WO2005045136A1 - Floating breakwater and propulsion system - Google Patents
Floating breakwater and propulsion system Download PDFInfo
- Publication number
- WO2005045136A1 WO2005045136A1 PCT/GB2003/004526 GB0304526W WO2005045136A1 WO 2005045136 A1 WO2005045136 A1 WO 2005045136A1 GB 0304526 W GB0304526 W GB 0304526W WO 2005045136 A1 WO2005045136 A1 WO 2005045136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structures
- wave
- energy
- breakwater
- water
- Prior art date
Links
- 238000007667 floating Methods 0.000 title claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 90
- 230000033001 locomotion Effects 0.000 claims abstract description 71
- 239000006096 absorbing agent Substances 0.000 claims abstract description 29
- 239000012530 fluid Substances 0.000 claims abstract description 14
- 230000007935 neutral effect Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 24
- 230000001141 propulsive effect Effects 0.000 claims description 23
- 230000010355 oscillation Effects 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 17
- 238000003491 array Methods 0.000 claims description 16
- 238000006073 displacement reaction Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 14
- 230000002441 reversible effect Effects 0.000 claims description 11
- 230000003628 erosive effect Effects 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 7
- 230000000712 assembly Effects 0.000 abstract description 5
- 238000000429 assembly Methods 0.000 abstract description 5
- 230000000750 progressive effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 238000000605 extraction Methods 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 230000003534 oscillatory effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/06—Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
- E02B3/062—Constructions floating in operational condition, e.g. breakwaters or wave dissipating walls
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B9/00—Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
- E02B9/08—Tide or wave power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/16—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
- F03B13/20—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H19/00—Marine propulsion not otherwise provided for
- B63H19/02—Marine propulsion not otherwise provided for by using energy derived from movement of ambient water, e.g. from rolling or pitching of vessels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/11—Hard structures, e.g. dams, dykes or breakwaters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
- Y02T70/5218—Less carbon-intensive fuels, e.g. natural gas, biofuels
- Y02T70/5236—Renewable or hybrid-electric solutions
Definitions
- the present invention relates to a breakwater device and to a propulsion system.
- a breakwater creates an area of calmed water behind it by reflecting, scattering or absorbing energy from the waves.
- breakwaters have varied in their design and complexity.
- One example of a very simple breakwater is a sandbar or embankment on which rocks may be deposited.
- Such breakwaters may be reinforced using groynes and/or concrete piling.
- breakwater device An example of another type of breakwater device is described in published UK patent application number GB-A-2370594 (Kepner Plastics Fabricators Inc) and describes an elongate sealed envelope containing a liquid and pressurised air.
- the breakwater is adapted to float. By varying the amount of internal pressure the breakwater can be arranged to attenuate waves.
- breakwater A disadvantage with the aforementioned breakwater has been that it is relatively complex to manufacture and therefore has proven quite expensive. Also, due to the relatively high internal pressure of fluids and the nature of the flexible material, it has been prone to puncture. This has entailed maintenance on a regular basis. It is also (as with all other known breakwater devices) inertia dependant, that is to say, the mass of the breakwater must be similar to that of the largest waves that it repels. This further adds to the overall cost.
- the present invention stems from some work aimed at overcoming those disadvantages of existing breakwaters, by providing a simple breakwater device, having relatively few moving parts, which is not inertia dependant, which absorbs rather than reflects or scatters wave energy, which generates minimum mooring loads and which may be fabricated, transported and assembled cheaply and easily.
- a particular advantage of a breakwater, in accordance with a preferred aspect of the present invention, is that it can be relatively cheap to manufacture and maintain, and relatively light in weight.
- I provide a breakwater device in which one or more energy absorbers are arranged between a plurality of submerged floating structures and adapted to remove wave energy from the relative motion of the structures and opposing forces which are created between these structures by virtue of the fact that the structures are located in different parts of the irrotational oscillating process of the water mass which occurs naturally during the passage of waves.
- the floating structures comprise first and second structures, which in use are arranged substantially parallel one to another, said first and second structures having neutral buoyancy, and an energy absorber device mounted therebetween, whereby in use, the device absorbs energy from forces and displacement of the first and second structures relative to one another when impinged upon by an incident wave.
- the invention is therefore not reflecting or scattering the wave energy, as has been the case with existing breakwaters, but rather is absorbing energy by virtue of the relative displacement between displaceable structures.
- neutral buoyancy is intended to encompass anything that does not sink.
- Neutral buoyancy can include articles that float, partially float or can be made sufficiently buoyant so that they are submersible, but still float.
- an object of neutral buoyancy includes one that is lightweight (and naturally floats) and has been weighted with a ballast; or one that naturally sinks and has been made buoyant so that it floats .
- first and second structures are planar and arranged parallel one to another, when viewed from a perspective of the direction of an incident wave.
- they are positioned in an area of open sea so that the major plane of each of the structures is substantially orthogonal to the incident wave front.
- a mechanical interconnection connects the first and second structures; the interconnection preferably comprising means for supporting the energy absorber.
- the mechanical interconnection may, for example, be a sliding link.
- the interconnection may be substantially straight or of arched or generally calliper shape.
- the energy absorber is preferably supported between the structures and is adapted to absorb energy resulting from relative displacement of the structures towards one another as well as apart from one another and the forces which occur thereto.
- the energy absorber may be supported in the body of the liquid or above the surface of the liquid through which the wave is propagating, but is advantageously supported between the structures within the body of the liquid supporting them.
