WO2004031802A1 - Method and apparatus for 1d array ultrasound probe - Google Patents
Method and apparatus for 1d array ultrasound probe Download PDFInfo
- Publication number
- WO2004031802A1 WO2004031802A1 PCT/IB2003/003999 IB0303999W WO2004031802A1 WO 2004031802 A1 WO2004031802 A1 WO 2004031802A1 IB 0303999 W IB0303999 W IB 0303999W WO 2004031802 A1 WO2004031802 A1 WO 2004031802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receive
- array
- image
- elements
- receive beamformer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/8927—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/8918—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52025—Details of receivers for pulse systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/34—Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
- G10K11/341—Circuits therefor
- G10K11/346—Circuits therefor using phase variation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8913—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using separate transducers for transmission and reception
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/892—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being curvilinear
Definitions
- the present disclosure relates to ultrasound imaging devices, and more particularly, to a method and apparatus for a 1-D array ultrasound probe.
- Phased array ultrasonic imaging systems have been used to produce real-time images of internal portions of the human body.
- Such imaging systems include a multiple channel transmit beamformer and a multiple channel receive beamformer either coupled to a single array of ultrasonic transducers using a transmit/receive switch, or coupled separately to a transmit transducer array and a receive transducer array.
- the transmit beamformer generates timed electrical pulses and applies them to the individual transducer elements in a predetermined timing sequence.
- the transducers respond to the electrical pulses and emit corresponding pressure waves, which are phased to form a transmit beam that propagates in a predetermined direction from the transducer array.
- a portion of the acoustic energy is scattered back toward the transducer array from tissue structures having different acoustic characteristics.
- An array of receive transducers (which may be the same as the transmit array) converts the pressure pulses into the corresponding electrical pulses. Due to different distances, the ultrasonic energy scattered from a tissue structure, arrives back at the individual transducers at different times.
- Each transducer produces an electrical signal that is amplified and provided to one processing channel of the receive beamformer.
- the receive beamformer has a plurality of processing channels with compensating delay elements connected to a summing element. The system selects a delay value for each channel to collect echoes scattered from a selected point.
- the receive beamformer can steer the receive beam to have a desired direction and can dynamically focus over a range of depths.
- the transmit beamformer directs the transducer array to emit ultrasound beams along multiple transmit scan lines distributed over a desired scan pattern. For each transmit beam, the receive transducer array connected to the receive beamformer synthesizes one or several receive beams having selected orientations.
- the transmit and receive beams form a round-trip beam (i.e., "center of mass” beam) that is generated over a predetermined angular spacing to create a wedge-shaped acoustic image or is generated over a predetermined linear spacing to create a parallelogram-shaped acoustic image.
- a round-trip beam i.e., "center of mass” beam
- Arbitrary combinations of the aforementioned patterns can be used to create more complex scanned image shapes, with arbitrary density of acoustic sampling.
- a one-dimensional array may have up to several hundred elements. These elements are typically connected to a system with 128 channels of processing electronics.
- the receive beamformer within these channels uses digital signal processing involving an A/D converter and digital circuitry. This circuitry takes a substantial amount of size and power such that a hand held system cannot be built using this method.
- ultrasound imaging devices are large, expensive ultrasound devices that connect to probes which do not contain integrated high voltage pulsers, nor transmit/receive beamforming, and are not very portable. Accordingly, it would be desirable to provide an ultrasound imaging system architecture that uses a large transducer array for providing two-dimensional images and that is practical in size, cost and complexity.
- a phased array ultrasound scanning apparatus includes a one-dimensional (1-D) array of ultrasound transducer elements having transmit and receive elements.
- the 1-D array is responsive to a transmitter configured to energize the transmit elements for generating a transmit acoustic beam directed into a region of interest.
- a receive beamformer operatively connected to the 1-D array, synthesizes receive beams, in response to echoes of the transmit acoustic beam received from the region of interest.
- the receive beamformer includes analog random access memory (ARAM) delay elements configured to delay signals received from the receive elements and provide the delayed signals on an output of the receive beamformer as a beamformed JRJF output.
- the beamformed RF output is suitable for use in forming an image of the region of interest.
