[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005044425A1 - Honeycomb filter for exhaust gas purification and method of manufacturing the same - Google Patents

Honeycomb filter for exhaust gas purification and method of manufacturing the same Download PDF

Info

Publication number
WO2005044425A1
WO2005044425A1 PCT/JP2004/007771 JP2004007771W WO2005044425A1 WO 2005044425 A1 WO2005044425 A1 WO 2005044425A1 JP 2004007771 W JP2004007771 W JP 2004007771W WO 2005044425 A1 WO2005044425 A1 WO 2005044425A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb filter
silicon
exhaust gas
filter
honeycomb
Prior art date
Application number
PCT/JP2004/007771
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Sato
Masafumi Kunieda
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003378333A external-priority patent/JP2004167482A/en
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2005044425A1 publication Critical patent/WO2005044425A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a filter for removing particulates or the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, a honeycomb filter for purifying exhaust gas used as a catalyst carrier and the like, and a method of manufacturing the same.
  • an internal combustion engine such as a diesel engine
  • a honeycomb filter for purifying exhaust gas used as a catalyst carrier and the like
  • a porous honeycomb structure is widely used as a filter for removing particulate matter contained in exhaust gas of a diesel engine or a catalyst carrier carrying a catalyst component for purifying harmful substances in exhaust gas. ing.
  • a refractory ceramic such as silicon carbide is known.
  • a silicon carbide powder having a predetermined specific surface area and an impurity content is used as a starting material, formed into a desired shape, dried, and then heated to 1600 to 2000 ° C.
  • Porous silicon carbide filters and catalyst carriers that have been formed into a honeycomb structure by firing at a temperature are known.
  • porous silicon carbide sintered body used for such a honeycomb structure a binder such as vitreous flux or clay is added to silicon carbide powder to be an aggregate, and then molded. It is manufactured by a method of baking at the temperature at which it melts.
  • the technology for combining silicon carbide powder raw materials with a vitreous material has the following problems. That is, when a sintered body produced by such a method is used as a material for a diesel particulate filter (DPF), the particulate matter collected by the filter is burned for regeneration of the filter. Then the heat Due to the low conductivity, local heat was generated and the structure could be destroyed. Further, the metal silicon powder and the organic binder are added to the silicon carbide powder, mixed and kneaded, the obtained kneaded material is formed into a honeycomb shape, and the obtained formed body is calcined to form the formed body. There is also a method of producing a honeycomb structure by removing the organic binder therein and then performing main firing.
  • DPF diesel particulate filter
  • a sintered body obtained by bonding silicon carbide powder with metallic silicon has a low strength, and when used as a DPF, may be broken by vibration during traveling or the like.
  • a silicon carbide-based porous body including a silicon carbide powder serving as an aggregate and a metal silicon powder, and forming a phase including oxygen on the surface of or around the bracket silicon carbide powder and Z or the metal silicon has been proposed.
  • silicon carbide powder having an average particle size of 5 to 100 m, a metal silicon powder having a particle size smaller than the average particle size of the powder, and a molding aid are mixed and molded, and the compact is formed in a nitriding gas atmosphere. Baking below the melting temperature of There are also proposals for a method of manufacturing the body. (For example, Japanese Patent Application Laid-Open No. 611-101665)
  • the sintered body obtained by these proposed technologies is manufactured in a nitrogen atmosphere at a temperature of 1300 ° C or more and for a relatively long time of 5 hours or more, and converts all metallic silicon to silicon nitride. It can be called technology. That is, it is a force excellent in heat resistance, corrosion resistance, oxidation resistance, and impact resistance. It does not have high strength that can be applied to a honeycomb filter, and has a problem in thermal shock resistance. Disclosure of the invention
  • An object of the present invention is to provide an inexpensive production at a relatively low temperature in spite of containing a refractory powder such as silicon carbide, as well as acid resistance, alkali resistance and strength (thermal shock resistance).
  • An object of the present invention is to propose a honeycomb filter (including a catalyst carrier) for purifying exhaust gas comprising a silicon carbide porous body having excellent characteristics and an advantageous method for producing the same.
  • the present inventors obtained the finding that it is advantageous to include silicon nitride in a porous body for forming a ceramic member (block).
  • the invention was developed.
  • the honeycomb-structured porous ceramic members having a structure to be released and configured so that a part or all of the partition walls separating adjacent cells function as a filter for collecting particles.
  • An exhaust gas purifying honeycomb filter comprising two or more aggregates, wherein the ceramic member is made of a material containing silicon carbide, silicon and silicon nitride.
  • the content of silicon nitride contained in the porous ceramic member is preferably about 0.1 to 30% by weight, and more preferably 1.0 to 18% by weight. More preferred, 3 to 13 weight. / 0 is more preferable.
  • the ceramic member has a catalyst applied to a part or the whole of the partition wall surface.
  • the silicon powder and the organic binder are kneaded with the silicon carbide powder, and the obtained kneaded material is formed as a ceramic member having a honeycomb structure, and provided along the axial direction of the ceramic member. Only one end of many cells is plugged, then calcined to remove the organic binder, and then calcined. Thereafter, the calcined ceramic member and 800-1400 ° C. in a nitrogen atmosphere.
  • a method for producing a honeycomb filter for purifying exhaust gas characterized by obtaining a porous ceramic filter containing silicon carbide, silicon and silicon nitride by heat-treating in a temperature range of C to nitride silicon carbide and silicon. Suggest.
  • the content of silicon nitride contained in the porous ceramic filter is preferably 0.1 to 30% by weight, more preferably 1.0 to 18% by weight, and 3 to 13% by weight. Most preferably.
  • FIG. 1 is a perspective view showing an example of an exhaust gas purifying honeycomb filter according to the present invention.
  • FIG. 2 is a perspective view showing an example of a porous ceramic member constituting the honeycomb filter shown in FIG. 1.
  • FIG. 2 (b) is a perspective view of the porous ceramic member shown in FIG. It is line sectional drawing.
  • FIG. 3A is a perspective view showing another example of the honeycomb filter according to the present invention
  • FIG. 3B is a cross-sectional view taken along line BB of the honeycomb filter shown in FIG.
  • FIG. 4 is a graph plotting a change in strength (M Pa) with respect to an amount (% by weight) of silicon nitride contained in an exhaust gas purifying honeycomb filter.
  • FIG. 5 is an SEM photograph (100,000 magnification) of a cross section of the honeycomb filter according to Example 1 taken by a scanning electron microscope.
  • FIG. 6 is a cross-sectional view schematically showing one example of an exhaust gas purifying apparatus using the honeycomb filter according to the present invention.
  • FIG. 1 is a perspective view schematically showing a specific example of an aggregated honeycomb filter showing an example of the honeycomb filter of the present invention.
  • FIG. 2 (a) is a perspective view showing a porous filter constituting the honeycomb filter shown in FIG.
  • FIG. 2B is a perspective view showing an example of the ceramic member
  • FIG. 2B is a cross-sectional view taken along line AA of the porous ceramic member shown in FIG.
  • the honeycomb filter 10 is a ceramic block formed by assembling a plurality of columnar porous ceramic members 20 into a cylindrical shape via a sealing material layer 14.
  • the ceramic block 15 is surrounded by a sinole material layer 13 as necessary to prevent leakage of exhaust gas or to adjust its shape. ing.
  • Each of the porous ceramic members 20 constituting the cylindrical ceramic block 15 has a prismatic shape in this embodiment, and a large number of cells 21 are juxtaposed in the longitudinal direction thereof through partition walls 23. In each cell 21, only one of the ends is sealed by the sealing material 22. It is separated into a gas inflow side and a gas outflow side.
  • the exhaust gas that has flowed into the cell 21 a on the exhaust gas inflow side passes through the partition wall 23 that separates these cells 21, and then flows out from the adjacent cell 21 b on the gas outflow side.
  • the partition wall 23 that separates the cells 21a and 2 lb functions as a filter for collecting particles.
  • FIG. 3 (a) is a perspective view schematically showing a specific example of an integrated honeycomb filter showing another example of the honeycomb filter of the present invention, and FIG. It is a line sectional view.
  • the honeycomb filter 30 is made up of a cylindrical ceramic block 35 made of porous ceramic in which a number of cells 31 are juxtaposed in the longitudinal direction across a partition wall 33. It is configured.
  • the ceramic block 35 of the honeycomb filter 30 is adjacent to the cell 31a whose one end is sealed with a partition wall 33 interposed therebetween.
  • the other end of the cell 31b is sealed with a sealing material 32, and at each end of the ceramic block 35, a honeycomb structure is formed in which openings and closing portions are alternately formed. I have.
  • the exhaust gas flowing into the cell 31a on the exhaust gas inflow side passes through the partition wall 33 separating the cell 31a, and then flows out from the cell 31b on the adjacent exhaust gas outflow side.
  • the partition wall 33 that separates these cells 31a, 3lb functions as a filter for collecting particles.
  • a sealing material layer may be formed around the ceramic block 35, similarly to the honeycomb filter 10 shown in FIG.
  • the basic form of the honeycomb filter for purifying exhaust gas of the present invention is a porous filter in which a large number of cells are regularly formed (arranged) along the axial direction (longitudinal direction) across a partition wall.
  • the cross section of the ceramic sintered body (ceramic block) is formed in a polygonal or circular shape such as a triangle, an ellipse, or various columnar shapes, and consists of a simple substance or an aggregate thereof. .
  • the cells are separated from each other by a partition wall that is a filtration wall, and the opening of each cell is sealed at one end side with a sealing body (filling material).
  • the ends are open, and as a whole, each end is plugged with alternating open and closed portions, for example, in a checkered pattern.
  • the ceramic block composed of an aggregate of one or more ceramic members has a honeycomb structure in which a large number of cells having a substantially square cross section are formed.
  • the exhaust gas that has flowed into one cell always flows through a partition wall that separates another adjacent cell, that is, a filtration wall, and then flows out through another adjacent cell.
  • the walls separating these cells function as a filter for collecting particles.
  • the same type of porous ceramic as the ceramic member as the filler for sealing.
  • the adhesion strength between the two can be increased, and the thermal expansion of the filler and the thermal expansion of the ceramic member can be matched. Accordingly, it is possible to prevent a gap from being formed between the filler and the wall portion, and to prevent cracks from being generated on the wall portion of the filler or the portion in contact with the filler.
  • the density of the cells is preferably about 100 to 400 square inches, more preferably about 200 to 300 cells / square inch, and most preferably about 200 cells / square inch. The reason is that if the number of pieces is less than 100 square inches, the effective area that can collect soot is small, so the soot layer thickness after collecting soot increases, and as a result, the pressure drop On the other hand, if it exceeds 400 square inches, soot will be clogged inside the through-hole, soot filtering function will be lost, and pressure loss will increase. .
  • the thickness of the cell wall separating each cell is about 0.1 to 0.8 mm.
  • Degree is preferable, it is preferably set to about 0.2 to 0.6 mm, and 0.25 to 0.45 mm The degree is most preferred.
  • the filter made of a porous ceramic sintered body having a honeycomb structure has a structure partitioned by porous partition walls, and the pores of the porous partition walls are measured by a mercury intrusion method.
  • the average value of the measured pore diameters was adjusted to be in the range of about 5 to 40111, and the standard deviation value in the pore diameter distribution when the pore diameters were expressed in common logarithm was 0.40 or less. Those are preferred.
  • the average pore diameter of the cell wall is within the above-mentioned range, it is suitable for collecting fine diesel particulates. That is, by setting the average pore diameter of the partition walls within the above range, it is possible to reliably collect diesel particulates. On the other hand, if the average value of the pore diameter of the partition is less than 5 / im, the pressure loss when the exhaust gas passes through the inner wall becomes extremely large, which may cause the engine to stop. On the other hand, when the average diameter of the pores exceeds 40 / m, it is not possible to efficiently collect fine particulates.
  • the porosity of the ceramic block constituting the honeycomb structure of the present invention is preferably 30 to 80%, more preferably 35 to 70%, and most preferably 40 to 60%. If the porosity is less than 30%, the pressure loss becomes too large. On the other hand, if the porosity exceeds 80%, the specified strength cannot be maintained, and the patilla may leak.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, and a measurement using a scanning electron microscope (SEM).
  • a conventionally known method such as a mercury intrusion method, an Archimedes method, and a measurement using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the particle size of the raw material particles used in producing such a ceramic block those having a small shrinkage in the subsequent firing step are desirable, for example, ceramic particles having an average particle size of about 0.5 to 100 / xm. It is desirable to use (silicon carbide) and silicon (metallic silicon) having an average particle size of about 0.5 to 20 / zm. Ceramics of the above particle size This is because the use of the black particle powder enables the production of a ceramic block composed of the porous ceramic having the above-mentioned porosity and average pore diameter.
  • the “silicon” constituting the ceramic member in the present invention is a concept including metallic silicon, crystalline silicon, and amorphous silicon, but is an embodiment in which metallic silicon is preferably used.
  • the ceramic member made of the ceramic sintered body is made of a porous sintered body mainly made of silicon carbide, silicon and silicon nitride.
  • the determination of silicon carbide, silicon nitride, silicon, etc. can be confirmed by X-ray diffraction (JIS K0131-1996).
  • the above-mentioned porous sintered body can be fired even at a relatively low temperature during production by using metallic silicon for bonding of silicon carbide powder as refractory particles, thereby suppressing production costs. This is advantageous in that it is possible to improve the yield. With such a configuration, higher thermal conductivity can be obtained as compared with the case where the binder is made of vitreous. Therefore, when used as a DPF, the particulates deposited for filter regeneration are burned. However, it is possible to prevent a local temperature rise that may damage the filter.
  • the honeycomb filter according to the present invention contains silicon nitride in addition to the silicon carbide powder and the metal silicon powder, and is formed by forming a film of the silicon nitride on the surface of the silicon carbide powder or the metal silicon powder.
  • the porous sintered body constituting the exhaust gas purifying filter according to the present invention (the ceramic member contains silicon nitride as described above, but the content is 0.1%). 3030% by weight3 ⁇ 4g, more preferably 1.0-18% by weight, and most preferably 3-13% by weight.
  • the amount of silicon nitride is less than 0.1% by weight, there is almost no silicon nitride film, and the above effects cannot be obtained.
  • the amount of silicon nitride exceeds 30% by weight, most of the silicon in the bonding portion is nitrided, or a large amount of silicon nitride force is generated, and the density of the bonding portion is reduced. It is not preferable because it causes a decrease in conductivity and a decrease in thermal shock resistance, and further, a decrease in strength.
  • the amount of silicon nitride in the ceramic member is determined by pressurized acid decomposition, steam distillation separation, and medium pressure in accordance with “Chemical analysis method of silicon nitride fine powder for fine ceramics” specified in JIS R1603-1994.
  • the amount of nitrogen was measured by the sum titration method, and silicon nitride (Si 3 N
  • the nitrogen component is present on or around the surfaces of the silicon carbide powder and the metal silicon powder in the form of a Si 3 N 4 or] 3 Si 3 N 4 singly or in a mixed state.
  • a fibrous substance exists in a partially formed form, and as a result, it has an effect of being excellent in oxidation resistance and alkali resistance, and improving the chemical stability as a catalyst carrier.
  • the sealing material layers 13 and 14 are formed between the porous ceramic members 20 and on the outer periphery of the ceramic block 15. ing.
  • the sealing material layer 14 formed between the porous ceramic members 20 functions as an adhesive for binding the plurality of porous ceramic members 20 together, and is formed on the outer periphery of the ceramic block 15.
  • the sealing material layer 13 prevents exhaust gas from leaking from the outer periphery of the ceramic block 15. Functions as a sealing material for prevention.
  • the sealing material layer is formed between the porous ceramic members and on the outer periphery of the ceramic block.
  • These sealing material layers may be made of the same material, or may be made of different materials. Further, when the sealing material layers are made of the same material, the compounding ratio of the materials may be the same or different.
  • the sealing material layer in the collective honeycomb filter for example, a material comprising at least one selected from an inorganic binder, an organic binder, inorganic fibers, and / or inorganic particles can be used.
  • the sealing material layer is formed between the porous ceramic member and the porous ceramic sintered body, in particular, these sealing material layers may be made of the same material. However, they may be made of different materials. Further, when the sealing material layers are made of the same material, the compounding ratio of the materials may be the same or different.
  • silica sol for example, silica sol, alumina sol and the like can be used. These may be used alone or as a mixture of two or more. Among the above inorganic binders, it is desirable to use silica sol.
  • organic binder for example, polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose and the like can be used. These may be used alone or as a mixture of two or more. It is particularly desirable to use carboxymethyl cellulose among the above organic binders.
  • silica-alumina for example, silica-alumina, ceramic fiber made of mullite, alumina, silica or the like can be used. These may be used alone or in combination of two or more. Among the above inorganic fibers, silica alumina fibers are desirable.
  • the inorganic particles for example, a carbide, a nitride, or the like can be used. Specifically, an inorganic powder made of silicon carbide, silicon nitride, boron nitride, or the like, a whisker, or the like can be used. These may be used alone or in combination of two or more. Among the above-mentioned inorganic particles, silicon carbide having excellent thermal conductivity is particularly desirable.
  • the sealing material layer may be made of a dense body or a porous body.However, when the filter of the present invention is installed in an exhaust passage of an internal combustion engine, it is necessary to prevent the exhaust gas from leaking from the outer periphery of the ceramic block. Since it is necessary to prevent this, it is preferable to use a dense body layer.
  • honeycomb filter of the present invention an aggregate-type honeycomb filter, any size can be easily manufactured by combining members.
  • the soot limit when a large amount of soot is regenerated at a time, the temperature becomes high due to rapid combustion of the soot, and cracks may occur in the filter block.
  • the soot collection at this time is called the soot limit. Therefore, preliminary experiments on filter strength were repeated to raise the conventional soot limit value.
  • the filter block strength to satisfy the soot limit of 7 g / 1 or more was mainly determined by silicon carbide, silicon, and nitride. In the case of a filter made of silicon, it has been found that the filter should be at least 13 MPa. That is, in the honeycomb filter according to the present invention, it has been found that by setting the strength of the ceramic block to 13 MPa ag or more, the soot limit can be increased.
  • each ceramic member is set to 13 MPa or more and a plurality of ceramic members having such a range of strength are bundled to form an aggregated honeycomb filter, the same as an integrated honeycomb filter is obtained. Filter with a strength of I found that.
  • the content of silicon nitride needs to be about 0.1 to 30% by weight, and more preferably about 1 to 18% by weight. Range.
  • the honeycomb filter according to the present invention is sealed in a predetermined through-hole at one end of the ceramic block constituting the honeycomb filter with a sealing material.
  • the exhaust gas is exhausted from an internal combustion engine such as a diesel engine, it can be suitably used as a honeycomb filter for exhaust gas purification that collects particulates in exhaust gas.
