[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005045512A1 - 光変調素子及び通信システム - Google Patents

光変調素子及び通信システム Download PDF

Info

Publication number
WO2005045512A1
WO2005045512A1 PCT/JP2004/015824 JP2004015824W WO2005045512A1 WO 2005045512 A1 WO2005045512 A1 WO 2005045512A1 JP 2004015824 W JP2004015824 W JP 2004015824W WO 2005045512 A1 WO2005045512 A1 WO 2005045512A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
total reflection
optical
substrate
light modulation
Prior art date
Application number
PCT/JP2004/015824
Other languages
English (en)
French (fr)
Inventor
Akira Enokihara
Hiroyuki Furuya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005045512A1 publication Critical patent/WO2005045512A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the present invention relates to an optical modulation element used for an optical communication system, an optical signal processing system, and the like, and a communication system having the optical modulation element.
  • An optical modulation element is a basic element in high-speed optical communication, an optical signal processing system, and the like, and it is considered that the need for an optical modulation element that can operate at an ultra-high speed will increase in the future. Since it is difficult to cope with ultra-high-speed optical modulation by the conventional direct modulation using a semiconductor laser, development of an external modulation type element capable of high-speed operation has recently been urgently required.
  • the so-called electro-optic light modulator using a dielectric crystal having a large Pockels effect can operate at a very high speed, and the optical signal phase disturbance due to light modulation is small! It is very suitable for high-speed information transmission and long-distance optical fiber communication. Furthermore, if an optical waveguide structure is used, miniaturization and high efficiency may be realized at once.
  • an electro-optic light modulation element includes a transmission line provided as a modulation electrode on an electro-optic crystal for transmitting a modulation signal, and an optical waveguide formed near the transmission line. .
  • it utilizes the phenomenon that when the refractive index of the optical waveguide changes according to the electric field induced around the modulation electrode, the phase of the light wave propagating through the optical waveguide changes with the modulation signal.
  • the electro-optic coefficient that is the basis of light modulation is relatively small in a normal crystal. Therefore, it is important for the optical modulation element of this system to efficiently apply an electric field to the optical waveguide in order to realize high modulation efficiency.
  • FIG. 5 is a simplified perspective view showing an example of a conventional light modulation element described in Non-Patent Document 1.
  • an optical waveguide 2 is formed on the surface of a substrate 1 made of a material having an electro-optic effect.
  • the optical waveguide 2 is composed of a region in which the refractive index of the substrate 1 is slightly increased from that of the other parts, and is formed by total reflection. Light waves can be guided.
  • the refractive index is increased by, for example, thermally diffusing a metal into a part of the substrate 1.
  • modulation electrodes 3 made of a metal film such as aluminum or gold are provided on both the left and right sides of the optical waveguide 2, on the upper surface of the substrate 1, modulation electrodes 3 made of a metal film such as aluminum or gold are provided.
  • the modulation electrode 3 is composed of two lines 3a and 3b parallel to each other, and has a coplanar single line structure.
  • the optical waveguide 2 branches into two branch optical waveguides 2a and 2b at two branch points 7a and 7b, and input light input from the entrance-side optical waveguide 2c is split at one branch point 7a. After branching and passing through the two branch optical waveguides 2a and 2b, the other branching point 7b is configured to travel along the common exit side optical waveguide 2d.
  • a modulation electrode 3 having a coplanar single-line structure including two lines 3a and 3b extending along the branch optical waveguides 2a and 2b of the optical waveguide 2 is provided.
  • Each inner end of each line 3a, 3b is formed so as to be located immediately above the center of each branch optical waveguide 2a, 2b, and a high-frequency signal source 4 is connected to one end of the modulation electrode 3. The other end is connected to a terminating resistor 5.
  • Input light is introduced from the entrance-side optical waveguide 2c, and undergoes an optical modulation action as described below when passing through each of the branch optical waveguides 2a and 2b.
  • the high-frequency signal When a high-frequency signal is supplied from the high-frequency signal source 4, the high-frequency signal propagates through the modulation electrode 3 in the same direction as light, and an electric field is generated in the gap 6. Then, due to the electro-optical effect, the refractive index of the material forming the branch optical waveguides 2a and 2b changes according to the electric field intensity.
  • the electric fields in the directions opposite to each other are applied to the branch optical waveguide 2a and the branch optical waveguide 2b, when the substrate 1 is made of, for example, a z-cut lithium niobate crystal, the two components are separated. Light passing through the branch optical waveguides 2a and 2b is given phase changes opposite to each other. Therefore, in the exit side optical waveguide 2d, interference between the two lights passing through the branch optical waveguides 2a and 2b occurs, and the intensity of the output light changes due to the interference. Act as a controller.
  • Non-Patent Document 1 IEEE Journal of Quantum Electronics. Vol.QE-13, no.4, pp287-290, 1977
  • a conventional electro-optic light modulation element uses an optical waveguide that confine light using a difference in refractive index.
  • the width of the gap 6 is reduced and the optical waveguides 2a and 2b are brought closer to each other, the intensity of the electric field formed in the gap 6 increases even when the same voltage is applied. Efficiency can be improved.
  • the width of the gap 6 is reduced while applying force, there is a problem that the influence of light wave coupling generated between the optical waveguides 2a and 2b increases. For this reason, it is considered that the width of the gap 2 cannot be generally reduced to about 20 to 30 m or less. This is one of the factors that hinder miniaturization and high efficiency of the device.
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a small and highly efficient light modulation element that can be incorporated in an optical communication system or the like. Means for solving the problem
  • An optical modulation element is an optical modulation element having an optical waveguide structure having at least two branched total reflection optical waveguides, wherein at least a part of the total reflection optical waveguide is electrically operated.
  • the substrate is formed on or in a substrate formed of a material exhibiting an optical effect, and a region between the two total reflection optical waveguides has a photonic crystal structure.
  • the photonic crystal structure is formed on the substrate.
  • the photonic crystal structure is realized by a periodic arrangement of concave portions and Z or convex portions provided on a main surface of the substrate.
  • the photonic crystal structure is realized by a periodic arrangement of concave portions provided on a main surface of the substrate, and the total reflection optical waveguide is formed on the main surface of the substrate. And the depth of the concave portion is / J, which is smaller than the thickness of the total reflection optical waveguide.
  • the photonic crystal structure is realized by a periodic arrangement of grooves provided on a main surface of the substrate and parallel to the total reflection optical waveguide.
  • the total reflection optical waveguide is provided on a main surface of the substrate, and a depth of the groove is smaller than a thickness of the total reflection optical waveguide.
  • the total reflection optical waveguide is formed from a modified layer formed on a main surface side of the substrate.
  • an electrode for applying a high-frequency signal for optical modulation to light propagating through the total reflection optical waveguide is provided on the substrate.
  • the photonic crystal structure has a photo-band gap for a light wave to be propagated in one direction of the two branched total reflection optical waveguides and the other direction.
  • the two total reflection optical waveguides form a Mach-Zehnder interferometer.
  • the photonic crystal structure is selectively formed only in a region between the two total reflection optical waveguides.
  • the distance between the two total reflection optical waveguides is 5 ⁇ m or less.
  • a core portion having a relatively high refractive index and a cladding portion having a relatively low refractive index are provided.
