明 細 書 基板処理装置のクリーニング方法 技術分野 Description Cleaning method for substrate processing equipment
本発明は一般にプラズマ処理装置に係わり、特にマイク口波プラズマ処理装置に 関する。 The present invention generally relates to a plasma processing apparatus, and more particularly to a microphone mouth-wave plasma processing apparatus.
プラズマ処理工程およびプラズマ処理装置は、近年のいわゆるディープサブミク ロン素子あるいはディープサブクオ一夕一ミクロン素子と呼ばれる 0 . 1 mに近 い、 あるいはそれ以下のゲート長を有する超微細化半導体装置の製造や、液晶表示 装置を含む高解像度平面表示装置の製造にとって、 不可欠の技術である。 The plasma processing process and the plasma processing apparatus have been used in recent years for ultra-small semiconductor devices having a gate length close to 0.1 m, which is a so-called deep submicron device or so-called deep submicron one-micron device, or less. This is an indispensable technology for manufacturing and for manufacturing high-resolution flat panel display devices including liquid crystal display devices.
半導体装置や液晶表示装置の製造に使われるプラズマ処理装置としては、従来よ り様々なプラズマの励起方式が使われているが、特に平行平板型高周波励起プラズ マ処理装置あるいは誘導結合型プラズマ処理装置が一般的である。しかしこれら従 来のプラズマ処理装置は、 プラズマ形成が不均一であり、電子密度の高い領域が限 定されているため大きな処理速度すなわちスループットで被処理基板全面にわた り均一なプロセスを行うのが困難であるという問題点を有している。 この問題は、 特に大径の基板を処理する場合に深刻になる。しかもこれら従来のプラズマ処理装 置では、電子温度が高いため被処理基板上に形成される半導体素子にダメージが生 じ、 また処理室壁のスパッタリングによる金属汚染が大きいなど、 いくつかの本質 的な問題を有している。 このため、 従来のプラズマ処理装置では、 半導体装置や液 晶表示装置のさらなる微細化およびさらなる生産性の向上に対する厳しい要求を 満たすことが困難になりつつある。 Conventionally, various plasma excitation methods have been used as a plasma processing apparatus used in the manufacture of semiconductor devices and liquid crystal display devices. In particular, a parallel plate type high frequency excitation plasma processing apparatus or an inductively coupled plasma processing apparatus has been used. Is common. However, since these conventional plasma processing apparatuses have non-uniform plasma formation and a limited area of high electron density, it is difficult to perform a uniform process over the entire surface of the substrate at a high processing speed, that is, a high throughput. There is a problem that it is difficult. This problem is particularly acute when processing large diameter substrates. Moreover, in these conventional plasma processing apparatuses, there are some essential factors such as a high electron temperature, which damages a semiconductor element formed on a substrate to be processed, and causes a large metal contamination due to sputtering of a processing chamber wall. Have a problem. For this reason, it is becoming difficult for conventional plasma processing apparatuses to satisfy strict requirements for further miniaturization and further improvement in productivity of semiconductor devices and liquid crystal display devices.
一方、従来より直流磁場を用いずにマイク口波電界により励起された高密度ブラ ズマを使うマイクロ波プラズマ処理装置が提案されている。例えば、均一なマイク 口波を発生するように配列された多数のスロッ卜を有する平面状のアンテナ(ラジ アルラインスロットアンテナ)から処理容器内にマイクロ波を放射し、 このマイク 口波電界により真空容器内のガスを電離してプラズマを励起させる構成のプラズ
マ処理装置が提案されている。 On the other hand, a microwave plasma processing apparatus using a high-density plasma excited by a microphone mouth-wave electric field without using a DC magnetic field has been conventionally proposed. For example, a microwave is radiated into a processing vessel from a planar antenna (radial line slot antenna) having a large number of slots arranged to generate a uniform microphone mouth wave, and a vacuum is generated by the microphone mouth wave electric field. Plasma that excites plasma by ionizing gas in container A processing device has been proposed.
このような手法で励起されたマイク口波プラズマではアンテナ直下の広い領域 にわたつて高いプラズマ密度を実現でき、短時間で均一なプラズマ処理を行うこと が可能である。しかもかかる手法で形成されたマイクロ波プラズマではマイクロ波 によりプラズマを励起するため電子温度が低く、被処理基板のダメージや金属汚染 を回避することができる。さらに大面積基板上にも均一なプラズマを容易に励起で きるため、大口径半導体基板を使った半導体装置の製造工程や大型液晶表示装置の 製造にも容易に対応できる。 背景技術 Microphone mouth-wave plasma excited by such a method can achieve high plasma density over a wide area directly below the antenna, and can perform uniform plasma processing in a short time. Moreover, in the microwave plasma formed by such a method, the plasma is excited by the microwave, so that the electron temperature is low, and damage to the substrate to be processed and metal contamination can be avoided. Furthermore, since uniform plasma can be easily excited even on a large-area substrate, it can be easily adapted to a semiconductor device manufacturing process using a large-diameter semiconductor substrate and a large-sized liquid crystal display device. Background art
図 1 (A), (B ) は、 かかるラジアルラインスロットアンテナを使った従来の プラズマ処理装置 1 0 0の構成を示す。 ただし図 1 (A) はプラズマ処理装置 1 0 0の断面図を、 また図 1 (B ) はラジアルラインスロットアンテナの構成を示す図 である。 FIGS. 1A and 1B show the configuration of a conventional plasma processing apparatus 100 using such a radial line slot antenna. Note that FIG. 1A is a cross-sectional view of the plasma processing apparatus 100, and FIG. 1B is a view illustrating a configuration of a radial line slot antenna.