- FIG. 1 is a diagrammatic view of a phased array ultrasound imaging system according to one embodiment of the present disclosure
- FIG. 2 is a diagrammatic view of the imaging system including a 1-D array of ultrasound transducers operatively coupled to a transmit beamformer and a receive beamformer according to one embodiment of the present disclosure
- FIG. 3 is a block diagram view of several illustrative transducer elements operatively coupled to programmable delay lines connected to a summing junction of the receive beamformer; and
- FIG. 4 is a diagrammatic view of an analog random access memory element used as a programmable delay element in the receive beamformer of the ultrasound imaging system of the present disclosure.
- a phased array ultrasonic imaging system 10 includes an array of transducer elements 12 located in a transducer handle 14.
- Transducer handle 14 operatively couples via a transducer cable 16 and a transducer interface 18 to an electronics unit 20.
- Interface 18 may include, for example, an analog to digital converter 19 (ADC) for converting analog signal to respective digital signals, as well as other circuitry.
- Electronics unit 20 includes a control panel 22, operating and application software 24, and provides imaging signals to display 26.
- Software 24 includes components for image detection and scan conversion.
- Image detection preferably includes the steps or RF filtering, mixing, analytic echo envelope detection, logging, and further smoothing.
- Scan conversion converts the echo data from the format of the scanned acoustic lines to the preferably Cartesian format of display 26.
- Transducer array 12 can include several hundred transducer elements 28 arranged as a large one-dimensional array, phased array (PA), linear array (LA) or curved linear array (CLA) according to the requirements for a particular ultrasound imaging system.
- transducer array 12 may have the transducer elements arranged into separate transmit and receive arrays distributed along the one-dimensional array.
- the transducer transmit and receive elements may be distributed over a semi-random pattern along the one-dimensional array.
- Transducer handle 14 includes transmit pulse generators and the associated high voltage drivers, low noise receive pre-amplifiers, and delay and summing circuits, generally indicated by reference numeral 30.
- the elements are integrated within a small volume and placed inside transducer handle 14.
- Transducer cable 16 includes at least one signal wire, power supply wires, clock lines, and digital communication.
- transducer array 12 employs the same transducer elements to emit a transmit beam and detect a receive beam.
- imaging system 10 includes a transmit/receive switch (T/R switch not shown in FIG. 1) to switch between a transmit beamformer and a receive beamformer depending on the operating mode.
- the switch connects the elements to the transmit beamformer and protect the receive beamformer.
- the T/R switch After emitting the transmit beam, connects the transducer elements to the receive beamformer.
- ultrasound imaging system 10 utilizes a one-dimensional transducer array 12 having, for example, 128 transducer elements to acquire two- dimensional image data of a human organ or region of interest. Imaging system 10 uses approximately one half of the transducer elements to transmit ultrasound energy and the other half to receive ultrasound energy. The transmit and receive elements are randomly distributed over array 12. By separating the transmit and receive elements, the system can be fabricated without the T/R switches, thus reducing a complexity of the system.
- Each integrated circuit 32 may include a set of digital pulse generators that generate transmit pulses and high voltage driver circuits that amplify the transmit pulse to on the order of approximately one hundred volts ( ⁇ 100 v) used to excite the transducer element to emit ultrasound.
- Each integrated circuit may also include low noise receive preamplifiers, analog delay circuitry to perform the receive beamforming, and digital control circuitry, further as discussed below.
- the low noise receive preamplifiers preamplify the transducer signal and provide the preamplified signal to the delay circuitry.
- the delay circuitry performs receive beamforming by applying selected delay values to the signals.
- FIG. 2 is a block diagram of imaging system 10 having transducer array 12 operatively coupled to a transmit beamformer 38 and operatively coupled to receive beamformer 40.
- the channels 44; of receive beamformer 40 include programmable delay elements 46 connected to a summing element 48 (a summing junction).
- the programmable delay element 44j of each respective channel of the receive beamformer 40 delays the corresponding individual transducer signals and connects to summing junction 48.
- the summing junction adds the delayed signals and provides the summed signal to the channel output 50 of receive beamformer 40.
- a system controller 52 includes a microprocessor and an associated memory. Controller 52 is configured to control the operation of imaging system 10.
- System controller 52 provides delay commands to the transmit beamformer channels via a bus 54. The delay data steers and focuses the generated transmit beams over transmit scan lines of a wedge-shaped transmit pattern, a parallelogram-shaped transmit pattern, or other patterns.