- the energy that is absorbed may be extracted and used to drive a generator for producing an electric current, pump water or do another form of work, or could be used to drive a propulsion system for use by the device itself.
- absorbing of the wave energy will create a calmed area of sea which can be used to provide protection on the leeward side of the device from the waves.
- Such a device may be incorporated in a myriad of situations.
- the breakwater device comprises three substantially planar structures, arranged substantially parallel one to another.
- the distance between the first and second structures is substantially twice the distance between the second and third structure.
- the distance between the first and third structures is approximately ⁇ /2, where ⁇ represents the maximum wavelength of waves in the particular location where the breakwater device is to be deployed.
- the distance between the first and third structures should be capable of varying by at least 2x the maximum wave height about the nominal spacing of ⁇ /2 of waves of wavelength ⁇ .
- the distance between the first and second structures should be nominally 2/3 the distance between the first and third structures (ie ⁇ /3) and should be capable of varying by at least 2x the maximum wave height about the nominal spacing of ⁇ /3 of a wave of wavelength 2 ⁇ /3.
- the distance between the second and third structures should nominally be half that of the distance between the first and second structures and the distance between the second and third structures should be capable of varying by at least 2x the maximum wave height of a wave of wavelength ⁇ /3. This particular combination of these relative distances has been found to provide effective energy absorbing qualities and is very well adapted at absorbing a myriad of wave lengths, of principal wavelength ⁇ downwards.
- a further mechanical interconnection can be provided to link the second and third structures, and this interconnection may support a further energy absorber.
- a plurality of such breakwater devices may be arranged so as to create a breakwater system.
- Such a breakwater system may be used, for example, to maintain or modify coastal deposition and/or erosion patterns.
- Other uses of a plurality of breakwater devices, hereinafter referred to as a breakwater system, are explained later.
- the plate like structures are substantially parallelepiped in shape and external appearance.
- the structures may be ovaloid or ellipsoid, provided they present a substantially large surface area to an incident wave.
- the definition of a parallelepiped plate like structure is hereindefined as: the ratio between the area of the plate like structure, which is presented to the direction of a wave, and the square of the thickness of the plate like structure. Ideally this ratio should be in excess of 10, preferably in excess of 20 and ideally in excess of 30.
- Plate like structures may be formed from a variety of materials or composites. What is important is that the structure formed is able to float, or it may be modified to have neutrally buoyancy, and the structure is strong. Ideally structures are able to withstand compressive and bending forces imposed by the action of incident waves, as well as occasional impacts with buoys and sea life.
- a suitable material is reinforced glass fibre.
- Other examples are mild steel, flexible concrete or wood.
- Other materials may be used and it will be apparent to a skilled artisan what types of materials and their respective dimensions, depending upon the particular environment in which the structures are to be deployed and prevailing weather, sea and other conditions.
- the height of the plate like structure is ideally less than half a wavelength ( ⁇ /2) of the prevailing wave conditions (and preferably less than ⁇ /5) of the sea area where the breakwater device is to be deployed.
- the length and width of the structure is dependent upon, amongst other things, the strength of the material used to fabricate the structure and the depth of the local sea.
- the energy absorber acting between adjacent plates may take one of a variety of forms.
- the energy absorber may be a water choke arranged to squeeze water through a throttle so as to dissipate energy. This is a simple but effective manner to remove energy from waves. What is most desirable is that the energy absorbers should not contain any storing capability, such as a spring, as this could give rise to resonance of the breakwater device, with the result that energy is temporarily removed (stored) and reflected back into the water, rather than being permanently removed from the system and all energy removing devices must be capable of removing energy as plates move towards one another as well as when they move apart.
- One way of achieving energy absorption is with an electromagnetic arrangement, sealed inside suitable waterproof containers, configured to present a resistive force against relative displacement of the plate like structures resulting in generation of an electromotive force.
- a rack and pinion arrangement is another way in which energy can be removed.
- the rack and pinion may be fitted with suitable gears to transmit incident energy to a rotating resistive force, so that the energy of a wave can be extracted.
- a yet further example of an energy absorber is a piston in cylinder arrangement acting as a dashpot.
- the energy absorber may comprise a piston in cylinder having a fluid with variable rheological properties.
- Another type of energy absorber is a bi-directional hydraulic pump, which is adapted to remove energy during relative displacement of adjacent plates towards one another and away from one another.
- two non-return valves are arranged at each end of a cylinder containing a bi-directional piston which itself is connected to adjacent plates. Relative motion between the adjacent plates moves the piston in either direction which in turn pumps fluid at high pressure out of the relevant non-return valve at one end of the cylinder and draws fluid in at the other.
- energy in the form of fluid at high pressure is continuously extracted from the wave system and delivered to an external storage or use system regardless of the direction of motion of the adjacent plates. All that is required is relative motion to occur. Again however, it is important that no compressible fluid is used as this could act as a pneumatic spring re- injecting energy back into the wave system.
- a plurality of these devices can be interconnected, in the form of a loosely coupled barrier, so as to provide a breakwater system. Due to the nature of the energy absorbers little relative displacement or external reaction is experienced between adjacent devices. This means that only modest tethering or anchoring of such a breakwater system is required.
- such a breakwater system could also be used as a propulsive means for example to tow or salvage seagoing vessels, with the possibility of providing a benign wave climate around the vessel.