  • a communication system is a communication system including an optical modulation element for converting an electric signal into an optical signal, wherein the optical modulation element is any one of the above-described optical modulation elements.
  • the interval between the branch optical waveguides can be reduced, so that the modulation efficiency can be increased and the size of the light modulation device can be reduced.
  • this optical modulation element for a communication system, communication using a high-frequency signal at the millimeter-wave level becomes possible.
  • Photonic crystal is a new optical material that forms a refractive index distribution with a period substantially equal to the wavelength of light.
  • a band structure of electron energy is formed by a periodic arrangement of atoms.
  • a band structure of light energy is formed.
  • photonic crystal A "band gap" may be formed. Light having energy corresponding to the photonic band gap cannot propagate through a photonic crystal having a photonic band gap.
  • the propagation of light in a specific wavelength band is not completely blocked, but the propagation of light can be suppressed.
  • a photonic crystal structure is formed on a material having an electro-optic effect to realize a practical light modulation element.
  • FIG. 1A is a plan view of the light modulation element of the present embodiment
  • FIG. 1B is a cross-sectional view along the line AA ′.
  • the light modulation device of the present embodiment has a substrate 1 formed of a material exhibiting an electro-optic effect, and an optical waveguide 2 provided in the substrate 1. are doing.
  • the substrate 1 is made of lithium tantalate (LiTaO) single crystal, lithium niobate (LiNbO) single crystal.
  • the optical waveguide 2 is suitably formed on the surface of the substrate 1 by using a proton exchange method using benzoic acid, a thermal diffusion method of a metal film, or the like.
  • the optical waveguide 2 of the present embodiment is branched into two total reflection optical waveguides 2a and 2b at two branch points 7a and 7b so as to operate as a Mach-Zehnder interferometer.
  • each of the branched total reflection optical waveguides is simply referred to as a “branch optical waveguide”.
  • the input light input from the entrance-side optical waveguide 2c branches at one branch point 7a, passes through the two branch optical waveguides 2a and 2b, and then exits from the other branch point 7b to the common exit-side optical waveguide 2d. Proceed to interfere.
  • a modulation electrode composed of two lines 3a and 3b is provided along the branch optical waveguides 2a and 2b of the optical waveguide 2.
  • Each inner end of each of the lines 3a, 3b is formed so as to be located almost immediately above the center of each of the branch optical waveguides 2a, 2b.
  • the lines 3a and 3b of the modulation electrode are formed by processes such as vacuum evaporation, photolithography and etching.
  • Each is formed by a metal film such as aluminum or gold formed by using a metal.
  • the input light is introduced from the entrance-side optical waveguide 2c, and undergoes an optical modulation action as described below when passing through the branch optical waveguides 2a and 2b.
  • the refractive index of the material forming the branch optical waveguides 2a and 2b changes according to the electric field intensity.
  • the substrate 1 is made of, for example, a z-cut lithium niobate crystal, Light passing through the two branched optical waveguides 2a and 2b is given opposite phase changes.
  • the light modulation element of the present embodiment operates as a light intensity modulator.
  • the optical waveguide 2 in the present embodiment is provided with a refractive index difference not only in the vertical direction but also in the horizontal direction so that light can be confined in a direction parallel to the main surface of the substrate 1. That is, by using the mask pattern, a region having a higher refractive index than other portions is formed in the region of the substrate 1 that becomes the optical waveguide 2.
  • the structure itself of the optical waveguide 2 is known.
  • a feature of the present embodiment is that a large number of pits 9 formed by etching are formed between the optical waveguides 2a and 2b.
  • a so-called two-dimensional photonic crystal structure is formed.
  • a photonic band gap occurs in a two-dimensional direction (a direction parallel to the main surface of the substrate 1).
  • the role of the pits 9 in the present embodiment is to cut off light coupling and interference between the two branch optical waveguides 2a and 2b.
  • a photonic band gap is generated in a two-dimensional direction (in-plane direction of the substrate 1) in the gap 6 between the optical waveguide 2a and the optical waveguide 2b. Cannot be propagated in the in-plane direction.
  • This specific frequency propagates through the optical waveguide 2. It corresponds to the wavelength of the optical signal.
  • the interval between the two optical waveguides needs to be about 20 to 30 m.
  • the interval is about 5 m. Or it can be reduced to less.
  • the distance between the branched optical waveguides 2a and 2b is reduced, a strong electric field is generated in the gap 6 even when the same voltage is applied between the modulation electrode lines 3a and 3b. The amount of phase change given to the light wave increases, and the modulation efficiency improves.
  • narrowing the interval between the optical waveguides 2a and 2b is useful for shortening the length (size in the light propagation direction) of the light modulation element. This will be described with reference to FIGS. 2 (a) and 2 (b).
  • FIGS. 2A and 2B show portions where two optical waveguides 2a and 2b are branched from the optical waveguide 2c, respectively.
  • the area required for branching can be shortened (L 1> L2 ), The size of the light modulation element can be reduced as a whole.
  • the optical modulator can be sufficiently reduced in size even if the branch angle is not increased. It is difficult to increase the branch angle as long as a refractive index guided optical waveguide structure is adopted. For this reason, shortening the interval between the branch optical waveguides 2a and 2b greatly contributes to downsizing of the optical modulator.
  • the effect of the photonic crystal structure provided between the optical waveguides 2a and 2b also affects the propagation characteristics of light waves propagating through the optical waveguides 2a and 2b.
  • the group velocity of the light wave propagating through the optical waveguides 2a and 2b can be reduced by the presence of the photonic crystal structure.
  • the propagation speed of the light wave decreases, the energy of the light wave stored in the optical waveguides 2a and 2b increases, so that the modulation efficiency also improves.
  • the depth of the pit 9 is sufficient if the depth of the pit 9 is such that an electromagnetic field of a light wave propagating through the optical waveguide 2 is present (usually about 5 m or less). However, even if the pit 9 is relatively shallow, setting the refractive index of the optical waveguide 2 high will enhance the vertical confinement effect of the light wave. Therefore, the same effect as that obtained when the pit 9 is deep can be obtained.
  • the diameter of the pits 9 is preferably set to about 1Z4 of the wavelength of the light wave in the substrate 1, and the arrangement period of the pits 9 is preferably set to about 1Z2 of the wavelength.
  • the wavelength of the light corresponding to the photonic band gap largely depends on the pit 9 arrangement period. Therefore, if the wavelength of the light wave to be propagated through the optical waveguide 2 is given, the arrangement period of the pits 9 is determined so as to prevent the propagation of the wavelength.
  • pits 9 are formed in the entire force gap 6 in which the pits 9 are arranged in the entire area of the gap 6 between the optical waveguides 2 a and 2 b. No need. Since the pits 9 can form a photonic crystal structure even with about several rows, if multiple rows of pits 9 are formed near the optical waveguide, the area other than the optical waveguide on the main surface of the substrate 1 is formed. It is not necessary to form pits 9 throughout.
  • the inside of the pit 9 is described as being hollow and filled with air, but the inside of the pit 9 is filled with a material different from the material of the substrate 1. May be.
  • the main surface of substrate 1 may be covered with an insulating film.
  • the refractive index of the insulating film needs to have a value different from that of the optical waveguide 2 formed on the substrate 1.
  • the formation of the pit 9 can be performed, for example, as follows. That is, after a photosensitive resist is formed on the main surface of the substrate 1 by the photolithography technique, the photosensitive resist is exposed and developed using a photomask that defines an arrangement pattern of the pits 9. Next, the exposed portion of the substrate 1 may be selectively etched using the photosensitive resist patterned as described above as an etching mask. The optical waveguide 2 is formed on the main surface of the substrate 1 before the pit 9 is formed. If the etching for the pit 9 can be performed under the condition that the optical waveguide 2 is preferentially etched compared to other parts of the substrate 1, the pit 9 having a depth corresponding to the thickness of the optical waveguide 2 is reproduced. It becomes easy to form well.
