[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005044959A1 - 無鉛ガソリン組成物及びその製造方法 - Google Patents

無鉛ガソリン組成物及びその製造方法 Download PDF

Info

Publication number
WO2005044959A1
WO2005044959A1 PCT/JP2004/016115 JP2004016115W WO2005044959A1 WO 2005044959 A1 WO2005044959 A1 WO 2005044959A1 JP 2004016115 W JP2004016115 W JP 2004016115W WO 2005044959 A1 WO2005044959 A1 WO 2005044959A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline
naphtha fraction
volume
sulfur
gen
Prior art date
Application number
PCT/JP2004/016115
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Araki
Katsuaki Ishida
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to CA2543953A priority Critical patent/CA2543953C/en
Priority to EP04793223A priority patent/EP1686166A4/en
Priority to KR1020067010974A priority patent/KR101114742B1/ko
Priority to US10/577,951 priority patent/US20070068849A1/en
Priority to JP2005515277A priority patent/JP4932257B2/ja
Publication of WO2005044959A1 publication Critical patent/WO2005044959A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/04Metals, or metals deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/08Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a lead-free gasoline composition with reduced impact on the environment and a method for producing the same.
  • the present invention relates to a lead-free gasoline composition having a sulfur content reduced to 1 ppm by mass or less and ensuring sufficient operation characteristics while considering the effect on the environment, and a method for producing the same.
  • JIS K 2202 stipulates car gasoline No. 1 with a research octane number (RON) of 96.0 or more and gasoline No. 2 with a gasoline of 89.0 or more.
  • the former is a high-performance premium gasoline, and the latter is gasoline.
  • premium gasoline has been used in catalytic reforming gasoline bases, bases with more than 100 RON, such as methyl tbutyl ether (MTBE), alkylate gasoline bases, and catalytic cracking gasoline bases, with more than 93 RONs.
  • the sulfur content of the cracked gasoline base material can be easily reduced by a known technique of hydrorefining in the presence of high-pressure hydrogen and a catalyst.
  • the catalytic cracking gasoline base material contains a large amount, and the high RON containing olefins are hydrogenated and the RON of the base material is reduced. If you can't get rid of the problem, you'll need to clarify the problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-277768
  • An environmentally friendly gasoline with a low sulfur content of 1 mass ppm or less and sufficient practical performance, and a method for producing the same have not yet been established.
  • An object of the present invention is to provide a lead-free gasoline composition that reduces sulfur content and ensures sufficient operating characteristics under such circumstances, and a method for producing the same.
  • the inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems. As a result, when a desulfurization treatment other than hydrorefining is performed using a low-V ⁇ cracked naphtha fraction, a high ⁇ content is obtained. It has been found that sulfur content can be reduced efficiently while maintaining the above, and that a lead-free gasoline composition with sufficient operating characteristics can be obtained by using the base material thus obtained.
  • a lead-free gasoline composition of the present invention and a method for producing the same have been conceived.
  • the method for producing a lead-free gasoline composition having a sulfur content of 1 mass ppm or less and a research octane number (RON) of 89.0 or more comprises:
  • a decomposed naphtha fraction having a Gen value of 0.3 gZlOOg or less, which has been subjected to a Gen reduction treatment in advance is used. That is, it is preferable that the method for producing a lead-free gasoline composition of the present invention includes a step of subjecting a crude oil of a cracked naphtha fraction to a Gen reduction treatment in advance. At this time, it is preferable to contact the feedstock oil of the cracked naphtha fraction with a catalyst containing an element of Group 8 of the periodic table. At least selected: preferably containing L species.
  • a porous desulfurizing agent having a sulfur sorption function is decomposed in the presence of hydrogen having a hydrogen partial pressure of IMPa or less.
  • desulfurization treatment is preferably performed by contacting with a sulfur fraction, and the porous desulfurizing agent preferably contains at least one selected from copper, zinc, nickel and iron.
  • blending step (2) it is preferred to mix a 10 90 Capacity 0/0 desulfurizing cracked naphtha fraction and 90- 10 capacity% other gasoline components.
  • the method for producing a lead-free gasoline composition of the present invention has a high octane number, for example, a research-method octane number of 93.0 or more, particularly 96.0 or more.
  • Light naphtha has a 5% by volume distillation temperature of 25-43 ° C, a 95% by volume distillation temperature of 55-100 ° C, an olefin component of 5% by volume or more, and a Gen value of 0.3gZl00g or less.
  • the fraction is preferably used in the desulfurization step (1).
  • Such a light cracked naphtha fraction may be obtained by subjecting the cracked naphtha fraction to a feedstock oil after the gen reduction treatment and then fractionating the crude cracked naphtha fraction, or may be a fractionated fraction of the cracked naphtha fraction. It may be obtained by performing a Gen reduction process later, or by performing a fractionation and a Gen reduction process simultaneously.
  • the raw material oil of the cracked naphtha fraction or the raw oil of the cracked naphtha fraction that has been subjected to the gen reduction treatment is used to reduce the sulfur compounds contained therein. It is preferable to perform a pretreatment for increasing the molecular weight, so that the sulfur content in the light cracked naphtha fraction can be easily reduced.
  • a preferable method for producing the unleaded gasoline composition of the present invention is such a light cracked naphtha. After the fraction is desulfurized in the step (1), in the blending step (2), the light desulfurized cracked naphtha fraction of 10 to 60% by volume and another gasoline base material of 90 to 40% by volume are mixed. Is a method for producing unleaded gasoline compositions with a octane number of 93.0 or higher.
  • the unleaded gasoline composition according to the present invention has a research octane number of 89.0 or more, a 50% by volume distillation temperature of 105 ° C. or less, an olefin content of 10% by volume or more, a total sulfur content of 1 mass ppm or less, and The ratio of thiophene sulfur compounds to the total sulfur content is 50% by mass or more as the sulfur content.
  • the unleaded gasoline composition of the present invention has a research octane number of 93.0 or more. More preferably, the olefin content in the boiling range of 35-100 ° C in the total olefin content is 90% by volume or more, and the total amount of thiophene and 2-methylthiophene in the total sulfur content is 50% by mass or more as the sulfur content. , And the content of Z or thiols is 0.1 mass ppm or less as sulfur content.
  • cracked naphtha fractions such as catalytic cracked gasoline and various cracked gasolines, inevitably contain genes.
  • the gens preferentially adsorb to the porous desulfurization agent in the treatment with the porous desulfurization agent, and the function of adsorbing (sorbing) sulfur is hindered.
  • the present invention since a process for reducing the Gen is performed in advance and the Gen value is limited to 0.3 gZ100 g or less, a high sulfur sorption function can be maintained for a long time.
  • the desulfurization cracked naphtha fraction obtained by treating with a porous desulfurizing agent having a sulfur sorption function in the presence of a small amount of hydrogen and a sulfur content of 10 mass ppm or less By mixing with another gasoline base material, it becomes possible to produce a lead-free gasoline composition having a sulfur content of 1 mass ppm or less. It is also possible to remove thiophene-sulfur disulfides in cracked naphtha fractions such as catalytic cracked gasoline, so desulfurization of light cracked naphtha fractions such as cracked naphtha fractions rich in thiophene-sulfur compounds is also possible. Is possible.
  • the power of the unleaded gasoline composition obtained in the past is almost the same as other properties. It is possible to reduce only the sulfur content to less than 1 ppm by mass with little change.
  • the present invention provides a desulfurization step of desulfurizing a cracked naphtha fraction having a specific property, and a blending step of mixing the obtained desulfurized cracked naphtha fraction with another gasoline base material.
  • This is a method for producing a lead-free gasoline composition with a octane number of 19.0 ppm or less and a research octane number of 89.0 or more.
  • FCC gasoline fluid catalytic cracking gasoline
  • Processes such as petroleum refining and petrochemicals, products that can obtain equipment power, and intermediate products, for example, thermal decomposition naphtha that also generates pyrolysis equipment power, dewaxing equipment power that generates dewaxing naphtha, and naphtha cracker power that generates cracking naphtha Can be used as a cracked naphtha fraction.
  • the 5% by volume distillation temperature of these cracked naphtha fractions is preferably 25 to 130 ° C, and the 95% by volume distillation temperature is preferably 55 to 210 ° C.
  • a cracked naphtha fraction such as FCC gasoline is subjected in advance to a gen reduction treatment to obtain a cracked naphtha fraction having a gen value of 0.3 gZl00 g or less. It is even more preferred that the Gen value be less than O.lgZlOOg. If the gender value exceeds 0.3 g / 100 g, the desulfurization performance of the porous desulfurizing agent having a sulfur sorption function used in the subsequent desulfurization step will be reduced, and it will be particularly difficult to desulfurize thiophene sulfur conjugates.
  • the decrease in the desulfurization performance can be known from the decrease in the desulfurization rate in the unit treatment amount or the increase in the frequency of regeneration of the porous desulfurization agent for maintaining the predetermined desulfurization rate. Therefore, it is preferable to perform a pre-treatment for reducing the amount of the jenny-dangling product and provide it to the subsequent desulfurization step. Good.
  • this jen reduction treatment step if the olefin is hydrogenated and converted into paraffin, the octane number is greatly reduced. Therefore, it is preferable to perform a selective gen reduction treatment so that the olefin is not hydrogenated.
  • Gen value here is a value measured by UOP326-82.
  • the sulfur content can be reduced at the same time by selecting the catalyst and conditions to be used. By doing so, it is possible to extend the life of the porous desulfurizing agent having a sorption function.
  • a gen-reducing catalyst is contacted with a catalytic cracking naphtha fraction in the presence of hydrogen to convert gen to monoolefin or to react sulfide with a sulfur compound coexisting to form sulfide.
  • U ⁇ is preferred.
  • a catalyst in which at least one metal belonging to Group 8 of the periodic table is supported on an inorganic porous carrier such as alumina is preferably used.
  • catalysts containing nickel or cobalt that are resistant to feedstocks containing sulfur are even more preferred.
  • reaction conditions must be set so that the Gen value in the catalytically-decomposed naphtha fraction is 0.3 gZlOOg or less and the olefin hydrogenation rate is 20% or less.
  • the hydrogenation rate of the olefin is the reduction rate of the olefin content after the treatment, assuming that the olefin content before the treatment is 100%.
  • Preferred reaction conditions for contacting in the coexistence are reaction temperature 40-300 ° C, reaction pressure 0.0-4.0MPa (gauge pressure), LHSV 1.0- / OIL ratio 1
  • One is 100NL / L.
  • the hydrogen in olefins is selectively hydrorefined, and the present invention can be applied as a method for reducing gen.
  • the IFP Selective Hydrogenation process and the Hules Selective Hydrogenation process are preferably used (see Petroleum Refining Process, edited by The Japan Petroleum Institute, p.62, Kodansha Sientifik, 1998).
  • catalytic cracking gasoline is typically used as a cracked naphtha fraction.
  • the process for producing this catalytic cracking gasoline can employ any known production process that does not particularly limit the catalytic cracking device, the feedstock, and the operating conditions.