  • the honeycomb filter of the present invention when used as the honeycomb filter for purifying exhaust gas, Pt for promoting the combustion of particulates when the regeneration process is performed on the honeycomb filter is provided on the wall of the ceramic block.
  • a catalyst such as Rh and Pd may be supported.
  • the honeycomb filter of the present invention is supported on a ceramic block of the honeycomb filter of the present invention, for example, by supporting a catalyst such as a precious metal such as Pt and RhPd or an alloy thereof, thereby making the honeycomb filter of the present invention a heat engine such as an internal combustion engine or the like. It can be used as a catalyst carrier for purifying HC, CO and NOX in exhaust gas discharged from combustion equipment such as boilers, and for reforming liquid fuel or gaseous fuel.
  • a catalyst such as a precious metal such as Pt and RhPd or an alloy thereof
  • the sealing material is not always necessary.
  • honeycomb filter for purifying exhaust gas of the present invention
  • Extrusion molding is performed using a raw material paste mainly composed of silicon and metallic silicon to produce a ceramic molded body having substantially the same shape (honeycomb shape) as the porous ceramic member 20 shown in FIG.
  • the above-described ceramic particles and metal silicon Extrusion molding is carried out using a raw material paste mainly composed of ceramics and a ceramic molded body having substantially the same shape as the honeycomb filter 30 shown in FIG.
  • the above-mentioned raw material has a porosity of 30 to 80% of the ceramic block after production.
  • silicon carbide particle powder average particle size 0.5 to 100 / im
  • metallic silicon A mixture of powder (average particle diameter of about 0.5 to 20111) and a binder, a pore-forming agent for increasing porosity if necessary, and a dispersion medium are used. Is done.
  • silicon carbide powder raw materials and metallic silicon raw materials may contain trace impurities such as Fe, Al, and Ca, but may be used as they are, and may be used for chemical treatment such as chemical cleaning. And purified.
  • the metal silicon powder melts during the firing process after the degreasing process described later, wets the surface of the ceramic particles, and plays a role as a bonding material for bonding the ceramic particles.
  • the amount of the metal silicon powder varies depending on the particle size and shape of the ceramic particle powder, but is preferably about 5 to 50 parts by weight based on 100 parts by weight of the mixed powder. , More preferably 10 to 40 parts by weight, most preferably 15 to 30 parts by weight.
  • the amount is less than 5 parts by weight, the amount of the metal silicon powder is too small to function sufficiently as a bonding material for bonding the ceramic particles, and the strength of the obtained honeycomb ceramic (ceramic block) is insufficient. It may be.
  • the obtained honeycomb ceramic becomes too dense, the porosity becomes low, and the above-mentioned effect of the present invention may not be sufficiently obtained.
  • the honeycomb ceramic of the present invention is used as the filter, the pressure loss due to the concentration of the particulates becomes large immediately, and there is a possibility that the filter cannot function sufficiently as a filter.
  • binder examples include methylcellulose, carboxymethylcellulose, hydroxyshethylcellulose, polyethylene glycol, and phenol resin. Epoxy resin or the like is used.
  • the amount of the binder is preferably about 1 to 10 parts by weight based on 100 parts by weight of the ceramic particle powder.
  • the dispersion medium liquid for example, an organic solvent such as benzene, an alcohol such as methanol, or water can be used.
  • the dispersion medium liquid is mixed in an appropriate amount so that the viscosity of the raw material paste falls within a certain range.
  • the mixed powder, the binder and the dispersion medium are mixed with an attritor or the like, sufficiently kneaded with an abrader or the like to obtain a raw material paste, and the raw material paste is extruded to form the ceramic molded body. I do.
  • a molding aid may be added to the raw material paste as needed.
  • the molding aid for example, ethylene glycol, dextrin, fatty acid stone, polyalcohol and the like are used.
  • the raw material paste may be added, if necessary, with a pore-forming agent such as a balloon, which is a fine hollow sphere containing an oxide-based ceramic as a component, spherical acrylic particles, and graphite.
  • a pore-forming agent such as a balloon, which is a fine hollow sphere containing an oxide-based ceramic as a component, spherical acrylic particles, and graphite.
  • the ceramic molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to form a ceramic dry body, which is then sealed in a predetermined through hole.
  • a sealing material paste serving as a material is filled, and a sealing process is performed to plug the through hole.
  • sealing material paste for example, the same paste as the above-mentioned raw material paste can be used.
  • the dried ceramic body sealed with the sealing material paste is heated to about 150 to 700 ° C. to remove the binder contained in the dried ceramic body, and the ceramic is removed.
  • a degreasing treatment for forming a fat body is performed.
  • the degreasing treatment is desirably performed at a temperature lower than the temperature at which the metal silicon melts.
  • the degreasing atmosphere may be an oxidizing atmosphere, and may be an inert gas such as nitrogen or argon. It may be an atmosphere.
  • an optimum atmosphere is appropriately selected in consideration of the amount of the binder used, the type of the ceramic particles, and the like.
  • the ceramic degreased body is heated to about 1500 ° C. in an argon atmosphere, and subjected to main firing for 1 to 30 minutes. Then, the metallic silicon powder is softened (melted), and the ceramic particles are bonded via silicon to form a porous ceramic, which produces a honeycomb structure (ceramic block) formed integrally as a whole. That's a thing.
  • honeycomb filter for purifying exhaust gas comprising a silicon carbide porous body having a phase of silicon nitride on or around the surfaces of silicon carbide powder and metal silicon powder by heat treatment in a nitrogen atmosphere. it can.
  • the heat treatment in a nitrogen atmosphere is preferably performed in a temperature range of 800 to 1400 ° C, and is preferably performed in a range of 1000 to 1350 ° C. More preferred.
  • the temperature is lower than 800 ° C, the formation of the silicon nitride phase is insufficient, and when the temperature is higher than 1400 ° C, the melting point of the silicon metal becomes close to the predetermined shape. It is not preferable because there is. Therefore, according to the purification honeycomb filter manufacturing method of the present invention in which the heat treatment is performed in the above temperature range, it is possible to effectively form a phase of 0.1 to 30% by weight of nitrogen silicon in terms of nitrogen. it can.
  • the heat treatment time in a nitrogen atmosphere is preferably not more than 5 hours, more preferably 0.5 to 4 hours, and more preferably 1 to 3 hours. Is more preferred. If the time is less than 0.5 hours, the formation of the silicon nitride phase may be insufficient. On the other hand, if the time exceeds 4 hours, the nitridation of the metallic silicon may progress too much, which is not preferable. Therefore, heat treatment in the above temperature range According to the method for manufacturing a honeycomb filter for purifying exhaust gas of the present invention, a phase of 0.1 to 30% by weight of nitrogen silicon in terms of nitrogen can be effectively formed.
  • Patent Document 7 of the prior art since the metal silicon was completely converted to silicon nitride because it was kept at 1600 ° C. for 5 hours in a nitrogen atmosphere, the honeycomb filter was made of only silicon nitride and silicon carbide. Among them, it is a nitrogen silicon phase of 31% by weight or more in terms of nitrogen amount.
  • the heat treatment may be performed continuously from the main firing, or may be performed after cooling once after the main firing.
  • the honeycomb structure of the present invention manufactured as described above has a structure in which a sealing material is filled at one end of a predetermined through-hole of a ceramic block, and can be suitably used as the above-described honeycomb filter.
  • a catalyst such as Pt for promoting the combustion of particulates may be carried on the wall of the ceramic block when the honeycomb filter is subjected to the regeneration treatment.
  • the honeycomb filter according to the present invention can be used to purify HC, CO and NOX in exhaust gas discharged from a heat engine such as an internal combustion engine or a combustion device such as a boiler, or to reform a liquid fuel or a gaseous fuel.
  • a catalyst such as a noble metal such as Pt, Rh, or Pd or an alloy thereof may be supported on the wall of the ceramic block. In this case, the sealing treatment for filling the above-mentioned filler is not always necessary.
  • the structure of the honeycomb filter according to the present invention is an aggregate-type honeycomb structure formed by binding a plurality of porous ceramic members via a sealing material layer as shown in FIG. In this way, a porous ceramic member is manufactured.
  • a process of applying a sealing material paste to be a sealing material layer 14 with a uniform thickness on the side surface of the porous ceramic member 20 and sequentially laminating another porous ceramic member 20 was repeated, A laminate of a prismatic porous ceramic member 20 of a predetermined size is produced.
  • the laminate of the porous ceramic members 20 is heated to dry and solidify the sealing material paste layer 51 to form a sealing material layer 14. Thereafter, for example, using a diamond force cutter or the like, The outer peripheral portion is cut into the shape shown in FIG. 1 to produce the ceramic block 15.
  • the present invention in which a plurality of porous ceramic members are bound together via the sealing material layer by forming a ceramic material layer 13 on the outer periphery of the ceramic block 15 using the sealing material paste described above.
  • the honeycomb filter according to (1) can be manufactured.
  • the manufactured honeycomb structure is obtained by filling one end of a predetermined cell of a ceramic block (porous ceramic member) with a sealing material, and can be suitably used as the above-described honeycomb filter. Also, in this case, a catalyst such as Pt for promoting the burning of particulates is carried on the honeycomb filter wall (partition wall of the porous ceramic member) when the honeycomb filter is subjected to the regeneration treatment. You may.
  • the above-mentioned collective honeycomb structure can be used as a catalyst carrier similarly to the one-piece and two-cam structures, and in that case, Pt, Rh, P A catalyst such as a noble metal such as d or an alloy thereof may be supported. Also in this case, the sealing treatment for filling the above-mentioned filler is not necessarily required.
  • honeycomb filter of the present invention When the honeycomb filter of the present invention is used as the above-described filter, it is desirable to install the honeycomb filter in the vehicle exhaust gas purification device shown in FIG.
  • Figure 6 is a cross-sectional view schematically showing one example of an exhaust gas purifying device for a vehicle which the honeycomb filter is installed in the present invention p
  • the exhaust gas purifying apparatus 600 mainly includes a honeycomb filter 60 according to the present invention, a casing 630 covering the outside of the honeycomb filter 60, and It is composed of a holding sealing material 62 arranged between the honeycomb filter 60 and the casing 63 0, and an end of the casing 63 0 on the side where exhaust gas is introduced is provided with an internal combustion engine such as an engine.
  • An introduction pipe 640 connected to the engine is connected, and a discharge pipe 650 connected to the outside is connected to the other end of the casing 630.
  • the arrows in FIG. 6 indicate the flow of exhaust gas.
  • the structure of the honeycomb filter 60 may be the same as the honeycomb filter 10 shown in FIG. 1 or the same as the honeycomb filter 30 shown in FIG.
  • a catalyst such as Pt for promoting the combustion of the particulates is supported via a catalyst support material (not shown) made of ⁇ -alumina or the like.
  • exhaust gas exhausted from the power of an internal combustion engine such as an engine is introduced into the casing 630 through the introduction pipe 640, and the honeycomb filter After passing through the partition from the cell 0, the particulates are collected and purified by the partition, and then discharged to the outside through the discharge pipe 65.
  • the regeneration treatment for burning and removing the particulates collected by the partition walls of the honeycomb filter 60 is performed continuously using the catalyst supported on the wall portion, or periodically after the catalyst is deposited to some extent.
  • a heating means such as a heater is provided on the exhaust gas inflow side, and the gas heated using the heating means is caused to flow into the inside of the through-hole of the honeycomb filter 60.
  • the honeycomb filter 60 may be heated to burn and remove the particulates deposited on the partition walls.
  • the particulates may be burned and removed by raising the temperature of the exhaust gas using a post-injection method.
  • the honeycomb filter 60 according to the present invention has a casing 6330 in a state where the holding sealing material 620 is wound around the outer periphery thereof. It is installed so as to be pushed inside. At this time, a considerable compressive load is applied to the honeycomb filter 60 according to the present invention, and a large internal stress is generated therein.
  • the honeycomb filter 60 according to the present invention has excellent strength. Therefore, it can be installed in the casing 630 without generating cracks or the like.
  • honeycomb filter according to the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
  • the average particle size 30 silicon carbide raw material powder 80 weight 0/0 xm, blended with an average particle diameter of 4/20 wt% metal silicon powder xm, as an organic binder to the obtained powder to 100 parts by weight 10 parts by weight of methylcellulose, 2 parts by weight of a plasticizer, 4 parts by weight of a lubricant, and 20 parts by weight of water were added and uniformly mixed and kneaded to obtain a kneaded product for molding.
  • the obtained kneaded product was formed into a honeycomb shape having an outer shape of 35 sleep, a length of 150 hidden, a partition wall thickness of 0.3 mm, a senor density of 300 cells_square inch by an extruder.
  • the molded body is dried using microwave drying; ⁇ , and then a paste having the same composition as that of the formed molded body is filled in predetermined ends of the through holes and sealed, and then dried again. And dried.
  • This dried body was calcined at 400 ° C for 30 minutes for degreasing, and calcined at 1500 ° C for 15 minutes in an argon atmosphere at normal pressure.
  • the above sintered body was subjected to a heat treatment at 800 ° C for 3 hours in a nitrogen atmosphere.
  • a phase of silicon nitride was found on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous honeycomb filter for purifying exhaust gas having a porosity of 60% was manufactured.
  • Fig. 5 shows an SEM photograph of a cross section of such a honeycomb filter taken with a scanning electron microscope (SE).
  • Example 2 The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 900 ° C. for 3 hours in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder A porous exhaust gas purifying honeycomb filter was fabricated.
  • the process up to sintering is performed in the same manner as in Example 1, and the sintered body is subjected to a heat treatment at 1000 ° C. for 3 hours in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous exhaust gas purifying honeycomb filter was fabricated.
  • the sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1200 ° C. for 1 hour in a nitrogen atmosphere to form a phase of silicon nitride on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a honeycomb filter for purifying exhaust gas having a porous structure was prepared.
  • the sintering is performed in the same manner as in Example 1 above, and the sintered body is subjected to a heat treatment at 1200 ° C. for 3 hours in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous exhaust gas purifying honeycomb filter was fabricated.
  • the process up to sintering is performed in the same manner as in Example 1, and the sintered body is subjected to a heat treatment at 1300 ° C. for 1 hour in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous exhaust gas purifying honeycomb filter was fabricated.
  • the sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1300 ° C. for 3 hours in a nitrogen atmosphere, and the surface of the silicon carbide powder and the metal silicon powder or the vicinity thereof A porous honeycomb exhaust gas purifying filter having a silicon nitride phase was manufactured.
  • the sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1400 ° C. for 1 hour in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous exhaust gas purifying honeycomb filter was fabricated.
  • the sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 750 ° C. for 3 hours in a nitrogen atmosphere, and silicon nitride was formed on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous exhaust gas purifying honeycomb filter having a phase was prepared.
  • the sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1450 ° C. for 3 hours in a nitrogen atmosphere to have a phase of silicon nitride on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous exhaust gas purifying honeycomb filter was fabricated.
  • a silicon carbide powder with an average particle size of 50 ⁇ m and 20% by weight of a metal silicon powder with an average particle size of 10 / im 100 parts by weight of an ataryl resin-based sphere with an average particle size of 20/2 m Add 20 parts by weight of particles, add 10 parts by weight of methylcellulose as an organic binder, 2 parts by weight of plasticizer, 4 parts by weight of lubricant, and 20 parts by weight of water, and uniformly mix and knead for molding Was obtained.
  • the obtained kneaded product was formed into a honeycomb shape having an outer shape of 35 mm, a length of 150 mra, a partition wall thickness of 0.3 mm, and a senore density of 300 sele / square inch by an extruder.
  • the molded body is dried using a microwave drier, and thereafter, a paste having the same composition as that of the generated molded body is filled in predetermined through holes and sealed, and then dried using a drier. Let dry again.
  • the dried body is calcined for degreasing at 400 for 30 minutes, heated to 1000 ° C at 400 ° C / h in a nitrogen atmosphere, and then heated to 1400 ° C at 400 ° Oh, Further, firing was performed at 1400 ° C. for 10 hours to produce a porous sintered body having a honeycomb structure having a phase of silicon carbide mononitride. When the porous sintered body was examined by X-ray diffraction, no peak corresponding to silicon could be found.
  • the sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment in the air at 1200 ° C. for 3 hours to form a phase of silicon oxide on or around the surfaces of the silicon carbide powder and the metal silicon powder.
  • a porous honeycomb filter for exhaust gas purification having the following was prepared.
  • the molded body is dried using microwave drying, and then a paste having the same composition as that of the formed molded body is filled in predetermined through holes and sealed, and then dried again using a dryer. Let it. 400 dried body. Then, calcining was performed for 30 minutes for degreasing, followed by baking at 2200 ° C for 3 hours in an atmosphere of argon at normal pressure to produce a porous silicon carbide sintered body having a honeycomb structure.
  • FIG. 4 is a graph plotting the change in strength with respect to the amount of silicon nitride contained in the honeycomb filter.
  • the ceramic finoleta according to Example 1 has a low silicon nitride content.
  • the ceramic filters according to Examples 2 to 8 in which the amount of silicon nitride is in the range of 1.0 to 27.8% by weight are slightly lower in acid resistance and alkali resistance because they are relatively small at 0.1% by weight.
  • acid resistance and alkali resistance are improved.
  • Table 1 and FIG. 1 when the amount of silicon nitride is in the range of 0.1 to 30% by weight, the strength of the ceramic filter is relatively large, and in particular, when the amount of silicon nitride is 1 to 15% by weight. In the range, the strength is significantly improved.
  • the honeycomb filter for purifying exhaust gas according to the present invention is used as a filter for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, as a catalyst carrier, and the like.
  • the exhaust gas purifying honeycomb filter of the present invention can be sintered at a relatively low temperature at the time of its production even though it contains refractory particles such as silicon carbide, so that the production cost is reduced.
  • the yield can be reduced and the cost can be reduced.
  • a silicon nitride phase is formed on or around the surface of silicon carbide powder and silicon powder, it has high thermal conductivity, and has improved acid resistance, alkali resistance, and strength. It can be suitably used as an exhaust gas purifying filter and a catalyst carrier. Further, in the method for manufacturing a honeycomb filter for purifying exhaust gas of the present invention, it is possible to reliably form a phase of silicon nitride on or around the surfaces of the silicon carbide powder and the silicon powder by predetermined steps and conditions. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

A honeycomb filter for exhaust gas purification manufacturable with rather low temperature at low cost and excellent in characteristics such as acid resistance, alkali resistance, and strength (thermal shock) and a method of manufacturing the honeycomb filter. The honeycomb filter comprises honeycomb-shaped porous ceramic members in which a large number of cells are formed along the axial direction thereof and is formed so that a part or all of partition walls separating the adjacent cells from each other function as particulate collecting filters. The filter is characterized in that the ceramic members are formed of those containing silicon carbide, silicon, and silicon nitride.