- a propulsive device for use in a body of water comprising first and second submerged structures arranged substantially parallel to one another and connected by a strut, the first and second structures both comprising non-return valve arrays, which arrays permit water to flow in a substantially horizontal direction through the respective array in one direction, both arrays being arranged to be operable in the same direction whereby when the device is orientated generally orthogonal to the incident wavefront with the structures spaced apart by approximately half a wave length of waves in the body of water, the natural irrotational oscillation of the water mass acts in the reverse direction onto the one valve array compared with the other.
- the structures are desirably held a fixed distance approximately half a wave length apart to take best advantage of the maximum difference in water mass oscillation occurring in the trough as opposed to the crest of the wave.
- the system may however be used in both energy absorption and propulsion modes at the same time. However, limitation of both effects would be required to maintain a balance between the two modes.
- control means can be included which is operable to open and close or change the manner of operation of the valves in the structures.
- means to protect multi-hulled craft such as a catamaran, and provide means to protect long vessels (which during passage may inadvertently straddle in a diagonal fashion more than one wave) . Protection is therefore provided by an embodiment of the invention for multi-hulled craft, by exploiting and allowing the relative motion between the hulls to occur. Additionally the invention may provide means for protecting long vessels, structures, or other items which are endangered by submerged oscillation occurring within a water mass, by articulation or double articulation to allow transverse differential motion to occur along the length.
- Figures 1 and 2 illustrate diagrammatically how energy, in the form of waves passing through a body of water affects and moves submerged bodies;
- Figures 3a to 3d illustrate diagrammatically how breakwater device walls, according to a first aspect of the invention move relative to one another during the passage of waves of wavelength twice the distance between them;
- Figures 4a to 4d illustrate diagrammatically how wave energy is transmitted and can be absorbed by the device as illustrated in Figures 3a to 3d when an energy absorbing system is placed between the walls.
- Figures 5a to 5d illustrates diagrammatically how by adding a third wall and associated energy absorbing device to the system illustrated in Figures 4a to 4d wave energy can be absorbed by a myriad of different wavelengths at the same time constituting a complex sea state.
- FIGS 6a to 6d illustrate diagrammatically how an embodiment of the invention can use wave energy to produce propulsion into or with the direction of travel of the waves.
- Figure 7 is a diagrammatical representation of an embodiment of the breakwater device using a simple water choke to absorb the wave energy.
- Figure 8 shows operation of a plurality of breakwater devices arranged as a breakwater system for protecting coastal regions and/or managing coastal erosion and deposition.
- Figure 9 is a diagrammatical representation of a breakwater system for salvaging and protecting vessels.
- Figure 10 is a diagrammatical plan view of an alternative aspect of the invention in which a plurality of propulsive devices are shown in diagrammatical form, towing a vessel;
- Figures 11 and 12 illustrate diagrammatically irrotational oscillation of a body of water and how this motion is affected by water depth in relation to wave length;
- Figures 13a to 13c illustrate diagrammatically how a device, according to a yet further aspect of the invention, is capable of accommodating relative motion occurring in different parts of a waveform in accordance with Bernoulli's theory of irrotational motion to prevent damage to a multi-hulled vessel;
- the presence or absence of this "wobbling" motion is the only difference between still water and that which has waves passing across it.
- the coherent oscillatory motion of the water mass extends downwards from the surface, reducing exponentially in amplitude to about 5% of its size at the surface at a depth of 1/2 wavelength ( ⁇ /2).
- the oscillatory motion in the water is phase dependant. That is to say, when it is oscillating in the wave direction, it creates a crest and when it is oscillating against the wave direction it creates a trough.
- the momentum, force applied and distance travelled by the coherent mass of fluid in the wave is substantially the same in all directions, with fluid particles returning to almost the same position, relative to the datum, at the end of each cycle.
- the wave profile and it's motion across the water therefore, only represents the transmission of energy through the water and not the motion of the water mass itself.
- wave energy is transferred only by the difference in potential energy (height) of the coherent water mass when oscillating with the wave direction at the crest to that of the same water mass when oscillating against the wave direction in the trough.
- the fluid motion described is in accordance with the Bernoulli steady state integrated equation of motion and assumes irrotational flow and invariant fluid density throughout the bulk of the fluid. This theory therefore underpins the primary mechanism of energy transfer through water in the form of waves and is the theory on which this patent is based.
- Figure 1 represents the oscillating motion of a "discrete" block of water 3 (shown hatched for clarity) , during the passage of a wave 2.
- impermeable, infinitely thin and flexible diaphragms 4 and 5 can be imagined to be positioned at the front and rear boundaries of this discrete block of water, so that its VOLUME, MASS AND IDENTITY remain the same throughout the process.
- This mass oscillates back and forth, yet remains approximately in the same position relative to a fixed seabed datum 16.
- the diaphragms 4 and 5 bend backwards and forwards not in phase with each other, but respectively in phase with that part of the wave profile that is passing across that part of the surface of the water.
- this discrete block of water becomes taller and narrower (as shown in Figure lc) and shorter and wider (as shown in Figure la) in a sequential and oscillating "wobbling" manner as each wave cycle passes.
- a buoy 1 floating on the surface of the water transcribes a circle about the datum 16 of diameter approximately equal to the wave height. However, the buoy 1 does not itself rotate. This type of fluid motion is called an irrotational oscillation.
- FIG. 2 shows how numerous plate like structures 10, located in different parts of a water mass, which is oscillating and causing the passage of waves 2 overhead, all experience different parts of the oscillating cycle at any instant in time.
