[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004105597A1 - Diagnosis of fragile plaque by active temperature-measurement - Google Patents

Diagnosis of fragile plaque by active temperature-measurement Download PDF

Info

Publication number
WO2004105597A1
WO2004105597A1 PCT/JP2003/015224 JP0315224W WO2004105597A1 WO 2004105597 A1 WO2004105597 A1 WO 2004105597A1 JP 0315224 W JP0315224 W JP 0315224W WO 2004105597 A1 WO2004105597 A1 WO 2004105597A1
Authority
WO
WIPO (PCT)
Prior art keywords
plaque
blood vessel
vessel wall
temperature
transient response
Prior art date
Application number
PCT/JP2003/015224
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunenori Arai
Takeshi Yanagihara
Sayaka Ohmori
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2005500247A priority Critical patent/JPWO2004105597A1/en
Priority to AU2003304154A priority patent/AU2003304154A1/en
Publication of WO2004105597A1 publication Critical patent/WO2004105597A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • A61B5/6853Catheters with a balloon

Definitions

  • the present invention relates to an apparatus including a catheter for determining fragility of a plaque in a blood vessel wall, for example, an arteriosclerosis site, by active temperature measurement. Specifically, plaque vulnerability is determined by irradiating high-intensity pulsed light to the atherosclerotic site and analyzing the conduction of heat generated in the plaque by the high-intensity pulsed light through the blood vessel wall Device.
  • Atherosclerosis in the coronary arteries causes various complications.
  • the site of atherosclerosis is composed of plaque and fibrous cap, and cracking or rupture of the fibrous cap leads to thrombus formation, often leading to major organ infarction such as acute myocardial infarction.
  • Vulnerable plaque is usually covered by a thin fibrous cap within the vessel wall, and its formation is largely dependent on the infiltration of macrophages, smooth muscle cells and T lymphocytes. It has been reported that the progression of inflammation is accompanied by an increase in the temperature of the plaque (VAN DE R WAL, A. shi.
  • the plaque is covered with a fibrous cap, and with the current catheter system, the temperature can be measured only on the inner surface of the blood vessel wall, and it is difficult to directly measure the plaque temperature. It is also conceivable to measure the temperature rise on the inner surface of the blood vessel wall due to the heat generated and conducted by the plaque.However, since the blood flow partially removes the heat, the temperature rise is 0.1 ° C. It is practically extremely difficult to accurately measure the temperature rise of the blood vessel wall.
  • the heat generated by the plaque is transmitted through the fibrous cap covering the plaque and transmitted to the inner surface of the blood vessel wall, where the size (width and thickness) of the plaque and the thickness of the fibrous cap affect the heat transfer. It is considered that the temperature rise on the inner surface of the blood vessel wall varies depending on the size of the plaque and the thickness of the fibrous cap. This suggests that the ability to measure the heat transfer pattern generated by the plaque will determine whether the plaque is stable or vulnerable.
  • a diode laser is applied from the adventitia side to control the irradiation pattern using a shirt to the part corresponding to the plaque simulating a rise in temperature due to inflammation.
  • a heat conduction simulation model for estimating the thickness of the fibrous cap was reported by examining the conduction pattern of the generated heat to the part corresponding to the fibrous cap, by irradiating the heat with a continuous laser.
  • indian green (ICG) was injected into the intima of the porcine thoracic descending aorta to enhance the absorption of laser light, mimicking Braak. Then, the ICG absorption site was irradiated with a laser to generate heat, and a temporal change in temperature on the blood vessel wall surface due to the conduction of the heat was measured to simulate thermal conduction (Takemi Matsuieta 1., J. ourna 1 of Medica 1 Engineering & Technology, V o 1 ume 25, number 5, 18 1-18 4, September ZO ctober 200 1). This model experiment shows that the heat transfer pattern changes with the thickness of the fibrous cap covering the plaque.
  • the heat conduction simulation model is a one-dimensional model that relates the temperature rise of the fibrous cap model due to heat conduction and the thickness of the fibrous cap. It was only a model, far from an accurate simulation of heat transfer in the vasculature. Further, in the heat conduction simulation model, although the temperature change of the blood vessel wall is measured with time, only the temperature rise ( ⁇ ) of the blood vessel wall surface is followed, and the transient response to the temperature change with time is measured. Is not analyzed in detail. Furthermore, they did not suggest how to actually irradiate the laser in-vivo and generate heat artificially, and how to measure the heat conducted from there to the inner surface of the blood vessel wall.
  • the present invention provides an apparatus for determining plaque vulnerability at an atherosclerotic site using high intensity pulsed light such as a pulsed laser. Aim. Specifically, by irradiating high-intensity pulsed light to the atherosclerotic site, generating heat by absorbing the pulsed light with a plaque, and measuring the conduction pattern of the generated heat on the inner surface of the blood vessel wall, An object of the present invention is to calculate the thickness of the fibrous cap covering the plaque and / or the degree of inflammation of the plaque, and to provide an apparatus for determining whether the plaque is stable or vulnerable. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above problems in the conventional technology.
  • high-intensity pulsed light is applied to the inside of a blood vessel wall, for example, an arteriosclerosis site, and the plaque generates heat by absorbing the high-intensity pulsed light
  • how the generated heat is conducted through the blood vessel wall
  • a heat conduction simulation model of the blood vessel wall was created to examine how the temperature on the inner surface of the blood vessel wall changes over time.
  • a two-dimensional or two-dimensional transient heat conduction finite element analysis was used.
  • the present inventors actually irradiate high-intensity pulsed light to an atherosclerotic site and actually measure a temperature change pattern of a blood vessel wall due to conduction of heat when plaque generates heat, The pattern is compared with the temperature change pattern calculated by the heat conduction simulator for the blood vessel wall, and fitting is performed by adjusting the parameters to cover the plaque at the atherosclerotic site.
  • the inventors have found that the thickness of the fibrous cap and / or the degree of progression of plaque inflammation can be calculated, and completed the present invention.
  • the present invention is as follows.
  • An active temperature measuring device for determining the fragility of a plaque in a blood vessel wall
  • Temperature measurement means for measuring the temporal change in temperature on the inner surface of the blood vessel wall due to the conduction of heat generated in the plaque portion due to absorption of the irradiated high-intensity pulsed light into the plaque portion in the blood vessel wall
  • a temperature measuring means for measuring a temporal change in temperature on the inner surface of the blood vessel wall due to conduction of heat generated in the plaque portion due to absorption of the irradiated high-intensity pulsed light into the plaque portion in the blood vessel wall;
  • Temperature transient response analysis means for analyzing plaque vulnerability from temporal changes in the inner surface of the blood vessel wall
  • An active temperature measuring device having:
  • a photosensitizing agent (PDT agent) for Ph todinemic Therapy is preliminarily accumulated in plaques for which vulnerability is to be determined, and the wavelength of the high-intensity pulsed light in (2) is equal to that of the PD ⁇ .
  • the active thermometer according to any one of [1] to [3], which is close to an absorption wavelength of a drug.
  • the active temperature measuring device according to any one of claims 1 to 5.
  • the blood vessel wall is irradiated with the high intensity pulsed light by the high intensity pulsed light irradiating means of (2), and the high intensity pulsed light is absorbed by the black to generate heat.
  • the time-dependent temperature change of the inner surface of the blood vessel wall due to the generated heat conducted through the blood vessel wall is measured by the measuring means, and the actual time-dependent temperature change of the inner surface of the blood vessel wall is measured by the temperature transient response analyzing means (4).
  • Transient response curve and temperature transient response analysis A temporal temperature change simulation model curve created using a heat conduction simulator for the vessel wall including the means is compared to determine the vulnerability of the plaque in the vessel wall
  • the active temperature measuring device according to any one of [1] to [6].
  • the time-varying temperature change simulation model curve on the inner surface of the blood vessel wall adjusts the parameters of the physical properties of the blood vessel wall, the parameters of the structure of the blood vessel wall, and the parameters of the heat generation due to high-intensity pulsed light irradiation.
  • the analysis means of (4) uses the simulation model curve of the temperature change over time calculated by the heat conduction simulator for the blood vessel wall and the actual time-lapse temperature of the inner surface of the blood vessel wall after irradiating the blood vessel with high-intensity pulsed light. By comparing the change transient response curve and the parameter concerning the thickness of the fibrous cap in the blood vessel wall, the actual time-dependent temperature change transient curve and the calculated time-dependent temperature change simulation are calculated. Fit the model curve to cover the plaque The active thermometer according to any one of [1] to [9], wherein the thickness of the fibrous cap is calculated to determine plaque vulnerability.
  • the beam thickness can be changed by the high-intensity pulsed light irradiation means of (2), and the transient response curve of temperature change over time on the inner surface of the blood vessel wall when a thick beam is irradiated shows the plaque blood flow.
  • the active temperature measuring device according to any one of [1] to [1 1], which reflects the size of the direction.
  • the fibrous cap covering the plaque by fitting the first half of the peak of the transient response curve of temperature change over time on the inner surface of the blood vessel wall due to heat conduction.
  • the active temperature measuring device according to any one of [1] to [1 3], wherein a thickness of the temperature measuring device is calculated.
  • the plaque thickness (volume, volume, The active temperature measuring device according to any one of [1] to [1 3], wherein depth is calculated.
  • a system for determining plaque vulnerability in a blood vessel wall comprising: (1) the inner surface of a blood vessel wall generated by irradiation of high intensity pulsed light to a plaque portion in the blood vessel wall and transmitted to the inner surface of the blood vessel wall; Means for transferring data relating to the temperature transient response curve over time to the temperature transient response analysis means, (2) Temperature transient response analysis means for analyzing the thickness of the fibrous cap covering the black based on the data on the transferred temperature change transient response curve,
  • Temperature transient response analysis means having:
  • the actual time-dependent temperature change transient response curve and the calculated time-dependent transient curve are calculated.
  • the temperature change simulation model is fitted with a curve to estimate the degree of progression of plaque inflammation, and the output means of (3) outputs information on the degree of progression of inflammation of the plaque. Vulnerability judgment system.
  • the temperature transient response analysis means obtains data on the temperature change transient response curve of the inner wall of the blood vessel wall due to the heat generated by irradiating the plaque part of the atherosclerotic site with high-intensity pulsed light and conducted to the inner wall of the blood vessel wall.
  • step (2) by changing a parameter relating to the degree of progression of plaque inflammation, an actual time-dependent temperature change transient response curve and a calculated time-dependent temperature change simulation are obtained.
  • FIG. 1 is a diagram showing an apparatus of the present invention.
  • FIG. 2 is a diagram showing a heat conduction simulation model for a blood vessel wall.
  • FIG. 3 is a conceptual diagram of the system of the present invention.
  • FIG. 4 is a flowchart of a process executed by the system of the present invention.
  • FIG. 5 is a diagram showing the results of measuring the temperature histories at three points of the intima, the media and the adventitia when heating the vascular segment.
  • FIG. 6 shows the differential movement of a pitta freshly extracted with a differential scanning calorimeter (DS).
  • FIG. 6 is a view showing the results of measuring the heat capacity of the vein and the porcine dry descending aorta.
  • 'FIG. 7 is a diagram showing the results of a heat conduction calculation performed to match the results of the temperature measurement experiment on the blood vessel wall.
  • FIG. 8 is a diagram showing a specific heat adjusted to match a temperature measurement experiment using a specific heat value based on a heat capacity measurement result by DSC.
  • Figure 9 shows the results of a comparison between the heat transfer calculation using the obtained specific heat value and the corresponding temperature measurement experiment.
  • the device of the present invention is an active temperature measuring device for detecting the presence of a vulnerable plaque that induces thrombus formation and causes acute myocardial infarction.
  • the thickness of the fibrous cap covering the plaque and the degree of inflammation or inflammation are known. With this information, it is possible to determine whether the plaque is stable or vulnerable, that is, the vulnerability of the plaque. Once the plaque vulnerability is known, the risk of developing myocardial non-mammary obstruction can be assessed.
  • the actuated temperature measurement means that heat is artificially generated in a plaque by irradiating high-intensity pulsed light to the inside of a blood vessel wall, for example, an arteriosclerosis site, and the artificially generated heat is converted into a blood vessel. It refers to measuring on the inner surface of the wall, and is a term for passive temperature measurement in which naturally generated heat is measured on the inner surface of the blood vessel wall.
  • the device of the present invention is a device having a catheter, and includes high-intensity pulsed light irradiation means, temperature measurement means for the inner surface of a blood vessel wall, pallets, and temperature transient response analysis means.
  • High-intensity pulsed light covers the plaque by irradiating the pulsed light with high intensity and easily absorbed by the pigment deposited on the plaque After passing through the fibrous cap and reaching the plaque, it is absorbed by pigment present in the plaque and generates heat there. , The generated heat is immediately conducted to the surrounding area from the point of generation, and partly passes through the fibrous cap and reaches the inner surface of the blood vessel wall.
  • the amount of pigment that absorbs high-intensity pulsed light deposited in the plaque varies depending on the degree of inflammation of the plaque, which changes the amount of heat generated in the plaque, and the thickness of the fibrous cap covering the plaque.
  • the time required for heat to reach the inner surface of the blood vessel wall and the temperature of the inner wall of the blood vessel rising due to heat conduction are different. Therefore, by monitoring the temperature change on the inner surface of the blood vessel wall after irradiation with the high-intensity pulsed light, the thickness of the fibrous cap covering the plaque and / or the degree of progression of the plaque inflammation can be determined.
  • a simulation model of heat conduction in the blood vessel wall (a heat conduction simulator for the blood vessel wall) was created, and the change pattern of the model was compared with the actually measured temperature change pattern of the blood vessel wall.
  • the degree of inflammation of the plaque can be determined by the thickness of the fibrous cap.
  • the inflammatory nature of the plaque is mainly determined by the number of macrophages, which are inflammatory cells infiltrating the plaque. It can be said that the greater the number of macrophages, the more plaque inflammation progresses. Macrophages in the plaques phagocytose cholesterol lipids, resulting in the deposition of carotene. As described below, in one embodiment of the present invention, high-intensity pulsed light having a wavelength that is absorbed by carotene is irradiated, and the energy of the high-intensity pulsed light is absorbed by carotene to generate heat. .
  • the size of the plaque generally reflects the number of accumulated macrophages. Judgment of the degree of progression of inflammation of the plaque mainly means judgment of the size (width and thickness) of the plaque.
  • the size of the plaque in the blood flow direction can be determined by thickening the beam of the high-intensity pulsed light to be irradiated as described later. Can be.
  • a catheter usually used in a blood vessel endoscope or the like can be used, and the diameter and the like are not limited.
  • High-intensity pulsed light transmission means, high-intensity pulsed light side emission means, balloon for closing high-intensity pulsed light and blood flow during temperature measurement, and liquid supply / drainage means for expanding and contracting the balloon Or, air supply / intake means, temperature measurement means, etc. are provided.
  • the high-intensity pulsed light generating means a normal high-intensity pulsed light generator for treatment can be used.
  • the high-intensity pulsed light penetrates the fibrous cap portion of the arterial sclerosis site, and when it reaches the plaque portion, is absorbed by the plaque and generates heat there.
  • the carotene is deposited on the plaque as described above, and the carotene absorbs high-intensity pulsed light energy. Therefore, high-intensity pulsed light having a wavelength near 450 nm to 500 nm, which is the absorption wavelength of carotene, is used. If the wavelength of the high-intensity pulsed light is different, the efficiency of absorbing the same intensity of the high-intensity pulsed light is different, so that the area of the plaque where the temperature is generated differs. For this reason, the obtained time-dependent temperature change curve also differs, so that more information can be obtained by using high-intensity pulsed light having a plurality of wavelengths.
  • the thickness of the high intensity pulsed light beam is not limited.
  • the area in the plaque where heat is generated increases, and the heat transfer from the entire large area can be measured.
  • a photosensitizing drug (PDT drug) for photodynamic therapy (PDT) may be accumulated in the plaque in advance.
  • PDT is a combination therapy using a photosensitizing drug such as a certain porphyrin derivative and a light beam such as laser light, and is selectively applied to a lesion such as cancer tissue to be treated by the photosensitizing drug. It utilizes the property of accumulating in the skin, and after the photosensitizing drug is administered by intravenous injection or other method, the lesion is irradiated with a light beam such as a laser beam to mainly cause photochemical reactions. Is a treatment for destroying the tissue.
  • a photosensitizing drug such as a certain porphyrin derivative
  • a light beam such as laser light
  • the irradiating high-intensity pulsed light is absorbed by the PDT drug accumulated on the plaque more efficiently than carotene, and the calorific value of the plaque is larger than that of carotene It becomes bad. For this reason, the fitting between the calculation result calculated by the heat conduction simulator for the blood vessel wall and the actually measured result can be performed using a higher numerical value, so that a more accurate result can be derived. is there.
  • PHE P hotofrinll
  • ATX—S 10 670 nm
  • ATX—S 10 670 nm
  • 5-ALA 630 nm
  • NP e 6 664 nm
  • m-THPC 652 nm
  • SnET2 637 nm
  • BPD-MA 690 nm
  • BPD-MA 690 nm
  • any of the known PDT agents can be used. Since each PDT drug has its own absorption wavelength, it is necessary to use high-intensity pulsed light that is close to the absorption wavelength of the PDT drug.
  • the PDT drug accumulates in plaques when administered, for example, by intravenous injection. This is considered to be due to phagocytosis by macrophages accumulated in the plaque.
  • the administration timing of the PDT drug varies depending on the type of the drug, but is administered several hours to several days before the temperature is measured by the device of the present invention. This is to allow sufficient time for the PDT drug to accumulate on the plaques.
  • the PDT drug is administered by dissolving the drug in an appropriate buffer such as a phosphate buffer solution, and adding a pharmaceutically acceptable additive as necessary.
  • Additives include solubilizers such as organic solvents, IDH regulators such as acids and bases, stabilizers such as ascorbic acid, excipients such as glucose, and isotonic agents such as sodium chloride.
  • the method of administration is not limited, and administration may be by intravenous injection, intramuscular injection, subcutaneous injection, oral administration, or the like.
  • the dose of the PDT drug is not limited either, and when administered systemically by intravenous injection or the like, the weight is 0.01 to 10 OmgZkg, preferably 1 to 5 mg / kg body weight.
  • the high-intensity pulsed light used is a pulse laser, a second harmonic of a titanium sapphire laser, or a tunable optical parametric oscillator (OPO). Generated light.
  • the laser include a pulsed dye laser such as flash lamp pumping and XeC1 excimer laser pumping, and a semiconductor laser such as GaA1As. Of these, 0 P0 having a high wavelength tunable performance is desirable. New As an example of 0P0, there is MiRa-0P0 of Cohrent.
  • the wavelength of the high intensity pulsed light used is 450 nm to 500 nm, preferably 450 nm to 480 nm, which is the absorption wavelength of the PDT drug. High intensity pulsed light is used.
  • the intensity of the high-intensity pulsed light to be applied is not limited, but it must be high enough not to destroy the fibrous cap covering the plaque.
  • the temperature of the blood vessel wall rises to prevent thermal denaturation of the blood vessel wall due to heat. Must be less than 30 ° C.
  • the irradiation time of the high-intensity pulsed light is not limited, but is preferably about 1 ms.
  • Means for transmitting high-intensity pulsed light to the vascular wall of the artery include a means for emitting high-intensity pulsed light near the distal end of the catheter and high-intensity pulsed light for generating high-intensity pulsed light
  • a quartz fiber (optical fiber) transmitted from the device to the high-intensity pulsed light emitting means is included.
  • the term “near the distal end” means a portion near the end opposite to the end (proximal end) connected to the high-intensity pulsed light generator, and includes the distal end and the distal end. Refers to the part about 10 cm from the distal end.
  • the quartz fiber is included in the catheter, and is connected at one end to the high-intensity pulsed light generator and at the other end to the high-intensity pulsed light emitting means.
  • the suidou fiber used in the present invention fits inside a catheter, ranging from a very thin diameter of about 0.05 to 0.3 mm to a visible one, and transmits high-intensity pulsed light energy. As far as possible, a wide variety of diameters can be used.
  • the high-intensity pulsed light radiating means is a means for irradiating the arterial blood vessel wall with high-intensity pulsed light, and the high-intensity pulsed light transmitted along the blood vessel in the quartz fiber enters the blood vessel wall. Side irradiation must be performed to reach the plaque of the atherosclerotic lesion. Side irradiation of high intensity pulsed light can be achieved by refracting or scattering high intensity pulsed light.
  • the side radiating means includes a prism, a scattering material, and the like.
  • a prism may be provided so that high-intensity pulsed light is laterally irradiated near the distal end of quartz fiber, or high-intensity pulsed light is laterally irradiated near the distal end of quartz fiber.