  • the catalytic cracking unit uses catalysts such as amorphous silica alumina and zeolite to separate petroleum fractions from gas oil to vacuum gas oil, as well as direct gas oil obtained from heavy oil indirect desulfurization unit and direct oil desulphurization unit obtained from heavy oil direct desulfurization unit. This equipment obtains high octane gasoline base material by catalytic cracking of heavy oil, residual oil at normal pressure, etc.
  • UOP catalytic cracking For example, UOP catalytic cracking, flexicracking, ultra-ortho-flow, Texaco fluid catalytic cracking and other fluid catalytic cracking methods, RCC method, HOC method, etc.
  • a petroleum fraction from gas oil to reduced pressure gas oil particularly the sulfur content of 4000 mass ppm or less, is used as the feed oil for the catalytic cracking unit. It is preferable to use a fraction reduced to 2,000 mass ppm or less, 1000 mass ppm or less, and especially 500 mass ppm or less by hydrorefining or the like.
  • a cracked naphtha fraction having a Gen value of 0.3 g ZlOOg or less is desulfurized to obtain a desulfurized cracked naphtha fraction to be subjected to the next blending step.
  • the sulfur content of the desulfurized cracked naphtha fraction obtained in the desulfurization step is desirably desulfurized to 2 mass ppm or less, more preferably 1 mass ppm or less, and even more preferably 0.5 mass ppm or less.
  • the thiophene-based sulfur conjugate is the most likely to remain among the sulfur compounds, and thus the thiophene-based sulfur conjugate included in the total sulfur in the desulfurized cracked naphtha fraction.
  • the proportion of the substance is preferably 50% by mass or more, more preferably 70% by mass or more as a sulfur content.
  • the dithiophene sulfur compound means a sulfur-containing compound having a thiophene skeleton in a molecule such as thiophene, 2-methylthiophene, and 2,5-dimethylthiophene.
  • Orefuin content of desulfurized catalytically cracked gasoline is 5- 60 volume 0/0, and particularly preferably from 20- 40 volume%.
  • the desulfurization method in the desulfurization step is preferably a method in which a desulfurizing agent having a sorption function and a cracked naphtha fraction are brought into contact in the presence of hydrogen.
  • a desulfurizing agent having a sorption function and a cracked naphtha fraction are brought into contact in the presence of hydrogen.
  • the RON of the gasoline base material obtained by hydrogenation of olefins is reduced, and the RON is formed again immediately after hydrodesulfurization.
  • Hydrogen sulfate reacts with olefin to easily regenerate thiols, which is not suitable because V ⁇ cannot be sufficiently desulfurized.
  • It is preferable to use a desulfurizing agent having a sorption function since sulfur removed from the organic sulfur compound is immobilized on the desulfurizing agent and does not react with olefin to regenerate thiols.
  • the desulfurizing agent is not particularly limited as long as it has a sorbing function for the sulfur-containing compound.
  • a porous desulfurizing agent containing at least one selected from copper, zinc, nickel and iron is preferably used.
  • Preferred desulfurizing agents contain 0.5 to 85% by weight, especially 118 to 80% by weight of a metal component such as copper.
  • the production method of the desulfurizing agent is not particularly limited, but a production method in which a porous carrier such as alumina is impregnated with a metal component such as copper and supported and fired, or a metal component such as copper and a component such as aluminum are coprecipitated. Is preferable as a production method of precipitating and subjecting to steps such as molding and baking. Further, the metal component may be further impregnated and supported on the shaped and fired desulfurizing agent and fired. As the desulfurizing agent, the fired one may be used as it is, or may be used after being treated in a hydrogen atmosphere.
  • the specific surface area of the desulfurizing agent is preferably 30 m 2 Zg or more, particularly 50 to 600 m 2 Zg.
  • the composition and production method of the desulfurizing agent are not particularly limited, but desulfurizing agents such as those disclosed in Japanese Patent Nos. 3324746, 3230864 and JP-A-11-61154 are preferred. Can be
  • the porous desulfurizing agent having a sulfur sorbing function of the present invention refers to a method of immobilizing a sulfur atom in an organic sulfur compound to a desulfurizing agent, and a method of removing a hydrocarbon residue other than a sulfur atom in the organic sulfur compound.
  • a porous desulfurizing agent having a function of releasing from a desulfurizing agent by cleavage of a carbon-sulfur bond in the organic sulfur conjugate is used.
  • hydrogen existing in the system is added to the carbon in which the bond with sulfur has been cleaved.
  • hydrocarbon compounds from which sulfur atoms have been removed are obtained as products. Will be done.
  • the hydrocarbon compound from which the sulfur atom has been removed may give a product that has undergone a reaction such as hydrogenation, isomerization, or decomposition.
  • sulfur is immobilized in the desulfurizing agent, so unlike sulfur refining, it does not generate sulfur sulfides such as hydrogen sulfide as products.
  • the desulfurization treatment may be performed by a notch type or a flow type. However, the desulfurization treatment may be performed by flowing the decomposed naphtha fraction through a fixed-bed desulfurization tower filled with a desulfurizing agent. This is preferable because the agent and the desulfurized cracked naphtha fraction obtained can be easily separated.
  • a force in a range of 0 to 400 ° C can be selected, and a force in a range of 20 to 380 ° C is preferably selected.
  • desulfurization treatment may be performed in the presence of hydrogen.
  • the hydrogen partial pressure is preferably less than IMPa, and more preferably less than 0.6 MPa, in order to avoid the olefin being hydrogenated and the RON of the resulting gasoline substrate being reduced.
  • the LHSV is preferably selected from the range of 0.01 to 100 hr- 1 .
  • the gasoline base material used has a high octane number.
  • a gasoline base material having a high octane number is also preferable for blending for producing regular gasoline in order to increase the flexibility of the blend.
  • the cracked naphtha fraction is further fractionated, and the light cracked naphtha fraction having a relatively high octane number is mixed with the above-mentioned gen reduction treatment and desulfurized product with another gasoline base material. Unleaded gasoline compositions can be produced.
  • the lightly decomposed naphtha fraction after the fractionation and the Gen reduction treatment has a 5% by volume distillation temperature of 25 to 43 ° C, a 95% by volume distillation temperature of 55 to 100 ° C, and an olefin component of 5%. It is preferable that the light cracked naphtha fraction, which preferably has a volume percentage of not less than 0.3 g and a value of not more than 0.3 g of Z00 g, is fractionated, even if it is obtained by fractionation after the treatment of reducing gen. It may be obtained by performing a Gen reduction process later, or may be obtained by performing a Gen reduction process and a fractionation simultaneously.
  • the catalytic cracking gasoline is fractionated to have a 5% by volume distillation temperature of 25.0 to 43.0 ° C and a 95% by volume distillation temperature of 55.0%.
  • the 5% by volume distilling temperature exceeds 43.0 ° C or the 95% by volume distilling temperature is less than 55.0 ° C, it becomes difficult to adjust the distillation properties of the unleaded gasoline composition, or in the fractionation process. The yield of the resulting catalytic cracked light gasoline is reduced, and the cost of unleaded gasoline compositions is increased.
  • the catalytic cracking light gasoline obtained in the fractionation step preferably contains 0.1 to 50 mass ppm of thiophene sulfur compounds as sulfur. Even more preferably, it is at most 20 ppm by mass, more preferably at most 10 ppm by mass. Since the thiophene sulfur ligated product is a sulfur ligated gasoline easily remaining in the desulfurized catalytically cracked light gasoline obtained in the desulfurization treatment in the subsequent step, the catalytically cracked light gasoline obtained in the fractionation process is used. If the thiophene sulfur conjugate having a sulfur content exceeding 50 ppm by mass is contained, the operation cycle of the desulfurizing agent in the desulfurization step is undesirably short. It is not preferable that the catalytically cracked light gasoline obtained in the fractionation step does not contain thiophene having a sulfur content of less than 0.1 ppm by mass, since the yield of the catalytically cracked light gasoline is reduced.
  • a catalytically cracked gasoline is fractionated in the fractionation step to obtain a lightly cracked naphtha fraction, naturally a relatively heavy cracked naphtha fraction is also produced.
  • the present invention does not exclude a heavy cracked naphtha fraction.
  • the 5% by volume distillation temperature is 25 ° C or more, preferably 25 to 130 ° C, and the 95% by volume distillation temperature is 210 ° C. Below, preferably 55-210 ° C, if the olefin content is 5% by mass or more and the Gen value is 0.3gZlOOg or less, the production of the unleaded gasoline composition of the present invention, particularly the gasoline composition having a relatively low octane number, is recommended.
  • catalytic cracking heavy gasoline has a higher sulfur content than catalytic cracking light gasoline.
  • the sulfur content in catalytic cracking heavy gasoline is 50 mass ppm or more, only gen is removed and hydrogen is removed in the presence of hydrogen.
  • Treatment with a sorbent desulfurizing agent significantly shortens the life of the desulfurizing agent.
  • catalytic cracking heavy gasoline has a relatively small amount of olefin, desulfurization can be performed without impairing octane number loss even in the case of hydrodesulfurization in the presence of high-pressure hydrogen, up to a sulfur content of about 5 ppm by mass. It is.
  • the sulfur content in catalytically cracked heavy gasoline is reduced to 20 mass ppm or less, preferably 10 mass pp while keeping the olefin hydrogenation rate at 20% or less, preferably 10% or less.
  • desulfurization is preferably carried out by treatment with a desulfurizing agent having a sorption function in the presence of hydrogen.
  • the amount of gen can be reduced simultaneously with desulfurization in hydrodesulfurization.
  • the thiophene sulfur compound having an alkyl group at the 2-position is the sulfur compound most likely to remain in the desulfurized catalytically cracked light gasoline obtained in the desulfurization step.
  • thiophenes which mainly contain thiophene, 2-methylthiophene, and 3-methylthiophene, are contained as thiophenes.
  • Metalthiophene is applicable. Therefore, it is preferable to reduce 2-methylthiophene in the fractionation step.
  • the 95% by volume distillation temperature during fractionation is preferably 100.0 ° C, particularly 85.0 ° C, and more preferably 75 ° C or less.
  • the sulfur-based compound is mainly chioffen. Therefore, if the 95% by volume distillation temperature during fractional distillation is 75 ° C or less, it is most likely to remain in the desulfurized catalytically cracked light gasoline obtained in the desulfurization process! /, And the sulfur compound is thiophene.
  • a method for increasing the molecular weight of the sulfur-containing compound a method of reacting the sulfur-containing compound and the olefins contained in the decomposed naphtha fraction is also suitably used. Specifically, a method of reacting thiols and olefins (see Japanese Patent Application Laid-Open No.
  • gasoline base materials to be mixed in the blending process include a catalytic reforming gasoline base material, an alkylate gasoline base material, a base material obtained by desulfurizing a straight-run naphtha, a isomeride gasoline base material, and a naphtha formed from a naphtha cracker.
  • Base material toluene, xylene and MTBE, ethyl t-butyl ether (ETBE), t-amyl ethyl ether (TAEE), ethanol, methanol, etc.
  • a known gasoline base material such as an oxygen-containing gasoline base material can be used.
  • the other gasoline base material mixed in the blending step has a sulfur content of 10 mass ppm or less, preferably 3 mass ppm or less, more preferably 1 mass ppm or less, and particularly preferably 0.5 mass ppm or less. If the sulfur content of another gasoline base exceeds 10 ppm by mass, the amount of the gasoline base in the blending step is undesirably limited.
