WO2005043107A2 - Vorrichtung zur feststellung von belastungen an faserverbund-bauteilen - Google Patents
Vorrichtung zur feststellung von belastungen an faserverbund-bauteilen Download PDFInfo
- Publication number
- WO2005043107A2 WO2005043107A2 PCT/EP2004/012310 EP2004012310W WO2005043107A2 WO 2005043107 A2 WO2005043107 A2 WO 2005043107A2 EP 2004012310 W EP2004012310 W EP 2004012310W WO 2005043107 A2 WO2005043107 A2 WO 2005043107A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- fiber composite
- strain gauges
- evaluation device
- designed
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 63
- 239000000835 fiber Substances 0.000 title claims abstract description 60
- 238000011156 evaluation Methods 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000012806 monitoring device Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000010354 integration Effects 0.000 claims description 9
- 239000011888 foil Substances 0.000 claims description 5
- 239000012876 carrier material Substances 0.000 claims description 4
- 239000002657 fibrous material Substances 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000013500 data storage Methods 0.000 claims 1
- 238000009826 distribution Methods 0.000 claims 1
- 238000002955 isolation Methods 0.000 claims 1
- 238000007788 roughening Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 17
- 238000012544 monitoring process Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 13
- 238000010276 construction Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 230000032798 delamination Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
- G01L1/2287—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0033—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0017—Tensile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
- G01N2203/0062—Crack or flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0073—Fatigue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0075—Strain-stress relations or elastic constants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
- G01N2203/0623—Electrical or magnetic indicating, recording or sensing means using piezoelectric gauges
Definitions
- the invention relates to a device for determining loads on fiber composite components according to the preamble of claim 1 and its manufacturing method according to the preamble of claim 9 and a sensor element for the device according to the preamble of claim 11.
- fiber composite materials In vehicle and aircraft construction, more and more components made of fiber composite materials are used. These fiber composite materials preferably consist of glass, carbon or aramid fibers, which are made up of fiber layers and are connected to one another by polymeric materials. The components are generally manufactured by lainating the synthetic resin-impregnated fiber layers under pressure and heat in a press mold. These composite materials are usually lighter than comparable metal structural parts and have a high level of rigidity and strength and are therefore preferably used in aircraft construction.
- the precise documentation of the operational loads is of great interest in order to be able to demonstrate the remaining lifespan of the structure as realistically as possible.
- the permissible operating times for each structure can be optimally used economically.
- the maintenance and service intervals and, on the other hand, the remaining service life can be adapted to the conditions that have actually occurred during operation, so that the structure can be operated in an economically optimal manner.
- damage to the material can occur in the case of lightweight structures as a result of high loads or excessive manufacturing tolerances, such as cavities or fiber components. This damage can considerably weaken the mechanical rigidity and the strength of the components. In the case of aircraft in particular, such components are also exposed to the risk of impact damage from birds and pieces of ice during operation. These loads can 'lead, which are not visible from the outside and constitute a safety hazard to the aforementioned damage within the composites. In order to be able to determine such damage, it is known to recognize it during the regular maintenance work by means of non-destructive test methods such as X-ray or ultrasound tests.
- a device for determining impact damage to fiber composite components is known.
- a large number of distributed piezoelectric film pieces are fastened on a surface side of the body components, which are usually only a few millimeters thick, and are led to an electronic monitoring device via an electrical connection.
- a capacitive charge change occurs in the nearby piezo pickup elements, which is essentially proportional to the impact pressure.
- This change in charge is then recorded in a monitoring device and can be displayed in accordance with the impact pressure and location relevant to the damage in order to immediately initiate a targeted damage investigation. With such a monitoring device, however, only excessive impact stresses can be determined, which can lead to delamination.
- the reflection grating can be illuminated with a laser light beam and its Radiation intensity can be detected in a specific direction of reflection. If the surface of the material changes due to stretching or compression, the diffraction angle and thus the radiation intensity in the detected directions also change. Such a radiation intensity is then measured by optoelectronic position detectors and can be displayed as a value of the surface stretch.
- Such monitoring of the material surfaces is only possible where this surface can be irradiated with laser light and whose radiation intensity can be detected at a certain distance from the surface. In particular, if the surfaces are also provided with other protective or insulation layers that do not follow the stretch, such monitoring or strain analysis cannot be carried out.
- strain gauges would have to be renewed after every test attempt or every exposure to surface strains that are susceptible to damage, which requires a considerable cost-intensive effort, particularly in the case of multi-point measurements.
- Material analysis measurements are then no longer evaluated in the upper damage-prone area, so that even an inadequate analysis result can thus be achieved. It is conceivable to produce special strain gauges from wire measuring grids for such surface tension measurements, which also withstand larger strain ranges on composite fiber surfaces, but which would be uneconomical for multi-point measurements for component analysis or for monitoring large aircraft parts.
- the invention is therefore based on the object of providing a device for measuring material stresses on fiber composite materials and suitable, inexpensive transducer components which are particularly suitable for multi-point measurements or for large-area monitoring of such components.
