレンジ ァミン、 3—メチルー N—ェチルー N (ヒドロキシェチル)ァ-リン、 N—ェチルー N— (2—ヒ ドロキシ— 3—スルホプロピル)ァ-リン(ALOS)、 N—ェチルー N—( 3—スルホプロピル )ァ-リン (ALPS)、 N, N ジメチルー m ァ-シジン、 N—ェチルー N— (2—ヒドロキシ —3—スルホプロピル) m ァ-シジン (ADOS)などが挙げられる。その他、 N (カル ボシキメチルァミノカルボ-ル) 4, 4,—ビス(ジメチルァミノ)—ジフエ-ルァミン'ナト リウム塩(DA— 64)、 10— (カルボキシメチルァミノカルボ-ル)— 3, 7 ビス(ジメチル ァミノ)—フエノチアジン'ナトリウム塩(DA— 67)、 10— N—メチルカルバモイルー 3, 7— ジメチルァミノ— 10H—フエノチアジン(MCDP)、 N, N, Ν' , Ν' , Ν", Ν"—へキサ— 3—スルホプロピル 4, 4,, 4"—トリアミノトリフエ-ルメタン (TPM—PS)、ジァミノベン チジン、ヒドロキシフエニルプロピオン酸、テトラメチルベンチジン、オルトフエ二レンジ ァミンなどが挙げられる。
[0036] 本発明の基質の測定方法では、試料を前記陰イオン系界面活性剤で処理して試 料中のヘモグロビンの干渉を軽減する工程とォキシダーゼを作用させて生成する過 酸化水素を測定する工程とを別々に行って基質を測定することもできるし、これらの 工程を連続的に一段階で行って基質を測定することもできる。反応温度は、これら 2 つの工程で同一でも異なってもよぐ本発明の基質測定用試薬が溶液状態にある温 度、例えば、 10— 40°Cが好ましい。
[0037] 本発明の基質の測定方法は、ォキシダーゼ反応により基質を測定する際のへモグ ロビンの干渉を軽減する一方で、本発明に係る陰イオン系界面活性剤で試料を処理 した段階でヘモグロビンの有する吸収波長域における吸光度を測定すれば試料中 のヘモグロビンを測定することができる。これにより糖ィ匕ヘモグロビン (好ましくはへモ グロビン Ale)を測定することができるので、本発明の基質の測定方法によりへモグロ ビン Aleを測定する場合にっ 、て説明する。
[0038] ヘモグロビン Aleは、赤血球に含有されるヘモグロビンが非酵素的に糖化されて形 成されたものであり、過去一定期間の平均血糖値を反映することから臨床検査にお ける指標として重要視されて 、る。ヘモグロビン Aleは総ヘモグロビン存在量に対す る比率(%)で表示されることから、その測定には、(i)赤血球を溶血させてへモグロビ ンを赤血球外に放出させ、測定可能な状態にする工程、(ii)ヘモグロビンの存在量 を測定する工程、 (iii)ヘモグロビン Aleの存在量を測定する工程 (酵素法の場合、 ヘモグロビン Ale力 蛋白質分解酵素により特異的な糖ィ匕ペプチドあるいは糖ィ匕ァ ミノ酸を遊離させる工程と当該遊離した糖化ペプチド又は糖化アミノ酸を特異的ォキ シダーゼを使用して測定する工程が含まれる)、(iv)ヘモグロビン Aleの存在量を総 ヘモグロビンの存在量で除し比率を求める工程 (演算工程)、が必要である。なお、こ こで述べるように、本明細書において「基質の測定」の語は、試料中の基質の存在量 (例えば濃度)の測定のほか、特定の基準物質に占める存在割合 (例えば濃度比)の 測定も含む。
[0039] 本発明に係る陰イオン系界面活性剤は、ヘモグロビンのメト化処理能も有して!/、る ため、ヘモグロビンの吸収波長域の吸光度を測定して (ii)の工程を問題なく実施でき る。
[0040] (i)の工程には、従来公知の各種界面活性剤(例えば、非イオン系界面活性剤であ るトリトン X-100など)が使用できるが、本発明に係る陰イオン系界面活性剤、特にポ リオキシエチレンアルキルエーテルの硫酸塩類、リン酸エステル類、或いはラウリル 硫酸トリエタノールァミン、アルキルスルホコハク酸類、アルキルフエ-ルエーテルス ルホン酸類カゝら選ばれる陰イオン系界面活性剤は、(i)の工程においても使用可能 であり、単独もしくは従来公知の各種界面活性剤と併用しても差し支えない。また (i) の工程で単独もしくは本発明に係る陰イオン系界面活性剤と併用可能な非イオン系 界面活性剤としては、従来公知のもののほかに、ポリオキシエチレン誘導体であるェ マノレゲン類(花王社製、エマノレゲン 709、エマノレゲン 108、エマノレゲン A90、エマノレ ゲン B66など)、 -ッコール類(-ッコーケミカルズ社製、 -ッコール BC20TX、 -ッコ ール OP— 10、 -ッコール BT9など)、リポノックス類(ライオン社製、リポノックス NC80 、リポノックス OC100など)レオコール類(ライオン社製、レオコール TD90、レオコー ル SC120など)ノィゲン類(第一工業製薬社製、ノィゲン EA120、ノィゲン ET147な ど)、エバン類 (第一工業製薬社製、エバン 485、エバン U103など)、プル口ニック類 (旭電化社製、プル口ニック F、プル口ニック TR704など)、アデ力トール類(旭電化社 製、アデ力トール SO120など)が使用できる。