図 1 (A) を参照するに、 プラズマ処理装置 1 0 0は複数の排気ポート 1 1 6か ら排気される処理容器 1 0 1を有し、前記処理容器 1 0 1中には被処理基板 1 1 4 を保持する保持台 1 1 5が形成されている。前記処理容器 1 0 1の均一な排気を実 現するため、前記保持台 1 1 5の周囲にはリング状に空間 1 0 1 Aが形成されてお り、 前記複数の排気ポート 1 1 6を前記空間 1 0 1 Aに連通するように等間隔で、 すなわち被処理基板に対して軸対称に形成することにより、前記処理容器 1 0 1を 前記空間 1 0 1 Aおよび排気ポート 1 1 6を介して均一に排気することができる。 前記処理容器 1 0 1上には、前記保持台 1 1 5上の被処理基板 1 1 4に対応する 位置に、前記処理容器 1 0 1の外壁の一部として、低損失誘電体よりなり多数の開 口部 1 0 7を形成された板状のシャワープレート 1 0 3がシールリング 1 0 9を 介して形成されており、さらに前記シャワープレート 1 0 3の外側に同じく低損失 誘電体よりなるカバープレート 1 0 2が、別のシ一ルリング 1 0 8を介して設けら れている。シャワープレート 1 0 3はマイクロ波を透過させることからマイクロ波 透過窓と呼称される。
前記シャワープレート 1 0 3にはその上面にプラズマガスの通路 1 0 4が形成 されており、前記複数の開口部 1 0 7の各々は前記プラズマガス通路 1 0 4に連通 するように形成されている。 さらに、 前記シャワープレート 1 0 3の内部には、 前 記処理容器 1 0 1の外壁に設けられたプラズマガス供給ポート 1 0 5に連 ¾する プラズマガスの供給通路 1 0 6が形成されており、前記プラズマガス供給ポート 1 0 5に供給された A rや K r等のプラズマガスは、前記供給通路 1 0 6から前記通 路 1 0 4を介して前記開口部 1 0 7に供給され、前記開口部 1 0 7から前記処理容 器 1 0 1内部の前記シャワープレート 1 0 3の直下の空間 1 0 1 Bに、実質的に一 様な濃度で放出される。 Referring to FIG. 1 (A), a plasma processing apparatus 100 has a processing container 101 exhausted from a plurality of exhaust ports 1 16, and a substrate to be processed is contained in the processing container 101. A holding table 1 15 for holding 1 1 4 is formed. In order to realize uniform exhaust of the processing container 101, a space 101A is formed in a ring shape around the holding table 115, and the plurality of exhaust ports 116 are formed. The processing container 101 is formed at regular intervals so as to communicate with the space 101A, that is, formed symmetrically with respect to the substrate to be processed, so that the space 101A and the exhaust port 116 are formed. Can be exhausted uniformly. On the processing vessel 101, a large number of low-loss dielectrics are provided at positions corresponding to the substrate 114 on the holding table 115 as part of the outer wall of the processing vessel 101. A plate-shaped shower plate 103 having an opening portion 107 formed therein is formed via a seal ring 109, and further made of a low-loss dielectric outside the shower plate 103. A cover plate 102 is provided via another seal ring 108. The shower plate 103 is referred to as a microwave transmitting window because it transmits microwaves. The shower plate 103 has a plasma gas passage 104 formed on the upper surface thereof, and each of the plurality of openings 107 is formed so as to communicate with the plasma gas passage 104. I have. Further, a plasma gas supply passage 106 connected to a plasma gas supply port 105 provided on the outer wall of the processing vessel 101 is formed inside the shower plate 103. The plasma gas such as Ar or Kr supplied to the plasma gas supply port 105 is supplied from the supply passage 106 to the opening 107 via the passage 104, From the opening 107, it is discharged at substantially the same concentration into the space 101B immediately below the shower plate 103 inside the processing container 101.
前記処理容器 1 0 1上には、 さらに前記カバープレート 1 0 2の外側に、前記力 バ一プレート 1 0 2から 4〜 5 mm離間して、 図 1 (B ) に示す放射面を有するラ ジアルラインスロットアンテナ 1 1 0が設けられている。前記ラジアルラインス口 ットアンテナ 1 1 0は外部のマイクロ波源(図示せず) に同軸導波管 1 1 O Aを介 して接続されており、前記マイクロ波源からのマイクロ波により、前記空間 1 0 1 Bに放出されたプラズマガスを励起する。前記カバープレート 1 0 2とラジアルラ インスロットアンテナ 1 1 0の放射面との間の隙間は大気により充填されている。 前記ラジアルラインスロットアンテナ 1 1 0は、前記同軸導波管 1 1 O Aの外側 導波管に接続された平坦なディスク状のアンテナ本体 1 1 0 Bと、前記アンテナ本 体 1 1 0 Bの開口部に形成された、 図 1 (B ) に示す多数のスロット 1 1 0 aおよ びこれに直交する多数のスロット 1 1 0 bを形成された放射板 1 1 0 Cとよりな り、前記アンテナ本体 1 1 0 Bと前記放射板 1 1 0 Cとの間には、厚さが一定の誘 電体板よりなる遅相板 1 1 0 Dが揷入されている。 On the processing vessel 101, further outside the cover plate 102, a radiation surface shown in FIG. 1 (B) having a radiation surface shown in FIG. A radial line slot antenna 110 is provided. The radial lines antenna 110 is connected to an external microwave source (not shown) via a coaxial waveguide 11 OA, and the microwaves from the microwave source cause the space 101 B to be closed. Excites the plasma gas released to The gap between the cover plate 102 and the radiation surface of the radial in-slot antenna 110 is filled with air. The radial line slot antenna 110 has a flat disk-shaped antenna main body 110B connected to the outer waveguide of the coaxial waveguide 111OA, and an opening of the antenna main body 110B. And a radiation plate 110C formed with a number of slots 110a shown in FIG. 1 (B) and a number of slots 110b perpendicular thereto, and the antenna body A retardation plate 110D made of a dielectric plate having a constant thickness is inserted between 110B and the radiation plate 110C.