  • the substrate 1 is formed of a material having an electro-optic effect such as LiNbO,
  • the etching for forming the array of the gates 9 can be performed by fluorine gas plasma RIE (reactive ion etching) or ICP (inductively coupled plasma).
  • RIE reactive ion etching
  • ICP inductively coupled plasma
  • Plate 1 can be etched.
  • the selectivity ratio for photosensitive resist is 1 realizable.
  • the fact that LiNbO x can be etched by ICP is described in the 63rd Applied Physics-related Lecture Meeting Preprints 26a-D-20.
  • a ridge structure waveguide formed by etching or the like is used as the optical waveguide 2.
  • a layer having a high refractive index is formed on the entire surface of the substrate 1 by a proton exchange method or a thermal diffusion method of a metal film.
  • a ridge structure is formed by etching the surface portion other than the waveguide.
  • the thickness of the layer having a higher refractive index is larger than the height of the ridge, it may be called a rib structure waveguide. It is sufficient that the height of the ridge is approximately the same as the wavelength of the light wave or approximately several times the wavelength.
  • the ridge-structured waveguide requires more steps for manufacturing as compared with the proton exchange waveguide and the heat diffusion waveguide, but has an advantage that the confinement of the light wave in the lateral direction can be sufficiently performed. . Further, the etching required for forming the ridge waveguide structure and the etching required for forming the pits 9 can be performed in the same step. By doing so, the manufacturing process can be simplified.
  • FIG. 3A is a plan view of the light modulation element of the present embodiment
  • FIG. 3B is a cross-sectional view along the line AA ′.
  • the light modulation element of the present embodiment has the same configuration as the light modulation element of the first embodiment except for the form of the photonic crystal structure provided in the gap 6 between the branch optical waveguides 2a and 2b. are doing. More specifically, a one-dimensional photonic crystal structure is employed in the present embodiment in order to suppress and cut off optical interference between the branch optical waveguides 2a and 2b.
  • a row of grooves 10 extending in the light propagation direction is formed in the gap 6 of the substrate 1.
  • a photonic band gap is created across the grooves 10.
  • the width and the cycle of the grooves 10 are approximately 1Z4 and 1Z2, respectively, of the wavelength of the light wave in the substrate.
  • the light wave propagates across the groove 10. Since it is impossible, the coupling between the optical waveguides 2a and 2b can be suppressed as in the second embodiment. Therefore, it is possible to bring the optical waveguide 2a and the optical waveguide 2b closer. Accordingly, by shortening the distance between the optical waveguides 2a and 2b, the light modulation efficiency can be improved for the above-described reason.
  • the present embodiment as compared with the case where the arrangement of the pits 9 shown in FIGS. 1A and 1B is used, even if the depth of the concave portion (the groove 10) formed in the substrate 1 is small, The same effect can be achieved. For this reason, although the area of the region to be etched becomes large, the etching for forming the groove 10 is easy.
  • an array of pits 9 or grooves 10 is formed so as to generate a photonic band gap, thereby suppressing the coupling between the branched optical waveguides.
  • the band structure of the nick crystal does not necessarily need to have a photonic band gap.
  • the light modulation element of the present invention can exert its effect. More specifically, if the alignment position of the bit 9 or the groove 10 also shifts the target position force due to a manufacturing error or the like, the alignment periodicity is slightly broken, so that a photonic band gap is not formed in the band structure of the photonic crystal. There are cases. Even in such a case, the coupling between the branched optical waveguides can be sufficiently suppressed.
  • the space (the gap 6) between the two side-by-side branch optical waveguides is set.
  • a region having a photonic crystal structure and a region having no photonic crystal structure are present in layers above and below.
  • coupling may occur between the two branch optical waveguides via a region having no photonic crystal structure.However, the presence of the region having the photonic crystal structure causes the degree of the coupling. Can be made sufficiently small.
  • the photonic crystal structure disposed in the gap 6 of the branch optical waveguide it is not necessary for the photonic crystal structure disposed in the gap 6 of the branch optical waveguide to completely block the coupling of the branch optical waveguides located on both sides. Even when complete interruption does not occur, the propagation constant of the light wave in the gap 6 can be sufficiently controlled by the arrangement of the photonic crystal.
  • the depth of the pit 9 or the groove 10 is smaller than the thickness of the branch optical waveguide, in order to sufficiently suppress the coupling between the branch optical waveguides, the depth of the pit 9 or the groove 10 must be changed. It is preferable to set the size to 5% or more of the wavelength of the light wave in the wave path. If the error of the periodicity of the pits 9 and the grooves 10 is within 50% of the period of the perfectly regular arrangement, the coupling between the branched optical waveguides can be sufficiently suppressed.
  • the photonic crystal structure in the light modulation device of the present invention has a band gap, because the total reflection type waveguide is provided in each of the branched optical waveguide portions. This is because the structure is provided. That is, in the present invention, the formation of the optical waveguide itself is not intended to be realized by the band gap of the photonic crystal structure. Therefore, the function of confining light in the region where light is to be propagated (waveguiding function) does not need to be performed by utilizing the light confinement effect of the photo-band gap, and the degree of freedom in fabricating a photonic crystal structure is large. improves.
  • the fiber wireless system 50 of the present embodiment includes the optical modulator / demodulator 51 incorporating the optical modulation element of the first and second embodiments.
  • the antenna 53 enables communication with a normal data communication network such as the Internet or a portable terminal, or reception of a CATV-powered signal or the like directly using, for example, a millimeter-wave carrier.
  • the optical modulator / demodulator 51 incorporates an optical demodulator (for example, a photodiode) together with the optical modulator.
  • the data communication network 61, the CATV 62, and the mobile phone system 63 can be performed using the wireless device 60 and the antenna 64 attached to the wireless device.
  • an optical modulator / demodulator 55 connected to the fiber wireless communication system 50 via the optical fiber 70, and an antenna 54 attached thereto are further provided.
  • signals can be exchanged with the wireless device 60 via the antennas 54 and 64 and the optical modulator / demodulator 55.
  • the optical modulator / demodulator 55 includes an optical demodulation element (For example, a photodiode).
  • an optical demodulation element (For example, a photodiode).
  • the interval between the branch optical waveguides can be reduced, so that the modulation efficiency can be increased and the size of the light modulation device can be reduced.
  • this optical modulation element in a communication system, communication using a millimeter-wave-level high-frequency signal becomes possible.
  • the optical modulation element of the present invention is suitably used for high-speed optical communication, optical signal processing systems, and the like.
  • it is suitable for high-speed information transmission and long-distance optical fiber communication, etc., because the phase of optical signals due to optical modulation is small.
  • FIG. 1 (a) is a plan view of a first embodiment of a light modulation device according to the present invention
  • FIG. 1 (b) is a cross-sectional view along the line AA ′.
  • FIG. 2 (a) and (b) are plan views each showing an example of the shape and size of a branch waveguide in an optical modulation device. [FIG.
  • FIG. 3 (a) is a plan view of a second embodiment of the light modulation device according to the present invention
  • FIG. 3 (b) is a cross-sectional view along the line AA ′.
  • FIG. 4 is a diagram showing an embodiment of a communication system according to the present invention.
  • FIG. 5 is a perspective view showing a conventional example of a light modulation element.
  • Terminating resistor Gap a Branch point b Branch point Bent part Pit 0 Groove