  • the surface may be roughened as described above.
  • a scattering substance such as alumina-silica force for scattering high-intensity pulsed light may be applied to the vicinity of the distal end of the quartz fiber, or these scattering substances may be contained in the balloon. You may leave.
  • the area range in which the high-intensity pulsed light emitted laterally from the vicinity of the distal end of the quartz fiber irradiates the artery is preferably 0.5 cm 2 to 3 cm 2 .
  • the irradiation area range can be appropriately set by changing the beam width of the high-intensity pulsed light, and the beam width of the high-intensity pulsed light can be adjusted to the thickness of the fiber transmitting the high-intensity pulsed light. You can change it.
  • the high intensity pulsed light irradiation is not limited to one location, and a plurality of locations may be irradiated simultaneously. Simultaneous irradiation of multiple locations generates heat at multiple locations within the plaque, and the conduction of heat from those locations can be measured. A variety of information can be obtained.
  • a plurality of high-intensity pulsed light transmitting fibers may be provided in the catheter, and a means for irradiating a plurality of high-intensity pulsed lights may be provided at the distal end of the catheter.
  • a balloon for coronary artery used in a normal balloon catheter can be used.
  • the balloon is attached near the distal end of the catheter.
  • the temperature measurement unit (described later) is installed on the puloon by expanding the balloon.
  • the contact between the probe and the blood vessel wall makes it possible to measure the temperature inside the blood vessel wall
  • the means for expanding the balloon is not particularly limited, but by supplying an appropriate liquid or gas into the balloon. In this case, Katate, Liquid and gas supply and discharge pipes are also provided in the tank.
  • the pressure at which the balloon presses against the vessel wall during inflation is preferably between 0.2 and 1 kg Z cm 2 .
  • the balloon may include high-intensity pulsed light emitting means.
  • the temperature measuring means of the device of the present invention is a means capable of measuring the temperature of the inner surface of the blood vessel wall.
  • a temperature measuring probe such as a contact thermometer and a thermocouple can be used as a temperature measuring part of the temperature measuring means. If contact thermometers or thermocouples are used as temperature measuring probes, they must be placed outside the balloon or buried in the balloon, as described above, because they need to contact the vessel wall. The temperature probe should be in contact with the vessel wall when the pallet expands.
  • the probe for temperature measurement and the temperature display means are connected by a line provided in the catheter, and the temperature information is transmitted to the temperature display means.
  • the temperature display means also includes a processor, which processes the transmitted temperature information, and transfers the processed data to the temperature transient response analysis means.
  • FIG. 1 shows a configuration diagram of the active temperature measuring device of the present invention.
  • a heat transfer simulator for the vessel wall can be constructed by two- or three-dimensional transient heat transfer finite element analysis.
  • the heat conduction calculation by the finite element method is based on the assumption that the object for which the heat conduction is to be calculated is divided into small elements, and that heat transfer occurs only between adjacent elements, and the heat transport equation at the nodes of the divided elements. This is a method of calculating heat conduction by At this time, the parameters specific to the blood vessel wall 3 are derived by using a commercially available heat conduction calculation program, and You can build a 'heat conduction' simulator.
  • thermocouple for example, heating the aorta of the septum, measuring the temperature history (temporal temperature change) of the intima, media and adventitia of the aorta using a thermocouple, and using the program Then, heat conduction calculation simulating the experimental system is performed, and various parameters may be adjusted to match the results of the temperature measurement experiment.
  • Various parameters can be selected, for example, by calculating by changing the value of specific heat. In this case, calorimetry is performed using a differential scanning calorimeter to observe the specific heat change of the blood vessel wall in detail.
  • a heat conduction simulator that reflects the physical properties of the blood vessel wall '3 can be constructed. .
  • the parameters relating to the actual structure of the blood vessel wall and the generated heat are input to the heat conduction simulator for the blood vessel wall 3 constructed by adjusting the physical property parameters. .
  • the blood vessel structure of a test blood vessel for which plaque vulnerability is to be determined is analyzed by angiography or intravascular ultrasound imaging (IVUS) to determine the thickness of the blood vessel and the thickness of the blood vessel wall 3.
  • IVUS intravascular ultrasound imaging
  • Get information such as Commercially available systems may be used for angiography and IVUS.
  • These pieces of information are input to the constructed heat conduction simulator for the blood vessel wall 3.
  • the degree of inflammation of plaque 1 (state of plaque 1) reflected by the heat transfer coefficient of plaque 1 and the size of plaque 1 It is possible to obtain accurate information about the internal structure of the blood vessel wall 3, such as the thickness of the fibrous cap 2 covering the plaque 1 and I can't.
  • the degree of inflammation of the plaque 1 such as the heat transfer coefficient of the plaque and the size of the plaque 1 and the fiber covering the plaque 1 Enter the parameter about the thickness of the functional coating 2.
  • a finite element method model in which the parameters of the structure of the vascular wall 3 of the test vessel including the state of the plaque 1 are adjusted is created.
  • a heat conduction simulator for the blood vessel wall that reflects not only the structure but also the physical properties can be constructed.
  • the parameters relating to the degree of inflammation of the plaque 1 such as the heat transfer coefficient of the black 1 and the size of the plaque 1 and the thickness of the fibrous cap 2 covering the plaque 1 are described above.
  • the comparison between the actual time-dependent temperature change transient response curve of the inner surface of the blood vessel wall and the time-dependent temperature change simulation model curve created using the heat conduction simulator for the blood vessel wall including the temperature transient response analysis means was performed. Is adjusted and fitting is performed.
  • the heating term of the blood vessel by high-intensity pulse 4 light irradiation is input to the simulator.
  • the term of heating of a blood vessel by high-intensity pulsed light irradiation refers to a parameter relating to heat that can be generated by high-intensity pulsed light irradiation or the like.
  • the heating term can be set in accordance with the actual method of irradiating the high intensity pulsed light. For example, when a high-intensity pulsed light beam is actually thin when performing actual temperature measurement, the range in which heat is generated in the plaque is narrow, and heat is transmitted to the blood vessel wall from a narrow heat generating site.
  • the heating term is changed corresponding to the beam of each thickness.
  • Temperature changes when the beam of high-intensity pulsed light is large reflect, in particular, the size of the plaque in the blood flow direction.
  • the size of the plaque in the blood flow direction is Parallel means the size of the blood in both the forward and reverse directions.
  • the temperature measurement point is not limited to one point, but may be set at multiple points. In this case, the parameter relating to the position of the temperature measuring point in the simulator may be changed.
  • vascular wall heat conduction simulation model including parameters on physical properties of the vascular wall, vascular structure, and heat generated in active temperature measurement is completed.
  • the simulator simulates the heat conduction by the finite element method model of the blood vessel that has obtained the structural information, and calculates the temperature change over time at the temperature measurement point. Since the heat conduction simulator of the blood vessel wall of the present invention performs heat conduction calculation using a multi-dimensional finite element method, the size of a generated portion of the conducted heat, the amount of generated heat, a temperature measuring point, and the like can be arbitrarily set. No matter what parameters are set, it is possible to calculate the temperature change over time at the temperature measurement point and obtain a temperature change simulation model curve.
  • Figure 2 shows a schematic diagram of the temperature change simulation model curve at the temperature measurement point obtained by the calculation of the heat conduction simulator for the blood vessel wall.
  • the temporal change in temperature at the temperature measurement point is a transient response
  • the temperature transient response can be analyzed by the temperature transient response analysis means of the present invention.
  • the transient response is defined as the transfer function H (f
  • the parameters related to the heating term are also adjusted according to the actual active temperature measurement conditions.
  • the measurement is performed on a blood vessel without plaque, since the structure of the blood vessel is accurately analyzed by the IVUS, the measured temperature change transient response curve and the temperature change simulation model curve calculated by the simulator are almost the same.
  • the IVUS cannot accurately measure the thickness of the fibrous cap covering the plaque, and the time calculated by the simulator according to the thickness of the fibrous cap Temperature variation There is a deviation between the simulation model curve and the actually measured temperature transient response curve. Therefore, both curves are fitted by changing the thickness of the fibrous cap as a parameter. The thickness of the fibrous cap when both curves are fitted represents the actual thickness.
  • the degree of black inflammation which cannot be measured by IVUS, also causes a shift.
  • the difference in heat transfer coefficient in the plaque is different from that of the normal blood vessel wall, and this difference also causes a shift.
  • the deviation mainly reflects the thickness of the fibrous cap, and also reflects the degree of progression of plaque inflammation as indicated by the plaque's coefficient of thermal conductivity and size ('width and thickness).
  • the thickness of the fibrous cap is set as a parameter of the vascular structure in the heat conduction simulator for the blood vessel wall. Changing this parameter to the temperature measurement point The temperature change in the simulation is calculated by simulation, and the temperature change transient response curve measured each time is compared with the temperature change simulation model curve calculated by the simulator. By repeating this process, the two curves are fitted. In this case, it can also be said that the illuminants are fitted so that the two curves overlap. In addition, the comparison of the curves.
  • the fitting may be performed by calculating an approximate equation of the two curves and calculating based on the equations, or may be performed on all or a part of the coordinate (time, temperature) data of each point of the curve. May be compared as a data set.
  • the value of the fibrous cap thickness as a parameter when the fitting is completed is the actual fibrous cap thickness.
  • the change in temperature at the temperature measurement point reflects not only the thickness of the fibrous cap but also the degree of plaque inflammation, so that the plaque inflammation progresses as a structural parameter of the vascular wall.
  • the degree of progression of plaque inflammation can be estimated and determined by fitting.
  • the plaque coefficient of thermal conductivity and plaque size reflect the degree of progression of inflammation of the plaque, so the plaque coefficient of thermal conductivity and the size of the plaque are used as parameters. It is good to adopt.
  • the heat conducted from the part far from the temperature measuring point arrives at the temperature measuring point with a delay, so the temperature decrease after the peak is affected by the heat conducted thereafter.
  • the temperature change pattern shown in Fig. 2 shows such a temperature change.
  • the fibrous cap covering the plaque is thin, The thinner, the faster the heat generated reaches the temperature measuring point without decay, so the peak temperature is reached earlier and the peak temperature value is higher.
  • the wider the heat generation area in the black the longer the heat conducts to the temperature measuring point after the peak temperature at the temperature measuring point, so the temperature decrease after the peak becomes slower.
  • the pattern of temperature change before the temperature at the measuring point reaches the peak reflects the thickness of the fibrous cap, and the pattern of temperature change after the temperature at the measuring point reaches the peak is It reflects the degree of inflammation of the plaque, as indicated by its thickness (width and thickness), etc., especially the thickness of the plaque.
  • the plaque thickness means the size of the plaque in the blood flow direction and the vertical direction, and is also referred to as the plaque depth.
  • the pattern of temperature change after the temperature at the temperature measuring point reaches the peak is the state of the plaque, especially the blood flow of the plaque. Reflects directional size and plaque thickness (plaque volume).
  • the temperature change curve over time should be fitted before the peak, and the progress of the plaque inflammation can be determined.
  • the temperature change curve over time may be fitted after the peak.
  • the plaque vulnerability is mainly determined by the thickness of the fibrous cap covering the plaque, so it is possible to determine the plaque vulnerability with considerable accuracy by comparing only the first half. is there.
  • the PDT drug is accumulated on the plaque in advance and the high-intensity pulsed light used is close to the absorption wavelength of the PDT drug, the energy of the high-intensity pulsed light can be efficiently used. It is well absorbed by PDT drugs. Therefore, the plaque generates a large amount of heat and conducts a large amount of heat, so that the temperature at the measuring point also increases. For this reason, The fitting can be performed using a larger temperature measurement value. Therefore, by using the PDT agent, the transient response analysis can be performed with higher accuracy, and more accurate judgment can be made.
  • the transient response analysis means of the present invention includes a heat conduction simulator for a blood vessel wall, and a means for inputting an actually measured temperature change.
  • the heat conduction simulator for the blood vessel wall is a storage means for storing data relating to the parameters of the heat conduction to the blood vessel wall and the data of the heat conduction simulation model curve, and for the blood vessel wall.
  • a time-dependent temperature change simulation model curve at a temperature measurement point obtained by a heat conduction simulation is obtained by calculation, and the model curve and a time-dependent temperature change transient response curve actually measured at the temperature measurement point are obtained.
  • the data of the heat conduction simulation model curve refers to data relating to an approximate equation of the curve, a dataset representing coordinates of a point on the curve, and the like.
  • the temperature change input unit may be a device for manually inputting an actual measurement value using a keyboard or the like, or a temperature measurement unit and a transient response analysis unit may be electronically connected to each other, and the temperature change unit may be connected to the temperature change unit.
  • the data may be transferred to the transient response analysis means.
  • Vulnerability assessment system for plaque at arteriosclerosis site Vulnerability assessment system for plaque at arteriosclerosis site
  • the present invention also includes a plaque vulnerability determination system in a blood vessel wall, for example, in a site of atherosclerosis.
  • the system is
  • Temperature transient response analysis means for analyzing the thickness of the fibrous cap covering the plaque and / or the degree of inflammation of the black,
  • Temperature transient response analysis means having:
  • a black vulnerability determination system having an output means for outputting information on the thickness of the fibrous cap covering the analyzed plaque and / or the degree of progression of plaque inflammation.
  • the means for transferring the data relating to the time-dependent temperature change transient response curve to the temperature transient response analysis means is means for electronically transferring data directly from the temperature measuring means of the active temperature measuring device of the present invention. Alternatively, it may be a means for inputting data once output by printing or display on a display, for example, by input means such as a keyboard.
  • the heat transfer simulator for the blood vessel wall included in the temperature transient response analysis means is a simulator constructed as described above.
  • the output means includes printing means, display means on a display, and the like. When output by a step, it may be a specific numerical value indicating the thickness of the fibrous cap, etc., or may be a judgment on the vulnerability of the graded plaque. 1 shows a schematic diagram of the system of the invention.
  • the present invention also includes a method for determining plaque vulnerability in a blood vessel wall, for example, at an atherosclerotic site using the system.
  • the method comprises overheating, A step of receiving data on a transient response curve of a temperature change on the inner surface of the blood vessel wall due to heat generated by the black light generated by the irradiation of the high-intensity pulsed light to the atherosclerotic site and transmitted to the inner surface of the blood vessel wall; Covers the plaque by comparing the temporal temperature change simulation model curve calculated by the heat conduction simulator for the blood vessel wall stored in the response analysis means with the actually measured temperature change transient response curve measured over time.
  • FIG. 4 shows the flow of the processing of the method executed by the system of the present invention.
  • the above software was developed after studying myocardial conduction.In this example, the specific heat value with the largest change in thermophysical properties was used as the only parameter in order to match the blood vessel wall temperature measurement experiment. It was adjusted.
  • the porcine freshly removed thoracic descending aorta was used as an experimental sample.
  • the descending aorta of pigs has a similar composition to human coronary arteries, such as collagen, and is more wally than coronary arteries. Suitable for experimental samples due to its large thickness. This was cut into a length (blood flow direction) of 25 mm and a width of 20 mm to obtain a vascular piece. Later, the media was torn to install a thermocouple for measuring the temperature change of the media.
  • the thickness of the entire vessel wall is 1.4 to 2.5 mm, and the thickness from the intima to the torn surface is 0.6 to 1.2 mm.
  • T-type thermocouples (T / TT-30-1, Ishikawa Sangyo, Tokyo) were installed at the three points of the inner membrane, middle membrane and outer membrane, and digital recorders (DL 708E, Yokogawa) Denki, Tokyo).
  • Figure 5 shows the results of measuring the temperature histories at three points of the intima, media and adventitia when heating the vascular segment. From the temperature histories of the media and the epicardium, heat was transmitted with a slight delay, and the peak temperature decreased gradually from the inner membrane side, indicating that appropriate measurement results were obtained.
  • the heat capacity was measured by a differential scanning calorimeter (differenttialscaanningca1orimeter; DSC).
  • Two types of samples were used: a freshly isolated porcine descending aorta, and a porcine isolated descending aorta that was placed in an environment with a humidity of 20% or less for 2 hours and dried. After the vessel was cut open, it was cut into small pieces so that it could be placed in an aluminum container. After measuring the mass, it was sealed in an aluminum container. The fresh one weighs 3.3 to 5.8 mg, the dried one weighs 2.4 to 6.7 mg, Met.
  • the DSCs used were DSC20 (Seiko I-Digital, Tokyo) and SS CZ580 thermal controller (Seiko Denko, Tokyo).
  • the measurement was started by placing the sample sealed in an aluminum container in DSC20.
  • the measurement start temperature was 22 ° C
  • the measurement end temperature was 100 ° C
  • the heating rate was 10 Zmin
  • the sampling interval was 0.4 s.
  • the temperature was set to be 0 to 200 ° (DSC is 0 to 2 V in the range of 0.5 to 9.5 mJZs and output as a voltage signal of 0 to 2 V.
  • FIG. 6 shows the results of measuring the heat capacity of the freshly isolated porcine aorta and the porcine dry descending aorta by DSC. While the heat capacity of the dried product increases almost linearly, the heat capacity of the fresh product increases exponentially as it approaches 100 ° C. Therefore, it is considered that the difference in heat capacity between the two occurred due to the endothermic effect of water evaporation. It is suggested that the temperature change of the heat capacity of the blood vessel wall is larger in the heat absorption due to the evaporation of water than in the heat denaturation of the protein.
  • This value is set so that the specific heat increases stepwise around 45 ° C as a result of considering the effect of endothermic effect due to thermal denaturation of the protein.
  • the error from the experimental result is about ⁇ 2 ° or less. Adjusted to be below. Strictly speaking, changes in physical properties appear not only in specific heat, but also in thermal conductivity and density, but here, only the specific heat, which is considered to have the largest change, is changed, and all other parameter changes are also changed. Adjustments were made to include changes in the specific heat value. Table 1 shows the main physical properties used in the heat conduction calculation.
  • FIG. 7 shows an example of the results of a heat conduction calculation performed to match the results of the temperature measurement experiment on the blood vessel wall.
  • the specific heat is 5.8 J / g K (T ⁇ 45 ° C), 12 J / g (T> 45 ° C), and the thermal conductivity is 0.42 Wm-1 K _ 1 By doing so, accurate heat conduction calculations could be performed.
  • the results of the temperature measurement experiment and the heat conduction simulation match when the specific heat value at 45 ° C or lower is set to 5 to 8 JZgK.c
  • thermal conductivity was calculated using the specific heat value of 1 for the results of temperature measurement experiments, but in almost all cases, the thermal conductivity was calculated within ⁇ 5 ° C.
  • the specific heat value (T> 45 ° C) used in the heat conduction calculation is several times greater than the value adjusted for myocardium of 0.42 Jg-1K-1. This is a relatively large value.
  • Myocardial collagen content is between 5.0 and 7.0 (g / 100 g) by dry weight, whereas the descending aorta is as high as 18.7 (g / 100 g). .
  • protein has a higher specific heat than water, so it is considered that the difference in specific heat value was caused by this difference in composition.
  • the specific heat value used in the heat conduction calculation is an apparent specific heat value, but it was thought that it was almost close to the true value.
  • the plaque at the atherosclerotic site is forcibly heated by high-intensity pulsed light irradiation, and the conduction pattern of the generated heat can be analyzed.
  • the heat conduction pattern reflects the thickness of the fibrous cap covering the plaque and the degree of inflammation of the plaque. Therefore, using the heat conduction simulator for the blood vessel wall constructed in advance, the heat conduction pattern calculated by Shimiyura and the actual condition using the thickness of the fibrous cap covering the plaque or the state of the plaque as a parameter The state of the fibrous cap and the plaque covering the plaque can be determined by fitting the measured heat conduction pattern to the plaque. As a result, the plaque vulnerability can be determined, and the risk of developing myocardial infarction can be evaluated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