かかる構成のラジアルラインスロットアンテナ 1 1 0では、前記同軸導波管 1 1 O Aから給電されたマイクロ波は、前記ディスク状のアンテナ本体 1 1 0 Bと放射 板 1 1 0 Cとの間を、半径方向に広がりながら進行するが、その際に前記遅相板 1 1 0 Dの作用により波長が圧縮される。そこで、 このようにして半径方向に進行す るマイクロ波の波長に対応して前記スロット 1 1 0 aおよび 1 1 0 bを同心円状 に、かつ相互に直交するように形成しておくことにより、 円偏波を有する平面波を
前記放射板 1 1 0 Cに実質的に垂直な方向に放射することができる。 In the radial line slot antenna 110 having such a configuration, the microwave fed from the coaxial waveguide 111OA passes between the disk-shaped antenna body 110B and the radiation plate 110C. The light propagates while expanding in the radial direction, and at this time, the wavelength is compressed by the action of the retardation plate 110D. Therefore, by forming the slots 110a and 110b concentrically and orthogonally to each other corresponding to the wavelength of the microwave traveling in the radial direction in this way, Plane wave with circular polarization The radiation plate can radiate in a direction substantially perpendicular to 110C.
かかるラジアルラインスロットアンテナ 1 1 0を使うことにより、前記シャワー プレート 1 0 3直下の空間 1 0 1 Bに均一な高密度プラズマが形成される。このよ うにして形成された高密度プラズマは電子温度が低く、そのため被処理基板 1 1 4 にダメージが生じることがなく、また処理容器 1 0 1の器壁のスパッタリングに起 因する金属汚染が生じることもない。 By using the radial line slot antenna 110, uniform high-density plasma is formed in the space 101B immediately below the shower plate 103. The high-density plasma thus formed has a low electron temperature, so that the substrate to be processed 114 is not damaged, and metal contamination caused by sputtering of the vessel wall of the processing container 101 is prevented. It does not occur.
図 1のプラズマ処理装置 1 0 0では、 さらに前記処理容器 1 0 1中、前記シャヮ 一プレート 1 0 3と被処理基板 1 1 4との間に、外部の処理ガス源(図示せず)か ら前記処理容器 1 0 1中に形成された処理ガス通路 1 1 2を介して処理ガスを供 給する多数のノズル 1 1 3を形成された処理ガス供給部 1 1 1が形成されており、 前記ノズル 1 1 3の各々は、供給された処理ガスを、前記処理ガス供給部 1 1 1と 被処理基板 1 1 4との間の空間 1 0 1 Cに放出する。前記処理ガス供給部 1 1 1の 前記隣接するノズル 1 1 3と 1 1 3との間には、前記空間 1 0 1 Bにおいて形成さ れたプラズマを前記空間 1 0 1 Bから前記空間 1 0 1 Cに拡散により、効率よく通 過させるような大きさの開口部が形成されている。 In the plasma processing apparatus 100 of FIG. 1, an external processing gas source (not shown) is further provided in the processing vessel 101 between the shear plate 103 and the substrate to be processed 114. A processing gas supply section 111 formed with a number of nozzles 113 for supplying a processing gas through a processing gas passage 112 formed in the processing vessel 101 from Each of the nozzles 113 discharges the supplied processing gas into a space 101C between the processing gas supply unit 111 and the substrate 114 to be processed. Between the adjacent nozzles 113 and 113 of the processing gas supply unit 111, plasma formed in the space 101B is supplied from the space 101B to the space 110B. An opening having a size that allows efficient transmission is formed by diffusion in 1C.
そこで、このように前記処理ガス供給部 1 1 1から前記ノズル 1 1 3を介して処 理ガスを前記空間 1 0 1 Cに放出した場合、放出された処理ガスは前記空間 1 0 1 Bにおいて形成された高密度プラズマにより励起され、前記被処理基板 1 1 4上に おいて、 一様なプラズマ処理が、 効率的かつ高速に、 しかも基板および基板上の素 子構造を損傷させることなく、 また基板を汚染することなく行われる。一方前記ラ ジアルラインスロットアンテナ 1 1 0から放射されたマイクロ波は、導体よりなる 前記処理ガス供給部 1 1 1により阻止され、被処理基板 1 1 4を損傷させることは ない。 Therefore, when the processing gas is discharged from the processing gas supply unit 111 to the space 101C through the nozzle 113 in this way, the released processing gas is discharged to the space 101B. Excited by the formed high-density plasma, uniform plasma processing on the substrate to be processed 114 can be performed efficiently and at high speed without damaging the substrate and the element structure on the substrate. It is performed without contaminating the substrate. On the other hand, the microwave radiated from the radial line slot antenna 110 is blocked by the processing gas supply unit 111 composed of a conductor, and does not damage the substrate 114 to be processed.
前記プラズマ処理装置 1 0 0によって行う事が可能な基板処理には、プラズマ酸 化処理、プラズマ窒化処理、プラズマ酸窒化処理、プラズマ C VD処理などがあり、 前記処理ガス供給部 1 1 1の前記ノズル 1 1 3から前記空間 1 0 1 Bにエツチン グガスを供給し、前記保持台 1 1 5に高周波電源 1 1 5 Aから高周波電圧を印加す ることにより、前記被処理基板 1 1 4に対して反応性イオンエッチングを行うこと
も可能である。 The substrate processing that can be performed by the plasma processing apparatus 100 includes plasma oxidation processing, plasma nitridation processing, plasma oxynitridation processing, plasma CVD processing, and the like. By supplying an etching gas to the space 101B from the nozzle 113 and applying a high-frequency voltage from a high-frequency power supply 115A to the holding table 115, the substrate 114 is processed. Performing reactive ion etching Is also possible.