Description

明 細 書 排気ガス浄化用ハニカムフィルタおよびその製造方法 技術分野  Description Honeycomb filter for purifying exhaust gas and method for manufacturing the same
本発明は、 ディーゼルエンジン等の内燃機関から排出される排気ガス中のパテ ィキュレート等を除去するフィルタや、 触媒担体等として用いられる排気ガス浄 化用ハ-カムフィルタおよびその製造方法に関する。 背景技術  The present invention relates to a filter for removing particulates or the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, a honeycomb filter for purifying exhaust gas used as a catalyst carrier and the like, and a method of manufacturing the same. Background art
ディーゼルエンジンの排気ガス中に含まれる微粒子状物質除去用フィルタ、 あ るいは排気ガス中の有害物質を浄化する触媒成分を担持してなる触媒担体として は、 多孔質のハニカム構造体が広く用いられている。 そして、 このようなハニカ ム構造体を形成する材料としては、 炭化珪素のような耐火性セラミックが知られ ている。  A porous honeycomb structure is widely used as a filter for removing particulate matter contained in exhaust gas of a diesel engine or a catalyst carrier carrying a catalyst component for purifying harmful substances in exhaust gas. ing. As a material for forming such a honeycomb structure, a refractory ceramic such as silicon carbide is known.
例えば、 こうしたハニカム構造体の例としては、 所定の比表面積と不純物含有 量を有する炭化珪素粉末を出発原料とし、 これを所望の形状に成形してから乾燥 し、 その後、 1600〜2000 °Cの温度で焼成することにより、 ハニカム構造体とした 多孔質炭化珪素質のフィルタや触媒担体が知られている。  For example, as an example of such a honeycomb structure, a silicon carbide powder having a predetermined specific surface area and an impurity content is used as a starting material, formed into a desired shape, dried, and then heated to 1600 to 2000 ° C. Porous silicon carbide filters and catalyst carriers that have been formed into a honeycomb structure by firing at a temperature are known.
なお、 こうしたハニカム構造体に用いる多孔質炭化珪素焼結体としては、 骨材 となる炭化珪素粉末にガラス質フラックス、 あるいは粘土質などの結合材を加え 成形し、 その後、 成形体を前記結合材が溶融する温度で焼き固めるという方法に よって製造されている。 (例えば、 特開平 6— 1 8 2 2 2 8号公報)  As the porous silicon carbide sintered body used for such a honeycomb structure, a binder such as vitreous flux or clay is added to silicon carbide powder to be an aggregate, and then molded. It is manufactured by a method of baking at the temperature at which it melts. (For example, Japanese Patent Application Laid-Open No. Hei 6-182822)
しかしながら、 炭化珪素粉末原料をガラス質材料で結合させる技術は、 次のよ うな問題があった。 それは、このような方法で作製された焼結体を、 ディーゼルパ ティキュレートフィルタ (D P F ) の材料として利用する場合、 該フィルタに捕 集されたパティキュレートをフィルタの再生のために燃焼させようとすると、 熱 伝導率が低いために、 局所的な発熱が生じて構造部が破壊することがあった。 また、 炭化珪素粉末に、 金属珪素粉末と有機バインダーとを添加し、 混合およ び混練し、 得られた混練物をハニカム形状に成形し、 得られた成形体を仮焼して 該成形体中の有機バインダーを除去したのち、 本焼成することにより、 ハニカム 構造体を製造する方法もある。 (例えば、 特開 2 0 0 2— 1 5 4 8 7 6号公報) しかしながら、 原料炭化珪素粉末を金属珪素粉末を介して結合するという上記 従来技術では、 比較的低い焼成温度で製造することができ、 熱伝導率も高く、 十 分に多孔質かつ高い比表面積をもつハニカム構造体が得られるが、 前記金属珪素 粉末が酸に比較的に溶解しやすいという問題があった。 しかも、 このようにして 得られた焼結体を D P Fとして用いた場合、 該焼結体が燃料中に含まれる硫黄分 等の燃焼により発生した酸性ガスに晒されるために、 金属珪素の溶解に起因した 破壊等が発生するおそれがあつた。 However, the technology for combining silicon carbide powder raw materials with a vitreous material has the following problems. That is, when a sintered body produced by such a method is used as a material for a diesel particulate filter (DPF), the particulate matter collected by the filter is burned for regeneration of the filter. Then the heat Due to the low conductivity, local heat was generated and the structure could be destroyed. Further, the metal silicon powder and the organic binder are added to the silicon carbide powder, mixed and kneaded, the obtained kneaded material is formed into a honeycomb shape, and the obtained formed body is calcined to form the formed body. There is also a method of producing a honeycomb structure by removing the organic binder therein and then performing main firing. However, in the above-described conventional technique in which the raw material silicon carbide powder is bonded via the metal silicon powder, it is difficult to manufacture the silicon carbide powder at a relatively low firing temperature (for example, Japanese Patent Application Laid-Open No. 2002-1544876). Thus, a honeycomb structure having high thermal conductivity, sufficiently porous and high specific surface area can be obtained, but there is a problem that the metallic silicon powder is relatively easily dissolved in an acid. Moreover, when the sintered body obtained in this way is used as a DPF, the sintered body is exposed to an acid gas generated by combustion of sulfur contained in the fuel, so that it cannot dissolve metallic silicon. There was a risk that destruction or the like would occur.
その上、 金属珪素については、 アルカリに対して比較的に溶解しやすいため、 このような焼結体を触媒担体として用いた場合、 アルカリ成分である触媒を担持 した際に、 金属珪素の溶 こ起因した破壊等が発生するおそれがあった。  In addition, since metallic silicon is relatively easily dissolved in alkali, when such a sintered body is used as a catalyst carrier, the metallic silicon dissolves when a catalyst which is an alkali component is supported. There was a possibility that destruction or the like caused by the occurrence would occur.
さらに、 炭化珪素粉末を金属珪素で結合させて得られる焼結体は、 強度が低い ために D P Fとして用いた場合、 走行中の振動等により破壊するおそれもあった。 これに対して従来、 骨材となる炭化珪素粉末と金属珪素粉末を含み、 かっこの 炭化珪素粉末及び Z又は該金属珪素の表面もしくは周辺に酸素を含む相を形成し てなる炭化珪素質多孔体が提案されている。 (例えば、 特開 2 0 0 2— 1 5 4 8 8 2号公報)  Furthermore, a sintered body obtained by bonding silicon carbide powder with metallic silicon has a low strength, and when used as a DPF, may be broken by vibration during traveling or the like. On the other hand, conventionally, a silicon carbide-based porous body including a silicon carbide powder serving as an aggregate and a metal silicon powder, and forming a phase including oxygen on the surface of or around the bracket silicon carbide powder and Z or the metal silicon Has been proposed. (For example, Japanese Patent Application Laid-Open No. 2000-15054 882)
このような提案技術によれば、 炭化珪素および金属珪素の表面もしくは周辺に 酸素を含む相があることから、 これを D P Fとして用いた場合、 耐酸性は向上す るものの、 耐アルカリ性および強度が十分でないという問題があった。  According to such a proposed technique, since a phase containing oxygen is present on or around silicon carbide and metallic silicon, when it is used as a DPF, the acid resistance is improved, but the alkali resistance and strength are sufficient. There was a problem that was not.
また、 平均粒径 5〜100 mの炭化珪素粉末とこの粉末の平均粒径よりも小さレヽ 金属珪素粉末および成形助剤を混合して成形し、 その成形体を窒化性ガス雰囲気 中で金属珪素の溶融温度以下で焼成することにより、 窒化珪素結合炭化珪素焼結 体を製造するという方法の提案もある。 (例えば、 特開平 6 1— 1 0 1 4 6 5号公 報) Further, silicon carbide powder having an average particle size of 5 to 100 m, a metal silicon powder having a particle size smaller than the average particle size of the powder, and a molding aid are mixed and molded, and the compact is formed in a nitriding gas atmosphere. Baking below the melting temperature of There are also proposals for a method of manufacturing the body. (For example, Japanese Patent Application Laid-Open No. 611-101665)
また、 炭化珪素と、 金属シリコンとを混合して、 ハニカム形状にし、 不活性ガ ス中で焼結することで、 炭化珪素、 窒化珪素からなるセラミックヒータを製造す るという方法の提案もある。  There has also been proposed a method of manufacturing a ceramic heater made of silicon carbide and silicon nitride by mixing silicon carbide and metal silicon to form a honeycomb shape, and sintering in an inert gas.
(例えば、 特開平 9— 1 0 6 8 8 3号公報)  (For example, Japanese Patent Application Laid-Open No. 9-106683)
また、 本願のもとになつた先の出願を行った後に公開された技術の中に、 炭化 珪素と金属珪素を用いて、 金属珪素を窒化珪素にさせる技術が提案されている (例えば、 特開 2 0 0 2— 3 5 6 3 8 4号公報、 特開 2 0 0 3— 1 5 4 2 2 4号 公報)。  In addition, among the techniques disclosed after filing the earlier application filed under the present application, a technique for converting silicon metal to silicon nitride using silicon carbide and metal silicon has been proposed (for example, Japanese Patent Application Laid-Open No. 2000-35056384, Japanese Patent Application Laid-Open No. 2003-154424).
これらの提案技術によって得られる焼結体は、 1300°C以上で、 5 時間以上の比 較的長い時間に亘つて窒素雰囲気中で作製するものであり、全ての金属珪素を窒化 珪素に転化させる技術であると言える。 即ち、 耐熱性、 耐蝕性、 耐酸化性、 耐衝 撃性にすぐれている力 ハニカムフィルタに適用できるような高強度を有するもの ではなく、 耐熱衝撃性に問題がある。 発明の開示  The sintered body obtained by these proposed technologies is manufactured in a nitrogen atmosphere at a temperature of 1300 ° C or more and for a relatively long time of 5 hours or more, and converts all metallic silicon to silicon nitride. It can be called technology. That is, it is a force excellent in heat resistance, corrosion resistance, oxidation resistance, and impact resistance. It does not have high strength that can be applied to a honeycomb filter, and has a problem in thermal shock resistance. Disclosure of the invention
本発明の目的は、 炭化珪素のような耐火性粉末を含むにもかかわらず比較的低 い温度で安価に製造することができるとともに、 耐酸性、 耐アルカリ性および強 度 (熱衝撃性) などの特性に優れた炭化珪素質多孔体からなる排気ガス浄ィヒ用ハ 二カムフィルタ (触媒担体を含む) およびそれの有利な製造方法を提案すること にある。  It is an object of the present invention to provide an inexpensive production at a relatively low temperature in spite of containing a refractory powder such as silicon carbide, as well as acid resistance, alkali resistance and strength (thermal shock resistance). An object of the present invention is to propose a honeycomb filter (including a catalyst carrier) for purifying exhaust gas comprising a silicon carbide porous body having excellent characteristics and an advantageous method for producing the same.
上記目的の実現に向けた研究の中で、 発明者らは、 セラミック部材 (プロッ ク) を形造る多孔質体中に、 窒化珪素を含有させることが有利であるとの知見を 得て、 本発明を開発した。  In a study aimed at realizing the above object, the present inventors obtained the finding that it is advantageous to include silicon nitride in a porous body for forming a ceramic member (block). The invention was developed.
すなわち、 本発明は、 軸線方向に沿って多数のセルが設けられ、 これらのセル のうちの一部が、 一方の端部において封止される場合、 その他方の端部側では、 解放されることとなる構造を有し、 かつ隣り合う各セルを隔てる隔壁の一部又は 全部が粒子捕集用フィルタとして機能するように構成された、 ハニカム構造の多 孔質セラミック部材の 1または 2以上の集合体からなる排気ガス浄化用ハニカム フィルタにおいて、 前記セラミック部材が、 炭化珪素、 シリコンおよび窒化珪素 を含むものからなることを特徴とするお ^気ガス浄化用ハニカムフィルタである。 なお、 本発明においては、 多孔質の前記セラミック部材中に含まれる窒化珪素 の含有量は、 0. 1〜30 重量%程度含有することが好ましく、 1. 0〜18重量%であ ることがより好ましく、 3〜13重量。 /0であることがさらに好ましい。 そして、 前記 セラミック部材は、 隔壁表面の一部又は全部に触媒が付与されていることが好ま しい。 That is, according to the present invention, when a large number of cells are provided along the axial direction, and some of these cells are sealed at one end, at the other end, One or more of the honeycomb-structured porous ceramic members having a structure to be released and configured so that a part or all of the partition walls separating adjacent cells function as a filter for collecting particles. An exhaust gas purifying honeycomb filter comprising two or more aggregates, wherein the ceramic member is made of a material containing silicon carbide, silicon and silicon nitride. In the present invention, the content of silicon nitride contained in the porous ceramic member is preferably about 0.1 to 30% by weight, and more preferably 1.0 to 18% by weight. More preferred, 3 to 13 weight. / 0 is more preferable. Preferably, the ceramic member has a catalyst applied to a part or the whole of the partition wall surface.
また、 本発明は、 炭化珪素粉末に、 シリコン粉末および有機バインダーを混練 し、 得られた混練物を、 ハニカム構造を有するセラミック部材として成形し、 こ のセラミック部材の軸線方向に沿って設けられた多数のセルのいずれか一方の端 部のみを目封じし、 次いで、 仮焼して前記有機バインダーを除去してから本焼成 し、 その後、 本焼成したセラミック部材と窒素雰囲気下において 800〜1400 °Cの 温度範囲で熱処理することにより、 炭化珪素、 シリコンを窒化させることにより、 炭化珪素、 シリコンおよび窒化珪素を含有する多孔質セラミックフィルタを得る ことを特徴とする排気ガス浄化用ハニカムフィルタの製造方法を提案する。  Further, in the present invention, the silicon powder and the organic binder are kneaded with the silicon carbide powder, and the obtained kneaded material is formed as a ceramic member having a honeycomb structure, and provided along the axial direction of the ceramic member. Only one end of many cells is plugged, then calcined to remove the organic binder, and then calcined. Thereafter, the calcined ceramic member and 800-1400 ° C. in a nitrogen atmosphere. A method for producing a honeycomb filter for purifying exhaust gas, characterized by obtaining a porous ceramic filter containing silicon carbide, silicon and silicon nitride by heat-treating in a temperature range of C to nitride silicon carbide and silicon. Suggest.
なお、 前記多孔質セラミックフィルタに含まれる窒化珪素の含有量は、 0. 1〜30 重量%であることが好ましく、 1. 0〜18重量%であることがより好ましく、 3〜13 重量%であることが最も好ましい。 図面の簡単な説明  The content of silicon nitride contained in the porous ceramic filter is preferably 0.1 to 30% by weight, more preferably 1.0 to 18% by weight, and 3 to 13% by weight. Most preferably. Brief Description of Drawings
図 1は、 本発明にかかる排ガス浄化用ハニカムフィルタの一例を示した斜視図で ある。 FIG. 1 is a perspective view showing an example of an exhaust gas purifying honeycomb filter according to the present invention.
2は、 図 1に示したハニカムフィルタを構成する多孔質セラミック部材の一例 を示した斜視図であり、 (b ) は、 (a ) に示した多孔質セラミック部材の A— A 線断面図である。 FIG. 2 is a perspective view showing an example of a porous ceramic member constituting the honeycomb filter shown in FIG. 1. FIG. 2 (b) is a perspective view of the porous ceramic member shown in FIG. It is line sectional drawing.
図 3は、 ( a ) は、 本発明にかかるハニカムフィルタの別の一例を示した斜視図で あり、 (b ) は、 (a ) に示したハニカムフィルタの B— B線断面図である。 図 4は、 排気ガス浄化用ハニカムフィルタに含まれる窒化珪素量 (重量%) に対 する強度 (M P a ) の変化をプロットしたグラフである。 3A is a perspective view showing another example of the honeycomb filter according to the present invention, and FIG. 3B is a cross-sectional view taken along line BB of the honeycomb filter shown in FIG. FIG. 4 is a graph plotting a change in strength (M Pa) with respect to an amount (% by weight) of silicon nitride contained in an exhaust gas purifying honeycomb filter.
図 5は、 実施例 1にかかるハニカムフィルタの横断面を走査電子顕微鏡で撮影し た SEM写真 (1 0 0 0倍) である。 FIG. 5 is an SEM photograph (100,000 magnification) of a cross section of the honeycomb filter according to Example 1 taken by a scanning electron microscope.
図 6は、 本発明にかかるハニカムフィルタを用いた排気ガス浄化装置の一例を模 式的に示した断面図である。 発明を実施するための最良の形態 FIG. 6 is a cross-sectional view schematically showing one example of an exhaust gas purifying apparatus using the honeycomb filter according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明するが、 本発明はこれらの実施形態に のみ限定されるものではなく、 本発明の趣旨を逸脱しない範囲で、 当業者の通常 の知識に基づいて、 適宜、 設計の変更、 改良等が加えられることが理解されるべ きである。  Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to these embodiments, and may be appropriately determined based on ordinary knowledge of a person skilled in the art without departing from the spirit of the present invention. It should be understood that design changes, improvements, etc. are made.
図 1は、 本発明のハニカムフィルタの一例を示す集合体型ハニカムフィルタの 具体例を模式的に示した斜視図であり、 図 2 ( a ) は、 図 1に示したハニカムフ ィルタを構成する多孔質セラミック部材の一例を示した斜視図であり、 図 2 ( b ) は、 図 2 ( a ) に示した多孔質セラミック部材の A— A線断面図である。 図 1および図 2に示したように、 ハニカムフィルタ 1 0は、 柱状の多孔質セラ ミック部材 2 0の複数個を、 シール材層 1 4を介して円柱状に組み立ててなるセ ラミックブ口ック 1 5にて構成されており、 このセラミックブロック 1 5の周囲 には、 排気ガスの漏れを防止し、 あるいは形状を整えるために、 必要に応じて、 シーノレ材層 1 3を囲繞した構成になっている。  FIG. 1 is a perspective view schematically showing a specific example of an aggregated honeycomb filter showing an example of the honeycomb filter of the present invention. FIG. 2 (a) is a perspective view showing a porous filter constituting the honeycomb filter shown in FIG. FIG. 2B is a perspective view showing an example of the ceramic member, and FIG. 2B is a cross-sectional view taken along line AA of the porous ceramic member shown in FIG. As shown in FIGS. 1 and 2, the honeycomb filter 10 is a ceramic block formed by assembling a plurality of columnar porous ceramic members 20 into a cylindrical shape via a sealing material layer 14. The ceramic block 15 is surrounded by a sinole material layer 13 as necessary to prevent leakage of exhaust gas or to adjust its shape. ing.
上記円柱状のセラミックブ口ック 1 5を構成する各多孔質セラミック部材 2 0 は、この実施形態では角柱状であり、 その長手方向に多数のセル 2 1が隔壁 2 3を 介して並設されており、 各セル 2 1は端部のいずれか一方のみが封止材 2 2によ り封止され、 ガス流入側とガス流出側とに別れている。 Each of the porous ceramic members 20 constituting the cylindrical ceramic block 15 has a prismatic shape in this embodiment, and a large number of cells 21 are juxtaposed in the longitudinal direction thereof through partition walls 23. In each cell 21, only one of the ends is sealed by the sealing material 22. It is separated into a gas inflow side and a gas outflow side.