- the system controller 52 also provides delay commands to the channels of the receive beamformer via a bus 56.
- the applied relative delays control the steering and focusing of the synthesized receive beams.
- Each receive beamformer channel 44 includes a variable gain amplifier, which controls gain as a function of received signal depth, and a delay element that delays acoustic data to achieve beam steering and dynamic focusing of the synthesized beam.
- Summing element 48 receives the outputs from beamformer channels and adds the outputs to provide the resulting beamformer signal 50 to an image generator 58.
- the beamformer signal represents a receive ultrasound beam synthesized along a receive scan line.
- Image generator 58 constructs an image of a region probed by a multiplicity of round-trip beams synthesized over a sector-shaped pattern, a parallelogram- shaped pattern or other patterns.
- the transmit beamformer may include an analog or digital beamformer as described, for example, in U.S. Pat. Nos. 4,140,022; 5,469,851; or 5,345,426 all of which are incorporated by reference.
- the transmit beamformer may use the same analog delay element as the receive beamformer.
- switches are used to switch the analog delay circuits to delay transmit signals during transmit and to delay receive signals during signal reception.
- the analog delay circuitry can be used to delay either analog signals or digital pulses.
- receive beamformer 40 comprises an analog receive beamformer including a set of programmable delay lines 46 1; 46 2 , 46 3 , and 46 N connected to a summing element 48.
- the output 50 of summing element 48 provides the delayed and summed signals of receive beamformer 40.
- Programmable delay lines 46 are implemented as analog delay lines.
- Each analog delay line 46 includes an analog RAM as is described in connection with FIG. 4.
- the ultrasound system includes an array of transducer elements. The transducer elements are operatively coupled to receive beamformer channels, the beamformer channels including analog delay lines, the delay being configurable.
- analog random access memory (RAM) device 60 is configured as a programmable delay element.
- RAM device 60 includes a group of M storage capacitors 62 1; 62 2 , 62 3 , . . . , 62 for storing M input sample signals using decoders 64 and 68 connected to input switches 65 ⁇ , 65 2 ,. . . , 65 M and output switches 67;, 67 2 ,. . . , 67 M , respectively.
- An input buffer 68 receives a transducer signal that is then sent by input switch 65; controlled by decoder 64 to storage capacitor 62;.
- Decoder 66 coupled to output switch 67; samples the individual capacitor charges at delay times determined by the difference in timing between an input counter 70 and an output counter 72.
- the transducer signals are delayed by selected delay times as they are transferred from input buffer 68 to an output buffer 74.
- the time difference between the two counters 70 and 72 is held at a constant value for all pixels along an acoustic line by making the clocks (CLK1 and CLJK2) to the two counters identical. This embodiment provides a fixed static focus.
- the time difference between the two counters 70 and 72 is varied along an acoustic line by using different clocks for the two counters. By choosing appropriate pulse streams for the two clocks, focus can be maintained for all pixels along the acoustic line. This embodiment provides dynamic focusing.
- the imaging system 10 includes system controller 52 with a digital control circuit configured to provide delay values to the transmit and receive beamformers, as shown diagrammatically by data buses 54 and 56. Both transmit and receive beamformers are configured to receive delay values by these data buses.
- a phased array ultrasound scanning apparatus includes a one- dimensional (1-D) array of ultrasound transducer elements including transmit and receive elements.
- the 1-D array is responsive to a transmitter configured to energize the transmit elements for generating a transmit acoustic beam directed into a region of interest.
- the apparatus further includes a receive beamformer operatively connected to the 1-D array.
- the receive beamformer is configured to synthesize receive beams, in response to echoes of the transmit acoustic beam received from the region of interest.
- the receive beamformer includes analog random access memory (aRAM) elements configured to delay signals received from the receive elements and provide the delayed signals on an output of the receive beamformer as a beamformed RF output.
- the receive beamformer further includes a summer configured to sum the delayed signals and to generate the beamformed RF output in response to the sum of the delayed signals.
- the beamformed RF output is suitable for use in forming an image of the region of interest.
- the receive beamformer is configured to implement static beamforming.
- static beamforming the beamformed RF output is suitable for use in forming the image by splicing to produce consistent resolution through a greater depth of field.
- Splicing employs multiple transmit events per scan line in a given direction, each transmit event focused at successively shallower depths.