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 本発明の光変調素子は、分岐された少なくとも2つの全反射型光導波路2a、2bを有する光導波路2を備えた光変調素子であって、前記光導波路2の少なくとも一部は、電気光学効果を示す材料から形成された基板1上または基板1内に形成されており、2つの全反射型光導波路2a、2bの間の領域(間隙部6)がフォトニック結晶構造を有している。

Description

明 細 書
光変調素子及び通信システム
技術分野
[0001] 本発明は、光通信システムおよび光信号処理システムなどに用いられる光変調素 子と、当該光変調素子を有する通信システムに関している。
背景技術
[0002] 光変調素子は、高速光通信や光信号処理システムなどにおいて基本となる素子で あり、将来、超高速で動作できる光変調素子の必要性はますます増大するものと考 えられる。従来利用されてきた半導体レーザによる直接変調では、超高速光変調に 対応することが困難であるため、最近では、高速動作が可能な外部変調型の素子の 開発が急がれている。中でも、特に、大きなポッケルス効果を有する誘電体結晶を用 いた、いわゆる電気光学光変調素子は、超高速動作が可能であり、また、光変調に 伴う光信号の位相の乱れも少な!、ことから、高速情報伝送や長距離光ファイバ通信 などに非常に適している。さらに、光導波路構造を用いれば、小型化と高効率化とを 一挙に実現できる可能性がある。
[0003] 一般に、電気光学光変調素子は、電気光学結晶上に変調電極として設けられた変 調信号を伝搬させる伝送線路と、伝送線路の近傍に形成された光導波路とにより構 成されている。つまり、変調電極の周辺に誘起される電界に応じて光導波路部分の 屈折率が変化すると、光導波路中を伝搬する光波の位相が変調信号に伴って変化 するという現象を利用したものである。
[0004] 電気光学光変調素子において、光変調の基本となる電気光学係数は、通常の結 晶では比較的小さい。従って、この方式の光変調素子においては、高い変調効率を 実現するため、電界を光導波路に効率よく印加することが重要となる。
[0005] 図 5は、非特許文献 1に記載されている従来の光変調素子の一例を簡略化して示 した斜視図である。この光変調素子においては、電気光学効果を有する材料から形 成された基板 1の表面部に光導波路 2が形成されている。光導波路 2は、基板 1の屈 折率を他の部分よりもわずかに増加させた領域から構成されており、全反射によって 光波を導波させることができる。屈折率の上昇は、基板 1の一部に金属を熱拡散する ことなどによって行なわれる。光導波路 2の左右両側において、基板 1の上面上には 、アルミニウムや金などの金属膜からなる変調電極 3が設けられている。変調電極 3は 互いに平行な 2つの線路 3a、 3bによって構成されており、コプレナ一線路構造を有 している。
[0006] 光導波路 2は、 2箇所の分岐点 7a、 7bで 2つの分岐光導波路 2a、 2bに分岐してお り、入口側光導波路 2cから入力された入力光が一方の分岐点 7aで分岐して 2つの 分岐光導波路 2a、 2bを通過した後、他方の分岐点 7bで共通の出口側光導波路 2d を進むように構成されている。
[0007] 基板 1の上には、光導波路 2の各分岐光導波路 2a、 2bに沿うように延びる 2つの線 路 3a、 3bからなるコプレナ一線路構造の変調電極 3が設けられている。各線路 3a、 3 bの各内側端は、各分岐光導波路 2a、 2bのほぼ中央部の直上に位置するように形 成されていて、変調電極 3の一方の端に高周波信号源 4が接続され、他方の端には 終端抵抗 5が接続されて 、る。
[0008] 入力光は、入口側光導波路 2cから導入され、各分岐光導波路 2a、 2bを通過する 際に、以下のように、光変調作用を受ける。
[0009] 高周波信号源 4から高周波信号が供給されると、変調電極 3を光と同じ方向に伝搬 し、間隙部 6に電界が生じる。そして、電気光学的効果により、分岐光導波路 2a、 2b を構成する材料の屈折率が電界強度に応じて変化する。本形態においては、分岐 光導波路 2aと分岐光導波路 2bとには互いに上下逆方向の電界が印加されるので、 基板 1が例えば zカットのニオブ酸リチウム結晶により構成されている場合、 2つの分 岐光導波路 2a、 2bを通る光には互いに逆の位相変化が与えられる。したがって、出 口側光導波路 2dでは、分岐光導波路 2a、 2bを通過した 2つの光の干渉が生じ、この 干渉によって出力光の強度が変化することにより、本形態の光変調素子は光強度変 調器として動作する。
非特許文献 1 : IEEE Journal of Quantum Electronics. Vol. QE- 13、 no. 4、 pp287- 290、 1977
発明の開示 発明が解決しょうとする課題
[0010] 従来の電気光学光変調素子は、屈折率差を利用して光を閉じ込める光導波路を 用いている。このような光変調素子では、間隙部 6の幅を小さくし、光導波路 2a、 2b を接近させると、同じ電圧を印加しても間隙部 6に形成される電界の強度が大きなる ため、変調効率を改善できる。し力しながら、間隙部 6の幅を小さくすると、光導波路 2 aと光導波路 2bとの間で生じる光波の結合の影響が大きくなるという問題がある。この ため、間隙部 2の幅は、通常、 20— 30 m程度以下にはできないと考えられている。 このことは、素子の小型化および高効率化を阻む要因の一つとなって 、る。
[0011] 本発明は、上記事情に鑑みてなされたものであり、その主たる目的は、光通信シス テム等に組み込み得る小型で高効率の光変調素子を提供することにある。 課題を解決するための手段
[0012] 本発明の光変調素子は、分岐された少なくとも 2つの全反射型光導波路を有する 光導波路構造を備えた光変調素子であって、前記全反射型光導波路の少なくとも一 部は、電気光学効果を示す材料から形成された基板上または基板内に形成されて おり、前記 2つの全反射型光導波路の間の領域がフォトニック結晶構造を有している
[0013] 好ま 、実施形態にぉ ヽて、前記フォトニック結晶構造は前記基板に形成されて ヽ る。
[0014] 好ましい実施形態において、前記フォトニック結晶構造は、前記基板の主面に設け られた凹部および Zまたは凸部の周期的配列によって実現されている。
[0015] 好ましい実施形態において、前記フォトニック結晶構造は、前記基板の主面に設け られた凹部の周期的配列によって実現されており、かつ、前記全反射型光導波路は 、前記基板の主面に設けられており、前記凹部の深さは、前記全反射型光導波路の 厚さよりも/ J、さい。
[0016] 好ましい実施形態において、前記フォトニック結晶構造は、前記基板の主面に設け られた、前記全反射型光導波路に平行な溝の周期的配列によって実現されている。