  • Preferable blending amounts will be described for each research octane number.
  • the preferred compounding amount is 25-80% by volume, particularly 30-50% by volume of the desulfurized cracked naphtha fraction, and 25-50% by volume of the catalytic reforming gasoline base material. , especially 30 to 45 volume 0/0 of catalytically reformed gasoline, and 10 40 volume 0/0, especially from 15 30 volume 0/0.
  • the preferred compounding amount is 50-90% by volume, particularly 60-80% by volume of the desulfurized cracked naphtha fraction, and 5-35% by volume of the catalytic reforming gasoline base material. 10- 25 vol. 0/0 of catalytically reformed gasoline, and 10 25 volume 0/0, and particularly a 5-15 capacity%.
  • the preferred compounding amount is 55-90% by volume, particularly 65-85% by volume of the desulfurized cracked naphtha fraction, and 0-20% by volume of the catalytic reforming gasoline base material. 5-15% by volume, alkylate gasoline base material is 0-15% by volume, especially 0-10% by volume.
  • fuel oil additives known in the art can be added to the gasoline composition of the present invention as needed.
  • the amount of these additives can be appropriately selected. Usually, it is preferable to maintain the total amount of additives at 0.1% by mass or less.
  • fuel oil additives that can be used in the gasoline of the present invention include phenol-based and amine-based antioxidants, metal deactivators such as Schiff-type compounds and thioamide-type compounds, and organic phosphorus-based additives.
  • Surface ignition inhibitors such as compounds, detergents and dispersants such as succinimide, polyalkylamines and polyetheramines, antifreeze agents such as polyhydric alcohols or their ethers, alkali metal salts of organic acids or alkaline acids
  • Antistatic agents such as lithium earth metal salts, sulfuric esters of higher alcohols, etc., anionic surfactants, cationic surfactants, amphoteric surfactants, etc.
  • Coloring agents such as blocking agents and azo dyes can be mentioned.
  • the unleaded gasoline composition of the present invention has a research octane number of 89.0 or more, a 50% by volume distillation temperature of 105 ° C or less, an olefin content of 10% by volume or more, a total sulfur content of 1 mass ppm or less, and a total sulfur content of
  • the ratio of thiophene-based sulfur conjugates in the total is 50-100% by mass in terms of sulfur content.
  • the lower limit of the octane number of the research method is 93.0 or more, particularly 96.0 or more
  • the upper limit is usually 102.0 or less
  • the boiling point occupying 35 to 100 ° C in the total olefin content is 90% by volume or more
  • the total sulfur content is 90% or more.
  • the total weight of thiophene and 2-methylthiophene in sulfur is 50% by mass or more, more preferably 70% by mass or more, and the content of thiols is 0.1% by mass or less as sulfur.
  • the catalytic cracking gasoline A obtained by fluid catalytic cracking using the hydrorefining of the vacuum gas oil fraction of the crude oil as the main feed oil is passed through the oil to perform the gen reduction treatment to obtain catalytic cracking gasoline B.
  • a reaction tube was charged with 5 cm 3 of copper-zinc-aluminum composite oxide (copper content 35% by mass, zinc content 35% by mass, aluminum content 5% by mass) prepared by a coprecipitation method, and hydrogen gas was added thereto.
  • catalytic cracking gasoline B is passed through this reaction tube for 20 hours under the conditions of a reaction temperature of 100 ° C, a reaction pressure of normal pressure, and an LHSV of 2.0 hours—HZOil ratio of 0.06NLZL for 20 hours for sorption function.
  • Catalytically cracked gasoline C desulfurized with a desulfurizing agent having Table 1 shows the properties of catalytic cracking gasoline A, catalytic cracking gasoline B, and desulfurizing catalytic cracking gasoline C.
  • the density ⁇ ISK 2249, the vapor pressure ⁇ IS K 2258, the distillation properties ⁇ IS K 2254, and the Gen value were measured in accordance with UOP326-82.
  • the sulfur content was measured according to ASTM D 5453 (ultraviolet fluorescence method).
  • the sulfur compound content is determined by chemiluminescence.
  • using a gas chromatograph made by Shimadzu Corporation equipped with an ANTEK sulfur chemiluminescence detector for selectively detecting and quantifying sulfur compounds the measurement was carried out by gas chromatography.
  • the hydrocarbon component composition and RON were measured by gas chromatography using a PIONA apparatus manufactured by Hewlett-Packard Company.
  • Catalytic cracking gasoline A had a Gen value of 0.6g / 100g.
  • Catalytic cracking gasoline B had a Gen value of O.lgZlOOg, and almost all of the Gen was removed.
  • Catalytic cracking gasoline B had a sulfur content of 5.0 mass ppm and was treated with a force desulfurizing agent to obtain desulfurization catalytic cracking gasoline C with a sulfur content of 0.2 mass ppm.
  • the resulting desulfurized catalytic cracking gasoline C had a power containing 0.2 mass ppm of thiophenes and no other sulfur-containing compounds.
  • Catalytic cracking light gasoline E had a Gen value of 1.6g and 100g.
  • Catalytic cracking light gasoline F had a Gen value of O.lg / lOOg and almost all of the Gen was removed.
  • Catalytic cracked light gasoline F contained 14 mass ppm of sulfur.
  • Treatment with a force desulfurizing agent yielded desulfurized catalytically cracked light gasoline G with a sulfur content of 0.2 mass ppm.
  • the resulting desulfurized catalytic cracking light gasoline G did not contain thiophene and 3-methylthiophene which contained 0.2 mass ppm of 2-methylthiophene! /.
  • Catalytic cracking gasoline D was subjected to sweet Jung treatment to obtain catalytic cracking gasoline H.
  • Catalytic cracking gasoline H was fractionated into light and heavy fractions to obtain catalytic cracking light gasoline I.
  • catalytic cracking light gasoline I was subjected to gen reduction treatment to obtain catalytic cracking light gasoline J.
  • This catalytic cracked light gasoline J was subjected to desulfurization treatment using the copper-zinc composite oxidized product prepared in gasoline base material preparation 1 under the same conditions as in gasoline base material preparation 1.
  • Table 3 shows the properties of catalytic cracking gasoline H, catalytic cracking light gasoline I, catalytic cracking light gasoline J without gen, and desulfurization catalytic cracking light gasoline K.
  • Hydrocarbon component composition [% by volume]
  • Sulfur compound content is the value in terms of sulfur (ppm by mass).
  • Catalytic cracking light gasoline I had a Gen value of 1.6gZl00g.
  • Catalytic cracking light gasoline J had a Gen value of O.lgZlOOg, and gen was almost completely removed.
  • Catalytically cracked light gasoline J contained 11 mass ppm of sulfur, but by treatment with a desulfurizing agent, desulfurized catalytically cracked light gasoline K with a sulfur content of 0.2 mass ppm was obtained.
  • the resulting desulfurized catalytically cracked light gasoline K contains 0.2 mass ppm of 2-methylthiophene! /, But contains thiophene and 3-methylthiophene!
  • Catalytic cracking gasoline A and catalytic cracking light gasoline E were each desulfurized using the copper-zinc composite oxide prepared in gasoline base preparation 1 under the same conditions as gasoline base preparation 1.
  • Catalytic cracking gasoline L and desulfurization catalytic cracking light gasoline M were obtained.
  • Table 4 shows the properties of desulfurized catalytic cracked gasoline L and desulfurized catalytic cracked light gasoline M.
  • the desulfurized catalytic cracking gasoline L contains 3.6 mass ppm of sulfur
  • the desulfurized catalytic cracking light gasoline M contains 11 mass ppm of sulfur, and neither removes gen. It is clear that it is difficult to remove the thiophene sulfur conjugate particularly when the sorption treatment is performed.
  • Gasoline base materials obtained by known techniques other than catalytic cracking include desulfurized straight-run naphtha N, catalytically modified medium oil 0, catalytically modified heavy oil P, alkylated gasoline Q, and ETBE substrate R.
  • the properties are as shown in Table 5.
  • Catalytic reforming medium oil O is obtained by distilling off a fraction rich in toluene from catalytic reforming gasoline.
  • the catalytically modified heavy oil P is obtained by distilling and separating aromatics having 9 or more carbon atoms and less than 11 carbon atoms from catalytically modified gasoline.
  • Sulfur compound content is a value (mass ppm) converted to sulfur.
  • Example 2 [0057] Further, the desulfurized straight run naphtha N 3.5 volume%, contacting the reformed fuel oil O 19.0% by volume, catalytically reformed heavy oil P 15.0 capacitance 0/0, and 23.0 volume% alkylate gasoline Q Preparation of Gasoline Base Material 39.5% by volume of desulfurized catalytic cracking light gasoline K described in 3 was blended to prepare a lead-free gasoline composition T. Table 6 shows the properties of unleaded gasoline composition T.
  • Gasoline base material 6.0% by volume of desulfurized straight-run naphtha N, 9.0% by volume of catalytic reforming medium oil O, 8.0% by volume of catalytic reforming heavy oil P, and 10.0% by volume of alkylated gasoline Q
  • Preparation of desulfurized catalytically cracked gasoline C described in 1 above, 57.0% by volume of gasoline base material, and 10.0% by volume of desulfurized catalytically cracked light gasoline K described in 3 were blended to prepare a lead-free gasoline composition V.
  • Table 6 shows the properties of lead-free gasoline composition V.
  • An unleaded gasoline composition W was prepared with exactly the same formulation as in the unleaded gasoline composition S of Example 1, except that catalytic cracking gasoline A was used instead of desulfurized catalytic cracking gasoline C. Table 6 shows the properties of unleaded gasoline composition W. Comparative Example 2
  • the unleaded gasoline composition S provided by the present invention is compared with the unleaded gasoline composition W provided by the prior art, and has almost no change in other properties. It is clear that the fraction can be reduced to less than 1 ppm by mass.
  • the unleaded gasoline composition T provided by the present invention can reduce the sulfur content to 1 mass ppm or less without substantially changing other properties as compared with the corresponding unleaded gasoline composition X.
  • the unleaded gasoline compositions U and V provided by the present invention can also reduce the sulfur content to 1 ppm by mass or less.
  • Catalytic cracking gasoline AA obtained by treating a Middle Eastern crude oil different from the above-mentioned gasoline base material preparation 1 in the same manner as gasoline base material preparation 1 and then subjecting it to sweet jung processing is converted to light and heavy components.
  • the heavy fraction was obtained as catalytic cracking heavy gasoline BB.
  • the catalytic cracking heavy gasoline BB was used at a reaction temperature of 220 ° C using a catalyst in which cobalt, molybdenum and phosphorus were supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass, phosphorus content 2.0% by mass). , Reaction pressure 1.0MPa, ZOil ratio 307NLZL
  • Unleaded gasoline composition Z was prepared in exactly the same manner as in Example 5, except that the desulfurized catalytic cracked heavy gasoline EE described in 7 was used. did. Table 6 shows the properties of unleaded gasoline composition Z.
  • the cracked gasoline fraction is removed with a gen, it is treated with a porous desulfurizing agent having a sulfur sorbing function in the presence of a small amount of hydrogen to reduce the sulfur content and leave the olefin component.
  • a lead-free gasoline composition with a sulfur content of 1 mass ppm or less which is obtained by mixing a desulfurization cracked naphtha fraction obtained by avoiding octane loss due to desulfurization treatment with another gasoline base material with a sulfur content of 10 mass ppm or less . Therefore, it was possible to reduce only the sulfur content to 1 mass ppm or less without changing the properties of the conventional unleaded gasoline composition and other properties. Therefore, the unleaded gasoline composition of the present invention is useful as a V-vehicle fuel with low environmental load while maintaining high driving performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