- the received acoustic data sets from the successive events are collected by the system processor, and adjacent sections from the successive data sets are excerpted so that their data is near the corresponding transmit event's focus.
- the excerpted data sets are combined into one composite receive line with superior depth of regard than any of the supplier receive lines.
- the splicing process is repeated for every scan line of the overall image scan.
- the receive beamformer is configured to implement dynamic beamforming, including dynamically updating delay values with time so as to maintain focus for all pixels along an acoustic line.
- the phased array ultrasound scanning apparatus further includes suitable detector, including hardware and software, for detecting the image of the region of interest in response to the beamformed RF output.
- the apparatus includes a display unit, operatively connected to the detector, for displaying the detected image.
- a user interface is operatively connected to the image detector and display unit, the user interface configured to control a control parameter of at least one of the image detector and the display unit.
- the image detector, display, and user interface comprise one or more of a portable personal computer (PC), a Personal Digital Assistant (PDA), and a pocket PC.
- the transducer array, receive beamformer, image detector, and display comprise a single package.
- the transducer array and receive beamformer comprise a first package
- the image detector and display comprise a second package, wherein the first package is operatively coupled to the second package.
- the transducer array is in one package, and the receive beamformer, image detector and display are in a second package.
- statically focused RF is used to form an image of an area of interest. It is recognized that this embodiment has a problem associated with the limited depth of field resulting from static focus beamforming. However, the reduced complexity and lower cost may make this problem acceptable.
- depth of field can be increased by splicing receive data from multiple acoustic lines with different transmit foci.
- the receive beamformer can be modified to adjust the receive delays during reception, allowing a continuously focused summation of channel data into the single RF signal. Accordingly, the beamformer can be configured for dynamic focus.
- Simple image detection can be done on an interface board that plugs directly into a portable PC, such as a notebook, palmtop, or a personal digital assistant (PDA).
- PDA personal digital assistant
- the circuitry required for the ultrasound data acquisition and beamforming is provided within the probe itself.
- An interface couples the probe to the PC. Image detection, formatting, and display are performed by suitable hardware and software in the PC, using beamformed RF data from the probe. The beamformed RF data is transferred on a single analog or digital channel from the probe to the interface.
- the interface can include a standard interface such as Compact Flash (CF or CF+), PCMCIA, USB, FireWire, FibreChannel, PCI, UART, or other suitable interface
- means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004541030A JP2006501005A (en) | 2002-10-04 | 2003-09-01 | Method and apparatus for one-dimensional array ultrasound probe |
AT03798983T ATE499619T1 (en) | 2002-10-04 | 2003-09-01 | METHOD AND APPARATUS FOR A 1D ARRAY ULTRASONIC PROBE |
DE60336159T DE60336159D1 (en) | 2002-10-04 | 2003-09-01 | METHOD AND DEVICE FOR A 1D ARRAY ULTRASONIC SENSOR |
AU2003260838A AU2003260838A1 (en) | 2002-10-04 | 2003-09-01 | Method and apparatus for 1d array ultrasound probe |
EP03798983A EP1554605B1 (en) | 2002-10-04 | 2003-09-01 | Method and apparatus for 1d array ultrasound probe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/264,900 | 2002-10-04 | ||