[0017] 好ましい実施形態において、前記全反射型光導波路は、前記基板の主面に設けら れており、前記溝の深さは、前記全反射型光導波路の厚さよりも小さい。 [0018] 好ま 、実施形態にお!、て、前記全反射型光導波路は、前記基板の主面側に形 成された改質層から形成されて!、る。
[0019] 好ましい実施形態において、前記全反射型光導波路を伝搬する光に対して光変 調用の高周波信号を印加する電極を前記基板上に備えている。
[0020] 好ま ヽ実施形態にお!ヽて、前記フォトニック結晶構造は、前記 2つの分岐全反射 型光導波路の一方力 他方に向力つて伝搬しょうとする光波に対するフォト-ックバ ンドギャップを有している 1次元または 2次元フォトニック結晶構造である。
[0021] 好ましい実施形態において、前記 2つの全反射型光導波路は、マッハツェンダー干 渉計を形成している。
[0022] 好ましい実施形態において、前記フォトニック結晶構造は、前記 2つの全反射型光 導波路の間の領域のみに選択的に成形されいる。
[0023] 好ましい実施形態において、前記 2つの全反射型光導波路の間隔は、 5 μ m以下 である。
[0024] 好ましい実施形態において、屈折率が相対的に高いコア部分と、屈折率が相対的 に低 、クラッド部分とから構成されて 、る。
[0025] 本発明の通信システムは、電気信号を光信号に変換するための光変調素子を備え た通信システムであって、前記光変調素子は、上記いずれかの光変調素子である。 発明の効果
[0026] 本発明の光変調素子によれば、分岐光導波路の間隔を短縮できるため、変調効率 を増加させるとともに、光変調素子のサイズを小さくすることができる。この光変調素 子を通信システムに用 、ることにより、ミリ波レベルの高周波信号を利用した通信が 可會 になる。
発明を実施するための最良の形態
[0027] 近年、「フォトニック結晶」を利用した各種光学デバイスの研究 *開発が進められて いる。「フォトニック結晶」とは、光の波長と同程度の周期で屈折率分布を形成した新 しい光材料である。通常の固体結晶では、原子の周期的な配列によって電子エネル ギのバンド構造が形成される力 フォトニック結晶では、光のエネルギのバンド構造が 形成される。このようなバンド構造に形成に伴い、フォトニック結晶中には「フォトニック バンドギャップ」が形成される場合がある。このフォトニックバンドギャップに相当する エネルギを有する光は、フォトニックバンドギャップを有するフォトニック結晶中を伝搬 することができない。なお、フォトニックバンドギャップが存在しないバンド構造を有す るフォトニック結晶中では、特定波長帯域の光の伝搬が完全に阻止されることはな 、 力 その伝搬を抑制することは可能である。
[0028] 本発明では、電気光学効果を有する材料にフォトニック結晶構造を形成し、実用的 な光変調素子を実現する。
[0029] 以下、図面を参照しながら、本発明の実施形態を説明する。
[0030] (実施形態 1)
まず、図 1 (a)および (b)を参照しながら、本発明による光変調素子の第 1の実施形 態を説明する。図 1 (a)は、本実施形態の光変調素子の平面図であり、図 1 (b)は、そ の A— A'線断面図である。
[0031] 図 1 (a)に示すように、本実施形態の光変調素子は、電気光学効果を示す材料から 形成された基板 1と、この基板 1内に設けられた光導波路 2とを有している。
[0032] 基板 1は、タンタル酸リチウム (LiTaO )単結晶、ニオブ酸リチウム (LiNbO )単結
3 3 晶などの電気光学効果を有する結晶材料から形成されている。光導波路 2は、安息 香酸を用いたプロトン交換法、金属膜の熱拡散法などを用いて基板 1の表面に好適 に形成される。
[0033] 本実施形態の光導波路 2は、マッハツェンダー干渉計として動作するように 2箇所 の分岐点 7a、 7bで 2つの全反射型光導波路 2a、 2bに分岐している。以下、簡単の ため、分岐された全反射型光導波路の各々を、単に「分岐光導波路」と称することと する。入口側光導波路 2cから入力された入力光は、一方の分岐点 7aで分岐して 2つ の分岐光導波路 2a、 2bを通過した後、他方の分岐点 7bから共通の出口側光導波 路 2dを進み干渉する。
[0034] 基板 1の主面側には、光導波路 2の各分岐光導波路 2a、 2bに沿うように 2つの線路 3a、 3bから構成される変調電極が設けられている。各線路 3a、 3bの各内側端は、各 分岐光導波路 2a、 2bのほぼ中央部の直上に位置するように形成されている。変調 電極の各線路 3a、 3bは、真空蒸着法、フォトリソグラフィ及びエッチングなどのプロセ スを用いて形成されたアルミニウムや金などの金属膜によってそれぞれ構成されて ヽ る。
[0035] 入力光は、入口側光導波路 2cから導入され、各分岐光導波路 2a、 2bを通過する 際に、以下のようにして光変調作用を受ける。
[0036] まず、変調電極の各線路 3a、 3b間に変調信号が印加されると、間隙部 6に電界が 生じる。すると、基板 1の有する電気光学的効果により、分岐光導波路 2a、 2bを構成 する材料の屈折率が電界強度に応じて変化する。本実施形態においては、分岐光 導波路 2aと分岐光導波路 2bとには互いに上下逆方向の電界が印加されるので、基 板 1が例えば zカットのニオブ酸リチウム結晶により構成されている場合、 2つの分岐 光導波路 2a、 2bを通る光には互いに逆の位相変化が与えられる。したがって、出口 側光導波路 2dでは、分岐光導波路 2a、 2bを通過した 2つの光の干渉が生じ、この干 渉によって出力光の強度が変化することになる。変調電極に印加する変調信号に応 じて、出力光の強度を変調できるため、本実施形態の光変調素子は光強度変調器と して動作する。
[0037] 本実施形態における光導波路 2は、基板 1の主面に平行な方向における光の閉じ 込めが可能なように、垂直方向だけではなく横方向にも屈折率差が与えられている。 すなわち、マスクパターンを用いることにより、基板 1において光導波路 2となる領域 に他の部分よりも屈折率の高 、領域が形成されて 、る。この光導波路 2の構造自体 は、公知のものである。
[0038] 本実施形態に特徴的な点は、光導波路 2a、 2bの間に、エッチングにより形成され た多数のピット 9が形成されている点にある。このピット 9の形状、大きさ、および配置 を適切に設定することにより、いわゆる 2次元のフォトニック結晶構造が形成されてい る。これにより、 2次元方向(基板 1の主面に平行な方向)にフォトニックバンドギャップ が生じている。本実施形態におけるピット 9の役割は、 2つの分岐光導波路 2a、 2bの 間での光の結合 ·干渉を遮断することにある。