また、 前記プラズマ処理装置 1 0 0を用いて、 プラズマ C V D処理など、 被処理 基板 1 1 4上に成膜を行う成膜処理を行う場合は、成膜処理の際に前記処理容器 1 0 1内部に堆積物が堆積する。例えば、成膜処理を長時間行って前記堆積物が蓄積 すると、前記堆積物が堆積した部分より剥離して、パーティクルなどが発生する要 因となる。 When performing a film forming process for forming a film on the substrate 114 to be processed, such as a plasma CVD process, using the plasma processing apparatus 100, the processing vessel 100 1 Deposits accumulate inside. For example, if the deposit accumulates after performing the film forming process for a long time, the deposit is separated from the portion where the deposit is deposited, which is a factor of generating particles and the like.
そのため、定期的に前記堆積物を除去するクリーニングが必要となる。 このよう なプラズマ処理装置およびそのクリーニング方法は、たとえば、特開平 9一 6 3 7 9 3号公報、特開 2 0 0 2— 5 7 1 0 6号公報、特開 2 0 0 2— 5 7 1 4 9号公報 に記載されている。 Therefore, cleaning for periodically removing the deposits is required. Such a plasma processing apparatus and its cleaning method are disclosed in, for example, Japanese Patent Application Laid-Open Nos. Hei 9-63 793, No. 200-507-106, and No. 200-57. It is described in No. 149 publication.
例えば、前記クリーニングを行う場合は、前記シャワープレート 1 0 3よりクリ —ニングガスを導入して、マイクロ波プラズマ励起することにより、前記クリ一二 ングガスを解離して前記堆積物をエッチングして除去する方法がある。 For example, when performing the cleaning, a cleaning gas is introduced from the shower plate 103 to excite the microwave plasma, thereby dissociating the cleaning gas and etching and removing the deposit. There is a way.
しかし、前記したマイクロ波プラズマによるクリーニングでは前記堆積物を完全 に除去できない、 または除去するためのエッチング速度が遅く、 クリーニングに時 間を要してしまう場合がある。 However, the above-described cleaning by microwave plasma cannot completely remove the deposits, or the etching rate for removing the deposits is low, so that cleaning may take time.
例えば、 前記処理ガス供給部 1 1 1の下部、 すなわち前記空間 1 0 1 Cには、 マ ィク口波が届かないためにマイク口波プラズマが励起されることがなく、また前記 空間 1 0 1 Bから拡散してくるプラズマのみ存在するため、 プラズマ密度が低く、 電子温度が低い。 For example, in the lower part of the processing gas supply unit 111, that is, in the space 101C, the microphone mouth wave plasma is not excited because the microwave mouth wave does not reach, and the space 110C is not excited. Since only plasma diffused from 1 B exists, the plasma density is low and the electron temperature is low.
このため、前記空間 1 0 1 Cに面する部分に堆積した前記堆積物が、前記したマ イク口波プラズマによるクリーニングでは、 エッチングされない、 またはエツチン グ速度が遅いという問題が生じる。 For this reason, there arises a problem that the deposit deposited on the portion facing the space 101C is not etched or the etching rate is low in the cleaning with the above-mentioned microwave plasma.
具体的には、前記処理ガス供給部 1 1 1の前記空間 1 0 1 Cに面した側への堆積 物や、前記処理容器 1 0 1の内壁面の前記空間 1 0 1 Cに面した部分の堆積物のェ ツチング速度が遅ぐまた前記保持台 1 1 5側壁面の堆積物に関しても完全に堆積 物をクリーニングするのが困難であった。 Specifically, a deposit on the side of the processing gas supply unit 111 facing the space 101C, and a portion of the inner wall surface of the processing vessel 101 facing the space 101C However, it was difficult to completely remove the deposits on the side walls of the holding table 115 because the etching speed of the deposits was low.
そこで、本発明では上記の問題を解決した新規で有用な基板処理装置のクリー二
ング方法を提供することを目的とする。 Accordingly, the present invention provides a novel and useful substrate processing apparatus which solves the above-described problems. The purpose of the present invention is to provide a programming method.
本発明の具体的課題は、マイクロ波プラズマを用いた基板処理装置において、 ク リ一ニングを効率的に行うことにより、クリ一二ング時間を短縮することが可能な 新規な基板処理装置のクリーニング方法を提供することである。 発明の開示 A specific object of the present invention is to provide a novel substrate processing apparatus that uses microwave plasma to efficiently perform cleaning, thereby shortening the cleaning time. Is to provide a way. Disclosure of the invention
本発明によれば、マイクロ波を用いた基板処理装置において、成膜処理で堆積し た堆積物を除去するクリーニング時に、マイクロ波プラズマを用いると共に被処理 基板の保持台に高周波電力を印加することで、堆積物のエッチング速度を増大させ てクリ一エング時間を短縮することが可能となる。 図面の簡単な説明 According to the present invention, in a substrate processing apparatus using microwaves, microwave plasma is used and high-frequency power is applied to a holder for a substrate to be processed during cleaning for removing deposits deposited in a film forming process. Thus, it is possible to increase the etching rate of the deposit and shorten the cleaning time. BRIEF DESCRIPTION OF THE FIGURES
図 1はプラズマ処理装置の概略を示す図である。 FIG. 1 is a diagram schematically showing a plasma processing apparatus.
図 2は本発明による基板処理装置のクリ—ニング方法を示すフローチヤ一トで ある。 FIG. 2 is a flowchart showing a cleaning method of the substrate processing apparatus according to the present invention.
図 3は図 1のプラズマ処理装置にマイク口波プラズマを励起した状態を模擬的 に示した図である。 FIG. 3 is a diagram schematically showing a state in which the mouth opening plasma is excited in the plasma processing apparatus of FIG.
図 4は本発明の基板処理装置のクリーニング方法によるクリ一ニング速度を示 す図である。 発明を実施するための最良の形態 FIG. 4 is a diagram showing a cleaning speed according to the cleaning method of the substrate processing apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施の形態に関して、 具体的に説明する。 Next, embodiments of the present invention will be specifically described.