US10/264,900 US6705995B1 (en) | 2002-10-04 | 2002-10-04 | Method and apparatus for 1D array ultrasound probe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004031802A1 true WO2004031802A1 (en) | 2004-04-15 |
Family
ID=31946519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2003/003999 WO2004031802A1 (en) | 2002-10-04 | 2003-09-01 | Method and apparatus for 1d array ultrasound probe |
Country Status (8)
Country | Link |
---|---|
US (1) | US6705995B1 (en) |
EP (1) | EP1554605B1 (en) |
JP (1) | JP2006501005A (en) |
CN (1) | CN100565242C (en) |
AT (1) | ATE499619T1 (en) |
AU (1) | AU2003260838A1 (en) |
DE (1) | DE60336159D1 (en) |
WO (1) | WO2004031802A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106028021A (en) * | 2016-06-22 | 2016-10-12 | 杨越 | Device for forming unmanned ship monitoring area ultrasonic three-dimensional image by employing orthogonal array |
CN106680825A (en) * | 2016-12-05 | 2017-05-17 | 中国科学院声学研究所 | Acoustic array imaging system and method thereof |
US10598773B2 (en) | 2016-03-02 | 2020-03-24 | University Of Washington | Systems and methods for measuring pressure distributions of acoustic beams from ultrasound sources |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060074320A1 (en) * | 2004-08-27 | 2006-04-06 | Yoo Yang M | Home ultrasound system |
WO2006111872A2 (en) * | 2005-04-18 | 2006-10-26 | Koninklijke Philips Electronics, N.V. | Pc-based portable ultrasonic diagnostic imaging system |
CN101657160B (en) | 2007-04-13 | 2012-06-06 | 皇家飞利浦电子股份有限公司 | Quantified perfusion studies with ultrasonic thick slice imaging |
GB2457240B (en) | 2008-02-05 | 2013-04-10 | Fujitsu Ltd | Ultrasound probe device and method of operation |
US10080544B2 (en) * | 2008-09-15 | 2018-09-25 | Teratech Corporation | Ultrasound 3D imaging system |
US20120179044A1 (en) * | 2009-09-30 | 2012-07-12 | Alice Chiang | Ultrasound 3d imaging system |
US12102479B2 (en) * | 2008-09-15 | 2024-10-01 | Teratech Corporation | Ultrasound 3D imaging system |
US8715192B2 (en) * | 2008-10-30 | 2014-05-06 | Texas Instruments Incorporated | High voltage ultrasound transmitter with symmetrical high and low side drivers comprising stacked transistors |
US8721550B2 (en) * | 2008-10-30 | 2014-05-13 | Texas Instruments Incorporated | High voltage ultrasound transmitter with symmetrical high and low side drivers comprising stacked transistors and fast discharge |
JP5572633B2 (en) | 2008-11-11 | 2014-08-13 | コーニンクレッカ フィリップス エヌ ヴェ | Configurable microbeamformer circuit for ultrasound diagnostic imaging system |
CA2753746C (en) * | 2009-02-27 | 2016-07-12 | Dalhousie University | High-frequency ultrasound imaging system |
CN102695456B (en) * | 2010-11-09 | 2015-03-25 | 柯尼卡美能达株式会社 | Beam-forming method, ultrasonic diagnosis device, and integrated circuit |
IT1403296B1 (en) * | 2010-12-28 | 2013-10-17 | St Microelectronics Srl | ULTRASOUND IMAGE SYSTEM WITH 4D DATA AND CORRESPONDING CONTROL PROCESS |
KR101303626B1 (en) * | 2011-01-06 | 2013-09-11 | 서강대학교산학협력단 | Diagnosis system for diagnosing subject, medical image system for providing diagnosis image of subject and method for displaying diagnosis image of subject |
WO2013001484A1 (en) | 2011-06-30 | 2013-01-03 | Koninklijke Philips Electronics N.V. | Two dimensional ultrasonic diagnostic imaging system with two beamformer stages |
JP5635540B2 (en) * | 2011-10-26 | 2014-12-03 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Reception circuit, ultrasonic probe, and ultrasonic image display device |
JP2013123459A (en) * | 2011-12-13 | 2013-06-24 | Seiko Epson Corp | Living body inspecting probe |
EP2867697B1 (en) * | 2012-06-28 | 2020-10-07 | Koninklijke Philips N.V. | Two dimensional ultrasound transducer arrays operable with different ultrasound systems |
US9244043B2 (en) | 2012-08-23 | 2016-01-26 | General Electric Company | Integrated active ultrasonic probe |
GB201222284D0 (en) * | 2012-12-11 | 2013-01-23 | Nidec Sr Drives Ltd | Estimation of resistance in electrical machines |