[0041] (iii)の工程は、ヘモグロビン Aleに由来する糖ィ匕ペプチド又は糖ィ匕アミノ酸をへモ グロビン Aleから蛋白質分解酵素により遊離させ、さらにフルクトシルペプチドォキシ ダーゼ又はフルクトシルアミノ酸ォキシダーゼを使用して実施できる。 (iii)の工程に ついて前述している力 さらに詳細に説明する。ヘモグロビン Aleの測定では、へモ グロビン 13 サブユニットのァミノ末端のパリンが糖ィ匕されたフルクトシルバリンやフル クトシルノ リルヒスチジンと、 ε フルクトシルリジンに対するォキシダーゼ酵素の反応 性の違いが特異性を決定する力 S、ヘモグロビン分子中には 44個のリジン残基が存在 しており、 ε フルクトシルリジンに対する反応性が低くとも、その影響を無視できない 。またヘモグロビンの α鎖 Ν末端のパリンも糖ィ匕によりフルクトシルバリンとなる力 バ リンと隣接して結合して 、るアミノ酸はヒスチジンではな 、のでフルクトシルバリルヒス チジンは生成しな 、。従って酵素法によるヘモグロビン Ale測定の特異性を確保す るためには、フルクトシルリジンの測り込みを出来る限り排除することはもちろん、フル クトシルバリンだけを測定するよりもフルクトシルバリルヒスチジルペプチドを測定した 方が有利となる。これより、蛋白質分解酵素がフルクトシルバリルヒスチジルペプチド 、好ましくはフルクトシルバリルヒスチジンを遊離させるもので、フルクトシルペプチド ォキシダーゼがフルクトシルバリルヒスチジンに作用するもの力 特異性向上の観点 力 最も好ましい。
[0042] 上記のような蛋白質分解酵素として、前述したバチルス属、ァスペルギルス属もしく はストレブトマイシス属の微生物由来、あるいはその遺伝子組み換えにより産生され るものが好適である。バチルス属由来の酵素としては、プロチン PC10F、プロチン N C25 (大和化成社製)、トヨチーム NEP (東洋紡社製)など、ァスペルギルス属由来の 酵素としては、モルシン (キッコーマン社製)、ストレブトマシシス属由来の酵素として は、ァクチナーゼ AS、ァクチナーゼ AF、ァクチナーゼ E (科研製薬)、プロテアーゼ Type— XIV (シグマ社製)などが挙げられる。これらは単独で使用できるほか、トヨチ ーム NEPなどはプロティナーゼ Kと混合して併用することもできる。これら酵素は、メ タロプロティナーゼ、中性プロテアーゼ、酸性プロテアーゼもしくは塩基性プロテア一 ゼに属するものが好ましい。使用濃度や使用条件は前述したとおりである。
[0043] 上記のようなフルクトシルペプチドォキシダーゼとしては、コリネバクテリウム属菌の 産生するフルクトシルアミノ酸ォキシダーゼを改変した酵素(特開 2001— 95598号公 報)、糸状菌由来のフルクトシルペプチドォキシダーゼ(特開 2003— 235585号公報 )などが挙げられる。 FPOX— CE又は FPOX— EE (ともにキッコ一マン社製)が特に 好適である。
[0044] (i)の工程から (iv)の工程までを順次、実施しても良いが、複数の工程を同時に実 施することもできる。例えば、トリトン X-100などの溶血を目的とした界面活性剤、プ ライサーフ A208Bなどの本発明に係る陰イオン系界面活性剤をともに含む試薬で全 血あるいは血球を処理すれば (i)、(ii)の工程を同時に実施することができ、さらにプ ロティナーゼ Kゃァクチナーゼ ASなどの蛋白質分解酵素を共存させれば、 (iii)の 工程の一部も同時に実施することができる。
[0045] またさらに、本発明のヘモグロビン Aleの測定方法によれば、日立 7150形自動分 析装置など臨床検査 (特に生化学検査)の領域で汎用される自動分析装置 (以下「 生化学自動分析装置」 、うことがある)を用いてヘモグロビン Ale濃度比(%) (以下 「ヘモグロビン Ale (%)」と言うことがある)を測定する場合にお!、て、生化学自動分 析装置の操作条件を設定する際に、 (1)ヘモグロビン濃度測定とヘモグロビン Ale 濃度測定の操作条件を個別に設定する、(2)ヘモグロビン濃度測定用試薬をへモグ ロビン Ale濃度測定用の構成試薬として共用できる、(3)ヘモグロビン濃度測定用と ヘモグロビン Ale濃度測定用の試料を共用できる、(4)ヘモグロビン濃度測定とへモ グロビン Ale濃度測定の測定波長を同一にすることができる。これら(1)一(4)を特 徴とする、生化学自動分析装置を用いてヘモグロビン Ale値 (%)を測定する方法も 提供される。
[0046] 本発明の試薬はヘモグロビン Ale濃度比を測定する際に、 1つの反応容器を用い てヘモグロビン濃度とヘモグロビン Ale濃度を測定しても、また生化学自動分析装置 を用いて測定する際に構成試薬の連続した添加を行ういわゆる 1チャンネル法で使 用してもよいが、生化学自動分析装置の操作条件を設定する際に、ヘモグロビン濃 度測定とヘモグロビン Ale濃度測定の試薬使用量など操作条件を個別に設定する のが好ま U、。本発明の試薬はヘモグロビン濃度測定用試薬をヘモグロビン Ale濃 度測定用の構成試薬として共用でき、試料も共用できる。測定条件のうち、へモグロ ビン濃度測定とヘモグロビン Ale濃度測定の測定波長を同一にできる。
[0047] 本発明の基質測定用試薬は、(A)ポリオキシエチレンアルキルエーテル硫酸塩類 、ポリオキシエチレンアルキルフエ-ルエーテル硫酸塩類、ポリオキシエチレンアルキ ルエーテルリン酸類、ポリオキシエチレンアルキルスルホコハク酸類、ポリオキシェチ レンアルキルエーテルカルボン酸塩類、ポリオキシエチレンアルキルエーテルスルホ ン酸塩類、ラウリル硫酸トリエタノールァミン、アルキルスルホコハク酸類及びアルキ ルフエニルエーテルスルホン酸塩類カゝら選ばれる陰イオン系界面活性剤、 (B)基質 に作用して、又は酵素反応により生成した基質に作用して過酸化水素を生成するォ キシダーゼ、及び (C)パーォキシダーゼ及び被酸ィ匕性呈色試薬、を含む。