- Strain gauges and methods for their production are known from EP 0 667 514 B1. These basically consist of a commercially available photolithographically produced measuring grid which is vapor-deposited on a carrier film and is additionally covered with a protective layer. For connection, this measuring grid has flat soldering surfaces which represent the beginning and the end of the measuring grid. Connection wires are soldered on for wiring and fed to the intended connection parts for connection. Such a strain gauge can basically only be applied to the surface of a strain gage, since otherwise subsequent wiring is no longer possible. Prior wiring would also be unrealistic, as economical manual Habung a large number of connecting wires in the known manufacturing processes of composite materials is hardly possible.
- the invention has the advantage that, by integrating the strain gauges near the neutral fiber of the composite materials, very flat, almost commercially available foil measuring grids can be used, which are not destroyed by the material loads even at high surface tensions of the composite materials. This also enables cost-effective multi-point measurements on composite materials, which can be used both for analysis of the material components as well as for load monitoring and for permanent monitoring of large-area components, preferably of aircraft body components.
- the invention has the advantage that, by integrating the strain gauges, they can be used at the factory in the manufacture of the composite components.
- the sensor elements are also protected against external damage during component assembly, maintenance and operation.
- the flat foil measuring grids of the strain gauges allow them to be inserted between the individual composite layers in a space-saving manner, which advantageously means that the matrix structure of the components is basically not weakened and, in addition, a non-positive connection between the transducer elements and the composite materials relevant to expansion can be achieved. Since such a connection also takes place on both sides, only slight hysteresis effects occur in the measuring operation, so that high measuring accuracies can be achieved.
- the transducer elements according to the invention have the advantage that almost all types of loads on fiber composite materials can be determined inexpensively during operation with commercially available film measuring grids.
- the connection pins provided at the same time provide an advantageous integration Possibility achieved by which a subsequent wiring via plug connections is made possible.
- the design according to the invention with the connection pins provided permits a high degree of automation in the integrated composite material production, since no manufacturing technology has to be taken into account in connection wires to be led out and nevertheless a subsequent rapid connection possibility is available.
- FIG. 2 a strain gauge for integration into a fiber composite part
- 3 a side view of a strain gauge for integration into a fiber composite part with an enlarged section of a connecting pin
- Fig. 4 a strain gauge with a fixed connection stamp in two mold halves
- 5 an integration process of a strain gauge into a fiber composite part within a workpiece shape
- FIG. 6 another preferred embodiment of the device with several integrated measuring points.
- the fiber composite component 1 of the drawing shows a detail of a device for determining an elongation or for monitoring and for load monitoring on a fiber composite component 1 with film strain gauges 3 integrated in the fiber layers 2 with a connected evaluation device 4.
- the fiber composite component 1 is shown only in part from a fiber composite material consisting of only two layers 2, between which the strain gauge 3 is arranged.
- Such fiber composite materials 1 usually consist of several layers, preferably made of glass, carbon or aramid fiber. These are usually placed on top of each other and soaked in a polymer material and are thus firmly connected to each other. Depending on the desired strength requirements, fiber layers are placed on top of each other and oriented in the direction of force and tension.
- Such fiber composite material components can usually be formed as thin shaped bodies or sheets in thicknesses from 1 to 50 mm with rib reinforcement or in sandwich construction in complex shapes. These are preferably used in the aviation and automotive industries as light, dimensionally stable structural components that are largely independent of aging and corrosion-resistant and are used as an alternative to common metallic materials.
- the recording of the operating loads is of great interest in order to be able to demonstrate the life of the structure as realistically as possible. With this procedure, the permissible operating times for each structure can be optimally used economically.
- the frequency and the level of the structural deformations are primarily recorded and documented by the evaluation device 4.
- the device can be used to detect damage in such components at an early stage which cannot be recognized from the outside and which represents a potential hazard.
- Fiber breaks, matrix failure, delamination or debonding damage can all occur inside the composite materials, all of which can be determined by their elongation behavior.
- life tests and strength analyzes are carried out, in which the components are loaded in such a targeted manner that fatigue fractures and damage-related strains occur in order to be able to determine the permissible purposes.
- surface strains occur that cannot be carried out with conventional film strain gauges, since the elongation capacity of conventional measuring grids is exceeded at these high strains.
- the invention is based on the knowledge that the foil measuring grids are largely integrated into the so-called neutral fiber, approximately in the middle of the material thickness, in the composite material 1, at which the bending stresses due to expansion are lowest, particularly in the case of damage-prone loads. Furthermore, with this integration, a double-sided connection of the strain gauges 3 with the composite material 1 is possible, which in particular minimizes the hysteresis effect, so that very precise measurements, operating load determination and monitoring can be carried out. For this purpose, a large number of such strain gauges 3 are already integrated in the factory in the manufacture of the composite materials 1, in particular for monitoring large aircraft components, so that the strain gauges 3 are placed at predetermined intervals so that almost all types of damage can be identified at an early stage. This can significantly reduce the risk of plane crashes. When monitoring or examining such components, the distances between the strain gauges 3 to be used can differ depending on the load relevance of the components and can be optimally distributed according to empirical investigations or load calculations.