It is intended to provide an apparatus for judging the fragility of a plaque in vessel wall with the use of a high-strength pulse beam such as a pulse laser. An active temperature-measurement apparatus for judging the fragility of a plaque at an arteriosclerotic site which has: (1) a balloon catheter to be inserted into a vessel; (2) a high-strength pulse beam irradiation unit for irradiating a plaque at an arteriosclerotic site with a high-strength pulse beam; (3) a temperature-measurement unit for measuring a temperature change on the vessel surface which is caused by the conduction of heat generated at the plaque site due to the high-strength pulse beam irradiation; and (4) a temperature transient response analysis unit for analyzing the fragility of the plaque based on the temperature change on the vessel surface.

Description

明 細 '書 ァクティ ブ測温による脆弱プラークの診断 技術分野  Technical Information Diagnosis of vulnerable plaque by active temperature measurement
本発明は、 アクティブ測温によ り血管壁内、 例えば動脈硬化部位のプ ラークの脆弱性を判定するためのカテーテルを含む装置に関する。 具体 的には、 動脈硬化部位に高強度パルス光を照射し、 高強度パルス光照射 によ りプラーク部分で発生した熱の血管壁中の伝導を解析することによ りプラークの脆弱性を判定する装置に関する。 背景技術  The present invention relates to an apparatus including a catheter for determining fragility of a plaque in a blood vessel wall, for example, an arteriosclerosis site, by active temperature measurement. Specifically, plaque vulnerability is determined by irradiating high-intensity pulsed light to the atherosclerotic site and analyzing the conduction of heat generated in the plaque by the high-intensity pulsed light through the blood vessel wall Device. Background art
冠状動脈におけるァテローム性動脈硬化は、 様々な合併症を発生させ る。 動脈硬化部位はプラークと線維性被膜から構成されており、 線維性 被膜の亀裂や破綻は血栓形成をもたら し、 しばしば急性心筋梗塞等の主 要器官梗塞につながる。 合併症の危険性が少ない安定プラークから、 破 綻しゃすく合併症の危険性が高い脆弱プラークへの進行には炎症が関わ つていると考えられている。 脆弱プラークは、 通常血管壁内において薄 い線維性被膜で覆われており、 その形成にはマクロファージ、 平滑筋細 胞および Tリ ンパ球の浸潤が大き く関与している。 炎症の進行にはプラ —クの温度上昇が伴う ことが報告されており (VAN DE R WA L , A. し. e t a 1. , C i r c u l a t i o n, 8 9, 3 6 - 44, 1 9 94, CAS S CE L L S, W. e t a 1. , T h e L a n c e t , 3 4 7, 1 44 7— 1 44 9, 1 9 9 6および S TEFANAD I S, G. e t a 1. , C i r c u l a t i o n, 9 9, 1 9 6 5— Γ 9 7 1 ,' 1 9 9 9を参照) 、 プラークの温度を測定することによ り脆弱プラークを検出することがで き、 心筋梗塞等の合併症の危険性を判定することが可能であることが示 唆されている。 Atherosclerosis in the coronary arteries causes various complications. The site of atherosclerosis is composed of plaque and fibrous cap, and cracking or rupture of the fibrous cap leads to thrombus formation, often leading to major organ infarction such as acute myocardial infarction. It is thought that inflammation is involved in the progression from stable plaques with low risk of complications to vulnerable plaques with high risk of broken complications. Vulnerable plaque is usually covered by a thin fibrous cap within the vessel wall, and its formation is largely dependent on the infiltration of macrophages, smooth muscle cells and T lymphocytes. It has been reported that the progression of inflammation is accompanied by an increase in the temperature of the plaque (VAN DE R WAL, A. shi. Eta 1., Circulation, 89, 36-44, 1994, CAS S CE LLS, W. eta 1., T he Lancet, 347, 144 7—144 9, 199 96 and S TEFANAD IS, G. eta 1., Circulation, 99, 19 6 5—Γ 9 7 1, see '1 9 9 9), It has been suggested that vulnerable plaque can be detected by measuring plaque temperature, and that the risk of complications such as myocardial infarction can be determined.
しかしながら、 プラークは線維性被膜で覆われており、 現在のカテ一 テルシステムを用いた場合、 測温できるのは血管壁の内面だけであり、 プラーク温度を直接測定することは困難である。 またプラークで発生し 伝導してきた熱による血管壁内面の温度上昇を測定すること も考えられ るが、 通常は血流によ り熱の一部が奪われるため、 温度上昇は 0. 1 °C 程度と低く、 血管壁の温度上昇を精度よ く測定することは、 実際上は極 めて困難である。  However, the plaque is covered with a fibrous cap, and with the current catheter system, the temperature can be measured only on the inner surface of the blood vessel wall, and it is difficult to directly measure the plaque temperature. It is also conceivable to measure the temperature rise on the inner surface of the blood vessel wall due to the heat generated and conducted by the plaque.However, since the blood flow partially removes the heat, the temperature rise is 0.1 ° C. It is practically extremely difficult to accurately measure the temperature rise of the blood vessel wall.
プラークで発生した熱は、 プラークを覆う線維性被膜を伝導し血管壁 内面に伝わるが、 この際プラークの大きさ (幅および厚さ) および線維 性被膜の厚さが熱伝導に影響を与え、 プラークの大きさおよぴ線維性被 膜の厚さによ り血管壁内面の温度上昇は異なると考えられる。 このこと はプラークで発生した熱の伝導パターンを測定することができれば、 プ ラークが安定したものかまたは脆弱なものであるかを判定しう ることを 示唆する。 実際、 ァテローム性の動脈硬化病変を模擬したモデルを用い て、 ダイオー ドレーザを外膜側から照射して炎症による温度上昇を模擬 したプラークに相当する部分に、 シャツタ一を用いて照射パターンを制 御した連続レーザを照射して熱を発生させ、 線維性被膜に相当する部分 への発生した熱の伝導パターンを調べ、 線維性被膜の厚さを推測する熱 伝導シミュレーショ ンモデルについての報告がなされている (T a k e m i Ma t s u i e t a 1. , I EEE TRAN SACT I ONS ON B I OMED I CA L ENG I NEER I NG, V o 1. 8, o. 4 , A r i 1 2 00 1および T a k em i Ma t s u i e t 1. , J o u r n a 1 o f Me d i c a 1 E n i n e e r i n g & T e c h n o l o g y, V o l u m e 2 5, n u m b e r 5 , 1 8 1— 1 8 4 , S e p t e m b e r /O c t o b e r 2 0 0 1 を参照) 。 しかしながら、 このシミ ユレ一シヨ ンモデルにおいては、 i n V i t r 0においてブタの胸部 下行大動脈血管壁内膜中にレーザ光の吸収を高めるためにィン ドシァニ ングリーン ( I C G) を注入してブラークを模倣させ、 該 I C G吸収部 位にレーザを照射し、 発熱させ該熱の伝導による血管壁表面における経 時的な温度変化を測定し、 熱伝導をシミュレー ト していた (T a k e m i M a t s u i e t a 1. , J. o u r n a 1 o f M e d i c a 1 E n g i n e e r i n g & T e c h n o l o g y, V o 1 u m e 2 5, n u m b e r 5 , 1 8 1— 1 8 4 , S e p t e m b e r Z O c t o b e r 2 0 0 1 を参照) 。 このモデル実験は、 プ ラークを覆う線維性被膜の厚さによ り熱伝導パターンが変化することを 示している。 しかしながら、 現実の動脈硬化部位を正確に模倣したモデ ルを用いたわけではなく、 また熱伝導シミュレーショ ンモデルも熱伝導 による線維性被膜モデルの温度上昇と線維性被膜の厚さを関係付けた一 次元モデルに過ぎず、 血管系における正確な熱伝導シミュレ一シヨ ンと は程遠かった。 さらに、 該熱伝導シミュレーショ ンモデルにおいては、 経時的に血管壁の温度変化を測定しているものの、 血管壁表面の温度上 昇 (Δ Τ) だけを追っており、 経時的な温度変化における過渡応答を詳 細には解析していない。 さらに、 実際に i n v i v oにおいてブラー クに如何にしてレーザを照射し、 人為的に発熱させ、 そこから血管壁内 面に伝導してきた熱を如何にして測定するかについても何ら示唆してい なかった。 The heat generated by the plaque is transmitted through the fibrous cap covering the plaque and transmitted to the inner surface of the blood vessel wall, where the size (width and thickness) of the plaque and the thickness of the fibrous cap affect the heat transfer. It is considered that the temperature rise on the inner surface of the blood vessel wall varies depending on the size of the plaque and the thickness of the fibrous cap. This suggests that the ability to measure the heat transfer pattern generated by the plaque will determine whether the plaque is stable or vulnerable. In fact, using a model simulating an atherosclerotic lesion, a diode laser is applied from the adventitia side to control the irradiation pattern using a shirt to the part corresponding to the plaque simulating a rise in temperature due to inflammation. A heat conduction simulation model for estimating the thickness of the fibrous cap was reported by examining the conduction pattern of the generated heat to the part corresponding to the fibrous cap, by irradiating the heat with a continuous laser. (Takemi Ma tsuieta 1., I EEE TRAN SACT I ONS ON BI OMED I CA L ENG I NEER I NG, V o 1.8, o. 4, A ri 1 200 1 and Tak em i Ma tsuiet 1., J ourna 1 of Me dic a 1 E nineering & Technology, Vol. 25, number 5, 18 1-18 4, September / October 2000). However, in this simulated simulated model, at in vitro 0, indian green (ICG) was injected into the intima of the porcine thoracic descending aorta to enhance the absorption of laser light, mimicking Braak. Then, the ICG absorption site was irradiated with a laser to generate heat, and a temporal change in temperature on the blood vessel wall surface due to the conduction of the heat was measured to simulate thermal conduction (Takemi Matsuieta 1., J. ourna 1 of Medica 1 Engineering & Technology, V o 1 ume 25, number 5, 18 1-18 4, September ZO ctober 200 1). This model experiment shows that the heat transfer pattern changes with the thickness of the fibrous cap covering the plaque. However, we did not use a model that accurately mimics the actual atherosclerotic site, and the heat conduction simulation model is a one-dimensional model that relates the temperature rise of the fibrous cap model due to heat conduction and the thickness of the fibrous cap. It was only a model, far from an accurate simulation of heat transfer in the vasculature. Further, in the heat conduction simulation model, although the temperature change of the blood vessel wall is measured with time, only the temperature rise (ΔΤ) of the blood vessel wall surface is followed, and the transient response to the temperature change with time is measured. Is not analyzed in detail. Furthermore, they did not suggest how to actually irradiate the laser in-vivo and generate heat artificially, and how to measure the heat conducted from there to the inner surface of the blood vessel wall.
本発明は、 パルスレーザ等の高強度パルス光を利用してァテロ一ム性 動脈硬化部位におけるプラークの脆弱性を判定するための装置の提供を 目的とする。 具体的には、 動脈硬化部位に高強度パルス光を照射し、 プ ラ一クでパルス光の吸収による熱を発生させ、 発生した熱の血管壁内面 における伝導パターンを測定することによ り、 プラークを覆う線維性被 膜の厚さおよび/またはプラークの炎症の進行度を算出し、 プラークが 安定なものか脆弱なものかを判定する装置の提供を目的とする。 発明の開示 The present invention provides an apparatus for determining plaque vulnerability at an atherosclerotic site using high intensity pulsed light such as a pulsed laser. Aim. Specifically, by irradiating high-intensity pulsed light to the atherosclerotic site, generating heat by absorbing the pulsed light with a plaque, and measuring the conduction pattern of the generated heat on the inner surface of the blood vessel wall, An object of the present invention is to calculate the thickness of the fibrous cap covering the plaque and / or the degree of inflammation of the plaque, and to provide an apparatus for determining whether the plaque is stable or vulnerable. Disclosure of the invention
本発明者等は、 上記の従来技術における問題点を解決すベく鋭意検討 を行った。 すなわち、 血管壁内、 例えば動脈硬化部位に高強度パルス光 を照射し、 プラークで高強度パルス光の吸収によ り熱を発生させた場合 に発生した熱がどのよう に血管壁内を伝導し、 血管壁内面の温度がどの ような経時的変化パターンを示すかを調べるために、 血管壁の熱伝導シ ミュレ一シヨンモデルを作成した。 この.際、 よ り正確な血管壁に対する 熱伝導シミュレーショ ンモデルを作成するために、 二次元またはミ次元 の非定常熱伝導有限要素解析によ り作成した。 本発明者等は、 実際にァ テロ一ム性動脈硬化部位に高強度パルス光を照射し、 プラークで熱を発 生させた場合の該熱の伝導による血管壁の温度変化パターンを実測し、 該パタ一ンを前記の血管壁に対する熱伝導シミュレータが計算した温度 変化バタ一ンと比較し、 パラメータの調整によるフィ ッティ ングを行な う ことによ り、 ァテローム性動脈硬化部位におけるプラークを覆う線維 性被膜の厚さおよび またはプラークの炎症の進行度が算出できること を見出し、 本発明を完成させた。  The present inventors have conducted intensive studies to solve the above problems in the conventional technology. In other words, when high-intensity pulsed light is applied to the inside of a blood vessel wall, for example, an arteriosclerosis site, and the plaque generates heat by absorbing the high-intensity pulsed light, how the generated heat is conducted through the blood vessel wall A heat conduction simulation model of the blood vessel wall was created to examine how the temperature on the inner surface of the blood vessel wall changes over time. At this time, in order to create a more accurate heat conduction simulation model for the blood vessel wall, a two-dimensional or two-dimensional transient heat conduction finite element analysis was used. The present inventors actually irradiate high-intensity pulsed light to an atherosclerotic site and actually measure a temperature change pattern of a blood vessel wall due to conduction of heat when plaque generates heat, The pattern is compared with the temperature change pattern calculated by the heat conduction simulator for the blood vessel wall, and fitting is performed by adjusting the parameters to cover the plaque at the atherosclerotic site. The inventors have found that the thickness of the fibrous cap and / or the degree of progression of plaque inflammation can be calculated, and completed the present invention.
すなわち、 本発明は以下の通りである。  That is, the present invention is as follows.
[ 1 ] 血管壁内のブラークの脆弱性を判定するためのァクティブ測温 装置であって、  [1] An active temperature measuring device for determining the fragility of a plaque in a blood vessel wall,
( 1 ) 血管内に挿入されるカテーテル、 ( 2 ) 血管壁内に高強度パルス光を照射する高強度パルス光照射手段、 および (1) a catheter inserted into a blood vessel, (2) high-intensity pulsed light irradiating means for irradiating the blood vessel wall with high-intensity pulsed light, and
( 3 ) 照射された高強度パルス光の血管壁内のプラーク部分への吸収 によ りプラーク部分で発生した熱の伝導による血管壁内面の経時的温度 変化を測定する温度測定手段  (3) Temperature measurement means for measuring the temporal change in temperature on the inner surface of the blood vessel wall due to the conduction of heat generated in the plaque portion due to absorption of the irradiated high-intensity pulsed light into the plaque portion in the blood vessel wall
を有するァクティプ測温装置。 An arc temperature measuring device.
[ 2 ] 血管壁内のブラークの脆弱性を判定するためのァクティプ測温 装置であって、  [2] Anactipometer for determining the fragility of the plaque in the blood vessel wall,
( 1 ) 血管内に挿入されるカテーテル、  (1) a catheter inserted into a blood vessel,
( 2 ) 血管壁内に高強度パルス光を照射する高強度パルス光照射手段、 (2) high-intensity pulsed light irradiating means for irradiating the blood vessel wall with high-intensity pulsed light,
( 3 ) 照射された高強度パルス光の血管壁内のプラーク部分への吸収 によ りプラーク部分で発生した熱の伝導による血管壁内面の経時的温度 変化を測定する温度測定手段、 および (3) a temperature measuring means for measuring a temporal change in temperature on the inner surface of the blood vessel wall due to conduction of heat generated in the plaque portion due to absorption of the irradiated high-intensity pulsed light into the plaque portion in the blood vessel wall; and
( ) 血管壁内面の経時的温度変化からプラークの脆弱性を解析する 温度過渡応答解析手段  () Temperature transient response analysis means for analyzing plaque vulnerability from temporal changes in the inner surface of the blood vessel wall
を有するァクティブ測温装置。 An active temperature measuring device having:
[3] 高強度パルス光がレーザである、 [ 1] または [2] に記載の ァクティブ測温装置。  [3] The active temperature measuring device according to [1] or [2], wherein the high-intensity pulsed light is a laser.
[ 4 ] 高強度パルス光の波長がプラークに沈着した力ロチンの吸収波一 長と同等である、 [1] から [3] のいずれか一つに記載のアクティブ 測温装置。 ,  [4] The active temperature measuring device according to any one of [1] to [3], wherein the wavelength of the high-intensity pulsed light is equal to the absorption wavelength of the force rotin deposited on the plaque. ,
[ 5 ] 脆弱性を判定しよう とするプラークにあらかじめ P h 0 t o d y n am i c T h e r a p y用光感受性薬剤 (P D T薬剤) が集積さ れており、 ( 2 ) の高強度パルス光の波長が前記 P D Τ薬剤の吸収波長 に近いことを特徴とする、 [ 1 ] から [ 3 ] のいずれか一つに記載のァ クティ プ測温装置。 [ 6 ] ( 1 ) のカテーテルパル一ンカテーテルであって、 バルーンの 拡張によ り (3)·の温度測定手段の温度測定部が血管壁内面に接触し、 温度を測定する、 [ 1] から [5] のいずれか一つに記載のアクティブ 測温装置。 [5] A photosensitizing agent (PDT agent) for Ph todinemic Therapy is preliminarily accumulated in plaques for which vulnerability is to be determined, and the wavelength of the high-intensity pulsed light in (2) is equal to that of the PDΤ. The active thermometer according to any one of [1] to [3], which is close to an absorption wavelength of a drug. [6] The catheter-palm catheter of (1), wherein the temperature measurement section of the temperature measurement means of (3) contacts the inner surface of the blood vessel wall by expanding the balloon, and measures the temperature. [1] The active temperature measuring device according to any one of claims 1 to 5.
[ 7 ] (2) の高強度パルス光照射手段によ り血管壁内に高強度パル ス光が照射されブラ一クに該高強度パルス光が吸収され熱を発生し、 ( 3) の温度測定手段によ り血管壁中を伝導する該発生した熱による血管 壁内面の経時的温度変化を測定し、 (4) の温度過渡応答解析手段によ り血管壁内面の実際の経時的温度変化過渡応答曲線と温度過渡応答解析 手段を含む血管壁に対する熱伝導シミ ュレ一タを用いて作成した経時的 温度変化シミユレーショ ンモデル曲線が比較され、 血管壁内におけるプ ラ一クの脆弱性が判定される、 [1〗 から [6] のいずれか一つに記載 のアクティブ測温装置。  [7] The blood vessel wall is irradiated with the high intensity pulsed light by the high intensity pulsed light irradiating means of (2), and the high intensity pulsed light is absorbed by the black to generate heat. The time-dependent temperature change of the inner surface of the blood vessel wall due to the generated heat conducted through the blood vessel wall is measured by the measuring means, and the actual time-dependent temperature change of the inner surface of the blood vessel wall is measured by the temperature transient response analyzing means (4). Transient response curve and temperature transient response analysis A temporal temperature change simulation model curve created using a heat conduction simulator for the vessel wall including the means is compared to determine the vulnerability of the plaque in the vessel wall The active temperature measuring device according to any one of [1] to [6].
[ 8 ] 血管壁内面における経時的温度変化シミュレーシヨ ンモデル曲 線が、 血管壁の物性パラメ一タ、 血管壁の構造に関するパラメータおよ ぴ高強度パルス光照射による発熱に関するパラメータが調整されている 血管壁に対する熱伝導シミュレータを用いて作成される、 [7] に記載 のアクティブ測温装置。  [8] The time-varying temperature change simulation model curve on the inner surface of the blood vessel wall adjusts the parameters of the physical properties of the blood vessel wall, the parameters of the structure of the blood vessel wall, and the parameters of the heat generation due to high-intensity pulsed light irradiation. The active temperature measuring device according to [7], which is created using a heat conduction simulator for a wall.
[9] 血管壁の構造に関するパラメータが、 血管内超音波イメージン グ ( I V U S ) によ り得られる、 [ 8 ] に記載のァクティブ測温装置。  [9] The active temperature measuring device according to [8], wherein the parameter relating to the structure of the blood vessel wall is obtained by intravascular ultrasound imaging (IVUS).
[1 0] (4 ) の解析手段が、 血管壁に対する熱伝導シミュレータが 計算した経時的な温度変化シミュレーションモデル曲線と血管への高強 度パルス光照射後の血管壁内面の実際の経時的な温度変化過渡応答曲線 とを比較し、 血管壁内の線維性被膜の厚さに関するパラメ一タを変化さ せることによ り実際の経時的温度変化過渡応答曲線と計算された経時的 温度変 匕シミュレーショ ンモデル曲線をフィ ッテ ングしプラークを覆 う線維性被膜の厚さが算出され、. プラークの脆弱性を判定する、 [ 1] から [9] のいずれか一つに記載のアクティ ブ測温装置。 [10] The analysis means of (4) uses the simulation model curve of the temperature change over time calculated by the heat conduction simulator for the blood vessel wall and the actual time-lapse temperature of the inner surface of the blood vessel wall after irradiating the blood vessel with high-intensity pulsed light. By comparing the change transient response curve and the parameter concerning the thickness of the fibrous cap in the blood vessel wall, the actual time-dependent temperature change transient curve and the calculated time-dependent temperature change simulation are calculated. Fit the model curve to cover the plaque The active thermometer according to any one of [1] to [9], wherein the thickness of the fibrous cap is calculated to determine plaque vulnerability.
[ 1 1] さらに、 プラークの炎症の進行度に関するパラメータを変化 させることによ り実際の経時的温度変化過渡応答曲線と計算された経時 的温度変化シミ ュ レーショ ンモデル曲線をフィ ッティ ングさせプラーク の炎症の進行度を推測し、 プラークの脆弱性を判定する、 [ 1 0] に記 載のァクティブ測温装置。  [11] Furthermore, by changing the parameters related to the degree of plaque inflammation progression, the actual time-dependent temperature change transient response curve and the calculated time-dependent temperature change simulation model curve are fitted to fit the plaque. The active thermometer according to [10], which estimates the degree of inflammation and determines the plaque vulnerability.