WO2014125371A1 (en) | 2013-02-12 | 2014-08-21 | Urs-Us Medical Technology Inc. | Analog store digital read ultrasound beamforming system and method |
CN103913513B (en) * | 2014-03-26 | 2016-05-11 | 深圳大学 | Phased array global focus system and focus method thereof |
US10613205B2 (en) | 2014-10-06 | 2020-04-07 | Analog Devices, Inc. | Systems and methods for ultrasound beamforming |
JP6745811B2 (en) | 2014-11-14 | 2020-08-26 | ウルスス・メディカル,エルエルシー | Ultrasonic beamforming system and method based on ARAM array |
WO2016115638A1 (en) * | 2015-01-23 | 2016-07-28 | Dalhousie University | Systems and methods for beamforming using variable sampling |
US10304226B2 (en) | 2015-07-29 | 2019-05-28 | B-K Medical Aps | Ultrasound focal zone system and method |
KR102519426B1 (en) * | 2015-09-30 | 2023-04-10 | 삼성메디슨 주식회사 | Ultrasound apparatus and operating method for the same |
US10813624B2 (en) | 2015-10-30 | 2020-10-27 | Carestream Health, Inc. | Ultrasound display method |
US20170347992A1 (en) | 2016-06-02 | 2017-12-07 | Carestream Health, Inc. | Automated region of interest placement |
CN105974421A (en) * | 2016-06-22 | 2016-09-28 | 杨越 | Method utilizing orthogonal array to form unmanned ship monitoring area supersonic wave three-dimensional image |
US10987084B2 (en) | 2016-06-28 | 2021-04-27 | Carestream Health, Inc. | Ultrasound system and method |
US10912536B2 (en) | 2016-08-23 | 2021-02-09 | Carestream Health, Inc. | Ultrasound system and method |
US10598635B2 (en) * | 2017-03-31 | 2020-03-24 | Hexagon Technology As | Systems and methods of capturing transient elastic vibrations in bodies using arrays of transducers for increased signal to noise ratio and source directionality |
US11067544B2 (en) * | 2018-10-31 | 2021-07-20 | Texas Instruments Incorporated | Switched capacitor delay line |
US11372092B2 (en) * | 2019-01-04 | 2022-06-28 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Hybrid ultrasound transmitter |
JP2022516359A (en) * | 2019-01-07 | 2022-02-25 | コーニンクレッカ フィリップス エヌ ヴェ | Interleaved transmission sequences and motion estimates in ultrasound images and related systems, devices and methods |
NL2022682B1 (en) * | 2019-03-06 | 2020-09-17 | Novioscan B V | Energy efficient simplified analogue phased array transducer for beam steering |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019169A (en) * | 1974-09-30 | 1977-04-19 | Tokyo Shibaura Electric Co., Ltd. | Ultrasonic wave transmitting and receiving apparatus |
US4140022A (en) * | 1977-12-20 | 1979-02-20 | Hewlett-Packard Company | Acoustic imaging apparatus |
US4387597A (en) * | 1980-12-08 | 1983-06-14 | Advanced Technology Laboratories, Inc. | Beamforming apparatus and method for ultrasonic imaging systems |
US4962667A (en) * | 1985-10-09 | 1990-10-16 | Hitachi, Ltd. | Ultrasonic imaging apparatus |
US5345426A (en) * | 1993-05-12 | 1994-09-06 | Hewlett-Packard Company | Delay interpolator for digital phased array ultrasound beamformers |
US5469851A (en) * | 1994-08-09 | 1995-11-28 | Hewlett-Packard Company | Time multiplexed digital ultrasound beamformer |
US6440072B1 (en) * | 2000-03-30 | 2002-08-27 | Acuson Corporation | Medical diagnostic ultrasound imaging system and method for transferring ultrasound examination data to a portable computing device |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4267584A (en) * | 1977-07-01 | 1981-05-12 | Siemens Gammasonics, Inc. | Permutating analog shift register variable delay system |
US4159462A (en) * | 1977-08-18 | 1979-06-26 | General Electric Company | Ultrasonic multi-sector scanner |
US4139787A (en) * | 1977-10-11 | 1979-02-13 | Fairchild Camera And Instrument Corporation | Line-addressable random-access memory decoupling apparatus |
US4336607A (en) * | 1980-12-10 | 1982-06-22 | The United States Of America As Represented By The Secretary Of The Navy | Beamformer having random access memory delay |
US5261281A (en) * | 1989-11-01 | 1993-11-16 | Hitachi Medical Corporation | Ultrasonic imaging apparatus |