- Such a monitoring device is shown schematically and in sections in FIG. 1 of the drawing, in which all strain gauges 3 arranged on component 1 are attached an electronic evaluation device 4 for monitoring and load monitoring are connected.
- the same arrangement basically also results in an examination device in which the components 1 are subjected to a damage-prone load in order to analyze the load limits or the damage-prone construction requirements.
- the two devices differ only in their evaluation, an electronic evaluation device being provided in the examination device, which takes into account in particular the predetermined loads during the determined elongation, while the load monitoring and monitoring device only from the determined elongation values for the service life or for one Damage or a damage-prone burden closes.
- the strain gauge 3 shown in FIG. 1 of the drawing essentially consists of a measuring grid 5, which is applied to a carrier layer 6, as is shown in more detail in FIG. 2 of the drawing.
- the carrier material 6 is electrically insulating and temperature-resistant, a polymeric material such as polyimide being preferably used.
- the outer surface of the carrier material 6 is blasted and activated to improve the adhesion during the later structural integration.
- the measuring grid 5 is provided on both sides with the carrier material 6, that is to say also covered on the upper side with a carrier layer 7.
- the measuring grid 5 is electrically conductively connected to two connecting pins 8, which are arranged perpendicular to the measuring grid 5.
- the connecting pins 8 are preferably soldered to the measuring grid 5 via a contact foot 9.
- the pins 8 have at the end a wider foot area and preferably a height of approx. 5 to 20 mm.
- the connecting pins 8 are connected to the measuring grid 5 via a strain relief 10.
- the strain relief 10 represents an area in which the conductor track is designed as a loop, so that when the strain gauge 3 is stretched, the cross-sectional area of the conductor track and thus its electrical resistance does not change.
- the special strain gauge 3 consisting of a measuring grid 5 and two carrier layers 6 is shown in side view, in particular the design of the contact pins 8 is shown enlarged in a side view. From this it can be seen that the contact pins 8 are provided with an insulating protective layer 20 in their manufacture, in order to be able to use electrically conductive composite layer materials 1 such. B. carbon fibers to prevent a current flow that falsifies the measured values.
- This insulating layer 20 is preferably made of a polymeric temperature-resistant material.
- the embodiments of the strain gauges 3 as sensor elements can also be produced as rosettes.
- this embodiment of the strain gauges 3 can also be used for other transducer elements that can be integrated in fiber composite materials 1, such as piezo fiber modules.
- this insulating layer is removed or scraped off by the provided clamping edges of the connecting stamp 11 when it is plugged in, in order to bring it to the electronic evaluation device 4 ' via a cable connection 12 which is to be subsequently produced.
- the individual strain gauges 3 are first interconnected to form a Wheatstone bridge in order to be able to evaluate the detected strains.
- the other strain gauges, not shown, in the other fiber composite areas are also connected to the electronic evaluation 4 or monitoring device performed.
- fixed contact stamps 21 can also be attached to the contact pins, as is shown in the embodiment according to FIG. 4 of the drawing.
- a recess 14 is provided in one of the two mold halves 13, into which the contact stamp 21 can be inserted.
- the fixed connecting plunger 21 is now pressed onto the respective contact pin 8 and thus establishes a fixed electrical connection to the latter.
- This fixed connecting stamp 21 can subsequently be electrically connected to the evaluation device 4 via plug contacts.
- FIG. 5 of the drawing Another manufacturing method for integrating the strain gauges 3 as sensor elements is shown in FIG. 5 of the drawing.
- a known pressure or vacuum method is used to manufacture the composite components 1.
- the fiber layers 2 are successively in a predetermined shape 15 is placed and the sensor elements 3 are placed in between or previously connected to the respective fiber layer 2. It does not matter whether the fiber material 2 is dry or has already been impregnated with resin.
- the strain gauge 3 is to be inserted into the fiber material 2 so that the connecting pins 8 protrude from the fiber material 2 on one side.
- a stamp 22 made of a soft, porous material, such as preferably foam, is pressed over the connecting pins 8 under slight pressure.
- the stamp 22 protects the connection pins 8 during the production of the fiber composite component 1 and thereby also fixes the strain gauges 3. After the production process, the stamp 22 can be removed.
- the usual auxiliary materials for the production of fiber composite components 1 can be used, such as the tear-off film 16 provided and the suction fabric 17 with the vacuum film 18.
- FIG. 6 shows a further preferred embodiment of the invention with a plurality of integrated strain gauges 3.
- Three strain gauges 3 with measuring grids 5 are integrated in different layers at different points in the structure made of fiber composite material 1.
- FIG. 6 shows the cross section through the structure, which consists of a cover skin and a stiffening rib arranged inwards.
- the contact pins 8 are used to attach an electrical unit 28 to the inside of the structure, with the aid of which the evaluation device 4 can identify the measuring points.