[1 2] (2) の高強度パルス光照射手段においてビームの太さを変 えることができ、 太いビームを照射した場合の血管壁内面の経時的温度 変化過渡応答曲線が、 プラークの血流方向の大きさを反映する、 [ 1] から [ 1 1 ] のいずれか一つに記載のアクティブ測温装置。  [1 2] The beam thickness can be changed by the high-intensity pulsed light irradiation means of (2), and the transient response curve of temperature change over time on the inner surface of the blood vessel wall when a thick beam is irradiated shows the plaque blood flow. The active temperature measuring device according to any one of [1] to [1 1], which reflects the size of the direction.
[ 1 3] (3) の温度測定手段において同時に複数点の経時的な温度 測定が可能である、 [ 1】 から [ 1 2]. のいずれか一つに記載のァクテ ィブ測温装置。  [1 3] The active temperature measuring device according to any one of [1] to [1 2], wherein the temperature measuring means of (3) is capable of simultaneously measuring a plurality of points over time.
[1 4] (4) の温度過渡応答解析手段において、 熱伝導による血管 壁内面の経時的な温度変化過渡応答曲線のピーク前半部をフイ ツティ ン グさせることによ りプラークを覆う線維性被膜の厚さが算出される、 [ 1 ] から [ 1 3] のいずれか一つに記載のアクティブ測温装置。  [14] In the temperature transient response analysis method of (4), the fibrous cap covering the plaque by fitting the first half of the peak of the transient response curve of temperature change over time on the inner surface of the blood vessel wall due to heat conduction. The active temperature measuring device according to any one of [1] to [1 3], wherein a thickness of the temperature measuring device is calculated.
[ 1 5] (4) の温度過渡応答解析手段において、 熱伝導による血管 壁内面の経時的な温度変化過渡応答曲線のピーク後半部をフィ ッティ ン グさせることによ りプラークの厚み (体積、 深さ) が算出される、 [1 ] から [ 1 3] のいずれか一つに記載のアクティブ測温装置。  [15] In the temperature transient response analysis method of (4), the plaque thickness (volume, volume, The active temperature measuring device according to any one of [1] to [1 3], wherein depth is calculated.
[ 1 6] 血管壁内におけるプラークの脆弱性判定システムであって、 ( 1 ) 血管壁内のプラーク部分への高強度パルス光照射によ り発生し 血管壁内面へ伝導した熱による血管壁内面の経時的な温度変化過渡応答 曲線に関するデータを温度過渡応答解析手段へ転送する手段、 ( 2 ) 転送された温度変化過渡応答曲線に関するデ一タに基づいて、 ブラ一クを覆う線維性被膜の厚さを解析する温度過渡応答解析手段であ つて、 [16] A system for determining plaque vulnerability in a blood vessel wall, comprising: (1) the inner surface of a blood vessel wall generated by irradiation of high intensity pulsed light to a plaque portion in the blood vessel wall and transmitted to the inner surface of the blood vessel wall; Means for transferring data relating to the temperature transient response curve over time to the temperature transient response analysis means, (2) Temperature transient response analysis means for analyzing the thickness of the fibrous cap covering the black based on the data on the transferred temperature change transient response curve,
( a ) 血管壁に対する熱伝導についてのパラメータに関するデータお よび熱伝導シミ ュレーショ ンモデル曲線のデータを格納する記憶手段、 ならびに  (a) storage means for storing data relating to parameters related to heat conduction to a blood vessel wall and data of a heat conduction simulation model curve; and
(b ) 血管壁に対する熱伝導シミュレータによ り求めた測温点におけ る経時的温度変化シミ ュレ一ショ ンモデル曲線と実際に測温点で測定し た経時的温度変化過渡応答曲線を比較し、 熱伝導シミ ュ レーシヨ ンにお けるパラメ一タを変化させて、 シミ ュレーショ ンの結果を実際の結果に 合わせる演算手段  (b) Comparison of the temperature change simulation model curve over time at the temperature measurement point obtained by the heat conduction simulator for the blood vessel wall with the transient response curve of the temperature change over time actually measured at the temperature measurement point Calculation means for adjusting the simulation results to the actual results by changing the parameters in the heat conduction simulation
を有する温度過渡応答解析手段、 ならびに Temperature transient response analysis means having:
( 3 ) 解析されたプラークを覆う線維性被膜の厚さに関する情報を出 力する出力手段  (3) Output means for outputting information on the thickness of the fibrous cap covering the analyzed plaque
を有するプラークの脆弱性判定システム。 Plaque vulnerability determination system having
[ 1 7 ] ( 6 ) ( a ) の演算手段において、 さらに、 プラークの炎症 の進行度に関する'パラメ一タを変化させることによ り実際の経時的温度 変化過渡応答曲線と計算された経時的温度変化シミ ュ レーショ ンモデル 曲線をフィ ッティ ングさせプラークの炎症の進行度を推測し、 (3 ) の 出力手段においてブラークの炎症の進行度に関する情報を出力する、 [ 1 6 ] に記載のプラークの脆弱性判定システム。  [17] (6) In the calculation means of (a), further, by changing a parameter relating to the degree of progression of plaque inflammation, the actual time-dependent temperature change transient response curve and the calculated time-dependent transient curve are calculated. The temperature change simulation model is fitted with a curve to estimate the degree of progression of plaque inflammation, and the output means of (3) outputs information on the degree of progression of inflammation of the plaque. Vulnerability judgment system.
[ 1 8] 動脈硬化部位におけるプラークの脆弱性判定方法であって、 [18] A method for determining plaque vulnerability at a site of atherosclerosis,
( 1 ) 温度過渡応答解析手段が、 動脈硬化部位のプラーク部分への高強 度パルス光照射によ り発生し血管壁内面へ伝導した熱による血管壁内面 の温度変化過渡応答曲線に関するデ一タを受け取るステップ、 (1) The temperature transient response analysis means obtains data on the temperature change transient response curve of the inner wall of the blood vessel wall due to the heat generated by irradiating the plaque part of the atherosclerotic site with high-intensity pulsed light and conducted to the inner wall of the blood vessel wall. Receiving,
( 2 ) 該過渡応答解析手段に格納されている血管壁に対する熱伝導シミ ユレ一タが計算した経時的な温度変化シミュレーショ ンモデル曲線と実 際に測定した経時的な温度変化過渡応答曲線を比較し、 プラークを覆う 線維性被膜の厚さに関するパラメ一タを変化させることによ り実際の経 時的温度変化過渡応答曲線と計算された経時的温度変化シミ ュレーショ ンモデル曲線をフィ ッティ ングさせプラークを覆う線維性被膜の厚さを 算出するステップ、 ならびに (2) Heat conduction stain on the blood vessel wall stored in the transient response analysis means To compare the simulated temperature change simulation model curve calculated over time with the actual temperature change transient response curve measured over time to change the parameter related to the thickness of the fibrous cap covering the plaque. Fitting the actual temporal temperature change transient response curve and the calculated temporal temperature change simulation model curve to calculate the thickness of the fibrous cap covering the plaque; and
( 3 ) 算出されたプラークを覆う線維性被膜の厚さを出力するステップ を  (3) Outputting the calculated thickness of the fibrous cap covering the plaque
含むプラークの脆弱性判定方法。 Method for determining plaque vulnerability.
[ 1 9 ] さらに、 ( 2 ) のステップにおいて、 プラークの炎症の進行 度に関するパラメ一タを変化させることによ り実際の経時的温度変化過 渡応答曲線と計算された経時的温度変化シミュレ一ショ ンモデル曲線を フィ ッティ ングしプラークの炎症の進行度を推測し、 ( 3 ) のステップ において、 算出されたプラークの炎症の進行度を出力する、 [ 1 8 ] に 記載のプラークの脆弱性判定方法。 図面の簡単な説明  [19] Further, in the step (2), by changing a parameter relating to the degree of progression of plaque inflammation, an actual time-dependent temperature change transient response curve and a calculated time-dependent temperature change simulation are obtained. The plaque vulnerability determination according to [18], in which the plaque inflammation progress is estimated by fitting the plaque model curve and the plaque inflammation progress is estimated in the step (3). Method. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の装置を示す図である。  FIG. 1 is a diagram showing an apparatus of the present invention.
図 2は、 血管壁に対する熱伝導シミュレ一ショ ンモデルを示す図であ る。  FIG. 2 is a diagram showing a heat conduction simulation model for a blood vessel wall.
図 3は、 本発明のシステムの概念図である。  FIG. 3 is a conceptual diagram of the system of the present invention.
図 4は、 本発明のシステムによ り実行される処理のフローである。 図 5は、 血管片に対して加温を行った際の.、 内膜 · 中膜 · 外膜の 3点 の温度履歴を計測した結果を示す図である。  FIG. 4 is a flowchart of a process executed by the system of the present invention. FIG. 5 is a diagram showing the results of measuring the temperature histories at three points of the intima, the media and the adventitia when heating the vascular segment.
図 6は、 示差走査熱量測定計 (D i f i e r e n t i a i S c a n n i n g C a l o r i m e t e r , D S C) でプタ新鮮摘出下行大動 脈、 ブタ乾燥下行大動脈の熱容量を測定した結果を示す図である。 ' 図 7は、 血管壁に対する測温実験の結果と合う よう に行った熱伝導計 算を行った結果を示す図である。 Fig. 6 shows the differential movement of a pitta freshly extracted with a differential scanning calorimeter (DS). FIG. 6 is a view showing the results of measuring the heat capacity of the vein and the porcine dry descending aorta. 'FIG. 7 is a diagram showing the results of a heat conduction calculation performed to match the results of the temperature measurement experiment on the blood vessel wall.
図 8は、 D S Cによる熱容量測定の結果を利用した比熱値を用いて測 温実験と合う よう に比熱を調整したものを示す図である。  FIG. 8 is a diagram showing a specific heat adjusted to match a temperature measurement experiment using a specific heat value based on a heat capacity measurement result by DSC.
図 9は、 求めた比熱値を使った熱伝導計算と該当する測温実験の比較 の結果を示す図である。 発明を実施するための最良の形態  Figure 9 shows the results of a comparison between the heat transfer calculation using the obtained specific heat value and the corresponding temperature measurement experiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の装置は、 血栓形成を誘発し急性心筋梗塞の原因となる脆弱プ ラ一ク (v u l n e r a b l e p l a q u e ) の存在を検出するァク ティブ測温装置であり、 本発明の装置によ り動脈硬化部位のプラークを 覆う線維性被膜の厚さおよぴノまたは炎症の進行度がわかる。 これらの 情報によ り プラークが安定なものか脆弱なものかを、 すなわちプラーク の脆弱性を判定することができる。 プラークの脆弱性がわかると心筋粳 塞に罹患する危険性を評価することができる。 本発明においてァクティ プ測温とは、 血管壁内、 例えば動脈硬化部位に高強度パルス光を照射す ることによ りプラークで人為的に熱を発生させ、 該人為的に発生した熱 を血管壁内面で測定することを意味し、 自然に発生した熱を血管壁内面 で測定するパッシブ測温に対する語である。  The device of the present invention is an active temperature measuring device for detecting the presence of a vulnerable plaque that induces thrombus formation and causes acute myocardial infarction. The thickness of the fibrous cap covering the plaque and the degree of inflammation or inflammation are known. With this information, it is possible to determine whether the plaque is stable or vulnerable, that is, the vulnerability of the plaque. Once the plaque vulnerability is known, the risk of developing myocardial non-mammary obstruction can be assessed. In the present invention, the actuated temperature measurement means that heat is artificially generated in a plaque by irradiating high-intensity pulsed light to the inside of a blood vessel wall, for example, an arteriosclerosis site, and the artificially generated heat is converted into a blood vessel. It refers to measuring on the inner surface of the wall, and is a term for passive temperature measurement in which naturally generated heat is measured on the inner surface of the blood vessel wall.
本癸明の装置はカテーテルを有する装置であつて、 高強度パルス光照 射手段、 血管壁内面の温度測定手段、 パル—ンおよび温度過渡応答解析 手段を含む。  The device of the present invention is a device having a catheter, and includes high-intensity pulsed light irradiation means, temperature measurement means for the inner surface of a blood vessel wall, pallets, and temperature transient response analysis means.
照射するパルス光を高強度で、 なおかつプラークに沈着している色素 に吸収されやすいものにすることで、 高強度パルズ光はプラークを覆う 線維性被膜を通過し、 プラークに達するとプラークに存在する色素によ り吸収されその部分で熱が発生する。,発生した熱はすぐに発生箇所から ' 周囲に伝導し、 一部は線維性被膜内を通って、 血管壁内面に達する。 プ ラークの炎症の進行度によ りプラーク中に沈着している高強度パルス光 を吸収する色素の量が異なるのでブラークにおいて発生する熱量が変わ り、 またプラークを覆う線維性被膜の厚さによ り血管壁に熱が伝導し内 面に達するまでの時間および熱伝導によ り上昇する血管壁内面の温度が 異なってく る。 従って、 高強度パルス光を照射してからの血管壁内面の 温度変化を経時的にモニタすることによ りプラークを覆う線維性被膜の 厚さおよび/またはプラークの炎症の進行度がわかる。 この際、 血管壁 における熱伝導のシミュレ一シヨ ンモデル (血管壁に対する熱伝導シミ ユレ一タ) を作成しておき、 該モデルの変化パターンを実際に測定した 血管壁の温度変化パターンと比較することによ り、 線維性被膜の厚さお ょぴプラークの炎症の進行度を知ることができる。 なお、 プラークの炎 症性は主にプラークに浸潤した炎症性細胞であるマクロファージの数で 決ま り、 マクロファージの数が多いほどプラ一クの炎症が進行している といえる。 プラーク中のマクロファージはコレステロ一ル脂質を貪食し、 それに伴ってカロチンが沈着する。 後述のよ う に、 本発明における一つ の態様では、 カロチンに吸収される波長の高強度パルス光を照射し、 該 高強度パルス光のエネルギーがカロチンに吸収され発熱することを利用 している。 また、 プラークにおけるマクロファージの数とプラークの大 きさは完全に対応しているのではないが、 概ねプラークの大きさは集積 したマクロファージの数を反映しているので、 本発明においては、 プラ ークの炎症の進行度の判定は、 主にプラークの大きさ (幅および、厚さ) の判定を意味する。 特に、 後述のよ う に照射する高強度パルス光のビー ムを太くすることによ り、 プラークの血流方向の大きさを判定すること ができる。 High-intensity pulsed light covers the plaque by irradiating the pulsed light with high intensity and easily absorbed by the pigment deposited on the plaque After passing through the fibrous cap and reaching the plaque, it is absorbed by pigment present in the plaque and generates heat there. , The generated heat is immediately conducted to the surrounding area from the point of generation, and partly passes through the fibrous cap and reaches the inner surface of the blood vessel wall. The amount of pigment that absorbs high-intensity pulsed light deposited in the plaque varies depending on the degree of inflammation of the plaque, which changes the amount of heat generated in the plaque, and the thickness of the fibrous cap covering the plaque. As a result, the time required for heat to reach the inner surface of the blood vessel wall and the temperature of the inner wall of the blood vessel rising due to heat conduction are different. Therefore, by monitoring the temperature change on the inner surface of the blood vessel wall after irradiation with the high-intensity pulsed light, the thickness of the fibrous cap covering the plaque and / or the degree of progression of the plaque inflammation can be determined. At this time, a simulation model of heat conduction in the blood vessel wall (a heat conduction simulator for the blood vessel wall) was created, and the change pattern of the model was compared with the actually measured temperature change pattern of the blood vessel wall. Thus, the degree of inflammation of the plaque can be determined by the thickness of the fibrous cap. The inflammatory nature of the plaque is mainly determined by the number of macrophages, which are inflammatory cells infiltrating the plaque. It can be said that the greater the number of macrophages, the more plaque inflammation progresses. Macrophages in the plaques phagocytose cholesterol lipids, resulting in the deposition of carotene. As described below, in one embodiment of the present invention, high-intensity pulsed light having a wavelength that is absorbed by carotene is irradiated, and the energy of the high-intensity pulsed light is absorbed by carotene to generate heat. . In addition, although the number of macrophages and the size of the plaque in the plaque do not completely correspond to each other, the size of the plaque generally reflects the number of accumulated macrophages. Judgment of the degree of progression of inflammation of the plaque mainly means judgment of the size (width and thickness) of the plaque. In particular, the size of the plaque in the blood flow direction can be determined by thickening the beam of the high-intensity pulsed light to be irradiated as described later. Can be.
本発明の装置のカテーテルは、 通常血誉内視鏡等において用いられて いるものを使用することができ、 その径等は限定されない。 カテーテル には高強度パルス光伝送手段、 高強度パルス光を側射する手段、 高強度 パルス光照射および測温時に血流を閉止するためのバルーン、 バルーン を拡張 · 収縮するための送吸液手段も しく は送吸気手段、 温度測定手段 等が配設される。  As the catheter of the device of the present invention, a catheter usually used in a blood vessel endoscope or the like can be used, and the diameter and the like are not limited. High-intensity pulsed light transmission means, high-intensity pulsed light side emission means, balloon for closing high-intensity pulsed light and blood flow during temperature measurement, and liquid supply / drainage means for expanding and contracting the balloon Or, air supply / intake means, temperature measurement means, etc. are provided.
高強度パルス光発生手段は、 通常の治療用高強度パルス光発生装置を 用いることができる。 本発明の装置において、 高強度パルス光は動脈硬 化部位の線維性被膜部分を透過し、 プラーク部分に達するとプラークに 吸収されそこで発熱する。  As the high-intensity pulsed light generating means, a normal high-intensity pulsed light generator for treatment can be used. In the device of the present invention, the high-intensity pulsed light penetrates the fibrous cap portion of the arterial sclerosis site, and when it reaches the plaque portion, is absorbed by the plaque and generates heat there.
これは、 上述のよ うにプラークにはカロチンが沈着しており、 該カロチ ンが高強度パルス光エネルギーを吸収するためである。 従って、 カロチ ンの吸収波長である 4 5 0 n m〜 5 0 0 n m付近の波長を有する高強度 パルス光を用いる。 なお、 高強度パルス光の波長が異なれば、 同じ強度 の高強度パルス光でも吸収される効率が異なってく るので、 プラーク中 で温度を発生する領域の広さが異なる。 このため、 得られる経時的温度 変化曲線も異なってく るので、 複数の波長の高強度パルス光を用いるこ とによ り多くの情報を得ることができる。 また、 高強度パルス光のビー ムの太さも限定されない。 ビームの太.さが拡大することによ りプラーク 中の熱が発生する領域が広くなり、 その大きな領域全体からの熱伝導を 測定することができる。 その結果、 ビームの太さを大き くすることによ り、 プラークの大きさ、 特に血流方向の幅を判定することが可能である。 この際、 カテーテル内に異なる太さの高強度パルス光伝送用ファイバー を配設することによ り、 ビームの太さの異なる高強度パルス光を照射す ることができる。 さらに、 プラークにあらかじめ光力学的治療 (P h 0 t 0 d y n a m i c t h e r a p y ; P D T) 用光感受性薬剤 (P D T薬剤) を集積 させておいてもよい。 P D Tとは、 ある種のポルフィ リ ン誘導体等の光 感受性薬剤と レーザ光などの光線を用いた複合治療であり、 光感受性薬 剤が治療を施そう とする癌組織などの病変部に選択的に集積するという 性質を利用したものであり、 光感受性薬剤を静脈注射等の方法によ り投 与した後に、 病変部にレーザ光等の光線を照射することによ り主に光化 学反応によつて該組織を破壊する治療法である。 P D T薬剤をプラーク に選択的に集積させることによ り、 照射する高強度パルス光はカロチン よ り も効率良く プラークに集積した P D T薬剤に吸収され、 プラークに おける発熱量がカロチンの場合よ り大き く なる。 このため、 血管壁に対 する熱伝導シミュレータが計算した計算結果と実測した結果とのフィ ッ ティ ングがよ り高い数値を利用して行えるので、 よ り正確な結果を導き 出すことが可能である。 P D T薬剤としては、 種々のものが知られてお り、 例えば P h o t o f r i n l l (P H E) ( 6 3 0 n m) ( p o 1 y h e m a t o p o r p h y r i n e t h e τ / e s t e r ) 、 A T X— S 1 0 ( 6 7 0 n m ) ( g a l 1 i u m p o r p h y r i n c o m p l e ) 、 5— A L A ( 6 3 0 n m ) ( 5— a m i n o 1 e v u r i n i c a c i d h y d r o c h l o r i d e ) ^ N P e 6 ( 6 6 4 n m ) (m o n o— L— a s p a r t y l c h l o r i n e 6 ) 、 m— TH P C ( 6 5 2 n m) ( t e t r a (m- h y d r o x y p h e n y l ) c h l o r i n) 、 S n E T 2 ( 6 3 7 n m) ( t i n e t h y l e t i o— u r p u r i n) 、 B P D— MA ( 6 9 0 n m ) (b e n z o p o r p h y r i n d e r i v a t i v e m o n o a c i d r i n g A')へ L u— t e x ( 7 3 2 n m ) ( L u t e t i u m T e x a p h y r i n )' 等が挙げられる (慣 用名、 吸収波長を示し、 さらに一般名を示してある) 。 これらを含む公 知の P D T薬剤のいずれをも用いることができる。 P DT薬剤はそれぞ れ固有の吸収波長を有するので、 照射する高強度パルス光は P D T薬剤 の吸収波長に近いものを用いる必要がある。 P DT薬剤は、 静脈注射な どで投与することによ りプラークに集積する。 これは、 プラークに集積 しているマクロファージに貪食されるためであると考えられる。 PDT 薬剤の投与タイ ミ ングは薬剤の種類によ り異なるが、 本発明の装置によ る測温を行う数時間〜数日前に投与する。 これは、 充分時間を置く こと によ り P D T薬剤をプラークに充分集積させるためである。 P D T薬剤 は、 該薬剤をリ ン酸緩衝塩溶液等の適当な緩衝液に溶解させ、 必要に応 じて医薬的に許容できる添加物を添加して投与する。 添加物としては、 有機溶媒等の溶解補助剤、 酸、 塩基等の ID H調整剤、 ァスコルビン酸等 の安定剤、 グルコース等の賦形剤、 塩化ナ ト リ ウム等の等張化剤などが 挙げられる。 投与方法は、 限定されず、 静脈注射、 筋肉注射、 皮下注射、 経口投与等によ り投与すればよい。 P DT薬剤の投与量も限定されず、 静脈注射等によ り全身投与する場合は、 0. 0 1〜 1 0 OmgZk g体 重、 好ましく は l〜 5mg/k g体重である。 