US5229933A (en) | 1989-11-28 | 1993-07-20 | Hewlett-Packard Company | 2-d phased array ultrasound imaging system with distributed phasing |
US5271276A (en) * | 1990-11-28 | 1993-12-21 | Hitachi, Ltd. | Phase regulating apparatus of ultrasonic measuring devices |
JPH05161641A (en) * | 1991-12-13 | 1993-06-29 | Hitachi Ltd | Ultrasonic diagnostic device |
US5318033A (en) | 1992-04-17 | 1994-06-07 | Hewlett-Packard Company | Method and apparatus for increasing the frame rate and resolution of a phased array imaging system |
US5307815A (en) | 1992-12-04 | 1994-05-03 | Hewlett-Packard Company | Ultrasonic transducer with integrated variable gain amplifier |
US5301168A (en) * | 1993-01-19 | 1994-04-05 | Hewlett-Packard Company | Ultrasonic transducer system |
JPH06277220A (en) * | 1993-03-30 | 1994-10-04 | Shimadzu Corp | Ultrasonic diagnostic device |
US5522391A (en) | 1994-08-09 | 1996-06-04 | Hewlett-Packard Company | Delay generator for phased array ultrasound beamformer |
US5800354A (en) | 1994-11-23 | 1998-09-01 | U.S. Phillips Corporation | Method of and device for magnetic resonance imaging |
US5590658A (en) | 1995-06-29 | 1997-01-07 | Teratech Corporation | Portable ultrasound imaging system |
JPH11508461A (en) * | 1995-06-29 | 1999-07-27 | テラテク・コーポレーシヨン | Portable ultrasonic imaging system |
US6013032A (en) | 1998-03-13 | 2000-01-11 | Hewlett-Packard Company | Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array |
US5997479A (en) * | 1998-05-28 | 1999-12-07 | Hewlett-Packard Company | Phased array acoustic systems with intra-group processors |
US5993390A (en) | 1998-09-18 | 1999-11-30 | Hewlett- Packard Company | Segmented 3-D cardiac ultrasound imaging method and apparatus |
US6102863A (en) * | 1998-11-20 | 2000-08-15 | Atl Ultrasound | Ultrasonic diagnostic imaging system with thin cable ultrasonic probes |
US6380766B2 (en) | 1999-03-19 | 2002-04-30 | Bernard J Savord | Integrated circuitry for use with transducer elements in an imaging system |
US6370264B1 (en) | 1999-04-07 | 2002-04-09 | Steven C Leavitt | Method and apparatus for ultrasonic color flow imaging |
US6381197B1 (en) | 1999-05-11 | 2002-04-30 | Bernard J Savord | Aperture control and apodization in a micro-machined ultrasonic transducer |
US6292435B1 (en) | 1999-05-11 | 2001-09-18 | Agilent Technologies, Inc. | Circuit and method for exciting a micro-machined transducer to have low second order harmonic transmit energy |
US6314057B1 (en) | 1999-05-11 | 2001-11-06 | Rodney J Solomon | Micro-machined ultrasonic transducer array |
US6241676B1 (en) | 1999-06-10 | 2001-06-05 | Agilent Technologies, Inc. | Ultrasound transmit waveforms having low harmonic content |
US6251073B1 (en) * | 1999-08-20 | 2001-06-26 | Novasonics, Inc. | Miniaturized ultrasound apparatus and method |
US6500120B1 (en) * | 2001-07-31 | 2002-12-31 | Koninklijke Philips Electronics N.V. | Beamforming system using analog random access memory |
-
2002
- 2002-10-04 US US10/264,900 patent/US6705995B1/en not_active Expired - Lifetime
-
2003
- 2003-09-01 AU AU2003260838A patent/AU2003260838A1/en not_active Abandoned
- 2003-09-01 WO PCT/IB2003/003999 patent/WO2004031802A1/en active Application Filing
- 2003-09-01 JP JP2004541030A patent/JP2006501005A/en active Pending
- 2003-09-01 DE DE60336159T patent/DE60336159D1/en not_active Expired - Lifetime
- 2003-09-01 CN CNB038236958A patent/CN100565242C/en not_active Expired - Fee Related
- 2003-09-01 AT AT03798983T patent/ATE499619T1/en not_active IP Right Cessation
- 2003-09-01 EP EP03798983A patent/EP1554605B1/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019169A (en) * | 1974-09-30 | 1977-04-19 | Tokyo Shibaura Electric Co., Ltd. | Ultrasonic wave transmitting and receiving apparatus |
US4140022A (en) * | 1977-12-20 | 1979-02-20 | Hewlett-Packard Company | Acoustic imaging apparatus |
US4140022B1 (en) * | 1977-12-20 | 1995-05-16 | Hewlett Packard Co | Acoustic imaging apparatus |