 硫黄分が1質量ppm以下で、十分な運転特性を保持した無鉛ガソリン組成物及びその製造方法を提供する。  5容量%留出温度が25°C以上、かつ95容量%留出温度が210°C以下、オレフィン分が5質量%以上、ジエン価が0.3g/100g以下である分解ナフサ留分を脱硫処理する工程、及び得られた脱硫分解ナフサ留分を、他のガソリン基材と混合するブレンド工程を含む、硫黄分が1質量ppm以下、かつリサーチ法オクタン価が89.0以上である無鉛ガソリン組成物の製造方法。また、リサーチ法オクタン価が89.0以上、50容量%留出温度が105°C以下、オレフィン分が10容量%以上、全硫黄分が1質量ppm以下、全硫黄分に占めるチオフェン類硫黄化合物の割合が硫黄分として50質量%以上である無鉛ガソリン組成物。  

Description

明 細 書
無鉛ガソリン組成物及びその製造方法
技術分野
[0001] 本発明は、環境への影響を低減した無鉛ガソリン組成物とその製造方法に関する。
特に、硫黄分を 1質量 ppm以下に低減して、環境への影響に配慮しつつ十分な運 転特性を確保した無鉛ガソリン組成物及びその製造方法に関する。
背景技術
[0002] 近年、自動車の高性能化に伴って、高い運転性能をもつ高性能ガソリンの需要が 増力!]している。一方、自動車燃料やその燃焼排ガスによる環境汚染が社会問題にな つてきている。したがって、高い運転性能を維持するとともに、環境負荷の少ない自 動車燃料が望まれている。特に、排ガス浄ィ匕と燃費改善の観点から、硫黄分の一層 の低減が切望されている。
[0003] JIS K 2202には、リサーチ法オクタン価 (RON)が 96.0以上の 1号自動車ガソリ ンと 89.0以上の 2号自動車ガソリンが規定されており、前者は高性能なプレミアムガ ソリンとして、後者はレギュラーガソリンとして市販されている。従来、プレミアムガソリ ンは、接触改質ガソリン基材、メチル t ブチルエーテル(MTBE)のような 100以上の RONをもつ基材、アルキレートガソリン基材、接触分解ガソリン基材のような 93以上 の RONをもつ基材を中心に、各種の基材を配合して製造されて!、る。
[0004] 重質な石油留分を分解することによって製造される分解ガソリン基材は、他のガソリ ン基材に比べ、経済的に製造できるという利点がある一方、高い硫黄分を含んでい た。その結果、上述のようにして製造されるガソリン中の硫黄分の大部分は、分解ガ ソリン基材に由来していた。
[0005] 分解ガソリン基材の硫黄分の低減は、高圧水素と触媒の共存下で水素化精製する という公知技術で容易に可能である。しかし、その場合は、接触分解ガソリン基材中 に多く含まれ、高 、RONをもつォレフィン分が水素化されて基材の RONが低下して しまうため、それを配合したガソリンでは十分な運転性能が得られな 、と 、う問題点が めつに。 [0006] 一方、炭化水素油を、特定の条件下、吸着剤と接触させて硫黄ィ匕合物を吸着させ る工程と、吸着剤に水素を通気させることにより吸着剤から硫黄化合物を脱離するェ 程を繰り返すことにより、ォレフィンの水素化反応など不要な反応を抑制し、ガソリン の基材となる炭化水素油に含まれる硫黄分を連続的に低減する方法が提案されて いる(特許文献 1参照)。し力しながら、このような吸着剤を用いる方法も、原料油に含 有される特定の炭化水素化合物によるせいか、硫黄の吸着能が阻害されて硫黄分を 効率よく «続的に低減することができず、必ずしも満足できる方法ではな力つた。 特許文献 1:特開 2003— 277768号公報
発明の開示
発明が解決しょうとする課題
[0007] 硫黄分が 1質量 ppm以下と低ぐかつ、十分な実用性能を確保した環境対応ガソリ ン、及びその製造方法は未だ確立されていない。本発明は、このような状況下で、硫 黄分を低減し、かつ、十分な運転特性を確保した無鉛ガソリン組成物及びその製造 方法を提供することを目的とするものである。
課題を解決するための手段
[0008] 本発明者らは、上記課題を解決するために鋭意研究した結果、ジェン含有量が低 Vヽ分解ナフサ留分を用いて水素化精製以外の脱硫処理を行うと、高!ヽ RONを維持 したまま、硫黄分を効率よく低減できることを見出し、そして、このようにして得られた 基材を用いることにより、十分な運転特性を確保した無鉛ガソリン組成物が得られるこ とを見出し、本発明の無鉛ガソリン組成物及びその製造方法に想到した。
[0009] すなわち、本発明による硫黄分が 1質量 ppm以下、かつリサーチ法オクタン価 (RO N)が 89.0以上である無鉛ガソリン組成物の製造方法は、
(1) 5容量%留出温度が 25°C以上、かつ 95容量%留出温度が 210°C以下、ォレフ イン分が 5容量%以上、ジェン価が 0.3gZl00g以下である分解ナフサ留分を脱硫 処理する脱硫工程、及び
(2)前記(1)の脱硫工程で得られた脱硫分解ナフサ留分と他のガソリン基材とを混合 するブレンド工程
を含む。 [0010] 好ましくは、(1)の工程において、予めジェン低減処理を経たジェン価が 0.3gZl OOg以下の分解ナフサ留分を用いる。すなわち、本発明の無鉛ガソリン組成物の製 造方法は、分解ナフサ留分の原料油に対し、予めジェン低減処理を行う工程を含む ことが好ましい。また、このとき、ジェン低減処理は、分解ナフサ留分の原料油と周期 律表第 8族の元素を含む触媒とを接触させることが好ましぐこのとき、ジェン低減触 媒力 コバルトまたはニッケル力 選ばれる少なくとも: L種を含むものであることが好ま しい。
[0011] さらに、本発明の無鉛ガソリン組成物の製造方法は、(1)の脱硫工程において、硫 黄収着機能をもった多孔質脱硫剤を水素分圧 IMPa以下の水素共存下で分解ナフ サ留分と接触させて脱硫処理することが好ましぐこのとき、多孔質脱硫剤が、銅、亜 鉛、ニッケル及び鉄カゝら選ばれる少なくとも 1種を含むものであることが好ましい。
(2)のブレンド工程において、 10— 90容量0 /0の脱硫分解ナフサ留分と 90— 10容 量%の他のガソリン基材とを混合することが好ましい。
[0012] また、本発明の無鉛ガソリン組成物の製造方法は、よりオクタン価の高 、、例えばリ サーチ法オクタン価が 93.0以上、特には 96.0以上といった無鉛ガソリン組成物を得 るために、分解ナフサ留分は、 5容量%留出温度が 25— 43°C、かつ 95容量%留出 温度が 55— 100°C、ォレフィン分が 5容量%以上、ジェン価が 0.3gZl00g以下で ある軽質な分解ナフサ留分を前記(1)の脱硫工程で用いることが好ましい。
このような軽質な分解ナフサ留分は、当該分解ナフサ留分の原料油をジェン低減 処理した後に分留して得たものであっても、あるいは前記分解ナフサ留分の原料油 を分留した後にジェン低減処理して得たものであっても、あるいは分留とジェン低減 処理を同時に行って得たものでもよ 、。
さらに、軽質な分解ナフサ留分を得る分留を行う前に、あるいは分留と同時に分解 ナフサ留分の原料油又はジェン低減処理した分解ナフサ留分の原料油に対し、含 まれる硫黄化合物の分子量を大きくする前処理を施しておくことが好ましぐこうする こと〖こよって、軽質な分解ナフサ留分に含まれる硫黄分を容易に低減しておくことが できる。
[0013] 本発明の無鉛ガソリン組成物の好ましい製造方法は、このような軽質な分解ナフサ 留分を前記(1)の工程で脱硫処理した後、前記(2)のブレンド工程において、 10— 60容量%の軽質な脱硫分解ナフサ留分と 90— 40容量%の他のガソリン基材とを混 合し、リサーチ法オクタン価が 93.0以上である無鉛ガソリン組成物の製造方法である
[0014] 本発明による無鉛ガソリン組成物は、リサーチ法オクタン価が 89.0以上、 50容量% 留出温度が 105°C以下、ォレフィン分が 10容量%以上、全硫黄分が 1質量 ppm以 下、及び全硫黄分に占めるチォフェン類硫黄化合物の割合が硫黄分として 50質量 %以上である。
また、好ましくは本発明の無鉛ガソリン組成物は、リサーチ法オクタン価が 93.0以 上である。さらに好ましくは、全ォレフイン分に占める沸点範囲 35— 100°Cのォレフィ ン分が 90容量%以上、全硫黄分に占めるチォフェン及び 2—メチルチオフェンの合 計量の割合が硫黄分として 50質量%以上、及び Z又は、チオール類の含有量が硫 黄分として 0.1質量 ppm以下である。
発明の効果
[0015] 特に接触分解ガソリンや各種の分解ガソリンなどの分解ナフサ留分には、ジェン類 が不可避的に含有される。ジェン類が含まれると、多孔質脱硫剤による処理におい て、ジェン類が多孔質脱硫剤に優先的に吸着し、硫黄を吸着 (収着)する機能が阻 害される。一方、本発明によれば、予めジェンを低減する処理を行い、ジェン価を 0. 3gZl00g以下に制限しているので、高い硫黄収着機能を長時間持続することがで きる。すなわち、接触分解ガソリンをジェン除去した後、わずかな水素共存の下、硫 黄収着機能をもつ多孔質脱硫剤によって処理して得た脱硫分解ナフサ留分と、硫黄 分が 10質量 ppm以下の他のガソリン基材とを混合することによって、硫黄分 1質量 p pm以下の無鉛ガソリン組成物を製造することが可能となる。接触分解ガソリンなどの 分解ナフサ留分中のチォフェン類硫黄ィ匕合物も除去することが可能なので、チオフ ェン類硫黄化合物を多く含む分解ナフサ留分などの軽質な分解ナフサ留分も脱硫 処理が可能である。また、接触分解軽質ガソリンなどの軽質な分解ナフサ留分に多く 含まれるォレフィン分はほとんど水素化されな 、ので、脱硫処理に伴うオクタン価ロス を回避できる。したがって、従来得られている無鉛ガソリン組成物力も他の性状をほと んど変えることなく硫黄分だけを 1質量 ppm以下まで減じることが可能である。
発明を実施するための最良の形態
[0016] 本発明は、特定の性状を有する分解ナフサ留分を脱硫処理する脱硫工程、及び 得られた脱硫分解ナフサ留分を、他のガソリン基材と混合するブレンド工程を含む硫 黄分が 1質量 ppm以下、かつリサーチ法オクタン価が 89.0以上である無鉛ガソリン組 成物の製造方法である。なお、以下の説明において、分解ナフサ留分として、いわゆ る流動接触分解ガソリン (FCCガソリン)を主体的に引用して説明するが、本発明は F CCガソリンに限定されるものでなぐその他の石油精製及び石油化学などのプロセ ス、装置力も得られる製品、中間製品などで、例えば熱分解装置力も生成する熱分 解ナフサ、脱ろう装置力 生成する脱ろうナフサ、ナフサクラッカー力 生成する分解 ナフサなどを分解ナフサ留分として用いることができる。要は、 5容量%留出温度が 2 5°C以上、かつ 95容量%留出温度が 210°C以下、ォレフィン分が 5容量%以上、ジ ェン価が 0.3g/100g以下の分解ナフサ留分であればよい。したがって、いわゆるホ ール (whole)の分解ナフサ留分のほかに、それをさらに分留して得た軽質な分解ナ フサ留分、あるいは重質な分解ナフサ留分であっても、前記条件を満足すればよい 。なお、これらの分解ナフサ留分の 5容量%留出温度は 25— 130°C、及び 95容量 %留出温度は 55— 210°Cが好ましい。また、ジェン価が 0.3gZl00g以下のものを 用いるために、分解ナフサ留分は、予め以下に詳述するジェンを低減する処理が施 され、前記ジェン価を有するものを使用することが好ましい。
[0017] 〔ジェン低減処理〕
本発明の無鉛ガソリン組成物の製造方法にぉ 、て、予め FCCガソリンのような分解 ナフサ留分に対しジェン低減処理を行い、ジェン価が 0.3gZl00g以下である分解 ナフサ留分を得る。ジェン価が O. lgZlOOg以下であると、なお一層好ましい。ジェ ン価が 0.3gZl00gを超えると、その後の脱硫工程に用いる硫黄収着機能をもつ多 孔質脱硫剤の脱硫性能が低下し、特にチォフェン類硫黄ィ匕合物の脱硫が困難にな る。脱硫性能の低下は、単位処理量における脱硫率の低下、あるいは所定の脱硫率 を保持するための多孔質脱硫剤の再生頻度の増加によって知ることができる。したが つて、ジェンィ匕合物を低減する前処理を行って力 次の脱硫工程に供することが好 ましい。ただし、このジェン低減処理工程においては、ォレフィンが水素化されパラフ インに転ィ匕するとオクタン価が大きく低下するから、ォレフィンが水素化されないように 選択的なジェン低減処理をすることが好まし 、。
[0018] なお、ここでいうジェン価とは UOP326— 82にて測定した値である。
また、ジェン低減処理において、用いる触媒と条件を選択することによって、硫黄分 も同時に低減できる。そうすれば、収着機能をもった多孔質脱硫剤の寿命を延長さ せることが可能である。
[0019] ジェン低減処理の方法は、ジェン低減触媒と接触分解ナフサ留分を水素の共存下 で接触させ、ジェンをモノォレフィンに転化するか、あるいは、ジェンと共存する硫黄 化合物とを反応させスルフイドに転ィ匕させる方法が好ま Uヽ。ジェン低減触媒として はアルミナなどの無機多孔質担体に周期律表第 8属の金属を少なくとも 1種を担持し た触媒が好ましく用いられる。さらには、硫黄を含む原料油に対して耐性がある-ッ ケルまたはコバルトを含む触媒がなおいつそう好ましい。反応条件としては、接触分 解ナフサ留分中のジェン価が 0.3gZlOOg以下でありかつ、ォレフィン水素化率が 2 0%以下となるように設定する必要がある。ここで、ォレフィン水素化率とは、処理前 のォレフイン含有量を 100%とした場合の、処理後のォレフィン含有量の低減率を!、 なお、ジェン低減触媒と接触分解ナフサ留分を水素の共存下で接触させる好まし い反応条件は、反応温度 40— 300°C、反応圧力 0.0— 4.0MPa (ゲージ圧)、 LHSV 1.0— /OIL比 1