- the evaluation device 4 consists of a shielded housing 24 and a current source 25.
- the measurement signals are amplified with an electrical module 26 and a data processor 22 which processes the current measurement value and stores it in the memory unit 27.
- the evaluation device 4 is equipped with an internal timer 23, so that the level and frequency of expansion states can be recorded in the structure.
- the current measured value can be compared with reference signals and thus the exceeding of limit values can be recognized.
- the stored data can be read out, for example, by the service and the data can be evaluated to prove the remaining service life of the structure.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/577,635 US7552644B2 (en) | 2003-10-30 | 2004-10-29 | Device for determining strains on fiber composite components |
EP04791066A EP1678474A2 (de) | 2003-10-30 | 2004-10-29 | Vorrichtung zur feststellung von belastungen an faserverbund-bauteilen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10350974.7A DE10350974B4 (de) | 2003-10-30 | 2003-10-30 | Aufnehmerelement, Vorrichtung zur Feststellung von Belastungen an Faserverbundwerkstoffbauteilen und Herstellungsverfahren für die Vorrichtung |
DE10350974.7 | 2003-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005043107A2 true WO2005043107A2 (de) | 2005-05-12 |
WO2005043107A3 WO2005043107A3 (de) | 2005-10-27 |
Family
ID=34529992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/012310 WO2005043107A2 (de) | 2003-10-30 | 2004-10-29 | Vorrichtung zur feststellung von belastungen an faserverbund-bauteilen |
Country Status (4)
Country | Link |
---|---|
US (1) | US7552644B2 (de) |
EP (1) | EP1678474A2 (de) |
DE (1) | DE10350974B4 (de) |
WO (1) | WO2005043107A2 (de) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007074084A2 (en) | 2005-12-29 | 2007-07-05 | Airbus Deutschland Gmbh | Method of dimensioning and producing stiffened structural components, use of structural condition sensors and an aircraft |
DE102006035274A1 (de) * | 2006-07-31 | 2008-02-14 | Technische Universität Dresden | Faserverbundbauteil mit einer Sensor- und Anzeigeeinheit |
WO2010055282A1 (en) * | 2008-11-12 | 2010-05-20 | Qinetiq Limited | Composite sensor |
WO2011131922A3 (en) * | 2010-04-19 | 2012-01-05 | Philip Wesby | System and method for a surface strain gauge |
DE102011122481A1 (de) | 2011-12-20 | 2013-06-20 | Technische Universität Dresden | Verfahren und Anordnung zur Überwachung und Lokalisierung von Materialschäden und Diskontinuitäten in Leichtbau-Verbundstrukturen |
CN106153319A (zh) * | 2016-07-01 | 2016-11-23 | 陕西飞机工业(集团)有限公司 | 一种用于飞机静力试验的模拟8框前机身载荷加载件 |
CN106442151A (zh) * | 2016-08-31 | 2017-02-22 | 中国铁道科学研究院标准计量研究所 | 一种桥梁静载试验自动控制装置及检测方法 |
CN108760488A (zh) * | 2018-05-08 | 2018-11-06 | 泰山玻璃纤维有限公司 | 网格布接点定位性检测方法 |
CN108801779A (zh) * | 2018-08-03 | 2018-11-13 | 中冶建筑研究总院有限公司 | 一种纤维复材网格材料性能的测试装置及测试方法 |
US10495608B2 (en) | 2016-08-21 | 2019-12-03 | Elbit Systems Ltd. | System and method for detecting weakening of the adhesion strength between structural elements |
CN112857637A (zh) * | 2021-03-17 | 2021-05-28 | 合肥艾创微电子科技有限公司 | 一种基于环形螺旋纤维的柔性触觉传感器单元及制备方法 |
CN114781234A (zh) * | 2022-06-20 | 2022-07-22 | 中国飞机强度研究所 | 飞机冲击动力学测试用易损结构等效靶厚度确定方法 |
FR3134138A1 (fr) * | 2022-03-29 | 2023-10-06 | Safran Aircraft Engines | Pièce composite, notamment pour une turbomachine d’aéronef |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006011513A1 (de) | 2006-03-10 | 2007-09-13 | Rolls-Royce Deutschland Ltd & Co Kg | Einlaufkonus aus einem Faserverbundwerkstoff für ein Gasturbinentriebwerk und Verfahren zu dessen Herstellung |
DE102006015838A1 (de) * | 2006-04-03 | 2007-10-04 | Rolls-Royce Deutschland Ltd & Co Kg | Axialkompressor für ein Gasturbinentriebwerk |
DE102006031580A1 (de) | 2006-07-03 | 2008-01-17 | Faro Technologies, Inc., Lake Mary | Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs |
DE102009015920B4 (de) | 2009-03-25 | 2014-11-20 | Faro Technologies, Inc. | Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung |
US9551575B2 (en) | 2009-03-25 | 2017-01-24 | Faro Technologies, Inc. | Laser scanner having a multi-color light source and real-time color receiver |