このような構成により、 排気ガス流入側のセル 2 1 aに流入した排気ガスは、 これらのセル 2 1を隔てる隔壁 2 3を通過した後、 隣り合うガス流出側のセル 2 1 bから流出されるようになっており、 これらのセル 2 1 a、 2 l bどうしを隔 てる隔壁 2 3が粒子捕集用フィルタとして機能するものである。  With such a configuration, the exhaust gas that has flowed into the cell 21 a on the exhaust gas inflow side passes through the partition wall 23 that separates these cells 21, and then flows out from the adjacent cell 21 b on the gas outflow side. The partition wall 23 that separates the cells 21a and 2 lb functions as a filter for collecting particles.
また、 図 3 ( a ) は、 本発明のハエカムフィルタの他の例を示す一体型ハニカ ムフィルタの具体例を模式的に示した斜視図であり、 図 3 ( b ) は、 その B— B 線断面図である。  FIG. 3 (a) is a perspective view schematically showing a specific example of an integrated honeycomb filter showing another example of the honeycomb filter of the present invention, and FIG. It is a line sectional view.
図 3 ( a ) に示したように、 ハニカムフィルタ 3 0は、 多数のセル 3 1が隔壁 3 3を隔てて長手方向に並設された多孔質セラミックからなる円柱状のセラミツ クブロック 3 5により構成されている。  As shown in FIG. 3 (a), the honeycomb filter 30 is made up of a cylindrical ceramic block 35 made of porous ceramic in which a number of cells 31 are juxtaposed in the longitudinal direction across a partition wall 33. It is configured.
上記ハニカムフィルタ 3 0のセラミックブロック 3 5は、 図 3 ( b ) に示した ように、 一方の端部が封止されたセル 3 1 aに対し、 隔壁 3 3を挟んで、 これと 隣り合うセル 3 1 bは他方の端部が封止材 3 2により封止され、 セラミックブ口 ック 3 5の各端部では、 開口部と閉止部が互い違いに形成されたハニカム構造体 となっている。  As shown in FIG. 3 (b), the ceramic block 35 of the honeycomb filter 30 is adjacent to the cell 31a whose one end is sealed with a partition wall 33 interposed therebetween. The other end of the cell 31b is sealed with a sealing material 32, and at each end of the ceramic block 35, a honeycomb structure is formed in which openings and closing portions are alternately formed. I have.
このような構成により、 排気ガス流入側のセル 3 1 aに流入した排気ガスは、 このセル 3 1 aを隔てる隔壁 3 3を通過した後、 隣り合う排気ガス流出側のセル 3 1 bから流出するようになっており、 これらのセル 3 1 a,、 3 l bどうしを隔 てる隔壁 3 3が粒子捕集用フィルタとして機能するものである。  With such a configuration, the exhaust gas flowing into the cell 31a on the exhaust gas inflow side passes through the partition wall 33 separating the cell 31a, and then flows out from the cell 31b on the adjacent exhaust gas outflow side. The partition wall 33 that separates these cells 31a, 3lb functions as a filter for collecting particles.
また、 図 3には示していないが、 セラミックブロック 3 5の周囲には、 図 1に 示したハニカムフィルタ 1 0と同様に、 シール材層が形成していてもよい。  Although not shown in FIG. 3, a sealing material layer may be formed around the ceramic block 35, similarly to the honeycomb filter 10 shown in FIG.
即ち、 本発明の排気ガス浄化用ハニカムフィルタの基本的な形態は、 多数のセ ルが隔壁を隔ててその軸線方向 (長手方向) に沿って規則的に形成 (並設) され た、 多孔質セラミック焼結体 (セラミックブロック) の断面が略正方形、 長方形. 三角形などの多角形もしくは円形、 楕円形、各種柱状形に形成されたものであり、 単体、 もしくはそれらの集合体からなるものである。 上記セルは、 濾過壁である隔壁によって互いに隔てられており、 各セルの開口 部は一方の端部側においては封止体 (充填材) により封止されており、 該当する そのセルの他方の端部は開放され、 全体としては各端部とも解放部と封止部とが 交互に、 たとえば市松模様状を呈するように目封じされている。 That is, the basic form of the honeycomb filter for purifying exhaust gas of the present invention is a porous filter in which a large number of cells are regularly formed (arranged) along the axial direction (longitudinal direction) across a partition wall. The cross section of the ceramic sintered body (ceramic block) is formed in a polygonal or circular shape such as a triangle, an ellipse, or various columnar shapes, and consists of a simple substance or an aggregate thereof. . The cells are separated from each other by a partition wall that is a filtration wall, and the opening of each cell is sealed at one end side with a sealing body (filling material). The ends are open, and as a whole, each end is plugged with alternating open and closed portions, for example, in a checkered pattern.
そして、 1もしくは 2以上のセラミック部材の集合体からなるセラミックブロ ックは、 断面略四角形状をなす多数のセルが形成されたハニカム構造を呈してい る。  The ceramic block composed of an aggregate of one or more ceramic members has a honeycomb structure in which a large number of cells having a substantially square cross section are formed.
上記ハニカム構造によれば、 一のセルに流入した排気ガスは、 必ず、 隣り合う 他のセルを隔てる隔壁、 即ち濾過壁を通過した後、 隣りの他のセルを経て流出す るようになっており、 これらのセル同士を隔てる壁部を粒子捕集用フィルタとし て機能させるものである。  According to the above honeycomb structure, the exhaust gas that has flowed into one cell always flows through a partition wall that separates another adjacent cell, that is, a filtration wall, and then flows out through another adjacent cell. The walls separating these cells function as a filter for collecting particles.
なお、 封止用の前記充填材は、 セラミック部材と同じ種類の多孔質セラミック を用いることがより望ましい。 このような構成にすることで、 両者の密着強度を 高くすることができるとともに、 充填材の熱膨張と、 セラミック部材の熱膨張の 整合を図ることができ、 ひいては製造時や使用時の熱応力により、 充填剤と壁部 との間に隙間が生じたり、 充填剤や充填剤に接触する部分の壁部にクラックが発 生したりするのを防止することができるようになる。  It is more preferable to use the same type of porous ceramic as the ceramic member as the filler for sealing. With such a configuration, the adhesion strength between the two can be increased, and the thermal expansion of the filler and the thermal expansion of the ceramic member can be matched. Accordingly, it is possible to prevent a gap from being formed between the filler and the wall portion, and to prevent cracks from being generated on the wall portion of the filler or the portion in contact with the filler.
なお、 前記セルの密度は 100〜400個ノ平方インチ程度が好ましく、 200〜300 個/平方ィンチ程度がより好ましく、 200個/平方ィンチ程度が最も好ましい。 その理由は、 100個 Z平方インチ未満では、ススを捕集することができる有効な 面積が小さいため、ススを捕集した後のスス層の厚みが大きくなつてしまい、その 結果、圧力損失の増大を招いてしまうからであり、一方、 400 個 平方インチを超 えると、ススが貫通孔の内部で目詰まりし、ススを濾過する機能が失われて、圧力損 失が増大するからである。  The density of the cells is preferably about 100 to 400 square inches, more preferably about 200 to 300 cells / square inch, and most preferably about 200 cells / square inch. The reason is that if the number of pieces is less than 100 square inches, the effective area that can collect soot is small, so the soot layer thickness after collecting soot increases, and as a result, the pressure drop On the other hand, if it exceeds 400 square inches, soot will be clogged inside the through-hole, soot filtering function will be lost, and pressure loss will increase. .
上記セルのうちの約半数のものは、 上流側端面において開口し、 残りのものは 下流側端面において開口しており、 各セルを隔てるセル壁の厚さは 0. 1〜0. 8瞧程 度が好ましく、 0. 2〜0. 6麵程度に設定することがょり好ましく、0. 25〜0. 45mm 程度が最も好ましい。 About half of the above cells are open at the upstream end face, and the rest are open at the downstream end face, and the thickness of the cell wall separating each cell is about 0.1 to 0.8 mm. Degree is preferable, it is preferably set to about 0.2 to 0.6 mm, and 0.25 to 0.45 mm The degree is most preferred.
その理由は、 0. lmm未満では、排気ガス中のススがセル壁を通過しやすくなるの で、ススの捕集効率が低下するためである。一方、 0. 8隱 を超えると、排気ガスがセ ル壁を通過する時の抵抗が大きくなり、圧力損失が増大するためである。  The reason is that if it is less than 0.1 mm, soot in the exhaust gas easily passes through the cell wall, and soot collection efficiency is reduced. On the other hand, if it exceeds 0.8 h, the resistance when the exhaust gas passes through the cell wall increases, and the pressure loss increases.
このように、 ハニカム構造を有する多孔質セラミック焼結体からなる前記フィ ルタは、 多孔質の隔壁によって仕切られた構造を有するものであるが、 その多孔 質隔壁の気孔は、 水銀圧入法によって測定された気孔径の平均値で 5〜40 111程 度の範囲内に調整してあり、 その気孔径を常用対数で表した場合の気孔径分布に おける標準偏差の値が 0. 40以下にしたものが好適である。  As described above, the filter made of a porous ceramic sintered body having a honeycomb structure has a structure partitioned by porous partition walls, and the pores of the porous partition walls are measured by a mercury intrusion method. The average value of the measured pore diameters was adjusted to be in the range of about 5 to 40111, and the standard deviation value in the pore diameter distribution when the pore diameters were expressed in common logarithm was 0.40 or less. Those are preferred.
上記セル壁の平均気孔径が上述した範囲内であれば、 微細なディーゼルパティ キュレートの捕集にも好適である。 即ち、 隔壁の平均気孔径を上記範囲内に設定 することで、 ディーゼルパティキュレートを確実に捕集することができる。 一方、 この隔壁の気孔径の平均値が 5 /i m未満だと、 内壁を排気ガスが通過する際の圧 力損失が極端に大きくなり、 エンジンの停止を引き起こしかねない。 また、 気孔 径の平均直が 40 / mを超えると、 微細なパティキュレートを効率よく捕集するこ とができなくなる。  If the average pore diameter of the cell wall is within the above-mentioned range, it is suitable for collecting fine diesel particulates. That is, by setting the average pore diameter of the partition walls within the above range, it is possible to reliably collect diesel particulates. On the other hand, if the average value of the pore diameter of the partition is less than 5 / im, the pressure loss when the exhaust gas passes through the inner wall becomes extremely large, which may cause the engine to stop. On the other hand, when the average diameter of the pores exceeds 40 / m, it is not possible to efficiently collect fine particulates.
本発明のハニカム構造体を構成するセラミックブ口ックの気孔率は、 30〜80% であることが好ましく、 35〜70%がより好ましく、 40〜60%が最も好ましい範囲 である。 気孔率が 30%未満であると、 圧力損失が大きくなりすぎるためである。 一方、 気孔率が 80%を越えると、 所定の強度を保持できなくなったり、 パティキ ユレ一トが漏れることがあるからである。  The porosity of the ceramic block constituting the honeycomb structure of the present invention is preferably 30 to 80%, more preferably 35 to 70%, and most preferably 40 to 60%. If the porosity is less than 30%, the pressure loss becomes too large. On the other hand, if the porosity exceeds 80%, the specified strength cannot be maintained, and the patilla may leak.
なお、 上記気孔率は、 例えば、 水銀圧入法、 アルキメデス法及び走査型電子顕 微鏡 (S E M) による測定等、 従来公知の方法により測定することができる。 このようなセラミックブロックを製造する際に使用する原料粒子の粒径として は、後の焼成工程で収縮が少ないものが望ましく、 例えば、 0. 5〜100 /x m程度の 平均粒子径を有するセラミック粒子 (炭化珪素) と、 0. 5〜20 /z m程度の平均粒 径を有するシリコン (金属珪素) とを用いることが望ましい。 上記粒径のセラミ ック粒子粉末を用いることで、 上述した気孔率及び平均気孔径の多孔質セラミツ クからなるセラミックプロックを製造することができるからである。 The porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, and a measurement using a scanning electron microscope (SEM). As the particle size of the raw material particles used in producing such a ceramic block, those having a small shrinkage in the subsequent firing step are desirable, for example, ceramic particles having an average particle size of about 0.5 to 100 / xm. It is desirable to use (silicon carbide) and silicon (metallic silicon) having an average particle size of about 0.5 to 20 / zm. Ceramics of the above particle size This is because the use of the black particle powder enables the production of a ceramic block composed of the porous ceramic having the above-mentioned porosity and average pore diameter.
なお、本発明におけるセラミック部材を構成する 「シリコン」 は、金属珪素、 結 晶性珪素、 アモルファス珪素を含む概念であるが、金属珪素を用いることが好まし い実施の形態である。  The “silicon” constituting the ceramic member in the present invention is a concept including metallic silicon, crystalline silicon, and amorphous silicon, but is an embodiment in which metallic silicon is preferably used.
ところで、 本発明の特徴は、 前記セラミック焼結体よりなるセラミック部材が、 主として炭化珪素、 シリコンおよび窒化珪素からなる多孔質焼結体にて構成され ていることにある。 なお、炭化珪素、 窒化珪素、シリコン等の判断は、 X線回折 (JIS K0131 - 1996) 等によって確認することができる。  By the way, the feature of the present invention is that the ceramic member made of the ceramic sintered body is made of a porous sintered body mainly made of silicon carbide, silicon and silicon nitride. The determination of silicon carbide, silicon nitride, silicon, etc. can be confirmed by X-ray diffraction (JIS K0131-1996).
上記の多孔質焼結体は、 耐火性粒子である炭化珪素粉末の結合に金属珪素を利 用することで、 製造時において比較的低い温度でも焼成することができ、 製造コ ストを抑えることができるようになるとともに、 歩留まりを向上させることがで きる点で有利である。 このような構成にすると、 ガラス質を結合剤としたものに 比べると、 高い熱伝導性を得ることができ、 そのため、 D P Fとして用いた場合 に、 フィルタ再生のために堆積したパティキュレートを燃焼させても、 フィルタ を損傷させるような局所的な温度上昇を阻止することができる。  The above-mentioned porous sintered body can be fired even at a relatively low temperature during production by using metallic silicon for bonding of silicon carbide powder as refractory particles, thereby suppressing production costs. This is advantageous in that it is possible to improve the yield. With such a configuration, higher thermal conductivity can be obtained as compared with the case where the binder is made of vitreous. Therefore, when used as a DPF, the particulates deposited for filter regeneration are burned. However, it is possible to prevent a local temperature rise that may damage the filter.
すなわち、 本発明にかかるハニカムフィルタは、 炭化珪素粉末および金属珪素 粉末の他に、 窒化珪素を含有しており、 炭化珪素粉末や金属珪素粉末の表面に、 該窒化珪素の膜を形成してなる点に特徴がある。  That is, the honeycomb filter according to the present invention contains silicon nitride in addition to the silicon carbide powder and the metal silicon powder, and is formed by forming a film of the silicon nitride on the surface of the silicon carbide powder or the metal silicon powder. There is a feature in the point.
このような構成を有するフィルタが D P Fとして用いられた場合、 燃料中に含 有する硫黄分等の燃焼により発生した酸性ガスに晒されても金属珪素の溶解に起 因する破壊等が発生するようなことがない。 しかも、 これを触媒担体として用い た場合には、 アルカリ成分である触媒を担持させても、 金属珪素の溶解に起因し て破壊等が発生するようなこともない。 さらには、 強度が向上しているために、 走行中の振動等により破壊等が発生する可能性がなくなる。  When a filter having such a configuration is used as a DPF, even if the filter is exposed to an acid gas generated by combustion of sulfur contained in fuel or the like, destruction or the like caused by dissolution of metallic silicon occurs. Nothing. Moreover, when this is used as a catalyst carrier, even if a catalyst which is an alkali component is supported, no destruction or the like is caused by the dissolution of metallic silicon. Furthermore, since the strength is improved, there is no possibility that breakage or the like will occur due to vibration or the like during traveling.
本発明にかかる排気ガス浄化用フィルタを構成する多孔質焼結体 (セラミック 部材は、 上述したように、 窒化珪素を含有したものであるが、 その含有量は、 0. 1 〜30重量%¾gであることが好ましく、 1. 0〜18重量 がより好ましく、 3~ 13重量%が最も好ましい範囲である。 The porous sintered body constituting the exhaust gas purifying filter according to the present invention (the ceramic member contains silicon nitride as described above, but the content is 0.1%). 3030% by weight¾g, more preferably 1.0-18% by weight, and most preferably 3-13% by weight.
上記窒化珪素量が 0. 1 重量%未満では、 窒化珪素膜がほとんどない状態になり、 上記のような効果が得られなくなるため好ましくないと考えられる。 一方、 この 窒化珪素量が 30重量%を越えると、 結合部のシリコンの大部分が窒化し、 または 窒化珪素のゥイス力が多量に生成されて、結合部の密度が低下し、 それに起因する 熱伝導率の低下と、熱衝撃性の低下とを招き、 さらには強度の低下を招くようにな るため好ましくない。  If the amount of silicon nitride is less than 0.1% by weight, there is almost no silicon nitride film, and the above effects cannot be obtained. On the other hand, if the amount of silicon nitride exceeds 30% by weight, most of the silicon in the bonding portion is nitrided, or a large amount of silicon nitride force is generated, and the density of the bonding portion is reduced. It is not preferable because it causes a decrease in conductivity and a decrease in thermal shock resistance, and further, a decrease in strength.
本発明において、 セラミック部材中の窒化珪素の量は、 JIS R1603— 1994 に規 定された 「ファインセラミックス用窒化珪素微粉末の化学分析方法」 に準じて、加 圧酸分解、水蒸気蒸留分離、中和滴定法により、 窒素量を測定し、 窒化珪素 (Si3NIn the present invention, the amount of silicon nitride in the ceramic member is determined by pressurized acid decomposition, steam distillation separation, and medium pressure in accordance with “Chemical analysis method of silicon nitride fine powder for fine ceramics” specified in JIS R1603-1994. The amount of nitrogen was measured by the sum titration method, and silicon nitride (Si 3 N
4) の量に換算したものである。 4 ).
なお、 上記窒素成分は、 炭化珪素粉末および金属珪素粉末の表面もしくはそれ らの周辺に、 a Si3N4や ]3 Si3N4が単一もしくは混在した状態で存在し、 その表面 はゥイスカーもしくは繊維状物質が一部生成した形態で存在し、 その結果、 耐酸 化性、 耐アルカリ性に優れ、 触媒担体としての化学的安定性を向上させるという 効果をもたらす。 The nitrogen component is present on or around the surfaces of the silicon carbide powder and the metal silicon powder in the form of a Si 3 N 4 or] 3 Si 3 N 4 singly or in a mixed state. Alternatively, a fibrous substance exists in a partially formed form, and as a result, it has an effect of being excellent in oxidation resistance and alkali resistance, and improving the chemical stability as a catalyst carrier.