Figure imgf000007_0001
一 100NL/Lである。
[0020] 従来力 石油精製においては、ォレフィン中のジェンを選択的に水素化精製するこ とが行われており、本発明においてジェンを低減する方法として適用できる。具体的 に【ま、 IFP Selective Hydrogenationプロセス、 Hules Selective Hydrogenationプロ セスなどが好ましく用いられる(石油学会編石油精製プロセス、 p.62、講談社サイェン ティフイク、 1998、参照)。
また、本発明においてジェンを低減する方法として、 SHUプロセス(21st JPI Petroleum Renning Conrerence 'Recent Progress in Petroleum Process Technology", 37(2002))や CD Hydroプロセス(NPRA 2001 Annual Meeting, AM- 01-39)も用いることができる。
[0021] 〔接触分解ガソリン〕
本発明の無鉛ガソリン組成物の製造方法にぉ ヽて、分解ナフサ留分として前述の ように接触分解ガソリンが代表的に用いられる。この接触分解ガソリンを製造するプロ セスは、接触分解装置、原料油、運転条件を特に限定するものでなぐ公知の任意 の製造工程を採用できる。接触分解装置は、無定形シリカアルミナ、ゼォライトなどの 触媒を使用して、軽油から減圧軽油までの石油留分の他、重油間接脱硫装置から得 られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触 分解して高オクタン価ガソリン基材を得る装置である。例えば石油学会編「新石油精 製プロセス」に記載のある UOP接触分解法、フレキシクラッキング法、ウルトラ 'オルソ フロー法、テキサコ流動接触分解法などの流動接触分解法、 RCC法、 HOC法など の残油流動接触分解法などがある。
[0022] 分解ナフサ留分中の硫黄ィ匕合物を低減するためには、接触分解装置の原料油とし て軽油から減圧軽油までの石油留分、特にその硫黄分を 4000質量 ppm以下、より 好ましく ίま 2000質量 ppm以下、さら【こ ίま 1000質量 ppm以下、特【こ ίま 500質量 ppm 以下に水素化精製などにより低減した留分を用いることが好ましい。
[0023] 〔脱硫工程〕
本発明の無鉛ガソリン組成物の製造方法における脱硫工程では、ジェン価が 0.3g ZlOOg以下である分解ナフサ留分を脱硫処理して、次のブレンド工程に供する脱 硫分解ナフサ留分を得る。脱硫工程で得られる脱硫分解ナフサ留分の硫黄分を、 2 質量 ppm以下に脱硫することが好ましぐ 1質量 ppm以下、さらには 0.5質量 ppm以 下にすることができるとなお一層好ましい。脱硫工程においては、硫黄化合物のうち チォフェン類硫黄ィ匕合物が最も残留しやすい硫黄ィ匕合物であるため、脱硫分解ナフ サ留分中の全硫黄分に占めるチオフ ン類硫黄ィ匕合物の割合は硫黄分として 50質 量%以上、さらには 70質量%以上であるのが好ましい。なお、ここでいぅチォフェン 類硫黄化合物とは、チォフェン、 2-メチルチオフェン、 2, 5-ジメチルチオフェン等の 分子内にチォフェン骨格を含む硫黄ィ匕合物のことである。また、脱硫接触分解ガソリ ンのォレフイン分は 5— 60容量0 /0、特には 20— 40容量%であることが好ましい。 [0024] 脱硫工程における脱硫処理の方法は、水素の共存下で収着機能をもった脱硫剤と 分解ナフサ留分を接触させる方法が好ましヽ。水素化脱硫触媒と水素の存在下で、 分解ナフサ留分を水素化精製処理する方法では、ォレフィンが水素化されて得られ るガソリン基材の RONが低下しやすぐまた水素化脱硫によって生成する硫ィ匕水素 がォレフインと反応してチオール類を再生成しやす 、ため、十分に脱硫処理できな Vヽので不適切である。収着機能をもった脱硫剤を用いると有機硫黄化合物から除去 される硫黄が脱硫剤上に固定化されォレフィンと反応してチオール類を再生成する ことがないので好ましい。
[0025] 硫黄の収着機能をもった脱硫剤と分解ナフサ留分を接触させる方法を用いる場合 の脱硫剤としては、硫黄ィ匕合物に対する収着機能を有するものであれば特に限定は ない。銅、亜鉛、ニッケル及び鉄から選ばれる少なくとも 1種を含む多孔質脱硫剤が 好ましく用いられる。好ましい脱硫剤は、銅などの金属成分を 0.5— 85質量%、特に は 1一 80質量%含有する。脱硫剤の製造方法は特に限定されないが、アルミナのよ うな多孔質担体に銅などの金属成分を含浸、担持して焼成する製造方法や、共沈法 によって銅などの金属成分とアルミニウムなどの成分とを沈殿させて成形、焼成等の 工程を経る製造方法が、好ましい方法として挙げられる。また、成形、焼成された脱 硫剤にさらに金属成分を含浸、担持して、焼成してもよい。脱硫剤は、焼成されたも のをそのまま用いてもよいし、水素雰囲気下で処理して用いてもよい。脱硫剤の比表 面積は、好ましくは 30m2Zg以上、特には 50— 600m2Zgである。脱硫剤の組成や 製造方法は特に限定されないが、特許第 3324746号公報、特許第 3230864号公 報および特開平 11-61154号公報に開示されて ヽるような脱硫剤が好ま ヽものとし て挙げられる。
[0026] 本発明の硫黄収着機能を持った多孔質脱硫剤とは、有機硫黄化合物中の硫黄原 子を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素 残基については、有機硫黄ィ匕合物中の炭素 硫黄結合が開裂することによって脱硫 剤から脱離させる機能をもった多孔質脱硫剤を 、う。この炭化水素残基が脱離する 際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したが つて、有機硫黄ィ匕合物力 硫黄原子が除かれた炭化水素化合物が生成物として得 られることになる。ただし、硫黄原子が除かれた炭化水素化合物が、さらに水素化、 異性化、分解等の反応を受けた生成物を与えることがあっても構わない。一方、硫黄 は脱硫剤に固定化されるため、水素化精製とは異なり、生成物として硫化水素などの 硫黄ィ匕合物を発生しない。
[0027] 脱硫処理は、ノ ツチ式で行っても、流通式で行っても構わな 、が、脱硫剤を充填し た固定床脱硫塔に分解ナフサ留分を流通させて行うことが、脱硫剤と得られる脱硫 分解ナフサ留分の分離が簡便にできるので好ましい。脱硫処理する温度は、 0— 40 0°Cの範囲力も選ぶことができ、好ましくは 20— 380°Cの範囲力も選ぶとよい。脱硫 剤と接触させただけでは脱硫されにくいチォフェン類の脱硫を促進するために、水素 を共存させて脱硫処理を行ってもよい。ただし、ォレフィンが水素化され、得られるガ ソリン基材の RONが低下することを避けるため、水素分圧は IMPa未満とすることが 好ましぐさらには 0.6MPa未満とすることが好ましい。固定床流通式で脱硫剤と分解 ナフサ留分を接触させて脱硫処理を行う場合、 LHSVは、 0.01— lOOOOhr— 1の範 囲から選ぶことが好ましい。
[0028] プレミアムガソリンを製造する場合、用いるガソリン基材は高 、オクタン価を有するこ とが望ましい。また、高いオクタン価を有するガソリン基材は、レギュラーガソリンを製 造するブレンドの際にも、ブレンドのフレキシビリティを広げる上で好ましい。分解ナフ サ留分をさらに分留して、比較的高オクタン価の軽質な分解ナフサ留分を、上記のジ ェン低減処理、脱硫した物を、他のガソリン基材と混合して本発明の無鉛ガソリン組 成物を製造することができる。
[0029] 分留及びジェン低減処理後の軽質な分解ナフサ留分は、 5容量%留出温度が 25 一 43°C、かつ 95容量%留出温度が 55— 100°C、ォレフィン分が 5容量%以上、ジ ェン価が 0.3gZl00g以下であるであることが好ましぐこの軽質な分解ナフサ留分 は、ジェン低減処理した後に分留して得たものであっても、分留した後にジェン低減 処理して得たものであっても、あるいはジェン低減処理と分留を同時に行って得たも のであってもよい。また、分留に先立ってあるいは分留中に、硫黄化合物の分子量を 大きくする前処理を施しておくと、大きな分子量になった硫黄分は高沸点の重質な分 解ナフサ留分中に移動して、軽質な分解ナフサ留分中の硫黄分を簡単な操作で少 なくすることができる。以下、前記分留の工程、及び硫黄ィ匕合物の分子量を大きくす る前処理の工程についてより詳しく説明する。
[0030] 〔分留工程〕
本発明の無鉛ガソリン組成物の製造方法における分留工程では、接触分解ガソリ ンを分留して 5容量%留出温度が 25.0— 43.0°Cであって、かつ 95容量%留出温度 が 55.0— 100.0°Cである接触分解軽質ガソリンなどの軽質な分解ナフサ留分を得る 。 5容量%留出温度が 25.0°C未満であると、無鉛ガソリン組成物の蒸気圧が高くなる 。 95容量%留出温度が 80.0°C、特に 100.0°Cを超えると、脱硫接触分解軽質ガソリ ンの硫黄分が高くなる。 5容量%留出温度が 43.0°Cを超えたり、 95容量%留出温度 が 55.0°C未満であったりすると、無鉛ガソリン組成物の蒸留性状の調整が困難にな つたり、分留工程で得られる接触分解軽質ガソリンの得率が低下し無鉛ガソリン組成 物のコストが高くなつたりする。
[0031] 分留工程で得られる接触分解軽質ガソリンは、チォフェン類硫黄化合物を硫黄分と して 0.1— 50質量 ppm含むことが好ましい。 20質量 ppm以下、さらには 10質量 ppm 以下であるとなお一層好ましい。チォフェン類硫黄ィ匕合物は、後の工程での脱硫処 理で得られる脱硫接触分解軽質ガソリン中に残留しやすい硫黄ィ匕合物であるため、 分留工程で得られる接触分解軽質ガソリンが、硫黄分として 50質量 ppmを超えるチ ォフェン類硫黄ィ匕合物を含んでいると、脱硫工程において、脱硫剤の運転サイクル が短くなり好ましくない。分留工程で得られる接触分解軽質ガソリンが、硫黄分として 0.1質量 ppm未満のチォフェンし力含まな 、よう〖こすることは、該接触分解軽質ガソリ ンの得率を低下させるので、好ましくない。
[0032] また、分留工程で、接触分解ガソリンを分留して軽質な分解ナフサ留分を得ると、 当然、比較的重質な分解ナフサ留分も製造することになる。このとき、本発明は重質 な分解ナフサ留分を排除するものではなぐ 5容量%留出温度が 25°C以上、好ましく は 25— 130°C、かつ 95容量%留出温度が 210°C以下、好ましくは 55— 210°C、ォ レフイン分が 5質量%以上、ジェン価が 0.3gZlOOg以下を満足すれば、本発明の 無鉛ガソリン組成物、特に比較的低オクタン価のガソリン組成物の製造に低コストで、 好適に用いることができる。 通常、接触分解重質ガソリンは接触分解軽質ガソリンよりも硫黄分が多ぐ特に接触 分解重質ガソリン中の硫黄分が 50質量 ppm以上の場合は、ジェンだけを除去して、 水素の共存下で収着機能をもった脱硫剤による処理を行うと、脱硫剤の寿命が著しく 短くなる。また、接触分解重質ガソリンは比較的ォレフィン量が少ないため、高圧の水 素存在下における水素化脱硫でも硫黄分 5質量 ppm程度までならば、比較的ォクタ ン価ロスを損なうことなく脱硫が可能である。したがって、高圧の水素共存下における 水素化脱硫によって、ォレフィン水素化率を 20%以下、好ましくは 10%以下に抑え ながら接触分解重質ガソリン中の硫黄分を 20質量 ppm以下、好ましくは 10質量 pp m以下、さらには 5質量 ppm以下に低減した後、水素の共存下で収着機能をもった 脱硫剤による処理を行い脱硫することが好ましい。なお、ジェン量の低減については 、水素化脱硫の際、脱硫と同時に行うことができる。好ましくはジェン重合等による水 素化脱硫触媒や水素化脱硫装置への悪影響を抑制するため、予めジェン低減処理 を行うのがよい。
[0033] チォフェン類硫黄ィ匕合物の中でもとりわけ、 2位にアルキル基をもつチォフェン類硫 黄化合物は、脱硫工程で得られる脱硫接触分解軽質ガソリン中に最も残留しやす 、 硫黄化合物である。接触分解軽質ガソリン中においては、チォフェン類硫黄ィ匕合物 として主にチォフェン、 2—メチルチオフェン、 3—メチルチオフェンが含まれる力 2位 にアルキル基をもつチォフェン類硫黄ィ匕合物としては 2—メチルチオフェンが該当す る。したがって、分留工程において、 2—メチルチオフェンを低減しておくことが好まし い。このためには、分留時の 95容量%留出温度を 100.0°C、特には 85.0°C、さらに は 75°C以下とすることが好ましい。分留時の 95容量%留出温度を 75°C以下まで下 げると 2—メチルチオフェンだけでなく 3—メチルチオフェンも接触分解軽質ガソリン中 にほとんど含まれなくなるため、このとき含まれるチォフェン類硫黄ィ匕合物は主にチ ォフェンとなる。したがって、分留時の 95容量%留出温度が 75°C以下の場合には、 脱硫工程で得られる脱硫接触分解軽質ガソリン中に最も残留しやす!/、硫黄化合物 はチォフェンとなる。
[0034] 〔硫黄化合物の分子量を大きくする前処理〕