[0039] 本実施形態によれば、光導波路 2aと光導波路 2bとの間隙部 6において、 2次元方 向(基板 1の面内方向)にフォトニックバンドギャップが生じるため、特定周波数の光 波が上記面内方向に伝搬できなくなる。この特定周波数は、光導波路 2を伝搬する 光信号の波長に対応している。このような構成を採用することにより、光導波路 2aと 光導波路 2bとを接近させて配置した場合でも、これらの光導波路間における光波の 結合を抑えることができる。その結果、フォトニック結晶構造を設けない場合に比べて 、光導波路 2aと光導波路 2bとをより接近させることができる。具体的には、従来の光 変調素子によると、 2本の光導波路の間隔は 20— 30 m程度が必要であるが、本実 施形態の光変調素子によれば、この間隔を 5 m程度またはそれ以下に減少させる ことが可能である。このように分岐した光導波路 2a、 2bの間隔を狭めると、同じ電圧 を変調電極の線路 3a、 3b間に印加した場合でも、間隙部 6に強い電界が生じるため 、光導波路 2a、 2b中の光波に与えられる位相変化量が大きくなり、変調効率が向上 する。
[0040] また、光導波路 2a、 2bの間隔を狭めることが光変調素子の長さ(光伝搬方向のサイ ズ)の短縮にも役立つ。図 2 (a)および (b)を参照しながら、このことを説明する。
[0041] 図 2 (a)および (b)は、それぞれ、光導波路 2cから 2本の光導波路 2a、 2bが分岐し ている部分を示している。図 2 (a)および (b)を比較するとわ力るように、分岐光導波 路 2a、 2bとの間の間隔が小さくなると、分岐のために必要な領域を短くできるため(L 1 >L2)、光変調素子を全体的に小型化できる。このように、分岐光導波路 2a、 2bの 間隔を短縮すると、分岐角を大きくしない場合でも、光変調素子を充分に小型化でき る。屈折率導波型の光導波路構造を採用する限り、分岐角を大きくすることは難しい 。このため、分岐光導波路 2a、 2bの間隔を短縮できることは、光変調素子の小型化 に大いに寄与する。
[0042] なお、光導波路 2a、 2bの間に設けられたフォトニック結晶構造の影響が、光導波路 2a、 2bを伝搬する光波の伝搬特性にも影響を与える。多くの場合、フォトニック結晶 構造の存在によって、光導波路 2a、 2bを伝搬する光波の群速度を低下させられる。 光波の伝搬速度が低下すると、光導波路 2a、 2b中に蓄積される光波のエネルギが 増加するため、これによつても変調効率が向上する。
[0043] ピット 9の深さは、光導波路 2を伝搬する光波の電磁界が存在する程度の深さ(通常 は 5 m程度以下)であれば十分である。ただし、ピット 9が比較的浅い場合であって も、光導波路 2の屈折率を高く設定すれば、光波の垂直方向の閉じこめ効果が強ま るため、ピット 9が深い場合に得られる効果と同様の効果を得ることができる。ピット 9 の直径は、光波の基板 1内における波長の約 1Z4に設定することが好ましぐピット 9 の配列周期は上記波長の約 1Z2に設定することが好ましい。
[0044] なお、フォトニックバンドギャップに対応する光の波長は、ピット 9の配列周期に大き く依存する。このため、光導波路 2を伝搬させるべき光波の波長が与えられたならば、 その波長の伝搬を阻止するようにピット 9の配列周期が決定される。
[0045] 図 1 (a)では、基板 1の主面のうち、光導波路 2a、 2bの間隙部 6の全領域にピット 9 が配列されている力 間隙部 6の全体にピット 9を形成する必要はない。ピット 9は、数 個程度の列によってもフォトニック結晶構造を形成し得るため、光導波路の近傍に複 数列のピット 9が形成されていれば、基板 1の主面において光導波路以外の領域の 全体にピット 9が形成されて 、る必要はな 、。
[0046] 図 1 (b)では、ピット 9の内部は空洞であって空気に満たされているように記載されて いるが、ピット 9の内部は、基板 1の材料とは異なる材料で埋められていてもよい。例 えば、基板 1の主面は絶縁膜で被覆されていても良い。この場合、この絶縁膜の屈折 率は、基板 1に形成する光導波路 2の屈折率とは異なる値を持つ必要がある。
[0047] ピット 9の形成は、例えば次のようにして行なうことができる。すなわち、フォトリソダラ フィ技術によって基板 1の主面上に感光性レジストを形成した後、ピット 9の配列パタ ーンを規定するフォトマスクを用いて、この感光性レジストを露光 '現像する。次に、こ のようにしてパターユングした感光性レジストをエッチングマスクとして用い、基板 1の 露出部分を選択的にエッチングすればよい。光導波路 2は、ピット 9の形成前に基板 1の主面に形成しておく。基板 1の他の部分に比べて光導波路 2を優先的にエツチン グする条件でピット 9のためのエッチングを行なうことができれば、光導波路 2の厚さ に対応した深さを有するピット 9を再現性良く形成しやすくなる。
[0048] 基板 1が LiNbOなどの電気光学効果を有する材料から形成されて!ヽる場合、ピッ
3
ト 9のアレイを形成するためのエッチングは、フッ素系ガスプラズマ RIE (反応性イオン エッチング)や ICP (誘導結合プラズマ)によって行なうことができる。 ICPによる場合、 還元性の強い CF、 BC1、 C Fなどのガスを用いれば、 0. 5 mZ分のレートで基
4 3 4 8
板 1をエッチングすることができる。この方法では、感光性レジストに対する選択比 1を 実現できる。なお、 ICPによって LiNbOxをエッチングできることは、第 63回応用物理 学関係連合講演会講演予稿集 26a— D— 20に記載されて 、る。
[0049] また、光導波路 2として、エッチングなどにより形成したリッジ構造導波路を用いても 有効である。この場合、まず、プロトン交換法あるいは金属膜の熱拡散法によって基 板 1の表面全体に屈折率の高い層を形成する。そして、その後、導波路以外の表面 部分をエッチングすることにより、リッジ構造を形成する。なお、リッジの高さよりも上記 屈折率の高い層の厚さが大きい場合、リブ構造導波路と呼ばれる場合もある。リッジ の高さは、概ね光波の波長と同程度か、またはその数倍程度であれば十分である。
[0050] リッジ構造導波路は、プロトン交換導波路や熱拡散導波路に比べると、作製に必要 な工程が増加するが、光波の横方向に関する閉じこめを充分に行なうことができると いう利点がある。また、リッジ導波路構造の形成に必要なエッチングとピット 9の形成 に必要なエッチングとを同一工程で行なうことも可能である。このようにすることにより 、製造プロセスを簡略ィ匕できる。
[0051] (実施形態 2)
以下、図 3 (a)および (b)を参照しながら、本発明による光変調素子の第 2の実施形 態を説明する。図 3 (a)は、本実施形態の光変調素子の平面図であり、図 3 (b)は、そ の A— A'線断面図である。
[0052] 本実施形態の光変調素子は、分岐光導波路 2a、 2bの間隙部 6に設けられたフォト ニック結晶構造の形態以外の点では、実施形態 1における光変調素子と同様の構成 を有している。より詳細には、分岐光導波路 2a、 2bの光学的な干渉を抑制'遮断する ために、本実施形態では 1次元フォトニック結晶構造を採用している。