本発明にかかるハニカムフィルタ力 図 1に示した集合体型ハニカムフィルタで ある場合、 シール材層 1 3、 1 4は、 多孔質セラミック部材 2 0間、 及び、 セラ ミックブロック 1 5の外周に形成されている。 そして、 多孔質セラミック部材 2 0間に形成されたシール材層 1 4は、 複数の多孔質セラミック部材 2 0同士を結 束する接着剤として機能し、 一方、 セラミックブロック 1 5の外周に形成された シール材層 1 3は、 本発明のハニカムフィルタを、 内燃機関の排気通路に設置し、 排ガス浄化装置として使用する場合、 セラミックブ口ック 1 5の外周から排気ガ スが漏れ出すことを防止するための封止材として機能する。  Honeycomb Filter Force According to the Present Invention In the case of the aggregated honeycomb filter shown in FIG. 1, the sealing material layers 13 and 14 are formed between the porous ceramic members 20 and on the outer periphery of the ceramic block 15. ing. The sealing material layer 14 formed between the porous ceramic members 20 functions as an adhesive for binding the plurality of porous ceramic members 20 together, and is formed on the outer periphery of the ceramic block 15. When the honeycomb filter of the present invention is installed in an exhaust passage of an internal combustion engine and used as an exhaust gas purifying device, the sealing material layer 13 prevents exhaust gas from leaking from the outer periphery of the ceramic block 15. Functions as a sealing material for prevention.
なお、 上述した通り、 本発明のハニカムフィルタにおいて、 シール材層は、 多 孔質セラミック部材間、 及び、 セラミックブロックの外周に形成されているが、 これらのシール材層は、 同じ材料からなるものであってもよく、 異なる材料から なるものであってもよい。 さらに、 上記シール材層が同じ材料からなるものであ る場合、 その材料の配合比は同じものであってもよく、 異なるものであってもよ い。 As described above, in the honeycomb filter of the present invention, the sealing material layer is formed between the porous ceramic members and on the outer periphery of the ceramic block. These sealing material layers may be made of the same material, or may be made of different materials. Further, when the sealing material layers are made of the same material, the compounding ratio of the materials may be the same or different.
集合型ハエカムフィルタにおける上記シール材層を構成する材料としては、 例 えば、 無機バインダーや、 有機バインダー、 無機繊維及び/または無機粒子から 選ばれるいずれか一種以上からなるものを使用することができる。 このシール材 層は、 前記多孔質セラミック部材の^ II、 とくに多孔質セラミック焼結体との間 に形成されるが、 これらのシール材層は、 同じ材料からなるものであってもよく、 また、 異なる材料からなるものであってもよい。 さらに、 上記シール材層が同じ 材料からなるものである場合、 その材料の配合比は同じであってもよく、 また、 異なるものであってもよい。  As a material constituting the sealing material layer in the collective honeycomb filter, for example, a material comprising at least one selected from an inorganic binder, an organic binder, inorganic fibers, and / or inorganic particles can be used. . The sealing material layer is formed between the porous ceramic member and the porous ceramic sintered body, in particular, these sealing material layers may be made of the same material. However, they may be made of different materials. Further, when the sealing material layers are made of the same material, the compounding ratio of the materials may be the same or different.
上記無機バインダーとしては、 例えば、 シリカゾル、 アルミナゾル等を使用す ることができる。 これらは、 単独で用いてもよく、 2種以上を混合して用いても よい。 上記無機バインダーのなかでは、 シリカゾルを使用することが望ましい。 上記有機バインダーとしては、 例えば、 ポリビエルアルコール、 メチルセル口 ース、 カルボキシメチルセルロース等を使用することができる。 これらは、 単独 で用いてもよく、 2種以上を混合して用いてもよい。 上記有機バインダーの中で はとくに、 カルボキシメチルセルロースを使用することが望ましい。  As the inorganic binder, for example, silica sol, alumina sol and the like can be used. These may be used alone or as a mixture of two or more. Among the above inorganic binders, it is desirable to use silica sol. As the organic binder, for example, polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose and the like can be used. These may be used alone or as a mixture of two or more. It is particularly desirable to use carboxymethyl cellulose among the above organic binders.
上記無機繊維としては、 例えば、 シリカ一アルミナや、 ムライト、 アルミナ、 シリカ等からなるセラミックファイバ一等を使用することができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 上記無機繊維のなかではシリ カーアルミナファイバーが望ましい。  As the inorganic fiber, for example, silica-alumina, ceramic fiber made of mullite, alumina, silica or the like can be used. These may be used alone or in combination of two or more. Among the above inorganic fibers, silica alumina fibers are desirable.
上記無機粒子としては、 例えば、 炭化物や、 窒化物等を使用することができ、 具体的には、 炭化珪素や、 窒化珪素、 窒化硼素等からなる無機粉末又はウイスカ 等を使用することができる。 これらは、 単独で用いてもよく、 2種以上を併用し てもよい。 上記無機粒子の中ではとくに、 熱伝導性に優れる炭化珪素が望ましい。 上記シール材層は、 緻密体からなるもの、 または多孔質体であってもよいが、 本発明のフィルタを内燃機関の排気通路に設置する場合、 セラミックブロックの 外周から排気ガスが漏れ出すことを防止する必要があるから、 緻密体層からなる ものにすることが望ましい。 As the inorganic particles, for example, a carbide, a nitride, or the like can be used. Specifically, an inorganic powder made of silicon carbide, silicon nitride, boron nitride, or the like, a whisker, or the like can be used. These may be used alone or in combination of two or more. Among the above-mentioned inorganic particles, silicon carbide having excellent thermal conductivity is particularly desirable. The sealing material layer may be made of a dense body or a porous body.However, when the filter of the present invention is installed in an exhaust passage of an internal combustion engine, it is necessary to prevent the exhaust gas from leaking from the outer periphery of the ceramic block. Since it is necessary to prevent this, it is preferable to use a dense body layer.
本発明のハニカムフィルタは、 集合体型ハニカムフィルタにすることで、 どの ような大きさのものでも、 部材の組み合わせによって、 簡単に製作が可能になる ものとなった。  By making the honeycomb filter of the present invention an aggregate-type honeycomb filter, any size can be easily manufactured by combining members.
ところで、 DPF の場合、 ススを捕集して再生させる力 S、一度に捕集できるスス量 が多くなれば、 スス再生までの期間がのびるため、燃費がよくなる。従って、 多量 のススを一度に捕集できるフィルタが望まれている。  By the way, in the case of DPF, if the power S for collecting and regenerating soot, and the amount of soot that can be collected at a time increases, the period until soot regeneration increases, leading to better fuel efficiency. Therefore, a filter capable of collecting a large amount of soot at a time is desired.
しかしながら、多量のススを一度に再生させると、ススの急激な燃焼によって高 温となり、フィルタブロックにクラックが発生することがある。この時のスス捕集 量をスス限界と呼んでいる。そこで、従来のスス限界値を上げるために、フィルタ強 度の予備実験を繰り返したところ、スス限界である 7 g / 1以上を満たすためのフ ィルタブロックの強度は、主として炭化珪素、シリコン、窒化珪素からなるフィルタ の場合には、 1 3 M P a以上であればよいことがわかった。即ち、 本発明にかかる ハニカムフィルタでは、セラミックブロックの強度を 1 3 M P a ¾g以上とするこ とによって、スス限界ィ直を上げることができるとの知見を得た  However, when a large amount of soot is regenerated at a time, the temperature becomes high due to rapid combustion of the soot, and cracks may occur in the filter block. The soot collection at this time is called the soot limit. Therefore, preliminary experiments on filter strength were repeated to raise the conventional soot limit value.The filter block strength to satisfy the soot limit of 7 g / 1 or more was mainly determined by silicon carbide, silicon, and nitride. In the case of a filter made of silicon, it has been found that the filter should be at least 13 MPa. That is, in the honeycomb filter according to the present invention, it has been found that by setting the strength of the ceramic block to 13 MPa ag or more, the soot limit can be increased.
特に、集合体型ハニカムフィルタの場合には、上述したような異なる素材のもの で接合することになるため、シール材の接着面や、シール材の強度自体が弱くなり、 一体型ハニカムフィルタと比べると、全体の強度が低下することがわかつた。その ような場合においても、一体型ハニカムフィルタと同等の強度を付与することが必 要であり、そのためには、個々のセラミック部材の強度を大きくすることによって、 全体の強度を向上させることができることがわかつた。  In particular, in the case of an aggregate type honeycomb filter, since the bonding is made of a different material as described above, the bonding surface of the sealing material and the strength itself of the sealing material are weakened, and compared with the integrated honeycomb filter. It was found that the overall strength was reduced. Even in such a case, it is necessary to provide the same strength as the integrated honeycomb filter, and for that purpose, the strength of each ceramic member can be increased to improve the overall strength. Gawakatsu.
そこで、 本発明では、 個々のセラミック部材の強度を 1 3 M P a以上とし、この ような範囲の強度をもつセラミック部材の複数を束ねて集合体型ハニカムフィル タとすれば、 一体型ハニカムフィルタと同等の強度を有するフィルタが得られる ことを知見した。 Therefore, in the present invention, if the strength of each ceramic member is set to 13 MPa or more and a plurality of ceramic members having such a range of strength are bundled to form an aggregated honeycomb filter, the same as an integrated honeycomb filter is obtained. Filter with a strength of I found that.
なお、 セラミック部材の強度を 1 3 M p a以上にするには、 窒化珪素の含有量 は、 0. 1〜30重量%程度にすることが必要であり、 1〜18 重量%程度がより好ま しい範囲である。  In order to increase the strength of the ceramic member to 13 Mpa or more, the content of silicon nitride needs to be about 0.1 to 30% by weight, and more preferably about 1 to 18% by weight. Range.
本発明にかかるハニカムフィルタは、 図 1〜3を用いて説明したように、 該ハ 二カムフィルタを構成するセラミックプロックのいずれか一方の端部における所 定の貫通孔に封止材で封止されていると、 ディーゼルエンジン等の内燃機関から 排出される排気ガス中のパティキュレートを捕集する排気ガス浄ィ匕用ハニカムフ ィルタとして好適に用いることができる。  As described with reference to FIGS. 1 to 3, the honeycomb filter according to the present invention is sealed in a predetermined through-hole at one end of the ceramic block constituting the honeycomb filter with a sealing material. When the exhaust gas is exhausted from an internal combustion engine such as a diesel engine, it can be suitably used as a honeycomb filter for exhaust gas purification that collects particulates in exhaust gas.
また、 本発明のハニカムフィルタを上記排気ガス浄化用ハニカムフィルタとし て使用する場合、 セラミックブロックの壁部には、 ハニカムフィルタに再生処理 を施す際、 パティキュレートの燃焼を促進するための P t、 R h、 P d等の触媒 を担持させてもよい。  Further, when the honeycomb filter of the present invention is used as the honeycomb filter for purifying exhaust gas, Pt for promoting the combustion of particulates when the regeneration process is performed on the honeycomb filter is provided on the wall of the ceramic block. A catalyst such as Rh and Pd may be supported.
また、 本発明のハニカムフィルタのセラミックブロックに、例えば、 P t、 R h P d等の貴金属又はこれらの合金等の触媒を担持させることで、 本発明のハニカ ムフィルタを内燃機関等の熱機関やボイラー等の燃焼装置等から排出される排気 ガス中の H C、 C O及び N O X等の浄ィヒや、 液体燃料又は気体燃料の改質等を行 う触媒担体として使用することができる。  In addition, the honeycomb filter of the present invention is supported on a ceramic block of the honeycomb filter of the present invention, for example, by supporting a catalyst such as a precious metal such as Pt and RhPd or an alloy thereof, thereby making the honeycomb filter of the present invention a heat engine such as an internal combustion engine or the like. It can be used as a catalyst carrier for purifying HC, CO and NOX in exhaust gas discharged from combustion equipment such as boilers, and for reforming liquid fuel or gaseous fuel.
なお、 本発明のハニカムフィルタを上記触媒担体として使用する場合、 上記封 止材は必ずしも必要でない。  When the honeycomb filter of the present invention is used as the catalyst carrier, the sealing material is not always necessary.
次に、 本発明の排気ガス浄化用ハニカムフィルタの製造方法について説明する 本発明にかかるハニカムフィルタを、図 1に示した集合型ハニカム構造体に適用 する場合は、 まず、 上述したようなセラミック粒子と金属シリコンとを主成分と する原料ペーストを用いて押出成形を行い、 図 2に示した多孔質セラミック部材 2 0と略同形状 (ハニカム状) のセラミック成形体を作製する。  Next, a method for manufacturing a honeycomb filter for purifying exhaust gas of the present invention will be described. When the honeycomb filter according to the present invention is applied to the aggregated honeycomb structure shown in FIG. Extrusion molding is performed using a raw material paste mainly composed of silicon and metallic silicon to produce a ceramic molded body having substantially the same shape (honeycomb shape) as the porous ceramic member 20 shown in FIG.
また、 図 3に示したような、 その全体が一体として形成された一体型ハニカム 構造体に適用する場合においても、 上述したようなセラミック粒子と金属シリコ ンとを主成分とする原料ペーストを用いて押出成形を行い、 図 3に示したハニカ ムフィルタ 3 0と略同形状のセラミック成形体を作製する。 In addition, when applied to an integral honeycomb structure integrally formed as a whole as shown in FIG. 3, the above-described ceramic particles and metal silicon Extrusion molding is carried out using a raw material paste mainly composed of ceramics and a ceramic molded body having substantially the same shape as the honeycomb filter 30 shown in FIG.
上記原; f¾ ーストは、 製造後のセラミックブロックの気孔率が 30~80%となる ものであることが望ましく、 例えば、 炭化珪素粒子粉末 (平均粒子径 0. 5〜100 /i m) と金属シリコン粉末(平均粒子径 0. 5〜20 111程度)とからなる混合粉末に、 バインダ一、 必要に応じて気孔率を高めることを目的とした造孔剤、 及び分散媒 液を加えたものが使用される。  It is desirable that the above-mentioned raw material has a porosity of 30 to 80% of the ceramic block after production. For example, silicon carbide particle powder (average particle size 0.5 to 100 / im) and metallic silicon A mixture of powder (average particle diameter of about 0.5 to 20111) and a binder, a pore-forming agent for increasing porosity if necessary, and a dispersion medium are used. Is done.
なお、 炭化珪素粉末原料や金属珪素原料の中には、 Fe、 Al、 Ca などの微量の不 純物を含有する場合があるが、 そのまま使用してもよく、 薬品洗浄などの化学的 な処理を施して精製したものを用いてもよい。  In addition, silicon carbide powder raw materials and metallic silicon raw materials may contain trace impurities such as Fe, Al, and Ca, but may be used as they are, and may be used for chemical treatment such as chemical cleaning. And purified.
上記金属シリコン粉末は、 後述する脱脂処理後の焼成処理中に溶けてセラミッ ク粒子の表面を濡らし、 セラミック粒子同士を結合する接合材としての役割を担 。  The metal silicon powder melts during the firing process after the degreasing process described later, wets the surface of the ceramic particles, and plays a role as a bonding material for bonding the ceramic particles.
また、上記金属シリコン粉末の配合量は、 セラミック粒子粉末の粒径や形状等に よって適宜変わるものであるが、 上記混合粉末 100 重量部に対して、 5〜50 重量 部程度であることが好ましく、 10〜40重量部であることがより好ましく、 15〜30 重量部であることが最も好ましい。  The amount of the metal silicon powder varies depending on the particle size and shape of the ceramic particle powder, but is preferably about 5 to 50 parts by weight based on 100 parts by weight of the mixed powder. , More preferably 10 to 40 parts by weight, most preferably 15 to 30 parts by weight.
5 重量部未満であると、 金属シリコン粉末の配合量が少なすぎ、 セラミック粒 子同士を結合する結合材として充分に機能することができず、 得られるハニカム セラミック (セラミックブロック) の強度が不充分となることがある。  If the amount is less than 5 parts by weight, the amount of the metal silicon powder is too small to function sufficiently as a bonding material for bonding the ceramic particles, and the strength of the obtained honeycomb ceramic (ceramic block) is insufficient. It may be.
—方、 50重量部を超えると、 得られるハニカムセラミックが緻密化しすぎ、 気 孔率が低くなり、 上述した本発明の効果を充分に享受することができなくなるこ とがある。 また、 例えば、 本発明のハニカムセラミックを上記フィルタとして使 用する場合、 パティキュレート捕集中の圧力損失がすぐに大きくなり、 フィルタ として充分に機能することができなくなるおそれがある。  On the other hand, if it exceeds 50 parts by weight, the obtained honeycomb ceramic becomes too dense, the porosity becomes low, and the above-mentioned effect of the present invention may not be sufficiently obtained. Further, for example, when the honeycomb ceramic of the present invention is used as the filter, the pressure loss due to the concentration of the particulates becomes large immediately, and there is a possibility that the filter cannot function sufficiently as a filter.
上記バインダーとしては、例えば、 メチルセルロース、 カルボキシメチルセル口 ース、 ヒ ドロキシェチルセルロース、 ポリエチレングリコール、 フエノール樹脂. エポキシ樹脂等が用いられる。 Examples of the binder include methylcellulose, carboxymethylcellulose, hydroxyshethylcellulose, polyethylene glycol, and phenol resin. Epoxy resin or the like is used.
上記バインダーの配合量は、 通常、 セラミック粒子粉末 1 0 0重量部に対して、 1〜 1 0重量部程度が好ましい。  Usually, the amount of the binder is preferably about 1 to 10 parts by weight based on 100 parts by weight of the ceramic particle powder.
上記分散媒液としては、 例えば、 ベンゼン等の有機溶媒、メタノール等のアルコ ール、 水等を使用することができる。  As the dispersion medium liquid, for example, an organic solvent such as benzene, an alcohol such as methanol, or water can be used.
上記分散媒液は、 原料ペーストの粘度が一定範囲内となるように、 適量配合さ れる。  The dispersion medium liquid is mixed in an appropriate amount so that the viscosity of the raw material paste falls within a certain range.
これらの混合粉末、 バインダー及び分散媒液は、 アトライター等で混合し、 ェ ーダ一等で充分に混練して原料ペーストとした後、 該原料ペーストを押出成形し て上記セラミック成形体を作製する。  The mixed powder, the binder and the dispersion medium are mixed with an attritor or the like, sufficiently kneaded with an abrader or the like to obtain a raw material paste, and the raw material paste is extruded to form the ceramic molded body. I do.
また、 上記原料ペース トには、 必要に応じて成形助剤を添加してもよい。  Further, a molding aid may be added to the raw material paste as needed.
上記成形助剤としては、 例えば、 エチレングリコール、 デキストリン、 脂肪酸 石鹼、 ポリアルコール等が用いられる。  As the molding aid, for example, ethylene glycol, dextrin, fatty acid stone, polyalcohol and the like are used.
さらに、 上記原料ペーストには、 必要に応じて酸化物系セラミックを成分とす る微小中空球体であるバルーンや、 球状アクリル粒子、 グラフアイト等の造孔剤 を添加してもよレ、。  Further, the raw material paste may be added, if necessary, with a pore-forming agent such as a balloon, which is a fine hollow sphere containing an oxide-based ceramic as a component, spherical acrylic particles, and graphite.