[0048] 更に、前記 (B)記載のォキシダーゼを作用させた結果生じる生成物からさらに過酸 化水素を生成させ感度増加を図ることもできる。例えばヘモグロビン Aleから遊離し た糖ィ匕ペプチド又は糖ィ匕アミノ酸とフルクトシルペプチドォキシダーゼ又はフルクトシ ルアミノ酸ォキシダーゼが作用した際に生成するダルコソンに糖酸ィ匕分解酵素を含 ませても良い (特開 2000— 333696号公報)。この場合の糖酸ィ匕分解酵素としては、 グルコースォキシダーゼ、 ガラクトシダーゼ、ビラノースォキシダーゼからなる群か ら選択された少なくとも一つの酸ィ匕酵素であることが好ましい。このほか、赤血球から ヘモグロビンを取り出して反応に供するための前処理剤が使用できることは前述した 。さらにまた、血液中の夾雑成分を処理する酵素、塩ィ匕ナトリウム、塩ィ匕カリウム、フエ ロシアン化カリウム等の塩、反応調整剤、還元性物質の影響回避のためのテトラゾリ ゥム塩、防腐剤としての抗生物質、アジィ匕ナトリウム等も添加できる。 [0049] 本発明の基質測定用試薬は、溶液状態だけでなぐ乾燥状態やゲル状態でも提供 できる。また、ガラスビン、プラスチック容器等への充填の他、不溶性担体への塗布、 含浸などの形態で提供できる。不溶性担体としては、例えば、ラテックス、ガラス、コロ イドなどの粒子'球状担体、半導体やガラスなどの平板状担体、紙や-トロセルロー スなどの膜状担体、繊維状担体が挙げられる。
実施例
[0050] 次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれに限定される ものではない。
[0051] [実施例 1一 6] 尿酸の測定
(1)試料の調製
血清 9容に対して生理食塩液又はヒトヘモグロビン液 1容をカ卩えて、ヘモグロビン濃 度が 0、 100、 300、及び 500mg/dLのヘモグロビン含有試料を調製した。
[0052] (2)試料の測定
日立 7150形自動分析装置を用いて、以下の操作により各試料の測定を行った。 <第一試薬 >
陰イオン系界面活性剤
実施例 1 ;0. 5% エマール 20C (花王社製)
実施例 2 ;0. 5% ノ、ィテノール NF13 (第一工業製薬社製)
実施例 3 ;0. 05% ハイテノール NF15 (第一工業製薬社製)
実施例 4 ;0. 5% プライサーフ A208B (第一工業製薬社製)
実施例 5 ;0. 05% ペレックス CS (花王社製)
実施例 6 ;0. 1% ペレックス SS— H (花王社製)
比較例 1;陰イオン系界面活性剤を含まない
比較例 2 ;0. 05% ラテムル PS + 0. 05% ペレックス NBL
比較例 3 ;0. 1% ラテムル PS + 0. 1% ペレックス NBL
500 μ mol/L TOOS (同仁化学社製)
50mmol/L リン酸緩衝液 (pH7. 0)
(陰イオン系界面活性剤を組み合わせてヘモグロビンの干渉を回避する従来公知( 特開平 8— 89288)の方法に記載されたアルキルスルホン酸ナトリウム塩 (商品名ラテ ムル PS:花王社製)及びアルキルナフタレンスルホン酸ナトリウム塩(商品名ペレック ス NB— L :花王社製)の組み合わせを比較例 2、 3とした。)
<第二試薬 >
2単位 ZmL ゥリカーゼ (東洋紡社製)
10単位 ZmL パーォキシダーゼ (III) (東洋紡社製)
lmmol/L 4ーァミノアンチピリン
50mmol/L リン酸緩衝液 (pH7. 0)
[0053] 各試料 7 μ Lに第一試薬 260 μ Lを加え、 37°Cで 5分間加温後の吸光度を測定し た(吸光度 1)。次いで第二試薬 130 Lを加え、 37°Cで 5分間加温後の吸光度を測 定した(吸光度 Π)。吸光度の測定は主波長 546nm (副波長 800nm)で行い、試料 の代わりに生理食塩水を用いて同様に操作したもの (試薬ブランク)を対照とした。 各試料の吸光度 I及び吸光度 IIから式 Aを用いて各試料の吸光度変化量を算出し、 濃度既知の尿酸溶液 (20mg/dL)を試料として上記と同様に操作した場合の吸光 度変化量と比較し尿酸濃度を算出した。
式 A:試料の吸光度 =吸光度 Π- (吸光度 I X (7 + 260) 7 (7 + 260+ 130) ) 得られた尿酸の測定値にっ 、て、ヘモグロビン濃度 OmgZdLの場合の測定値を 1 00%として比較した。結果を表 1に示した。
[0054] [表 1]
Figure imgf000017_0001
(%) (%) (%) (%) [0055] 表 1から明らかなように、従来公知の陰イオン系界面活性剤の組み合せ (比較例 2 及び 3)では、界面活性剤無添加の比較例 1に比べて、むしろヘモグロビンの干渉が 増大した。これに対し、本発明に係る陰イオン系界面活性剤を使用した場合には (実 施例 1一 6)、何れも界面活性剤無添加の比較例 1に比べてヘモグロビンの干渉が軽 減されていた。これより、本発明の基質の測定方法は、従来公知の方法が有効でな い場合でも、有効であることがわ力つた。
[0056] [実施例 7] フルクトシルアミノ酸の測定
(1)試料の調製
542nmにおける吸光度が 5 ODとなるように調製したヘモグロビン 生理食塩水 希釈液を用い、フルクトシルバリン(fV)濃度が 5 μ mol/L, 10 μ molZLのへモグ ロビン含有試料を調製した。コントロールとして、ヘモグロビン 生理食塩水希釈液に 代えて生理食塩水を用いた。 fVはバイオタエスト社製を使用した。
[0057] (2)試料の測定
日立 7150形自動分析装置を用い、以下の操作により各試料の測定を行った。 <第一試薬 >
陰イオン系界面活性剤
実施例 7 ;0. 2% プライサーフ A208B (第一工業製薬社製)
比較例 4;陰イオン系界面活性剤を含まな!/ヽ
20mmol/L リン酸緩衝液 (pH8. 0)