[0053] 以下、本実施形態に特徴的な点を説明する。
[0054] 本実施形態の光変調素子では、図 3 (a)および (b)に示すように、光の伝搬方向に 延びた溝 10の列が基板 1の間隙部 6に形成されている。溝 10の幅、間隔、および深 さを適切に選択することにより、溝 10を横切る方向にフォトニックバンドギャップが生じ る。
[0055] 溝 10の幅と並びの周期は、それぞれ、光波の基板内での波長のおおむね 1Z4お よび 1Z2に設定することが好ましい。この場合、光波は溝 10を横切る方向には伝搬 できないので、実施形態 2と同様に光導波路 2a、 2b間の結合を抑えることができる。 このため、光導波路 2aと光導波路 2bとを近づけることが可能である。それによつて、 光導波路 2a、 2bの間隔を短くすることにより、前述した理由から、光変調効率を向上 させることがでさる。
[0056] 本実施形態によれば、図 1 (a)および (b)に示すピット 9の配列を利用する場合に比 ベ、基板 1に形成する凹部 (溝 10)の深さが浅くても同等の効果を発揮させることがで きる。このため、エッチングすべき領域範囲の面積は大きくなるが、溝 10を形成する ためのエッチングは容易である。
[0057] 前述した各実施形態における光変調素子では、フォトニックバンドギャップが生じる ようにピット 9または溝 10の配列を形成し、それによつて分岐光導波路間の結合を抑 制している力 フォトニック結晶のバンド構造は、必ずしもフォトニックバンドギャップを 有している必要はない。
[0058] 分岐光導波路間に配置したフォトニック結晶のバンド構造力フォトニックバンドギヤ ップを有していない場合でも、本発明の光変調素子は、その効果を発揮することがで きる。より具体的には、ビット 9や溝 10の配列位置が製造誤差などを原因として目標 位置力もシフトすると、配列周期性がわずかに崩れるため、フォトニック結晶のバンド 構造にフォトニックバンドギャップが形成されない場合がある。そのような場合でも、分 岐光導波路間の結合を充分に抑制することができる。
[0059] また、ピット 9や溝 10の縦方向サイズ (深さ)が、分岐光導波路の厚さに比べて小さ いときは、並んだ 2つの分岐光導波路に挟まれた空間(間隙部 6)において、フォト- ック結晶構造を有する領域とフォトニック結晶構造を有しない領域とが上下に層状に 存在することになる。このような場合は、フォトニック結晶構造を有しない領域を介して 2つの分岐光導波路間に結合が生じ得るが、フォトニック結晶構造を有する領域が存 在していることにより、その結合の程度を充分に小さくすることが可能である。
[0060] 以上説明したように、分岐光導波路の間隙部 6に配置するフォトニック結晶構造が 両側に位置する分岐光導波路の結合を完全に遮断する必要は無い。完全な遮断が 生じない場合でも、フォトニック結晶の配置により、間隙部 6における光波の伝搬定数 が充分に制御できる。 [0061] ピット 9または溝 10の深さが、分岐光導波路の厚さよりも小さい場合、分岐光導波路 間の結合を充分に抑制するためには、ピット 9または溝 10の深さを、分岐光導波路内 における光波の波長の 5%以上の大きさに設定することが好ましい。また、ピット 9や 溝 10の周期性の誤差が完全に規則正しい配列の周期の 50%以内であれば、分岐 光導波路間の結合を充分に抑制できる。
[0062] このように、本発明の光変調素子におけるフォトニック結晶構造がバンドギャップを 有して 、る必要の無 、理由は、分岐された個々の光導波路部分に全反射型の導波 路構造を付与しているためである。すなわち、本発明では、光導波路それ自体の形 成を、フォトニック結晶構造のバンドギャップによって実現しようとはしていない。その ため、光を伝搬させるべき領域に光を閉じ込める機能 (導波機能)は、フォト-ックバ ンドギャップによる光閉じ込め効果を利用して行なう必要は無ぐフォトニック結晶構 造の作製自由度が大きく向上する。
[0063] (実施形態 3)
次に、図 4を参照しながら本発明によるファイバ無線システムの実施形態を説明す る。
[0064] 本実施形態のファイバ無線システム 50は、第 1および第 2の実施形態における光変 調素子を内蔵した光変復調器 51を備えている。そして、アンテナ 53により、通常のィ ンターネット等のデータ通信網や、携帯端末との通信、あるいは、 CATV力 の信号 の受信等を例えばミリ波の搬送波を用いて直接行なうことができる。なお、光変復調 器 51には、光変調素子とともに光復調素子 (例えばフォトダイオード)が内蔵されてい る。
[0065] 一方、ミリ波等の周波数の高い無線信号は長距離の伝送は困難であり、かつ、物 体による信号の遮断を受けやすい。そこで、データ通信網 61や、 CATV62や、携帯 電話システム 63との通信を、無線装置 60及び無線装置に付設されたアンテナ 64を 用いて行なうこともできる。その場合、ファイバ無線通信システム 50と光ファイバ 70を 介して接続される光変復調器 55と、これに付設されるアンテナ 54とをさらに備えてお く。そして、アンテナ 54、 64及び光変復調器 55を介して、無線装置 60との間で信号 の授受を行なうことができる。光変復調器 55には、光変調素子とともに光復調素子( 例えばフォトダイオード)が内蔵されている。長距離伝送を行ないたい場合や、壁等 で仕切られた屋内での伝送の際には、光ファイバ 70を通してミリ波等の無線信号で 変調された光信号を伝送することが効果的である。
[0066] 以上説明してきたように、本発明の光変調素子によれば、分岐光導波路の間隔を 短縮できるため、変調効率を増カロさせるとともに、光変調素子のサイズを小さくするこ とができる。この光変調素子を通信システムに用いることにより、ミリ波レベルの高周 波信号を利用した通信が可能になる。
産業上の利用可能性
[0067] 本発明の光変調素子は、高速光通信や光信号処理システムなどに好適に用いら れる。特に、光変調に伴う光信号の位相の乱れが少ないため、高速情報伝送ゃ長距 離光ファイバ通信などに適している。
図面の簡単な説明
[0068] [図 1] (a)は、本発明による光変調素子の第 1の実施形態の平面図であり、 (b)は、そ の A— A'線断面図である。
[図 2] (a)および (b)は、いずれも、光変調素子における分岐導波路の形状およびサ ィズの例を示す平面図である。
[図 3] (a)は、本発明による光変調素子の第 2の実施形態の平面図であり、 (b)は、そ の A— A'線断面図である。
[図 4]本発明による通信システムの実施形態を示す図である。
[図 5]光変調素子の従来例を示す斜視図である。
符号の説明
[0069] 1
2 光導波路
2a 分岐光導波路
2b 分岐光導波路
2c 入口側光導波路
2d 出口側光導波路
3 変調電極 a 線路b 線路
信号源 終端抵抗 間隙部a 分岐点b 分岐点 曲がり部分 ピット0 溝