上記バルーンとしては、例えば、 アルミナバルーン、 ガラスマイクロバルーン、 シラスバノレーン、 フライアッシュバ —ン (F Αバノレーン) 及びムラィ トノ ノレ一 ン等が用いられる。 これらのなかでは、 フライアッシュバルーンが望ましい。 そして、 上記セラミック成形体を、 マイクロ波乾 、 熱風乾 、 誘電乾燥 機、 減圧乾燥機、 真空乾 及び凍結乾 等を用いて乾燥させてセラミック乾 燥体とした後、 所定の貫通孔に封止材となる封止材ペーストを充填し、 上記貫通 孔に目封じする封止処理を施す。  As the above-mentioned balloon, for example, alumina balloon, glass microballoon, shirasu vanolane, fly ash van (FFbanolane), muratononoren and the like are used. Of these, fly ash balloons are preferred. Then, the ceramic molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to form a ceramic dry body, which is then sealed in a predetermined through hole. A sealing material paste serving as a material is filled, and a sealing process is performed to plug the through hole.
上記封止材ペーストとしては、例えば、 上記原料ペーストと同様のものが用いる ことができる。  As the sealing material paste, for example, the same paste as the above-mentioned raw material paste can be used.
次に、 上記封止材ペーストが封止されたセラミック乾燥体を 150〜700°C程度に 加熱して、 上記セラミック乾燥体に含まれるバインダーを除去し、 セラミック脱 脂体とする脱脂処理を施す。 Next, the dried ceramic body sealed with the sealing material paste is heated to about 150 to 700 ° C. to remove the binder contained in the dried ceramic body, and the ceramic is removed. A degreasing treatment for forming a fat body is performed.
上記脱脂処理は、 上記金属シリコンが溶融する温度よりも低い温度にて実施す ることが望ましく、 また、 その脱脂雰囲気は、 酸化性雰囲気であってもよく、 窒 素やアルゴン等の不活性ガス雰囲気であってもよい。 なお、 上記脱脂雰囲気は、 使用するバインダ一の量やセラミック粒子の種類等を考慮して適宜最適な雰囲気 が選択される。  The degreasing treatment is desirably performed at a temperature lower than the temperature at which the metal silicon melts. The degreasing atmosphere may be an oxidizing atmosphere, and may be an inert gas such as nitrogen or argon. It may be an atmosphere. As the degreasing atmosphere, an optimum atmosphere is appropriately selected in consideration of the amount of the binder used, the type of the ceramic particles, and the like.
次に、 上記セラミック脱脂体をアルゴン雰囲気中で 1500°C程度に加熱し、 1〜 30 分の本焼成を行う。 すると、 金属シリコン粉末を軟ィヒ (溶融) させ、 セラミツ ク粒子がシリコンを介して結合されて、 多孔質セラミックとなり、 その全体が一 体として形成されたハニカム構造体 (セラミックブロック) を製造することがで さる。  Next, the ceramic degreased body is heated to about 1500 ° C. in an argon atmosphere, and subjected to main firing for 1 to 30 minutes. Then, the metallic silicon powder is softened (melted), and the ceramic particles are bonded via silicon to form a porous ceramic, which produces a honeycomb structure (ceramic block) formed integrally as a whole. That's a thing.
さらに、 窒素雰囲気下において、 熱処理することにより炭化珪素粉末および金 属珪素粉末の表面もしくはそれらの周辺に窒化珪素の相を有する炭化珪素質多孔 体からなる排気ガス浄化用ハニカムフィルタを製造することができる。  Further, it is possible to produce a honeycomb filter for purifying exhaust gas comprising a silicon carbide porous body having a phase of silicon nitride on or around the surfaces of silicon carbide powder and metal silicon powder by heat treatment in a nitrogen atmosphere. it can.
本発明の浄化用ハニカムフィルタの製造において重要なことは、 窒素雰囲気中 での前記熱処理を 800〜1400 °Cの温度範囲で実施することが好ましく、 1000〜 1350 °Cの 範囲で実施することがより好ましい。 800 °C未満の場合には窒ィ匕珪 素の相の形成が不十分であり、 逆に 1400 °Cを超える場合には、 金属珪素の融点 に近くなり、 所定の形状を保てない場合があるため好ましくない。 したがって、 上記温度範囲で熱処理するという本発明の浄化用ハニカムフィルタの製造方法に よれば、 窒素量に換算して 0. 1〜30重量%の窒素珪素の相を効果的に形成するこ とができる。  What is important in the production of the purification honeycomb filter of the present invention is that the heat treatment in a nitrogen atmosphere is preferably performed in a temperature range of 800 to 1400 ° C, and is preferably performed in a range of 1000 to 1350 ° C. More preferred. When the temperature is lower than 800 ° C, the formation of the silicon nitride phase is insufficient, and when the temperature is higher than 1400 ° C, the melting point of the silicon metal becomes close to the predetermined shape. It is not preferable because there is. Therefore, according to the purification honeycomb filter manufacturing method of the present invention in which the heat treatment is performed in the above temperature range, it is possible to effectively form a phase of 0.1 to 30% by weight of nitrogen silicon in terms of nitrogen. it can.
また、 窒素雰囲気中での前記熱処理の時間は、 5 時間を越えない時間で実施す ることが好ましく、 0. 5〜4時間、 更に好ましくは、 1〜3 時間の熱処理の時間で 実施することがより好ましい。 0. 5 時間未満の場合には窒化珪素の相の形成が不 十分となる場合があり、 逆に、 4時間を超える場合には、 金属珪素の窒化が進みす ぎる場合があるため好ましくない。 したがって、 上記温度範囲で熱処理するとい う本発明の排気ガス浄化用ハニカムフィルタの製造方法によれば、 窒素量に換算 して 0. 1〜30重量%の窒素珪素の相を効果的に形成することができる。 The heat treatment time in a nitrogen atmosphere is preferably not more than 5 hours, more preferably 0.5 to 4 hours, and more preferably 1 to 3 hours. Is more preferred. If the time is less than 0.5 hours, the formation of the silicon nitride phase may be insufficient. On the other hand, if the time exceeds 4 hours, the nitridation of the metallic silicon may progress too much, which is not preferable. Therefore, heat treatment in the above temperature range According to the method for manufacturing a honeycomb filter for purifying exhaust gas of the present invention, a phase of 0.1 to 30% by weight of nitrogen silicon in terms of nitrogen can be effectively formed.
なお、 従来技術の特許文献 7は、 窒素雰囲気において、 1600°C、 5時間保持し たので、 金属珪素が窒化珪素に全て転化しており、 ハエカムフィルタが、 窒化珪 素と炭化珪素のみからなり、 その中で窒素量に換算して 31重量%以上の窒素珪素 の相となっている。  In Patent Document 7 of the prior art, since the metal silicon was completely converted to silicon nitride because it was kept at 1600 ° C. for 5 hours in a nitrogen atmosphere, the honeycomb filter was made of only silicon nitride and silicon carbide. Among them, it is a nitrogen silicon phase of 31% by weight or more in terms of nitrogen amount.
なお、 前記熱処理は本焼成から連続して行ってもよく、 また、 本焼成の後、 一 旦冷却してから行ってもよい。  The heat treatment may be performed continuously from the main firing, or may be performed after cooling once after the main firing.
上述の如く製造された本発明のハニカム構造体は、 セラミックプロックの所定 の貫通孔の一端に封止材が充填された構造であり、 上述したハニカムフィルタと して好適に用いることができる。 また、 この場合、 上記セラミックブロックの壁 部には、 ハニカムフィルタに再生処理を施す際、 パティキュレートの燃焼を促進 するための P t等の触媒を担持させてもよい。  The honeycomb structure of the present invention manufactured as described above has a structure in which a sealing material is filled at one end of a predetermined through-hole of a ceramic block, and can be suitably used as the above-described honeycomb filter. In this case, a catalyst such as Pt for promoting the combustion of particulates may be carried on the wall of the ceramic block when the honeycomb filter is subjected to the regeneration treatment.
なお、 本発明にかかるハニカムフィルタを内燃機関等の熱機関やボイラー等の 燃焼装置等から排出される排気ガス中の H C、 C O及び N O X等の浄ィヒや、 液体 燃料又は気体燃料の改質等を行う触媒担体として使用する場合、 上記セラミック ブロックの壁部に P t、 R h、 P d等の貴金属又はこれらの合金等の触媒を担持 させればよい。 この場合、 上述した充填材を充填する封止処理は必ずしも必要で ない。  In addition, the honeycomb filter according to the present invention can be used to purify HC, CO and NOX in exhaust gas discharged from a heat engine such as an internal combustion engine or a combustion device such as a boiler, or to reform a liquid fuel or a gaseous fuel. When used as a catalyst carrier for carrying out the above, a catalyst such as a noble metal such as Pt, Rh, or Pd or an alloy thereof may be supported on the wall of the ceramic block. In this case, the sealing treatment for filling the above-mentioned filler is not always necessary.
本発明にかかるハニカムフィルタの構造が、 図 1に示したような、 多孔質セラ ミック部材がシール材層を介して複数個結束されて構成された集合体型ハニカム 構造体である場合、 まず、 上述した方法で、 多孔質セラミック部材を製作する。 次に、 多孔質セラミック部材 2 0の側面に、 シール材層 1 4となるシール材ぺ ーストを均一な厚さで塗布して順次他の多孔質セラミック部材 2 0を積層するェ 程を繰り返し、 所定の大きさの角柱状の多孔質セラミック部材 2 0の積層体を作 製する。  When the structure of the honeycomb filter according to the present invention is an aggregate-type honeycomb structure formed by binding a plurality of porous ceramic members via a sealing material layer as shown in FIG. In this way, a porous ceramic member is manufactured. Next, a process of applying a sealing material paste to be a sealing material layer 14 with a uniform thickness on the side surface of the porous ceramic member 20 and sequentially laminating another porous ceramic member 20 was repeated, A laminate of a prismatic porous ceramic member 20 of a predetermined size is produced.
なお、 上記シーノレ材ペーストを構成する材料としては、 上述したようなハニカ ムフィルタにおいて説明したのでここではその説明を省略する。 In addition, as a material constituting the above-mentioned scenery material paste, Since the description has been made with respect to the system filter, its description is omitted here.
次に、 この多孔質セラミック部材 2 0の積層体を加熱してシール材ペースト層 5 1を乾燥、 固化させてシール材層 1 4とし、 その後、 例えば、 ダイヤモンド力 ッタ一等を用いて、 その外周部を図 1に示したような形状に切削することで、 セ ラミックブロック 1 5を作製する。  Next, the laminate of the porous ceramic members 20 is heated to dry and solidify the sealing material paste layer 51 to form a sealing material layer 14. Thereafter, for example, using a diamond force cutter or the like, The outer peripheral portion is cut into the shape shown in FIG. 1 to produce the ceramic block 15.
そして、 セラミックブロック 1 5の外周に上記シール材ペーストを用いてシ一 ノレ材層 1 3を形成することで、 多孔質セラミック部材がシール材層を介して複数 個結束されて構成された本発明にかかるハニカムフィルタを製造することができ る。  The present invention in which a plurality of porous ceramic members are bound together via the sealing material layer by forming a ceramic material layer 13 on the outer periphery of the ceramic block 15 using the sealing material paste described above. The honeycomb filter according to (1) can be manufactured.
その製造されたハュカム構造体は、 セラミックブロック (多孔質セラミック部 材) の所定のセルの一端に封止材が充填されたものであり、 上述したハニカムフ ィルタとして好適に用いることができる。 また、 この場合、 上記セラミックプロ ックの壁部 (多孔質セラミック部材の隔壁) には、 ハニカムフィルタに再生処理 を施す際、 パティキュレートの燃焼を促進するための P t等の触媒を担持させて もよい。  The manufactured honeycomb structure is obtained by filling one end of a predetermined cell of a ceramic block (porous ceramic member) with a sealing material, and can be suitably used as the above-described honeycomb filter. Also, in this case, a catalyst such as Pt for promoting the burning of particulates is carried on the honeycomb filter wall (partition wall of the porous ceramic member) when the honeycomb filter is subjected to the regeneration treatment. You may.
なお、 上記集合型ハニカム構造体は、一体型ノ、二カム構造体と同様に、 触媒担体 として使用することもでき、 その際には、上記セラミックブロックの壁部に P t、 R h、 P d等の貴金属又はこれらの合金等の触媒を担持させればよい。 この場合 にも、 上述した充填材を充填する封止処理は必ずしも必要でなレ、。  In addition, the above-mentioned collective honeycomb structure can be used as a catalyst carrier similarly to the one-piece and two-cam structures, and in that case, Pt, Rh, P A catalyst such as a noble metal such as d or an alloy thereof may be supported. Also in this case, the sealing treatment for filling the above-mentioned filler is not necessarily required.
次に、本発明にかかるハニカムフィルタを用いた排気ガス浄ィ匕装置について説明 する。  Next, an exhaust gas purifying apparatus using the honeycomb filter according to the present invention will be described.
本発明のハニカムフィルタを上述したようなフィルタとして使用する場合、 図 6に示した車両の排気ガス浄化装置に設置することが望ましい。  When the honeycomb filter of the present invention is used as the above-described filter, it is desirable to install the honeycomb filter in the vehicle exhaust gas purification device shown in FIG.
図 6は、 本発明のハニカムフィルタが設置された車両の排気ガス浄化装置の一 例を模式的に示した断面図である p Figure 6 is a cross-sectional view schematically showing one example of an exhaust gas purifying device for a vehicle which the honeycomb filter is installed in the present invention p
図 6に示したように、 排気ガス浄化装置 6 0 0は、 主に、 本発明にかかるハニ カムフィルタ 6 0、 ハニカムフィルタ 6 0の外方を覆うケ一シング 6 3 0、 及び ハニカムフィルタ 6 0とケーシング 6 3 0との間に配置された保持シール材 6 2 0から構成されており、 ケーシング 6 3 0の排気ガスが導入される側の端部には、 エンジン等の内燃機関に連結された導入管 6 4 0が接続されており、 ケーシング 6 3 0の他端部には、 外部に連結された排出管 6 5 0が接続されている。 なお、 図 6中、 矢印は排気ガスの流れを示している。 As shown in FIG. 6, the exhaust gas purifying apparatus 600 mainly includes a honeycomb filter 60 according to the present invention, a casing 630 covering the outside of the honeycomb filter 60, and It is composed of a holding sealing material 62 arranged between the honeycomb filter 60 and the casing 63 0, and an end of the casing 63 0 on the side where exhaust gas is introduced is provided with an internal combustion engine such as an engine. An introduction pipe 640 connected to the engine is connected, and a discharge pipe 650 connected to the outside is connected to the other end of the casing 630. The arrows in FIG. 6 indicate the flow of exhaust gas.
また、 図 6において、 ハニカムフィルタ 6 0の構造は、 図 1に示したハニカム フィルタ 1 0と同様であってもよく、 図 3に示したハニカムフィルタ 3 0と同様 であってもよい。  Further, in FIG. 6, the structure of the honeycomb filter 60 may be the same as the honeycomb filter 10 shown in FIG. 1 or the same as the honeycomb filter 30 shown in FIG.
さらに、 ハニカムフィルタ 6 0の壁部には、 パティキュレートの燃焼を促進す るための P t等の触媒が、 図示しない γアルミナ等からなる触媒サポート材を介 して担持されている。  Further, on the wall of the honeycomb filter 60, a catalyst such as Pt for promoting the combustion of the particulates is supported via a catalyst support material (not shown) made of γ-alumina or the like.
このような構成からなる排気ガス浄化装置 6 0 0では、 エンジン等の内燃機関 力 ら排出された排気ガスは、 導入管 6 4 0を通ってケーシング 6 3 0内に導入さ れ、 ハニカムフィルタ 6 0のセルから隔壁を通過してこの隔壁でパティキュレー トが捕集されて浄化された後、 排出管 6 5 0を通って外部へ排出されることとな る。  In the exhaust gas purifying apparatus 600 having such a configuration, exhaust gas exhausted from the power of an internal combustion engine such as an engine is introduced into the casing 630 through the introduction pipe 640, and the honeycomb filter After passing through the partition from the cell 0, the particulates are collected and purified by the partition, and then discharged to the outside through the discharge pipe 65.
また、 ハニカムフィルタ 6 0の隔壁で捕集したパティキュレートを燃焼除去す る再生処理は、 上記壁部に担持させた触媒を用いて連続的に、 又は、 ある程度堆 積させた後に定期的に行われる。  In addition, the regeneration treatment for burning and removing the particulates collected by the partition walls of the honeycomb filter 60 is performed continuously using the catalyst supported on the wall portion, or periodically after the catalyst is deposited to some extent. Will be
なお、 上記再生処理では、 排気ガスの流入側にヒータ等の加熱手段 6 1 0を設 け、 該加熱手段を用いて加熱されたガスをハニカムフィルタ 6 0の貫通孔の内部 へ流入させることで、 ハニカムフィルタ 6 0を加熱し、 隔壁に堆積したパティキ ュレートを燃焼除去させてもよい。  In the regeneration process, a heating means such as a heater is provided on the exhaust gas inflow side, and the gas heated using the heating means is caused to flow into the inside of the through-hole of the honeycomb filter 60. Alternatively, the honeycomb filter 60 may be heated to burn and remove the particulates deposited on the partition walls.
また、 ポストインジェクション方式を用いて排気ガスを高温にしてパティキュ レートを燃焼除去してもよい。  Alternatively, the particulates may be burned and removed by raising the temperature of the exhaust gas using a post-injection method.
上記排気ガス浄化装置 6 0 0において、 本発明にかかるハニカムフィルタ 6 0 は、 その外周に保持シール材 6 2 0が巻き付けられた状態でケーシング 6 3 0の 内部に押し込むようにして設置される。 この際、 本発明にかかるハニカムフィル タ 6 0には、 相当な圧縮荷重がかかり、 その内部に大きな内部応力が生じるが、 上述した通り、 本発明にかかるハニカムフィルタ 6 0は、 強度に優れたものであ るため、 クラック等が発生することなく、 ケーシング 6 3 0内に設置することが できる。 実施例 In the exhaust gas purifying apparatus 600 described above, the honeycomb filter 60 according to the present invention has a casing 6330 in a state where the holding sealing material 620 is wound around the outer periphery thereof. It is installed so as to be pushed inside. At this time, a considerable compressive load is applied to the honeycomb filter 60 according to the present invention, and a large internal stress is generated therein. However, as described above, the honeycomb filter 60 according to the present invention has excellent strength. Therefore, it can be installed in the casing 630 without generating cracks or the like. Example
以下、 本宪明にかかるハニカムフィルタを実施例に基づいてさらに詳細に説明 するが、 本発明はこれらの実施例に限定されるものではない。  Hereinafter, the honeycomb filter according to the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
(実施例 1 )  (Example 1)