<第二試薬 >
15単位/ mL フルクトシルアミノ酸ォキシダーゼ(キッコーマン社製)
20単位 ZmL パーォキシダーゼ (III) (東洋紡社製)
80 μ mol/L TPM-PS (同仁化学社製)
200mmol/L リン酸緩衝液 (pH7. 0)
[0058] 各試料 20 μ Lに第一試薬 240 μ Lをカ卩え、 37°Cで 5分間加温後の吸光度を測定し た(吸光度 1)。次いで第二試薬 80 Lを加え、 37°Cで 5分間加温後の吸光度を測定 した(吸光度 Π)。吸光度の測定及び試料の吸光度変化量の算出は、実施例 1一 6に 準じた。結果を表 2に示した。 [0059] [表 2]
Figure imgf000019_0001
a :コントロールの吸光度変化量、 b :ヘモグロビン含有試料の吸光度変化量
[0060] 表 2から明らかなように、本発明に係る陰イオン系界面活性剤を使用した場合には
、ヘモグロビンの干渉が軽減されていた。
[0061] [実施例 8] フルクトシルアミノ酸の測定
(1)試料の調製
実施例 7と同様にしてヘモグロビン含有試料及びコントロールを調製した。
[0062] (2)試料の測定
日立 7150形自動分析装置を用いて、第二試薬を以下とする以外は、実施例 7と同 様の操作により各試料の測定を行った。
<第二試薬 >
4単位 ZmL フルクトシルペプチドォキシダーゼ(キッコーマン社製)
20単位 ZmL パーォキシダーゼ (III) (東洋紡社製)
80 μ mol/L TPM-PS (同仁化学社製)
200mmol/L リン酸緩衝液 (pH5. 5)
[0063] [表 3]
Figure imgf000019_0002
a :コントロールの吸光度変化量、 b :ヘモグロビン含有試料の吸光度変化量
[0064] 表 3から明らかなように、本発明に係る陰イオン系界面活性剤を使用した場合には 、ヘモグロビンの干渉が軽減されていた。
[0065] [実施例 9一 13] ヘモグロビン Aleの測定
(1)試料の調製
EDTAを抗凝固剤として含む採血管を用いて被検者 10人力も常法により採血した 全血を、冷室にー晚静置して赤血球を沈降させた。沈降した各赤血球層より 10 L を分取し、これに 0. 1% トリトン X-100水溶液 300 Lを添加混合し、血球溶血試 料を調製した。
[0066] (2)試料の測定
日立 7150形自動分析装置を用いて、以下の操作により各試料の測定を行った。 <第一試薬 >
陰イオン系界面活性剤
実施例 9 ;0. 5% プライサーフ A212E (第一工業製薬社製)
実施例 10 ;0. 5% プライサーフ A215C (第一工業製薬社製)
実施例 11 ;0. 2% プライサーフ A208B (第一工業製薬社製)
実施例 12 ;0. 5% -ッコール SBL - 4N (日本油脂社製)
実施例 13 ; 3. 0% エマール NC35 (花王社製)
比較例 6;陰イオン系界面活性剤を含まな!/、
1単位 ZmL プロティナーゼ K
0. 02mol/L リン酸緩衝液 (pH8. 0)
<第二試薬 >
4単位 ZmL フルクトシルペプチドォキシダーゼ(FPOX— CE、キッコ一マン社製)
20単位 ZmL パーォキシダーゼ (III) (東洋紡社製)
80 μ mol/L TPM-PS (同仁化学社製)
7500単位 ZmLトヨチーム NEP (東洋紡社製) *
37. 5mmol/L NaCl
0. 2mol/L リン酸緩衝液 (pH5. 5)
*トヨチーム NEPは、 10万単位 ZmLの濃厚液を 500mmolZLの NaClを含む 20 mmolZLのリン酸緩衝液 (pH5. 5)に対し、 4°Cで 4時間透析した後使用した。 [0067] 各試料 20 μ Lに第一試薬 240 μ Lを加え、 37°Cで 5分間加温後の吸光度を測定し た(吸光度 ΠΙ)。次いで第二試薬 80 Lを加え、 37°Cで 5分間加温後の吸光度を測 定した(吸光度 IV)。吸光度の測定は波長 600nmで行い、試料の代わりに生理食塩 水を用い同様に操作したもの (試薬ブランク)を対照とした。
各々の試料の吸光度 ΠΙ及び吸光度 IVから、式 Bを用いて各試料中のフルクトシル ペプチド量に基づく吸光度変化量 (吸光度 V)を算出した。
式 B:吸光度 V =吸光度 IV (吸光度 ΠΙ X (20 + 240) / (20 + 240 + 80) ) 上記の吸光度 ΠΙは、試料中の総ヘモグロビン濃度に比例するので、ヘモグロビン Ale値(%)既知の血球溶血液(ヘモグロビン Ale値として 8. 6%)を上記と同様に 操作した場合の吸光度 III及び Vと比較し、各試料のヘモグロビン Ale値(%)を算出 した。
実施例 9一 13及び比較例 6により求めたヘモグロビン Ale値(%)を巿販キット「ラビ ディア Alc」(富士レビォ社製)により測定した各試料のヘモグロビン Ale値(%) (参照 例)とそれぞれ比較した。結果を表 4に示した。
[0068] [表 4]
Figure imgf000021_0001
以 の は %)
[0069] 表 4から明らかなように、本発明に係る陰イオン系界面活性剤を含まな 、比較例 6 では、本来起こりえない負の値となってしまう場合があり、ヘモグロビン Ale値(%)の 測定が全くできていな力つた。これに対し本発明の基質の測定方法によって得られた ヘモグロビン Ale値 (%)は、参照例の結果と良好な相関性を示した。本発明の基質 の測定方法により、ヘモグロビン含有試料中のヘモグロビンの干渉を回避して試料 中のヘモグロビン Aleと総ヘモグロビンを測定できることがわかった。