分留工程に供する接触分解ガソリンにつ!/ヽて、含まれる硫黄化合物の分子量を大 きくする前処理を行って分留工程に供するか、あるいは分留と同時に硫黄化合物の 分子量を大きくする前処理を行うことが好まし 、。チオール類などの硫黄ィ匕合物の分 子量を選択的に大きくすることにより、その含硫黄ィ匕合物の沸点が高くなるため、分 留工程において、含硫黄ィ匕合物を接触分解重質ガソリン中に移行することができ、 分留工程で得られる接触分解軽質ガソリンの硫黄分を低減することができる。具体的 には、接触分解軽質ガソリンのチオール類の含有量を硫黄分として合計 0.1質量 pp m以下にすると一層好ま 、。
[0035] 従来力 石油精製においては、チオール類を処理して製品を無臭化するためのス ィートユングが行われるが、酸化法や酸化抽出法によって、チオール類をジスルフィ ド類に転化する公知の方法は、本発明にお 、て硫黄ィ匕合物の分子量を大きくする方 法として適用できる。具体的には、マーロックス法、ドクター法などが好ましく用いられ る (産業図書株式会社、石油精製技術便覧第 3版、 1981、参照)。
[0036] また、本発明において硫黄ィ匕合物の分子量を大きくする方法として、分解ナフサ留 分に含まれる硫黄ィ匕合物とォレフィン類とを反応させる方法も好適に用いられる。具 体的には、チオール類とォレフィン類とを反応させる方法 (特開 2001-55584号公 報参照)ゃチオール類ゃチォフェン類をォレフイン類と反応させる方法("Production of Low bulfur Gasoline and Diesel Fuels: Tier 2 and Beyond , Petroleum Refining Technology Seminar August 2001, 11- 18、参照)が挙げられる。また、 特に好ましくは硫黄化合物の分子量を大きくする処理とジェン低減処理を同時にで きるプロセスを用いるのがよい。具体的には、前記の SHUプロセスが好適に用いられ る。さらには、分留を行いながら、硫黄化合物の分子量を大きくする処理とジェン低 減処理を同時にできるプロセスを用いるのがいつそう好ましい。具体的には、前記の CD Hydroプロセスが好適に用いられる。
[0037] 〔ブレンド工程に用いられる他のガソリン基材〕
ブレンド工程で混合される他のガソリン基材としては、接触改質ガソリン基材、アル キレートガソリン基材、直留ナフサを脱硫処理した基材、異性ィ匕ガソリン基材、ナフサ クラッカーから生成したナフサ基材、トルエン、キシレン及び MTBE、ェチル tーブチ ルエーテル(ETBE)、 tーァミルェチルエーテル(TAEE)、エタノール、メタノール等 の含酸素ガソリン基材等、公知のガソリン基材を用いることができる。ブレンド工程で 混合される他のガソリン基材は、硫黄分が 10質量 ppm以下であり、好ましくは 3質量 ppm以下、さらには 1質量 ppm以下、特には 0.5質量 ppm以下であることが好ましい 。他のガソリン基材の硫黄分が 10質量 ppmを超えると、そのガソリン基材のブレンド 工程での配合量が制約され、好ましくない。
[0038] 好ましい配合量について各リサーチ法オクタン価別に説明する。例えば、リサーチ 法オクタン価が 96— 102の場合の好ましい配合量は、脱硫分解ナフサ留分を 25— 8 0容量%、特には 30— 50容量%、接触改質ガソリン基材を 25— 50容量%、特には 30— 45容量0 /0、アルキレートガソリン基材を 10— 40容量0 /0、特には 15— 30容量0 /0 である。
リサーチ法オクタン価が 93— 96の場合の好ましい配合量は、脱硫分解ナフサ留分 を 50— 90容量%特には 60— 80容量%、接触改質ガソリン基材を 5— 35容量%、特 には 10— 25容量0 /0、アルキレートガソリン基材を 10— 25容量0 /0、特には 5— 15容 量%である。
リサーチ法オクタン価が 89— 93の場合の好ましい配合量は、脱硫分解ナフサ留分 を 55— 90容量%、特には 65— 85容量%、接触改質ガソリン基材を 0— 20容量%、 特には 5— 15容量%、アルキレートガソリン基材を 0— 15容量%、特には 0— 10容量 %である。
[0039] 〔添加剤〕
さらに、本発明のガソリン組成物には、当業界で公知の燃料油添加剤の 1種又は 2 種以上を必要に応じて配合することができる。これらの配合量は適宜選べる力 通常 は添加剤の合計配合量を 0.1質量%以下に維持することが好ましい。本発明のガソリ ンで使用可能な燃料油添加剤を例示すれば、フエノール系、アミン系などの酸ィ匕防 止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合 物などの表面着火防止剤、コハク酸イミド、ポリアルキルァミン、ポリエーテルァミンな どの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のァ ルカリ金属塩又はアル力リ土類金属塩、高級アルコールの硫酸エステルなどの助燃 剤、ァニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防 止剤、ァゾ染料などの着色剤を挙げることができる。
[0040] 〔無鉛ガソリン組成物〕
本発明の無鉛ガソリン組成物は、リサーチ法オクタン価が 89.0以上、 50容量%留 出温度が 105°C以下で、ォレフィン分が 10容量%以上、全硫黄分が 1質量 ppm以 下、全硫黄分に占めるチオフ ン類硫黄ィ匕合物の割合が硫黄分として 50— 100質 量%である。好ましくは、リサーチ法オクタン価の下限が、 93.0以上、特には 96.0以 上、上限が通常 102.0以下、全ォレフイン分に占める沸点範囲 35— 100°Cのォレフ イン分が 90容量%以上、全硫黄分に占めるチォフェン及び 2—メチルチオフェンの合 計量の割合が硫黄分として 50質量%以上、さらには 70質量%以上、チオール類の 含有量が硫黄分として 0.1質量 ppm以下である。
[0041] 以下に、実施例に基づいて本発明をより詳しく説明するが、本発明は下記の実施 例に限定されるものではない。
ガソリン某材の調
アルミナにニッケルを 20質量%担持した触媒 5cm3を n—ヘプタンにジメチルジスル フイドを 2質量%溶力した溶液を用い 300°Cにて硫ィ匕した後、反応温度 250°C、反応 圧力常圧、液空間速度 (LHSV) 4hr— H ZOil比 340NLZLの条件のもと、中東
2
系原油の減圧軽油留分を水素化精製処理したものを主たる原料油とする流動接触 分解で得られた接触分解ガソリン Aを通油してジェン低減処理を行 ヽ、接触分解ガソ リン Bを得た。共沈法にて調製した銅亜鉛アルミニウム複合酸ィ匕物 (銅含有量 35質量 %、亜鉛含有量 35質量%、アルミニウム含有量 5質量%) 5cm3を反応管に充填し、 これに水素ガスを 5cm3Zmin、温度 200°Cの条件にて 16hr流通させ、還元処理を 行った。その後、この反応管に接触分解ガソリン Bを、反応温度 100°C、反応圧力常 圧、 LHSV2.0hr— H ZOil比 0.06NLZLの条件のもと 20時間通油して収着機能
2
をもった脱硫剤によって脱硫した脱硫接触分解ガソリン Cを得た。接触分解ガソリン A 、接触分解ガソリン B及び脱硫接触分解ガソリン Cの性状は、表 1のとおりであった。
[0042] なお、密度 ίお IS K 2249、蒸気圧 ίお IS K 2258、蒸留性状 ίお IS K 2254 、ジェン価は UOP326— 82に準拠して測定した。硫黄分は、 ASTM D 5453 (紫 外蛍光法)に準拠して測定した。硫黄化合物の含有量 (硫黄換算)は、化学発光によ つて硫黄化合物を選択的に検出、定量する ANTEK製硫黄化学発光検出器を備え た島津製作所製ガスクロマトグラフ装置を用いて、ガスクロマトグラフ法で測定した。 炭化水素成分組成及び RONは、ヒューレットパッカード社製 PIONA装置を用いて、 ガスクロマトグラフ法で測定した。
[0043] [表 1]
Figure imgf000016_0001
[0044] 接触分解ガソリン Aはジェン価 0.6g/100gであった力 接触分解ガソリン Bはジェ ン価が O.lgZlOOgとなりジェンがほぼ除去されていた。接触分解ガソリン Bは 5.0質 量 ppmの硫黄分を含んでいた力 脱硫剤による処理によって硫黄分 0.2質量 ppmの 脱硫接触分解ガソリン Cが得られた。得られた脱硫接触分解ガソリン Cは、チォフェン 類を 0.2質量 ppm含んでいた力 その他の硫黄ィ匕合物は含んでいな力つた。
[0045] ガソリン某材の調製 2
前記ガソリン基材の調製 1と同様にして中東系原油から得られた別のロットの接触 分解ガソリン Dを軽質分と重質分に分留し、接触分解軽質ガソリン Eを得た。この接触 分解軽質ガソリン Eを用い、反応温度を 200°C、 LHSVを 2hr— 1とした以外、前記ガソ リン基材の調製 1と同様にジェン低減処理を行い、接触分解軽質ガソリン Fを得た。 次いで、ガソリン基材の調製 1と全く同じ方法、条件で、接触分解軽質ガソリン Fを脱 硫して脱硫接触分解軽質ガソリン Gを得た。接触分解ガソリン D、接触分解軽質ガソ リン E、接触分解軽質ガソリン F及び脱硫接触分解軽質ガソリン Gの性状は、表 2のと おりであった。
[表 2] 脱硫
接触分解 接触分解 接触分解 接触分解
ガソリン 軽質ガソリン軽質ガソリン 軽質ガソリン
D E F G
密度(15°C) [g/cm3] 0.741 1 0.6704 0.6703 0.6700
蒸気圧(37.8°C) [kPa] 58.0 96.0 95.0 94.5
炭化 7 素成分組成 [容量%]
飽和分 45.7 47.1 46.8 47.1
ォレフィン分 32.8 51.1 51.3 51.0
芳香族分 21.5 1.8 1.9 1.9
RON 92.0 93.9 93.9 93.9
ジェン価 [gZ100g] 1.6 1.6 0.1 く 0.1
硫黄分 [質量 ppm] 73 21 14 0.2
硫黄化合物の含有量
[硫黄換算 質量 ppm]
チォフェン 4.9 7.2 6.9 0.0
2—メチルチオフェン 3.8 1.4 1.6 0.2
3—メチルチオフェン 4.3 1.5 1.6 0.0
C2置換以上チォフェン 17.5 0.0 0.0 0.0
ベンゾチ才フェン類 24.9 0.0 0.0 0.0
C1一チォ一ル 0.1 0.1 0.0 0.0
C2—チオール 3.5 5.2 0.0 0.0
C3—チオール 2.0 2.8 0.0 0.0
C4—チオール 0.7 0.5 0.0 0.0
C5以上ーチ才ール 7.3 0.0 0.3 0.0
スルフイド類 3.2 0.5 0.3 0.0
ジスルフイド類 0.0 0.0 0.0 0.0
蒸留性状 [°C]
初留点 38.0 32.5 32.5 32.5
5容量%留出温度 50.0 39.5 39.0 39.0
1 0容量%留出温度 55.0 41.0 40.5 41.0
50容量%留出温度 97.5 50.0 50.0 49.5
90容量%留出温度 174.0 76.0 76.0 76.0
95容量%留出温度 186.5 86.5 86.0 86.5
終点 204.0 121.0 121.5 120.5 [0047] 接触分解軽質ガソリン Eはジェン価 1.6g,100gであった力 接触分解軽質ガソリ ン Fはジェン価が O. lg/lOOgとなりジェンがほぼ除去されていた。接触分解軽質ガ ソリン Fは 14質量 ppmの硫黄分を含んでいた力 脱硫剤による処理によって硫黄分 0 .2質量 ppmの脱硫接触分解軽質ガソリン Gが得られた。得られた脱硫接触分解軽質 ガソリン Gは、 2—メチルチオフェンを 0.2質量 ppm含んでいた力 チォフェン及び 3-メ チルチオフェンは含んで!/、なかった。
[0048] ガソリン某材の調製 3
接触分解ガソリン Dをスイートユング処理し接触分解ガソリン Hを得た。接触分解ガ ソリン Hを軽質分と重質分に分留し、接触分解軽質ガソリン Iを得た。ガソリン基材の 調製 2と同じ方法によって、接触分解軽質ガソリン Iに対してジェン低減処理を行い、 接触分解軽質ガソリン Jを得た。この接触分解軽質ガソリン Jを、ガソリン基材の調製 1 にて調製した銅亜鉛複合酸ィ匕物を用い、ガソリン基材の調製 1と同じ条件にて脱硫 処理を行い、脱硫接触分解軽質ガソリン Kを得た。接触分解ガソリン H、接触分解軽 質ガソリン I、ジェンを除去した接触分解軽質ガソリン J及び脱硫接触分解軽質ガソリ ン Kの'性状は、表 3のとおりであった。
[0049] [表 3]
接触分解 接触分解 接触分解 脱硫接触分解
ガソリン 軽質ガソリン軽質ガソリン 軽質ガソリン
H I J K
密度(15°C) [g/cm3] 0.741 1 0.6704 0.6704 0.6704
蒸気圧(37.8°C) [kPa] 58.0 96.0 96.5 96.0
炭化水素成分組成 [容量%]
飽和分 45.7 47.0 47.1 46.9
ォレフィン分 32.8 51.2 50.9 51.1
芳香族分 21.5 1.8 2.0 2.0
RON 92.0 93.9 93.9 93.9
ジェン価 [g/100g] 1.6 1.6 0.1 く 0.1
硫黄分 [質里 ppm] 73 1 1 1 1 0.2
硫黄化合物の含有量 *
チォフェン 4.9 7.8 7.5 0.0
2—メチルチオフェン 3.8 1.4 1.5 0.2