[第 1実施例] [First embodiment]
まず、 図 1で前記したプラズマ処理装置 1 0 0による基板処理の例として、 ブラ ズマ C VD処理を行って被処理器基板 1 1 4に成膜を行う場合の具体的な例を以 下に示す。 First, as an example of the substrate processing by the plasma processing apparatus 100 described above with reference to FIG. 1, a specific example in the case where a plasma CVD process is performed to form a film on the processing target substrate 114 will be described below. Show.
前記したプラズマ処理装置 1 0 0の場合、プラズマ C VD処理で被処理基板 1 1 4上に絶縁膜を形成する場合、 プラズマガスに 02、 A r、 処理ガスに S i H 4を
用いることでシリコン酸化膜 (S i〇2膜) を、 同様にしてプラズマガスに N2、 Ar、 処理ガスに S i H4を用いることで窒化膜 (S i N膜) を形成することが可 能である。 When the plasma processing apparatus 1 0 0 described above, in the case of forming the insulating film on the target substrate 1 1 4 in plasma C VD process, the plasma gas 0 2, A r, the S i H 4 process gas The silicon oxide film (S I_〇 2 film) by using, to form the N 2 plasma gas in a similar manner, Ar, nitride film by using the S i H 4 process gas (S i N film) It is possible.
さらに、 同様にしてプラズマガスに、 Ar、 H2、 処理ガスにフロロカーボン系 のガス、 例えば C4F8を用いることでフッ素添加カーボン膜 (CxFy膜) を形 成することが可能である。 Further, similarly, it is possible to form a fluorine-added carbon film (CxFy film) by using Ar and H 2 as a plasma gas and a fluorocarbon-based gas such as C 4 F 8 as a processing gas.
前記したような成膜処理を行う場合、被処理基板 1 14上と同様に、前記処理容 器 101内にも前記したシリコン酸化膜、窒化膜、 フッ素添加カーボン膜などが堆 積物となって堆積する。 When the above-described film forming process is performed, the silicon oxide film, the nitride film, the fluorinated carbon film, and the like are deposited in the processing container 101 as well as on the substrate 114 to be processed. accumulate.
前記堆積物が蓄積すると、前記処理容器 101内部より剥離してパーティクル発 生の原因となるので、 定期的にクリーニングを行う必要が有る。そこで、 本発明に よるクリーニング方法を実施して、前記処理容器 101内をクリーニングして、前 記したような堆積物の除去を行う。 If the deposits accumulate, they are separated from the inside of the processing container 101 and cause particles to be generated. Therefore, it is necessary to perform cleaning periodically. Therefore, the cleaning method according to the present invention is performed to clean the inside of the processing container 101 and remove the deposits as described above.
次に、前記プラズマ処理装置 100の具体的なクリーニング方法に関して以下に 示す。 Next, a specific cleaning method of the plasma processing apparatus 100 will be described below.
図 2は、本発明の第 2実施例による基板処理装置のクリ一ニング方法を示すフ口 —チャートである。本実施例の場合、前記したフッ素添加カーボン膜をクリーニン グする方法を説明する。 FIG. 2 is a flowchart showing a cleaning method of the substrate processing apparatus according to the second embodiment of the present invention. In the case of the present embodiment, a method for cleaning the above-mentioned fluorinated carbon film will be described.
図 2を参照するに、 まずステップ 1 (図中 S 1と表記、 以下同様) でクリーニン グ工程が開始されると、 ステップ 2において、 前記処理容器 101内に、 クリ一二 ングガスを導入する。 フッ素添加カーボン膜をクリーニングする場合、 クリ一ニン グガスとしては例えば、 〇2および H2が用いられる。 また、 〇2および H2などの クリ一ニングガスを希釈してクリ一二ングガスによるエツチングを前記処理容器 101内で均一にするためと、プラズマ励起を容易にするために希釈ガスとしてさ らに A rを用いる場合がある。 Referring to FIG. 2, first, when the cleaning step is started in step 1 (indicated as S1 in the figure, the same applies hereinafter), in step 2, a cleaning gas is introduced into the processing vessel 101. When cleaning the fluorine-added carbon film, for example, 〇 2 and H 2 are used as the cleaning gas. Further, a diluting gas is further added as a diluting gas in order to dilute the cleaning gas such as 〇 2 and H 2 to make the etching by the cleaning gas uniform in the processing vessel 101 and to facilitate the plasma excitation. r may be used.
そこで、 ステップ 2においては、
をそれぞれ 100Z100Z 800 s c cm前記シャワープレート 103の前記開口部 107より前記空間 1 01 Bに導入する。
次に、ステップ 3において、マイクロ波電源より 1 4 0 0 Wのマイクロ波電力を 前記ラジアルラインスロットアンテナ 1 1 0に導入して、前記処理容器 1 0 1内に マイクロ波プラズマを励起する。 So, in step 2, Are introduced into the space 101B through the opening 107 of the shower plate 103, respectively. Next, in step 3, microwave power of 140 W from a microwave power source is introduced into the radial line slot antenna 110 to excite microwave plasma in the processing vessel 101.
本ステップにおいてマイクロ波プラズマが励起されているため、導入された、 〇 2/H 2が解離されて酸素ラジカル、 水素ラジカル、 また酸素イオン、 水素イオン などフッ素添加カーボン膜のエッチングに寄与する反応種が生成されて、以下のよ うに前記処理容器 1 0 1内の堆積物であるフッ素添加カーボン膜をエッチングし て実質的なクリーニングが開始される。 Since the microwave plasma is excited in this step, the introduced 〇 2 / H 2 is dissociated and reacts with oxygen radicals, hydrogen radicals, oxygen ions, hydrogen ions, etc., which contribute to the etching of the fluorine-added carbon film. Is generated, and the substantial cleaning is started by etching the fluorine-added carbon film which is a deposit in the processing container 101 as described below.