DE102009018179B4 (de) * | 2009-04-22 | 2014-07-10 | Otto Bock Healthcare Gmbh | Strukturelement für eine orthopädietechnische Einrichtung und orthopädische Einrichtung |
DE102009057101A1 (de) | 2009-11-20 | 2011-05-26 | Faro Technologies, Inc., Lake Mary | Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung |
US9210288B2 (en) | 2009-11-20 | 2015-12-08 | Faro Technologies, Inc. | Three-dimensional scanner with dichroic beam splitters to capture a variety of signals |
US9529083B2 (en) | 2009-11-20 | 2016-12-27 | Faro Technologies, Inc. | Three-dimensional scanner with enhanced spectroscopic energy detector |
US9113023B2 (en) | 2009-11-20 | 2015-08-18 | Faro Technologies, Inc. | Three-dimensional scanner with spectroscopic energy detector |
US8630314B2 (en) | 2010-01-11 | 2014-01-14 | Faro Technologies, Inc. | Method and apparatus for synchronizing measurements taken by multiple metrology devices |
US8615893B2 (en) | 2010-01-20 | 2013-12-31 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine having integrated software controls |
US9628775B2 (en) | 2010-01-20 | 2017-04-18 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US8898919B2 (en) | 2010-01-20 | 2014-12-02 | Faro Technologies, Inc. | Coordinate measurement machine with distance meter used to establish frame of reference |
US9879976B2 (en) | 2010-01-20 | 2018-01-30 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features |
US8677643B2 (en) | 2010-01-20 | 2014-03-25 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US8875409B2 (en) | 2010-01-20 | 2014-11-04 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
WO2011090895A1 (en) | 2010-01-20 | 2011-07-28 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine with multi-bus arm technology |
JP5421467B2 (ja) | 2010-01-20 | 2014-02-19 | ファロ テクノロジーズ インコーポレーテッド | 座標測定機用取付けデバイス |
US8832954B2 (en) | 2010-01-20 | 2014-09-16 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US8284407B2 (en) | 2010-01-20 | 2012-10-09 | Faro Technologies, Inc. | Coordinate measuring machine having an illuminated probe end and method of operation |
US9163922B2 (en) | 2010-01-20 | 2015-10-20 | Faro Technologies, Inc. | Coordinate measurement machine with distance meter and camera to determine dimensions within camera images |
US9607239B2 (en) | 2010-01-20 | 2017-03-28 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
DE102010020925B4 (de) | 2010-05-10 | 2014-02-27 | Faro Technologies, Inc. | Verfahren zum optischen Abtasten und Vermessen einer Umgebung |
CN103003713B (zh) | 2010-09-08 | 2015-04-01 | 法罗技术股份有限公司 | 具有投影器的激光扫描器或激光跟踪器 |
US9168654B2 (en) | 2010-11-16 | 2015-10-27 | Faro Technologies, Inc. | Coordinate measuring machines with dual layer arm |
DE102011089605A1 (de) * | 2011-12-22 | 2013-06-27 | Zf Friedrichshafen Ag | Vorrichtung mit Messeinrichtung zum Messen von Kräften und/ oder Belastungen |
DE102012100609A1 (de) | 2012-01-25 | 2013-07-25 | Faro Technologies, Inc. | Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung |
US8997362B2 (en) | 2012-07-17 | 2015-04-07 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine with optical communications bus |
DE102012014584A1 (de) * | 2012-07-23 | 2014-01-23 | Hottinger Baldwin Messtechnik Gmbh | Messgrößenaufnehmer mit internem Datenspeicher |
US9513107B2 (en) | 2012-10-05 | 2016-12-06 | Faro Technologies, Inc. | Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner |
DE102012109481A1 (de) | 2012-10-05 | 2014-04-10 | Faro Technologies, Inc. | Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung |
US10067231B2 (en) | 2012-10-05 | 2018-09-04 | Faro Technologies, Inc. | Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner |
GB201417781D0 (en) * | 2014-10-08 | 2014-11-19 | Rolls Royce Plc | Composite component |
DE102015215099B3 (de) * | 2015-08-07 | 2016-12-08 | Dr. Doll Holding Gmbh | Kraft-Moment-Sensor sowie Dehnmessstreifen-System und Platinenanordnung für einen derartigen Kraft-Moment-Sensor |
EP3358326B1 (de) * | 2015-09-30 | 2020-01-08 | Hitachi Automotive Systems, Ltd. | Vorrichtung zur messung einer dynamischen menge |