- the part of the cycle experienced by a plate depends upon its position relative to the part of the wave passing overhead. Also, as the depth at which plates are located increases, the size of the oscillation excursion reduces until below a certain depth it tends to disappear.
- each of the plate like structures move relative to other structures located in different parts of the water mass as the waves pass overhead and their distances apart are continuously changing.
- the one exception to this is if plates are positioned exactly one wavelength apart in the horizontal direction as detailed above.
- the orientation of these structures however will not substantially change during the oscillation process. That is to say end B of structure 10 continues to point to the right throughout its circular, orbital path.
- Figures 11 & 12 show how these motions apply to vertical plates 56 suspended in deep water where depth > ⁇ /2 Figure 11 and shallow water where depth ⁇ ⁇ /20 Figure 12.
- the motion of the top edge of the plate in this case suspended by a buoyancy device 60
- the horizontal motion of the bottom edge of the plate is reduced in amplitude as explained earlier but the vertical excursion (being controlled by wave height) is the same as the top edge and this results in a vertical elliptical motion of the bottom edge.
- Figure 12 demonstrates how the plate motion changes in shallow water.
- the motion of the top edge of the plate is elliptical with a vertical excursion axis of approximately wave height and a rotation clockwise in relation to waves 52 approaching from the left.
- the motion of the bottom edge of the plate is again the same in the vertical direction but much magnified in the horizontal direction thus resulting in the elongated horizontal ellipse as shown.
- FIG 3 shows an example of an embodiment of the invention that could extract energy from a wave.
- This device 12 comprises first 13 and second 14 floating vertical structures arranged substantially parallel one to another. Structures 13 and 14 are spaced nominally half a wavelength apart. The device 12 is oriented in use, so that the planes of structures 13 and 14 substantially orthogonal to the general direction of waves. Structures 13 and 14 are coupled together by a device 15.
- the device 15 may be an energy absorbing double acting hydraulic pump, but in this example it is allowed to move freely in and out without extracting any energy.
- an embodiment of the invention is envisaged under conditions whereby tilt, stroke and distance measuring devices are incorporated into the device 15 to accurately measure wave height, wavelength and wave period. Further to this, delicate equipment (or personnel) located and supported approximately midway between plates 13 and 14 are subjected to only a minimum degree of lateral or vertical motion relative to the seabed.
- a floating vertical plate like structure can be shown to oscillate backwards and forwards about a datum a total distance of approximately one wave height during the passage of each wave cycle.
- Figure 3a shows how structure 13 is behind datum 16, as a wave trough passes and a wave crest approaches whereas structure 14 is in front of datum 17, as wave crest passes and wave trough approaches.
- the two structures 13 and 14 are therefore further apart than their nominal spacing, by about one wave height at the instant shown in Figure 3a.
- structures 13 and 14 move two wave heights closer together. This is shown in Figure 3c. Since the datums 16 and 17 are fixed, both relative to each other and the seabed, the structures 13 and 14 move relative to each other a distance of approximately two wave heights. This occurs each wave cycle. However, it will be noted that the assembly remains substantially stationary relative to the seabed.
- Motion is symmetrical about datums 16 and 17 when no energy is being extracted by device 15.
- plate like structures 13 and 14 are free to move backwards and forwards solely under the influence of oscillating water mass and the waves proceed virtually unaffected as explained above with reference to Figure 1.
- FIGS 4a to 4d show how wave motion changes when energy is being extracted by pump 15.
- progressive waves 2 are considered to approach from the left.
- Extraction of energy by the pump 15 means that relative motion must occur between plates 13 and 14 against a force f . It also follows that the external forces transmitted by plate 14 into the water (on its right hand side) and its motion (relative to datum 17) must always be zero or wave energy would be transmitted and lost.
- Figure 4a shows how the extraction of energy by pump 15 through the application of a force -f causes a reduction in trough depth 18 across plate 13 (In this description forces and motions to the left ie against the direction of travel of the waves are considered as negative and forces and motions to the right that is to say with the direction of the waves are considered to be positive although the exact opposite notation would work just as well).
- plate 13 moves a distance -d to the left that is to say with the oscillating mass of water and the force times the distance means that a positive amount of energy + W will have been extracted from the wave.
- plate 13 must apply a force to the pump 15 as well as move relative to it so as to enable energy to be extracted.
- the equal and opposite reaction to this force however appears on plate 14 and this would cause it to be moved to the left and generate a wave trough to its right, if it were not resisted by an equal and opposite force to the right. From the previous description of the oscillating motion within the waves, it is apparent that the direction of motion of the forces, within the wave, are reversed every half cycle. Therefore if plates 13 and 14 are positioned nominally half a wavelength apart, plate 14 will be acted upon by a force to the right which counteracts the force generated by pump 15.
- level (energy change) across plate 13 must always be equal and opposite to the level (energy change) across plate 14 at all times, as action and reaction across the pump 15 must always be equal.
- the "level” change across plate 13 is thus replicated in reverse by the "level” change across plate 14, whereas the degree of level change is determined by the quantity of energy extracted by the pump 15. Different amounts of energy extracted produce different effects from these level changes. For example, if only a small percentage of the available energy is extracted, the level change 18a would be small in relation to the trough depth 24. Because this is replicated in reverse on plate 14, the level change 21a would also be small in relation to (intermediate) wave crest height 26.
- the level (energy change) 18 across plate 13 correspondingly increases.