まず、平均粒径 30 x mの炭化珪素原料粉末 80重量0 /0と、 平均粒径 4 /x mの金属 珪素粉末 20重量%とを配合し、 得られた粉末 100重量部に対して有機バインダー としてメチルセルロース 10重量部、 可塑剤 2重量部、 潤滑剤 4重量部、 および水 20重量部を加えて、 均一に混合および混練して成形用の混練物を得た。 得られた 混練物を、 押出し成形機にて外形 35 睡、 長さ 150 隱、 隔壁厚さ 0. 3 瞧、 セノレ密 度 300セル _ 平方ィンチのハニカム形状に成形した。 First, the average particle size 30 silicon carbide raw material powder 80 weight 0/0 xm, blended with an average particle diameter of 4/20 wt% metal silicon powder xm, as an organic binder to the obtained powder to 100 parts by weight 10 parts by weight of methylcellulose, 2 parts by weight of a plasticizer, 4 parts by weight of a lubricant, and 20 parts by weight of water were added and uniformly mixed and kneaded to obtain a kneaded product for molding. The obtained kneaded product was formed into a honeycomb shape having an outer shape of 35 sleep, a length of 150 hidden, a partition wall thickness of 0.3 mm, a senor density of 300 cells_square inch by an extruder.
次いで、 マイクロ波乾;^を用いて上記成形体を乾燥させ、 その後、 上記生成 形体と同様の組成のペーストを各貫通孔の所定の端部に充填して封止した後、 再 び乾 を用いて乾燥させた。 この乾燥体を 400°Cで 30分間脱脂のための仮焼を 行い、 常圧のアルゴン雰囲気中で 1500 °C、 15分間焼成を行った。  Next, the molded body is dried using microwave drying; ^, and then a paste having the same composition as that of the formed molded body is filled in predetermined ends of the through holes and sealed, and then dried again. And dried. This dried body was calcined at 400 ° C for 30 minutes for degreasing, and calcined at 1500 ° C for 15 minutes in an argon atmosphere at normal pressure.
次に、上記焼結体を窒素雰囲気で 800 °C、 3時間の熱処理を行い、 X線回折で確 認すると、炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺に窒化珪 素の相を有する、気孔率が 60%である排気ガス浄化用多孔質ハニカムフィルタを 作製した。  Next, the above sintered body was subjected to a heat treatment at 800 ° C for 3 hours in a nitrogen atmosphere. When confirmed by X-ray diffraction, a phase of silicon nitride was found on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous honeycomb filter for purifying exhaust gas having a porosity of 60% was manufactured.
このようなハニカムフィルタの横断面を走査型電子顕微鏡 (SE ) で撮影した SEM写真を図 5に示す。  Fig. 5 shows an SEM photograph of a cross section of such a honeycomb filter taken with a scanning electron microscope (SE).
(実施例 2 ) 焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気で 900 °C、 3 時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。 (Example 2) The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 900 ° C. for 3 hours in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder A porous exhaust gas purifying honeycomb filter was fabricated.
(実施例 3 )  (Example 3)
焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気で 1000 °C、 3時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。  The process up to sintering is performed in the same manner as in Example 1, and the sintered body is subjected to a heat treatment at 1000 ° C. for 3 hours in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous exhaust gas purifying honeycomb filter was fabricated.
(実施例 4 )  (Example 4)
焼成までを前記実施例 1と同様に行レ、、 焼結体を窒素雰囲気で 1200 °C、 1時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。  The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1200 ° C. for 1 hour in a nitrogen atmosphere to form a phase of silicon nitride on or around the surfaces of the silicon carbide powder and the metal silicon powder. A honeycomb filter for purifying exhaust gas having a porous structure was prepared.
(実施例 5 )  (Example 5)
焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気で 1200 °C、 3時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。  The sintering is performed in the same manner as in Example 1 above, and the sintered body is subjected to a heat treatment at 1200 ° C. for 3 hours in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous exhaust gas purifying honeycomb filter was fabricated.
(実施例 6 )  (Example 6)
焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気で 1300 °C、 1時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。  The process up to sintering is performed in the same manner as in Example 1, and the sintered body is subjected to a heat treatment at 1300 ° C. for 1 hour in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous exhaust gas purifying honeycomb filter was fabricated.
(実施例 7 )  (Example 7)
焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気で 1300 °C、 3時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。 The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1300 ° C. for 3 hours in a nitrogen atmosphere, and the surface of the silicon carbide powder and the metal silicon powder or the vicinity thereof A porous honeycomb exhaust gas purifying filter having a silicon nitride phase was manufactured.
(実施例 8 )  (Example 8)
焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気で 1400 °C、 1時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。  The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1400 ° C. for 1 hour in a nitrogen atmosphere to have a silicon nitride phase on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous exhaust gas purifying honeycomb filter was fabricated.
(参考例 1 )  (Reference Example 1)
焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気中で 750 °C、 3 時 間の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周 辺に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製 した。  The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 750 ° C. for 3 hours in a nitrogen atmosphere, and silicon nitride was formed on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous exhaust gas purifying honeycomb filter having a phase was prepared.
(参考例 2 )  (Reference Example 2)
焼成までを前記実施例 1と同様に行い、 焼結体を窒素雰囲気で 1450 °C、 3時間 の熱処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有する多孔質である排気ガス浄化用ハニカムフィルタを作製し た。  The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment at 1450 ° C. for 3 hours in a nitrogen atmosphere to have a phase of silicon nitride on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous exhaust gas purifying honeycomb filter was fabricated.
(参考例 3 )  (Reference Example 3)
平均粒径 50 μ mの炭化珪素粉末 80重量%と、 平均粒径 10/i mの金属珪素粉末 20重量%との混合粉末 100重量部に、平均粒径 20 /2 mのアタリル樹脂系の球状粒 子を 20重量部添加し、さらに有機バインダーとしてメチルセルロース 10重量部、 可塑剤 2重量部、 潤滑剤 4重量部、 および水 20重量部を加えて、 均一に混合およ び混練して成形用の混練物を得た。 得られた混練物を、押出し成形機にて外形 35 瞧、 長さ 150 mra、 隔壁厚さ 0. 3 瞧、 セノレ密度 300セノレ/平方インチのハニカム形 状に成形した。  80% by weight of a silicon carbide powder with an average particle size of 50 μm and 20% by weight of a metal silicon powder with an average particle size of 10 / im 100 parts by weight of an ataryl resin-based sphere with an average particle size of 20/2 m Add 20 parts by weight of particles, add 10 parts by weight of methylcellulose as an organic binder, 2 parts by weight of plasticizer, 4 parts by weight of lubricant, and 20 parts by weight of water, and uniformly mix and knead for molding Was obtained. The obtained kneaded product was formed into a honeycomb shape having an outer shape of 35 mm, a length of 150 mra, a partition wall thickness of 0.3 mm, and a senore density of 300 sele / square inch by an extruder.
次に、 マイクロ波乾燥機を用いて上記成形体を乾燥させ、 その後、上記生成形体 と同様の組成のペーストを所定の貫通孔に充填して封止した後、 乾燥機を用いて 再び乾燥させる。 その乾燥体を 400 で 30 分間脱脂のための仮焼を行い、 窒素 雰囲気下で、 1000°Cまで 400°C/hで昇温した後、 1400°Cまで 400°O hで昇温し、さ らに 1400 °Cで 10時間の焼成を行って、 炭化珪素一窒化珪素の相を有するハニカ ム構造の多孔質焼結体を作製した。 なお、この多孔質焼結体を X線回折により調べ たところ、シリコンに対応するピークを見出すことができなかった。 Next, the molded body is dried using a microwave drier, and thereafter, a paste having the same composition as that of the generated molded body is filled in predetermined through holes and sealed, and then dried using a drier. Let dry again. The dried body is calcined for degreasing at 400 for 30 minutes, heated to 1000 ° C at 400 ° C / h in a nitrogen atmosphere, and then heated to 1400 ° C at 400 ° Oh, Further, firing was performed at 1400 ° C. for 10 hours to produce a porous sintered body having a honeycomb structure having a phase of silicon carbide mononitride. When the porous sintered body was examined by X-ray diffraction, no peak corresponding to silicon could be found.
(比較例 1 )  (Comparative Example 1)
焼成までを前記実施例 1と同様に行い、 その後の熱処理は行わないで、 主とし て炭化珪素粉末および金属珪素粉末からなる多孔質である排気ガス浄化用ハニカ ムフィルタを作製した。  The process up to the firing was performed in the same manner as in Example 1, and the subsequent heat treatment was not performed. Thus, a porous exhaust gas purifying honeycomb filter mainly composed of silicon carbide powder and metal silicon powder was produced.
(比較例 2 )  (Comparative Example 2)
焼成までを前記実施例 1と同様に行い、 焼結体を大気中で 1200 °C、 3時間の熱 処理を行い、 炭化珪素粉末および金属珪素粉末の表面もしくはそれらの周辺に酸 化珪素の相を有する多孔質である排気ガス浄ィヒ用ハニカムフィルタを作製した。  The sintering was performed in the same manner as in Example 1 above, and the sintered body was subjected to a heat treatment in the air at 1200 ° C. for 3 hours to form a phase of silicon oxide on or around the surfaces of the silicon carbide powder and the metal silicon powder. A porous honeycomb filter for exhaust gas purification having the following was prepared.
(比較例 3 )  (Comparative Example 3)
平均粒径 5 μ mの炭化珪素原料粉末 60重量%と、 平均粒径 0. 5 μ mの炭化珪素 原料粉末 40重量%とを配合し、 得られた粉末 100重量部に対して有機バインダー としてメチルセルロース 5重量部、 可塑剤 1重量部、 潤滑剤 2重量部、 および水 10重量部を加えて、 均一に混合および混練して成形用の混練物を得た。 得られた 混練物を、 押出し成形機にて外形 35 瞧、 長さ 150 瞧、 隔壁厚さ 0. 3 mra、 セル密 度 300セノレ//平方ィンチのハニカム形状に成形した。  60% by weight of silicon carbide raw material powder having an average particle size of 5 μm and 40% by weight of silicon carbide raw material powder having an average particle size of 0.5 μm are used as an organic binder with respect to 100 parts by weight of the obtained powder. 5 parts by weight of methylcellulose, 1 part by weight of a plasticizer, 2 parts by weight of a lubricant, and 10 parts by weight of water were added and uniformly mixed and kneaded to obtain a kneaded product for molding. The obtained kneaded product was formed into a honeycomb shape having an outer shape of 35 mm, a length of 150 mm, a partition wall thickness of 0.3 mra, and a cell density of 300 cen // sq. Inch by an extruder.
次に、 マイクロ波乾^!を用いて上記成形体を乾燥させ、 その後、上記生成形体 と同様の組成のペーストを所定の貫通孔に充填して封止した後、 乾燥機を用いて 再び乾燥させる。 その乾燥体を 400。じで 30分間脱脂のための仮焼を行い、 常圧 のアルゴン雰囲気化で 2200 °C、 3時間焼成を行い、 多孔質でハニカム構造の炭化 珪素焼結体を作製した。  Next, the molded body is dried using microwave drying, and then a paste having the same composition as that of the formed molded body is filled in predetermined through holes and sealed, and then dried again using a dryer. Let it. 400 dried body. Then, calcining was performed for 30 minutes for degreasing, followed by baking at 2200 ° C for 3 hours in an atmosphere of argon at normal pressure to produce a porous silicon carbide sintered body having a honeycomb structure.
(物理特性試験)  (Physical property test)
上記実施例 1 〜 8、 参考例 1 〜 3、 および比較例 1 〜 3にしたがつて作製した 各焼結体について試験片を切り出し、 加圧酸分解、水蒸気蒸留分離、中和滴定方法 にて窒素量を測定し、 その後、 窒化珪素量に換算した。 Fabricated according to the above Examples 1 to 8, Reference Examples 1 to 3, and Comparative Examples 1 to 3. A test piece was cut out from each sintered body, and the amount of nitrogen was measured by pressure acid decomposition, steam distillation separation, and neutralization titration, and then converted to the amount of silicon nitride.
また、 前記試験片を切り出す前の各焼結体 (ハニカム構造体) について、材料試 験機 (インストロン INSTR0N 5582)を用いて、 室温条件下での 3点曲げ試験 (JIS R1601-1995に準拠)によって強度を算出した。  In addition, for each sintered body (honeycomb structure) before cutting out the test piece, a three-point bending test (in accordance with JIS R1601-1995) was performed at room temperature using a material testing machine (Instron INSTR0N 5582). ) Was used to calculate the intensity.
さらに、 6規定の硫酸溶液、 および 6規定の水酸ィヒナトリウム溶液を用いて、 酸及びアル力リに対する腐食試験を行い、 結果を表 1に示した。  In addition, a corrosion test was performed on acid and aluminum oxide using a 6N sulfuric acid solution and a 6N sodium hydroxide solution, and the results are shown in Table 1.
なお、 表 1中の耐酸性、 耐アルカリ性の評価は、 X印は室温、 24 時間浸漬にて 重量減少あり、△印は沸騰状態、 24時間浸漬にて重量減少あり、〇印は沸騰状態、 24時間浸漬にて重量減少なし、 として評価した。  The evaluation of acid resistance and alkali resistance in Table 1 is as follows: X: weight loss at room temperature for 24 hours immersion, △: boiling state, weight loss by 24 hours immersion, 〇: boiling state There was no weight loss by immersion for 24 hours.
【表 1】  【table 1】
Figure imgf000026_0001
また、 ハニカムフィルタに含まれる窒化珪素量に対する強度の変化をプロット したグラフを図 4に示した。
Figure imgf000026_0001
FIG. 4 is a graph plotting the change in strength with respect to the amount of silicon nitride contained in the honeycomb filter.
表 1からわかるように、 実施例 1にかかるセラミックフイノレタは、窒化珪素量が 0. 1 重量%と比較的に少ないので、耐酸性および耐アルカリ性においてやや劣る ものの、窒化珪素量が 1. 0〜27. 8重量%の範囲にある実施例 2〜8にかかるセラ ミックフィルタは、炭ィ匕珪素粉末および金属珪素粉末の表面もしくはそれらの周辺 に窒化珪素の相を有することで、 耐酸性および耐アルカリ性が向上している。 また、 表 1および図 1からわかるように、 窒化珪素量が 0. 1〜30 重量%の範囲 では、セラミックフィルタの強度が比較的に大きく、 特に、 窒化珪素量が 1〜15重 量%の範囲では、強度が著しく改善されている。 As can be seen from Table 1, the ceramic finoleta according to Example 1 has a low silicon nitride content. The ceramic filters according to Examples 2 to 8 in which the amount of silicon nitride is in the range of 1.0 to 27.8% by weight are slightly lower in acid resistance and alkali resistance because they are relatively small at 0.1% by weight. By having a phase of silicon nitride on or around the surface of silicon carbide powder and metal silicon powder, acid resistance and alkali resistance are improved. As can be seen from Table 1 and FIG. 1, when the amount of silicon nitride is in the range of 0.1 to 30% by weight, the strength of the ceramic filter is relatively large, and in particular, when the amount of silicon nitride is 1 to 15% by weight. In the range, the strength is significantly improved.
一方、 窒化珪素量が 0. 1 重量%未満の場合 (参考例 1 ) には、 窒化珪素の膜が ほとんどない状態になるため、 耐酸性および耐アルカリ性が弱いことが確認され た。 また、 このケースでは、 強度の向上もないこともわかった。 逆に、 窒化珪素 量が 30重量%を超える場合 (参考例 2、参考例 3 ) においては、耐酸性および耐ァ ルカリ性に優れている力 強度が極めて小さいことがわかった。 これは、 炭化珪素 の結合部である金属珪素が完全に窒化されること、 もしくは窒化珪素のウイスカ を多量に生成することに起因するものと考えられる。 産業上の利用可能性  On the other hand, when the amount of silicon nitride was less than 0.1% by weight (Reference Example 1), it was confirmed that the film had little silicon nitride film, so that the acid resistance and the alkali resistance were weak. It was also found that there was no improvement in strength in this case. Conversely, when the amount of silicon nitride exceeded 30% by weight (Reference Examples 2 and 3), it was found that the strength which was excellent in acid resistance and alkali resistance was extremely small. This is considered to be due to the fact that metal silicon, which is the bonding portion of silicon carbide, is completely nitrided, or that a large amount of whiskers of silicon nitride are generated. Industrial applicability
本発明にかかる排気ガス浄ィ匕用ハニカムフィルタは、ディーゼルエンジン等の内 燃機関から排出される排気ガス中のパティキュレート等を除去するフィルタや、 触媒担体等として用いられる。  The honeycomb filter for purifying exhaust gas according to the present invention is used as a filter for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, as a catalyst carrier, and the like.
以上説明したように、 本発明の排気ガス浄化用ハニカムフィルタは、 炭化珪素 のような耐火性粒子を含みながらも、 その製造時において比較的低い温度で焼結 させることができるので、 製造コストを抑えることができるとともに歩留まりが 向上し、 安価に提供することができる。  As described above, the exhaust gas purifying honeycomb filter of the present invention can be sintered at a relatively low temperature at the time of its production even though it contains refractory particles such as silicon carbide, so that the production cost is reduced. The yield can be reduced and the cost can be reduced.
また、 炭化珪素粉末およびシリコン粉末の表面もしくはそれらの周辺に窒化珪 素の相が形成されているために、 高い熱伝導率を有するとともに耐酸性、 耐アル カリ性および強度が改善されており、 排気ガス浄化用フィルタ及び触媒担体とし て好適に使用することができる。 また、 本発明の排気ガス浄化用ハニカムフィルタの製造方法においては、 所定 の工程及び条件によって、 炭化珪素粉末およびシリコン粉末の表面もしくはそれ らの周辺に、 窒化珪素の相を確実に形成することができる。 In addition, since a silicon nitride phase is formed on or around the surface of silicon carbide powder and silicon powder, it has high thermal conductivity, and has improved acid resistance, alkali resistance, and strength. It can be suitably used as an exhaust gas purifying filter and a catalyst carrier. Further, in the method for manufacturing a honeycomb filter for purifying exhaust gas of the present invention, it is possible to reliably form a phase of silicon nitride on or around the surfaces of the silicon carbide powder and the silicon powder by predetermined steps and conditions. it can.