DE102015122844A1 (de) | 2015-12-27 | 2017-06-29 | Faro Technologies, Inc. | 3D-Messvorrichtung mit Batteriepack |
US10401239B2 (en) | 2016-11-01 | 2019-09-03 | The Boeing Company | Integrated hyper-redundant tactile sensor network based on structural fibers |
DE102016224719A1 (de) * | 2016-12-12 | 2018-06-14 | Zf Friedrichshafen Ag | Faserverstärktes Fahrwerkbauteil für ein Kraftfahrzeug |
CN108534662B (zh) * | 2018-04-12 | 2024-06-25 | 湖南科技大学 | 一种基于压电纤维的主应变方向传感器及判定方法 |
DE102019206234A1 (de) * | 2019-04-30 | 2020-11-05 | Zf Friedrichshafen Ag | Bewegungssensorik für ein Fahrzeug basierend auf einem elektroaktiven Verbundmaterial |
CN111766146B (zh) * | 2020-07-03 | 2021-07-13 | 浙江大学 | 一种固化土材料收缩开裂性能的测试评价方法及装置 |
CN112414293B (zh) * | 2020-10-27 | 2022-04-29 | 西安电子科技大学 | 一种传导冷却高温超导电缆的应变检测方法 |
IT202100001457A1 (it) * | 2021-01-26 | 2022-07-26 | Tikat S R L S | Dispositivo per la rilevazione di una grandezza fisica e sistema per la rilevazione di una grandezza fisica comprendente una pluralità di siffatti dispositivi |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849668A (en) * | 1987-05-19 | 1989-07-18 | Massachusetts Institute Of Technology | Embedded piezoelectric structure and control |
WO2001039253A2 (en) * | 1999-11-23 | 2001-05-31 | The Board Of Trustees Of The Leland Stanford Junior University | Diagnostic layer and methods for detecting structural integrity of composite and metallic materials |
US20020021058A1 (en) * | 2000-06-23 | 2002-02-21 | Duerr Johannes K. | Fiber composite with a piezoelectric sensor or actuator integrated therein |
US6399939B1 (en) * | 2000-06-13 | 2002-06-04 | North Carolina A&T State University | Sensor array system |
WO2003039894A1 (de) * | 2001-11-06 | 2003-05-15 | ZF Lemförder Metallwaren AG | Fahrwerksteil aus faserverstärkten kunststoffen mit integriertem sensor |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2728916A1 (de) * | 1977-06-27 | 1979-01-18 | Hottinger Messtechnik Baldwin | Verfahren und vorrichtung zum abdecken eines dehnungsmesstreifens |
DE3520664A1 (de) | 1985-06-08 | 1986-12-11 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln | Verfahren zum aufbringen duenner reflexionsbeugungsgitter auf ebenen probekoerpern zur verformungsmessung |
DE3642780A1 (de) | 1986-05-05 | 1987-11-12 | Siemens Ag | Detektormatte und verfahren zu ihrer herstellung |
EP0410133B1 (de) | 1989-07-24 | 1994-03-02 | Roland Adam Renz | Vorrichtung zur Erfassung des in einer Welle übertragenen Drehmomentes, insbesondere bei einer zwischen einem Prüfling und einer Prüfmaschine angeordneten Welle |
CA2015184C (en) * | 1990-04-23 | 1993-12-21 | Gerard Ballivy | Method of instrumenting an already erected concrete structure and the so instrumented structure |
DE4025564C1 (en) * | 1990-08-11 | 1991-09-19 | Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De | Impact damage registering appts. for laminated fibre components - uses piezoelectric foil pieces distributed over component and connected to monitor to ascertain changes in capacitative charge |
JPH09505887A (ja) * | 1993-11-23 | 1997-06-10 | グラマン・エアロスペース・コーポレーション | 疲労損傷または傷つき易い構造の修理用の機材装備付きパツチ |
DE4404716A1 (de) | 1994-02-15 | 1995-08-17 | Hottinger Messtechnik Baldwin | Dehnungsmeßstreifen und Verfahren zur Herstellung eines Dehnungsmeßstreifens sowie Meßgrößenaufnehmer |
JP3131642B2 (ja) * | 1994-09-14 | 2001-02-05 | 日本電子工業株式会社 | 応力複合化センサ及びこれを用いた構造体の応力測定装置 |
US5770155A (en) * | 1995-11-21 | 1998-06-23 | United Technologies Corporation | Composite structure resin cure monitoring apparatus using an optical fiber grating sensor |
US5747698A (en) * | 1996-04-24 | 1998-05-05 | Simmonds Precision Products Inc. | Capacitive z-axis strain gauge |
US5978693A (en) * | 1998-02-02 | 1999-11-02 | E.P. Limited | Apparatus and method for reduction of motion artifact |
DE19923143A1 (de) * | 1999-05-20 | 2000-11-23 | Univ Dresden Tech | Anordnung zur Online-Überwachung von versagenstoleranten Hochleistungsrotoren |
US6555767B1 (en) * | 2000-08-22 | 2003-04-29 | Flintec, Inc. | Composite load cell |
US6769313B2 (en) * | 2001-09-14 | 2004-08-03 | Paricon Technologies Corporation | Flexible tactile sensor |