This is because carotene is deposited on the plaque as described above, and the carotene absorbs high-intensity pulsed light energy. Therefore, high-intensity pulsed light having a wavelength near 450 nm to 500 nm, which is the absorption wavelength of carotene, is used. If the wavelength of the high-intensity pulsed light is different, the efficiency of absorbing the same intensity of the high-intensity pulsed light is different, so that the area of the plaque where the temperature is generated differs. For this reason, the obtained time-dependent temperature change curve also differs, so that more information can be obtained by using high-intensity pulsed light having a plurality of wavelengths. The thickness of the high intensity pulsed light beam is not limited. As the beam thickness increases, the area in the plaque where heat is generated increases, and the heat transfer from the entire large area can be measured. As a result, it is possible to determine the size of the plaque, particularly the width in the blood flow direction, by increasing the thickness of the beam. At this time, by arranging high-intensity pulsed light transmission fibers having different diameters in the catheter, it is possible to irradiate high-intensity pulsed light having different beam thicknesses. In addition, a photosensitizing drug (PDT drug) for photodynamic therapy (PDT) may be accumulated in the plaque in advance. PDT is a combination therapy using a photosensitizing drug such as a certain porphyrin derivative and a light beam such as laser light, and is selectively applied to a lesion such as cancer tissue to be treated by the photosensitizing drug. It utilizes the property of accumulating in the skin, and after the photosensitizing drug is administered by intravenous injection or other method, the lesion is irradiated with a light beam such as a laser beam to mainly cause photochemical reactions. Is a treatment for destroying the tissue. By selectively accumulating the PDT drug on the plaque, the irradiating high-intensity pulsed light is absorbed by the PDT drug accumulated on the plaque more efficiently than carotene, and the calorific value of the plaque is larger than that of carotene It becomes bad. For this reason, the fitting between the calculation result calculated by the heat conduction simulator for the blood vessel wall and the actually measured result can be performed using a higher numerical value, so that a more accurate result can be derived. is there. Various PDT drugs are known, for example, P hotofrinll (PHE) (630 nm) (po 1 yhematoporphyrine the τ / ester), ATX—S 10 (670 nm) (gal 1 iumporphyrincomple), 5-ALA (630 nm) (5-amino 1 evurinicacidhydrochlo ride) ^ NP e 6 (664 nm) (mono-L-aspartylchlorine 6), m-THPC (652 nm) To tetra (m-hydroxyphenyl) chlorin), SnET2 (637 nm) (tinethyletio-urpurin), BPD-MA (690 nm) (benzoporphyrinderivat ivemonoacidring A ') Lu-tex (732 nm) ) (Lutetium Texaphyrin) 'etc. It shows the name of the product, the absorption wavelength, and the generic name.) Any of the known PDT agents, including these, can be used. Since each PDT drug has its own absorption wavelength, it is necessary to use high-intensity pulsed light that is close to the absorption wavelength of the PDT drug. The PDT drug accumulates in plaques when administered, for example, by intravenous injection. This is considered to be due to phagocytosis by macrophages accumulated in the plaque. The administration timing of the PDT drug varies depending on the type of the drug, but is administered several hours to several days before the temperature is measured by the device of the present invention. This is to allow sufficient time for the PDT drug to accumulate on the plaques. The PDT drug is administered by dissolving the drug in an appropriate buffer such as a phosphate buffer solution, and adding a pharmaceutically acceptable additive as necessary. Additives include solubilizers such as organic solvents, IDH regulators such as acids and bases, stabilizers such as ascorbic acid, excipients such as glucose, and isotonic agents such as sodium chloride. No. The method of administration is not limited, and administration may be by intravenous injection, intramuscular injection, subcutaneous injection, oral administration, or the like. The dose of the PDT drug is not limited either, and when administered systemically by intravenous injection or the like, the weight is 0.01 to 10 OmgZkg, preferably 1 to 5 mg / kg body weight.
用いる高強度パルス光と してはパルスレ一ザ、 チタ ンサファイアレー ザの第二高調波、 波長可変のォプティ力ルパラメ ト リ ックォッシレータ 一 (O P O ; O p t i c a l P a r a m e t r i c 0 s c i 1 1 a t o r ) によ り発生する光線が挙げられる。 レーザと しては、 フラッシ ュランプ励起、 X e C 1エキシマーレーザ励起等のパルス色素レーザ、 G a A 1 A s等の半導体レーザが挙げられ、 このなかでも波長可変性能 が高い 0 P 0が望ま しい。 0 P 0の例と しては、 C o h e r e n t社の M i r a— 0 P 0などが挙げられる。  The high-intensity pulsed light used is a pulse laser, a second harmonic of a titanium sapphire laser, or a tunable optical parametric oscillator (OPO). Generated light. Examples of the laser include a pulsed dye laser such as flash lamp pumping and XeC1 excimer laser pumping, and a semiconductor laser such as GaA1As. Of these, 0 P0 having a high wavelength tunable performance is desirable. New As an example of 0P0, there is MiRa-0P0 of Cohrent.
P D T薬剤を用いない場合は、 用いる高強度パルス光の波長はカロチ ンの吸収波長である、 4 5 0 〜 5 0 0 n m、 好ま しく は 4 5 0〜 4 8 0 n mであり、 P D T薬剤をあらかじめプラークに集積させる場合は、 P D T薬剤の吸収波長に近い波長の高強度パルス光を用いる。 If no PDT agent is used, the wavelength of the high intensity pulsed light used is 450 nm to 500 nm, preferably 450 nm to 480 nm, which is the absorption wavelength of the PDT drug. High intensity pulsed light is used.
照射する高強度パルス光の強度は、 限定'されないがプラークを覆う線 維性被膜を破壊しない程度の強度である必要があり、 また血管壁の熱に よる温度変性を防ぐために血管壁の温度上昇が 3 0 °C以下となる強度で あることが必要である。  The intensity of the high-intensity pulsed light to be applied is not limited, but it must be high enough not to destroy the fibrous cap covering the plaque.In addition, the temperature of the blood vessel wall rises to prevent thermal denaturation of the blood vessel wall due to heat. Must be less than 30 ° C.
高強度パルス光の照射時間も限定がないが、 1 ミ リ秒程度が好ま しい。 高強度パルス光を動脈の血管壁へ伝送する手段には、 カテ一テルの遠 位端部付近に位置する、 高強度パルス光を側射する手段および高強度パ ルス光を高強度パルス光発生装置から該高強度パルス光側射手段に伝送 する石英ファイバー (光ファイバ一) が含まれる。 本明細書において 「 遠位端部付近」 とは、 高強度パルス光発生装置と連結された端部 (近位 端部) の反対側の端部に近い部分を意味し、 遠位端部および遠位端部か ら数十 c m程度の部分を指す。  The irradiation time of the high-intensity pulsed light is not limited, but is preferably about 1 ms. Means for transmitting high-intensity pulsed light to the vascular wall of the artery include a means for emitting high-intensity pulsed light near the distal end of the catheter and high-intensity pulsed light for generating high-intensity pulsed light A quartz fiber (optical fiber) transmitted from the device to the high-intensity pulsed light emitting means is included. As used herein, the term “near the distal end” means a portion near the end opposite to the end (proximal end) connected to the high-intensity pulsed light generator, and includes the distal end and the distal end. Refers to the part about 10 cm from the distal end.
石英ファィバ一はカテーテルの中に含まれ、 その一端で高強度パルス 光発生装置と連結し、 もう一端で高強度パルス光側射手段と連結してい る。 本発明で用いられる石矣ファイバ一は、 直径 0 . 0 5 〜 0 . 3 m m 程度のきわめて細いものから、 可視的な太さのものまで、 カテーテルの 中に収ま り高強度パルス光エネルギーを伝送できる限り、 広く種々の径 のものを用いることができる。  The quartz fiber is included in the catheter, and is connected at one end to the high-intensity pulsed light generator and at the other end to the high-intensity pulsed light emitting means. The suidou fiber used in the present invention fits inside a catheter, ranging from a very thin diameter of about 0.05 to 0.3 mm to a visible one, and transmits high-intensity pulsed light energy. As far as possible, a wide variety of diameters can be used.
高強度パルス光側射手段は、 動脈血管壁に高強度パルス光を照射する ための手段であり、 石英ファイバ一内を血管に沿って伝送されてきた高 強度パルス光が血管壁内に入射し動脈硬化病変部のプラークに達するよ . うに側方照射する必要がある。 高強度パルス光の側方照射は、 高強度パ ルス光を屈折させるかまたは散乱させることなど よ り達成することが でき、 該側射手段と して、 プリズム、 散乱物質等が挙げられる。 例えば、 石英ファィバーの遠位端部付近に高強度パルス光が側方照射されるよう にプリズムを備えていてもよいし、 石英ファィバーの遠位端部付近を高 強度パルス光が側方照射されるよう に粗面加工してもよい。 また、 石英 フアイバーの遠位端部付近に高強度パルス光を散乱させるアルミナゃシ リ力等の散乱物質を塗付しておいてもよいし、 またバルーン中にこれら の散乱物質を含有させておいてもよい。 石英ファイバーの遠位端部付近 から側方に射出された高強度パルス光が動脈を照射する面積範囲は、 0 . 5 c m 2〜 3 c m 2が好ましい。 照射の面積範囲は、 高強度パルス光 のビームの太さを変えることによ り適宜設定することができ、 高強度パ ルス光のビームの太さは、 高強度パルス光を伝送するファイバーの太さ を変えればよい。 The high-intensity pulsed light radiating means is a means for irradiating the arterial blood vessel wall with high-intensity pulsed light, and the high-intensity pulsed light transmitted along the blood vessel in the quartz fiber enters the blood vessel wall. Side irradiation must be performed to reach the plaque of the atherosclerotic lesion. Side irradiation of high intensity pulsed light can be achieved by refracting or scattering high intensity pulsed light. The side radiating means includes a prism, a scattering material, and the like. For example, a prism may be provided so that high-intensity pulsed light is laterally irradiated near the distal end of quartz fiber, or high-intensity pulsed light is laterally irradiated near the distal end of quartz fiber. The surface may be roughened as described above. In addition, a scattering substance such as alumina-silica force for scattering high-intensity pulsed light may be applied to the vicinity of the distal end of the quartz fiber, or these scattering substances may be contained in the balloon. You may leave. The area range in which the high-intensity pulsed light emitted laterally from the vicinity of the distal end of the quartz fiber irradiates the artery is preferably 0.5 cm 2 to 3 cm 2 . The irradiation area range can be appropriately set by changing the beam width of the high-intensity pulsed light, and the beam width of the high-intensity pulsed light can be adjusted to the thickness of the fiber transmitting the high-intensity pulsed light. You can change it.
また、 高強度パルス光照射の箇所は 1箇所に限らず、 複数箇所を同時 に照射してもよい。 複数箇所を同時に照射することによ り、 プラーク中 の複数の箇所で熱が発生し、 それらの箇所からの熱の伝導を測定できる ため、 ブラ一クの状態や線維性被膜の状態についてよ り多彩な情報を得 ることができる。 この場合、 カテーテル内に複数本の高強度パルス光伝 送用ファイバーを配設し、 カテーテル遠位端に複数の高強度パルス光を 照射する手段を配設すればよい。  The high intensity pulsed light irradiation is not limited to one location, and a plurality of locations may be irradiated simultaneously. Simultaneous irradiation of multiple locations generates heat at multiple locations within the plaque, and the conduction of heat from those locations can be measured. A variety of information can be obtained. In this case, a plurality of high-intensity pulsed light transmitting fibers may be provided in the catheter, and a means for irradiating a plurality of high-intensity pulsed lights may be provided at the distal end of the catheter.
バルーンは、 通常のバルーン付きカテーテルに用いられている冠状動 脈用バルーンを用いることができる。 バルーンはカテ^"テルの遠位末端 部付近に取り付けられる。 パルーンには後述の温度測定手段が配設され る。 バルーンを拡張させることによ り、 温度測定手段の温度測定部 (温 度測定プロ—ブ) と血管壁が接触し、 血管壁内面の温度測定が可能にな る。 バルーンを拡張させる手段は特に限定されないが、 適当な液体や気 体をバルーン内に供給することによ り達成できる。 この場合、 カテーテ , ルの中に液体、 気体の給排出管も備えられる。 拡張時のバルーンが血管 壁を押さえる際の圧力は、 0 . 2〜 1 k g Z c m 2の間が望ま しい。 前 述のよう にバル一ンは高強度パルス光側射手段を備えていてもよい。 本発明の装置の温度測定手段は、 血管壁内面の温度を測定し得る手段 でめ o As the balloon, a balloon for coronary artery used in a normal balloon catheter can be used. The balloon is attached near the distal end of the catheter. The temperature measurement unit (described later) is installed on the puloon by expanding the balloon. The contact between the probe and the blood vessel wall makes it possible to measure the temperature inside the blood vessel wall The means for expanding the balloon is not particularly limited, but by supplying an appropriate liquid or gas into the balloon. In this case, Katate, Liquid and gas supply and discharge pipes are also provided in the tank. The pressure at which the balloon presses against the vessel wall during inflation is preferably between 0.2 and 1 kg Z cm 2 . As described above, the balloon may include high-intensity pulsed light emitting means. The temperature measuring means of the device of the present invention is a means capable of measuring the temperature of the inner surface of the blood vessel wall.
温度測定手段の温度測定部と して接触式温度計、 熱電対等の温度測定用 プローブを用いることができる。 接触式温度計または熱電対を温度測定 用プローブと して用いる場合は、 前述のよう に、 これらが血管壁と接触 する必要があるため、 バルーンの外側に設置するかまたはバル一ンに埋 め込むよう にして設置し、 パル一ンが拡張したときに温度測定用プロ一 ブが血管壁に接触するよう にする。 温度測定用プローブと温度表示手段 はカテーテル内に配設される線によ り結ばれ、 温度情報が温度表示手段 に伝送される。 温度表示手段はプロセッサも備え該プロセッサによ り、 伝送された温度情報が処理され、 温度過渡応答解析手段に処理データが 転送される。 A temperature measuring probe such as a contact thermometer and a thermocouple can be used as a temperature measuring part of the temperature measuring means. If contact thermometers or thermocouples are used as temperature measuring probes, they must be placed outside the balloon or buried in the balloon, as described above, because they need to contact the vessel wall. The temperature probe should be in contact with the vessel wall when the pallet expands. The probe for temperature measurement and the temperature display means are connected by a line provided in the catheter, and the temperature information is transmitted to the temperature display means. The temperature display means also includes a processor, which processes the transmitted temperature information, and transfers the processed data to the temperature transient response analysis means.
図 1 に本発明のァクティブ測温装置の構成図を示す。  FIG. 1 shows a configuration diagram of the active temperature measuring device of the present invention.
温度過渡応答解析手段 Temperature transient response analysis means
本発明の装置を用いてプラーク 1 を覆う線維性被膜 2の厚さおょぴ' Z またはプラーク 1の炎症の進行度を判定する場合、 最初に血管壁 3に対 する熱伝導シミ ュレータを構築する。 血管壁に対する熱伝導シミュレ一 タは、 二次元または三次元の非定常熱伝導有限要素解析によ り構築する ことができる。 有限要素法による熱伝導計算は、 熱伝導を計算しよう と する対象を細かい要素に分割して、 隣接する要素間でのみ熱の受け渡し が起こると,仮定し、 分割した要素の節点における熱輸送方程式によ り熱 伝導を計算する方法である。 この際、 市販の熱伝導計算プログラムを用 いて血管壁 3 に特有なパラメータを導き出すことによ り、 血管壁 3 に対 する熱伝導'シミュレータを構築することができる。 このようなプログラ ムと して、 例えば心筋に対する熱伝導に基づいて作成された Q u i c k T h e r m B I O (計算力学研究所) が挙げられ、 該プログラムに 血管壁 3の物性パラメ一夕を入力することによ り、 血管壁 3 に対する熱 伝導シミュレータを構築することができる。 When using the apparatus of the present invention to determine the thickness of the fibrous cap 2 covering the plaque 1 or the degree of inflammation of the plaque 1, first construct a heat conduction simulator for the vascular wall 3 I do. A heat transfer simulator for the vessel wall can be constructed by two- or three-dimensional transient heat transfer finite element analysis. The heat conduction calculation by the finite element method is based on the assumption that the object for which the heat conduction is to be calculated is divided into small elements, and that heat transfer occurs only between adjacent elements, and the heat transport equation at the nodes of the divided elements This is a method of calculating heat conduction by At this time, the parameters specific to the blood vessel wall 3 are derived by using a commercially available heat conduction calculation program, and You can build a 'heat conduction' simulator. An example of such a program is the QUICK Therm BIO (Computational Mechanics Laboratory) created based on heat conduction to the myocardium.Entering the physical property parameters of the vascular wall 3 into the program Thus, a heat conduction simulator for the blood vessel wall 3 can be constructed.
具体的には、 例えばプタの大動脈に対して加温を行い、 熱電対を用い て大動脈の内膜、 中膜、 外膜の温度履歴 (経時的な温度変化) を測定し、 前記プログラムを用いて実験系を模擬した熱伝導計算を行い、 測温実験 の結果と合う よ う に各種パラメ一タを調整すればよい。 パラメータは種 々選択することができるが、 例えば比熱の値を変化させて計算すればよ レ、。 この場合は、 細かく血管壁の比熱変化を観察するために示差走査熱 量計を用いて熱量測定を行う。 最終的に、 計算結果に基づいてパラメ一 タを血管壁 3の物性に適合するよう に調整することによ り血管壁' 3の物 性を反映した熱伝導シミュレ一タを構築することができる。  Specifically, for example, heating the aorta of the septum, measuring the temperature history (temporal temperature change) of the intima, media and adventitia of the aorta using a thermocouple, and using the program Then, heat conduction calculation simulating the experimental system is performed, and various parameters may be adjusted to match the results of the temperature measurement experiment. Various parameters can be selected, for example, by calculating by changing the value of specific heat. In this case, calorimetry is performed using a differential scanning calorimeter to observe the specific heat change of the blood vessel wall in detail. Finally, by adjusting the parameters based on the calculation results so as to match the physical properties of the blood vessel wall 3, a heat conduction simulator that reflects the physical properties of the blood vessel wall '3 can be constructed. .
次いで、 物性パラメータを調整して構築した血管壁 3に対する熱伝導 シミュレータに、 実際の血管壁の構造と発生する熱に関するパラメータ を入力する。 .  Next, the parameters relating to the actual structure of the blood vessel wall and the generated heat are input to the heat conduction simulator for the blood vessel wall 3 constructed by adjusting the physical property parameters. .
まず、 プラークの脆弱性の判定を行おう とする被験血管について、 血 管造影や血管内超音波ィメージング ( I V U S ) によ り、 血管の構造を 解析し、 血管の太さ、 血管壁 3の厚さ等の情報を取得する。 血管造影や I V U Sは市販のシステムを用いればよい。 これらの情報を、 構築した 上記血管壁 3 に対する熱伝導シミ ュレ一タに入力する。 しかしながら、 I V U Sや血管造影では、 プラーク 1の存在は推測できるものの、 ブラ ーク 1の熱伝導係数やプラーク 1 の大きさ等によ り反映されるプラーク 1 の炎症の進行度 (プラーク 1 の状態) やプラーク 1 を覆う線維性被膜 2の厚さ等の血管壁 3の内部構造についての正確 情報は得ることがで きない。 そこで、 血管造影や I V U Sによ り得られた実際の血管壁 3の 構造情報にさらにプラークの熱伝導係数やプラーク 1の大きさ等のブラ ーク 1の炎症の進行度およびプラーク 1 を覆う線維性被膜 2の厚さに関 するパラメ一タを入力する。 これらの血管壁 3の構造に関する情報を入 力することによ り、 プラーク 1の状態を含む被験血管の血管壁 3の構造 に関するパラメータが調整された有限要素法のモデルが作成され、 血管 壁の構造だけではなく物性値をも反映した血管壁に対する熱伝導シミュ レ一タを構築することができる。 血管壁 3の構造に関するパラメータの うち上記のブラ一ク 1の熱伝導係数やブラーク 1の大きさ等のプラーク 1の炎症の進行度およびプラーク 1 を覆う線維性被膜 2の厚さに関する パラメ一タは、 血管壁内面の実際の経時的温度変化過渡応答曲線と温度 過渡応答解析手段を含む血管壁に対する熱伝導シミユレータを用いて作 成した経時的温度変化シミュレーショ ンモデル曲線を比較する際に、 調 整されフィ ッティ ングが行われる。 First, the blood vessel structure of a test blood vessel for which plaque vulnerability is to be determined is analyzed by angiography or intravascular ultrasound imaging (IVUS) to determine the thickness of the blood vessel and the thickness of the blood vessel wall 3. Get information such as Commercially available systems may be used for angiography and IVUS. These pieces of information are input to the constructed heat conduction simulator for the blood vessel wall 3. However, in IVUS and angiography, although the presence of plaque 1 can be inferred, the degree of inflammation of plaque 1 (state of plaque 1) reflected by the heat transfer coefficient of plaque 1 and the size of plaque 1 It is possible to obtain accurate information about the internal structure of the blood vessel wall 3, such as the thickness of the fibrous cap 2 covering the plaque 1 and I can't. Therefore, based on the actual structural information of the vascular wall 3 obtained by angiography and IVUS, the degree of inflammation of the plaque 1 such as the heat transfer coefficient of the plaque and the size of the plaque 1 and the fiber covering the plaque 1 Enter the parameter about the thickness of the functional coating 2. By inputting the information on the structure of the vascular wall 3, a finite element method model in which the parameters of the structure of the vascular wall 3 of the test vessel including the state of the plaque 1 are adjusted is created. A heat conduction simulator for the blood vessel wall that reflects not only the structure but also the physical properties can be constructed. Among the parameters relating to the structure of the blood vessel wall 3, the parameters relating to the degree of inflammation of the plaque 1 such as the heat transfer coefficient of the black 1 and the size of the plaque 1 and the thickness of the fibrous cap 2 covering the plaque 1 are described above. The comparison between the actual time-dependent temperature change transient response curve of the inner surface of the blood vessel wall and the time-dependent temperature change simulation model curve created using the heat conduction simulator for the blood vessel wall including the temperature transient response analysis means was performed. Is adjusted and fitting is performed.