US4387597A (en) * | 1980-12-08 | 1983-06-14 | Advanced Technology Laboratories, Inc. | Beamforming apparatus and method for ultrasonic imaging systems |
US4962667A (en) * | 1985-10-09 | 1990-10-16 | Hitachi, Ltd. | Ultrasonic imaging apparatus |
US5345426A (en) * | 1993-05-12 | 1994-09-06 | Hewlett-Packard Company | Delay interpolator for digital phased array ultrasound beamformers |
US5469851A (en) * | 1994-08-09 | 1995-11-28 | Hewlett-Packard Company | Time multiplexed digital ultrasound beamformer |
US6440072B1 (en) * | 2000-03-30 | 2002-08-27 | Acuson Corporation | Medical diagnostic ultrasound imaging system and method for transferring ultrasound examination data to a portable computing device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10598773B2 (en) | 2016-03-02 | 2020-03-24 | University Of Washington | Systems and methods for measuring pressure distributions of acoustic beams from ultrasound sources |
CN106028021A (en) * | 2016-06-22 | 2016-10-12 | 杨越 | Device for forming unmanned ship monitoring area ultrasonic three-dimensional image by employing orthogonal array |
CN106028021B (en) * | 2016-06-22 | 2018-01-19 | 小蜘蛛网络盐城有限公司 | The device of unmanned boat monitor area ultrasonic wave 3-D view is formed using orthogonal array |
CN106680825A (en) * | 2016-12-05 | 2017-05-17 | 中国科学院声学研究所 | Acoustic array imaging system and method thereof |
CN106680825B (en) * | 2016-12-05 | 2019-06-04 | 中国科学院声学研究所 | A kind of acoustic array imaging system and method |
Also Published As
Publication number | Publication date |
---|---|
ATE499619T1 (en) | 2011-03-15 |
US6705995B1 (en) | 2004-03-16 |
EP1554605B1 (en) | 2011-02-23 |
EP1554605A1 (en) | 2005-07-20 |
AU2003260838A1 (en) | 2004-04-23 |
JP2006501005A (en) | 2006-01-12 |
CN100565242C (en) | 2009-12-02 |
DE60336159D1 (en) | 2011-04-07 |
CN1688897A (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1554605B1 (en) | Method and apparatus for 1d array ultrasound probe | |
US11559277B2 (en) | Ultrasound 3D imaging system | |
US11378669B2 (en) | Analog store digital read ultrasound beamforming system | |
US6537219B2 (en) | Static focus ultrasound apparatus and method | |
EP2010939B1 (en) | Multi-dimensional cmut array with integrated beamformation | |
KR100532359B1 (en) | Ultrasonic array transducer transceiver for a hand held ultrasonic diagnostic instrument | |
US11536817B2 (en) | Ultrasonic imaging probe including composite aperture receiving array | |
US6126602A (en) | Phased array acoustic systems with intra-group processors | |
US10627510B2 (en) | Ultrasound beamforming system and method based on analog random access memory array | |
US8176787B2 (en) | Systems and methods for operating a two-dimensional transducer array | |
US6102863A (en) | Ultrasonic diagnostic imaging system with thin cable ultrasonic probes | |
KR100715132B1 (en) | Ultrasonic diagnostic imaging with cordless scanhead transmission system | |
US4159462A (en) | Ultrasonic multi-sector scanner | |
US5590658A (en) | Portable ultrasound imaging system | |
KR20040084919A (en) | Portable 3d ultrasound system | |
US5655536A (en) | Diagnostic ultrasound imaging using two-dimensional transducer array probe | |
JP2008514335A (en) | Transducer structure for microbeam formation | |
US6138513A (en) | Method and apparatus for fast acquisition of ultrasound images | |
KR19980087413A (en) | Portable Ultrasound Diagnostic Device with Digital Beam Former | |
EP2584971B1 (en) | Ultrasound imaging with analog processing | |
JPH0644908B2 (en) | Method and apparatus for creating a signal for forming an image of a target area in a body | |
JP4557575B2 (en) | Ultrasonic diagnostic equipment | |
JP3256698B2 (en) | Ultrasound diagnostic equipment | |
JPS59151947A (en) | Ultrasonic diagnostic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004541030 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003798983 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038236958 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2003798983 Country of ref document: EP |