Claims

請求の範囲
[1] 基質に対応するォキシダーゼを作用させ、生成する過酸化水素をバーオキシダ一 ゼ及び被酸ィ匕性呈色試薬を用いて光学的に測定することにより試料中の基質を測 定する方法にぉ 、て、ヘモグロビン含有試料をポリオキシエチレンアルキルエーテル 硫酸塩類、ポリオキシエチレンアルキルフエ-ルエーテル硫酸塩類、ポリオキシェチ レンアルキルエーテルリン酸類、ポリオキシエチレンアルキルスルホコハク酸類、ポリ ォキシエチレンアルキルエーテルカルボン酸塩類、ポリオキシエチレンアルキルエー テルスルホン酸塩類、ラウリル硫酸トリエタノールァミン、アルキルスルホコハク酸類及 びアルキルフエニルエーテルスルホン酸塩類カゝら選ばれる陰イオン系界面活性剤で 処理することを特徴とする、ヘモグロビン含有試料中の基質の測定方法。
[2] 上記陰イオン系界面活性剤が、ポリオキシエチレンアルキルエーテルリン酸類、ポリ ォキシエチレンアルキルエーテル硫酸塩類又はアルキルスルホコハク酸類である請 求項 1記載の測定方法。
[3] 試料中の基質が尿酸であって、ォキシダーゼがゥリカーゼである請求項 1又は 2記 載の測定方法。
[4] 試料中の基質がフルクトシルアミノ酸又はフルクトシルペプチドであって、ォキシダ ーゼがフルクトシルアミノ酸ォキシダーゼ又はフルクトシルペプチドォキシダーゼであ る請求項 1又は 2記載の測定方法。
[5] (A)ポリオキシエチレンアルキルエーテル硫酸塩類、ポリオキシエチレンアルキル フエ-ルエーテル硫酸塩類、ポリオキシエチレンアルキルエーテルリン酸類、ポリオキ シエチレンアルキルスルホコハク酸類、ポリオキシエチレンアルキルエーテルカルボ ン酸塩類、ポリオキシエチレンアルキルエーテルスルホン酸塩類、ラウリル硫酸トリエ タノールァミン、アルキルスルホコハク酸類及びアルキルフエ-ルエーテルスルホン 酸塩類から選ばれる陰イオン系界面活性剤、 (B)基質に作用して過酸化水素を生成 するォキシダーゼ、並びに (C)パーォキシダーゼ及び被酸ィ匕性呈色試薬を含むへ モグロビン含有試料中の基質測定用試薬。
[6] 少なくとも、(1)界面活性剤、(2)糖ィ匕蛋白質に作用してフルクトシルペプチドを生 成する蛋白質分解酵素及び(3)フルクトシルペプチドに作用して過酸ィヒ水素を産す る酵素を含むことを特徴とする糖化蛋白質、糖ィ匕ペプチドもしくは糖ィ匕アミノ酸の濃 度又はそれらの濃度比測定方法。
[7] 界面活性剤が非イオン系界面活性剤及び Z又は陰イオン系界面活性剤であって 、ポリオキシエチレン誘導体、ポリオキシエチレンアルキルエーテルの硫酸塩類、リン 酸エステル類、ラウリル硫酸トリエタノールァミン、アルキルスルホコハク酸類及びアル キルフエ-ルエーテルスルホン酸類カゝら選ばれることを特徴とする請求項 6記載の糖 化蛋白質、糖ィヒペプチドもしくは糖ィヒアミノ酸の濃度又はそれらの濃度比測定方法。
[8] リン酸エステルが、ポリオキシエチレンアルキルエーテルリン酸のモノエステル、ジ エステル又はそれらの混合物である請求項 7記載の方法。
[9] 蛋白質分解酵素が糖化蛋白質又は糖化ペプチドに作用して生成するフルクトシル ペプチドが、フルクトシルノ リルヒスチジンである請求項 6— 8の!、ずれか 1項記載の 方法。
[10] 蛋白質分解酵素が、バチルス属、ァスペルギルス属、ストレプトマイシス属由来のも の又はこれらの遺伝子組換えにより産生されるもので、単独又は複数で糖化蛋白質 に作用させた時に、少なくともフルクトシルバリルヒスチジンを産することを特徴とする 請求項 6— 9のいずれか 1項記載の方法。
[11] フルクトシルペプチドに作用して過酸ィ匕水素を産する酵素が少なくともフルクトシル ノ リルヒスチジンを基質とすることを特徴とする請求項 6— 10のいずれ力 1項記載の 方法。
[12] 糖ィ匕蛋白質がヘモグロビン Aleである請求項 6— 11のいずれ力 1項記載の方法。