さらに、 血管の高強度パルス 4光照射による加熱項をシミュレータに 入力する。 血管の高強度パルス光照射による加熱項とは、 高強度パルス 光照射等によ り発生し得る熱に関するパラメータをいう。 この際、 加熱 項は実際の高強度パルス光の照射の仕方に対応して設定することができ る。 例えば実際にァクティプ測温を行う際に高強度パルス光ビームが細 いときは、 プラークにおいて熱が発生する範囲が狭く、 狭い発熱部位か ら血管壁に熱が伝導する。 一方、 高強度パルス光のビームが太いとブラ ークにおいて熱が癸生する範囲が広く なり、 広い発熱部位から血管壁に 伝導する。 このよう に高強度パルス光のビームの太さを変える場合は、 それぞれの太さのビームに対応して加熱項を変化させる。 高強度パルス 光のビームが太い場合の温度変化は、 特にプラークの血流方向の大きさ を反映する。 ここで、 プラークの血流方向の大きさとは、 血液の流れと 平行という意味であり、 血液の正逆両方の方向の大きさを意味する。 ま た、 実際のァクティプ測温においては、 '測温点は 1点だけとは限らず複 数点設定すること もある。 この場合は、 シミ ュレータにおいて測温点の 位置に関するパラメ一タを変化させればよい。 In addition, the heating term of the blood vessel by high-intensity pulse 4 light irradiation is input to the simulator. The term of heating of a blood vessel by high-intensity pulsed light irradiation refers to a parameter relating to heat that can be generated by high-intensity pulsed light irradiation or the like. At this time, the heating term can be set in accordance with the actual method of irradiating the high intensity pulsed light. For example, when a high-intensity pulsed light beam is actually thin when performing actual temperature measurement, the range in which heat is generated in the plaque is narrow, and heat is transmitted to the blood vessel wall from a narrow heat generating site. On the other hand, if the beam of the high-intensity pulsed light is too thick, the area of heat generated in the black area will be wide, and the heat will be transmitted to the blood vessel wall from a wide heat generation site. When the thickness of the high-intensity pulsed light beam is changed in this way, the heating term is changed corresponding to the beam of each thickness. Temperature changes when the beam of high-intensity pulsed light is large reflect, in particular, the size of the plaque in the blood flow direction. Here, the size of the plaque in the blood flow direction is Parallel means the size of the blood in both the forward and reverse directions. Also, in actual actual temperature measurement, 'The temperature measurement point is not limited to one point, but may be set at multiple points. In this case, the parameter relating to the position of the temperature measuring point in the simulator may be changed.
以上によ り、 血管壁の物性、 血管の構造および、アクティブ測温におい て発生させる熱についてのパラメ一タを含む血管壁熱伝導シミユレ一シ ヨ ンモデルが完成する。  As described above, a vascular wall heat conduction simulation model including parameters on physical properties of the vascular wall, vascular structure, and heat generated in active temperature measurement is completed.
このようなパラメ一夕が調整されたシミ ュレ一タを用いて、 血管壁内 面の測温点における経時的な温度変化を計算することができる。 この場 合、 シミュレータは前記構造情報を得た血管の有限要素法モデルによ り 熱伝導をシミュレー ト し測温点における経時的な温度変化を計算する。 本発明の血管壁熱伝導シミユレータは複数次元の有限要素法を用いて 熱伝導計算を行うため、 伝導する熱の発生部位の大きさ、 発生する熱量、 測温点等も任意に設定することができ、 どのようなパラメータを設定し ても測温点における経時的な温度変化を計算して温度変化シミュレ一シ ョ ンモデル曲線と して得ることができる。 図 2 に血管壁に対する熱伝導 シミュレータの計算によ り得られたあ 測温点における温度変化シミュ レーシヨ ンモデル曲線の概略図を示す。  Using a simulator in which such parameters are adjusted, it is possible to calculate a temporal change in temperature at a temperature measuring point on the inner surface of the blood vessel wall. In this case, the simulator simulates the heat conduction by the finite element method model of the blood vessel that has obtained the structural information, and calculates the temperature change over time at the temperature measurement point. Since the heat conduction simulator of the blood vessel wall of the present invention performs heat conduction calculation using a multi-dimensional finite element method, the size of a generated portion of the conducted heat, the amount of generated heat, a temperature measuring point, and the like can be arbitrarily set. No matter what parameters are set, it is possible to calculate the temperature change over time at the temperature measurement point and obtain a temperature change simulation model curve. Figure 2 shows a schematic diagram of the temperature change simulation model curve at the temperature measurement point obtained by the calculation of the heat conduction simulator for the blood vessel wall.
次いで、 実際に血管壁においてァグティブ測温を行い、 測温点での経 時的な温度変化を実測する。 この際、 測温点での経時的な温度変化は過 渡応答であり、 本発明の温度過渡応答解析手段によ り、 この温度過渡応 答を解析することができる。 過渡応答とは、 制御系 Sに伝達関数 H ( f Next, an actual temperature measurement is performed on the blood vessel wall, and a temporal temperature change at the temperature measurement point is actually measured. At this time, the temporal change in temperature at the temperature measurement point is a transient response, and the temperature transient response can be analyzed by the temperature transient response analysis means of the present invention. The transient response is defined as the transfer function H (f
) が与えられているとき、 入力信号 u ( t ) を与えた場合に、 それが原 因となって出力 X ( t ) を生じ、 この X ( t ) が新しい定常状態に達す るまでに示す過渡的な経過をいう。 本発明においては、 測温点における 温度変化 ( X ( t ) ) が過渡応答を示し.、 最終的に定常状態に達する。 本発明においては、 単に温度上昇を問題にするのではなく、 温度変化を 過渡応答と して解析し得るので、 単に測温点における温度上昇値 (Δ Τ ) を測定するよ りは、 はるかに正確にプラークの状態を知ることができ 血管壁に対する熱伝導シミュレータに入力した血管壁の物性パラメ一 夕は、 ァクティブ測温の対象が血管壁である限り変わらない。 また加熱 項に関するパラメータ も実際のァクティブ測温の条件に合わせて調整し ている。 プラークが存在しない血管で測定した場合、 上記 I V U Sで血 管の構造が正確に解析されているので、 実測した温度変化過渡応答曲線 とシミュレータが計算した温度変化シミュレーショ ンモデル曲線はほぼ 同一になる。 しかし、 血管壁にプラークが存在している場合、 上記 I V U Sではプラークを覆う線維性被膜の厚さを正確に測定できないため、 線維性被膜の厚さに応じて、 シミュレ タが計算した経時的な温度変化 シミ ュレ一ショ ンモデル曲線と実際に測定した温度過渡応答曲線の間に ずれが生じる。 そこで、 線維性被膜の厚さをパラメータと して変化させ ることによ り、 両曲線をフィ ッティ ングさせる。 両曲線がフィ ッ ト した ときの線維性被膜の厚さが実際の厚さを表す。 また、 プラークの炎症の 進行度によって、 熱が発生する領域の大きさおよび発生する熱量が異な るので、 I V U Sでは測定できないブラ一クの炎症の進行度もずれの原 因となる。 さらに、 プラーク中の熱伝導係数は正常血管壁とは異なるの で、 この相違によってもずれが生じる。 ずれは、 主に線維性被膜の厚さ を反映し、 さらにプラークの熱伝導係数や大きさ ('幅および厚さ) 等に よ り示されるプラークの炎症の進行度をも反映している。 ), When an input signal u (t) is given, it causes an output X (t), which is shown by the time X (t) reaches a new steady state. Refers to a transient process. In the present invention, the temperature change (X (t)) at the temperature measuring point shows a transient response, and finally reaches a steady state. In the present invention, since the temperature change can be analyzed as a transient response, not merely as a matter of temperature rise, it is far more than simply measuring the temperature rise value (Δ Τ) at the temperature measuring point. The state of the plaque can be accurately known, and the physical property parameters of the blood vessel wall input to the heat conduction simulator for the blood vessel wall do not change as long as the target of the active temperature measurement is the blood vessel wall. The parameters related to the heating term are also adjusted according to the actual active temperature measurement conditions. When the measurement is performed on a blood vessel without plaque, since the structure of the blood vessel is accurately analyzed by the IVUS, the measured temperature change transient response curve and the temperature change simulation model curve calculated by the simulator are almost the same. However, when plaque is present on the blood vessel wall, the IVUS cannot accurately measure the thickness of the fibrous cap covering the plaque, and the time calculated by the simulator according to the thickness of the fibrous cap Temperature variation There is a deviation between the simulation model curve and the actually measured temperature transient response curve. Therefore, both curves are fitted by changing the thickness of the fibrous cap as a parameter. The thickness of the fibrous cap when both curves are fitted represents the actual thickness. In addition, since the size of the heat-generating region and the amount of heat generated vary depending on the degree of plaque inflammation, the degree of black inflammation, which cannot be measured by IVUS, also causes a shift. Furthermore, the difference in heat transfer coefficient in the plaque is different from that of the normal blood vessel wall, and this difference also causes a shift. The deviation mainly reflects the thickness of the fibrous cap, and also reflects the degree of progression of plaque inflammation as indicated by the plaque's coefficient of thermal conductivity and size ('width and thickness).
解析によ り、 線維性被膜の厚さに関する情報を得よう とする場合、 血 管壁に対する熱伝導シミュレータにおいて、 血管構造のパラメータと し て、 線維性被膜の厚さを設定する。 このパラメータを変えつつ測温点に おける温度変化をシミュレー ト計算し、 その都度実測した温度変化過渡 応答曲線とシミ ュレータが計算した温度変化シミュレーショ ンモデル曲 線を比較する。 この作業を繰り返すことによ り、 2つの曲線をフイ ツテ イ ングさせる。 この場合、 2つの曲線が重なるよう に、 ノ ラメ一タをフ ィ ッティ ングさせるともいえる。 なお、 曲線の比較 . フィ ッティ ングは、 両曲線の近似方程式を求め該方程式に基づいて計算によ り行ってもよい し、 曲線の各点の座標 (時間、 温度) データの全部または一部をデータ セッ ト と して比較しても よい。 フィ ッティ ングが完了したと きのパラメ 一夕と しての線維性被膜の厚さ値が実際の線維性被膜の厚さとなる。 上 述のよう に、 測温点における温度変化は線維性被膜の厚さだけではなく、 プラークの炎症の進行度も反映するので、 血管壁の構造パラメ一タと し て、 プラークの炎症の進行度を示す項目も採用することによ り、 フイ ツ ティ ングによ りプラークの炎症の進行度も推測し判定することができる。 なお、 既述のよう に、 プラークの熱伝導係数やプラークの大きさはブラ —クの炎症の進行度を反映しているので、 プラークの熱伝導係数やブラ —クの大き さをパラメータと して採用すればよい。 When trying to obtain information on the thickness of the fibrous cap by analysis, the thickness of the fibrous cap is set as a parameter of the vascular structure in the heat conduction simulator for the blood vessel wall. Changing this parameter to the temperature measurement point The temperature change in the simulation is calculated by simulation, and the temperature change transient response curve measured each time is compared with the temperature change simulation model curve calculated by the simulator. By repeating this process, the two curves are fitted. In this case, it can also be said that the illuminants are fitted so that the two curves overlap. In addition, the comparison of the curves. The fitting may be performed by calculating an approximate equation of the two curves and calculating based on the equations, or may be performed on all or a part of the coordinate (time, temperature) data of each point of the curve. May be compared as a data set. The value of the fibrous cap thickness as a parameter when the fitting is completed is the actual fibrous cap thickness. As described above, the change in temperature at the temperature measurement point reflects not only the thickness of the fibrous cap but also the degree of plaque inflammation, so that the plaque inflammation progresses as a structural parameter of the vascular wall. By adopting an item indicating the degree, the degree of progression of plaque inflammation can be estimated and determined by fitting. As described above, the plaque coefficient of thermal conductivity and plaque size reflect the degree of progression of inflammation of the plaque, so the plaque coefficient of thermal conductivity and the size of the plaque are used as parameters. It is good to adopt.
血管の動脈硬化部位に高強度パルス光を照射するとビームの太さに応 じてブラーク内の一定の領域において熱が発生し、 熱が発生した領域全 体から周囲へ熱が伝導する。 この際、 測温点に近い部分で発生した熱の 測温点への到着が先行し、 測温点における温度は高強度パルス光照射後 急速に上昇する。 次いで、 測温点に達した熱が血流に奪われたり、 ある いは測温点から他の部分に伝導拡散するので、 測温点の温度はピークを 示した後に、 低下していく。 このとき、 測温点から遠い部分から伝導し た熱が遅れて測温点に到達するので、 ピークの後の温度低下はその後か ら伝導してきた熱の影響を受ける。 図 2 に示す温度変化パターンはこの ような温度 化を示している。 この際、 プラークを覆う線維性被膜が薄 , ければ薄いほど、 発生した熱が早く減衰を伴わずに測温点に到達するの で、 ピーク温度に早く達し、 なおかつピーク温度値も高い。 また、 ブラ ーク内の熱発生領域が広ければ広いほど、 測温点におけるピーク温度後 も熱が長時間にわたって測温点へ伝導してく るので、 ピーク後の温度低 下は緩慢になる。 すなわち、 測温点における温度がピークに達する前の 温度変化のパターンは線維性被膜の厚さを反映し、 測温点における温度 がピークに達した後の温度変化のパターンは熱伝導係数や大きさ (幅お ょぴ厚さ) 等によ り示されるプラークの炎症の進行度、 特にプラークの 厚さを反映する。 ここで、 プラークの厚さとは血流方向と鉛直方向のプ ラ一クの大きさを意味し、 プラークの深さともいう。 また、 ビームの太 さを変えた場合、 プラーク内の熱発生領域が広く なるので、 特に測温点 における温度がピークに達した後の温度変化のパターンがプラークの状 態、 特にプラークの血流方向の大きさとプラークの厚さ (プラークの体 積) を反映する。 When high-intensity pulsed light is applied to the atherosclerotic site of a blood vessel, heat is generated in a certain area within the Braak according to the beam thickness, and heat is transmitted from the entire area where the heat is generated to the surroundings. At this time, the heat generated near the temperature measurement point arrives at the temperature measurement point in advance, and the temperature at the temperature measurement point rapidly rises after irradiation with the high-intensity pulsed light. The temperature at the temperature measurement point then peaks and then declines as the heat that reaches the temperature measurement point is lost to the bloodstream, or conducts and diffuses from the temperature measurement point to other parts. At this time, the heat conducted from the part far from the temperature measuring point arrives at the temperature measuring point with a delay, so the temperature decrease after the peak is affected by the heat conducted thereafter. The temperature change pattern shown in Fig. 2 shows such a temperature change. At this time, the fibrous cap covering the plaque is thin, The thinner, the faster the heat generated reaches the temperature measuring point without decay, so the peak temperature is reached earlier and the peak temperature value is higher. In addition, the wider the heat generation area in the black, the longer the heat conducts to the temperature measuring point after the peak temperature at the temperature measuring point, so the temperature decrease after the peak becomes slower. That is, the pattern of temperature change before the temperature at the measuring point reaches the peak reflects the thickness of the fibrous cap, and the pattern of temperature change after the temperature at the measuring point reaches the peak is It reflects the degree of inflammation of the plaque, as indicated by its thickness (width and thickness), etc., especially the thickness of the plaque. Here, the plaque thickness means the size of the plaque in the blood flow direction and the vertical direction, and is also referred to as the plaque depth. Also, when the beam thickness is changed, the heat generation area in the plaque becomes wider, so the pattern of temperature change after the temperature at the temperature measuring point reaches the peak is the state of the plaque, especially the blood flow of the plaque. Reflects directional size and plaque thickness (plaque volume).
従って、 線維性被膜の厚さのみによるプラークの脆弱性を判定しょう とする場合は、 経時的な温度変化曲線をピークよ り前でフィ ッティ ング させればよ く、 プラークの炎症の進行度を推測判定しよう とする場合、 経時的な温度変化曲線をピークよ り後でフイ ツティ ングすればよい。 現 実的には、 プラークの脆弱性は主にプラークを覆う線維性被膜の厚さに よって決まるので、 前半部を比較するだけで相当の精度でプラークの脆 弱性を判定することが可能である。  Therefore, in order to determine the fragility of the plaque due to the thickness of the fibrous cap alone, the temperature change curve over time should be fitted before the peak, and the progress of the plaque inflammation can be determined. When trying to make a guess judgment, the temperature change curve over time may be fitted after the peak. In practice, the plaque vulnerability is mainly determined by the thickness of the fibrous cap covering the plaque, so it is possible to determine the plaque vulnerability with considerable accuracy by comparing only the first half. is there.
また、 実際のアクティブ測温において、 あらかじめプラークに P D T 薬剤を集積させておき、 照射する高強度パルス光と して該 P D T薬剤の 吸収波長に近いものを用いると、 高強度パルス光のエネルギーが効率良 く P D T薬剤に吸収される。 従って、 プラークにおける発熱が大き く な り、 大きな熱が伝導するので測温点における温度も高く なる。 このため、 よ り大きい測温値を用いてフィ ッティ ングを行う ことができる。 よって、 P D T薬剤を用いることによ り、 よ り高精度で過渡応答解析ができ、 よ り正確な判定が可能になる。 In addition, in the actual active temperature measurement, if the PDT drug is accumulated on the plaque in advance and the high-intensity pulsed light used is close to the absorption wavelength of the PDT drug, the energy of the high-intensity pulsed light can be efficiently used. It is well absorbed by PDT drugs. Therefore, the plaque generates a large amount of heat and conducts a large amount of heat, so that the temperature at the measuring point also increases. For this reason, The fitting can be performed using a larger temperature measurement value. Therefore, by using the PDT agent, the transient response analysis can be performed with higher accuracy, and more accurate judgment can be made.
本発明の過渡応答解析手段は、 血管壁に対する熱伝導シミュレ—タ、 実際に測定した温度変化を入力する手段を含む。  The transient response analysis means of the present invention includes a heat conduction simulator for a blood vessel wall, and a means for inputting an actually measured temperature change.
血管壁に対する熱伝導シミュレ一タは、 前述のよう に血管壁に対する 熱伝導についてのパラメータに関するデータおよぴ熱伝導シミュレーシ ョ ンモデル曲線のデータを格納している記憶手段、 ならびに血管壁に対 する熱伝導シミュレーシヨ ンによ り求めた測温点における経時的温度変 ィ匕シミュレーショ ンモデル曲線を計算によ り求め、 該モデル曲線と実際 に測温点で測定した経時的温度変化過渡応答曲線を比較し、 パラメ一タ を変化させて二つの温度変化曲線をフィ ッティ ングさせる演算手段を含 む。 ここで、 熱伝導シミュレーショ ンモデル曲線のデータとは、 該曲線 の近似方程式に関するデータ、 該曲線上の点の座標を表すデ一タセッ ト 等をいう。  As described above, the heat conduction simulator for the blood vessel wall is a storage means for storing data relating to the parameters of the heat conduction to the blood vessel wall and the data of the heat conduction simulation model curve, and for the blood vessel wall. A time-dependent temperature change simulation model curve at a temperature measurement point obtained by a heat conduction simulation is obtained by calculation, and the model curve and a time-dependent temperature change transient response curve actually measured at the temperature measurement point are obtained. And calculating means for comparing two temperature change curves by changing the parameters. Here, the data of the heat conduction simulation model curve refers to data relating to an approximate equation of the curve, a dataset representing coordinates of a point on the curve, and the like.
温度変化入力部は、 実測値をキーボー ド等によ り手動で入力する装置 であってもよいし、 温度測定手段と過渡応答解析手段が電子的に連結さ れ、 測温と同時に温度変化に関するデータが過渡応答解析手段に転送さ れるものであってもよい。  The temperature change input unit may be a device for manually inputting an actual measurement value using a keyboard or the like, or a temperature measurement unit and a transient response analysis unit may be electronically connected to each other, and the temperature change unit may be connected to the temperature change unit. The data may be transferred to the transient response analysis means.
動脈硬化部位におけるプラークの脆弱性判定システム Vulnerability assessment system for plaque at arteriosclerosis site
本発明は、 血管壁内、 例えば動脈硬化部位におけるプラークの脆弱性 判定システムをも包含する。 該システムは、  The present invention also includes a plaque vulnerability determination system in a blood vessel wall, for example, in a site of atherosclerosis. The system is
( 1 ) 血管壁内への高強度パルス光照射によ りプラークで発生し血管 壁内面へ伝導した熱による血管壁内面の経時的な温度変化過渡応答曲線 に関するデータを温度過渡応答解析手段へ転送する手段、  (1) Transferring the data on the transient response curve of temperature change on the inner surface of the blood vessel wall due to the heat generated by the plaque due to the irradiation of the high intensity pulsed light into the blood vessel wall and transmitted to the inner surface of the blood vessel wall, to the temperature transient response analysis means Means to do
( 2 ) 転送された温度変化過渡応答曲線に関す デ一タに基づいて、 . プラークを覆う線維性被膜の厚さおよび/またはブラ一クの炎症の進行 度を解析する温度過渡応答解析手段であって、 (2) Based on the data on the transferred temperature change transient response curve, Temperature transient response analysis means for analyzing the thickness of the fibrous cap covering the plaque and / or the degree of inflammation of the black,
( a ) 血管壁に対する熱伝導についてのパラメ一タに関するデ' -タお よぴ熱伝導シミュレ一ショ ンモデル曲線のデータを格納する記憶手段、 ならびに  (a) Data relating to parameters related to heat conduction to a blood vessel wall; storage means for storing data of a heat conduction simulation model curve; and