CxFy + - 02 H2 ^ x CO† +yHF f CxFy +-0 2 H 2 ^ x CO † + yHF f
2 ム 2 mu
また、 本ステップにおいて、 クリーニングガスとして 02/H2に加えて H 2〇を 添加することにより、前記したエッチングに寄与する酸素ラジカル、水素ラジカル、 酸素イオン、水素イオンの形成を促進してさらにクリーニングレ一トを向上させる ことができる。 Further, in this step, by adding H 2て in addition to 0 2 / H 2 as a cleaning gas, the formation of oxygen radicals, hydrogen radicals, oxygen ions, and hydrogen ions contributing to the above-mentioned etching is promoted, and furthermore, The cleaning rate can be improved.
しかし、前記したマイクロ波プラズマによるクリーニングのみではフッ素添加力 一ボン膜を除去するためのエッチング速度が遅く、クリーニングに時間を要してし まう場合がある。 However, if only the cleaning by the microwave plasma is used, the etching rate for removing the fluorine-containing film is low, and the cleaning may take time.
図 3には、前記プラズマ処理装置 1 0 0にマイクロ波プラズマ Mを励起した状態 を模擬的に示す。 ただし図中、 先に説明した部分には同一の参照符号を付し、 説明 を省略する。 FIG. 3 schematically shows a state where the microwave plasma M is excited in the plasma processing apparatus 100. However, in the figure, the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
図 3を参照するに、例えば前記処理ガス供給部 1 1 1の下部、すなわち前記空間 1 0 1 Cには、マイクロ波が届かないためにマイクロ波プラズマが励起されること がなく、 また前記空間 1 0 1 Bから拡散してくるプラズマのみ存在するため、 ブラ ズマ密度が低く、 電子温度が低い。 Referring to FIG. 3, for example, the microwave does not reach the lower part of the processing gas supply unit 111, that is, the space 101 C, so that microwave plasma is not excited. Since only plasma diffused from 101 B exists, the plasma density is low and the electron temperature is low.
このため、前記空間 1 0 1 Cに面する部分に堆積した前記堆積物が、前記したマ イク口波プラズマのみによるクリーニングでは、エッチングされない、 またはエツ チング速度が遅いという問題が生じる。 For this reason, there is a problem that the deposit deposited on the portion facing the space 101 C is not etched or the etching speed is low by the cleaning using only the microwave of the microwave.
具体的には、前記処理ガス供給部 1 1 1の前記空間 1 0 1 Cに面した側への堆積
物や、前記処理容器 1 0 1の内壁面の前記空間 1 0 1 Cに面した部分の堆積物のェ ツチング速度が遅く、また前記保持台 1 1 5側壁面の堆積物に関しても完全に堆積 物をクリーニングするのが困難であった。 Specifically, deposition on the side of the processing gas supply unit 111 facing the space 101C The etching speed of the material and the sediment on the inner wall surface of the processing vessel 101 facing the space 101C is slow, and the sediment on the side wall surface of the holder 115 is completely deposited. It was difficult to clean things.
そこで、本発明による基板処理装置のクリーニング方法では、次にステップ 4で、 前記保持台 1 1 5に接続された高周波電源 1 1 5 Aより前記保持台 1 1 5に高周 波電力を 3 0 0 W印加する。なお、本実施例に用いた高周波電源の周波数は 2 MH zであるが、周波数は 5 0 0 MH z以下、好ましくは 1 0 0 k H z〜1 5 MH zの ものを用いるのがよい。 また、 直流バイアスを用いてもよい。 Therefore, in the cleaning method of the substrate processing apparatus according to the present invention, in step 4, the high frequency power of 30 A is applied to the holding table 115 from the high frequency power supply 115 A connected to the holding table 115. Apply 0 W. The frequency of the high-frequency power supply used in this embodiment is 2 MHz, but a frequency of 500 MHz or less, preferably 100 kHz to 15 MHz is preferably used. Alternatively, a DC bias may be used.
本ステヅプにおいて、 前記基板保持台 1 1 5に高周波電力を印加しているため、 プラズマ電位が振動して、 前記空間 1 0 1 Cのプラズマ電位が引き上げられる。 前記空間 1 0 1 Cにおいて高周波プラズマが励起されるため、クリーニングガス の解離が進行して堆積物のエッチングに必要なラジカル、イオンなどの反応種が生 成されると共に、 プラズマ電位が引き上げられるため、 クリーニング対象の壁面に 入射するイオンエネルギーが大きくなり、 堆積物のエッチングが促進される。 その結果、前記処理ガス供給部 1 1 1の前記空間 1 0 1 Cに面した側への堆積物 や、前記処理容器 1 0 1の内壁面の前記空間 1 0 1 Cに面した部分、 また前記保持 台 1 1 5側壁面の堆積物のエッチング速度が向上し、クリーニングレートが向上す る効果が得られる。 In this step, since high-frequency power is applied to the substrate holder 115, the plasma potential oscillates, and the plasma potential in the space 101C is raised. Since the high-frequency plasma is excited in the space 101 C, the dissociation of the cleaning gas proceeds to generate reactive species such as radicals and ions necessary for etching the deposit, and the plasma potential is raised. However, the ion energy incident on the wall surface to be cleaned increases, and the etching of the deposit is accelerated. As a result, deposits on the side of the processing gas supply unit 111 facing the space 101C, a portion of the inner wall surface of the processing vessel 101 facing the space 101C, The etching rate of the deposit on the side wall surface of the holder 115 is improved, and the cleaning rate is improved.
次に、堆積物のエッチングが完了すると、ステップ 5およびステップ 6において それぞれ高周波電力およびマイクロ波電力の導入を停止し、ステップ 7においてク リーニングが完了する。 Next, when the etching of the deposit is completed, the introduction of the high frequency power and the microwave power is stopped in Steps 5 and 6, respectively, and the cleaning is completed in Step 7.