[13] 少なくとも界面活性剤で前処理されたヘモグロビンを含む試料中のヘモグロビン測 定を行 、、更にヘモグロビン測定用反応液にフルクトシルバリルヒスチジンを生成す る蛋白質分解酵素を作用させ、ヘモグロビン Ale濃度測定を行うことを特徴とするへ モグロビン濃度、ヘモグロビン Ale濃度及びヘモグロビン Ale濃度比の測定方法。
[14] 血球を含む試料と界面活性剤を含む反応液を混合して血球からヘモグロビンを溶 出させる工程、本反応液を希釈して光学的にヘモグロビンの濃度を求める工程、へ モグロビンに蛋白質分解酵素を作用させて少なくともフルクトシルバリルヒスチジンを 産する工程、少なくともフルクトシルバリルヒスチジンにこれを基質として過酸ィ匕水素 を産する酵素を作用させる工程、過酸化水素とパーォキシダーゼ及び被酸化性呈 色試薬を作用させる工程、呈色化合物の生成による吸光度変化を測定しへモグロビ ン Ale濃度を求める工程、並びにヘモグロビン濃度とヘモグロビン Ale濃度からへ モグロビン Ale濃度比を求める工程力 なるヘモグロビン濃度、ヘモグロビン Ale濃 度及びヘモグロビン Ale濃度比の測定方法。
[15] 試料中の基質がフルクトシルバリルヒスチジン又は反応液に添加される試料由来以 外の蛋白質分解酵素によりこれらを産する生体成分であって、過酸化水素を産する 酵素がフルクトシルペプチドォキシダーゼである請求項 14記載の方法。
[16] ポリオキシエチレン誘導体、ポリオキシエチレンアルキルエーテルの硫酸塩類、リン 酸エステル類、ラウリル硫酸トリエタノールァミン、アルキルスルホコハク酸類及びアル キルフエ-ルエーテルスルホン酸類カゝら選ばれる非イオン系界面活性剤及び/又は 陰イオン系界面活性剤を用いることを特徴とするヘモグロビン濃度、ヘモグロビン A1 c濃度及びヘモグロビン Ale濃度比の測定における試料の前処理方法。
[17] 血球力 ヘモグロビンを溶出させる工程、ヘモグロビンの濃度を求める工程力 な るヘモグロビン濃度測定において、少なくともポリオキシエチレン誘導体、ポリオキシ エチレンアルキルエーテルの硫酸塩類、リン酸エステル類、ラウリル硫酸トリエタノー ルァミン、アルキルスルホコハク酸類及びアルキルフエ-ルエーテルスルホン酸類か ら選ばれる非イオン性界面活性剤及び Z又は陰イオン系界面活性剤を用いることを 特徴とするヘモグロビン濃度測定方法。
[18] 生化学自動分析装置を用いてヘモグロビン Ale濃度比を測定する目的で、生化学 自動分析装置の操作条件を設定する際に、 (1)ヘモグロビン濃度測定とへモグロビ ン Ale濃度測定の操作条件を個別に設定する、 (2)ヘモグロビン濃度測定試薬をへ モグロビン Ale濃度測定用の構成試薬として共用できる、 (3)ヘモグロビン濃度測定 用とヘモグロビン Ale濃度測定用の試料を共用できる、(4)ヘモグロビン濃度測定と ヘモグロビン Ale濃度測定の測定波長を同一にできることを特徴とする生化学自動 分析装置を用いてヘモグロビン Ale濃度比を測定する方法。
PCT/JP2004/017196 2003-11-19 2004-11-18 ヘモグロビン含有試料中の基質の測定方法 WO2005049858A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/579,765 US20070154976A1 (en) 2003-11-19 2004-11-18 Method of determining substrate contained in hemoglobin-containing sample
JP2005515649A JPWO2005049858A1 (ja) 2003-11-19 2004-11-18 ヘモグロビン含有試料中の基質の測定方法
EP04818961A EP1693462A4 (en) 2003-11-19 2004-11-18 METHOD FOR DETERMINING THE SUBSTRATE PRESENT IN A HEMOGLOBIN SAMPLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-389930 2003-11-19
JP2003389930 2003-11-19