- the effect is that the transmitted wave trough depth 27 is reduced since the impinging trough depth 24 does not change.
- the trough depth 27, also determines the crest height 21, since they are both functions of the same reduced amplitude oscillating process.
- both the remaining trough depth 27 and the remaining crest height 21 reduce correspondingly.
- the "level" difference 21a across plate 14 will match the still water level 22. Under these conditions there are no residual forces remaining on plate 14 to create a wave on its right hand side and therefore no horizontal motion occurs. The wave has therefore theoretically disappeared because the pump 15 has extracted all the oscillating energy entrained in it.
- Figure 4b shows how wave trough 31 is longer than wave crest 30 as measured along the mean "still” water line and demonstrates how, as the progressive waves pass, the natural motion of plate 13 as it moves back and forth will follow the point where the still water level intersects the wave surface profile.
- Figures 4a to 4d show the motions of a wave 2 and plates 13 and 14 throughout a full progressive wave cycle. From this series of "snapshots" it can be seen how balancing and cancelling of wave forces continues throughout the process. For example in Figure 4b, as wave crest 2 approaches from the left, both plates 13 and 14 coincide with a wave "node” point; and therefore level differences (i.e. forces) across both will disappear. Between states Figure 4a and 4b trough depth 27 progressively decreases at the same rate as the crest 21 reduces thus maintaining a state of equilibrium and force balance. Between Figure 4b and 4c the wave crest approaches plate 13, generating a wave trough against plate 14, which provides a reaction force to counteract the crest force acting on plate 13. Figure 4d shows the situation has returned to that of Figure 4b but in mirror image. As the progressive wave continues the configuration of Figure 4a returns and the process repeats continuously in a cyclic manner.
- FIG. 5 A further embodiment of the invention is now described with reference to Figure 5 wherein vertically orientated floating plates 32, 33 and 34 are positioned orthogonal to the general direction of the waves and coupled together by two double acting hydraulic pumps 30 and 31.
- Plate 33 is nominally located 2/3 and 1/3 from outer plates 32 and 34 respectively. This embodiment has been found to be capable of extracting wave energy from a wide range of wavelengths.
- Figure 5b shows how plates 32 and 33 move in a similar manner to plates 13 and 14 of Figure 4, when acted upon by waves of wavelength of the order of twice the distance between these plates.
- Plate 34 is then effectively redundant. If the device is now acted upon by waves of shorter wavelengths, for example of wavelength equal to the distance between plates 32 and 33, as shown in Figure 5c, then plates 32 and 33 move backwards and forwards in unison allowing the waves to pass "through" unimpeded. Plates 33 and 34, however, which are positioned half the distance apart of plates 32 and 33, are now at the correct spacing of ⁇ /2 to absorb all the wave energy via pump 31.
- wave energy can be extracted with maximum efficiency by the device from any wavelengths ⁇ where the plate spacing is ⁇ (n + 1/2) between any two plates and n is a positive full number including zero.
- ⁇ (0 + 1/2) 0.5 ⁇
- ⁇ (l + 1/2) 1.5 ⁇
- the function of energy extraction is divided between different pairs of plates; an example of which is shown in Figure 5a. In this situation the exact half wavelength exists between plates 32 and 34. However, because plate 33 is located 1/3 wavelength from plate 34, a small proportion of the wave energy is extracted by pump 31 with the remainder being extracted by pump 30.
- each plate only "sees” the horizontal differential motion occurring between it and the other two plates and extracts energy from this motion to an amount equal to (displacement) x (the resisting force) .
- wavelengths where the half wavelength does not exactly equate to any of the plate pair spacing, still achieve a high energy extraction efficiency.
- a wavelength equal to the distance between plates 32 and 34 cannot extract any energy from this pair, but only from intermediate plate 33, which is now a maximum of 1/6 of a wavelength offset from the nominal 1/2 wavelength position.
- real seas invariably comprise combinations of wavelengths creating a complex surface shape and pattern and this is the most common form usually encountered.
- shape (which in this case can be more accurately described as the velocity and elevation of a particle at any instantaneous point on the surface), defines the single motion occurring at that point under the surface which has been created by the sums and differences of all the waves of different lengths passing through that point.
- the proposed embodiment of this invention employs this resultant differential motion, effectively extracting energy from all of the entrained different wavelengths, as if they were individually isolated one from the other. Further embodiments of the invention are now described with particular reference to Figures 6 to 10 and Figure 13.
- Figures 6a to 6d show how the horizontal oscillating forces and motions occurring within a water mass can be used to provide a means of propulsion both into and with the direction of the waves. Embodiments of the invention employing this principle are shown in Figures 9 and 10.
- FIGS 6a to 6d show the diagrammatic representation of a propulsion device that comprises two sets of vertically, oriented floating "louver” valves or arrays of louver valves 51 and 52. These valves allow water flow in the same direction only (in this case to the right) and present a solid impervious wall to water flow in the opposite (left hand) direction.
- the two louver valve arrays are coupled together half a wavelength apart by a fixed length connector 53 pin jointed to the arrays at both ends and are arranged orthogonal to the general direction of progressive waves 2 which in this example are considered to be approaching from the left.
- Figure 6b shows how two "discrete" blocks of water 54 and 55, shown hatched for clarity only, are moving in an irrotational oscillating manner during the passage of a wave overhead.
- Block 55 in the trough, is oscillating generally in the direction of arrow 56, that is to say in the opposite direction to that of the wave crest.