US6909919B2 (en) * | 2002-09-06 | 2005-06-21 | Cardiac Pacemakers, Inc. | Cardiac lead incorporating strain gauge for assessing cardiac contractility |
US20040183648A1 (en) * | 2003-03-21 | 2004-09-23 | Weber Thomas E. | Strain sensors and housings and circuit boards with integrated strain sensors |
US7043997B2 (en) * | 2003-07-09 | 2006-05-16 | Cherry Corporation | Seat for sensing a load |
-
2003
- 2003-10-30 DE DE10350974.7A patent/DE10350974B4/de not_active Expired - Fee Related
-
2004
- 2004-10-29 US US10/577,635 patent/US7552644B2/en not_active Expired - Fee Related
- 2004-10-29 WO PCT/EP2004/012310 patent/WO2005043107A2/de active Application Filing
- 2004-10-29 EP EP04791066A patent/EP1678474A2/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849668A (en) * | 1987-05-19 | 1989-07-18 | Massachusetts Institute Of Technology | Embedded piezoelectric structure and control |
WO2001039253A2 (en) * | 1999-11-23 | 2001-05-31 | The Board Of Trustees Of The Leland Stanford Junior University | Diagnostic layer and methods for detecting structural integrity of composite and metallic materials |
US6399939B1 (en) * | 2000-06-13 | 2002-06-04 | North Carolina A&T State University | Sensor array system |
US20020021058A1 (en) * | 2000-06-23 | 2002-02-21 | Duerr Johannes K. | Fiber composite with a piezoelectric sensor or actuator integrated therein |
WO2003039894A1 (de) * | 2001-11-06 | 2003-05-15 | ZF Lemförder Metallwaren AG | Fahrwerksteil aus faserverstärkten kunststoffen mit integriertem sensor |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007074084A3 (en) * | 2005-12-29 | 2007-08-30 | Airbus Gmbh | Method of dimensioning and producing stiffened structural components, use of structural condition sensors and an aircraft |
JP2009521365A (ja) * | 2005-12-29 | 2009-06-04 | エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング | 補剛構造コンポーネントを寸法決めして製造する方法、構造的状態センサの用途及び航空機 |
US7913568B2 (en) | 2005-12-29 | 2011-03-29 | Airbus Operations Gmbh | Method of dimensioning and producing stiffened structural components, use of structural condition sensors and an aircraft |
CN101346275B (zh) * | 2005-12-29 | 2012-06-06 | 空中客车营运有限公司 | 加强的结构元件的尺寸设计和制造方法、结构状况传感器的应用和飞行器 |
WO2007074084A2 (en) | 2005-12-29 | 2007-07-05 | Airbus Deutschland Gmbh | Method of dimensioning and producing stiffened structural components, use of structural condition sensors and an aircraft |
DE102006035274A1 (de) * | 2006-07-31 | 2008-02-14 | Technische Universität Dresden | Faserverbundbauteil mit einer Sensor- und Anzeigeeinheit |
DE102006035274B4 (de) * | 2006-07-31 | 2008-07-03 | Technische Universität Dresden | Faserverbundbauteil mit einer Sensor- und Anzeigeeinheit |
WO2010055282A1 (en) * | 2008-11-12 | 2010-05-20 | Qinetiq Limited | Composite sensor |
US9618420B2 (en) | 2010-04-19 | 2017-04-11 | Philip Wesby | System and method for a surface strain gauge |
WO2011131922A3 (en) * | 2010-04-19 | 2012-01-05 | Philip Wesby | System and method for a surface strain gauge |
DE102011122481A1 (de) | 2011-12-20 | 2013-06-20 | Technische Universität Dresden | Verfahren und Anordnung zur Überwachung und Lokalisierung von Materialschäden und Diskontinuitäten in Leichtbau-Verbundstrukturen |
DE102011122481B4 (de) * | 2011-12-20 | 2017-10-26 | Barbara Renner | Verfahren und Anordnung zur Überwachung und Lokalisierung von Materialschäden und Diskontinuitäten in Leichtbau-Verbundstrukturen |
CN106153319A (zh) * | 2016-07-01 | 2016-11-23 | 陕西飞机工业(集团)有限公司 | 一种用于飞机静力试验的模拟8框前机身载荷加载件 |
US10495608B2 (en) | 2016-08-21 | 2019-12-03 | Elbit Systems Ltd. | System and method for detecting weakening of the adhesion strength between structural elements |
CN106442151A (zh) * | 2016-08-31 | 2017-02-22 | 中国铁道科学研究院标准计量研究所 | 一种桥梁静载试验自动控制装置及检测方法 |
CN106442151B (zh) * | 2016-08-31 | 2023-10-13 | 中国铁路总公司 | 一种桥梁静载试验自动控制装置及检测方法 |
CN108760488A (zh) * | 2018-05-08 | 2018-11-06 | 泰山玻璃纤维有限公司 | 网格布接点定位性检测方法 |
CN108801779A (zh) * | 2018-08-03 | 2018-11-13 | 中冶建筑研究总院有限公司 | 一种纤维复材网格材料性能的测试装置及测试方法 |
CN108801779B (zh) * | 2018-08-03 | 2023-08-18 | 中冶建筑研究总院有限公司 | 一种纤维复材网格材料性能的测试装置及测试方法 |
CN112857637A (zh) * | 2021-03-17 | 2021-05-28 | 合肥艾创微电子科技有限公司 | 一种基于环形螺旋纤维的柔性触觉传感器单元及制备方法 |