Publications (1)

Publication Number Publication Date
WO2005049858A1 true WO2005049858A1 (ja) 2005-06-02

Family

ID=34616279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017196 WO2005049858A1 (ja) 2003-11-19 2004-11-18 ヘモグロビン含有試料中の基質の測定方法

Country Status (7)

Country Link
US (1) US20070154976A1 (ja)
EP (1) EP1693462A4 (ja)
JP (1) JPWO2005049858A1 (ja)
KR (1) KR20060123751A (ja)
CN (1) CN1882696A (ja)
TW (1) TW200528713A (ja)
WO (1) WO2005049858A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693461A1 (en) * 2003-11-19 2006-08-23 Daiichi Pure Chemicals Co., Ltd. Method of assyaing glycoprotein
JP2007051090A (ja) * 2005-08-18 2007-03-01 Pharma Foods International Co Ltd 卵白ペプチドを有効成分として含有する血流改善剤
WO2007072941A1 (ja) * 2005-12-22 2007-06-28 Kyowa Medex Co., Ltd. 糖化タンパク質の測定方法
WO2010041419A1 (ja) 2008-10-10 2010-04-15 東洋紡績株式会社 新規なフルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質及びその改変体、並びにその利用
US8080423B2 (en) 2004-08-05 2011-12-20 Asahi Kasei Pharma Corporation Reagent containing protease reaction promoter and/or colorant stabilizer
WO2012020745A1 (ja) 2010-08-11 2012-02-16 協和メデックス株式会社 糖化ヘモグロビンの測定方法
WO2012020744A1 (ja) 2010-08-11 2012-02-16 協和メデックス株式会社 糖化ヘモグロビンの測定方法
US8268017B2 (en) 2007-02-22 2012-09-18 Asahi Kasei Pharma Corporation Method for stabilizing leuco-type colorant
WO2012173185A1 (ja) 2011-06-17 2012-12-20 協和メデックス株式会社 糖化ヘモグロビンの測定方法、測定試薬、及び、測定キット
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
JPWO2015020200A1 (ja) * 2013-08-09 2017-03-02 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
WO2018021530A1 (ja) * 2016-07-29 2018-02-01 協和メデックス株式会社 糖化ヘモグロビンの測定方法
CN110763815A (zh) * 2018-12-24 2020-02-07 河北省动物疫病预防控制中心 一种死宰牛肉的鉴定方法
CN112326639A (zh) * 2020-11-25 2021-02-05 迈克生物股份有限公司 检测果糖胺的试剂盒和方法
WO2021192465A1 (ja) * 2020-03-26 2021-09-30 日立化成ダイアグノスティックス・システムズ株式会社 異常ヘモグロビン含有試料中の糖化ヘモグロビンの測定方法
JP2022180380A (ja) * 2018-09-25 2022-12-06 株式会社Lsiメディエンス 生体成分測定試薬及び測定方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508620B2 (en) * 2007-02-24 2013-08-13 Nec Corporation Portable terminal capable of presenting images based on time
TW201312119A (zh) * 2011-09-15 2013-03-16 Toyo Boseki 糖化血紅素測量用多層試驗片、及使用它之測量方法
EP2813577A4 (en) * 2012-02-09 2015-07-15 Kyowa Medex Co Ltd METHOD OF SUPPRESSING THE EFFECTS OF ASCORBIC ACID
CN104245952B (zh) * 2012-03-30 2017-08-29 积水医疗株式会社 血液样品中的物质的测定法
KR20180036644A (ko) * 2015-03-13 2018-04-09 더 클리블랜드 클리닉 파운데이션 멸균 및/또는 정제된 유체 및/또는 용액 전달 시스템
CN106404758A (zh) * 2015-07-28 2017-02-15 珠海和凡医药股份有限公司 一种检测尿液中尿酸含量范围的试纸
KR102502572B1 (ko) * 2016-08-10 2023-02-22 세키스이 메디칼 가부시키가이샤 HbA1c 측정법
CN106381326A (zh) * 2016-08-31 2017-02-08 辽宁迈迪生物科技股份有限公司 一种用于检测乙酰多胺的体外检测试剂盒及其检测方法
US11768209B2 (en) * 2016-09-06 2023-09-26 Fujirebio Inc. Method and reagent for measuring thyroglobulin
EP3514539A4 (en) * 2016-09-13 2020-04-01 Fujirebio Inc. TEST PROCEDURE AND TEST REAGENT FOR HEART TROPONIN
JP6866211B2 (ja) * 2017-04-04 2021-04-28 オルガノ株式会社 尿素の定量方法及び分析装置
CN109682796A (zh) * 2017-10-02 2019-04-26 爱科来株式会社 糖化蛋白质的测定
CN108287233B (zh) * 2017-12-21 2021-04-23 山东博科生物产业有限公司 一种抗干扰能力强的酶法尿酸检测试剂
CN111198182A (zh) * 2018-11-20 2020-05-26 苏州迈瑞科技有限公司 一种干化学检测方法和装置
CA3147893C (en) * 2019-07-22 2022-11-22 Ortho-Clinical Diagnostics, Inc. Glycated hemoglobin measurement
CN110779914B (zh) * 2019-11-05 2022-05-20 湖南科技大学 基于血红蛋白与四碳或五碳二元酸复合物试剂盒制备方法
CN112305210B (zh) * 2020-10-15 2023-06-16 爱若维生物科技(苏州)有限公司 一种兽用三分类血细胞分析试剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168050A (ja) * 1984-02-10 1985-08-31 Wako Pure Chem Ind Ltd ヘモグロビンの影響回避方法
JPH01112155A (ja) * 1987-10-26 1989-04-28 Dai Ichi Pure Chem Co Ltd 過酸化水素の定量方法及びその定量用試薬
JPH11508683A (ja) * 1995-06-29 1999-07-27 コールター インターナショナル コーポレイション 血液中の白血球の分別測定のための試薬及び方法
JP2000300394A (ja) * 1999-04-16 2000-10-31 Iwao Miyazoe 膝腰用枕及びこれに用いるクリップ体
JP2000342252A (ja) * 1999-06-09 2000-12-12 Dai Ichi Pure Chem Co Ltd プロテアーゼ含有液
JP2001057897A (ja) * 1999-08-23 2001-03-06 Dai Ichi Pure Chem Co Ltd フルクトシルバリンの生産方法
JP2001095598A (ja) * 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2001204495A (ja) * 2000-01-28 2001-07-31 Asahi Kasei Corp 糖化タンパク質割合測定方法
WO2002006519A1 (fr) * 2000-07-14 2002-01-24 Arkray, Inc. Procede pour determiner de maniere selective le taux d'hemoglobine glycosylee
WO2002027331A1 (fr) * 2000-09-28 2002-04-04 Arkray, Inc. Methode d'analyse utilisant une reaction d'oxydo-reduction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764986B2 (ja) * 1984-03-02 1995-07-12 和光純薬工業株式会社 新規な発色試薬
EP2248909B1 (en) * 2001-01-31 2016-09-28 Asahi Kasei Pharma Corporation Compositions for assaying glycoprotein