なお、本実施例においては、前記シャワープレ一ト 1 0 3よりクリーニングガス および希釈ガスを導入しているが、必要に応じて、例えば前記シャワープレート 1 0 3および前記処理ガス供給部 1 1 1の双方より、もしくは前記処理ガス供給部 1 1 1からのみ導入することも可能である。 また、前記シャワープレート 1 0 3から と、および前記処理ガス供給部 1 1 1から導入する割合を変更することも可能であ る。 In this embodiment, the cleaning gas and the diluting gas are introduced from the shower plate 103. However, if necessary, for example, the shower plate 103 and the processing gas supply unit 111 may be used. , Or only from the processing gas supply unit 111. It is also possible to change the ratio introduced from the shower plate 103 and from the processing gas supply unit 111.
例えば、 フッ素添加力一ボン膜の成膜条件に応じて、前記空間 1 0 1 Bに面する
部分の堆積物が多い場合は、前記シャワープレート 1 0 3から導入するクリーニン グガスおよび希釈ガスの流量の割合を増加させ、また前記空間 1 0 1 Cに面する部 分の堆積物が多い場合は、前記処理ガス供給部 1 1 1から導入するクリーニングガ スおよび希釈ガスの流量の割合を増加させることで、クリーニングガスを効率的に 使用することができる。その結果、 クリーニングガスの使用量を抑えて、 かつクリ 一二ング速度を向上させたより効率的なクリーニングが可能となる。 For example, depending on the film formation conditions of the fluorine-added carbon film, it faces the space 101B. If there is much sediment in the part, increase the ratio of the flow rate of the cleaning gas and dilution gas introduced from the shower plate 103, and if there is much sediment in the part facing the space 101C. By increasing the ratio of the flow rates of the cleaning gas and the dilution gas introduced from the processing gas supply unit 111, the cleaning gas can be used efficiently. As a result, it is possible to perform more efficient cleaning while suppressing the amount of the cleaning gas used and improving the cleaning speed.
なお、前記処理容器 1 0 1内の堆積物の除去が完了してクリーニングが終了した ことを確認するためには、 プラズマの発光状態をモニタする方法がある。 例えば、 クリ一二ング中の発光を分光器などで分光処理することにより、特定の波長の光の 強度の変化をモニタし、発行強度の変化が収束した時点でクリ一エングの終了とし、 クリーニングの終点を検出している。 In order to confirm that the removal of the deposits in the processing container 101 has been completed and the cleaning has been completed, there is a method of monitoring the emission state of plasma. For example, the light emission during cleaning is spectrally processed by a spectroscope or the like, so that the change in the intensity of light of a specific wavelength is monitored, and when the change in emission intensity converges, the cleaning is terminated, and cleaning is performed. Has been detected.
また、 クリーニングの対象である堆積物の堆積状態によって、例えば前記空間 1 0 1 Cに面する部分の堆積物が多い場合は、高周波電力を印加する時間を増加させ ることによって、 効率的にクリーニングレートを向上させることが可能となる。 さらに、必要に応じてマイクロ波電力を導入する時間と高周波電力を導入する時 間、 またマイク口波電力を導入 ·停止するタイミングと高周波電力を導入 ·停止す るタイミングを変更して、堆積物の量に応じた効率的なクリーニングを行うことが 可能となる。必要に応じて高周波電力での高周波プラズマのみでクリーニングを行 うことも可能である。 Further, depending on the deposition state of the deposit to be cleaned, for example, when there is a large amount of deposit in a portion facing the space 101C, the time for applying the high-frequency power is increased to efficiently perform the cleaning. The rate can be improved. In addition, the time to introduce microwave power and the time to introduce high-frequency power as necessary, and the timing to introduce and stop microphone mouth wave power and the time to introduce and stop high-frequency power were changed, It is possible to perform efficient cleaning according to the amount of the cleaning. If necessary, cleaning can be performed using only high-frequency plasma with high-frequency power.
また、ここまでの実施例はフッ素添加カーボン膜をクリーニングする方法を示し たが、 例えばシリコン酸化膜(S i〇2膜)、 フッ素添加シリコン酸化膜(S i O F 膜)、 シリコン窒化膜 (S i N膜) などの絶縁膜も同様の方法でクリーニングする ことが可能である。 In the above-described embodiments, the method of cleaning the fluorine-added carbon film was described. For example, a silicon oxide film (Si 2 film), a fluorine-added silicon oxide film (S i OF film), and a silicon nitride film (S An insulating film such as an iN film can be cleaned in the same manner.
前記した S i〇2膜、 S i O F膜、 S i N膜などは、 クリーニングガスにフッ素 化合物のガス、 例えば N F 3、 C F 4、 C 2 F 6、 S F 6などを用いることで、 図 2に 示した方法でクリ一ニングを行う事が可能であり、前記したフッ素添加力一ポン膜 をクリーニングする場合と同様の効果を得ることが可能である。 Wherein the S I_〇 2 film, S i OF film, etc. S i N film, the gas of the fluorine compound in the cleaning gas, for example NF 3, CF 4, C 2 F 6, SF 6 by using the like, FIG. 2 The cleaning can be performed by the method described in (1), and the same effect as in the case of cleaning the above-mentioned fluorine-added film can be obtained.