( b ) 血管壁に対する熱伝導シミ ュレ一タによ り求めた測温点におけ る経時的温度変化シミ ュレーショ ンモデル曲線と実際に測温点で測定し た経時的温度変化過渡応答曲線を比較し、 熱伝導シミユレーショ ンにお けるパラメ一タを変化させて二つの温度変化曲線をフィ ッティ ングさせ、 シミュレーショ ンの結果を実際の結果に合わせる演算手段  (b) Temporal temperature change simulation model curve at the temperature measuring point obtained by a heat conduction simulator for the blood vessel wall and temporal temperature change transient response curve actually measured at the temperature measuring point Computing means for comparing two temperature change curves by changing the parameters in heat conduction simulation and comparing the simulation results with the actual results
を有する温度過渡応答解析手段、 ならびに , Temperature transient response analysis means having:
( 3 ) 解析されたプラークを覆う線維性被膜の厚さおよび,またはプ ラークの炎症の進行度に関する情報を出力する出力手段を有するブラ一 クの脆弱性判定システムである。 ここで、 経時的な温度変化過渡応答曲 線に関するデータを温度過渡応答解析手段へ転送する手段は、 本発明の ァクティ ブ測温装置の温度測定手段から電子的に直接データを転送する 手段であつてもよいし、 一旦印刷またはディスプレイへの表示等によ り 出力されたデータを、 例えばキーポー ド等の入力手段によ り入力する手 段であってもよい。 温度過渡応答解析手段が有する血管壁に対する熱伝 導シミュレ^"タは、 上述のよう にして構築されたシミュレータである。 出力手段は、 印刷手段やディスプレイへの表示手段等を含む。 該出力手 段によ り出力される場合は、 線維性被膜の厚さ等を示す具体的な数値で あってもよいし、 等級付けられたプラークの脆弱性に関する判定であつ てもよい。 図 3 に本発明のシステムの概略図を示す。  (3) A black vulnerability determination system having an output means for outputting information on the thickness of the fibrous cap covering the analyzed plaque and / or the degree of progression of plaque inflammation. Here, the means for transferring the data relating to the time-dependent temperature change transient response curve to the temperature transient response analysis means is means for electronically transferring data directly from the temperature measuring means of the active temperature measuring device of the present invention. Alternatively, it may be a means for inputting data once output by printing or display on a display, for example, by input means such as a keyboard. The heat transfer simulator for the blood vessel wall included in the temperature transient response analysis means is a simulator constructed as described above. The output means includes printing means, display means on a display, and the like. When output by a step, it may be a specific numerical value indicating the thickness of the fibrous cap, etc., or may be a judgment on the vulnerability of the graded plaque. 1 shows a schematic diagram of the system of the invention.
さらに、 本発明は該システムを用いた.、 血管壁内、 例えば動脈硬化部 . 位におけるプラークの脆弱性判定方法をも包含す 。 該方法は、 温度過 , 渡応答解析手段が、 動脈硬化部位への高強度パルス光照射によ りブラー クで発生し血管壁内面へ伝導した熱による血管壁内面の温度変化過渡応 答曲線に関するデータを受け取るステップ、 該過渡応答解析手段に格鈉 されている血管壁に対する熱伝導シミュレ一タが計算した経時的な温度 変化シミュレーショ ンモデル曲線と実際に測定した経時的な温度変化過 渡応答曲線を比較し、 プラークを覆う線維性被膜の厚さおよぴ または プラークの炎症の進行度に関するパラメータを変化させることによ り実 際の経時的温度変化過渡応答曲線と計算された経時的温度変化シミュレ ーシヨ ンモデル曲線をフィ ッティ ングさせ、 シミュレーショ ンの結果を 実際の結果に合わせる、 プラークを覆う線維性被膜の厚さを算出し、 お よぴノまたはプラークの炎症の進行度を推測するステップ、 ならぴに算 出されたプラークを覆う線維性被膜の厚さ、 および Zまたは推測された ブラークの炎症の進行度を出力するステップ等を含む。 図 4に本発明の システムによ り実行される、 前記方法の処理のフローを示す。 Further, the present invention also includes a method for determining plaque vulnerability in a blood vessel wall, for example, at an atherosclerotic site using the system. The method comprises overheating, A step of receiving data on a transient response curve of a temperature change on the inner surface of the blood vessel wall due to heat generated by the black light generated by the irradiation of the high-intensity pulsed light to the atherosclerotic site and transmitted to the inner surface of the blood vessel wall; Covers the plaque by comparing the temporal temperature change simulation model curve calculated by the heat conduction simulator for the blood vessel wall stored in the response analysis means with the actually measured temperature change transient response curve measured over time. By changing the parameters of fibrous cap thickness and plaque inflammation progression, the actual temporal temperature change transient response curve and the calculated temporal temperature change simulation model curve are fitted. Calculate the thickness of the fibrous cap over the plaque to match the simulation results to the actual results, Step guess progress of Lark inflammation, such Rapi thickness of fibrous cap that covers the calculated issued plaques in of, and a step for outputting the progress of inflammation Z or inferred Braak. FIG. 4 shows the flow of the processing of the method executed by the system of the present invention.
以下、 本発明の実施例に基づき具体的に説明する。 もっと も本発明は 下記実施例に限定されるものではない。  Hereinafter, a specific description will be given based on examples of the present invention. Furthermore, the present invention is not limited to the following examples.
〔実施例 1〕 血管壁に対する熱伝導シミュレ一タの構築  [Example 1] Construction of heat conduction simulator for blood vessel wall
プタ腹部大動脈を用いたステツプ状内膜表面温度変化に対する血管壁 測温実験と、 有限要素法を用いた熱伝導計算ソフ ト 「Q u i c k T h e r m B I O」 (計算力学研究センタ一) を用いた熱伝導シミュレ一 ショ ンを併せて行い比較した。 上記ソフ トは心筋伝導に関して検討して 開発されたものであるが、 本実施例においては血管壁測温実験と適合す るよう に、 熱物性変化の最も大きい比熱値を唯一のパラメータと して調 整した。  Vascular wall temperature measurement for the step-like intimal surface temperature change using the abdominal aorta of the septum and heat using the heat transfer calculation software “Quick Therm BIO” (Computational Mechanics Research Center 1) using the finite element method Conducted simulations were also performed and compared. The above software was developed after studying myocardial conduction.In this example, the specific heat value with the largest change in thermophysical properties was used as the only parameter in order to match the blood vessel wall temperature measurement experiment. It was adjusted.
実験試料にブタ新鮮摘出胸部下行大動脈を用いた。 ブタ下行大動脈は ヒ ト冠状動脈とコラーゲン等の組成が類似しており、 冠状動脈よ り も壁 厚が大きいため実験試料に適している。 これを長さ (血流方向) 2 5 m m、 幅 2 0 mmに切って血管片とした。 後で中膜の温度変化測定用の熱 電対を設置するために中膜を裂いた。 血管壁全層の厚みは 1 . 4 〜 2. 5 mmであり、 内膜面から裂いた面までの厚みは 0. 6 〜 1 . 2 mmで めった o The porcine freshly removed thoracic descending aorta was used as an experimental sample. The descending aorta of pigs has a similar composition to human coronary arteries, such as collagen, and is more wally than coronary arteries. Suitable for experimental samples due to its large thickness. This was cut into a length (blood flow direction) of 25 mm and a width of 20 mm to obtain a vascular piece. Later, the media was torn to install a thermocouple for measuring the temperature change of the media. The thickness of the entire vessel wall is 1.4 to 2.5 mm, and the thickness from the intima to the torn surface is 0.6 to 1.2 mm.
加温およぴ冷却を行うために、 高温または 3 7 Όに熱したアルミニゥ ム塊 ( 4 0 mm立方) を交互に接触させる方法を採用した。 アルミニゥ ムは熱伝導率が 2 3 7 W/m K, 熱容量が 0. 9 0 1 J ZK gと大きい ため血管片に接触後も接触面の温度変化が小さく、 加温 · 冷却に適して いる。 血管片は、 発泡スチロールの上に設置した。 熱伝導率が 0. 0 5 W/m Kと十分小さいため、 外膜との熱の出入りが小さく抑えることが できるためである。 温度履歴は、 内膜 · 中膜 ·外膜の 3点に T型熱電対 (T/T T - 3 0 — 1、 石川産業、 東京) を設置し、 デジタルレコーダ (D L 7 0 8 E、 横河電機、 東京) を用いて記録した。  In order to perform heating and cooling, a method of alternately contacting a high-temperature or 37-mm heated aluminum mass (40 mm cubic) was adopted. Aluminum has a large thermal conductivity of 237 W / m K and a large heat capacity of 0.901 JZK g, so it has a small temperature change at the contact surface even after contact with a vascular piece, making it suitable for heating and cooling. . The vessel pieces were placed on Styrofoam. This is because the thermal conductivity is sufficiently small, 0.05 W / m K, so that the flow of heat into and out of the outer membrane can be suppressed. For temperature history, T-type thermocouples (T / TT-30-1, Ishikawa Sangyo, Tokyo) were installed at the three points of the inner membrane, middle membrane and outer membrane, and digital recorders (DL 708E, Yokogawa) Denki, Tokyo).
血管片に対して加温を行った際の、 内膜 · 中膜 ·外膜の 3点の温度履 歴を計測した結果を図 5に示す。 中膜、 外膜の温度履歴よ り、 熱がやや 遅れて伝わってきており、 ピーク温度も内膜側から順に低くなつている 様子から、 妥当な計測結果が得られた。  Figure 5 shows the results of measuring the temperature histories at three points of the intima, media and adventitia when heating the vascular segment. From the temperature histories of the media and the epicardium, heat was transmitted with a slight delay, and the peak temperature decreased gradually from the inner membrane side, indicating that appropriate measurement results were obtained.
次いで、 血管壁に対する物性パラメータを決定するために、 示差走査 熱量測定計 ( d i f f e r e n t i a l s c a n n i n g c a 1 o r i m e t e r ; D S C) による熱容量測定を行った。  Then, in order to determine the physical property parameters for the blood vessel wall, the heat capacity was measured by a differential scanning calorimeter (differenttialscaanningca1orimeter; DSC).
試料にはブタ新鮮摘出下行大動脈、 ブタ摘出下行大動脈を 2 時間湿 度が 2 0 %以下の環境に留置して乾燥させたもの、 の 2種類を用いた。 血管を切り開いた後、 アルミ製の容器に入れることができるよう小さく 切り刻んだ。 質量を測定してから、 アルミ製の容器に封入した。 新鮮な ものは質量 3 . 3 〜 5. 8 m g、 乾燥させたものほ 2. 4 〜 6. 7 m g , であった。 Two types of samples were used: a freshly isolated porcine descending aorta, and a porcine isolated descending aorta that was placed in an environment with a humidity of 20% or less for 2 hours and dried. After the vessel was cut open, it was cut into small pieces so that it could be placed in an aluminum container. After measuring the mass, it was sealed in an aluminum container. The fresh one weighs 3.3 to 5.8 mg, the dried one weighs 2.4 to 6.7 mg, Met.
用いた D S Cは、 D S C 2 0 (セィコ一電子工業、 東京) 、 S S CZ 5 8 0サーマルコン トローラ (セィコー電子工業、 東京) である。 D S C 2 0にアルミの容器に封入した試料を入れて測定を開始した。 測定開 始温度は 2 2 °C、 測定終了温度は 1 0 0 °C、 昇温速度は 1 0 Zm i n、 サンプリ ング間隔は 0. 4 sで行った。 温度が 0〜 2 0 0 ° ( 、 D S Cが — 0. 5〜 9. 5 m J Z sの範囲で 0〜 2 Vの電圧信号となって出力さ れるよ う に設定した。  The DSCs used were DSC20 (Seiko I-Digital, Tokyo) and SS CZ580 thermal controller (Seiko Denko, Tokyo). The measurement was started by placing the sample sealed in an aluminum container in DSC20. The measurement start temperature was 22 ° C, the measurement end temperature was 100 ° C, the heating rate was 10 Zmin, and the sampling interval was 0.4 s. The temperature was set to be 0 to 200 ° (DSC is 0 to 2 V in the range of 0.5 to 9.5 mJZs and output as a voltage signal of 0 to 2 V.
D S Cでブタ新鮮摘出下行大動脈、 ブタ乾燥下行大動脈の熱容量を測- 定した結果を図 6に示す。 乾燥させたものではほぼ直線的に比熱が大き く なりつづけるのに対して、 新鮮なものは 1 0 0 °Cに近づく につれて指 数関数的に熱容量が増加している。 よつて両者の間に生じた熱容量の差 は水の蒸発に伴う吸熱によって生じたと考えられる。 血管壁の熱容量の 温度変化は、 タンパクの熱変性に伴う吸熱よ り も水分の蒸発に伴う吸熱 の方が大きな割合を占めていることが示唆される。  FIG. 6 shows the results of measuring the heat capacity of the freshly isolated porcine aorta and the porcine dry descending aorta by DSC. While the heat capacity of the dried product increases almost linearly, the heat capacity of the fresh product increases exponentially as it approaches 100 ° C. Therefore, it is considered that the difference in heat capacity between the two occurred due to the endothermic effect of water evaporation. It is suggested that the temperature change of the heat capacity of the blood vessel wall is larger in the heat absorption due to the evaporation of water than in the heat denaturation of the protein.
次いで、 有限要素法による熱伝導計算を行った。  Next, the heat conduction was calculated by the finite element method.
熱伝導計算プログラム、 Q u i c k T h e r m b i o (登録商標 ) (計算力学研究所、 東京) を用いて実験系を模擬した熱伝導計算を行 つた。 血管壁に対する有限要素の区切りは厚さ右向に 3 2等分に区切つ たものを採用した。 血管壁の厚さが 1. 4〜 2. 5 mmであったので、 厚さ方向に約 5 O ^ mのメ ッシュを切つて計算を行ったことになり、 十 分小さいといえる。 血管壁に対する各パラメータは過去に検討された報 告は無く、 心筋に関して調整された値では実験結果との差が大きい。 こ の値では、 蛋白の熱変性による吸熱の影響を考慮した結果、 4 5 °Cを境 にして比熱がステップ状に増加するよう に設定されている。 比熱の値の みを変化パラメータと して変化させて実験結果との誤差が概ね ± 2 °じ以 下になるよ う に調整した。 厳密には物性値の変化は比熱だけでなく、 熱 伝導率や密度にも現れると思われるが、 ここでは最も変化が大きいと思 われる比熱のみを変化させ、 他のパラメ一タの変化もすべて比熱値の変 化に含めて調整した。 表 1 に熱伝導計算で用いた主な物性値を示す。 Using a heat conduction calculation program, Quick Thermbio (registered trademark) (Institute for Computational Mechanics, Tokyo), heat conduction calculations simulating the experimental system were performed. The division of the finite element with respect to the blood vessel wall was the one divided into 32 equal parts in the right direction. Since the thickness of the blood vessel wall was 1.4 to 2.5 mm, the calculation was performed by cutting a mesh of about 5 O ^ m in the thickness direction, which is sufficiently small. There have been no reports on the parameters of the vessel wall that have been examined in the past, and the values adjusted for the myocardium differ greatly from the experimental results. This value is set so that the specific heat increases stepwise around 45 ° C as a result of considering the effect of endothermic effect due to thermal denaturation of the protein. By changing only the value of the specific heat as a change parameter, the error from the experimental result is about ± 2 ° or less. Adjusted to be below. Strictly speaking, changes in physical properties appear not only in specific heat, but also in thermal conductivity and density, but here, only the specific heat, which is considered to have the largest change, is changed, and all other parameter changes are also changed. Adjustments were made to include changes in the specific heat value. Table 1 shows the main physical properties used in the heat conduction calculation.
Figure imgf000031_0001
Figure imgf000031_0001
( A ) T > 4 5 °Cの場合の比熱値は 1 2 J / g Kで固定して、 Τ < 4 5 °Cの比熱値のみを変化させて血管片に対する測温実験の結果と合わせ るよ う に熱伝導計算を行った。 (A) The specific heat value for T> 45 ° C is fixed at 12 J / gK, and only the specific heat value for Τ <45 ° C is changed to match the results of the temperature measurement experiments on the vascular pieces. The heat conduction was calculated as follows.
( B ) D S Cによる熱容量測定の結果を元に比熱の値を入力した熱伝導 計算を行った。  (B) Based on the results of the heat capacity measurement by DSC, the heat conduction was calculated by inputting the value of the specific heat.
比熱以外のパラメ一タは上記と同じものを使った。 D S Cによる熱容量 測定の結果をそのまま用いた場合では計算結果があわせるべき測温実験 の結果とかけ離れたため、 D S Cで測定した熱容量の値を定数倍した値 を入力した後に微調整を行い、 測温実験の結果と合わせるよう にした。 以下の結果が得られた。 The parameters other than the specific heat were the same as above. If the results of the heat capacity measurement by DSC were used as they were, the calculation results would be far from the results of the temperature measurement experiment to be matched.Therefore, after inputting a value obtained by multiplying the value of the heat capacity measured by DSC by a constant, fine-tuning was performed. To match the results. The following results were obtained.
( A ) 血管壁に対する測温実験の結果と合う よう に行った熱伝導計算を 行つた結果の一例を図 7に示す。 この場合は、 比熱を 5 . 8 J / g K ( T < 4 5 °C ) 、 1 2 J / g ( T > 4 5 °C ) 、 熱伝導率を 0 . 4 2 Wm 一 1 K _ 1 とすることで精度の高い熱伝導計算を行う ことができた。 同 様の検討を繰り返すと、 4 5 °C以下の比熱値を 5〜 8 J Z g Kと設定し た時に測温実験と熱伝導シミュレーショ ンの結果が合う ことが判明した c (A) Figure 7 shows an example of the results of a heat conduction calculation performed to match the results of the temperature measurement experiment on the blood vessel wall. In this case, the specific heat is 5.8 J / g K (T <45 ° C), 12 J / g (T> 45 ° C), and the thermal conductivity is 0.42 Wm-1 K _ 1 By doing so, accurate heat conduction calculations could be performed. Repeating the same study, it was found that the results of the temperature measurement experiment and the heat conduction simulation match when the specific heat value at 45 ° C or lower is set to 5 to 8 JZgK.c
( B ) D S Cによる熱容量測定の結果を利用した比熱値を用いて測温実 験と合う よう に比熱を調整したものを図 8 に示す。 この比熱値を使った- 熱伝導計算と該当する測温実験の比較を図 9 に示す。 外膜側で約 3 °Cほ どの誤差があるものの、 ほぼ正確に熱伝導計算を行えている。 (B) Temperature measurement using specific heat value based on heat capacity measurement result by DSC Figure 8 shows the specific heat adjusted to match the test. Figure 9 shows a comparison between the heat transfer calculation using the specific heat value and the corresponding temperature measurement experiment. Although there is an error of about 3 ° C on the outer membrane side, the heat transfer calculation can be performed almost accurately.
その他 2 0サンプルについて測温実験結果についてもこの比熱値 1 を 用いた熱伝導計算を行ったが、 ほぼ全ての場合で ± 5 °C以内での熱伝導 計算を行う ことができている。  For other 20 samples, thermal conductivity was calculated using the specific heat value of 1 for the results of temperature measurement experiments, but in almost all cases, the thermal conductivity was calculated within ± 5 ° C.
このよう に、 熱伝導計算で用いた比熱値 (T > 4 5 °C ) は、 心筋に関 して調整された値が 0 . 4 2 J g— 1 K— 1であるのと比較すると数割 大きい値である。 心筋のコラーゲンの含有量は乾燥重量で 5 . 0 〜 7 . 0 ( g / 1 0 0 g ) であるのに対して、. 下行大動脈では 1 8 . 7 ( g / 1 0 0 g ) と多い。 一般に、 タンパク質の方が水よ り も比熱が大きいこ とが知られているので、 比熱値の違いはこの組成の違いによ り生じたと 考えられる。 あく までも熱伝導計算に用いた比熱の値は見かけの比熱値 であるが、 概ね真値に近いのではないかと考えられた。,また、 D S Cに よる熱容量の測定値を 2倍にした後、 微調整した比熱値を用いた場合に は大きい誤差の無い熱伝導計算が行えた。 ただし、 D S Cによる熱容量 測定の結果から得られたよう に、 タンパクの熱変性による吸熱よ り も水 分の蒸発に伴う吸熱の寄与の方が比熱の温度変化に与える影響の割合が 大きいとすると、 この比熱値を用いた方法は妥当であるといえる。  Thus, the specific heat value (T> 45 ° C) used in the heat conduction calculation is several times greater than the value adjusted for myocardium of 0.42 Jg-1K-1. This is a relatively large value. Myocardial collagen content is between 5.0 and 7.0 (g / 100 g) by dry weight, whereas the descending aorta is as high as 18.7 (g / 100 g). . In general, it is known that protein has a higher specific heat than water, so it is considered that the difference in specific heat value was caused by this difference in composition. The specific heat value used in the heat conduction calculation is an apparent specific heat value, but it was thought that it was almost close to the true value. Also, after doubling the measured value of the heat capacity by DSC, the heat conduction calculation without large errors could be performed using the finely adjusted specific heat value. However, as can be seen from the results of the heat capacity measurement by DSC, assuming that the contribution of the endothermic effect due to the evaporation of water has a greater effect on the temperature change of the specific heat than the endothermic effect of the thermal denaturation of the protein, It can be said that the method using this specific heat value is appropriate.
このような検討によ り、 血管壁に対する熱伝導シミュレータを構築し た。 産業上の利用可能性  Based on these studies, a heat conduction simulator for the blood vessel wall was constructed. Industrial applicability
本発明の装置を用いることによ り、 動脈硬化部位のプラークを高強度 パルス光照射によ り強制的に熱し、 ¾生した熱の伝導パターンを解析す ることができる。 ' 該熱の伝導パターンは、 プラークを覆う線維性被膜の厚さやプラークの 炎症の進行度を反映している。 従って、 あらかじめ構築しておいた血管 壁に対する熱伝導シミユレータを用いて、 プラークを覆う線維性被膜の 厚さおょぴ またはプラークの状態をパラメータにしてシミ ユレ一夕が 計算した熱伝導パターンと実際に測定した熱伝導パターンをフィ ッティ ングさせることによ り、 プラークを覆う線維性被膜やプラークの状態が わかる。 その結果、 プラークの脆弱性が判定でき、 心筋梗塞に罹患する 危険性を評価することができる。 By using the apparatus of the present invention, the plaque at the atherosclerotic site is forcibly heated by high-intensity pulsed light irradiation, and the conduction pattern of the generated heat can be analyzed. ' The heat conduction pattern reflects the thickness of the fibrous cap covering the plaque and the degree of inflammation of the plaque. Therefore, using the heat conduction simulator for the blood vessel wall constructed in advance, the heat conduction pattern calculated by Shimiyura and the actual condition using the thickness of the fibrous cap covering the plaque or the state of the plaque as a parameter The state of the fibrous cap and the plaque covering the plaque can be determined by fitting the measured heat conduction pattern to the plaque. As a result, the plaque vulnerability can be determined, and the risk of developing myocardial infarction can be evaluated.