FR3134138A1 (fr) * | 2022-03-29 | 2023-10-06 | Safran Aircraft Engines | Pièce composite, notamment pour une turbomachine d’aéronef |
CN114781234A (zh) * | 2022-06-20 | 2022-07-22 | 中国飞机强度研究所 | 飞机冲击动力学测试用易损结构等效靶厚度确定方法 |
CN114781234B (zh) * | 2022-06-20 | 2022-09-13 | 中国飞机强度研究所 | 飞机冲击动力学测试用易损结构等效靶厚度确定方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2005043107A3 (de) | 2005-10-27 |
DE10350974A1 (de) | 2005-06-02 |
US20080034881A1 (en) | 2008-02-14 |
DE10350974B4 (de) | 2014-07-17 |
US7552644B2 (en) | 2009-06-30 |
EP1678474A2 (de) | 2006-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005043107A2 (de) | Vorrichtung zur feststellung von belastungen an faserverbund-bauteilen | |
DE69623549T2 (de) | Analyse von Klebeverbindungen | |
DE102005030971B4 (de) | Kugelgelenk mit Sensoreinrichtung, Verfahren zur Belastungsmessung und Verfahren zur Verschleißmessung | |
DE102012112947B3 (de) | Montageverfahren für einen Dehnmessstreifen | |
DE102007040011B4 (de) | Verwendung von netzartig angeordneten, elektrisch leitfähigen Fasern, die in ein Bauteil aus einem Faserverbundwerkstoff integriert sind | |
WO2008101657A1 (de) | Optischer dehnungsmessstreifen | |
EP2603430A1 (de) | Beplankungsplatte für ein strukturbauteil, strömungskörper mit einer solchen beplankungsplatte sowie vorrichtung zur überwachung eines materialschadens an einer beplankungsplatte | |
EP3564015B1 (de) | Strukturbauteil sowie system und verfahren zur detektion von beschädigungen | |
EP3211396B1 (de) | Sensor zur integralen oder ortsaufgelösten messung von dehnungen basierend auf vorgeschädigten kohlefasern | |
EP3722768A1 (de) | Sensorvorrichtung zur erfassung von bremskräften in einem fahrzeug und messsystem | |
DE102009038746B3 (de) | Verfahren und Vorrichtung zur Qualitätsprüfung eines umgeformten thermoplastischen faserverstärkten Kunststoffbauteils | |
DE102018131948B4 (de) | Verfahren und Vorrichtung zum Detektieren eines Schlagereignisses sowie ein Fahrzeug hierzu | |
DE102006026528A1 (de) | Vorrichtung und Verfahren zum Prüfen von mono- oder polykristallinen Siliziumscheiben | |
DE102008006487B4 (de) | Verfahren zur Erkennung von belastungsbedingten Deformationen eines Bremssattels einer Scheibenbremse sowie Scheibenbremse | |
EP2112458A2 (de) | Verfahren und Vorrichtung zur Prüfung der Maßgenauigkeiten von Trommelbremsbelägen | |
DE102004008432A1 (de) | Dehnungsmessstreifen zur Erfassung von Dehnungen oder Stauchungen an Verformungskörpern | |
EP1674541A1 (de) | Klebeverbindung zum Verbinden von Bauteilen von Verkehrsmitteln, insbesondere von Luftfahrzeugen, sowie Verfahren zur Ermittlung einer mechanischen Mindestbelastbarkeit und/oder einer mechanischen Festigkeit einer Klebeverbindung | |
WO2014131697A1 (de) | Prüfvorrichtung und verfahren zur durchführung eines drucktests | |
DE2802176A1 (de) | Neuartiges kraftmessgeraet in dehnungsmesstreifentechnik, insbesondere fuer die untersuchung von werkstoffpruefmaschinen | |
DE102020201911A1 (de) | System zur Kontrolle des Vorliegens von Dickenverringerungen an mindestens einem mechanischen Bauteil und entsprechendes Kontrollverfahren | |
EP0955106A1 (de) | Vorrichtung zum Erfassen der Poren- oder Rissbildung an einer Folie | |
DE102014117079A1 (de) | Verfahren und System zum Bestimmen einer mechanischen Verformung und/oder eines Defekts eines Probenkörpers | |
DE102013213219B4 (de) | Vorrichtung zur Bestimmung einer Verformungsinformation für ein mit einer Last beaufschlagtes Brett | |
EP3637086B1 (de) | Probenkörperanordnung zur bestimmung mechanischer und/oder thermischer eigenschaften von probenkörpern und ein verfahren zur bestimmung mechanischer und/oder thermischer eigenschaften an probenkörpern | |
DE102019134544A1 (de) | Verfahren und System zur Überprüfung einer Klebverbindung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REEP | Request for entry into the european phase |
Ref document number: 2004791066 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004791066 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004791066 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10577635 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10577635 Country of ref document: US |