3—メチルチオフェン 4.3 1.5 1.5 0.0
C2置換以上チォフェン 17.5 0.0 0.0 0.0
ベンゾチォフェン類 24.9 0.0 0.0 0.0
C1—チオール 0.0 0.0 0.0 0.0
C2—チォ一ル 0.0 0.0 0.0 0.0
C3—チオール 0.0 0.0 0.0 0.0
C4—チオール 0.0 0.0 0.0 0.0
C5以上—チォ- -ル 0.0 0.0 0.0 0.0
スルフイド類 3.2 0.5 0.2 0.0
ジスルフイド類 13.7 0.0 0.0 0.0
蒸留性状 [°C]
初留点 38.0 32.5 32.5 32.0
5容量%留出 50.0 39.5 39.5 39.0
1 0容量%留出温度 55.0 41.0 41.0 41.0
50容量%留出温度 97.5 50.0 50.0 49.5
90容量%留出温度 174.0 76.5 76.0 75.5
95容量%留出温度 186.5 86.0 86.0 86.5
終点 204.0 121.0 121.5 120.0
*硫黄化合物の含有量は、硫黄換算した値 (質量 ppm)である。
接触分解ガソリン Dに含まれていた軽質チオール類は、スイートユング処理によつ て、より高分子量のジスルフイド類に転ィ匕していた。接触分解軽質ガソリン Iはジェン 価 1.6gZl00gであった力 接触分解軽質ガソリン Jはジェン価が O.lgZlOOgとなり ジェンがほぼ除去されていた。接触分解軽質ガソリン Jは、 11質量 ppmの硫黄分を含 んでいたが、脱硫剤で処理することにより、硫黄分 0.2質量 ppmの脱硫接触分解軽 質ガソリン Kが得られた。得られた脱硫接触分解軽質ガソリン Kは、 2—メチルチオフエ ンを 0.2質量 ppm含んで!/、たが、チォフェン及び 3-メチルチオフェンを含んで!/、なか つた。分留する前にスイートユングすることによってチオール類はジスルフイドとなり重 質分に移行するため、接触分解軽質ガソリン中の硫黄分はスイートユングしない場合 の 21質量 ppmと比べて 11質量 ppmに低減できる。これにより、収着剤の負荷が低減 できるため、収着剤を長寿命化できると考えられる。
[0051] ガソリン某材の調製 4
接触分解ガソリン A及び接触分解軽質ガソリン Eをそれぞれガソリン基材の調製 1に て調製した銅亜鉛複合酸ィ匕物を用い、ガソリン基材の調製 1と同じ条件にて脱硫処 理を行い、脱硫接触分解ガソリン L及び脱硫接触分解軽質ガソリン Mを得た。脱硫接 触分解ガソリン L及び脱硫接触分解軽質ガソリン Mの性状は、表 4のとおりであった。
[0052] [表 4]
脱硫接触 脱硫接触分解
分解ガソリン L 軽質ガソリン M
密度(1 5°C) [g/cm3] 0.7325 0.6704
蒸気圧(37.8°C〉 [kPa] 72.0 96.0
炭化フ K素成分組成 [容量%]
飽和分 53.8 50.5
ォレフィン分 23.1 48.0
芳香族分 23.1 1.5
RON 91.3 93.8
ジェン flE [g/100g] 0.6 1.6
硫黄分 [質量 ppm] 3.6 11
硫黄1!匕合物の含有量
[δ黄換算 質量 ppm]
チォフェン類 3.6 10.7
チォフェン 0.6 7.8
2—メチルチオフェン 0.5 1.4
3—メチルチオフェン 0.5 1.5
C2置換以上チォフェン 2.0 0.0
ベンゾチォフェン類 0.0 0.0
チオール類 0.0 0.0
C1ーチオール 0.0 0.0
C2—チオール 0.0 0.0
C3—チオール 0.0 0.0
C4—チオール 0.0 0.0
C5以上—チオール 0.0 0.0
スルフイド類 0.0 0.0
ジスルフイド類 0.0 0.0
蒸留性状 [°C]
初留点 31.5 32.5
5容量%留出温度 40.0 39.0
1 0容量%留出温度 45.0 41.5
50容量%留出温度 89.5 50.0
90容量%留出温度 166.0 76.0
95容量%留出温度 178.0 86.5
終点 207.5 122.0
[0053] 脱硫接触分解ガソリン Lには 3.6質量 ppmの硫黄分が含まれており、また、脱硫接 触分解軽質ガソリン Mは 11質量 ppmの硫黄分が含まれており、ともに、ジェンを除去 しないで収着処理を行うと特にチォフェン類硫黄ィ匕合物の除去が困難であることが 明らかである。
[0054] ガソリン某材の調製 5
接触分解以外の公知技術で得られるガソリン基材として、脱硫直留ナフサ N、接触 改質中質油 0、接触改質重質油 P、アルキレートガソリン Q、 ETBE基材 Rがあり、そ の性状は表 5に示すとおりである。接触改質中質油 Oは、接触改質ガソリンから、トル ェンを多く含む留分を蒸留分離したものである。接触改質重質油 Pは、接触改質ガソ リンから、炭素数 9以上であって 11未満の芳香族を蒸留分離したものである。
[表 5]
Figure imgf000022_0001
* 硫黄化合物の含有量は、硫黄換算した値 (質量 ppm)である。
実施例 1
脱硫直留ナフサ Nを 10.0容量%、接触改質中質油 Oを 5.0容量%、接触改質重質 油 Pを 5.0容量0 /0、アルキレートガソリン Qを 5.0容量%と、ガソリン基材の調製 1記載 の脱硫接触分解ガソリン Cを 75.0容量%配合し、無鉛ガソリン組成物 Sを調製した。 また、添加剤として、着色剤 (シラドィ匕学製 CL-53) 2mg/L、酸化防止剤 (住友化学 工業製スミライザ一 4ML) 20mg/L、清浄分散剤(ビーエーエスエフ製 Keropur A P-95) 100mg/Lをそれぞれ添カ卩した。なお、この添加剤の添加は、下記の実施例 及び比較例の無鉛ガソリン組成物の調製にぉ 、ても全く同じ方法で行った。調製し た無鉛ガソリン組成物 Sの性状を表 6に示す。
実施例 2 [0057] また、脱硫直留ナフサ Nを 3.5容量%、接触改質中質油 Oを 19.0容量%、接触改 質重質油 Pを 15.0容量0 /0、アルキレートガソリン Qを 23.0容量%と、ガソリン基材の 調製 3記載の脱硫接触分解軽質ガソリン Kを 39.5容量%配合し、無鉛ガソリン組成 物 Tを調製した。無鉛ガソリン組成物 Tの性状を表 6に示す。
実施例 3
[0058] 脱硫直留ナフサ Nを 6.0容量%、接触改質中質油 Oを 8.0容量%、接触改質重質 油 Pを 5.0容量0 /0、アルキレートガソリン Qを 8.0容量0 /0、 ETBE基材 Rを 6.0容量%と 、ガソリン基材の調製 1記載の脱硫接触分解ガソリン Cを 67.0容量%配合し、無鉛ガ ソリン組成物 Uを調製した。無鉛ガソリン組成物 Uの性状を表 6に示す。
実施例 4
[0059] 脱硫直留ナフサ Nを 6.0容量%、接触改質中質油 Oを 9.0容量%、接触改質重質 油 Pを 8.0容量%、アルキレートガソリン Qを 10.0容量%と、ガソリン基材の調製 1記 載の脱硫接触分解ガソリン Cを 57.0容量%、ガソリン基材の調製 3記載の脱硫接触 分解軽質ガソリン Kを 10.0容量%配合し、無鉛ガソリン組成物 Vを調製した。無鉛ガ ソリン組成物 Vの性状を表 6に示す。
[0060] [表 6]
Figure imgf000024_0001
比較例 1
脱硫接触分解ガソリン Cを用いる代わりに、接触分解ガソリン Aを用いた以外は、実 施例 1の無鉛ガソリン組成物 Sの場合と全く同じ処方で、無鉛ガソリン組成物 Wを調 製した。無鉛ガソリン組成物 Wの性状を表 6に示す。 比較例 2
[0062] ガソリン基材の調製 3記載の脱硫接触分解軽質ガソリン Kを用いる代わりに、ガソリ ン基材の調製 3記載の接触分解軽質ガソリン Iを用いた以外は、実施例 2の無鉛ガソ リン組成物 Τの場合と全く同じ処方で、無鉛ガソリン組成物 Xを調製した。無鉛ガソリ ン組成物 Xの性状を表 6に示す。
[0063] 表 6によれば、本発明によって提供される無鉛ガソリン組成物 Sは、従来技術によつ て提供される無鉛ガソリン組成物 Wと比較して、他の性状をほとんど変えることなぐ 硫黄分を 1質量 ppm以下に低減できることが明らかである。また、本発明によって提 供される無鉛ガソリン組成物 Tも対応する無鉛ガソリン組成物 Xと比較して、他の性状 をほとんど変えることなぐ硫黄分を 1質量 ppm以下に低減できる。本発明によって提 供される無鉛ガソリン組成物 U、Vも硫黄分を 1質量 ppm以下に低減できる。
[0064] ガソリン某材の調製 6
上記のガソリン基材の調製 1とは異なるロットの中東系原油をガソリン基材の調製 1 と同様に処理して得られた接触分解ガソリン AAをスイートユング処理した後、軽質分 と重質分に分留し、重質分を接触分解重質ガソリン BBとして得た。この接触分解重 質ガソリン BBをコバルト、モリブデンおよびリンをアルミナに担持した触媒 (コバルト含 有量 2.4質量%、モリブデン含有量 9.4質量%、リン含有量 2.0質量%)を用い、反応 温度 220°C、反応圧力 1.0MPa、 ZOil比 307NLZLの条件下
Figure imgf000025_0001
にてジェン低減処理を行い、ジェンを除去してジェン価が 0.6gZl00gから O.lgZl 00g未満の接触分解重質ガソリン CCを得た。この、ジェン除去接触分解重質ガソリ ン CCを、 H ZOil比を 0.18NLZLとした以外はガソリン基材の調製 1と全く同じ方法
2
、条件で脱硫し、硫黄分 0.9質量 ppmの脱硫接触分解重質ガソリン DDを得た。各ガ ソリン (接触分解ガソリン AA—脱硫接触分解重質ガソリン DD)の性状を表 7に示す。
[0065] ガソリン某材の調製 7
前記のガソリン基材の調製 6で用いた接触分解重質ガソリン BBを、ジェン低減処理 を行うことなぐ H /OU比を 0.18NL/Lとした以外はガソリン基材の調製 1と全く同
2
じ方法、条件で脱硫し、脱硫接触分解重質ガソリン EEを得た。脱硫接触分解重質ガ ソリン EEの性状を表 7に示す。 [0066] [表 7]
Figure imgf000026_0001
実施例 5
[0067] 脱硫直留ナフサ Nを 10.0容量%、接触改質中質油 Oを 7.0容量%、接触改質重質 油 Pを 5.0容量0 アルキレートガソリン Qを 6.0容量%と、ガソリン基材の調製 3記載 の脱硫接触分解軽質ガソリン Kを 37.0容量%、及びガソリン基材の調製 6記載の脱 硫接触分解重質ガソリン DDを 35. 0容量%配合し、無鉛ガソリン組成物 Υを調製し た。無鉛ガソリン組成物 Υの性状を表 6に示す。
比較例 3
[0068] 脱硫接触分解重質ガソリン DDの代わりにガソリン基材の調製 7記載の脱硫接触分 解重質ガソリン EEを用いた以外は、実施例 5と全く同様にして無鉛ガソリン組成物 Z を調製した。無鉛ガソリン組成物 Zの性状を表 6に示す。
[0069] 表 7で、ガソリン基材の調製 6の脱硫接触分解重質ガソリン DDとガソリン基材の調 製 7の脱硫接触分解重質ガソリン EEとを比較すると、高いジェン価、高い硫黄分のま まで収着機能をもった脱硫剤によって脱硫しても硫黄分を 1質量 ppm以下とするの は非常に困難であることが分かる。したがって、ジェン低減処理を行った後に収着機 能をもった脱硫剤によって脱硫した脱硫接触分解重質ガソリン DDを、その他の低硫 黄のガソリン基材と共に用いて、硫黄分が 1質量 ppm以下で、十分な運転特性を保 持した無鉛ガソリン組成物を容易に調製できることは、表 6に無鉛ガソリン組成物 Yと して示すとおりである。
[0070] [参考例]
ガソリン基材の調製 1に記したものと同じ銅亜鉛アルミニウム複合酸ィ匕物 (銅含有量 35質量%、亜鉛含有量 35質量%、アルミニウム含有量 5質量%) 5cm3を反応管に 充填し、これに水素ガスを 5cm3Zminの条件にて 16hr流通させ、還元処理を行つ た。その後、この反応管にチォフェンを 263質量 ppm (硫黄分として 100質量 ppm) 含むトルエン溶液を、反応温度 100°C、反応圧力常圧、 /Oil比
Figure imgf000027_0001
0.18NLZLの条件のもと通油し、表 8に示す生成物を得た。
[0071] [表 8] 生成物の選択率
[原料チォフェン基準の mol%]
硫化水素 <0.1
炭化 7l素
1—ブテン 76
cis— 2—ブテン 14
trans— 2—ブテン 7
n—ブタン 3
チォフェン ぐ 0.1
[0072] 表から、水素共存下で銅亜鉛アルミニウム複合酸ィ匕物を用いた処理によって、原料 油中のチォフェン力 硫黄が除去され、チォフェン中の硫黄原子以外の炭化水素残 基に由来する炭化水素が生成物として得られる一方、硫化水素を生成しておらず、 銅亜鉛アルミニウム複合酸ィ匕物が本発明の硫黄収着機能をもった多孔質脱硫剤とし て作用したことが明らかである。
産業上の利用可能性
[0073] 本発明は、分解ガソリン留分をジェン除去した後、わずかな水素共存の下、硫黄収 着機能をもつ多孔質脱硫剤によって処理して、硫黄分を低減し、ォレフィン分を残し 、脱硫処理に伴うオクタン価ロスを回避して得た脱硫分解ナフサ留分と、硫黄分が 10 質量 ppm以下の他のガソリン基材とを混合する硫黄分 1質量 ppm以下の無鉛ガソリ ン組成物である。よって、従来得られている無鉛ガソリン組成物力 他の性状をほと んど変えることなく硫黄分だけを 1質量 ppm以下まで減じることができた。したがって、 本発明の無鉛ガソリン組成物は、高い運転性能を維持するとともに、環境負荷の少な Vヽ自動車燃料として有用である。