Claims

請求の範囲 The scope of the claims
1 . 軸線方向に沿って多数のセルが設けられ、 これらのセルのうちの一部が、 一 方の端部側では封止され、 他方の端部側では開放されてなる構造を有し、 かつ隣 り合う各セルを隔てる隔壁の一部又は全部が、粒子捕集用フィルタとして機能する ように構成された、 ハニカム構造の多孔質セラミック部材の 1または 2以上の集 合体からなる排気ガス浄化用ハニカムフィルタにおいて、 前記セラミック部材カ 炭化珪素、 シリコンおよび窒化珪素を含むものからなることを特徴とする排気ガ ス浄化用ハニカムフィルタ。 1. A large number of cells are provided along the axial direction, and a part of these cells is sealed at one end and opened at the other end, Exhaust gas purification comprising one or more aggregates of porous ceramic members having a honeycomb structure, in which some or all of the partition walls separating adjacent cells function as a filter for collecting particles. A honeycomb filter for exhaust gas purification, characterized in that the honeycomb filter includes a ceramic member containing silicon carbide, silicon and silicon nitride.
2 . 前記セラミック部材中に含まれる窒化珪素の含有量は、 0. 1〜30 重量%であ ることを特徴とする請求の範囲 1に記載の排気ガス浄化用ハニカムフィルタ。2. The honeycomb filter for purifying exhaust gas according to claim 1, wherein the content of silicon nitride contained in the ceramic member is 0.1 to 30% by weight.
3 . 前記セラミック部材は、 隔壁の一部又は全部に触媒が付与されていることを 特徴とする請求の範囲 1または 2に記載の排気ガス浄化用ハニカムフィルタ。3. The honeycomb filter for purifying exhaust gas according to claim 1, wherein a catalyst is applied to a part or the whole of the partition wall of the ceramic member.
4 . 炭化珪素粉末に、 シリコン粉末および有機バインダーを混練し、 得られた混 練物を、 ハニカム構造を有するセラミック部材として成形し、 このセラミック部 材の軸線方向に沿って設けられた多数のセルのいずれか一方の端部のみを目封し、 次いで、 仮焼して前記有機バインダーを除去してから本焼成し、 その後、 本焼成 したセラミック部材を窒素雰囲気下において 800~1400 °Cの温度範囲で熱処理す ることにより、 炭化珪素、 シリコンを窒化させることにより、 炭化珪素、 シリコ ンぉよぴ窒化珪素を含有する多孔質セラミックフィルタを得ることを特徴とする 排気ガス浄化用ハニカムフィルタの製造方法。 4. The silicon powder and the organic binder are kneaded with the silicon carbide powder, and the obtained kneaded material is formed into a ceramic member having a honeycomb structure, and a large number of cells provided along the axial direction of the ceramic member are formed. Only one of the ends is plugged, and then calcined to remove the organic binder, and then calcined. A porous ceramic filter containing silicon carbide, silicon nitride, and silicon nitride by nitriding silicon carbide and silicon by heat treatment with a honeycomb filter. .
5 . 前記多孔質セラミックフィルタに含まれる窒化珪素の含有量は、 0. 1〜30 重 量%であることを特徴とする請求の範囲 4に記載の排気ガス浄化用ハニカムフィ ルタの製造方法。  5. The method for producing a honeycomb filter for purifying exhaust gas according to claim 4, wherein the content of silicon nitride contained in the porous ceramic filter is 0.1 to 30% by weight.
PCT/JP2004/007771 2003-11-07 2004-05-28 Honeycomb filter for exhaust gas purification and method of manufacturing the same WO2005044425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-378333 2003-11-07
JP2003378333A JP2004167482A (en) 2002-11-08 2003-11-07 Honeycomb filter for exhaust gas cleaning, and its production method

Publications (1)

Publication Number Publication Date
WO2005044425A1 true WO2005044425A1 (en) 2005-05-19

Family

ID=34567173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007771 WO2005044425A1 (en) 2003-11-07 2004-05-28 Honeycomb filter for exhaust gas purification and method of manufacturing the same

Country Status (1)

Country Link
WO (1) WO2005044425A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393376B2 (en) 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
US7534482B2 (en) 2002-10-07 2009-05-19 Ibiden Co., Ltd. Honeycomb structural body
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330366A (en) * 1986-07-23 1988-02-09 株式会社日立製作所 Manufacture of silicon nitride-silicon carbide base composite material
JP2002154882A (en) * 2000-11-17 2002-05-28 Ngk Insulators Ltd Silicon carbide porous body and method for producing the same
JP2002326879A (en) * 2001-03-01 2002-11-12 Ngk Insulators Ltd Method of manufacturing ceramic structure
JP2002356834A (en) * 2001-06-04 2002-12-13 Takuwa Corp Earth monitoring system in sediment system
JP2003154224A (en) * 2001-08-24 2003-05-27 Corning Inc Method for manufacturing silicon nitride-coupled silicon carbide honeycomb filter
JP2003161136A (en) * 2001-07-31 2003-06-06 Ngk Insulators Ltd Honeycomb structure and method for production thereof
JP2003247412A (en) * 2001-12-21 2003-09-05 Ngk Insulators Ltd HONEYCOMB STRUCTURE BODY CONTAINING Si AND METHOD FOR PRODUCING THE SAME
JP2004083354A (en) * 2002-08-28 2004-03-18 Noritake Co Ltd Method of producing non-oxide porous ceramic material mainly comprising silicon
JP2004167440A (en) * 2002-11-22 2004-06-17 Ngk Insulators Ltd Catalytic body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330366A (en) * 1986-07-23 1988-02-09 株式会社日立製作所 Manufacture of silicon nitride-silicon carbide base composite material
JP2002154882A (en) * 2000-11-17 2002-05-28 Ngk Insulators Ltd Silicon carbide porous body and method for producing the same
JP2002326879A (en) * 2001-03-01 2002-11-12 Ngk Insulators Ltd Method of manufacturing ceramic structure
JP2002356834A (en) * 2001-06-04 2002-12-13 Takuwa Corp Earth monitoring system in sediment system
JP2003161136A (en) * 2001-07-31 2003-06-06 Ngk Insulators Ltd Honeycomb structure and method for production thereof
JP2003154224A (en) * 2001-08-24 2003-05-27 Corning Inc Method for manufacturing silicon nitride-coupled silicon carbide honeycomb filter
JP2003247412A (en) * 2001-12-21 2003-09-05 Ngk Insulators Ltd HONEYCOMB STRUCTURE BODY CONTAINING Si AND METHOD FOR PRODUCING THE SAME
JP2004083354A (en) * 2002-08-28 2004-03-18 Noritake Co Ltd Method of producing non-oxide porous ceramic material mainly comprising silicon
JP2004167440A (en) * 2002-11-22 2004-06-17 Ngk Insulators Ltd Catalytic body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393376B2 (en) 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
US7534482B2 (en) 2002-10-07 2009-05-19 Ibiden Co., Ltd. Honeycomb structural body
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure

Similar Documents

Publication Publication Date Title
JP5237630B2 (en) Honeycomb structure
JP4509029B2 (en) Honeycomb structure
JP4812316B2 (en) Honeycomb structure
JP4932256B2 (en) Ceramic sintered body and ceramic filter
JP5142532B2 (en) Honeycomb structure
JP4437085B2 (en) Honeycomb structure
JP4516017B2 (en) Ceramic honeycomb structure
JP4386830B2 (en) Honeycomb filter for exhaust gas purification
JP4437084B2 (en) Honeycomb structure
JP4863904B2 (en) Honeycomb structure and manufacturing method thereof
JP4827530B2 (en) Honeycomb structure
JP5001009B2 (en) Ceramic honeycomb structure
WO2006106785A1 (en) Honeycomb structure body
WO2006035822A1 (en) Honeycomb structure
WO2006070504A1 (en) Filter and filter aggregate
WO2007058006A1 (en) Honeycomb structure
JP2006289237A (en) Honeycomb structure
WO2005039738A1 (en) Honeycomb structure body
WO2007043245A1 (en) Honeycomb unit and honeycomb structure
JP3965007B2 (en) Porous silicon carbide sintered body, honeycomb filter, ceramic filter assembly
US20060217262A1 (en) Honeycomb structured body
JP2007253144A (en) Honeycomb structured body and exhaust gas purifying device
JP3874443B2 (en) Particulate collection filter
JP2004167482A (en) Honeycomb filter for exhaust gas cleaning, and its production method
JP5184867B2 (en) Honeycomb filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWW Wipo information: withdrawn in national office

Ref document number: 2004735398

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004735398

Country of ref document: EP

122 Ep: pct application non-entry in european phase