- This shuts the louver valves and pushes array 52 to the left.
- the louver valve array 51 which is a fixed distance of half a wavelength ahead of valve array 52, is acted upon by block of water 54, which is oscillating with the crest generally in the direction of arrow 57.
- the whole device is therefore displaced a distance of approximately one wave height 58 to the left during this process, as can be seen from Figures 6a, 6b and 6c by the force generated by the momentum of the oscillating mass of water 55.
- louver valves 51 shut under the action of the mass 54 oscillating to the left in the trough and louver valves 52 open to allow the mass 55 through as it oscillates with the crest to the right and the device continues to be displaced to the left.
- the irrotatonal oscillation of the water mass is mainly in the vertical direction.
- water mass 54 is oscillating mainly downwards and water mass 55 is oscillating mainly upwards, however because of momentum, the device continues to move to the left and both sets of louvre valves 51 and 52 open allowing "vectored" relative motion of both water masses to pass through the valves.
- a similar situation occurs at Figure 6a, but in mirror image. The situation then returns to Figure 6b and is repeated in a continuous cycle.
- second order wave effects will generate a percentage overall mass drift of the water in the direction of travel of the waves (for example 15%) which means that in reality the speed of motion of the device, with respect to the seabed, is about -15% of the mean speed against and about + 15% of the mean speed with the wave direction.
- sets of louver valves may be controlled to operate in either or both directions so that the device may be propelled to the left or the right.
- rudders could be attached to the arrays to enable "tacking" at an angle to the wave front with or against the wave direction and that an energy absorbing device of the type outlined in Figure 4 could also be fitted between the arrays which together with propellers or other types of propulsion means be used wholly or in part to provide propulsion at right angles to the wave fronts or any combination angle thereto. It is accepted that the use of two arrays can mean the use of any number of associated arrays.
- Figure 7 shows an embodiment of a breakwater device having two rectangular plates 100 and 102 and an energy absorber 104 pivotally mounted to each plate by pivots 108 and 110.
- the energy absorber is submerged and comprises a loose fitting piston or flow restricting device 111 located in a cavity 112 which has a loose fitting aperture 113 and choke passage 114.
- differential motion between the plates during the passage of waves causes motion of the flow restricting device 111 and water to be forced in and out of cavities 115 and 116 and also past the flow restricting device creating a resistive force both when the plates are moving apart and together thereby extracting energy from the waves.
- FIG 8 shows an alternative embodiment of the invention, in which a plurality (in this case eight) floating devices 205 and 206 (as described in more detail in Figures 4 and 5) are linked together in the form of a chain so as to provide a breakwater system to protect the shoreline 207.
- Waves are present in the open sea 200, whereas the water surface 210 in the lee of the breakwater system is calm as a result of energy having been absorbed by the breakwater system.
- two or three plate arrays could be grouped to deliberately adjust the wave climate to manage coastal erosion or deposition patterns on the shoreline 207.
- FIG 9 is a diagrammatical representation of an alternative aspect of the invention wherein a plurality of propulsive devices 232, (as described in more detail in Figure 6) , are acting together to tow a stranded vessel 250 from rocks or running aground on a sandbar.
- the waves are reduced thus creating a more calm sea state 234 for protection of the vessel whilst the salvage operation is in progress.
- Figure 10 is a diagrammatical representation of a propulsive system for salvaging or towing vessels.
- Ship 220 deploys or uses devices 222, 224 and 226, (as described in more detail in Fig 6) , to provide propulsion for the ship in the direction of arrow 229 in the event of engine failure or to conserve fuel.
- Energy extracted from the waves 227 to provide the propulsion will create a more calm sea area 228 in which the ship is located.
- the devices may be stored flat for example on the deck of a ship for use in an emergency.
- means is provided to enable the two hulls of a catamaran type craft to move in and out in a parallel way relative to each other a distance of at least two wave heights thus allowing the hulls to follow the natural oscillating process occurring within the water mass and preventing these loads being transmitted to the main structure. The process is described briefly below.
- Figures 13a to 13c show how the aforementioned principle may be employed.
- Figure 13a shows a wave-piercing catamaran with hulls that are floating in "discrete" blocks of water 62 and 63 and joined together with sliding interconnect 64.
- Figure 13a depicts the situation when no waves are present and therefore there is no irrotational oscillation in the blocks of water.
- Figure 13b shows the situation that prevails when the trough of a progressive wave 68 (whose wavelength is approximately twice the distance between the hulls) passes. The attendant irrotational oscillation of the submerged water mass moves the two hulls further apart by a distance of approximately one wave height.
- Figure 13c depicts the situation where the crest of the progressive wave passes across the hulls.
- the interconnect 64 can be replaced by a device which operates to extract energy, both when the hulls are moving together as well as apart, as the twin hulled craft moves through the water. This attained energy can be used in a multiple of ways three of which might be toi ⁇
- Means can also be employed such as a pantograph or other similar mechanisms to alter the mean distance between the hulls to match the half wavelength rule to provide maximum energy extraction from the system in differing sea states and wavelengths.
- Wave energy absorption, compensating or propulsion means have been described. Plates or plate like structures, positioned in any attitude, provides the effect.
- the structures may, or may not, allow the passage of liquid therethrough. Valves may be incorporated in the structures so as to allow or facilitate the passage of liquid in one direction.
- the structures are submerged in different parts of, or below, a body of liquid, which is subject to the oscillating pattern caused by the passage of waves.