Claims

請求の範囲
[1] 5容量%留出温度が 25°C以上、かつ 95容量%留出温度が 210°C以下、ォレフィン 分が 5質量%以上、ジェン価が 0.3gZlOOg以下である分解ナフサ留分を脱硫処理 する脱硫工程と、及び得られた脱硫分解ナフサ留分を、他のガソリン基材と混合する ブレンド工程とを含む、硫黄分が 1質量 ppm以下、かつリサーチ法オクタン価が 89.0 以上である無鉛ガソリン組成物の製造方法。
[2] 分解ナフサ留分の原料油に対し、予めジェン低減触媒を接触させてジェン低減処 理を行う工程を含む請求項 1に記載の無鉛ガソリン組成物の製造方法。
[3] ジェン低減触媒が、周期律表第 8族元素力 選ばれる少なくとも 1種の金属を含む 請求項 2に記載の無鉛ガソリン組成物の製造方法。
[4] ジェン低減触媒に含まれる少なくとも 1種の金属が、ニッケルまたはコバルトである 請求項 3に記載の無鉛ガソリン組成物の製造方法。
[5] 脱硫処理が、硫黄収着機能をもった多孔質脱硫剤と分解ナフサ留分とを水素分圧
IMPa以下の水素の共存下で接触させることである請求項 1一 4のいずれかに記載 の無鉛ガソリン組成物の製造方法。
[6] 多孔質脱硫剤が、銅、亜鉛、ニッケル及び鉄力 選ばれる少なくとも 1種を含むもの である請求項 5に記載の無鉛ガソリン組成物の製造方法。
[7] ブレンド工程において、 10— 90容量0 /0の脱硫分解ナフサ留分と 90— 10容量0 /0の 他のガソリン基材とを混合する請求項 1一 6のいずれかに記載の無鉛ガソリン組成物 の製造方法。
[8] 分解ナフサ留分が、 5容量%留出温度が 25— 43°C、かつ 95容量%留出温度が 5 5— 100°C、ォレフィン分が 5質量%以上、ジェン価が 0.3gZl00g以下である軽質 な分解ナフサ留分である請求項 1一 7のいずれかに記載の無鉛ガソリン組成物の製 造方法。
[9] 軽質な分解ナフサ留分が、当該分解ナフサ留分の原料油をジェン低減処理した後 に分留して得たものである力 ある 、は前記分解ナフサ留分の原料油を分留した後 にジェン低減処理して得たものである力、あるいは前記分解ナフサ留分の原料油の 分留とジェン低減処理を同時に行って得たものである請求項 8に記載の無鉛ガソリン 組成物の製造方法。
[10] 軽質な分解ナフサ留分を得る分留を行う前に、あるいは分留と同時に分解ナフサ 留分の原料油又はジェン低減処理した分解ナフサ留分の原料油に対し、含まれる 硫黄化合物の分子量を大きくする前処理を行う請求項 9に記載の無鉛ガソリン組成 物の製造方法。
[11] ブレンド工程において、 10— 60容量%の軽質な脱硫分解ナフサ留分と 90— 40容 量%の他のガソリン基材とを混合し、リサーチ法オクタン価が 93.0以上である請求項
8— 10のいずれか〖こ記載の無鉛ガソリン組成物の製造方法。
[12] リサーチ法オクタン価が 89.0以上、 50容量%留出温度が 105°C以下、ォレフィン 分が 10容量%以上、全硫黄分が 1質量 ppm以下、全硫黄分に占めるチォフェン類 硫黄ィ匕合物の割合が硫黄分として 50質量%以上である無鉛ガソリン組成物。
[13] リサーチ法オクタン価が 93.0以上である請求項 12に記載の無鉛ガソリン組成物。
[14] 全ォレフイン分に占める沸点範囲 35— 100°Cのォレフイン分が 90容量0 /0以上であ る請求項 13に記載の無鉛ガソリン組成物。
[15] 全硫黄分に占めるチォフェン及び 2—メチルチオフェンの合計量の割合が硫黄分と して 50質量%以上である請求項 13に記載の無鉛ガソリン組成物。
[16] チオール類の含有量が硫黄分として 0.1質量 ppm以下である請求項 12— 15のい ずれかに記載の無鉛ガソリン組成物。
PCT/JP2004/016115 2003-11-07 2004-10-29 無鉛ガソリン組成物及びその製造方法 WO2005044959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2543953A CA2543953C (en) 2003-11-07 2004-10-29 Unleaded gasoline composition and method for producing the same
EP04793223A EP1686166A4 (en) 2003-11-07 2004-10-29 LEAD-FREE GASOLINE COMPOSITION AND MANUFACTURING METHOD THEREFOR
KR1020067010974A KR101114742B1 (ko) 2003-11-07 2004-10-29 무연 가솔린 조성물 및 그의 제조 방법
US10/577,951 US20070068849A1 (en) 2003-11-07 2004-10-29 Lead-free gasoline composition and method for production thereof
JP2005515277A JP4932257B2 (ja) 2003-11-07 2004-10-29 無鉛ガソリン組成物及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003378503 2003-11-07
JP2003-378503 2003-11-07
JP2004168365 2004-06-07
JP2004-168365 2004-06-07

Publications (1)

Publication Number Publication Date
WO2005044959A1 true WO2005044959A1 (ja) 2005-05-19

Family

ID=34575930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016115 WO2005044959A1 (ja) 2003-11-07 2004-10-29 無鉛ガソリン組成物及びその製造方法

Country Status (6)

Country Link
US (1) US20070068849A1 (ja)
EP (1) EP1686166A4 (ja)
JP (2) JP4932257B2 (ja)
KR (1) KR101114742B1 (ja)
CA (1) CA2543953C (ja)
WO (1) WO2005044959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179177A (zh) * 2015-05-28 2016-12-07 赢创德固赛有限公司 从烯烃混合物中氢辅助吸附硫化合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA017164B1 (ru) * 2007-11-09 2012-10-30 Жаньфэн Дин Система и способ для получения высококачественного бензина в результате каталитической рекомбинации углеводорода
US8142646B2 (en) * 2007-11-30 2012-03-27 Saudi Arabian Oil Company Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds
CN104511283B (zh) * 2013-09-30 2016-10-05 中国石油化工股份有限公司 一种脱硫催化剂及其制备方法和烃油脱硫的方法
WO2023049647A1 (en) * 2021-09-27 2023-03-30 ExxonMobil Technology and Engineering Company Method of refinery processing of renewable naphtha

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851382A (en) 1995-12-18 1998-12-22 Texaco Inc. Selective hydrodesulfurization of cracked naphtha using hydrotalcite-supported catalysts
US6007704A (en) 1996-09-24 1999-12-28 Institut Francais Du Petrole Process for the production of catalytic cracking gasoline with a low sulphur content
JP2001303070A (ja) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd 燃料油組成物及び自動車の駆動システム
WO2002031090A1 (fr) * 2000-10-11 2002-04-18 Nippon Oil Corporation Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction
US6444118B1 (en) 2001-02-16 2002-09-03 Catalytic Distillation Technologies Process for sulfur reduction in naphtha streams
JP2003073677A (ja) 2001-09-06 2003-03-12 Idemitsu Kosan Co Ltd 燃料油組成物
JP2003277768A (ja) 2002-03-27 2003-10-02 Cosmo Oil Co Ltd 炭化水素油中の硫黄化合物の低減方法
JP2003301186A (ja) * 2002-04-12 2003-10-21 Jomo Technical Research Center Co Ltd 環境対応ガソリン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352354A (en) 1991-08-15 1994-10-04 Mobil Oil Corporation Gasoline upgrading process
EP1243636A1 (en) * 1999-12-17 2002-09-25 Idemitsu Kosan Co., Ltd. Fuel oil for fuel cell, fuel oil composition and automobile driving system
US6913688B2 (en) * 2001-11-30 2005-07-05 Exxonmobil Research And Engineering Company Multi-stage hydrodesulfurization of cracked naphtha streams with interstage fractionation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851382A (en) 1995-12-18 1998-12-22 Texaco Inc. Selective hydrodesulfurization of cracked naphtha using hydrotalcite-supported catalysts
US6007704A (en) 1996-09-24 1999-12-28 Institut Francais Du Petrole Process for the production of catalytic cracking gasoline with a low sulphur content
JP2001303070A (ja) * 2000-04-24 2001-10-31 Idemitsu Kosan Co Ltd 燃料油組成物及び自動車の駆動システム
WO2002031090A1 (fr) * 2000-10-11 2002-04-18 Nippon Oil Corporation Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction
US20030213728A1 (en) 2000-10-11 2003-11-20 Kenichirou Saitou Dual purpose fuel for gasoline driven automobile and fuel cell system, and system for storage and/or supply thereof
US6444118B1 (en) 2001-02-16 2002-09-03 Catalytic Distillation Technologies Process for sulfur reduction in naphtha streams
JP2003073677A (ja) 2001-09-06 2003-03-12 Idemitsu Kosan Co Ltd 燃料油組成物
JP2003277768A (ja) 2002-03-27 2003-10-02 Cosmo Oil Co Ltd 炭化水素油中の硫黄化合物の低減方法
JP2003301186A (ja) * 2002-04-12 2003-10-21 Jomo Technical Research Center Co Ltd 環境対応ガソリン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1686166A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179177A (zh) * 2015-05-28 2016-12-07 赢创德固赛有限公司 从烯烃混合物中氢辅助吸附硫化合物
JP2016222658A (ja) * 2015-05-28 2016-12-28 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH オレフィン混合物からの硫黄化合物の水素支援吸着
US10370311B2 (en) 2015-05-28 2019-08-06 Evonik Degussa Gmbh Hydrogen-assisted adsorption of sulphur compounds from olefin mixtures

Also Published As

Publication number Publication date
JP2008156663A (ja) 2008-07-10
KR20060113721A (ko) 2006-11-02
EP1686166A4 (en) 2010-04-21
CA2543953C (en) 2012-10-23
JP5024884B2 (ja) 2012-09-12
US20070068849A1 (en) 2007-03-29
JPWO2005044959A1 (ja) 2007-05-17
JP4932257B2 (ja) 2012-05-16
CA2543953A1 (en) 2005-05-19
KR101114742B1 (ko) 2012-02-29
EP1686166A1 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
Song An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel
KR20080044768A (ko) 옥탄가 손실이 적은 크래킹 가솔린의 심도 탈황 방법
JP5219247B2 (ja) 低硫黄分解ガソリン基材の製造方法および無鉛ガソリン組成物
JP5024884B2 (ja) 無鉛ガソリン組成物及びその製造方法
JP2003520889A5 (ja)
JP4889095B2 (ja) 環境対応型ガソリン組成物及びその製造方法
JP2004269871A (ja) 無鉛ガソリン組成物およびその製造方法
JP4371937B2 (ja) 接触分解ガソリン基材の製造方法およびそれを用いた無鉛ガソリン組成物
JP4803785B2 (ja) ガソリン基材の製造方法、環境対応ガソリン、およびその製造方法
JP4632738B2 (ja) 無鉛ガソリン組成物およびその製造方法
JP4626950B2 (ja) 環境対応ガソリンおよびその製造方法
JP4633409B2 (ja) ガソリン組成物
JP5036074B2 (ja) 環境対応ガソリン
JP4633411B2 (ja) ガソリン組成物
JP4850412B2 (ja) 環境対応型ガソリン組成物の製造方法
JP4599545B2 (ja) 無鉛ガソリン組成物の製造方法
JP4553352B2 (ja) ガソリン組成物
JP2009263681A (ja) 接触分解ガソリン基材の製造方法およびそれを用いた無鉛ガソリン組成物
CN113122320B (zh) 一种环保型橡胶填充油的生产方法
JP4633410B2 (ja) ガソリン組成物
JP5280625B2 (ja) 無鉛ガソリン組成物
JP4371925B2 (ja) 無鉛ガソリン組成物およびその製造方法
CN108659879B (zh) 一种汽油脱硫的方法
CN108659884B (zh) 汽油脱硫的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004793223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005515277

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2543953

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067010974

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007068849

Country of ref document: US

Ref document number: 10577951

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004793223

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067010974

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10577951

Country of ref document: US