また、 例えばフッ素添加力一ボン膜と S i〇2膜、 S i O F膜、 S i N膜が積層
された堆積物をクリーニングする場合や、 S i C O膜、 S i C O (H) 膜など無機 絶縁膜と有機系の絶縁膜が混在する堆積物をクリ一二ングする場合は、 N F 3と〇 2、 H 2、 H 20を混合したガスをクリーニングガスとして用いる、 または N F 3に よるクリーニングと〇2、 H 2、 H 2〇によるクリーニングを交互に行うなどしてク リーニングを行う事が可能である。その場合も、前記したフッ素添加カーボン膜を クリーニングする場合と同様の効果を得ることが可能である。 Further, for example, fluorine-doped force one carbon film and S I_〇 2 film, S i OF film, S i N film is laminated NF 3 and NF 3 are used for cleaning the deposited deposits and for cleaning deposits in which an inorganic insulating film and an organic insulating film are mixed, such as a S i CO film and a S i CO (H) film. 2, H 2, H 2 using a 0 mixed with gas as the cleaning gas, or cleaning and 〇 2 according to NF 3, H 2, H 2 〇 a by cleaning the like performed alternately possible to perform cleaning by It is. Also in this case, the same effect as in the case of cleaning the fluorine-containing carbon film can be obtained.
[第 2実施例] [Second embodiment]
次に、第 1実施例に前記した、 図 2に示した基板処理装置のクリーニング方法を 用いてクリーニングを行った際のクリ一ニング速度(レート) を図 4に示す。 ただ し文中、 先に説明した場合には同一の参照符号を用いて説明を省略する。 Next, FIG. 4 shows the cleaning speed (rate) when cleaning is performed using the method for cleaning the substrate processing apparatus shown in FIG. 2 in the first embodiment. However, in the description, the same reference numerals have been used in the above description, and description thereof will be omitted.
図 4は、第 1実施例に記載した方法により、 フッ素添加カーボン膜のクリーニン グを行った場合のクリーニング速度を示したものであり、前記保持台 1 1 5への高 周波電力を 3 0 0 Wとした場合 (B ) および 5 0 0 Wとした場合(C) の結果が示 してある。 さらに、 比較のために、 前記保持台 1 1 5に高周波電力を印加せずに、 マイクロ波プラズマのみでクリーニングを行った場合 (A) の結果も併記する。 図 4を参照するに、 マイクロ波プラズマのみでクリーニングを行った場合 (A) はクリーニング速度が 1 9 4 n m/m i nであるのに対し、高周波電力を 3 0 0 W 印加した場合(B) はクリーニング速度が 5 4 0 nm/m i nとなり、 高周波電力 を印加しない場合 (A) に比べてクリーニング速度が 2 . 8倍となっている。 さら に高周波電力を 5 0 0 Wとする場合(C)はクリーニング速度が 6 8 0 n m/m i nとなって高周波電力を印加しない場合 (A) に比べて 3 . 5倍となって、 さらに クリーニング時間を短縮することが可能になっている。 FIG. 4 shows the cleaning speed when the fluorinated carbon film was cleaned by the method described in the first embodiment, and the high-frequency power to the holding table 115 was changed to 300. The results for W (B) and 500 W (C) are shown. Further, for comparison, the results of the case (A) in which cleaning was performed only with microwave plasma without applying high-frequency power to the holding table 115 are also shown. Referring to FIG. 4, when cleaning was performed using only microwave plasma (A), the cleaning speed was 194 nm / min, while when 300 W of high-frequency power was applied (B), The cleaning speed is 540 nm / min, and the cleaning speed is 2.8 times that of the case (A) where no high-frequency power is applied. Further, when the high-frequency power is set to 500 W (C), the cleaning speed is 680 nm / min, and the cleaning speed is 3.5 times higher than when no high-frequency power is applied (A). It is possible to reduce the time.
これは、 前記したように、 前記保持台 1 1 5に高周波電力を印加することで、 前 記処理ガス供給部 1 1 1の前記空間 1 0 1 Cに面した側への堆積物や、前記処理容 器 1 0 1の内壁面の前記空間 1 0 1 Cに面した部分、また前記保持台 1 1 5側壁面 の堆積物のエッチング速度が向上することでクリーニング速度が上昇する効果が 得られているためであると考えられる。 As described above, by applying high-frequency power to the holding table 115, deposits on the side of the processing gas supply unit 111 facing the space 101C, The effect of increasing the cleaning rate by increasing the etching rate of the deposit on the inner wall surface of the processing vessel 101 facing the space 101C and the side wall surface of the holding table 115 can be obtained. It is thought that it is because.
また、 前記保持台 1 1 5の表面を保護するため、 前記保持台 1 1 5上に、 例えば
A 1 203ゃ3 i Nなどの焼結セラミックからなる保護ウェハを載置してクリ一二 ングを実施してもよい。 Also, in order to protect the surface of the holding table 115, on the holding table 115, for example, A 1 2 0 3 Ya 3 i N by placing the protective wafer made of a sintered ceramic such as may be implemented chestnut-learning.
また前記したクリ一二ングは、被処理基板の成膜処理が 1枚終了する毎に実施す ることも可能であるが、例えば複数の被処理基板の成膜処理が終了する毎に実施す ることも可能である。 In addition, the above-described cleaning can be performed every time one film formation process of the substrate to be processed is completed. For example, the cleaning is performed each time the film formation process of a plurality of substrates to be processed is completed. It is also possible.
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例 に限定されるものではなく、 特許請求の範囲に記載した要旨内において様々な変 形 ·変更が可能である。 産業上の利用可能性 Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above-described specific embodiments, and various modifications and changes are possible within the scope of the claims. . Industrial applicability
本発明によれば、大面積基板上にも均一なプラズマを容易に励起できるマイクロ 波プラズマを用いた基板処理装置において、クリーニングを効率的に行うことによ り、 クリーニング時間を短縮することが可能となる。 このことから、 大口径半導体 基板を使った半導体装置の製造工程や大型液晶表示装置の製造工程に用いるのに 適している。
Advantageous Effects of Invention According to the present invention, in a substrate processing apparatus using microwave plasma that can easily excite uniform plasma even on a large-area substrate, cleaning time can be reduced by performing cleaning efficiently. It becomes. Therefore, it is suitable for use in a manufacturing process of a semiconductor device using a large-diameter semiconductor substrate or a manufacturing process of a large-sized liquid crystal display device.