- wave energy absorption, compensation or propulsion is achieved through the control of the interaction between two or more of the aforesaid structures or between two or more structures interacting against the inertial mass of the body of liquid. This may be enhanced by exploiting, in a controlled manner, the flow of liquid through the structures in one direction only.
- Switching on or off a breakwater device can be achieved by manually resetting the distance between its plates. For example moving the plates from half a wavelength to one wavelength apart will switch off the device. Switching off can also be achieved by removing resisting forces from interconnecting means.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Revetment (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003274336A AU2003274336A1 (en) | 2003-10-21 | 2003-10-21 | Floating breakwater and propulsion system |
NZ546825A NZ546825A (en) | 2003-10-21 | 2003-10-21 | Floating breakwater with half wavelength spacing for energy absorbtion |
EP03758323A EP1689938A1 (en) | 2003-10-21 | 2003-10-21 | Floating breakwater and propulsion system |
PCT/GB2003/004526 WO2005045136A1 (en) | 2003-10-21 | 2003-10-21 | Floating breakwater and propulsion system |
JP2005510428A JP2008516107A (en) | 2003-10-21 | 2003-10-21 | Floating wave breaker and propulsion system |
US10/576,652 US20080022915A1 (en) | 2003-10-21 | 2003-10-21 | Floating Breakwater and Propulsion System |
CA002543439A CA2543439A1 (en) | 2003-10-21 | 2003-10-21 | Floating breakwater and propulsion system |
NO20062214A NO20062214L (en) | 2003-10-21 | 2006-05-16 | Floating bolt switch and drive system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/GB2003/004526 WO2005045136A1 (en) | 2003-10-21 | 2003-10-21 | Floating breakwater and propulsion system |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005045136A1 true WO2005045136A1 (en) | 2005-05-19 |
WO2005045136B1 WO2005045136B1 (en) | 2005-06-23 |
Family
ID=34566424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2003/004526 WO2005045136A1 (en) | 2003-10-21 | 2003-10-21 | Floating breakwater and propulsion system |
Country Status (8)
Country | Link |
---|---|
US (1) | US20080022915A1 (en) |
EP (1) | EP1689938A1 (en) |
JP (1) | JP2008516107A (en) |
AU (1) | AU2003274336A1 (en) |
CA (1) | CA2543439A1 (en) |
NO (1) | NO20062214L (en) |
NZ (1) | NZ546825A (en) |
WO (1) | WO2005045136A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007072016A1 (en) * | 2005-12-23 | 2007-06-28 | C-Wave Limited | Wave energy extraction device |
WO2008065684A1 (en) * | 2006-11-28 | 2008-06-05 | 40South Energy Limited | A completely submerged wave energy converter |
WO2009030915A1 (en) * | 2007-09-05 | 2009-03-12 | C-Wave Limited | Wave energy extraction apparatus |
WO2015104445A1 (en) * | 2014-01-08 | 2015-07-16 | Aw-Energy Oy | Surface level follow-up arrangement for a wave energy recovery system |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT2140134E (en) * | 2007-03-14 | 2014-09-10 | Langlee Wave Power As | Wave power plant |
WO2010104565A2 (en) * | 2009-03-09 | 2010-09-16 | Natural Power Concepts, Inc. | System and method for generating electricity using grid of wind and water energy capture devices |
KR101260643B1 (en) | 2013-03-06 | 2013-05-03 | (주)씨테크알엔디 | Device for reducing coastal cliffs and reducing method thereof |
KR101346006B1 (en) | 2013-09-12 | 2014-01-10 | 강원대학교산학협력단 | Apparatus for protecting floating land on surface of water from floating waste and incoming wave |
US9556573B2 (en) | 2014-05-19 | 2017-01-31 | Christopher Fred Betcher | Wave attenuation system and method |
US9340940B2 (en) * | 2014-08-20 | 2016-05-17 | Kuwait Institute For Scientific Research | Floating breakwater |
US10409632B2 (en) * | 2017-03-31 | 2019-09-10 | The Boeing Company | Emulation of hardware components based on interrupt design |
IL253086B (en) * | 2017-06-21 | 2021-08-31 | Attias Eyal | Floating breakwater |
CN107994533B (en) * | 2017-11-07 | 2024-02-09 | 中国能源建设集团安徽省电力设计院有限公司 | S-shaped cable laying assembly for water photovoltaic power station |
KR102479127B1 (en) * | 2018-09-14 | 2022-12-21 | 삼성중공업 주식회사 | Semi-submersible marine structure |
CN109595119B (en) * | 2019-01-11 | 2024-05-24 | 哈尔滨工程大学 | Heave type wave energy power generation device based on floating breakwater |
US10550534B1 (en) * | 2019-07-31 | 2020-02-04 | Kuwait Institute For Scientific Research | Method for damping ocean waves in a coastal area |
CN110768577A (en) * | 2019-11-04 | 2020-02-07 | 江苏科技大学 | Pressure reduction power generation device suitable for floating breakwater |
CN112243925B (en) * | 2020-10-10 | 2022-07-19 | 江苏科技大学 | Floating type flow blocking and sand blocking multifunctional equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3222870A (en) * | 1962-03-12 | 1965-12-14 | Us Rubber Co | Wave damping apparatus |
US3846990A (en) * | 1972-06-28 | 1974-11-12 | Ritchie W | Floating wave barrier |
US3848419A (en) * | 1973-03-07 | 1974-11-19 | Ritchie W | Floating wave barrier |
US6443653B1 (en) * | 1999-09-14 | 2002-09-03 | Giuseppe Zingale | Modular floating breakwater for the transformation of wave energy |