Claims

1 . 血管壁内のブラークの脆弱性を判定するためのァクティ ブ測温 装置であって、 - ( 1 ) 血管内に挿入されるカテ一テル、 1. An active temperature measuring device for judging the vulnerability of a plaque in a blood vessel wall,-(1) a catheter inserted into a blood vessel,
( 2 ) 血管壁内に高強度パルス光を照射する高強度パルス光照射手段. および  (2) High-intensity pulsed light irradiating means for irradiating high-intensity pulsed light into the blood vessel wall; and
 Request
( 3 ) 照射された高強度パルス光の血管壁内のブラークへの吸収によ の  (3) Absorption of the irradiated high-intensity pulsed light into the plaque in the vessel wall
りブラ クで発生した熱の伝導による血管壁内面の経時的温度変化を測 巨.  The temperature change over time on the inner surface of the blood vessel wall due to the conduction of heat generated by the black spot was measured.
定する温度測定手段 Temperature measurement means
を有するァクティブ測温装置。 An active temperature measuring device having:
2 . 血管壁内のブラークの脆弱性を判定するためのァクティ ブ測温 装置であって、  2. An active thermometer for determining the fragility of the plaque in the vessel wall,
( 1 ) 血管内に挿入されるカテーテル、  (1) a catheter inserted into a blood vessel,
( 2 ) 血管壁内に高強度パルス光を照射する高強度パルス光照射手段- (2) High-intensity pulsed light irradiating means for irradiating high-intensity pulsed light into blood vessel wall
( 3 ) 照射された高強度パルス光の血管壁内ののプラークへの吸収に よ りプラークで発生した熱の伝導による血管壁内面の経時的温度変化を 測定する温度測定手段、 および · (3) a temperature measuring means for measuring a temporal change in temperature on the inner surface of the blood vessel wall due to conduction of heat generated by the plaque due to absorption of the irradiated high-intensity pulsed light into the plaque in the blood vessel wall; and
( 4 ) 血管壁内面の経時的温度変化からプラークの脆弱性を解析する 温度過渡応答解析手段  (4) Temperature transient response analysis means for analyzing plaque vulnerability from temporal changes in temperature on the inner surface of the blood vessel wall
を有するァクティブ測温装置。 An active temperature measuring device having:
3 . 高強度パルス光がレ一ザである、 請求の範囲第 1項または第 2 項に記載のァクティブ測温装置。  3. The active temperature measuring device according to claim 1 or 2, wherein the high intensity pulsed light is a laser.
4 . 高強度パルス光の波長がプラークに沈着したカロチンの吸収波 長と同等である、 請求の範囲第 1項から第 3項のいずれか 1項に記載の ァクティ ブ測温装置。 ' 4. The active temperature measuring device according to any one of claims 1 to 3, wherein the wavelength of the high-intensity pulsed light is equal to the absorption wavelength of carotene deposited on the plaque. '
5 . 脆弱性を判定しょう とするプラークにあらかじめ P h 0 t o d y n a m i c T h e r a p y用光感受性薬剤 (P D T薬剤) が集積さ れており、 ( 2 ) の高強度パルス光の波長が前記 P D Τ薬剤の吸収波長 に近いことを特徴とする、 請求の範囲第 1項から第 3項のいずれか 1項 に記載のァクティブ測温装置。 5. The photosensitizer (PDT drug) for Ph0 todynamic thyrapy is pre-loaded on the plaque to determine the vulnerability, and the wavelength of the high-intensity pulsed light in (2) is absorbed by the PD Τ drug. The active temperature measurement device according to any one of claims 1 to 3, wherein the active temperature measurement device is close to a wavelength.
6 . ( 1 ) のカテーテルバルーンカテーテルであってバルーンの拡 張によ り ( 3 ) の温度測定手段の温度測定部が血管壁内面に接触し、 温 度を測定する、 請求の範囲第 1項から第 5項のいずれか 1項に記載のァ クティ ブ測温装置。  6. The catheter balloon according to (1), wherein the temperature measurement part of the temperature measurement means (3) comes into contact with the inner surface of the blood vessel wall by expanding the balloon to measure the temperature. 6. The active temperature measuring device according to any one of items 1 to 5.
7 . ( 2 ) の高強度パルス光照射手段によ り血管壁に高強度パルス 光が照射されブラークに該高強度パルス光が吸収され熱を発生し、 ( 3 ) の温度測定手段によ り血管壁中を伝導する該発生した熱による血管壁 内面の経時的温度変化を測定し、 ( 4 ) の温度過渡応答解析手段によ り 血管壁内面の実際の経時的温度変化過渡.応答曲線と温度過渡応答解析手 段を含む血管壁に対する熱伝導シミュレータを用いて計算された経時的 温度変化シミ ュレーショ ンモデル曲線が比較され、 血管壁におけるブラ 一クの脆弱性が判定される、 請求の範囲第 1項から第 6項のいずれか 1 項に記載のァクティブ測温装置。  7. The high-intensity pulsed light irradiating means of (2) irradiates the blood vessel wall with high-intensity pulsed light, and the high-intensity pulsed light is absorbed by the brake to generate heat. The temporal temperature change of the inner surface of the blood vessel wall due to the generated heat conducted in the blood vessel wall is measured, and the temperature transient response curve of the actual internal surface of the blood vessel wall is obtained by the temperature transient response analysis means (4). A method for comparing a temporal temperature change simulation model curve calculated using a heat conduction simulator with respect to a blood vessel wall including a temperature transient response analysis means to determine the vulnerability of black in the blood vessel wall; 7. The active temperature measuring device according to any one of items 1 to 6.
8 . 血管壁内面における経時的温度変化シミュレーショ ンモデル曲 線が、 血管壁の物性パラメ一タ、 血管壁の構造に関するパラメータおよ ぴ高強度パルス光照射による発熱に関するパラメータが調整されている 血管壁に対する熱伝導シミ ュレータを用いて計算される、 請求の範囲第 7項記載のアクティブ測温装置。  8. The model curve of the time-dependent temperature change on the inner surface of the blood vessel wall adjusts the parameters of the physical properties of the blood vessel wall, the parameters of the structure of the blood vessel wall, and the parameters of the heat generation due to high-intensity pulsed light irradiation. 8. The active temperature measuring device according to claim 7, wherein the temperature is calculated using a heat conduction simulator.
9 . 血管壁の構造に関するパラメータが、 血管内超音波イメージン グ ( I V U S ) によ り得られる、 請求の範囲第 8項記載のァクティブ測 ik o 9. The active measurement according to claim 8, wherein the parameter relating to the structure of the blood vessel wall is obtained by intravascular ultrasound imaging (IVUS).
1 0. (4) の解析手段が、 血管壁に対する熱伝導シミュレータが計 ' 算した経時.的な温度変化シミユレーションモデル曲線と血管への高強度 パルス光照射後の血管壁内面の実際の経時的な温度変化過渡応答曲線と を比較し、 血管壁の線維性被膜の厚さに関するパラメータを変化させて 経時的温度変化シミュレーショ ンモデル曲線を実際の経時的温度変化過 渡応答曲線にフィ ッティ ングすることでブラークを覆う線維性被膜の厚 さが算出され、 プラークの脆弱性を判定する、 請求の範囲第 1項から第 9項のいずれか 1項に記載のァクティブ測温装置。 10.The analysis method in (4) uses the time-lapse simulation model curve calculated by the heat conduction simulator for the blood vessel wall and the actual inner surface of the blood vessel wall after high-intensity pulsed light irradiation. By comparing the temperature change transient response curve with time and changing the parameter relating to the thickness of the fibrous cap of the blood vessel wall, the temperature change simulation model curve is fitted to the actual temperature change transient response curve. 10. The active temperature measuring device according to any one of claims 1 to 9, wherein the thickness of the fibrous cap covering the plaque is calculated by performing blasting, and the plaque vulnerability is determined.
1 1. さらに、 プラークの炎症の進行度に関するパラメータを変化さ せることによ り実際の経時的温度変化過渡応答曲線と計算された経時的 温度変化シミュレーショ ンモデル曲線.をフィ ッティ ングさせプラークの 炎症の進行度を推測し、 プラークの脆弱性を判定する、 請求の範囲第 1 0項記載のァクティブ測温装置。 '  1 1. In addition, the parameters of the degree of plaque inflammation progression are varied to fit the actual temporal temperature change transient response curve and the calculated temporal temperature change simulation model curve to fit the plaque. 10. The active temperature measuring device according to claim 10, wherein the degree of inflammation is estimated to determine plaque vulnerability. '
- 1 2. (2) の高強奪パルス光照射手段においてビームの太さを変え ることができ、 太いビームを照射した場合の血管壁内面の経時的温度変 化過渡応答曲線が、 プラークの血流方向の大きさを反映する、 請求の範 囲第 1項から第 1 1項のいずれか 1項に記載のァクティブ測温装置。 -1 2. The beam thickness can be changed by the high-robbing pulse light irradiation method described in (2), and the transient response curve of temperature change over time on the inner surface of the blood vessel wall when a thick beam is irradiated shows the plaque blood 12. The active temperature measuring device according to any one of claims 1 to 11, which reflects a magnitude in a flow direction.
1 3. (3 ) の温度測定手段において同時に複数点の経時的な温度測 定が可能である、 請求の範囲第 1項から第 1 2項のいずれか 1項に記載 のアクティ ブ測温装置。 13. The active temperature measuring device according to any one of claims 1 to 12, wherein the temperature measuring means of (3) can simultaneously measure the temperature of a plurality of points over time. .
1 4. (4) の温度過渡応答解析手段において、 熱伝導による血管壁 内面の経時的な温度変化過渡応答曲線のピーク前半部をフィ ッティ ング させることによ りブラ一クを覆う線維性被膜の厚さが算出される、 請求 の範囲第 1項から第 1 3項のいずれか 1項に記載のァクティ ブ測温装置。 1 5. (4) の温度過渡応答解析手段において、 熱伝導による血管壁 内面の経時的な温度変化過渡応答曲線のピーク後半部をフィ ッティ ング させることによ りプラークの厚み (体積、 深さ) が算出される、 請求の ' 範囲第 1項から第 1 3項のいずれか 1項に記載のァクティブ測温装置。 1 In the temperature transient response analysis method of (4), the fibrous cap covering the black by fitting the first half of the peak of the transient response curve of the temperature change over time on the inner surface of the blood vessel wall due to heat conduction The active temperature measuring device according to any one of claims 1 to 13, wherein a thickness of the active temperature measuring device is calculated. 1 5. In the temperature transient response analysis method of (4), fitting the latter half of the peak of the transient response curve of temperature change over time on the inner surface of the blood vessel wall due to heat conduction. The active temperature measurement device according to any one of claims 1 to 13, wherein the thickness (volume, depth) of the plaque is calculated by performing the calculation.
1 6 . 血管壁におけるプラークの脆弱性判定システムであって、  1 6. A system for determining plaque vulnerability in a blood vessel wall,
( 1 ) 血管壁のプラーク部分への高強度パルス光照射によ り発生し血 管壁内面へ伝導した熱による血管壁内面の経時的な温度変化過渡応答曲 線に関するデ一タを温度過渡応答解析手段へ転送する手段、  (1) Transient response of temperature change over time on the inner surface of blood vessel wall due to heat generated by irradiating high intensity pulsed light to the plaque portion of the blood vessel wall and transferred to the inner surface of blood vessel wall Means for transferring to analysis means,
( 2 ) 転送された温度変化過渡応答曲線に関するデータに基づいて、 プラークを覆う線維性被膜の厚さを解析する温度過渡応答解析手段であ つて、  (2) Temperature transient response analysis means for analyzing the thickness of the fibrous cap covering the plaque based on the transferred data on the temperature change transient response curve,
( a ) 血管壁に対する熱伝導についてのパラメータに関するデータお よぴ熱伝導シミュレーショ ンモデル曲線のデ一タを格納する記憶手段、 ならびに  (a) storage means for storing data on parameters related to heat conduction to a blood vessel wall and data of a heat conduction simulation model curve; and
( b ) 血管壁に対する熱伝導シミ ユレータによ り計算した測温点にお ける経時的温度変化シミュレーショ ンモデル曲線と実際に測温点で測定 した経時的温度変化過渡応答曲線を比較し、 熱伝導シミュレーショ ンに おけるパラメータを変化させて、 シミュレーショ ンの結果を実際の結果 にフィ ッティ ングさせる演算手段  (b) Comparison of the simulation model curve with temperature change over time at the temperature measurement point calculated by the heat conduction simulator for the blood vessel wall and the transient response curve over time with the temperature change actually measured at the temperature measurement point. A calculation method that fits the simulation results to the actual results by changing the parameters in the conduction simulation
を有する温度過渡応答解析手段、 ならびに  Temperature transient response analysis means having:
( 3 ) 解析されたプラークを覆う線維性被膜の厚さに関する情報を出 力する出力手段  (3) Output means for outputting information on the thickness of the fibrous cap covering the analyzed plaque
を有するプラークの脆弱性判定システム。  Plaque vulnerability determination system having
1 7 . ( 6 ) ( a ) の演算手段において、 さらに、 プラークの炎症の 進行度に関するパラメータを変化させることによ り実際の経時的温度変 化過渡応答曲線と計算された経時的温度変化シミ ュレーショ ンモデル曲 線をフィ ッティ ングさせプラークの炎症の進行度を推測し、 ( 3 ) の出 力手段においてプラークの炎症の進行^に関する情報を出力する、 請求 ' の範囲第 1 6項記載のブラークの脆弱性判定システム。 17. In the calculation means of (6) (a), the actual time-dependent temperature change transient response curve and the calculated time-dependent temperature change stain were calculated by changing a parameter relating to the degree of plaque inflammation progression. Fitting the simulation model curve to estimate the degree of plaque inflammation progression, and output information on the progression of plaque inflammation ^ by the output means of (3). Item 16. The Braak vulnerability determination system according to Item 16 above.
1 8 . 血管壁におけるプラークの脆弱性判定方法であって、  1 8. A method for determining vulnerability of plaque in a blood vessel wall,
( 1 ) 温度過渡応答解析手段が、 血管壁のプラークへの高強度パルス光 照射によ り発生し血管壁内面へ伝導した熱による血管壁内面の温度変化 過渡応答曲線に関するデータを受け取るステツプ、  (1) a step in which the temperature transient response analysis means receives data on a transient response curve of a temperature change on the inner surface of the blood vessel wall due to heat generated by irradiating the plaque of the blood vessel wall with high-intensity pulsed light and conducted to the inner surface of the blood vessel wall;
( 2 ) 該過渡応答解析手段に格納されている血管壁に対する熱伝導シミ ユレ一夕が計算した経時的な温度変化シミュレーシヨ ンモデル曲線と実 際に測定した経時的な温度変化過渡応答曲線を比較し、 プラークを覆う 線維性被膜の厚さに関するパラメ一タを変化させることによ り実際の経 時的温度変化過渡応答曲線と計算された経時的温度変化シミ ユ レ一ショ ンモデル曲線をフィ ッティ ングさせプラークを覆う線維性被膜の厚さを 算出するステップ、 ならびに  (2) Compare the temperature change transient response curve calculated over time with the temperature change transient response curve calculated by the heat conduction simulation for the blood vessel wall stored in the transient response analysis means. By changing the parameters of the thickness of the fibrous cap covering the plaque, the actual time-dependent temperature change transient response curve and the calculated time-dependent temperature change simulation model curve are fitted. Calculating the thickness of the fibrous cap covering the plaque; and
( 3 ) 算出されたプラークを覆う線維性被膜の厚さを出力するステッ プ を  (3) Step to output the calculated thickness of the fibrous cap covering the plaque
含むプラークの脆弱性判定方法。 Method for determining plaque vulnerability.
1 9 . さらに、 ( 2 ) のステップにおいて、 プラークの炎症の進行度 に関するパラメータを変化させることによ り実際の経時的温度変化過渡 応答曲線と計算された経時的温度変化シミ ュレーショ ンモデル曲線をフ イ ツティ ングしプラークの炎症の進行度を推測し、 ( 3 ) のステップに おいて、 算出されたプラークの炎症の進行度を出力する、 請求の範囲第 1 8項記載のプラークの脆弱性判定方法。  19. In step (2), the actual time-dependent temperature change transient response curve and the calculated time-dependent temperature change simulation model curve are calculated by changing the parameter relating to the degree of plaque inflammation progression. 19. The plaque vulnerability determination according to claim 18, wherein the plaque is inferred to estimate the degree of plaque inflammation, and the calculated degree of plaque inflammation is output in step (3). Method.
PCT/JP2003/015224 2003-05-29 2003-11-28 Diagnosis of fragile plaque by active temperature-measurement WO2004105597A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005500247A JPWO2004105597A1 (en) 2003-05-29 2003-11-28 Diagnosis of vulnerable plaque by active temperature measurement
AU2003304154A AU2003304154A1 (en) 2003-05-29 2003-11-28 Diagnosis of fragile plaque by active temperature-measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-153483 2003-05-29
JP2003153483 2003-05-29

Publications (1)

Publication Number Publication Date
WO2004105597A1 true WO2004105597A1 (en) 2004-12-09

Family

ID=33487295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015224 WO2004105597A1 (en) 2003-05-29 2003-11-28 Diagnosis of fragile plaque by active temperature-measurement

Country Status (3)

Country Link
JP (1) JPWO2004105597A1 (en)
AU (1) AU2003304154A1 (en)
WO (1) WO2004105597A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054975A (en) * 2006-08-31 2008-03-13 Keio Gijuku Method of estimating treatment region by simulating thermal conduction through treatment region in cancer freeze and fusion necrosis therapy
JP2009523549A (en) * 2006-01-18 2009-06-25 ライト サイエンシーズ オンコロジー, インコーポレイテッド Method and apparatus for photoactivated drug therapy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095787A2 (en) * 2000-06-16 2001-12-20 Haddock Thomas F Temperature sensing catheter
JP2002136537A (en) * 2000-11-01 2002-05-14 Aloka Co Ltd Blood vessel treatment apparatus and blood vessel treatment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095787A2 (en) * 2000-06-16 2001-12-20 Haddock Thomas F Temperature sensing catheter
JP2002136537A (en) * 2000-11-01 2002-05-14 Aloka Co Ltd Blood vessel treatment apparatus and blood vessel treatment system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUI TAKEMI: "Kyusei shinkin kosoku yochi no tameno laser shosha niyoru zeijaku plaque-nai ondo suiteiho ni kansuru kisoteki kento: buta daidomyaku niyoru kento", vol. 1999, 28 September 1999 (1999-09-28), pages 5 - 6, XP002983582 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523549A (en) * 2006-01-18 2009-06-25 ライト サイエンシーズ オンコロジー, インコーポレイテッド Method and apparatus for photoactivated drug therapy
US10307610B2 (en) 2006-01-18 2019-06-04 Light Sciences Oncology Inc. Method and apparatus for light-activated drug therapy
JP2008054975A (en) * 2006-08-31 2008-03-13 Keio Gijuku Method of estimating treatment region by simulating thermal conduction through treatment region in cancer freeze and fusion necrosis therapy

Also Published As

Publication number Publication date
JPWO2004105597A1 (en) 2006-07-20
AU2003304154A1 (en) 2005-01-21

Similar Documents

Publication Publication Date Title
Larina et al. Real-time optoacoustic monitoring of temperature in tissues
US6309352B1 (en) Real time optoacoustic monitoring of changes in tissue properties
JP5379005B2 (en) Determination of light absorption coefficient
JP5749164B2 (en) Quantitative multispectral photoacoustic tomography of tissue biomarkers
Larin et al. Monitoring of tissue coagulation during thermotherapy using optoacoustic technique
WO2013166044A1 (en) Combined light source photoacoustic system
Fehm et al. Volumetric optoacoustic imaging feedback during endovenous laser therapy–an ex vivo investigation
US20060122583A1 (en) Method and apparatus for performing myocardial revascularization
Iskander-Rizk et al. Photoacoustic imaging for guidance of interventions in cardiovascular medicine
US10123707B2 (en) Optoacoustic image mapping of tissue temperature
JP2023100670A (en) Methods and apparatus for optimizing selective photothermolysis
Yan et al. Photoacoustic-guided endovenous laser ablation: Characterization and in vivo canine study
Ganguly et al. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers
Park et al. Application of ultrasound thermal imaging for monitoring laser ablation in ex vivo cardiac tissue
WO2004105597A1 (en) Diagnosis of fragile plaque by active temperature-measurement
Telenkov et al. Coherent thermal wave imaging of subsurface chromophores in biological materials
US10478072B2 (en) Methods and system for characterizing an object
Chang et al. Noninvasive imaging analysis of biological tissue associated with laser thermal injury
Li et al. Interstitial photoacoustic technique and computational simulation for temperature distribution and tissue optical properties in interstitial laser photothermal interaction
Lin et al. Monte Carlo light transport-based blood vessel quantification using linear array photoacoustic tomography
Soroushian et al. Assessment of opto-mechanical behavior of biological samples by interferometry
Castelino et al. Photoacoustic detection of protein coagulation in albumen-based phantoms
Kolkman Photoacoustic & pulsed laser-doppler monitoring of blood concentration and perfusion in tissue
Landa Real-time Optoacoustic Monitoring of Thermal Ablation and Laser Surgery
Esenaliev Biomedical optoacoustics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500247

Country of ref document: JP

122 Ep: pct application non-entry in european phase