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168050A (ja) * 1984-02-10 1985-08-31 Wako Pure Chem Ind Ltd ヘモグロビンの影響回避方法
JPH01112155A (ja) * 1987-10-26 1989-04-28 Dai Ichi Pure Chem Co Ltd 過酸化水素の定量方法及びその定量用試薬
JPH11508683A (ja) * 1995-06-29 1999-07-27 コールター インターナショナル コーポレイション 血液中の白血球の分別測定のための試薬及び方法
JP2000300394A (ja) * 1999-04-16 2000-10-31 Iwao Miyazoe 膝腰用枕及びこれに用いるクリップ体
JP2000342252A (ja) * 1999-06-09 2000-12-12 Dai Ichi Pure Chem Co Ltd プロテアーゼ含有液
JP2001057897A (ja) * 1999-08-23 2001-03-06 Dai Ichi Pure Chem Co Ltd フルクトシルバリンの生産方法
JP2001095598A (ja) * 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2001204495A (ja) * 2000-01-28 2001-07-31 Asahi Kasei Corp 糖化タンパク質割合測定方法
WO2002006519A1 (fr) * 2000-07-14 2002-01-24 Arkray, Inc. Procede pour determiner de maniere selective le taux d'hemoglobine glycosylee
WO2002027331A1 (fr) * 2000-09-28 2002-04-04 Arkray, Inc. Methode d'analyse utilisant une reaction d'oxydo-reduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1693462A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693461A4 (en) * 2003-11-19 2008-09-17 Daiichi Pure Chemicals Co Ltd METHOD FOR TESTING GLYCOPROTEIN
US7951553B2 (en) 2003-11-19 2011-05-31 Sekisui Medical Co., Ltd. Method of assaying glycated protein
EP1693461A1 (en) * 2003-11-19 2006-08-23 Daiichi Pure Chemicals Co., Ltd. Method of assyaing glycoprotein
US8080423B2 (en) 2004-08-05 2011-12-20 Asahi Kasei Pharma Corporation Reagent containing protease reaction promoter and/or colorant stabilizer
JP2007051090A (ja) * 2005-08-18 2007-03-01 Pharma Foods International Co Ltd 卵白ペプチドを有効成分として含有する血流改善剤
WO2007072941A1 (ja) * 2005-12-22 2007-06-28 Kyowa Medex Co., Ltd. 糖化タンパク質の測定方法
US8268017B2 (en) 2007-02-22 2012-09-18 Asahi Kasei Pharma Corporation Method for stabilizing leuco-type colorant
WO2010041419A1 (ja) 2008-10-10 2010-04-15 東洋紡績株式会社 新規なフルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質及びその改変体、並びにその利用
US8993255B2 (en) 2008-10-10 2015-03-31 Toyo Boseki Kabushiki Kaisha Protein having fructosyl valyl histidine oxidase activity, modified protein, and use of the protein or the modified protein
US9090931B2 (en) 2010-08-11 2015-07-28 Kyowa Medex Co., Ltd Method for measuring glycated hemoglobin
WO2012020744A1 (ja) 2010-08-11 2012-02-16 協和メデックス株式会社 糖化ヘモグロビンの測定方法
WO2012020745A1 (ja) 2010-08-11 2012-02-16 協和メデックス株式会社 糖化ヘモグロビンの測定方法
WO2012173185A1 (ja) 2011-06-17 2012-12-20 協和メデックス株式会社 糖化ヘモグロビンの測定方法、測定試薬、及び、測定キット
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
US8802366B2 (en) 2012-03-15 2014-08-12 Arkray, Inc. Measurement method using enzyme
JP2020096596A (ja) * 2013-08-09 2020-06-25 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
JP7158108B2 (ja) 2013-08-09 2022-10-21 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
US11549134B2 (en) 2013-08-09 2023-01-10 Kikkoman Corporation Modified amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring HbA1c using the same
JP2022188182A (ja) * 2013-08-09 2022-12-20 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
US10619183B2 (en) 2013-08-09 2020-04-14 Kikkoman Corporation Modified amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring HbA1c using the same
JPWO2015020200A1 (ja) * 2013-08-09 2017-03-02 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
US11168349B2 (en) 2016-07-29 2021-11-09 Hitachi Chemical Diagnostics Systems Co., Ltd. Method for measuring glycated hemoglobin
JP7020413B2 (ja) 2016-07-29 2022-02-16 ミナリスメディカル株式会社 糖化ヘモグロビンの測定方法
WO2018021530A1 (ja) * 2016-07-29 2018-02-01 協和メデックス株式会社 糖化ヘモグロビンの測定方法
JPWO2018021530A1 (ja) * 2016-07-29 2019-05-23 協和メデックス株式会社 糖化ヘモグロビンの測定方法
JP2022180380A (ja) * 2018-09-25 2022-12-06 株式会社Lsiメディエンス 生体成分測定試薬及び測定方法
CN110763815A (zh) * 2018-12-24 2020-02-07 河北省动物疫病预防控制中心 一种死宰牛肉的鉴定方法
WO2021192465A1 (ja) * 2020-03-26 2021-09-30 日立化成ダイアグノスティックス・システムズ株式会社 異常ヘモグロビン含有試料中の糖化ヘモグロビンの測定方法
CN112326639A (zh) * 2020-11-25 2021-02-05 迈克生物股份有限公司 检测果糖胺的试剂盒和方法
CN112326639B (zh) * 2020-11-25 2024-01-05 迈克生物股份有限公司 检测果糖胺的试剂盒和方法

Also Published As

Publication number Publication date
CN1882696A (zh) 2006-12-20
EP1693462A1 (en) 2006-08-23
KR20060123751A (ko) 2006-12-04
EP1693462A4 (en) 2008-07-09
TW200528713A (en) 2005-09-01
US20070154976A1 (en) 2007-07-05
JPWO2005049858A1 (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
WO2005049858A1 (ja) ヘモグロビン含有試料中の基質の測定方法
KR101134607B1 (ko) 당화 단백질의 측정 방법
EP2944699B1 (en) Method of selectively determining glycated hemoglobin
EP2319937B1 (en) Blood component measurement method utilizing hemolyzed whole blood, and kit for the method
EP1930443A1 (en) Method for selective, simultaneous quantification of two substances in biological sample
JP4045322B2 (ja) 酸化還元反応を用いた測定方法
WO2002027331A1 (fr) Methode d&#39;analyse utilisant une reaction d&#39;oxydo-reduction
EP1878801B1 (en) Protein cleavage method and use thereof
EP1726660A1 (en) Method of measuring glycoprotein
JP4889396B2 (ja) ロイコ色素の安定化方法
JP2000333696A (ja) 糖化アミンの測定方法
JP2000300294A (ja) ヘモグロビンA1cの定量法
EP2108703B1 (en) Method for bilirubin determination and analytical instrument used for bilirubin determination
WO2002027012A1 (fr) Procede de production de produits de degradation de proteines
JP2001286297A (ja) コレステロール定量用試料の前処理方法およびこれを利用する特定のリポ蛋白中のコレステロール定量法
JP4014088B2 (ja) 糖化アミノ酸の消去方法
JP4250693B2 (ja) 酸化還元反応を用いた測定方法
JPH11196897A (ja) 糖化タンパク質の測定方法及び測定装置
MXPA06010540A (en) Method of measuring glycoprotein

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480033978.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515649

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004818961

Country of ref document: EP

Ref document number: 10579765

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067009994

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004818961

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009994

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10579765

Country of ref document: US