-
2003
- 2003-10-21 WO PCT/GB2003/004526 patent/WO2005045136A1/en active Application Filing
- 2003-10-21 JP JP2005510428A patent/JP2008516107A/en active Pending
- 2003-10-21 CA CA002543439A patent/CA2543439A1/en not_active Abandoned
- 2003-10-21 EP EP03758323A patent/EP1689938A1/en not_active Withdrawn
- 2003-10-21 NZ NZ546825A patent/NZ546825A/en unknown
- 2003-10-21 US US10/576,652 patent/US20080022915A1/en not_active Abandoned
- 2003-10-21 AU AU2003274336A patent/AU2003274336A1/en not_active Abandoned
-
2006
- 2006-05-16 NO NO20062214A patent/NO20062214L/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3222870A (en) * | 1962-03-12 | 1965-12-14 | Us Rubber Co | Wave damping apparatus |
US3846990A (en) * | 1972-06-28 | 1974-11-12 | Ritchie W | Floating wave barrier |
US3848419A (en) * | 1973-03-07 | 1974-11-19 | Ritchie W | Floating wave barrier |
US6443653B1 (en) * | 1999-09-14 | 2002-09-03 | Giuseppe Zingale | Modular floating breakwater for the transformation of wave energy |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007072016A1 (en) * | 2005-12-23 | 2007-06-28 | C-Wave Limited | Wave energy extraction device |
WO2008065684A1 (en) * | 2006-11-28 | 2008-06-05 | 40South Energy Limited | A completely submerged wave energy converter |
EA014378B1 (en) * | 2006-11-28 | 2010-10-29 | 40 Саус Энерджи Лимитед | A wave energy converter |
AU2006351328B2 (en) * | 2006-11-28 | 2013-07-25 | 40South Energy Limited | A completely submerged wave energy converter |
US8581431B2 (en) | 2006-11-28 | 2013-11-12 | 40South Energy Limited | Completely submerged wave energy converter |
KR101404598B1 (en) | 2006-11-28 | 2014-06-09 | 40사우스 에너지 리미티드 | A completely submerged wave energy converter |
AP2932A (en) * | 2006-11-28 | 2014-06-30 | 40South Energy Ltd | A completely submerged wave energy converter |
NO340834B1 (en) * | 2006-11-28 | 2017-06-26 | 40South Energy Ltd | WEC apparatus |
WO2009030915A1 (en) * | 2007-09-05 | 2009-03-12 | C-Wave Limited | Wave energy extraction apparatus |
WO2015104445A1 (en) * | 2014-01-08 | 2015-07-16 | Aw-Energy Oy | Surface level follow-up arrangement for a wave energy recovery system |
AU2014376931B2 (en) * | 2014-01-08 | 2018-05-31 | Aw-Energy Oy | Surface level follow-up arrangement for a wave energy recovery system |
US10132289B2 (en) | 2014-01-08 | 2018-11-20 | Aw-Energy Oy | Surface level follow-up arrangement for a wave energy re-covery system |
Also Published As
Publication number | Publication date |
---|---|
NZ546825A (en) | 2009-04-30 |
AU2003274336A1 (en) | 2005-05-26 |
US20080022915A1 (en) | 2008-01-31 |
JP2008516107A (en) | 2008-05-15 |
EP1689938A1 (en) | 2006-08-16 |
CA2543439A1 (en) | 2005-05-19 |
NO20062214L (en) | 2006-05-16 |
WO2005045136B1 (en) | 2005-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080022915A1 (en) | Floating Breakwater and Propulsion System | |
CA2803483C (en) | Ocean wave energy system | |
US6923693B2 (en) | System for utilization of sinus-shaped motion pattern | |
CA2412724C (en) | Wave energy converter | |
AU2009327499B2 (en) | System for producing energy through the action of waves | |
US9127640B2 (en) | Multi-capture mode wave energy converter with submergible float | |
US4134023A (en) | Apparatus for use in the extraction of energy from waves on water | |
US6568878B2 (en) | Wave energy dissipater and beach renourishing system | |
AU2010315193A1 (en) | Wave energy conversion device | |
GB2073824A (en) | Wave energy converter | |
EP1036273B1 (en) | Wave-powered prime mover | |
ZA200603170B (en) | Floating breakwater and propulsion system | |
KR20220038585A (en) | Wave Energy Conversion and Propulsion Devices | |
KR20060094536A (en) | Floating breakwater and propulsion system | |
KR20170037973A (en) | Apparatus for converting or absorbing energy from a moving body of water | |
Thermos | A boundary element method for the hydrodynamic analysis of floating bodies in variable bathymetry regions | |
McCormick et al. | An analysis of the motions of grounded ships | |
Cruz et al. | Wave Energy Absorption by a Submerged Sphere of Variable Radius with a Swinging Single Point Moored Tension Line | |
JPS5961606A (en) | Flow-formation type floating breakwater dam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
B | Later publication of amended claims |
Effective date: 20040906 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003274336 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005510428 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006/03170 Country of ref document: ZA Ref document number: 200603170 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2543439 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 546825 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003758323 Country of ref document: EP Ref document number: 1020067009930 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003758323 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10576652 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10576652 Country of ref document: US |