Claims

請求の範囲
[1] 分岐された少なくとも 2つの全反射型光導波路を有する光導波路構造を備えた光 変調素子であって、
前記全反射型光導波路の少なくとも一部は、電気光学効果を示す材料カゝら形成さ れた基板上または基板内に形成されており、
前記 2つの全反射型光導波路の間の領域がフォトニック結晶構造を有している光 変調素子。
[2] 前記フォトニック結晶構造は前記基板に形成されて!ヽる請求項 1に記載の光変調 素子。
[3] 前記フォトニック結晶構造は、前記基板の主面に設けられた凹部および Zまたは凸 部の周期的配列によって実現されている請求項 2に記載の光変調素子。
[4] 前記フォトニック結晶構造は、前記基板の主面に設けられた凹部の周期的配列に よって実現されており、かつ、
前記全反射型光導波路は、前記基板の主面に設けられており、
前記凹部の深さは、前記全反射型光導波路の厚さよりも小さい、請求項 2に記載の 光変調素子。
[5] 前記フォトニック結晶構造は、前記基板の主面に設けられた、前記全反射型光導 波路に平行な溝の周期的配列によって実現されている請求項 3に記載の光変調素 子。
[6] 前記全反射型光導波路は、前記基板の主面に設けられており、前記溝の深さは、 前記全反射型光導波路の厚さよりも小さい、請求項 5に記載の光変調素子。
[7] 前記光導波路は、前記基板の主面側に形成された改質層から形成されている請求 項 1に記載の光変調素子。
[8] 前記光導波路を伝搬する光に対して光変調用の高周波信号を印加する電極を前 記基板上に備えて 、る、請求項 1に記載の光変調素子。
[9] 前記フォトニック結晶構造は、前記 2つの全反射型光導波路の一方から他方に向 力つて伝搬しょうとする光波に対するフォトニックバンドギャップを有している 1次元ま たは 2次元フォトニック結晶構造である請求項 1に記載の光変調素子。
[10] 前記 2つの全反射型光導波路は、マッハツェンダー干渉計を形成している請求項] に記載の光変調素子。
[11] 前記フォトニック結晶構造は、前記 2つの全反射型光導波路の間の領域のみに選 択的に成形されて!、る、請求項 1に記載の光変調素子。
[12] 前記 2つの全反射型光導波路の間隔は、 5 μ m以下である、請求項 1に記載の光 変調素子。
[13] 各全反射型光導波路は、屈折率が相対的に高いコア部分と、屈折率が相対的に 低 、クラッド部分とから構成されて 、る、請求項 1に記載の光変調素子。
[14] 電気信号を光信号に変換するための光変調素子を備えた通信システムであって、 前記光変調素子は、請求項 1から 13のいずれかに記載された光変調素子である、 通信システム。
PCT/JP2004/015824 2003-11-10 2004-10-26 光変調素子及び通信システム WO2005045512A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003380007 2003-11-10
JP2003-380007 2003-11-10

Publications (1)

Publication Number Publication Date
WO2005045512A1 true WO2005045512A1 (ja) 2005-05-19

Family

ID=34567219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015824 WO2005045512A1 (ja) 2003-11-10 2004-10-26 光変調素子及び通信システム

Country Status (1)

Country Link
WO (1) WO2005045512A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164313A (en) * 1980-05-22 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light modulator
JPS63141021A (ja) * 1986-12-03 1988-06-13 Fujitsu Ltd 光導波路デバイス
JPH08505707A (ja) * 1993-01-08 1996-06-18 マサチユセツツ・インスチチユート・オブ・テクノロジー 低損失光及び光電子集積回路
JPH11330619A (ja) * 1998-05-18 1999-11-30 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JP2001174652A (ja) * 1999-12-14 2001-06-29 Showa Electric Wire & Cable Co Ltd 光合分波器
JP2002303836A (ja) * 2001-04-04 2002-10-18 Nec Corp フォトニック結晶構造を有する光スイッチ
JP2003517637A (ja) * 1999-12-17 2003-05-27 コーニング インコーポレイテッド 光集積回路の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164313A (en) * 1980-05-22 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light modulator
JPS63141021A (ja) * 1986-12-03 1988-06-13 Fujitsu Ltd 光導波路デバイス
JPH08505707A (ja) * 1993-01-08 1996-06-18 マサチユセツツ・インスチチユート・オブ・テクノロジー 低損失光及び光電子集積回路
JPH11330619A (ja) * 1998-05-18 1999-11-30 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JP2001174652A (ja) * 1999-12-14 2001-06-29 Showa Electric Wire & Cable Co Ltd 光合分波器
JP2003517637A (ja) * 1999-12-17 2003-05-27 コーニング インコーポレイテッド 光集積回路の製造方法
JP2002303836A (ja) * 2001-04-04 2002-10-18 Nec Corp フォトニック結晶構造を有する光スイッチ

Similar Documents

Publication Publication Date Title
EP1705515B1 (en) Curved ridge optical waveguide, optical device, and method of manufacturing optical waveguide
US9746743B1 (en) Electro-optic optical modulator devices and method of fabrication
US11567353B2 (en) Electro-optic devices having engineered electrodes
US7088875B2 (en) Optical modulator
US10678072B2 (en) Apparatuses and methods for low energy data modulation
JP2017129834A (ja) 光導波路素子およびこれを用いた光変調器
US11841563B2 (en) Electro-optic modulators that include caps for optical confinement
US20110262071A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
JP5716714B2 (ja) 光導波路素子
US20230007949A1 (en) Optical Device
US12044909B2 (en) Optical device that includes optical modulator, and optical transceiver
US8571362B1 (en) Forming optical device using multiple mask formation techniques
US20090269017A1 (en) Optical waveguide device
US20050196092A1 (en) Optical modulator and communications system
JP2847660B2 (ja) 導波路型光変調器
WO2005045512A1 (ja) 光変調素子及び通信システム
JP2005141156A (ja) 光変調素子及び通信システム
US6980706B2 (en) Waveguide optical modulator
JP2006178275A (ja) 光導波路および光変調素子および通信システム
JP2007171452A (ja) 光導波路および光変調素子および光通信システム
JP4138760B2 (ja) 光変調器
US20230251511A1 (en) Electro-optic devices having closely spaced engineered electrodes
JP2005257985A (ja) 光導波路および光変調素子および光通信システム
CN117092836A (zh) 一种电光开关
JP2006285121A (ja) 光導波路および光変調素子および光通信システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP