[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004025640A1 - 情報記録媒体とその製造方法 - Google Patents

情報記録媒体とその製造方法 Download PDF

Info

Publication number
WO2004025640A1
WO2004025640A1 PCT/JP2003/011680 JP0311680W WO2004025640A1 WO 2004025640 A1 WO2004025640 A1 WO 2004025640A1 JP 0311680 W JP0311680 W JP 0311680W WO 2004025640 A1 WO2004025640 A1 WO 2004025640A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
information
recording medium
recording
dielectric layer
Prior art date
Application number
PCT/JP2003/011680
Other languages
English (en)
French (fr)
Inventor
Takashi Nishihara
Rie Kojima
Noboru Yamada
Takeshi Sakaguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP03795417A priority Critical patent/EP1560210A4/en
Priority to AU2003264415A priority patent/AU2003264415A1/en
Priority to JP2004535957A priority patent/JP4217213B2/ja
Priority to US10/527,354 priority patent/US7449225B2/en
Publication of WO2004025640A1 publication Critical patent/WO2004025640A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/256Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers improving adhesion between layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver

Definitions

  • the present invention optically or electrically recording information, erasing,: can instead, c BACKGROUND those Playback information recording medium and its manufacturing method
  • phase change optical information recording medium as an information recording medium for optically recording, erasing, rewriting, and reproducing information using a laser beam.
  • a phenomenon in which the recording layer contained in the medium causes a reversible phase change between the crystalline phase and the amorphous phase is Use Generally, when recording information, the recording layer is melted and quenched by irradiating a laser beam of high power (recording power) to record information by making the irradiated portion into an amorphous phase.
  • a laser beam with lower power (erasing power) is irradiated from the time of recording to raise the temperature of the recording layer and gradually cool it, thereby making the laser beam irradiation part into the crystal phase and the previous information.
  • the recorded information is erased by irradiating the recording layer with a laser beam in which the power is modulated between the high power level and the low power level while the new information is erased.
  • phase change electrical information recording medium in which information is recorded by changing the state of the phase change material of the recording layer by Joule heat generated by application of a current instead of irradiating a laser beam.
  • This phase change type electrical information recording medium The body changes the phase change material of the recording layer between the crystalline phase (low resistance) and the amorphous phase (high resistance) by Joule heat generated by the application of current, and the crystalline phase and the amorphous phase change. It detects the difference in electrical resistance with the material phase and reads it as information.
  • current is gradually applied to the recording layer of the amorphous phase sandwiched between the electrodes, the recording layer changes to a crystalline phase at a certain threshold current (thresholdcurrent), and the electrical resistance drops sharply.
  • the recording layer can be melted and rapidly cooled to return to the high resistance amorphous phase, so that rewritable information recording can be performed. It can be used as a medium.
  • a rewritable information recording medium can be obtained (for example, Akira Kikuchi "Basics of Amorphous Semiconductor", Inc., 198, Chapter 8) Phase change type optical information recording medium
  • 4.7 GB / D VD-RAM Phase change type optical information recording medium
  • This 4.7 GB / D VD-RAM is the first dielectric as viewed from the incident side of the laser beam 10 on the substrate 100 1 as shown in the information recording medium 100 0 in FIG.
  • Layer 1002 second dielectric layer 1003, crystalline nucleation layer 1004, recording layer 1005, third dielectric layer 1006, fourth dielectric layer 1007, light absorption correction
  • An information layer 1001 having an eight-layer structure in which a layer 1008 and a reflection layer 1009 are stacked in this order is provided.
  • the information layer 1 0 1 0 is bonded to the dummy substrate 1 0 1 2 by an adhesive layer 1 0 1 1.
  • the first dielectric layer 1 002 and the fourth dielectric layer 1007 adjust the optical distance to increase the light absorption efficiency to the recording layer 1005, and change the reflectance of the crystalline phase and the amorphous phase.
  • Optical function to increase signal amplitude by increasing and high temperature at recording There is a thermal function to heat the substrate 1011, the dummy substrate 1012, etc. which are weak to heat from the recording layer 105.
  • crystal nucleation layer 1004 S — -T e or P b -T e, which is a material that promotes crystallization of the recording layer 1005 by being provided in contact with the recording layer 1005, is used.
  • the signal amplitude of the information recording medium 1000 is not reduced, and the recording preservation property is secured to enhance the crystallization ability of the recording layer, and not only the initial recording and rewriting performance but also the excellent recording preservation property (Reproduction performance after long-term storage of recorded information) Rewriting preservation performance (recording / rewriting performance after long-term storage) is realized (see, for example, Japanese Patent Application Laid-Open No. 200 1-27 3 6 7 3) .
  • a quasi-binary phase change material on the Ge T -S b 2 T e 3 line is used, and excellent repeated rewrite performance is realized.
  • the second dielectric layer 1 003 and the third dielectric layer 1006 are the first dielectric layer 10
  • NA numerical aperture
  • a technique is under consideration to make the spot diameter of the laser beam smaller and perform high-density recording.
  • a technology to double the recording capacity using an optical information recording medium having two information layers and to record and reproduce the two information layers by a laser beam incident from one side of the medium is also considered. (For example, refer to Japanese Patent Application Laid-Open No. 2000-06301.).
  • an optical information recording medium in which two information layers are stacked and a laser beam is irradiated from one side to record and reproduce information in two information layers
  • the information layer (hereinafter referred to as the first information layer) is located near the incident plane of the laser beam.
  • the first information layer is used to record and reproduce an information layer (hereinafter referred to as a second information layer) disposed at a position far from the laser beam incident surface using
  • a second information layer information layer
  • the recording layer becomes thinner, the number of crystal nuclei formed during crystallization of the recording layer decreases, and the distance that atoms can move decreases. For this reason, as the film thickness of the recording layer is thinner, the formation of a crystalline phase is more difficult (crystallization speed is reduced).
  • the crystallization of the recording layer is promoted in contact with the recording layer. It is preferable to provide a crystal nucleation layer such as Also, according to the experiments of the inventors, it is known that the crystallization ability of the recording layer can be enhanced even if B i -T e is used for the crystal nucleation layer. However, since S n-Te and B i-T e have a low melting point, they melt when the recording layer is heated during recording, and if rewriting is repeated, S n-T e and B i-T e The phenomenon of mixing into the recording layer gradually occurs. As a result, the repetitive rewriting performance is degraded.
  • the information recording medium of the present invention comprises: a substrate; and an information layer disposed on the substrate, wherein the information layer is formed of a crystalline phase and an amorphous phase by at least one of an optical means and an electrical means.
  • Recording layer causing reversible phase change between at least one element selected from B i and Te and S c, Y, L a, C e, P r, Nd, Sm, Gd, Tb, Dy, And at least one crystal nucleation layer provided in contact with the recording layer, and containing at least one element (M 1) selected from Ho, Er, Yb, and Lu. .
  • a method of manufacturing an information recording medium of the present invention comprises: A method of manufacturing an information recording medium provided with a layer, wherein the step of forming the information layer comprises: at least one of an optical means and an electrical means, the crystalline phase and the amorphous phase.
  • Recording layer forming step for forming a recording layer causing reversible phase change among them, at least one element selected from B i and T e and S c, Y, L a, C e, P r, N d Crystal nucleation layer by sputtering using a sputtering target containing at least one element (M l) selected from A crystal nucleation layer forming step of forming the recording layer forming step, and the recording layer forming step and the crystal nucleation step are continuously performed.
  • M l element
  • FIG. 1 is a cross-sectional view showing a configuration example of the information recording medium in the first embodiment of the present invention. '
  • FIG. 2 is a cross-sectional view showing another configuration example of the information recording medium in the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing still another configuration example of the information recording medium in the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a configuration example of the information recording medium in the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing another configuration example of the information recording medium in the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing still another configuration example of the information recording medium in the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a configuration example of the information recording medium in the third embodiment of the present invention.
  • FIG. 8 shows another configuration example of the information recording medium in the third embodiment of the present invention. It is a sectional view showing.
  • FIG. 9 is a cross-sectional view showing still another configuration example of the information recording medium in the third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing an exemplary configuration of the information recording medium in the fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing another configuration example of the information recording medium in the fourth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing still another configuration example of the information recording medium in the fourth embodiment of the present invention.
  • FIG. 13 is an explanatory view schematically showing a partial configuration of a recording and reproducing apparatus for recording and reproducing information on the information recording medium of the present invention.
  • FIG. 14 is a cross sectional view showing a configuration example of an information recording medium in a sixth embodiment of the present invention.
  • FIG. 15 is a cross sectional view showing another configuration example of the information recording medium in the sixth embodiment of the present invention.
  • FIG. 16 is a cross sectional view showing still another structural example of the information recording medium in the sixth embodiment of the present invention.
  • FIG. 17 is a cross sectional view showing still another structural example of the information recording medium in the sixth embodiment of the present invention. 1
  • FIG. 18 is an explanatory view showing a partial cross section of an information recording medium according to a seventh embodiment of the present invention and a schematic configuration of an electrical information recording and reproducing apparatus for recording and reproducing information on the information recording medium. is there.
  • FIG. 19 is an explanatory view schematically showing a part of a configuration of a large-capacity electrical information recording medium in a seventh embodiment of the present invention.
  • FIG. 20 is an explanatory view schematically showing a part of the configuration of an electrical information recording medium and its recording and reproducing system in a seventh embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a configuration example of a conventional information recording medium.
  • the crystal nucleation layer provided in contact with the recording layer comprises at least one element selected from B i and T e and S c, Y, L a, C e, P r, Nd , Sm, Gd, Tb, Dy, Ho, Er, Yb, and Lu, and at least one element (MI) selected from the group consisting of
  • MI element selected from the group consisting of
  • the crystal nucleation layer may contain at least one selected from Bi (Ml) and Te (Ml).
  • the crystal nucleation layer is at least one selected from B i T e (M 1) 2 , B i 2 T e (M l) and B i T e 2 (Ml). May be included.
  • the crystal nucleation layer may contain at least one element selected from N and O. This improves the thermal stability of the crystal nucleation layer. Also, in particular, when N is added to the crystal nucleation layer, the size of the crystal grains tends to be more uniform and smaller, thereby reducing the recording noise in the low frequency region during recording it can.
  • the recording layer contains at least one element (M2) selected from 31) and 81, Ge, and Te, and the M2, Ge and Te described above.
  • M2 element selected from 31) and 81, Ge, and Te, and the M2, Ge and Te described above.
  • M 2 contains B i
  • the crystallization ability is improved, and good rewrite performance can be obtained even in the case of a high transfer rate.
  • the recording layer includes at least a part of the G e. ! as well as? Even if it is substituted by at least one element (M 3) selected from and formed of a material represented by the compositional formula (G e ⁇ (M 3)) a (M 2) b T e 3 + a Good.
  • M 3 element selected from and formed of a material represented by the compositional formula (G e ⁇ (M 3)) a (M 2) b T e 3 + a Good.
  • S n and P b substituted for G e in the ternary composition of G e ⁇ M 2 ⁇ T e improve the crystallization ability, and therefore, when the recording layer is as thin as about 7 nm or less However, sufficient rewrite performance can be obtained.
  • the M2 is S b, and at least a part of the S b is substituted with B i to obtain a composition formula Ge a (S b-B i) b T e 3 + a may be written.
  • the content ratio of Sn atoms is preferably more than 0 atomic% and less than 20 atomic%, and the content ratio of B i atoms is more than 0 atomic% and less than 10 atomic%. Is preferred.
  • the recording layer contains at least one element (M 2) selected from 3 and 81, Si, Ti, V, Cr, Mn, Fe, C Selected from o, Ni, Cu, Se, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Ta, W, Os, Ir, Pt and Au
  • the element M 4 added to the Ge-M2-Te ternary system raises the melting point and the crystallization temperature of the recording layer, and the thermal stability of the recording layer is improved.
  • the recording film is selected from S b, T e, Ag, I n, G e, S n, S e, B i, A u and M n
  • S b, D 6 and D 5 are represented by the composition formula (S b d T e 1 0 0 -d) 100-e (M 5) e ,
  • It may be formed of a material that satisfies According to this, good recording characteristics can be obtained even with relatively low energy since the melting point of the recording layer is low.
  • the thickness of the crystal nucleation layer is:
  • the thickness is preferably 2 nm or more and 3 nm or less.
  • the thickness of the crystal nucleation layer is more preferably 0.3 nm or more. This is because even at high transfer rates, information recording media having good erase performance and good rewrite performance after long-term storage can be obtained.
  • the thickness of the recording layer is 3 nm or more
  • the thickness of the recording layer is more preferably 6 nm to 12 nm. As a result, the erase performance is good and the signal An information recording medium having a large width can be obtained.
  • the information recording medium of the present invention is a multi-layered information recording medium in which the first information layer to the Nth information layer (N is a natural number of 2 or more) are stacked, the first information layer to the Nth information layer Alternatively, at least one of the information layers may be configured the same as the information layer.
  • the recording layer causes a reversible phase change between a crystalline phase and an amorphous phase by irradiation of a laser beam
  • the information layer comprises the recording layer and the crystal. It may be configured to further include: a dielectric layer provided on both sides of a laminate comprising a nucleation layer; and a reflection layer disposed on the opposite side to the laser beam incident side with respect to the laminate.
  • the information layer may further include a light absorption correction layer disposed between the laminate and the reflective layer.
  • the recording layer causes a reversible phase change between a crystalline phase and an amorphous phase by the irradiation of a laser beam
  • the information layer from the laser beam incident side
  • At least the first dielectric layer, the second dielectric layer, the crystal nucleation layer, the recording layer, the third dielectric layer, and the reflective layer may be included in this order.
  • the information layer includes, from the laser beam incident side, at least a first dielectric layer, a second dielectric layer, the recording layer, a crystal nucleation layer, a third dielectric layer, and a reflection layer in this order.
  • the information layer includes, from the laser beam incident side, at least a first dielectric layer, a second dielectric layer, the crystal nucleation layer, the recording layer, the crystal nucleation layer, a third dielectric layer, and a reflection.
  • the layers may be included in this order.
  • the information layer may further include a fourth dielectric layer provided between the third dielectric layer and the reflective layer. At this time, the fourth dielectric layer is (ZnS) 8 . (S i 0 2 ) 2 . May be included.
  • the information layer may further include an interface layer provided between the third dielectric layer and the reflective layer, the interface layer having a thermal conductivity lower than that of the reflective layer.
  • a first information layer to an Nth information layer (N is a natural number of 2 or more) in which information is recorded by laser beam irradiation are stacked in this order from the laser beam incident side.
  • N is a natural number of 2 or more
  • the first information layer is the information layer
  • the recording layer contained in the first information layer comprises a crystalline phase and an amorphous phase by irradiation with a laser beam.
  • the first information layer is formed of at least a first dielectric layer, a second dielectric layer, the crystalline nucleation layer, the recording layer, and the third information layer from the laser beam incident side.
  • the information recording medium of the present invention has a multilayer structure in which a first information layer to an Nth information layer (N is a natural number of 2 or more) in which information is recorded by laser beam irradiation are laminated in this order from the laser beam incident side.
  • N is a natural number of 2 or more
  • the recording layer contained in the first information layer is made of a crystalline phase and an amorphous phase by irradiation with a laser beam.
  • the first information layer is at least a first dielectric layer, a second dielectric layer, the recording layer, the crystal nucleation layer, the first information layer from the laser beam incident side.
  • the structure may include three dielectric layers, a reflective layer, and a transmittance adjusting layer in this order. Thereby, since the transmittance of the first information layer can be increased, good recording characteristics can be obtained even in the second to Nth information layers. Furthermore, an information recording medium having good erasability and rewrite performance can be realized.
  • the first information layer to the Nth information layer (N is a natural number of 2 or more) in which information is recorded by irradiation of a laser beam are
  • N is a natural number of 2 or more
  • the first information layer is the information layer
  • the recording layer included in the first information layer is a laser beam. Irradiation causes a reversible phase change between the crystalline phase and the amorphous phase
  • the first information layer is formed of at least a first dielectric layer, a second dielectric layer, and the crystal from the laser beam incident side.
  • the nucleation layer, the recording layer, the crystal nucleation layer, the third dielectric layer, the reflection layer, and the transmittance adjusting layer may be included in this order. Since this makes it possible to increase the transmittance of the first information layer, good recording characteristics can be obtained even in the second to Nth information layers. Furthermore, an information recording medium with good erase and rewrite performance can be realized.
  • the transmittance adjustment layer is composed of T i 2 2 , Z r 0 2 , ZnO, Nb 2 0 5 , T a 2 0 5 , S i 2 2 , A 1 2 0 3 , B i 2 3 3 , C r 2 S 3 , S r ⁇ , T i 1 N, Z r N N, Nb N N, Ta N, S i N N
  • the information layer when the information layer is of a configuration including a third dielectric layer, third dielectric layer, at least a bract selected from H f 0 2 and Z R_ ⁇ 2, and S i 0 2 , and C r 2 ⁇ 3, fluoride and it may be formed by an oxide one fluoride-based material including.
  • the fluorides include C e F 3 and E r
  • At least one selected from F 3 can be used.
  • oxide one fluoride-based material (H f 0 2) A1 (S I_ ⁇ 2) B 1 (C r 2 0 3) C 1 ( fluoride) 10. ⁇ A 1 ⁇ B 1 C 1 or (Z r 0 2 ) A 1 (
  • a 1 is 1 0 ⁇ A 1 ⁇ 5 0,
  • a 1 + B 1 + C 1 is 50 ⁇ A 1 + B 1 + C 1 ⁇ 90
  • the information layer includes the second dielectric layer and the third dielectric layer
  • at least one of the second dielectric layer and the third dielectric layer is H f 0 at least one selected from 2 and Z R_ ⁇ 2, and S i 0 2, and C r 2 0 3
  • the oxide-based material is (H i 2 2 ) A 2 (S i 0 2 ) B 2 (C r 2 0 3 ) 1 () . _ A2 — B2 or (Z r 0 2 ) A 2 (S i 0 2 ) B 2 (C r 2 0 3 ),
  • a 2 is 1 0 ⁇ A 2 ⁇ 50
  • B 2 is 1 0 ⁇ B 2 ⁇ 5 0,
  • A2 + B2 is 2 0 ⁇ A2 + B 2 ⁇ 8 0
  • the sputtering target used in the crystal nucleation step may include at least one selected from Bi (Ml) and Te (Ml). .
  • sputtering targets used in the crystal nucleation step are B i T e (M 1) 2 , B i 2 T e (M 1) and B i T e It may contain at least one selected from 2 (M l).
  • a mixture gas of Ar gas, Kr gas, Ar gas and reaction gas, and sputtering during sputtering is used. And at least one selected from a mixture of reaction gases. And ⁇ , the reaction gas is that of at least one gas selected from N 2 gas and O 2 gas.
  • the information recording medium of the present embodiment is a medium suitably used when recording and reproducing information using a so-called blue-violet laser having a wavelength of 390 to 420 nm.
  • FIG. 1 is a partial cross-sectional view of the information recording medium 1 of the present embodiment.
  • the information recording medium 1 is an optical information recording medium capable of recording and reproducing information by irradiation of a laser beam 10.
  • one information layer 12 is provided on a substrate 11, and a transparent layer 13 is further provided.
  • the information layer 12 is formed of a first dielectric layer 10 1 and a second dielectric layer 10 2 sequentially stacked from the incident side of the laser beam 10.
  • the material of the transparent layer 13 is made of a resin such as a photocurable resin (particularly, an ultraviolet curable resin), a delayed thermosetting resin, or a dielectric material. Is preferably small, and optical birefringence is preferably small in a short wavelength range.
  • the transparent layer 13 for example, a resin such as transparent disk-like polycarbonate, amorphous polyolefin or PMMA (polymethyl methacrylate), or glass can be used.
  • the transparent layer 13 can be bonded to the first dielectric layer 101 by a resin such as, for example, a photocurable resin (particularly, an ultraviolet curable resin) or a delayed-acting thermosetting resin .
  • the wavelength ⁇ of the laser beam 10 is determined by the wavelength ⁇ when the laser beam 10 is focused (the shorter the wavelength ⁇ , the smaller the diameter of the spot can be condensed). For high density recording, it is particularly preferable to set the wavelength ⁇ to 450 nm or less. However, if the wavelength ⁇ is less than 35 O nm, the light absorption by the transparent layer 13 and the like will increase, so the wavelength ⁇ of the laser beam 10 may be in the range of 350 nm to 450 nm. Is more preferable.
  • the substrate 11 is, for example, a transparent disk-like substrate, and for example, a resin such as polycarbonate, amorphous polyolefin or PVA, or glass can be used.
  • a guide groove for guiding the laser beam 10 may be formed on the surface of the information layer 12 side (reflection layer 108 side) of the substrate 11 as necessary.
  • the surface of the substrate 11 opposite to the reflective layer 108 is preferably smooth.
  • polycarbonate is particularly useful because it is excellent in transferability, mass productivity, and low cost.
  • the thickness of substrate 1 1 It is preferable that the thickness be in the range of 500 m to 120 m so that the thickness of the information recording medium 1 is about 1200 / zm with sufficient strength.
  • the thickness of the substrate 11 is 5 50 / m to 6 It is preferable to be in the range of m.
  • the thickness of the substrate 11 is 10 5 It is preferable to be in the range of m to 1 150 m.
  • the first dielectric layer 101 is made of a dielectric.
  • the first dielectric layer 101 functions to prevent oxidation, corrosion, deformation and the like of the recording layer 104, and to adjust the optical distance to increase the light absorption efficiency of the recording layer 104, and before and after recording.
  • the function of increasing the signal amplitude by increasing the change in the amount of reflected light of The first dielectric layer 1 0 1, for example, T I_ ⁇ 2, Z R_ ⁇ 2, Z N_ ⁇ , Nb 2 ⁇ 5, T a 2 ⁇ 5, S I_ ⁇ 2, A 1 2 0 3, B i 2 ⁇ 3, C r oxides such 2 O 3 can and Mochiiruko.
  • Z n S _S i 0 2 which is a mixture of Z n S and S i 0 2 is particularly excellent as a material of the first dielectric layer 101.
  • Z n S s i ⁇ 2 is an amorphous material having a high refractive index, a high deposition rate, and good mechanical properties and moisture resistance.
  • the film thickness of the first dielectric layer 101 can be calculated by the method based on the matrix method (for example, Kubota Hiroshi "Wave Dynamical” Iwanami Shoten, 1971, see Chapter 3). There is a large change in the amount of reflected light between when the crystal phase is 04 and when it is the amorphous phase, and the condition that the light absorption in the recording layer 104 becomes large. It can be determined strictly so as to satisfy
  • the second dielectric layer 102 has a function to prevent the mass transfer that occurs between the first dielectric layer 101 and the crystal nucleation layer 103 and the recording layer 104 by repetitive recording.
  • the crystal nucleation layer 103 is formed so thin as 0.3 nm to 3 nm, it is highly likely to be island-like. Therefore, it is also conceivable that the second dielectric layer 102 is partially in contact with the recording layer 104. Therefore, the second dielectric layer 102 is a high melting point material which absorbs little light and does not dissolve during recording, and has adhesion to the crystal nucleation layer 104 and the recording layer 104. Preferably it is a good material.
  • the second dielectric layer 102 When the second dielectric layer 102 is formed of a high melting point material which does not dissolve in recording, a part of the second dielectric layer 102 is exposed when the high power laser beam 10 is irradiated. It is a characteristic necessary to prevent melting and mixing into the crystal nucleation layer 103 and the recording layer 104. When the material of the second dielectric layer 102 is mixed, the composition of the crystal nucleation layer 103 and the recording layer 104 changes, and the rewrite performance is significantly reduced. In addition, the fact that the material of the second dielectric layer 102 has good adhesion to the crystal nucleation layer 103 and the recording layer 104 is a characteristic necessary for securing reliability.
  • a material of the same system as that of the first dielectric layer 101 can be used.
  • a material containing C r, Z r, 0, and further, C r and O form C r 2 0 3 and "1 ′ ′ and 0 form Z r 2 2 Te, C r 2 0 3 and Z R_ ⁇ it is good preferable that is a mixture of 2.
  • C r 2 0 3 is a material having good adhesion with the recording layer 1 0 4.
  • the Z R_ ⁇ 2 Since it is a transparent material with a high melting point of about 270 ° C. and a low thermal conductivity among oxides, it is possible to improve the repeated rewriting performance.
  • C r 2 0 3 - is preferable that the content of the Z r 0 2 C r 2 in 0 3 is more than 1% 1 Omo, also, a second dielectric In order to keep the light absorption in the layer 102 small, it is preferable to be 6 Omo 1% or less (when the Cr 2 O 3 increases, the light absorption tends to increase). C r 2 0 3 - more preferred content of Z r 0 in 2 C r 2 ⁇ 3 is less 1% 2 Omo 1% or more 5 Omo.
  • the second dielectric layer 1 02, 'C r, Z r may be used wood charge containing more S i to another ⁇ , among them, C r and O to form a C r 2 ⁇ 3 , Z r and O to form a Z r 0 2, S i and ⁇ may form an S i 0 2, which is a mixture of S I_ ⁇ 2 and C r 2 ⁇ 3 and Z R_ ⁇ 2 Is preferred.
  • S i 0 2 By including S i 0 2 , the effect of promoting the crystallization of the recording layer 104 is enhanced, and the information recording medium 1 having excellent rewrite performance can be realized.
  • the content of S i 0 2 in S i o 2 _C r 2 O 3 —Z r 0 2 is preferably 5 mo 1% or more, and in order to ensure adhesion with the recording layer 104, 4 Omo 1 It is preferable that it is less than%.
  • the film thickness of the second dielectric layer 102 is 1 nm to 10 nm so that the change in the amount of reflected light before and after the recording of the information recording medium 1 is not reduced by the light absorption in the second dielectric layer 102. In the range of 2 nm to 7 nm, and more preferably in the range of 2 nm to 7 nm.
  • the third dielectric layer 105 functions to adjust the optical distance to increase the light absorption efficiency of the recording layer 104, and to increase the change in the amount of reflected light before and after recording to increase the signal amplitude.
  • the third dielectric layer 105 is a first dielectric layer Material of the same system as that of 101 can be used. Further, as in the case of the second dielectric layer 102, it is preferable to use a material containing C r, Z r and O, among which C r and O form C r 20 3 , and Z r and 0 are to form a Z R_ ⁇ 2, it is preferable that is a mixture of C r 2 0 3 and Z r 0 2.
  • the content is preferably more than 2 Omo 1% and more than 8 Omo 1% less than that of the second dielectric layer 102. More preferably, it is 3 Omo 1% or more and 7 Omo 1% or less.
  • the third dielectric layer 105 may be made of a material further including S i in addition to C r, Z r, ⁇ , and among them, C r and O There is formed a C r 2 0 3, Z r and 0 form a Z R_ ⁇ 2, S i and O to form the S I_ ⁇ 2, S I_ ⁇ 2 and C r 2 ⁇ 3 and Z r it is preferred that is a mixture of 0 2.
  • the sum of the contents of S i 0 2 and C r 2 0 3 s be not more than 9 5 mo 1%.
  • the thickness of the third dielectric layer 105 is preferably in the range of 2 nm to 5 nm, and more preferably in the range of 2 nm to 40 nm. By selecting the film thickness of the third dielectric layer 105 within this range, it is possible to effectively diffuse the heat generated in the recording layer 104 to the reflective layer 108 side.
  • a fourth dielectric layer 106 is disposed on the surface of the third dielectric layer 105 opposite to the laser beam incident side. In this case, for the fourth dielectric layer 106, a material of the same system as that of the first dielectric layer 101 can be used, and Z n S is a mixture of Z n S and S i 2 2 _ S i 0 2 as the fourth dielectric layer 1 0 6 Is also an excellent material.
  • the fourth dielectric layer 106 may be configured without the fourth dielectric layer 106. It is preferably in the range of 2 nm to 75 nm, and more preferably in the range of 2 nm to 40 nm. By selecting the film thickness of the fourth dielectric layer 106 in this range, the heat generated in the recording layer 104 can be effectively diffused to the reflective layer 108 side.
  • the crystal nucleation layer 103 of the present invention is a layer for enhancing the crystallization ability of the recording layer 104 by generating crystal nuclei.
  • the material of the crystal nucleation layer 103 is at least one element selected from B i or T e and M 1 (wherein M l is S c, Y, L a, C e, P r, Nd, S m , Gd, Tb, Dy, Ho, Er, Yb, and Lu) and at least one element selected from the group consisting of
  • the mixing ratio of B i and M 1 is approximately 50: 50
  • the mixing ratio of T e and T 1 is approximately 50: 50. It is preferable that at least one of e (M l) be included.
  • B i (M l) has a melting point of 1 500 or more
  • T e (M l) has a melting point as high as 130 0 C or more.
  • Bi Gd, B i Tb, B i Dy, and B i Y have high melting points of 2000 ° C. or higher, as shown in the binary phase diagram. Therefore, by using this material, it is possible to obtain the information recording medium 1 having a high melting point of the crystal nucleation layer 103, a good thermal stability, and an excellent rewriteability after long-term storage.
  • B i (M l) and T e (M l) have a rock salt type crystal structure.
  • the crystal structure of the crystal nucleation layer 103 and the recording layer 104 is Since they are the same, crystal nuclei are easily generated at the interface between the crystal nucleation layer 103 and the recording layer 104, and crystal growth in the recording layer 104 is promoted. Because of this, Thus, an information recording medium 1 excellent in storability is obtained.
  • the crystal nucleation layer 103 may contain at least one selected from B i T e (Ml) 2 , B i 2 T e (M l), and B i T e 2 (Ml).
  • B i T e (Ml) 2 the melting point of the crystal nucleation layer 103 is high and the thermal stability is good, and a crystal nucleus is easily generated at the interface between the crystal nucleation layer 103 and the recording layer 104. Crystal growth is promoted, and the information recording medium 1 excellent in rewriting preservation property is obtained.
  • the film thickness of the crystal nucleation layer 103 is 0.3 nm to 3 nm so that the erasability (crystallization ability) is good and the rewrite performance after long-term storage becomes good even in the case of a high transfer rate. It is preferably in the range of nm, and more preferably in the range of 0.5 nm to 2 nm. Whether the crystal nucleation layer 103 is island-like or thin-film like, the above effects as a crystal nucleation layer can be obtained.
  • the recording layer 104 is formed of a material that causes a reversible phase change between the crystalline phase and the amorphous phase by irradiation of the laser beam 10.
  • the recording layer 104 can be formed of, for example, a material containing three elements of Ge, M2, and Te (wherein M2 is at least one element selected from S b and B i).
  • the recording layer 104 can be formed of a material represented by Ge a (M 2) b T e 3 + a , the amorphous phase is stable and the signal amplitude is large, and the melting point rise and crystallization It is desirable to satisfy the relationship of 2 ⁇ a ⁇ 50 with less decrease in speed, and it is more desirable to satisfy the relationship of 4 ⁇ a ⁇ 23. In addition, it is preferable to satisfy the relationship of 2 ⁇ b ⁇ 4 where the amorphous phase is stable, the signal amplitude is large, and the decrease in crystallization rate is small, and it is more preferable to meet the relationship of 2 ⁇ b ⁇ 3.
  • the recording layer 1 04 the composition formula (Ge _ (M 3)) a (M 2) b T e 3 + a ( however, M 3 is at least one element. Selected from S n and P b) in You may form with the material represented. If this material is used, place G e Since the converted element M3 improves the crystallization ability, a sufficient erasability can be obtained even when the film thickness of the recording layer 104 is thin. As the element M3, Sn is more preferable in terms of no toxicity. Also in the case of using this material, it is preferable that 2 ⁇ a ⁇ 50 (more preferably 4 ⁇ a ⁇ 23) and 2 ⁇ b ⁇ 4 (more preferably 2 ⁇ b ⁇ 3).
  • the recording layer 104 has a composition formula (G e a (M 2) b T e 3 + a ) ⁇ . . ⁇ C (M 4) c (where M 4 is Si, Ti, V, Cr , Mn, Fe, Co, Ni, Cu, Se, Zr, Nb, Mo, Ru, Rh, At least one element selected from Pd, Ag, In, Sn, Ta, W, ⁇ s, Ir, Pt and Au).
  • M 4 is Si, Ti, V, Cr , Mn, Fe, Co, Ni, Cu, Se, Zr, Nb, Mo, Ru, Rh, At least one element selected from Pd, Ag, In, Sn, Ta, W, ⁇ s, Ir, Pt and Au.
  • the thermal stability of the recording layer 104 is improved because the added element M 4 raises the melting point and the crystallization temperature of the recording layer 104.
  • 0 ⁇ c ⁇ 20 is preferable, and 2 ⁇ c ⁇ 10 is more preferable.
  • the recording layer 104 has a composition formula (S bdTe i ..- d ) 100 _ e (M 5) e (where 5 is 8 8, I n, G e, S n, S e, B i, 8 11 and at least one element selected from [1].
  • S bdTe i ..- d 100 _ e (M 5) e (where 5 is 8 8, I n, G e, S n, S e, B i, 8 11 and at least one element selected from [1].
  • the reflection of the information recording medium 1 between the case where the recording layer 104 is a crystalline phase and the case where it is an amorphous phase The rate difference can be increased, and good recording and reproduction characteristics can be obtained.
  • the crystallization rate is particularly fast, and a particularly good erasability can be obtained.
  • d ⁇ 85 amorphization becomes easy. Therefore, it is more preferable that 65 ⁇ d ⁇ 85. Also, in order to obtain good recording and reproducing performance, it is preferable to add the element M5 for adjusting the crystallization rate. More preferably, e is 1 ⁇ e ⁇ 10. In the case of e ⁇ 1 0 Since the occurrence of multiple phases can be suppressed, the characteristic deterioration due to repeated recording can be suppressed.
  • the film thickness of the recording layer 104 is preferably in the range of 6 nm to 14 nm in order to increase the recording sensitivity of the information recording medium 1. Even in this range, when the recording layer 104 is thick, the thermal influence on the adjacent region due to the diffusion of heat in the in-plane direction becomes large. In addition, when the recording layer 104 is thin, the reflectance of the information recording medium 1 decreases. Therefore, the film thickness of the recording layer 104 is more preferably in the range of 8 nm to 12 nm.
  • the reflective layer 108 has an optical function of increasing the amount of light absorbed by the recording layer 104.
  • the reflective layer 108 also has a thermal function of rapidly diffusing the heat generated in the recording layer 104 and making the recording layer 104 amorphous.
  • the reflective layer 108 also has the function of protecting the multilayer film from the environment in which it is used.
  • a single metal having a high thermal conductivity such as Ag, Au, (1 ⁇ and 81, etc. can be used.
  • An alloy such as Si can also be used, in particular, A g alloy is preferable as the material of the reflective layer 10 8 because of its high thermal conductivity
  • the thickness of the reflective layer 108 is sufficient for the heat diffusion function Even in this range, if the reflective layer 108 is thicker than 200 nm, the heat diffusion function becomes too large and the recording sensitivity of the information recording medium 1 is lowered.
  • the thickness of the reflective layer 108 is more preferably in the range of 30 nm to 200 nm.
  • An interface layer 107 is provided at the interface on the laser beam incident side of the reflective layer 108.
  • the interface layer 107 will be described for the reflective layer It is possible to use a material having a thermal conductivity lower than that of the above materials.
  • an Ag alloy is used for the reflective layer 108, it is preferable to use an Al or Al alloy for the interface layer 107.
  • the interfacial layer 1 0 7, C r, N i, S i, material and containing an element such as C, T i 0 2, Z r 0 2, Z nO, Nb 2 ⁇ 5, T a 2 0 Oxides of 5 , S i 0 2 , A 1 2 0 3 , B i 2 0 3 , and C r 2 0 3 can be used.
  • C1N, Ti-N, Zr-N, Nb_N, Ta-N, Si-N, Ge-N, Cr-N, Al-N, Ge-Si-N It is also possible to use nitrides such as G e -C r 1 N.
  • the film thickness is preferably in the range of 3 nm to 100 nm (more preferably 10 ⁇ ! To 50 nm).
  • the crystal nucleation layer may be disposed between the recording layer 104 and the third dielectric layer 105.
  • the information layer 12 and the transparent layer 13 are provided on the substrate 11, and the information layer 12 is sequentially stacked from the laser beam incident side.
  • the first dielectric layer 101, the second dielectric layer 102, the recording layer 104, the crystal nucleation layer 100, the third dielectric layer 105, the fourth dielectric layer 106, the interface Layer 107 and reflective layer 10 are formed.
  • the crystal nucleation layer may be disposed between the recording layer 104, the second dielectric layer 102, and the third dielectric layer 105, respectively. In this case, as in the information recording medium 15 shown in FIG.
  • the information layer 12 and the transparent layer 13 are provided on the substrate 11, and the information layer 12 is from the laser beam incident side.
  • the fourth dielectric layer 106, the interface layer 107, and the reflective layer 108 are formed.
  • the crystal nucleation layer 10 9 is made of a material similar to that of the crystal nucleation layer 103. Crystal nucleation layer can be used for their shape and function.
  • a substrate 1 1 (for example, having a thickness of 1 100 / m) is prepared and placed in a film forming apparatus.
  • a reflective layer 108 is formed on the substrate 11.
  • the reflective layer 10 8 is formed on the surface on which the guide groove is formed.
  • the reflective layer 108 is formed by sputtering target material made of metal or alloy constituting the reflective layer 108 in Ar gas atmosphere or Ar gas and reaction gas (at least one selected from oxygen gas and nitrogen gas). It can be formed by sputtering in a mixed gas atmosphere with one gas.
  • the interface layer 107 is formed on the reflective layer 108, if necessary.
  • the interface layer 107 can be formed by sputtering a sputtering target composed of elements constituting the interface layer 107 in an Ar gas atmosphere or in a mixed gas atmosphere of an Ar gas and a reaction gas.
  • a fourth dielectric layer 106 is formed on the interface layer 107 (in the case where the interface layer 107 is not provided, on the reflective layer 108), if necessary.
  • the fourth dielectric layer 106 is a sputtering target made of a compound forming the fourth dielectric layer 106 in an Ar gas atmosphere or in a mixed gas atmosphere of Ar gas and a reaction gas. Can be formed by sputtering.
  • a sputtering target made of a metal containing an element constituting the fourth dielectric layer 106 is reacted in a mixed gas atmosphere of Ar gas and a reaction gas. It can also be formed by reactive sputtering.
  • the third dielectric layer 105 is formed on the fourth dielectric layer 106 (in the case where the fourth dielectric layer 106 is not provided, on the interface layer 107 or on the reflective layer 108). Form a film.
  • the third dielectric layer 105 can be formed by the same method as the fourth dielectric layer 106.
  • the crystal nucleation layer 109 is a sputtering alloy containing M 1 and at least one element selected from B i or T e according to its composition, B i (M l) and T e (M l
  • a sputtering target containing at least one selected from the group consisting of at least one selected from B i T e (M l) 2 , B i 2 T e (M l), and B i T e 2 (M l) Sputtering targets can be formed by sputtering using a single power supply.
  • Atmosphere gas used for sputtering when producing the crystal nucleation layer 109 includes, for example, Ar gas, K r gas, mixed gas of Ar gas and reaction gas, or K r gas and reaction gas. A mixed gas with can be used.
  • the crystal nucleation layer 109 can also be formed by simultaneously sputtering the sputtering targets of each of B i, T e and M 1 using a plurality of power sources.
  • the crystal nucleation layer 109 may be a binary sputtering target or a ternary sputtering target in which any one of Bi, Te and M 1 is combined with a plurality of power sources. It can also be formed by simultaneously sputtering using.
  • sputtering is performed in an Ar gas atmosphere, a Kr gas atmosphere, a mixed gas atmosphere of an Ar gas and a reaction gas, or a mixed gas atmosphere of a Kr gas and a reaction gas.
  • a crystal nucleation layer 100 can be formed.
  • the recording layer 104 is formed on the crystal nucleation layer 109 (in the case where the crystal nucleation layer 109 is not formed, the third dielectric layer 105).
  • the recording layer 104 is, depending on its composition, a sputtering target made of Ge-M2-Te alloy, a sputtering target made of Ge-M2-Te-M3 alloy, Ge- A sputtering target made of M 2 -T e-M 4 alloy or a sputtering target made of S b -T e -M 5 alloy can be formed by sputtering using a single power supply.
  • the recording layer 104 can also be formed by simultaneously sputtering a sputtering target containing the necessary elements of Ge, M2, Te, M3, M4, and M5 using a plurality of power supplies. .
  • the recording layer 104 may be formed of a plurality of power sources such as a binary sputtering target or a ternary sputtering target in which the necessary elements of Ge, M2, Te, M3, M4, and M5 are combined.
  • Recording layer 104 can be formed.
  • a crystal nucleation layer 103 is formed on the recording layer 104 as required (when the information recording media 1 and 15 shown in FIG. 1 and FIG. 3 are produced).
  • the second dielectric layer 102 is formed on the crystal nucleation layer 103 (in the case where the crystal nucleation layer 103 is not provided, on the recording layer 104).
  • the second dielectric layer 102 is formed of a compound comprising a second dielectric layer 102.
  • the ring target can be formed by sputtering in an Ar gas atmosphere or in a mixed gas atmosphere of an Ar gas and a reaction gas.
  • the second dielectric layer 102 is formed by reactive sputtering of a sputtering target made of a metal constituting the second dielectric layer 103 in a mixed gas atmosphere of Ar gas and a reaction gas. It can also be formed by
  • a first dielectric layer 101 is formed on the second dielectric layer 102.
  • the first dielectric layer 101 is formed by sputtering a sputtering target made of a compound constituting the first dielectric layer 101 in an Ar gas atmosphere or in a mixed gas atmosphere of an Ar gas and a reaction gas. It can be formed by
  • the first dielectric layer 101 may be formed by reactive sputtering of a sputtering target containing the elements constituting the first dielectric layer 101 in a mixed gas atmosphere of Ar gas and a reaction gas. It can also be formed.
  • the transparent layer 13 is formed on the first dielectric layer 101.
  • the transparent layer 13 was formed by applying a photocurable resin (in particular, an ultraviolet curable resin) or a delayed thermosetting resin on the first dielectric layer 101 and rotating the whole to extend the resin uniformly. After spin coating, it can be formed by curing the resin. Further, for the transparent layer 13, a substrate of resin or glass such as transparent disc-like polybasic mono- or amorphous polyolefin or P-MMA may be used. As described above, when using a substrate, the transparent layer 13 is coated with a resin such as a photocurable resin (particularly, an ultraviolet curable resin) or a delayed-acting thermosetting resin on the first dielectric layer 101.
  • a photocurable resin in particular, an ultraviolet curable resin
  • a delayed thermosetting resin on the first dielectric layer 101.
  • the adhesive resin may be uniformly applied to the substrate in advance, and the resin may be adhered to the first dielectric layer 101.
  • the entire surface of the recording layer 104 is crystallized. You may do the same.
  • the crystallization of the recording layer 104 can be performed by irradiating a laser beam.
  • the information recording media 1, 14 and 15 of the present embodiment can be manufactured.
  • the sputtering method is used as a film forming method for each film, but the method is not limited to this, and a vacuum evaporation method, an ion pre-tinking method, a CVD (Chemical Vapor Deposition) method, It is also possible to use MBE (Molecular Beam Epitaxy) or the like.
  • the information recording medium of the present embodiment is a medium suitably used when recording and reproducing information using a so-called blue-violet laser with a wavelength of 390 to 420 nm.
  • FIG. 4 shows a partial cross-sectional configuration of the information recording medium 2 of the present embodiment.
  • the information recording medium 2 is a multi-layered optical information recording medium, which includes a plurality of information layers, and can record and reproduce information with respect to each information layer by irradiating the laser beam 10 from one side.
  • N number 1 to N (N is a natural number satisfying N ⁇ 2) information layers 2 2 i to 2 2 N are laminated on a substrate 2 1, and further, a transparent layer 2 Three are provided.
  • the first information layer counted from the incident side of Rezabi beam 1 0 first information layer 2 2 I N - th information layer information layer 2 2 N of the N .
  • Information layers adjacent to each other are stacked via the optical separation layer 24.
  • the information layer 2 2 N _ 1 of the first information layer 2 2 E, second (N_ 1) has have a light transmitting property. This is because the laser beam 10 needs to reach the Nth information layer 2 2 N.
  • the materials of the substrate 21 and the transparent layer 23 are the same as the substrate 1 described in the first embodiment. Materials similar to 1 and the transparent layer 13 can be used. Further, the shapes and functions of those are the same as those of the substrate 1 and the transparent layer 13 described in the first embodiment.
  • the optical separation layer 24 is made of a resin such as a photocurable resin (in particular, an ultraviolet curable resin), a delayed thermosetting resin, or a dielectric, and has a smaller light absorption than the laser beam 10 used.
  • a photocurable resin in particular, an ultraviolet curable resin
  • a delayed thermosetting resin in particular, a delayed thermosetting resin
  • a dielectric a resin such as a thermosetting resin, a thermosetting resin, or a dielectric
  • the birefringence is small in the short wavelength range.
  • Optical separation layer 24 provided in each information layers, the first information layer 22 of the second information layer 22 2, ..., is used to distinguish the information layer 22 N each focus position of the N.
  • the thickness of the optical separation layer 24 needs to be 1.2 m or more.
  • a guide groove for guiding the laser beam 10 may be formed on the surface on the incident side of the laser beam 10, if necessary.
  • the configuration of the first information layer 2 2 i will be described in detail below.
  • the first dielectric layer 201, the second dielectric layer 202, the crystal nucleation layer 203, which are disposed in order from the incident side of the laser beam 10 A recording layer 204, a third dielectric layer 205, a reflecting layer 206, and a transmittance adjusting layer 205 are provided.
  • the same material as the first dielectric layer 101 described in Embodiment 1 can be used.
  • their functions are the same as the functions of the first dielectric layer 101 of the first embodiment.
  • the thickness of the first dielectric layer 201 has a large change in the amount of reflected light between the case where the recording layer 204 is in the crystalline phase and the case where it is in the amorphous phase. And, it can be decided to satisfy the condition that the light absorption in the recording layer 204 becomes large.
  • the same material as the second dielectric layer 102 described in Embodiment 1 can be used.
  • the functions and the shapes thereof are also similar to those of the second dielectric layer 102 of the first embodiment.
  • the same material as the third dielectric layer 105 described in Embodiment 1 can be used.
  • the function and shape thereof are also similar to those of the third dielectric layer 105 of the first embodiment.
  • the same material as that of the crystal nucleation layer 103 of Embodiment 1 can be used.
  • their functions are also similar to those of the crystal nucleation layer 103 of the first embodiment.
  • the film thickness of the crystal nucleation layer 203 is such that the erasing performance is good even at a high transfer rate, the rewriting performance after long-term storage is good, and the transmittance of the first information layer 22i can be as small as possible.
  • the same material as that of the recording layer 104 described in Embodiment 1 can be used. It is preferable to make the film thickness of the recording layer 204 as thin as possible.
  • This is an information layer for recording and reproducing information by the laser beam transmitted through the first information layer 22 (an information layer disposed farther from the incident side of the laser beam 10 than the first information layer 22). It is necessary to increase the transmittance of the first information layer 22 in order to allow the amount of laser light necessary for recording and reproduction to reach.
  • a material represented by the composition formula Ge a (M 2) b T e 3 + a a material in which a part of G e is replaced with (M 3 ) in Ge a (M 2) b T e 3 + a
  • it is preferably in the range of 4 nm to 9 nm, and more preferably in the range of 5 nm to 8 nm.
  • the recording layer 204 has a composition formula (S b d T e 1 ()
  • the thickness is preferably in the range of 3 nm to 8 nm, and 4 nm to 6 nm It is more preferable to be within the range.
  • the same material as the reflective layer 108 described in Embodiment 1 can be used for the reflective layer 206.
  • their functions are also the same as the functions of the reflective layer 108 of the first embodiment.
  • the thickness of the reflective layer 206 is preferably in the range of 3 nm to 15 nm, and in the range of 8 nm to 12 nm, in order to maximize the transmittance of the first information layer 22 i. Is more preferable.
  • the film thickness of the reflective layer 206 is in this range, its heat diffusion function is sufficient, and sufficient reflectance in the first information layer 22 can be secured, and further, the first information layer 22 t The transmittance is also sufficient.
  • the transmittance adjusting layer 207 is made of a dielectric, and has a function of adjusting the transmittance of the first information layer 22.
  • the transmittance adjustment layer 20 7 makes the recording layer 2
  • the transmittances Tc and Ta are 2% to 10% as compared with the case where the transmittance adjusting layer 207 is not provided. Ascend to some extent.
  • the transmittance adjusting layer 207 also has a function of effectively spreading the heat generated in the recording layer 204.
  • the refractive index n and the extinction coefficient k of the transmittance adjusting layer 207 can be increased by 2.0 ⁇ n, in order to increase the effect of increasing the transmittance T c and T a of the first information layer 22. It is preferable to satisfy k ⁇ 0.1, and more preferably to satisfy 2.0 ⁇ n ⁇ 3.0 and k 00.5.
  • the thickness of the transmittance adjusting layer 207 is (1Z 32) A / n ⁇ d x ⁇ (3/1 6) ⁇ or (1 7/32) ⁇ / n ⁇ d (1 1/1 6) ⁇ / ⁇ preferably in the range, (1/1 6) ⁇ / ⁇ d! ⁇ (5 / ⁇ 32) ⁇ / ⁇ or (9/1 6) ⁇ / ⁇ d ⁇ ⁇ (2 1/32) More preferably, it is in the range of ⁇ / ⁇ 2.
  • the film thickness d ⁇ is 3 nm.
  • it is in the range of ⁇ d ⁇ 40 nm or 60 nm ⁇ d 1 30 nm, and it is more preferably in the range of 7 nm ⁇ (11 ⁇ 3 0 11 11 1 or 65 nm ⁇ d 1 20 nm ⁇
  • the film thickness di it is possible to increase the transmittances T c and T a of the first information layer 22 together.
  • the transmittance adjustment layer 2 07 eg, T I_ ⁇ 2, Z r 0 2, Z nO, Nb 2 0 5, T a 2 0 5, S I_ ⁇ 2, A 1 2 0 3, B i 2 0 3, C r 2 ⁇ 3, S r - oxides O or the like can be used.
  • T i one N, Z r — N, Nb It is also possible to use a nitride such as NTa-NSi_NGe-NCr, or NAl-NGe-Si-NGe-Cr-N. Also, sulfides such as Z n S can be used. Also, mixtures of the above materials can be used.
  • Transmittance T c and T a of the first information layer 22 is necessary when the recording and reproduction - in order to reach The amount in the second information layer 22 2 to N-th information layer 22 N, 40 ⁇ It is preferable to satisfy T C and 40 T a , and it is more preferable to satisfy 46 ⁇ T C and 46 ⁇ T a .
  • Transmittance T c and T a of the first information layer 2 2 i preferably satisfies _ 5 ⁇ (T c -T a) ⁇ 5, - satisfies the 3 ⁇ (T c -T a) ⁇ 3 Is more preferable.
  • the transmittances T c and T a satisfy this condition, when recording and reproducing information on the second to n-th information layers 22 2 22 n , the first information layer 22! Since the influence of the change in transmittance due to the state of the recording layer 204 in the case is small, good recording and reproducing characteristics can be obtained.
  • R e R al is 0.1 R al ⁇ 5 and 4 ⁇ R cl ⁇ l 5 so that the reflectance difference (R cl _ R al ) can be increased and good recording and reproduction characteristics can be obtained. It is preferable to satisfy the following condition: 0.1 ⁇ R al ⁇ 3 and 4 ⁇ R cl ⁇ 10.
  • the nucleation layer is a recording layer 2 04
  • the third dielectric layer 205 may be disposed.
  • the first to Nth information layers 22 2 to 22 N and the transparent layer 23 are provided on the substrate 21, and
  • the first dielectric layer 201, the second dielectric layer 202, the recording layer 204, the crystal nucleation layer 206 are sequentially stacked from the laser beam incident side.
  • the third dielectric layer 205, the reflective layer 206, and the transmittance adjusting layer 205 are formed.
  • the crystal nucleation layer may be disposed between the recording layer 24, the second dielectric layer 202 and the third dielectric layer 205. Good.
  • the first to Nth information layers 22 i to 22 N and the transparent layer 23 are provided on the substrate 21, and
  • the first dielectric layer 201, the second dielectric layer 202, the crystal nucleation layer 203, the recording layer 204, are sequentially stacked from the laser beam incident side.
  • a crystal nucleation layer 208, a third dielectric layer 205, a reflective layer 206, and a transmittance adjustment layer 207 are formed.
  • the crystal nucleation layer 208 can be made of the same material as that of the crystal nucleation layer 203, and the shape and function thereof are also similar to that of the crystal nucleation layer 203.
  • the film structures of the other information layers other than the first information layer 22 included in the optical information recording media 2, 25 and 26 of the present embodiment are the same as the first information layer 22. It may be another structure. Further, at least one of the plurality of information layers may have the same film structure as the first information layer 22 described in the present embodiment, and the other information layers may have different structures. It is preferable to make the first information layer 22 disposed at the position closest to the surface on the laser beam incident side into the film structure described in the present embodiment. In addition, any one of the other information layers other than the first information layer 2 2 i may be a read-only type information layer (ROM (Read On Memory)) or a write-once type which can be written only once. It may be used as an information layer (W rite Once). Next, a method of manufacturing the information recording media 2, 25 and 26 of the present embodiment will be described.
  • ROM Read On Memory
  • Each information layer is formed of a single layer film or a multilayer film, and each of the films can be formed by sequentially sputtering a sputtering target as a material in a film forming apparatus.
  • the optical separation layer 24 is formed by applying a photocurable resin (particularly, an ultraviolet curable resin) or a delayed thermosetting resin on the information layer, and uniformly spreading the resin by spin coating, and then the resin is removed It can be formed by curing.
  • the transfer substrate (type) having a groove of a predetermined shape formed on the surface is brought into close contact with the resin before curing.
  • the substrate 21 and the transfer substrate are rotated and spin-coated, and then the resin is cured, and then the transfer substrate is removed from the cured resin, whereby a predetermined guide groove is formed on the surface.
  • the formed optical separation layer 24 can be formed.
  • the first information layer 22 is formed on the optical separation layer 24 formed on the information layer of the (N-1) layer.
  • the substrate 21 on which the information layer of the (N-1) layer and the optical separation layer 24 are formed is disposed in a film forming apparatus, and the transmittance adjustment layer is formed on the optical separation layer 24.
  • Form a film of 2 0 7 The transmittance adjusting layer 2 0 7 is formed by sputtering a sputtering target made of a compound constituting the transmittance adjusting layer 2 0 7 in an Ar gas atmosphere or a mixed gas atmosphere of an Ar gas and a reaction gas.
  • the transmittance adjusting layer 2 0 7 is made of a metal consisting of elements constituting the transmittance adjusting layer 2 0 7.
  • the sputtering target can also be formed by reactive sputtering in a mixed gas atmosphere of Ar gas and a reaction gas.
  • a reflective layer 206 is formed on the transmittance adjusting layer 2007.
  • the reflective layer 206 can be formed by the same method as the method for forming the reflective layer 108 described in the first embodiment.
  • a third dielectric layer 205 is formed on the reflective layer 206.
  • the third dielectric layer 205 can be formed by the same method as the method of forming the third dielectric layer 105 described in the first embodiment.
  • a crystal nucleation layer 208 is formed on the third dielectric layer 205.
  • the crystalline nucleation layer 28 can be formed by the same method as the crystalline nucleation layer 10 9 described in the first embodiment.
  • the crystal nucleation layer 2 0 8 is not formed on the third dielectric layer 2 0 5 (in the case of the information recording medium 2 shown in FIG. 4), the crystal nucleus on the recording layer 2 0 4 described later The formation layer 2 0 3 is formed.
  • the recording layer 204 is formed on the crystalline nucleation layer 208 (in the case where the crystalline nucleation layer 209 is not provided, on the third dielectric layer 205).
  • the recording layer 204 can be formed by the same method as the method for forming the recording layer 104 described in the first embodiment.
  • a crystal nucleation layer 203 is formed on the recording layer 204 as required (when the information recording media 2 and 26 shown in FIG. 4 and FIG. 6 are produced).
  • a second dielectric layer 202 is formed on the crystal nucleation layer 203 (in the case where the crystal nucleation layer 203 is not provided, on the recording layer 204).
  • the second dielectric layer 202 can be formed by the same method as the method for forming the second dielectric layer 102 described in the first embodiment.
  • a first dielectric layer 201 is formed on the second dielectric layer 202.
  • the first dielectric layer 201 is the same as the first dielectric layer 101 described in the first embodiment. It can be formed by the same method as the formation method.
  • a transparent layer 23 is formed on the first dielectric layer 201.
  • the transparent layer 2 3 can be formed by the same method as the method of forming the transparent layer 1 3 described in the first embodiment.
  • an initialization process may be performed to crystallize the entire surface of the recording layer 204, if necessary.
  • the crystallization of the recording layer 24 can be performed by irradiating a laser beam.
  • the information recording media 2, 25 and 26 of the present embodiment can be manufactured.
  • sputtering is used as the film forming method for each film, but the method is not limited to this, and it is also possible to use vacuum deposition, ion plating, CVD, MBE, etc. is there.
  • the information recording medium of the present embodiment is a medium suitably used in the case of recording and reproducing information using a so-called blue-violet laser of wavelength 390 to 420 nm.
  • FIG. 7 shows a partial cross-sectional configuration of the information recording medium 3 of the present embodiment.
  • the information recording medium 3 is a two-layered optical information recording medium capable of recording and reproducing information with respect to each information layer by irradiation of a laser beam 10 from one side, including two information layers.
  • the information recording medium 3 is composed of a second information layer 32 2 , an optical separation layer 34, a first information layer 32 2 and a transparent layer 33 sequentially stacked on a substrate 31.
  • the laser beam 10 is incident from the transparent layer 33 side.
  • the substrate 3 1, the optical separation layer 3 4, the first information layer 3 2 2 and the transparent layer 3 3 are the substrates 1 1 and 2 1 described in the embodiment 1 or 2, the optical separation layer 2 4
  • the same material as the information layer 2 2 transparent layer 1 3 2 3 can be used, and , Their shapes and functions are also the same.
  • the second information layer 3 2 2 laser beam 1 first dielectric layer 3 0 1 arranged in this order from the incident side of the 0, the second dielectric layer 3 0 2, the crystalline nucleation layer 3 0 3, record A third layer, a third dielectric layer, a fourth dielectric layer, an interface layer, and a reflective layer are provided.
  • the same material as the first dielectric layer 101 described in the first embodiment can be used.
  • their functions are the same as the functions of the first dielectric layer 101 of the first embodiment.
  • the thickness of the first dielectric layer 301 has a large change in the amount of reflected light between the cases where the recording layer 304 is in the crystalline phase and the amorphous phase. It can be determined to satisfy the condition that the light absorption in the recording layer 304 becomes large.
  • the same material as the second dielectric layer 102 described in Embodiment 1 can be used.
  • the functions and the shapes thereof are also similar to those of the second dielectric layer 102 of the first embodiment.
  • the same material as the third dielectric layer 105 described in the first embodiment can be used.
  • the function and shape thereof are also similar to those of the third dielectric layer 105 of the first embodiment.
  • the same material as the crystal nucleation layer 103 described in Embodiment 1 can be used.
  • the film thickness thereof is also similar to that of the crystal nucleation layer 103 of the first embodiment.
  • the same material as the recording layer 104 in the first embodiment can be used. Also for the film thickness of those, the recording of Embodiment 1 It is similar to the film thickness of the layer 104.
  • the same material as that of the fourth dielectric layer 106 described in Embodiment 1 can be used.
  • the functions and the shapes thereof are the same as the functions and the shapes of the fourth dielectric layer 106 of the first embodiment.
  • the fourth dielectric layer 306 may not be provided.
  • the same material as the reflective layer 108 described in Embodiment 1 can be used.
  • the functions and the shapes thereof are the same as the functions of the reflective layer 108 of the first embodiment.
  • the same material as the interface layer 107 described in Embodiment 1 can be used. Further, the functions and the shapes thereof are the same as the functions and the shapes of the interface layer 107 of the first embodiment. Note that the interface layer 3 07 may not be provided.
  • a second information layer 32 2 is sequentially stacked from the laser beam incident side.
  • Layer 302, recording layer 304, crystal nucleation layer 300, third dielectric layer 305, fourth dielectric layer 306, interface layer 307 and reflective layer 308 It is formed.
  • the 'crystal nucleation layer is disposed between the recording layer 304, the second dielectric layer 302 and the third dielectric layer 305, respectively.
  • the second information layer 3 2 are sequentially stacked from Les one Zabimu incidence side, the first dielectric layer 3 0 1, second dielectric Body layer 302, crystal nucleation layer 300, recording layer 304, crystal nucleation layer 300, third dielectric layer 305, fourth dielectric layer 306, interface layer 330 7 and the reflective layer 300.
  • the crystal nucleation layer 3 0 9 The material of the same system as the crystal nucleation layer 303 can be used, and the shape and the function thereof are also similar to the crystal nucleation layer 303.
  • a substrate 3 1 for example, having a thickness of 1 10 0 zm
  • a film forming apparatus for example, a substrate 3 1 (for example, having a thickness of 1 10 0 zm) is prepared and placed in a film forming apparatus.
  • a reflective layer 300 is formed on the substrate 31.
  • a reflective layer 300 is formed on the surface on which the guide groove is formed.
  • the reflective layer 308 can be formed by the same method as the reflective layer 108 described in the first embodiment.
  • an interface layer 3 07 is formed on the reflective layer 3 08, if necessary.
  • the interface layer 3 0 7 can be formed by the same method as the interface layer 1 0 7 described in the first embodiment.
  • a fourth dielectric layer 306 is formed on the interface layer 3 07 (if the interface layer 3 0 7 is not provided, on the reflective layer 3 0 8), if necessary.
  • the fourth dielectric layer 306 can be formed by the same method as the fourth dielectric layer 106 described in the first embodiment.
  • the third dielectric layer 300 is formed on the fourth dielectric layer 306 (if the fourth dielectric layer 306 is not provided, on the interface layer 3 07 or on the reflective layer 3 08). Form a film.
  • the third dielectric layer 35 can be formed by the same method as the third dielectric layer 105 of the first embodiment.
  • a crystal nucleation layer 3 0 9 is formed on the third dielectric layer 3 0 5 as required (in the case of the information recording media 3 5 and 3 6 shown in FIGS. 8 and 9).
  • the crystalline nucleation layer 3 0 9 can be formed by the same method as the crystalline nucleation layer 1 0 9 described in the first embodiment.
  • the crystal nucleation layer on the third dielectric layer 305 In the case where the film of 3 0 9 is not formed, the crystal nucleation layer 3 0 3 is formed on the recording layer 3 0 4 described later.
  • the recording layer 304 is formed on the crystal nucleation layer 3 0 9 (on the third dielectric layer 3 0 5 when the crystal nucleation layer 3 0 9 is not provided).
  • the recording layer 3 0 4 can be formed by the same method as the recording layer 1 0 4 described in the first embodiment.
  • a crystal nucleation layer 303 is formed on the recording layer 304 as required (in the case of the information recording media 3 and 36 shown in FIGS. 7 and 9).
  • a second dielectric layer 302 is formed on the crystal nucleation layer 304 (on the recording layer 304 when the crystal nucleation layer 304 is not provided).
  • the second dielectric layer 302 can be formed by the same method as the second dielectric layer 103 of the first embodiment.
  • the first dielectric layer 301 is formed on the second dielectric layer 302.
  • the first dielectric layer 31 can be formed by the same method as the first dielectric layer 101 of the first embodiment.
  • the optical separation layer 34 is formed by applying a photocurable resin (in particular, an ultraviolet curable resin) or a delayed curing resin on the first dielectric layer 301 and spin coating, and then curing the resin. It can be formed.
  • a photocurable resin in particular, an ultraviolet curable resin
  • a delayed curing resin on the first dielectric layer 301 and spin coating
  • the resin is cured and then the resin is cured.
  • a guide groove can be formed by peeling off the transfer substrate (mold).
  • an initialization step may be performed to crystallize the entire surface of the recording layer 304 Good.
  • the crystallization of the recording layer 304 is irradiated with a laser beam You can do this by
  • the first information layer 3, 2i is formed on the optical separation layer 34.
  • the transmittance adjustment layer 2 0 7, the reflection layer 2 0 6, the third dielectric layer 2 0 5, the crystal nucleation layer 2 0 8, the recording layer 2 0 4, Second dielectric layer 202 and first dielectric layer 201 are deposited in this order.
  • the transmittance adjustment layer 2007, the reflection layer 206, the third dielectric layer 205, the recording layer 204, the crystal nucleation layer 203, the second The dielectric layer 202 and the first dielectric layer 201 are deposited in this order.
  • the transmittance adjustment layer 2007, the reflection layer 206, the third dielectric layer 205, the crystal nucleation layer 208, the recording layer 204, the crystal nucleation A layer 203, a second dielectric layer 202 and a first dielectric layer 201 are deposited in this order. These layers can be formed by the method described in the second embodiment.
  • the transparent layer 33 is formed on the first dielectric layer 201.
  • the transparent layer 3 3 can be formed by the same method as the transparent layer 13 described in the first embodiment.
  • an initialization process may be performed to crystallize the entire surface of the recording layer 204. .
  • the crystallization of the recording layer 24 can be performed by irradiating a laser beam.
  • the second information layer 3 2 2 recording layer 3 0 4 and the first information An initialization step of crystallizing the entire surface of the recording layer 204 of the layer 32 may be performed.
  • the recording layer 24 of the first information layer 3 2 is crystallized first, the laser power necessary to crystallize the recording layer 3 0 4 of the second information layer 3 2 2 is because tends to increase, it is preferable to crystallize the second information layer 3 2 2 the serial Rokuso 3 0 4 above.
  • the information recording mediums 3, 35, and 36 of the present embodiment are manufactured. It can be built.
  • sputtering is used as a film forming method for each film, but the present invention is not limited to this, and vacuum deposition, ion plating, CVD, MBE, etc. may be used. is there.
  • the information recording medium of the present embodiment is a medium suitably used when recording and reproducing information using a so-called blue-violet laser with a wavelength of 390 to 420 nm.
  • FIG. 10 shows a cross-sectional view of the information recording medium 4 of the present embodiment.
  • the information recording medium 4 includes a plurality of information layers, and is a multilayer optical information recording medium capable of recording and reproducing each information layer by irradiation of the laser beam 10 from one side.
  • the information recording medium 4 is different from the information recording medium described in the first to third embodiments, and the substrate 41 is disposed on the incident side of the laser beam 10.
  • the N first to N-th information layers 42 to 42 N are stacked on the substrate 41, and a dummy substrate 45 is disposed via an adhesive layer 44.
  • the N information layers 4 2 i to 4 2 N are stacked one on another via the optical separation layer 43.
  • the substrate 41 and the dummy substrate 45 are, like the substrate 11 described in the first embodiment, a transparent disk-like substrate.
  • a resin such as polycarbonate, amorphous polyolefin, or PMMA, or glass can be used.
  • a guide groove for guiding the laser beam 10 may be formed on the surface on the first information layer 42 side of the substrate 41, if necessary.
  • the surface of the substrate 41 opposite to the first information layer 42 is preferably smooth.
  • polybasic polycarbonate is particularly preferable because of its excellent transferability and mass productivity, and its low cost.
  • the thickness of the substrate 41 has sufficient strength, and the thickness of the information recording medium 4 is the whole It is preferable to be in the range of 500 to 1 200 m so as to be approximately 1 200 m.
  • the adhesive layer 44 is made of a resin such as a photocurable resin (especially an ultraviolet curable resin) or a delayed thermal curing resin, and preferably has a small light absorption with respect to the laser beam 10 used, and has a short wavelength.
  • the optical birefringence is preferably small in the range.
  • the other layers denoted with the same reference numerals as those of the information recording medium of the second embodiment have the same materials, shapes and functions as those of the second embodiment, and thus the description thereof is omitted here.
  • the crystal nucleation layer may be disposed at the interface of the recording layer 24 opposite to the laser beam incident side.
  • the first information layer 42 is a first dielectric layer 21 arranged in order from the laser beam incident side, and a second dielectric layer 21. It comprises a body layer 202, a recording layer 204, a crystal nucleation layer 208, a third dielectric layer 205, a reflection layer 206 and a transmittance adjusting layer 207.
  • it may be disposed between the recording layer 24, the second dielectric layer 202 and the third dielectric layer 205. In this case, as in the information recording medium 47 shown in FIG.
  • a first information layer 42 is formed by sequentially laminating a first information layer 42 from the laser beam incident side.
  • Body layer 202, crystal nucleation layer 203, recording layer 204, crystal nucleation layer 208, third dielectric layer 205, reflection layer 206 and transmittance adjustment layer 7 are formed.
  • the crystal nucleation layer 208 can be made of a material similar to that of the crystal nucleation layer 203, and the shape and function of those materials are also similar to those of the crystal nucleation layer 203.
  • a method of manufacturing the information recording media 4, 46, 47 of the present embodiment will be described.
  • a first information layer 4 2 is formed on a substrate 4 1 (for example, a thickness of 600 m).
  • the first information layer 42i is formed on the surface on which the guide groove is formed.
  • the substrate 41 is disposed in a film forming apparatus, and in the reverse order of the first information layer 221 described in the second embodiment, the first dielectric layer 201, the second dielectric layer A body layer 202, a crystal nucleation layer 203, a recording layer 204, a third dielectric layer 205, a reflection layer 206 and a transmittance adjusting layer 2007 are sequentially stacked. Or, on the substrate 41, the first dielectric layer 201, the second dielectric layer 202, the recording layer 204, the nucleation layer 208, the third dielectric layer 205, The reflective layer 2 0 6 and the transmittance adjusting layer 2 0 7 are sequentially laminated.
  • the first dielectric layer 201, the second dielectric layer 202, the crystal nucleation layer 203, the recording layer 204, the crystal nucleation layer 208, the third A dielectric layer 205, a reflective layer 206 and a transmittance adjusting layer 205 are sequentially laminated.
  • the film formation method of each layer is as described in the second embodiment.
  • each information layer is formed of a single layer film or a multilayer film, and each of these films is sequentially sputtered with a sputtering getter as a material in the film forming apparatus as in the method described in the second embodiment. It can be formed by
  • the Nth information layer 42 and the dummy substrate 45 are attached to each other using the adhesive layer 44.
  • a photocurable resin especially an ultraviolet curable resin
  • a delayed thermal curing the resins such as mold resin is applied onto the N-th information layer 4 2 N, after scan Pinkoto by close contact with dummy substrate 4 5 on the N-th information layer 4 2 N via the resin of this, the resin may be cured.
  • the pre-adhesive resin in the dummy substrate 4 5 leave uniformly applied, it may be adhered to the N information layers 4 2 N.
  • an initialization step may be carried out to crystallize the entire surface of the recording layer 204 of the first information layer 42 i.
  • the crystallization of the recording layer 24 can be performed by irradiating a laser beam.
  • the information recording media 4, 46 and 47 of the present embodiment can be manufactured.
  • sputtering is used as the film forming method for each film, but the method is not limited to this, and it is also possible to use vacuum deposition, ion plating, CVD, MBE, etc. is there.
  • the film structure of the other information layers other than the first information layer 42 included in the optical information recording medium 4, 46, 47 of the present embodiment is the first information layer 4 2 i. Or may be another structure.
  • at least one of the plurality of information layers may have the same film structure as the first information layer 4 2 described in the present embodiment, and the other information layers may have different structures.
  • the first information layer 42 disposed at the position closest to the surface on the laser beam incident side has the film structure described in this embodiment.
  • any one of the other information layers other than the first information layer 42 may be a read only type information layer (ROM (Read Only Memory)) or a write-once type information layer which can be written only once. It may also be WO (Wr ite Once).
  • FIG. 13 the recording and reproducing apparatus used for the recording and reproducing method of the present embodiment is shown.
  • a recording / reproducing apparatus 81 comprises a spindle motor 85 for rotating an information recording medium 86, an optical head 84 having a semiconductor laser 83, and a laser beam emitted from the semiconductor laser 83. And an objective lens 82 for collecting 10.
  • Information recording The medium 86 is any one of the information recording mediums described in the first to fourth embodiments, and one information layer or a plurality of information layers (for example, the first information layer 32 i and the first information layer 3 It contains 2 information layers 3 2 2 ).
  • a laser beam 10 is focused on the information layer of the information recording medium 86 by the objective lens 82. '
  • Recording, erasing, and overwriting information on the information storage medium 8 6 consists of the power of laser beam 10, high peak power (P p (mW)) and low power bias power (P b (mW) ) And by modulation.
  • P p (mW) high peak power
  • P b (mW) low power bias power
  • a laser beam 10 of peak power By irradiating the laser beam 10 of peak power, an amorphous phase is formed in a local part of the recording layer contained in the information layer, and the amorphous phase becomes a recording mark. Between recording marks, a laser beam 10 of bias power is irradiated to form a crystalline phase (erased portion).
  • When irradiating with a laser beam 10 of peak power it is general to form a so-called multi-pulse formed by a train of pulses.
  • the multipulse may be modulated only by the power level of peak power and bias power, or may be modulated by a power level in the range of
  • the optical state of the recording mark is not affected by the irradiation of the laser beam 10 at that power level, which is lower than any of the peak power and the bias power, and from the information recording medium 86
  • the power from which a sufficient amount of reflected light for recording mark reproduction can be obtained is the reproduction power (mW), and the signal from the information recording medium 86 obtained by irradiating the laser light of the reproduction power is read by the detector.
  • the reproduction of the information signal is performed.
  • the numerical aperture (NA) of the objective lens 82 is set to 0.5 to 1.1 to adjust the spot diameter of the laser beam 10 within the range of 0.4 / m to 0.7 zm. It is preferably within the range (more preferably within the range of 0.6 to 1.0).
  • the wavelength of the laser beam 10 is preferably 450 nm or less (more preferably, in the range of 350 ⁇ ⁇ ! To 450 nm).
  • the linear velocity of the information recording medium 86 at the time of recording information is in the range of 1 m / sec to 2 O mZ sec (more preferable) in which crystallization by reproduction light is unlikely to occur and a sufficient erasure rate is obtained 2 m / s to 15 m / s))
  • the information recording medium 86 is an information recording medium 3 (see FIG. 7) provided with two information layers.
  • the focal point of the laser beam 10 is focused on the recording layer 24, and the laser beam 10 transmitted through the transparent layer 33 is used to form the recording layer 24. Record information.
  • Information reproduction is performed using the laser beam 10 reflected by the recording layer 24 and transmitted through the transparent layer 33.
  • a guide groove for guiding the laser beam 10 is formed on the surface of the substrate 31 and the optical separation layer 34 of the information recording medium 3, the information is closer to the incident side of the laser beam 10. It may be performed on the groove surface (group)
  • FIG. 14 shows a cross-sectional view of the information recording medium 5 of the present embodiment.
  • the recording medium 5 is a medium suitably used when recording and reproducing information using a so-called red laser having a wavelength of 600 to 700 nm.
  • one information layer 5 2 is provided on a substrate 51, and a dummy substrate 54 is bonded on the information layer 52 by an adhesive layer 53.
  • the information layer 52 includes, in order from the incident side of the laser beam 10, a first dielectric layer 501, a second dielectric layer 52, a crystal nucleation layer 53, a recording layer 500 A third dielectric layer 505, a light absorption correction layer 506, and a reflective layer 505 are stacked.
  • the substrate 51 it is preferable to use a material that can be easily molded, and the same material as the substrate 11 described in Embodiment 1 can be used.
  • the substrate 51 is disk-shaped and provided with a guide groove of, for example, a track pitch of 0.615 m for tracking of the light beam.
  • the inner groove consists of lands 5 5 and group parts 56, and it is possible to record information in both areas.
  • the thickness of the substrate 51 is preferably in the range of 0.5 to 0.5 mm.
  • a first dielectric layer 501 is formed on a substrate 51.
  • the first dielectric layer 501 can be formed by reactive sputtering of a sputtering sputter as a material in an atmosphere of Ar gas or Ar gas and a reaction gas.
  • the first dielectric layer 51 functions to prevent oxidation, corrosion, deformation, etc. of the recording layer 504, and to adjust the optical distance to enhance the light absorption efficiency of the recording layer 504, and The function of increasing the signal amplitude by increasing the change in the amount of reflected light before and after. Furthermore, it also has the function of adjusting the phase difference of light between the amorphous phase and the crystalline phase of the recording layer 504.
  • First dielectric layer 5 in the present embodiment For example, Y 1, C e, T i, Z r, Nb, T a, C o, Z n, A 1, S i, Ge, S n, P b, C r, S b, B i And oxides such as Te, oxides such as Ti, Zr, Nb, Ta, Cr, Mo, W, B, Al, Ga, In, Si, Ge, Sn, and Pb, etc.
  • Carbides such as Ti, Zr, Nb, Ta, Cr, Mo, W, Si, sulfides such as Zn, Cd, selenide or telluride, La, Mg, Ca, It is possible to use a dielectric composed of a fluoride such as C e, E r, G d, T b, D y, N d, Y, Y b etc., a single element such as C, S i, Ge etc, or a mixture thereof.
  • a fluoride such as C e, E r, G d, T b, D y, N d, Y, Y b etc., a single element such as C, S i, Ge etc, or a mixture thereof.
  • (Z n S) 8 . (S i 0 2 ) 2 . (Mo 1%) is a non-crystalline material having a high refractive index, a high deposition rate, and a good mechanical property and moisture resistance, and thus it is a first dielectric layer It is preferably used in 1.
  • a second dielectric layer 502 is formed on the first dielectric layer 501.
  • the second dielectric layer 502 can be formed by sputtering a sputtering target containing an element constituting the second dielectric layer 502 in an Ar gas atmosphere.
  • the second dielectric layer 502 has a function of preventing mass transfer between the first dielectric layer 501 and the crystal nucleation layer 503.
  • (mol%) the contamination of S into the crystal nucleation layer 53 can be prevented. This improves the repeat rewriting performance.
  • the second dielectric layer 50 second material for example, H f 0 2 and the at least any one selected Z r 0 2 or al, and S i 0 2, and C r 2 ⁇ 3, including oxidized Material-based materials can be used.
  • Z r 2 2 and H f 0 2 are high melting point materials having a melting point of 2700 ° C. or higher, and they do not dissolve and are not mixed into the recording layer 504 when recording. When 2 or H f 0 2 is used, excellent repeated rewriting performance can be obtained.
  • S i 2 2 is an amorphous material, and has the action of enhancing transparency and the action of suppressing crystallization of a dielectric material.
  • Cr 2 O 3 has good adhesion to the crystal nucleation layer 50 3 and is excellent in weathering resistance to the use environment.
  • the adhesion is evaluated as follows: after storage for 100 hours under a high temperature environment at a temperature of 90 ° (humidity of 80%), the space between the second dielectric layer 50 2 and the crystal nucleation layer 50 3 It was carried out by visual inspection to see if it had peeled off.
  • the oxide-based material used for the second dielectric layer 52 is, for example, (H f )
  • good repeated rewriting performance is obtained by the Z r 0 2 or H f ⁇ 2 concentrations (A2) a 1 Omo 1% or more, the crystalline nucleation layer by a 5 Omo 1% or less 5
  • the adhesion between the third dielectric layer 502 and the second dielectric layer 502 can be improved.
  • the concentration (B 2) of S i 0 2 to 1 Omo 1% or more good repetitive rewriting performance can be obtained, and by setting the concentration to 5 Omo 1% or less, the crystal nucleation layer 50 3 (2) Adhesion with the dielectric layer 520 can be improved.
  • a 2 0Mo l by I or more percent crystalline nucleation layer 50 3 second dielectric layer 50 2 By setting it to 8 Omo 1% or less, good repetitive rewriting performance can be obtained.
  • a crystal nucleation layer 50 3 is formed on the second dielectric layer 502.
  • the crystal nucleation layer 503 can be formed by sputtering a sputtering target containing an element constituting the crystal nucleation layer 53, for example, in an atmosphere of Ar gas or Ar-N 2 mixed gas.
  • the crystal nucleation layer 503 In the process of forming the crystal nucleation layer 503, when a sputtering target made of a material containing Bi and the element Ml or a material containing Te and the element M1 is used, compared to the recording layer 504. A crystal nucleation layer 503 having a high melting point can be formed.
  • the element M l is S c, Y, L a, C e, P r, Nd, Sm, Gd, Tb, Dy, Ho, E r, and! ! At least one element selected from
  • the recording layer 504 When the linear velocity is large, the recording layer 504 must be crystallized in a short time because the time for which the information recording medium 5 is irradiated with the laser beam 10 is short, that is, the linear velocity of the information recording medium 5 is large. It is necessary to increase the crystallization speed of the recording layer 504 as much as possible.
  • the crystallization speed of the recording layer 504 can be increased when the linear velocity of the information recording medium 5 is large. . At the same time, even when the linear velocity of the information recording medium 5 is low, the stability of the amorphous phase should be reduced. Good recording characteristics can be obtained.
  • the crystallization rate is increased by adding Sn, Bi, etc. to the recording layer 54 without using the crystal nucleation layer 53, the linear velocity of the information recording medium 5 is small. In this case, there arises a problem that the stability of the amorphous phase is reduced.
  • the crystalline nucleation layer 53 has a high melting point so that the constituent substances are not dissolved and mixed in the recording layer 504 when the information signal is recorded in the initialization step or the recording layer 54. It is preferable to be formed of a material. For example, since the combination of B i and element M l or the combination of T e and element M 1 has a high melting point of 130 ° C. or higher, the crystal nucleus can be obtained even if information signal rewriting is repeated. It is difficult for the material of the generation layer 500 to be mixed into the recording layer 504.
  • the melting point is further increased, for example, 2 0 25 ° for T e N d (2 0 15 for B i G d ° C, Bi T b is 200 ° C.
  • the crystalline nucleation layer 50 3 formed of a material composed of B i and the element M 1 has a higher melting point than the crystalline nucleation layer 50 3 formed of S n T e.
  • the material of the crystal nucleation layer 503 can be prevented from being mixed into the recording layer 504. For this reason, even if the rewriting of the information signal is repeated, the possibility that the impurity is mixed into the recording layer 504 is low, and good repetitive rewriting performance can be obtained.
  • the crystal nucleation layer 53 is preferably at least partially crystallized after film formation, but may be crystallized later in an initialization step. Furthermore, it is preferable that the crystal structure of the crystal nucleation layer 53 be the same as the crystal structure of the recording layer 54 because the effect of promoting the crystallization of the recording layer 54 is large.
  • the recording layer 5 0 4 has a N a C 1 type crystal structure
  • B i (M 1) or T e (M 1) containing B i and the elements M 1 and T e and the element M 1 1: 1. . This is because these compounds have a crystal structure of NaC1 type.
  • the melting points of B i 2 T e (M 1), B i T e 2 (M 1) and B i T e (M 1) 2 which are combinations of B i, T e and the element M 1
  • the material of the crystal nucleation layer 5 0 3 is dissolved and mixed in the recording layer 5 0 4 even if the rewriting of the intelligence signal is repeated. It is difficult to do so, and the crystallization of the recording layer 504 can be promoted.
  • N when N is added to the crystal nucleation layer 53, the size of crystal grains tends to be more uniform and smaller. In this case, since the recording noise in the low frequency region can be reduced at the time of recording, N may be added to the crystal nucleation layer 53.
  • the film thickness of the crystal nucleation layer 53 is preferably 0.2 nm or more.
  • the film thickness of the crystal nucleation layer 5 0 3 is thick, the effect of promoting the crystallization of the recording layer 5 4 becomes larger. The problem is that the stability of the amorphous phase is impaired, and that the light is absorbed by the crystal nucleation layer 53 and the light reaching the recording layer 504 is reduced.
  • the thickness of the film is preferably 3 nm or less.
  • the recording layer 50 4 is formed on the crystal nucleation layer 5 0 3.
  • the recording layer 54 can be formed by sputtering a sputtering target containing an element constituting the recording layer 504, for example, in an atmosphere of Ar gas or Ar 1 N 2 mixed gas.
  • the step of forming the recording layer 5 0 4 (in the form status of the present embodiment, a is satisfied.
  • the 2 ⁇ a ⁇ 2 2) G e a S b 2 T e a + 3 using a sputtering target of And a thin film with excellent stability can be formed.
  • the recording layer 504 of the present embodiment causes a reversible change between the crystalline phase and the amorphous phase by irradiation of the laser beam 10, and the crystalline phase and the amorphous phase at a predetermined laser wavelength are It is preferable to use a material whose optical constant (refractive index, extinction coefficient) changes. In addition, it is preferable to use a material that is excellent in repetitive rewriting performance for the recording layer 54. Furthermore, it is preferable to use a material having a high crystallization rate.
  • G e-S b-T e changes the optical constants of the crystal phase and the amorphous phase, is excellent in repetitive rewriting performance, and is a material with a large crystallization rate.
  • a is preferably 2 or more.
  • the crystallization rate is low, the crystallization is difficult, and the melting point is high, so that the recording sensitivity is deteriorated.
  • the volume change between the crystal phase and the amorphous phase becomes large, the repetitive rewriting performance is deteriorated. From these, it is preferable that a be 22 or less.
  • the crystallization rate can be further increased.
  • - can expressed as (Ge S n) a S b 2 T e a + 3, a preferably satisfies 2 ⁇ a ⁇ 22.
  • crystallization is promoted as the content ratio (atomic%) of the S n atoms contained in the recording layer 504 is increased, but at the same time, the crystallization temperature is lowered and the stability of the amorphous phase is lowered.
  • the content ratio of Sn atoms is less than 20 atomic%.
  • the crystallization rate can be further increased by replacing a part of S b contained in the recording layer 504 with B i.
  • B i In this case, it can be written as Ge a (S b -B i) 2 T e a +3 , and a preferably satisfies 2 ⁇ a ⁇ 22.
  • the content ratio of B i atoms contained in the recording layer 504 is increased, the crystallization rate can be increased without reducing the change in the optical constants of the crystal phase and the amorphous phase.
  • a phenomenon occurs in which the crystallization temperature is lowered and the stability of the amorphous phase is lowered. From this, the content ratio of B i atoms is preferably less than 10 atomic%.
  • the crystallization speed can be further increased by replacing part of Ge contained in the recording layer 504 with Sn and part of Sb with Bi. In this case, it can be expressed as (Ge-S n) a (S b-B i) 2 T e a + 3. It is preferable that a satisfies 2 ⁇ a ⁇ 22.
  • N may be added to the recording layer 504 because the repetitive rewriting performance is improved.
  • the film thickness of the recording layer 504 is preferably 6 nm or more, because crystallization becomes difficult when the film thickness of the recording layer 504 is too thin. In addition, it is preferable that the film thickness of the recording layer 104 be 12 nm or less, because the repetitive rewriting performance of the information signal is deteriorated if the film thickness of the recording layer 504 is too thick.
  • a third dielectric layer 505 is formed on the recording layer 504.
  • Third dielectric The body layer 505 can be formed by sputtering a sputtering target containing an element constituting the third dielectric layer 503 in an Ar gas atmosphere.
  • the third dielectric layer 505 functions to increase the light absorption efficiency to the recording layer 504 by adjusting the optical distance, and to increase the signal amplitude by increasing the difference in reflectance before and after recording. Furthermore, it also functions to adjust the phase difference of light between the amorphous phase and the crystal phase of the recording layer 504 and to protect the recording layer 504 from the use environment.
  • the melting point of the third dielectric layer 505 is preferably higher than the melting point of the recording layer 504.
  • an oxide monofluoride comprising at least any one of Bareru selected from H f ⁇ 2 or Z R_ ⁇ 2, a fluoride and S i 0 2 and C r 2 ⁇ 3
  • a hydride material can be used.
  • Z r 0 2 and H f 0 2 are high melting point materials having a melting point of 2700 ° C. or higher, when these oxides are used for the third dielectric layer 505, the third dielectric layer is used during recording. There is less possibility that 505 will be dissolved and mixed into the recording layer 504. Therefore, the use of Z R_ ⁇ 2 or H f ⁇ 2 in the third dielectric layer 505, resulting excellent repeated rewriting performance.
  • S i ⁇ 2 is an amorphous material and has the function of enhancing transparency and the function of suppressing crystallization of the dielectric material (ie, when used for the third dielectric layer, crystallization of the third dielectric layer itself)
  • the effect of promoting the crystallization of the recording layer 504 is enhanced to improve the rewriting performance.
  • the fluoride complicates the structure of the dielectric layer by mixing with the oxide and plays a role in lowering the thermal conductivity of the dielectric layer. By lowering the thermal conductivity of the dielectric layer, the recording layer 504 is likely to be quenched rapidly, and the recording sensitivity can be enhanced.
  • Fluorides of rare earth metal (Ce F 3, E r F 3, GdF 3, L aF 3, TbF 3, DyF 3, NdF 3, YF 3, Y b F 3) has an excellent moisture resistance is insoluble in water Have.
  • L aF 3 has a melting point Because it has the highest price of about 150 ° C and is inexpensive, it is most practical as a fluoride material to be mixed into the dielectric layer.
  • the third dielectric layer can be produced which has good repeated rewriting performance and weather resistance.
  • the oxide monofluoride material used for the third dielectric layer 505 is (H f 0 2 ) A 1 (S i 2 2 ) B 1 (C r 2 0 3 ) C 1 (fluoride) 100 _ A 1 — B 1 — c! (Mo 1%) or (Z r 0 2 ) A 1 (S i 2 2 ) B 1 (C r 2 3 3 ) C 1 (fluoride) 100 - A 1 - B 1 — It can be written as C1 (mo 1%).
  • Al, B 1 and CI are as follows: 10 ⁇ A 1 ⁇ 50, 1 0 ⁇ B 1 ⁇ 50, 1 0 ⁇ C 1 ⁇ 50, 50 ⁇ A 1 + B 1 + C 1 ⁇ 90
  • Z r 0 2 and H f ⁇ least one of the concentration 2 selected from (A 1) a When 1 Omo 1% or more is good repeated rewriting performance is obtained, when the 5 Omo 1% or less the The adhesion between the dielectric layer 505 and the recording layer 504 can be improved.
  • the concentration of fluoride (100-A1-B1-C1) is preferably in the range of 10 mol% to 50 mol%, whereby good recording sensitivity can be obtained.
  • the substance-fluoride material can also be used for the first dielectric layer 501.
  • the light absorption correction layer 506 is formed on the third dielectric layer 505.
  • the light absorption correction layer 506 adjusts the light absorptance ratio between the case where the recording layer 504 is in the crystalline phase and the case where it is in the amorphous phase so that the shape of the recording mark is not distorted at the time of rewriting. Furthermore, it is provided for the purpose of increasing the signal amplitude by increasing the difference in reflectance between the case where the recording layer 504 is in the crystalline phase and the case where it is in the amorphous phase.
  • the light absorption correction layer 506 is preferably made of a material having a high refractive index and absorbing light appropriately.
  • the refractive index is 3 or more and 6 or less and the extinction coefficient is 1 or more and 4 or less.
  • the light absorptivity (Ac) of the recording layer 504 in the crystalline phase is larger than the light absorptivity (Aa) of the recording layer 504 in the amorphous phase (Ac> Aa) Adjust as.
  • Ge alloys or Si alloys which are amorphous such as Ge-Cr, Ge-M, Si-Cr, Si-Mo or Si-W, Te compounds, or Ti, Z
  • crystalline metals, semimetals and semiconductor materials such as r, Nb, Ta, Cr, Mo, W, SnTe and PbTe.
  • the reflective layer 50 7 is formed on the light absorption correction layer 506.
  • the reflective layer 5 0 7 can be formed by a sputtering method, an evaporation method, or the like.
  • the reflective layer 50 7 has a function to increase the amount of light absorbed by the recording layer 504 and also to diffuse the heat generated in the recording layer 504 quickly to make it amorphous. Furthermore, it also has a role of protecting the information recording medium 5 from the usage environment.
  • the material of the reflective layer 507 is, for example, a single metal material having a high thermal conductivity such as Al, Au, Ag, or Cu, or a moisture-resistant material containing one or more of these elements as a main component.
  • Alloy materials such as P d, A g-P d-C u, and A g-P d-T i can be used. All of these materials are materials which are excellent in moisture resistance and satisfy the quenching conditions.
  • the dummy substrate 54 is bonded to the reflective layer 5 07 using the adhesive layer 53.
  • a material having high heat resistance and adhesiveness for example, an adhesive resin such as an ultraviolet curing resin can be used.
  • an adhesive resin such as an ultraviolet curing resin
  • a material mainly composed of acrylic resin or an epoxy resin as a main ingredient Materials can be used.
  • an adhesive resin such as an ultraviolet curable resin of the same material or a different material, a double-sided tape, a dielectric film or the like.
  • another information recording medium may be pasted together to form an information recording medium having a double-sided structure.
  • the crystal nucleation layer may be disposed between the recording layer 54 and the third dielectric layer 500.
  • a recording layer 54, a crystal nucleation layer 508, a third dielectric layer 505, a light absorption correction layer 506, and a reflective layer 507 are formed.
  • the crystal nucleation layer may be disposed between the recording layer 504 and the second dielectric layer 52 and the third dielectric layer 50 5, respectively. In this case, as in the case of the information recording medium 58 shown in FIG.
  • the first dielectric layer 51, the second dielectric layer 50, and the information layer 52 are sequentially stacked from the laser beam incident side. 2.
  • the crystal nucleation layer is provided on both sides of the recording layer 504, crystallization is promoted from both sides of the recording layer 54 by the crystallization generation layers 50 3 and 5 08 on both sides. And the crystallization rate is increased.
  • Crystal nucleus For the stratification layer 508, a material of the same system as that of the crystal nucleation layer 53 can be used, and their shape and function are also similar to those of the crystal nucleation layer 103. Note that the crystal nucleation layer 5 0 3 and the crystal nucleation layer 5 0 8 may be formed of the same material, or may be formed of different materials (different compositions), and the third dielectric A fourth dielectric layer 5 0 9 may be provided between the layer 5 0 5 and the light absorption correction layer 5 0 6. In this case, as in the information recording medium 5 9 shown in FIG. 17, the information layer 52 is sequentially laminated from the laser beam incident side, the first dielectric layer 51, the second dielectric layer 50. 2. Crystal nucleation layer 5 0 3, recording layer 5 0 4, third dielectric layer 5 0 5, fourth dielectric layer 5 0 9, light absorption correction layer 5 0 6 and reflecting layer 5 0 7 Be done.
  • the fourth dielectric layer 5 0 9 is a layer having a function similar to that of the first dielectric layer 5 0 1, and materials of similar systems can be used.
  • (Z n S) 8 Q (S i 0 2 ) 2 . (Mo 1%) can be used.
  • (ZnS) 8 . (S I_ ⁇ 2) 2 Q (mo 1% ) has a high refractive index, film formation rate is fast, even mechanical properties ⁇ beauty moisture resistance is a good excellent material, the recording layer 5 0 4 When provided in contact, a part of S is mixed into the recording layer 504 to cause deterioration of the signal quality.
  • the fourth dielectric layer 5 0 9 includes S. But there is no problem.
  • the information recording medium 59 shown in FIG. 17 has a configuration in which the crystal nucleation layer is provided only between the recording layer 54 and the second dielectric layer 50 3, the recording layer 5 may be used. It may be provided only between the fourth and third dielectric layers 5 0 5, or between the recording layer 5 0 4 and the second dielectric layer 5 0 3 and the third dielectric layer 5 0 5 It may be provided between them.
  • the amorphous phase of the irradiated portion can be crystallized by irradiating the amorphous phase of the recording layer 54 with a low power of the laser beam 10 and gradually cooling it. Further, by irradiating the crystal phase of the recording layer 54 with high power with laser beam 10 and quenching it, the crystal phase of the irradiated part can be made into an amorphous phase.
  • the area where signal recording is performed in this way is irradiated with a laser beam 10 of such a power as not to deteriorate the signal, and the signal is reproduced according to the size of the reflected light. According to such a recording and reproducing method, it is possible to record the information signal with high reliability.
  • FIG. 18 is an explanatory view showing a partial cross section of the information recording medium 6 of the present embodiment and a schematic configuration of the electrical information recording and reproducing apparatus.
  • the information recording medium 6 of the present embodiment is an electrical information recording medium capable of recording and reproducing information by application of a current.
  • the information recording medium 6 of the present embodiment has a configuration in which a lower electrode 62, a recording layer 63, a crystal nucleation layer 64 and an upper electrode 65 are stacked in this order on a substrate 61.
  • the material of the substrate 61 it is possible to use a resin substrate such as polycarbonate, glass board, A 1 2 0 3 or the like of the ceramic substrate, the S i substrates or various metal substrates such as of C u like.
  • a resin substrate such as polycarbonate, glass board, A 1 2 0 3 or the like of the ceramic substrate, the S i substrates or various metal substrates such as of C u like.
  • Si substrate is used as the substrate 61.
  • the lower electrode 62 and the upper electrode 65 are electrodes provided to apply current to the recording layer 62 and the crystal nucleation layer 64.
  • the recording layer 63 has a crystalline phase due to the Joule heat generated by the application of the current. It is a material that causes a reversible phase change between the crystalline phase and the amorphous phase, and the phenomenon in which the resistivity changes between the crystalline phase and the amorphous phase is used for information recording.
  • the material of the recording layer 63 the same material as the recording layer 104 described in Embodiment 1 can be used.
  • the crystal nucleation layer 64 is a layer for enhancing the crystallization ability of the recording layer 63 by generating crystal nuclei to enable high-speed recording of information.
  • a material of the crystal nucleation layer 63 the same material as the crystal nucleation layer 103 described in Embodiment 1 can be used.
  • the recording layer 63 and the crystal nucleation layer 64 can be formed by the same method as the method for forming the recording layer 104 and the crystal nucleation layer 103 described in the first embodiment, respectively.
  • the lower electrode 6.2 and the upper electrode 65 are mainly composed of single metallic materials such as Al, Au, Ag, Cu, Pt, or one or more of them.
  • An alloy material to which one or more other elements are appropriately added can be used to improve the moisture resistance or adjust the thermal conductivity.
  • the lower electrode 62 and the upper electrode 65 can be formed by sputtering using a metal base material or alloy base material as a material in an Ar gas atmosphere as a sputtering getter.
  • the electrical information recording and reproducing apparatus 92 in the present embodiment is electrically connected to the information recording medium 6 through the application unit 87.
  • the pulse power supply 90 is connected to this via switch 8 9.
  • a resistor 91 is interposed between the lower electrode 62 and the upper electrode 65.
  • Anti measuring instrument 8 8 is connected.
  • the switch 8 9 is closed and the current pulse is applied between the electrodes (switch 9 1 is open).
  • the temperature of the portion to which the current pulse is applied is maintained at a temperature higher than the crystallization temperature of the material and lower than the melting point for the crystallization time.
  • a relatively higher current pulse is applied in a shorter time than during crystallization to melt the recording layer to a temperature higher than the melting point and then rapidly cool down.
  • the resistance value in the case where the recording layer 63 is in the amorphous phase is ra and the resistance value in the recording layer 63 in the crystal phase is r c, then r a> r c. Therefore, by measuring the resistance between the electrodes with the resistance measuring device 88, it is possible to detect information in two different states, ie, one value.
  • a large-capacity electrical information recording medium 7 as shown in FIG. 19 can be configured.
  • each memory cell 71 of the electrical information recording medium 7 a configuration similar to that of the information recording medium 6 is formed in a minute area. Recording and reproduction of information in each memory cell 71 are performed by designating one word line 72 and one bit line 73 respectively.
  • FIG. 20 shows an example of the configuration of an information recording system using the electrical information recording medium 7.
  • the storage device 93 includes an electrical information recording medium 7 and an addressing circuit 94.
  • the address lines 94 and the bit lines 73 of the electrical information recording medium 7 are respectively specified by the addressing circuit 94, and information can be recorded to and reproduced from the respective memory cells 71.
  • the storage device 93 is electrically connected to an external circuit 95 including at least a pulse power supply 96 and a resistance measuring instrument 97 to record and reproduce information on the electrical information recording medium 7. be able to.
  • the crystal nucleation layer is provided in contact with the recording layer, the crystallization speed of the recording layer can be improved.
  • Example 1 the information recording medium 1 of FIG. 1 is manufactured, and the material of the crystal nucleation layer 103, the erasing rate of the information recording medium 1, the number of times of recording rewrite (repeated rewriting performance), recording storability, and rewriting The relationship with preservation was examined. Specifically, a sample of the information recording medium 1 was manufactured in which the material of the crystal nucleation layer 103 is different. For each of the prepared samples, the erasure rate of the information recording medium 1, the number of times of recording and rewriting, the recording preservation ability, and the rewriting preservation ability were measured. The samples were manufactured as follows.
  • a polycarbonate substrate (diameter 120 mm, thickness 1100 m) on which a guide groove (depth 20 nm, track pitch 0.32 urn) for guiding laser beam 10 was formed was used as substrate 11.
  • an Ag—P d—Cu layer (thickness: 80 nm) as a reflective layer 108
  • an A 1 layer (thickness: 10 nm) as an interface layer 107
  • a fourth dielectric body layer 1 0 6 as Z n S- S I_ ⁇ 2 layer (thickness: about 20 nm, Z n S: 80mo l%, S I_ ⁇ 2: 20mo l%), as a third dielectric layer 1 0 5 S I_ ⁇ 2 - C r 2 ⁇ 3 - Z r ⁇ 2 layer (thickness: 5 nm, S i 0 2 : 2 5mo 1%, C r 2 ⁇ 3: 50 mo 1%, Z r 0 2
  • a UV curable resin is applied on the first dielectric layer 101, and a polybasic sheet (diameter 120 mm, thickness 90 zm) is adhered to the first dielectric layer 101 and rotated.
  • a transparent layer 13 was formed by irradiating the ultraviolet ray to cure the resin.
  • an initialization step was performed to crystallize the recording layer 104 with a laser beam. As described above, a plurality of samples in which the material of the crystal nucleation layer 103 was different were manufactured.
  • the film thicknesses of the fourth dielectric layer 106 and the first dielectric layer 101 are determined strictly by calculation based on the matrix method. Specifically, at these wavelengths, the reflectance R e (%) of the mirror surface portion of the substrate of the information recording medium 1 when the recording layer 104 is in a crystalline phase can be obtained at a wavelength of 405 nm. ⁇ R C ⁇ to fit in the range of 2 5, also, the reflectance at the mirror surface of the substrate of the information recording medium 1 when the recording layer 1 04 is amorphous phase R a (%) is 0 as possible. It was decided to be within the range of 5 ⁇ R a ⁇ 5.
  • the erasure rate was first measured using the recording / reproducing apparatus 81 shown in FIG.
  • the wavelength of the laser beam 10 is 40 5 nm
  • the numerical aperture (NA) of the objective lens 82 is 0.85
  • the linear velocity of the sample at measurement is 5.3 mZs or 10. 6 mZs
  • the shortest mark length is It was 0. 149 111. Also, information was recorded in the group.
  • the erasure rate is the one-to-one modulation of laser beam 10 between P p and P b , and the mark length is 0.149 m (2 T) and 0.67 1 m (9 T) in the (1-7) modulation method.
  • the 2 T signal when the 2 T signal is rewritten as the 9 T signal, using the spectrum analyzer. I decided. Although the erasure rate has a negative value, the larger the absolute value, the better.
  • it is preferably -30 dB or less.
  • the number of times of recording and rewriting is that the laser beam 10 is power modulated between P p and P b , and the mark length in the (1 ⁇ 7) modulation method is 0 ⁇ 149 m (2 T) to 0.5 96 (8 T).
  • the random signal up to) is continuously recorded in the same group, and the front end jitter (jitter at the front end of the recording mark) and the rear end jitter (jitter at the rear end of the recording mark) at each recording rewrite number are time analyzers. It was evaluated by measuring at one point.
  • the upper limit value of the number of recording rewrites was defined as the number of rewrites that increased by 3% with respect to the average jitter value of the first front end jitter and the rear end jitter. Note that P p and P b are
  • the average jitter value was determined to be the smallest.
  • Laser beam 10 is power modulated between P p and P b , and the mark length is 0.197 m (2 T) to 0.5. 596 m (8 T) in the modulation method (1-7).
  • the random signals were continuously recorded in the same group, and the front end jitter and the rear end jitter after the number of times of rewriting 10 were measured by the time analyzer. Thereafter, the sample on which the signal was recorded was left in a constant temperature and humidity chamber under a condition of a temperature of 90 ° C. and a relative humidity of 20% for 100 hours, and the recorded signal was left for 100 hours.
  • the recording preservation was evaluated by measuring and comparing with the jitter value before leaving. In addition, the recorded signal was left for 100 hours, and after rewriting once, the front end jitter and the rear end jitter were measured, and the rewriting preservation property was evaluated by comparing with the jitter value before leaving. .
  • the linear velocity of the sample is 5.
  • Table 1 shows the results for 3 mZ s.
  • Table 2 shows the results when the sample linear velocity is 10. 6 m / s.
  • the recording preservation performance and the rewriting preservation performance were evaluated as ⁇ if the difference between the jitter value before leaving and the jitter value after leaving was less than 2%, and X if 2% or more.
  • the number of times of recording rewrite is 1 000. It turned out to be inadequate with the times.
  • the erase rate at a high transfer rate of the linear velocity of 0.6 m / s and the rewrite retention property are insufficient.
  • the number of times of recording and rewriting was also insufficient with 100 000 times.
  • Samples 1a, 1b, 1-c, 1 _ (1 and 1 e for 1 and 1 e containing a Dy in crystalline nucleation layer 103), even for low transfer rates with a linear velocity of 5.3 mZ s Even in the case of a high transfer rate of 106 mZs, it was found that the erasure rate, the repeated rewriting performance, the record keeping property and the rewrite keeping property are both good.
  • a material containing at least one of B i or T e and at least one of M 1 other than Dy, and at least one of B i (Ml) or Te (M l) The same applies when using a material containing at least one of B i T e (M l) 2 , B i 2 T e (M l), or B i T e 2 (M l)
  • the crystal nucleation layer 103 is disposed at the interface with the recording layer 104 and the third dielectric layer 105, or the information recording medium of FIG.
  • a sample is similarly prepared also in the case where crystal nucleation layers 103 and 1 09 are disposed on both sides of the recording layer 1 04 as in 15, and the erase rate and the number of times of recording rewrite are similarly made for each sample. The same results were obtained when the recordability and rewriteability were measured.
  • the material of the crystal nucleation layer 203 and the crystal nucleation layer 303 and the first information layer of the information recording medium 3 And the second information layer 3 2 2 We examined the relationship between the erasure rate, the number of times of recording and rewriting, the recording preservation ability, and the rewriting preservationability of each. Specifically, samples of the information recording medium 3 were prepared in which the materials of the crystal nucleation layer 203 and the crystal nucleation layer 303 were different. The sample prepared, the first information layer 3 2 E and the second information layer 3 2 2 each erasure of the information recording medium 3, the recording number of times of rewriting, was measured archival characteristic and archival overwrite property.
  • a polycarbonate substrate (diameter 120 mm, thickness 1 10 0) is formed with a guide groove (depth 20 nm, track pitch 0.3 m) for guiding laser beam 10 as substrate 31.
  • a guide groove depth 20 nm, track pitch 0.3 m
  • an Ag—P d—C u layer (thickness: 80 nm) as a reflective layer 308, an A 1 layer (thickness: 10 nm) as an interface layer 300.
  • fourth dielectric layer 3 0 Z n S- S I_ ⁇ two layers as 6 (thickness: 2 2 nm, Z n S : 8 0 mo l%, S i 0 2: 2 Omo 1%)
  • third As a dielectric layer 305 S i 2 2 ⁇ C r 2 0 3 ⁇ Z r 2 2 (thickness: 5 nm, S i i 2 : 2 5 mo 1, C r 2 0 3 : 5 0 mo 1 %, Z r 2 2 : 2 5 mol%)
  • Recording layer 3 0 4 as 06 22 3 13 2 layers 6 2 5 layers (thickness: 10 nm), crystal nucleation layer 3 0 3 (thickness: 1) C r 2 ⁇ 3 - - nm), S i ⁇ 2 as a second dielectrics layer 3 0 2 Z R_ ⁇ 2 layer (thickness: 5 nm, S i 0 2 : 2 5mo l%, C r
  • the thicknesses of the fourth dielectric layer 306 and the first dielectric layer 301 are calculated according to the matrix method, and at a wavelength of 405 nm, the recording layer 304 is in the crystalline phase.
  • the amount of reflected light is larger than the amount of reflected light when the recording layer 304 is in the amorphous phase, the change in the amount of reflected light is more between when the recording layer 304 is in the crystalline phase and when it is in the amorphous phase. Large, and recording layer 3 0 4 It was determined strictly so that the light absorption efficiency of
  • a UV curable resin is applied on the first dielectric layer 301, and a transfer substrate having a guide groove (depth 20 nm, track pitch 0.32 / m) formed thereon is placed thereon. By adhering and rotating, a uniform resin layer was formed. After curing this resin, the transfer substrate was peeled off. By this process, an optical separation layer 34 is formed in which a guide groove for guiding the laser beam 10 is formed on the first information layer 3 2 i side.
  • T i 0 2 layer as the transmittance adjusting layer 20 7 (thickness: 20 nm), as the reflective layer 20 6 Ag- P d- C u layer (thickness: 1 0 nm ),
  • the third dielectric layer 205 S i 2 2 -C r 2 O 3 -Z r O 2 layer (thickness: 10 nm, S i 2 2 : 20 mo 1%, C r 2 0 3
  • a recording layer 204 Ge 22 S b 2 T e 25 layer (thickness: 6 nm), nucleation layer 20 3 (thickness: 1 nm): 30 mo 1%, Z r O 2: 5 Omo 1% )
  • the second dielectric layer 202 S i 0 2 _C r 2 3 3 3 3 Z Z r 0 2 layer (thickness: 5 nm, S i 0 2 : 3 5 mo 1 C r 2 3 3 3 : 30 mol
  • a UV curable resin is applied on the first dielectric layer 201, and a polycarbonate sheet (diameter 120 mm, thickness 90 m) is brought into close contact with the first dielectric layer 201 and rotated uniformly.
  • the resin was cured by irradiation with ultraviolet light to form a transparent layer 23.
  • an initialization step of crystallizing the entire surface of the recording layer 304 of the second information layer 322, and an initialization step of crystallizing the entire surface of the recording layer 204 of the first information layer 32 are described. I went in order. As described above, a plurality of samples having different crystal nucleus generation layers 203, 303 were manufactured.
  • Example 3 shows the measurement results when the linear velocity is 5.3 mZs
  • Table 4 shows the measurement results when the linear velocity is 10. 6 mZs.
  • the recording preservation property and the rewriting preservation property when the difference between the jitter value before leaving and the jitter value after leaving was less than 2%, it was evaluated as ⁇ , and when it was 2% or more, it was evaluated as X. (Table 3)
  • the crystal nucleation layer 2 08 is a recording layer.
  • the crystal nucleation layer 30 9 is disposed between the recording layer 304 and the third dielectric layer 305, which is disposed at the interface between the 204 and the third dielectric layer 205, as shown in FIG.
  • the crystal nucleation layer 203, 208 is disposed on both sides of the recording layer 204, and the crystal nucleation layer 303, on both sides of the recording layer 304,
  • Samples were prepared in the same manner as in the case where 30 9 was placed, and the erasure rate, the number of times of recording rewrite, the recording storability, and the storability of rewriting were similarly measured for each sample, and similar results were obtained. It was done.
  • Example 3 a sample in which only the first information layer 42i is formed in the information recording medium 4 of FIG. 10 is produced, and a material of the crystal nucleation layer 203 and a first of the information recording medium 4 are prepared.
  • a material of the crystal nucleation layer 203 and a first of the information recording medium 4 are prepared.
  • samples with different crystal nucleation layer 203 materials are prepared, and for each sample, the erasure rate of each of the first information layers 42 i of the information recording medium 4, the number of recording rewrites, the record keeping property, Rewriteability was measured.
  • the samples were manufactured as follows. First, a polycarbonate substrate (diameter 120 mm, thickness) in which a guide groove (depth 40 nm, track pitch 0.43 A urn) for guiding laser beam 10 was formed as substrate 41 (600 m) was prepared. Then, the first dielectric layer 201 is provided with a layer of Z n S-S i 0 2 (thickness: 40 nm, Z n S: 80 mol%, S i 0 2) as the first dielectric layer 201.
  • an ultraviolet curable resin is applied on the transmittance adjusting layer 207, the dummy substrate 45 (diameter 120 mm, thickness 600 x m) is adhered to the transmittance adjusting layer 207, and a uniform resin layer is formed by spin coating. After that, the resin layer was irradiated with an ultraviolet ray and cured to form an adhesive layer 44. Thus, the transmittance adjusting layer 20 7 and the dummy substrate 45 were adhered via the adhesive layer 44. Finally, an initialization step of crystallizing the entire surface of the recording layer 204 was performed. As described above, a plurality of samples having different materials for the crystal nucleation layer 203 were manufactured. In the present example, each sample was prepared using the same material as that of Example 2 as the material of the crystal nucleation layer 203.
  • the erasure rate, the number of times of recording rewrite, the recording storability, and the rewrite storability of the first information layer 42 were measured by the same method as in Example 1.
  • the wavelength of the laser beam 10 is 40 5 nm
  • the numerical aperture (NA) of the objective lens 82 (see FIG. 13) is 0.65
  • the linear velocity of the sample at the time of measurement is 8.6 m / s or 1 7.
  • 2 mZ s the shortest mark length is 0. 294 m
  • Example 2 when the crystal nucleation layer 203 contains at least one element selected from B i and T e and M 1, the erasure rate, the number of times of recording rewriting, the recording preservability, and the rewriting preservation It has been confirmed that an information recording medium with good properties can be obtained.
  • the crystal nucleation layer 208 is disposed at the interface between the recording layer 204 and the third dielectric layer 205 as shown in the information recording medium 46 of FIG. 11, or the information recording medium 47 of FIG.
  • samples are prepared similarly in the case where the crystal nucleation layers 203 and 208 are disposed on both sides of the recording layer 204, and the erasure rate, the number of times of recording rewrite, the recording storability, and the like are similarly prepared for each sample. The same results were obtained when the storage stability was measured.
  • the recording layer 1 04, 204, 3 04 in the information recording medium in Example 1-3 is represented by a set Narushiki G e a S b b T e 3 + a, G e a B i b T e 3 + a Or a material represented by G e a (S b-B i) b T e 3 + a in which a part of S b of G e a S b b T e 3 + a is replaced by B i
  • the erasure rate, the number of times of recording and rewriting, the recordability, and the rewriteability of recording were similarly measured in the case where the test was conducted. The same results as in Examples 1 to 3 were obtained also in these cases.
  • the optical change of the recording layer can be made large, and an information recording medium with a large signal amplitude can be produced.
  • a ⁇ 50 the melting point of the recording layer did not become too high, and good recording sensitivity was obtained.
  • 2 ⁇ b ⁇ 4 better recording and rewriting performance was obtained.
  • the recording layers of the information recording mediums of Examples 1 to 3 have the composition formula (G e ⁇ (M 3)) a S b b T e 3 + a , (G e ⁇ (M 3) a) a material represented by ab i b T e 3 + a , or (G e ⁇ (M 3)) a S b b T e 3 + a
  • the erasure rate, the recording rewrite frequency The number, record keeping ability and rewrite keeping ability were similarly measured.
  • the recording layers of the information recording mediums of Examples 1 to 3 are represented by the composition formula (Ge a S b b T e 3 + a ) 100 - c (M 4) c , (G e a B i b A material represented by Te 3 + a )! O o-c (M 4) c , or (G e a S b b T e 3 + a ) 10 .
  • Example 7 When the recording layer of the information recording medium of Examples 1 to 3 is formed using the material represented by the composition formula (S bdTe ⁇ od) 100 — e (M 5) e The erasure rate, the number of times of recording and rewriting, the recordability, and the rewriteability were similarly measured. Also in these cases, the same results as in Examples 1 to 3 were obtained. As M 5, at least one element selected from Ge, Ag, In, Sn, Se, Bi, Au, and Mn was used. Furthermore, in the case of 50 ⁇ d, the crystallization ability of the recording layer is high, and the erasure rate is improved. Also, in the case of d ⁇ 95, sufficient recordability was obtained because the crystallization ability did not become too high. In the case of 0 ⁇ e ⁇ 20, good recording and rewriting performance was obtained.
  • the erasure rate, the number of times of recording and rewriting, the recording storability and the rewriting storability were evaluated. It measured similarly to the case. The same results as in Example 1 were obtained in these cases, but when the film thickness of the recording layers 104 and 304 is 6 nm or more, the crystallization ability of the recording layers 104 and 304 is improved. Better erase rate was obtained. Further, when the film thickness is 14 nm or less, since the amorphization becomes easy, better recording sensitivity is obtained.
  • the crystallization ability is improved when the film thickness of the recording layer 204 is 3 nm or more.
  • the thickness is 9 nm or less, the transmittance of the first information layer 32 does not decrease significantly, and the recording sensitivity of the second information layer 32 2 is also sufficient. was gotten.
  • the transmittance adjusting layer 2 0 7 of the information recording medium of Example 2 is represented by T i o 2 , Z r o 2 , Z n o, Nb 2 0 5 , T a 2 0 5 , S i 0 2 , A 1 2 o 3 , B i 2 0 3 , C r 2 0 3 , S r ⁇ 0, T i ⁇ N, Z r ⁇ N, Nb_N, T a ⁇ N, S i ⁇ N, Ge ⁇ N, C r i N, When formed using a material containing at least one selected from Al-N, Ge-Si-N, Ge-Cr-1N, and ZnS, the erasure rate, the number of times of recording rewriting, and the recording Preservability and rewriteability were similarly measured. The same results as in Example 2 were obtained also in these cases.
  • Example 12 the information recording medium 6 of FIG. 18 was manufactured, and the phase change due to the application of the current was confirmed.
  • a Ge 2 S b 2 T e 5 is an area 5 ⁇ mX 5 m with a thickness 0 ⁇ ⁇ 1 ⁇ m, B i T e D y 2 as crystal nucleation layer 64, area 5 mX 5 m, thickness 3 nm, Pt as upper electrode 65, area 5 mX 5 m, thickness 0.1 m
  • the layers were sequentially stacked by sputtering.
  • an Au lead wire was bonded to the lower electrode 6 2 and the upper electrode 65, and the electrical information recording / reproducing apparatus 92 was connected to the information recording medium 6 through the application unit 87.
  • a pulse power source 90 is connected between the lower electrode 62 and the upper electrode 65 via the electrical information recording / reproducing device 92 via a switch 8 9, and further, the resistance value due to the phase change of the recording layer 6 3.
  • a change in the voltage was detected by a resistance measuring device 8 8 connected via a switch 9 1 between the lower electrode 6 2 and the upper electrode 6 5.
  • a current pulse with an amplitude of 2 mA and a pulse width of 80 ns is applied between the lower electrode 62 and the upper electrode 65.
  • a current pulse with an amplitude of 10 mA and a pulse width of 50 ns is applied between the lower electrode 62 and the upper electrode 65.
  • a current pulse with an amplitude of 10 mA and a pulse width of 50 ns is applied between the lower electrode 62 and the upper electrode 65.
  • the recording layer 63 has an amorphous phase unless a current pulse having a pulse width of 100 ns or more is applied. It did not transition to the crystalline phase.
  • the crystal nucleation layer 64 also contributes to the improvement of the crystallization speed of the recording layer 63 in the information recording medium in which the phase change is caused by the electrical means.
  • Example 13 with respect to the information recording medium 5 of FIG. 14, a plurality of samples in which the crystal nucleation layer 5 was produced by variously combining B i and the element M 1 Prepared.
  • the substrate 51 a substrate made of polycarbonate resin having a diameter of 12 cm and a thickness of 0.6 mm was used.
  • a spiral groove having a track pitch of 0.615 m and a group depth of 50 nm was formed.
  • the other surface of the substrate 51 was a flat surface.
  • the first dielectric layer 50 1 has a thickness of 130 nm and the second dielectric layer 52 has a thickness of 2 nm on the surface of the substrate 51 on which the grooves (land portions 5 and group portions 56) are formed.
  • the crystal nucleation layer 503 has a thickness of 1 nm
  • the recording layer 504 has a thickness of 8 nm
  • the third dielectric layer 505 has a thickness of 55 nm
  • the light absorption correction layer 506 has a thickness of 40 nm
  • the reflective layer A film of 5 0 7 was formed in this order with a thickness of 80 nm.
  • the first dielectric layer 501 is (Z n S) 8 . (S i 0 2 ) 2 . It was formed using a sputtering target of (mo 1%).
  • the second dielectric layer 502 is (Z r 2 2 ) 25 (S i 0 2 ) 25 (C r 2 3 3 ) 5 . It was formed using the evening get (mo 1%).
  • the crystal nucleation layer 53 was formed using a sputtering target of BiLa, BiPr, BiGd, BiTb, and BiDy.
  • the recording layer 504 was formed using a sputtering target of Ge 8 S b 2 T e.
  • the third dielectric layer 50 5, (Z r 0 2) 28 . 6 (S i 0 2) 2 8. 6 (C r 2 ⁇ 3) 21. 4 (L a F 3) 21. 4 (mo 1 %) Sputtering targets were used.
  • the light absorption correction layer 506 is G e 8 .
  • C r 2 The sputtering target was used.
  • the reflective layer 507 was formed using a sputtering getter of Ag 98 P d ⁇ C u ⁇ ⁇ .
  • an adhesive layer 53 made of an ultraviolet curable resin was applied by spin coating, and was adhered to the dummy substrate 54 by irradiating it with ultraviolet light. Furthermore, since the recording layer 5 04 at the time of formation is an amorphous phase, it is possible to irradiate a laser beam from the substrate 51 side. Therefore, an initialization step was carried out to make the entire surface of the recording layer 504 into a crystalline phase.
  • the sample prepared in this example was used to record random signals under the conditions of a linear velocity of 8.2 m / s and 20.5 m // s. I went 0 times.
  • the random signal is a signal in which the shortest mark (3 T) is 0.42 m and the longest mark (11 T) is 1.54 m, and signals of 3 T to 11 T are randomly arranged. This corresponds to a capacity of 4.7 GB in the information recording medium 5 of this embodiment.
  • the tracks on which such recordings were made were reproduced, and the jitter was measured for each sample.
  • the jitter measured in this embodiment is the average jitter of the front end jitter and the rear end jitter of the recording mark.
  • Table 5 shows the jitter of the group portion 56 at a linear velocity of 8.2 mZs and the dull-up at a linear velocity of 2.5 m / s, which were measured for each sample in which the material of the crystal nucleation layer 503 was different.
  • the jitter of part 56 is shown.
  • Sample 1 3 — f is a comparative example, and is an information recording medium in which S nTe is stacked as the crystal nucleation layer 503 on the recording layer 504.
  • the crystal nucleation layer 503 formed of a material composed of B i and the element Ml increases the crystallization rate of the recording layer 504, so that the phase is changed to the crystal phase in a shorter time. Therefore, even if the linear velocity is high (linear velocity: 2.5 mZs), good jitter can be maintained.
  • Example 14 each sample 1 3-a to 1 3-f shown in Example 1 3 was stored for 50 hours in a high-temperature environment at a temperature of 80 ° (20% humidity) before storage in a high-temperature environment. For each sample, 10 recordings of random signals were performed at a linear velocity of 8.2 mZs and 20.5 m / s.
  • Table 6 shows the difference between the recording preservation (archival value) and rewriting preservation property (archival overwrite) jitters measured after storage in a high temperature environment and the jitter measured before storage in a high temperature environment (storage Jitter after Jitter) is shown.
  • the archival jitter was measured only at a low speed (a linear velocity of 8.2 m / s). This is because the archival jitter is worse as the recording speed is slower, so a linear velocity of 20.5 mZs, which is faster than a linear velocity of 8.2 m / s, is more jitter than at a linear velocity of 8.2 mZs. It is because it is considered that the value is good.
  • the jitter of the archival over-write was measured only at high speed (linear speed: 2.5 m / s). This is because the jitter of a full power over-write becomes worse as the recording speed increases, so a linear velocity of 8.2 m / s, which is faster than a linear velocity of 20.5 m / s, is a linear velocity of 20.5 This is because it is considered that the jitter value is better than that at m / s.
  • the one-key satellite and the archival overlay The method of measuring the jitter of the
  • the jitter of the substrate after storage in a high temperature environment was measured by taking out a sample stored in a high temperature environment and reproducing the track recorded before storage at the same linear velocity.
  • the satellite of the Keival Overwrite will be taken out of the sample stored in a high temperature environment, and once with a random signal at the same linear velocity as the track recorded before storage. It was recorded and measured by reproducing this signal.
  • Samples 1 41 a to 1 l: f showed good recording and storage characteristics, with a difference of 2% or less from before storage even after storage under high temperature environment.
  • the sample 1 4 1 a to 14 1 e in which the crystal nucleation layer 5 0 3 is formed of the material consisting of B i and the element M 1 has a difference of jitter within 2 %.
  • the sample showed a good rewrite retention, and for sample 1-4 f using sn Te, the difference in jitter was as large as 5.1%, and it was confirmed that a good rewrite retention could not be obtained.
  • the crystal nucleation layer 53 is formed of a material composed of B i and the element M 1, a favorable cavity with a linear velocity of 8.2 m / s (low velocity), Good kavalover over at linear speeds of 2 0,5 m / s (high speed) It was confirmed that it was possible to make it compatible with one light.
  • the amorphous phase of the recording layer 504 changes from the energy state before storage to a different energy state, and becomes a more stable energy state. As described above, when the amorphous phase is in a more stable energy state, the amorphous phase of the recording layer 504 becomes difficult to crystallize.
  • the sample 1 4-a to l 4 _e in which the crystal nucleation layer 50 3 was formed of the material consisting of B i and the element M 1 was amorphous after storage. The quality phase can be easily crystallized, and good rewrite and preservation can be obtained.
  • the value of the jitter was also measured for each sample after storage in a high temperature environment for up to 500 hours. The reason is that the cayval tends to deteriorate as the storage time increases.
  • a sample 14 1 a 1 to 14 1 e using a crystal nucleation layer 50 3 formed of a material of a combination of B i and an element M 1 The data showed excellent record keeping, with a difference of less than 1% relative to the pre-storage jig.
  • Example 15 B i Te 2 Dy was used for the crystal nucleation layer 503, and a plurality of samples having different thicknesses of the crystal nucleation layer 503 were produced.
  • the first dielectric layer 50 sputtering data one target of (Z n S) 80 (S I_ ⁇ 2) 20 (mo 1%) It formed using.
  • the second dielectric layer 502 was formed using a sputtering target of (Z r 2 2 ) 25 (S i 2 2 ) 25 (C r 2 0 3 ) 50 (mo 1%).
  • the nucleation layer 53 is B i 25 T e 5 .
  • the sputtering layer of Dy 25 was formed using a sputtering target of Ge 8 S b 2 T ei.
  • the light absorption correction layer 506 is Ge 8 Q Cr 2 . Was formed using a sputtering target.
  • Reflective layer 50 7 are eight 8 98 3 1 (?: The form form using 1 1 of the sputtering evening Getto.
  • the prepared sample was recorded 10 times of random signals at a linear velocity of 8.2 m / s and 20.5 mZs using an optical system with a wavelength of 650 nm and an NA of 0.6.
  • the random signal has the same conditions as in Example 13. Ru.
  • the track on which this recording was made was played back and the jitter was measured.
  • the jitter is an average jitter of the front end jitter and the rear end jitter of the recording mark.
  • Table 7 shows the jitter of the groove 56 at a linear velocity of 8.2 m / s and the jitter of the groove 56 at a linear velocity of 20.5 m / s with respect to the film thickness of the crystal nucleation layer 503. Indicates
  • the film thickness of the crystal nucleation layer 53 is a good jitter value for both of the linear velocity of 8.2 mZs and 2 0.5 mZs. was gotten.
  • Example 16 a sample in which a crystal nucleation layer 508 was provided between the recording layer 504 and the third dielectric layer 505 as shown in FIG. 15 was produced.
  • Nucleation layer 508 is formed using a B i 2 T e Dy
  • the recording layer 5 04 Ge - was replaced by S 13 _ Ding 6 over part 3 n or B i Ge - S nS b -T e , G e ⁇ S b ⁇ B i _Te, and G e ⁇ S n ⁇ S b ⁇ B i ⁇ T e.
  • each layer formed on the substrate 51 is the first dielectric layer 501. (Z n S) 8 . (S i 0 2 ) 2 . It formed using the sputtering target of (mol%).
  • the second dielectric layer 50 2 is (Z r 2 2 ) 25 (S i 2 2 ) 25 (C r 2 0 3 ) 5 . It formed using the sputtering target of (mol%).
  • the recording layer 504 was formed on the second dielectric layer 502.
  • the composition ratio of S at 8 atomic% in (G e ⁇ S n) 8 S b 2 T e, and the content ratio of B in Ge 8 (S b ⁇ B i) sT eu A composition of 4 atomic%, (Ge-S n) 8 (S b — B i) 2 T e 1 X , containing 3 atomic% of S n and 4 atomic% of B i was used.
  • the crystal nucleation layer 508 was formed using a sputtering target of Bi 5 Q T e 25 Dy 25 (at.%).
  • third dielectric layer 50 5, (Z r 0 2) 28 was formed using a sputtering target of Bi 5 Q T e 25 Dy 25 (at.%).
  • the light absorption correction layer 506 is G e 8 .
  • C r 2 It formed using the sputtering evening get.
  • the reflective layer 50 7 was formed using a sputtering target of Ag 98 P d 1 Cu 1 .
  • the prepared sample was recorded 10 times of random signals at a linear velocity of 8.2 mZs and 20.5 mZs using an optical system with a wavelength of 650 nm and an NA of 0.6.
  • the random signal is under the same conditions as in Example 13.
  • the track on which this recording was made was played back and the jitter was measured.
  • the jitter is an average of the front end jitter and the rear end jitter of the recording mark.
  • Table 8 shows the jitter of the group portion 56 at a linear velocity of 8.2 m / s and the jitter of the group portion 56 at a linear velocity of 20.5 m / s with respect to the recording layer 5 04 of each sample. (Table 8)
  • Example 17 in the information recording medium 5 shown in FIG. 14, a plurality of samples having different film thicknesses of the crystal nucleation layer 503 and the recording layer 504 were manufactured.
  • B i T e 2 Dy is used for the crystal nucleation layer 50 3
  • G e-S b-B i-Te is used for the recording layer 504 in which a part of G e -S b T e is replaced with B i .
  • each layer formed on the substrate 51 is formed by using a (Z n S) 80 (S i 0 2 ) 20 (mo 1%) sputtering target. did.
  • the second dielectric layer 50 2 was formed using a sputtering target of (Z r 2 2 ) 25 (S i 0 2 ) 25 (C r 2 0 3 ) so (mo 1%).
  • the light absorption correction layer 506 is G e 8 . C r 2 It formed using the (at.%) Sputtering target.
  • the reflective layer 507 was formed using a sputtering target of AggsPdiCiiiCat.%).
  • the film thickness of the crystal nucleation layer 53 was set to 0.5 nm, 1.O nm, and 1.5 nm, with the film thickness of the recording layer 504 fixed at 8 nm. Further, the film thickness of the recording layer 54 was prepared to be 6 nm, 8 nm, and 12 nm, with the film thickness of the crystal nucleation layer 53 fixed at 1.5 nm.
  • Example 1-7 The sample prepared in Example 1-7 had a linear velocity of 8.2 m / s, 20.5 / s, 32.8 m / s using an optical system with a wavelength of 650 nm and an NA of 0.6.
  • the random signal was recorded 10 times under the condition of s.
  • the random signal is under the same conditions as in Example 13.
  • storage was carried out for 50 hours in a high temperature environment at a temperature of 80 ° C. and a humidity of 20% in the same manner as in Example 14.
  • Table 9 shows the archival values of the group part 56 measured after storage in a high temperature environment at linear velocities of 8.2 m / s, 2.5 m / s, and 3 2.8 m / s. Jitter and difference of jitter of group 56 light over the light of group 1-6 and jitter measured before storage under high temperature environment (jitter before storage of jitter after storage) are shown. Jitter is the average jitter of the leading edge jitter of the recording mark and the trailing edge jitter of the recording mark.
  • Example 14 The same measurement method as in Example 14 was used as the method of measuring jitter of archival caval and archival overlap. (Table 9)
  • Example 18 As shown in FIG. 16, crystal nuclei were formed on both sides of the recording layer 504.
  • the sample which formed stratification 50 3,508 was produced.
  • B i 2 T e Dy is used, and in the recording layer 504, G e ⁇ S n in which part of G e — S b-T e is replaced with S n or B i — S b — T e, G e — S b — B i — T e, Ge — S n S b B i — T e was used.
  • each layer formed on the substrate 51 is made of a first dielectric layer 50 1 using a sputtering set of (Z n S) 80 (S i 2 2 ) 20 (mo 1%) It formed.
  • the second dielectric layer 502 was formed using a sputtering target of (Z r 2 2 ) 25 (S i 2 2 ) 25 (C r 2 3 3 ) 50 (mo 1%).
  • the crystal nucleation layer 50 3 was formed on the second dielectric layer 502.
  • Nucleation layer 5 03 were formed using a sputtering target of B i 5 Q T e 25 Dy 2 5 (at.%).
  • the recording layer 504 was formed on the crystal nucleation layer 50 3.
  • the composition ratio of S at 8 atomic% in Ge-S r sS bsT eu, and the content ratio of B i in Ge 8 (S b-B i) 2 T ei is 4 atoms
  • the composition of (Ge-S n) 8 (S b -B i) 2 T e has a composition ratio of 3 atomic% of S n and 4 atomic% of B i.
  • the crystalline nucleation layer 508 is B i 5 . It formed using the sputtering set of Te 25 Dy 25 .
  • the reflective layer 507 was formed using a sputtering target of Ag 98 P d C u.
  • the prepared sample recorded random signals under the conditions of a linear velocity of 8.2 m / s and 20.5 m / s using an optical system with a wavelength of 6 50 nm and an NA of 0.6. I did 10 times.
  • the random signal is under the same conditions as in Example 13.
  • the track on which this recording was made was played back and the jitter was measured.
  • the jitter is an average jitter of the front end jitter and the rear end jitter of the recording mark.
  • Table 10 shows the jitter at a linear velocity of 8.2 m / s and the jitter at a linear velocity of 2.5 m / s with respect to the recording layer 504 of each sample.
  • Example 19 as in the information recording medium 5 9 shown in FIG. 17, the fourth dielectric layer 5 0 9 is further interposed between the third dielectric layer 5 0 5 and the light absorption correction layer 5 0 6.
  • Two samples were prepared, which were provided and different in the materials of the second dielectric layer 502 and the third dielectric layer 500. In these samples, 4 dielectric layers 10 5 (Z n S) 8 . (Si 2 2 ) 2 . I used (mo 1%).
  • B i T e Dy 2 is used for the crystal nucleation layer 503, and G e-S b-B i-T e in which a part of G e-S b-T e is replaced with B i for the recording layer 504 It was formed using
  • the first dielectric layer 50 1 is (Z n S) 80 (S i 2 2 ) 2 . It formed using the (mo 1%) sputtering target.
  • the second dielectric layer 502 was formed using a sputtering target of (Z r 2 2 ) 25 (S i 2 2 ) as (C r 2 0 3 ) so (mo 1).
  • a crystal nucleation layer 53 was formed on the second dielectric layer 502.
  • the nucleation layer 503 was formed using a sputtering target of B i 25 T e 25 Dy 5 Q.
  • the recording layer 50 the recording layer 50
  • a third dielectric layer 505 was formed.
  • the third dielectric layer 50 5 is formed of (Z r) 2 ) 25 (S i 2 2 ) 25 (C r 2 3 3 ) so (mo 1%), (H f 0 2 ) 25 (S i 0) 2) 25 (C r 2 0 3) 5. It formed using the (mo 1%) sputtering target.
  • a fourth dielectric layer 500 is formed.
  • the fourth dielectric layer 509 is (Z n S) 80 (S i 2 2 ) 2 . It was formed using a (mo 1%) sputtering target.
  • the light absorption correction layer 506 is G e 8 .
  • C r 2 The sputtering target was used.
  • the reflective layer 5 0 7 was formed using a sputtering getter of Ag 98 P d x C u ⁇ .
  • the prepared sample was recorded 10 times of random signals at a linear velocity of 8.2 mZs and 20.5 mZs using an optical system with a wavelength of 650 nm and an NA of 0.6.
  • the random signal is under the same conditions as in Example 13.
  • the track on which this recording was made was played back and the jitter was measured.
  • Jitter is It is the average jitter of the front end jitter and the rear end jitter of the recording mark.
  • Table 11 shows the jitter at a linear velocity of 8.2 mZ s and the jitter at a linear velocity of 2.5 m / s for the respective recording layers 54.
  • the melting point of the crystal nucleation layer is high, the thermal stability is good, the rewriting at a high transfer rate and the storage stability at a low transfer rate And an information recording medium having good repetitive rewriting performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

本発明の情報記録媒体は、基板と、前記基板上に配置された情報層とを含んでいる。情報層は、光学的手段及び電気的手段の少なくとも一方によって結晶相と非晶質相との間で可逆的な相変化を起こす記録層と、Bi及びTeから選ばれる少なくとも一つの元素とSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる少なくとも一つの元素(M1)とを含み、記録層に接して設けられた少なくとも一つの結晶核生成層と、を含んでいる。

Description

明 細 書 情報記録媒体とその製造方法
技術分野
本発明は、 光学的にまたは電気的に情報を記録、 消去, :き換え、 再 生する情報記録媒体とその製造方法に関するものである c 背景技術
レーザビームを用いて光学的に情報を記録、 消去、 書き換え、 再生す る情報記録媒体として相変化形光学的情報記録媒体がある。 相変化形光 学的情報記録媒体への情報の記録、 消去、 書き換えには、 その媒体に含 まれる記録層が結晶相と非晶質相との間で可逆的に相変化を生じる現象 を利用する。 一般に、 情報を記録する場合は、 高パヮ一 (記録パワー) のレーザビームを照射して記録層を溶融して急冷することによって、 照 射部を非晶質相にして情報を記録する。 一方、 情報を消去する場合は、 記録時より低パワー (消去パワー) のレーザビームを照射して記録層を 昇温して徐冷することにより、 レーザビーム照射部を結晶相にして前の 情報を消去する。 したがって、 相変化形光学的情報記録媒体では、 高パ ワーレベルと低パワーレベルとの間でパヮ一を変調させたレーザビーム を記録層に照射することによって、 記録されている情報を消去しながら 新しい情報を記録する、すなわち情報を書き換えることが可能である(例 えば、 角田義人他 「光ディスクストレージの基礎と応用」 電子情報通信 学会編、 1 9 9 5年、 第 2章を参照。 ) 。
また、 レーザビームを照射するかわりに、 電流の印加により発生する ジュール熱によって記録層の相変化材料を状態変化させて情報を記録す る相変化形電気的情報記録媒体もある。 この相変化形電気的情報記録媒 体は、 電流の印加により発生するジュール熱によって記録層の相変化材 料を結晶相 (低抵钪) と非晶質相 (高抵抗) との間で状態変化させ、 結 晶相と非晶質相との間の電気抵抗の違いを検出して情報として読みとる ものである。 電極に挟み込んだ非晶質相の記録層に電流を徐々に流して いくと、 ある閾電流 ( t h r e s h o l d c u r r e n t) で記録層 が結晶相に相変化し、 電気抵抗が急激に低下する。 また、 結晶相の記録 層に短時間幅の大電流パルスを印加することによって、 記録層を溶融 · 急冷して高抵坊の非晶質相に戻すこともできるため、 書き換え可能な情 報記録媒体として用いることができる。 結晶相と非晶質相との間の電気 抵抗の違いは、 通常の電気的手段によって簡単に検出可能であるから、 結晶相と非晶質相との間で可逆的に相変化を生じる記録層を用いること によって、 書き換え可能な情報記録媒体が得られる (例えば、 菊池誡監 修 「アモルファス半導体の基礎」 ォ一ム社、 1 982年、 第 8章参照) 相変化形光学的情報記録媒体の一例としては、 発明者らが商品化した 4. 7 GB/D VD— RAMが挙げられる。 この 4. 7 GB/D VD- RAMは、 図 2 1の情報記録媒体 1 0 0 0に示すように、 基板 1 00 1 上に、 レーザビーム 1 0の入射側から見て、 第 1誘電体層 1 0 02、 第 2誘電体層 1 00 3、 結晶核生成層 1 0 04、 記録層 1 0 0 5、 第 3誘 電体層 1 006、 第 4誘電体層 1 0 07、 光吸収補正層 1 0 08及び反' 射層 1 009がこの順に積層された 8層構造の情報層 1 0 1 0を有して いる。 情報層 1 0 1 0は、 接着層 1 0 1 1によりダミー基板 1 0 1 2と 貼り合わされている。
第 1誘電体層 1 002と第 4誘電体層 1 00 7は、 光学距離を調節し て記録層 1 00 5への光吸収効率を高め、 結晶相と非晶質相との反射率 変化を大きくして信号振幅を大きくする光学的な働きと、 記録時に高温 となる記録層 1 0 0 5から熱に弱い基板 1 00 1及びダミー基板 1 0 1 2等を靳熱する熱的な働きがある。 一般的に第 1誘電体層 1 00 2及び 第 4誘電体層 1 007に使用されている 80mo l % Z n S— 20mo 1 % S i 02の混合物 (以下、 (Z n S) 8。 (S i 02) 2。 (mo l % ) と表記する場合がある。 ) は透明且つ高屈折率であり、 低熱伝導率で 断熱性も良く、 機械特性及び耐湿性も良好な優れた誘電体材料である。 結晶核生成層 1 004には、 記録層 1 00 5に接して設けることによ り記録層 1 00 5の結晶化を促進する材料である S η— T eや P b— T eを用いる。 これにより、 情報記録媒体 1 000の信号振幅を低下させ ること無く、 且つ記録保存性を確保して記録層の結晶化能を高め、 初期 の記録 ·書き換え性能のみならず、 優れた記録保存性 (記録した情報の 長期保存後の再生性能) 、 書き換え保存性 (長期保存後の記録 ·書き換 え性能) を実現している (例えば、 特開 200 1— 27 3 6 7 3号公報 参照) 。
記録層 1 00 5には、 Ge T e—S b2T e 3ライン上の擬ニ元系の相 変化材料が用いられており、 優れた繰り返し書き換え性能が実現されて いる。
第 2誘電体層 1 003と第 3誘電体層 1 00 6は、 第 1誘電体層 1 0
02と記録層 1 00 5との間、 及び第 4誘電体層 1 00 7と記録層 1 0 0 5との間で生じる物質移動を防止する機能を有する。 この物質移動と は、第 1誘電体層 1 002及び第 4誘電体層 1 007に(Z n S) s。(S
102) 2。 (mo l %) を使用した場合に、 レーザビームを記録層 1 0 0 5に照射して記録書き換えを繰り返す際、 Sが記録層 1 005に拡散 していく現象のことである。 Sが記録層 1 00 5に拡散すると、 繰り返 し書き換え性能が悪化する(例えば、 N. Yamada et aに Japanese Journal of Applied Physics, Vol.37 (1998) , pp.2104- 2110参照。 ) 。 この繰り 返し書き換え性能の悪化を防ぐには、 G eを含む窒化物を第 2誘電体層 1 0 0 3及び第 3誘電体層 1 0 0 6に使用すると良い (例えば、 特開平 9 - 5 3 2 4 2 4号公報及び特開平 9 - 7 9 4 7 7号公報参照。 ) 。 以上のような技術により、 優れた書き換え性能と高い信頼性を達成し 、 4 . 7 G B /D V D— R A Mを商品化するに至った。
また、 情報記録媒体をさらに大容量化するための技術として、 さまざ まな技術が検討されている。 例えば、 光学的情報記録媒体においては、 従来の赤色レーザより短波長の青紫色レーザを用いたり、 レ一ザビーム が入射する側の基板の厚さを薄くして開口数 (N A) が大きい対物レン ズを使用したりすることによって、 レーザビームのスポット径をより小 さくして高密度の記録を行う技術が検討されている。 また、 2つの情報 層を備える光学的情報記録媒体を用いて記録容量を 2倍に高め、 且つそ の片面側から入射するレーザビームによって 2つの情報層の記録再生を 行う技術も検討されている (例えば、 特開 2 0 0 0— 3 6 1 3 0号公報 参照。 ) 。
情報記録媒体を大容量化するためにスポット径を小さくして記録を行 う場合、 小さな記録マークでも良好な形状に形成できる光学的情報記録 媒体が必要である。 スポット径を小さくして記録を行うと、 記録層にレ —ザビームが照射される時間が相対的に短くなる。 したがって、 小さな 記録マークを形成するためには、 記録層の材料として結晶化速度の速い 材料を用いるか、 または、 結晶化促進効果の高い膜を記録層に接して設 けることが必要となる。
また、 情報層が 2層積層されており、 片面側からレーザビームを照射 して 2つの情報層に対し情報の記録再生を行う光学的情報記録媒体 (以 下、 2層光学的情報記録媒体という場合がある。 ) では、 レーザビーム の入射面に近い位置に配置された情報層 (以下、 第 1の情報層という。 ) を透過したレーザビームを用いて、 レ一ザビームの入射面から遠い位 置に配置された情報層 (以下、 第 2の情報層という。 ) の記録再生を行 うため、 第 1の情報層では、 記録層の膜厚を極めて薄くして透過率を高 める必要がある。 しかし、 記録層が薄くなると、 記録層を結晶化する際 に形成される結晶核が減少し、 また、 原子の移動できる距離が短くなる 。 このような理由から、 記録層の膜厚が薄いほど結晶相が形成されにく くなる (結晶化速度が低下する。 ) 。
また、 情報記録媒体に対する情報の記録時間を短くして情報の転送レ ートを高くすると、 結晶化のための時間が短くなつてしまう。 このため 、 高い転送レートに対応する情報記録媒体を実現する際にも、 記録層の 結晶化能を高める必要がある。 また、 高い転送レートで情報を記録した 場合には、 低い転送レートで記録した場合に比べ、 昇温後の冷却速度が 速いため、 記録後の非晶質相に微結晶核が形成される割合が低くなる。 すなわち、 より安定な非晶質相になりやすい。 非晶質相は長期保存後に さらに安定なエネルギー状態に変化してしまう傾向があるため、 高い転 送レートで情報を記録した場合、 記録層がさらに結晶化しにくくなり書 き換え保存性が悪化する。
発明者らの実験では、記録層の材料として G e T e— S b 2 T e 3ライ ン上の擬ニ元系及びその近傍の組成において、 G eの一部を S nで置換 した組成を用いることで、 記録層の結晶化速度を向上できることがわか つている。 ただし、 この場合、 置換する S nの量を増やしていくと、 結 晶相と非晶質相との間の光学変化が小さくなるため、 信号振幅が低下し てしまう。 また、 S nの量が増えると、 記録した非晶質相が徐々に結晶 化してしまうため、 特に低い転送レートで情報を記録した場合、 記録保 存性が悪くなる。
以上のように、 情報記録媒体の大容量化に伴い、 高い転送レートでの 書き換え保存性と低い転送レートでの記録保存性を一つの情報記録媒体 で両立することが困難となる。
信号振幅を低下させること無く、 且つ記録保存性を確保して記録層の 結晶化能を高めるには、 上述したように、 記録層に接して記録層の結晶 化を促進する S n— T e等の結晶核生成層を設けると良い。 また、 発明 者らの実験によると、 結晶核生成層に B i— T eを用いても、 記録層の 結晶化能を高められることがわかっている。 しかしながら、 S n— Te や B i— T eは融点が低いため、 記録層が記録時に昇温した際に溶けて 、 書き換えを繰り返し行った場合、 S n— T eや B i— T eが徐々に記 録層に混ざり込む現象が生じる。 このため、 繰り返し書き換え性能が悪 化してしまう。
以上のように、 従来の情報記録媒体においては、 高い転送レートでの 良好な情報消去率 (結晶相化) 及び良好な書き換え保存性と、 低い転送 レートでの良好な記録保存性とを両立し、 さらに良好な繰り返し書き換 え性能も同時に実現することが困難であった。 発明の開示
本発明の情報記録媒体は、 基板と、 前記基板上に配置された情報層と を含んでおり、 前記情報層が、 光学的手段及び電気的手段の少なくとも 一方によって結晶相と非晶質相との間で可逆的な相変化を起こす記録層 と、 B i及び Teから選ばれる少なくとも一つの元素と S c、 Y、 L a 、 C e、 P r、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 E r、 Yb及び L uから選ばれる少なくとも一つの元素 (M l) とを含み、 前記記録層 に接して設けられた少なくとも一つの結晶核生成層と、 を含むことを特 徴としている。
本発明の情報記録媒体の製造方法は、 基板上に少なくとも一つの情報 層が設けられた情報記録媒体を製造する方法であって、 前記情報層を形 成する工程が、 光学的手段及び電気的手段の少なくとも何れか一方によ つて結晶相と非晶質相との間で可逆的な相変化を起こす記録層を形成す る記録層形成工程と、 B i及び T eから選ばれる少なくとも一つの元素 と S c、 Y、 L a、 C e、 P r、 N d、 S m、 G d、 T b、 D y、 H o 、 E r、 Y b及び L uから選ばれる少なくとも一つの元素 (M l ) とを 含むスパッタリングターゲットを用いて、 スパッタリングにより結晶核 生成層を形成する結晶核生成層形成工程と、 を含み、 前記記録層形成ェ 程と前記結晶核生成工程とが連続して行われることを特徴としている。 図面の簡単な説明
図 1は、 本発明の実施の形態 1における情報記録媒体の構成例を示す 断面図である。 '
図 2は、 本発明の実施の形態 1における情報記録媒体の別の構成例を 示す断面図である。
図 3は、 本発明の実施の形態 1における情報記録媒体のさらに別の構 成例を示す断面図である。
図 4は、 本発明の実施の形態 2における情報記録媒体の構成例を示す 断面図である。
図 5は、 本発明の実施の形態 2における情報記録媒体の別の構成例を 示す断面図である。
図 6は、 本発明の実施の形態 2における情報記録媒体のさらに別の構 成例を示す断面図である。
図 7は、 本発明の実施の形態 3における情報記録媒体の構成例を示す 断面図である。
図 8は、 本発明の実施の形態 3における情報記録媒体の別の構成例を 示す断面図である。
図 9は、 本発明の実施の形態 3における情報記録媒体のさらに別の構 成例を示す断面図である。
図 1 0は、 本発明の実施の形態 4における情報記録媒体の構成例を示 す断面図である。
図 1 1は、 本発明の実施の形態 4における情報記録媒体の別の構成例 を示す断面図である。
図 1 2は、 本発明の実施の形態 4における情報記録媒体のさらに別の 構成例を示す断面図である。
図 1 3は、 本発明の情報記録媒体に対して情報の記録再生を行う記録 再生装置の一部構成を概略的に示す説明図である。
図 1 4は、 本発明の実施の形態 6における情報記録媒体の構成例を示 す断面図である。
図 1 5は、 本発明の実施の形態 6における情報記録媒体の別の構成例 を示す断面図である。
図 1 6は、 本発明の実施の形態 6における情報記録媒体のさらに別の 構成例を示す断面図である。
図 1 7は、 本発明の実施の形態 6における情報記録媒体のさらに別の 構成例を示す断面図である。 1
図 1 8は、 本発明の実施の形態 7における情報記録媒体の一部断面と 、 その情報記録媒体に対して情報の記録再生を行う電気的情報記録再生 装置の概略構成とを示す説明図である。
図 1 9は、 本発明の実施の形態 7における大容量の電気的情報記録媒 体の構成の一部を模式的に示す説明図である。
図 2 0は、 本発明の実施の形態 7における電気的情報記録媒体とその 記録再生システムとの構成の一部を模式的に示す説明図である。 図 2 1は、 従来の情報記録媒体の構成例を示す断面図である。 発明を実施するための最良の形態
本発明の情報記録媒体は、 記録層に接して設けらた結晶核生成層が、 B i及び T eから選ばれる少なくとも一つの元素と S c、 Y、 L a、 C e、 P r、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 E r、 Yb及び Lu から選ばれる少なくとも一つの元素 (M l) とを含む構成である。 これ により、 高い転送レートでの良好な情報消去率 (結晶相化) が実現でき 、 さらに、 結晶核生成層の融点が高く熱的安定性が良好であるため、 良 好な書き換え保存性も実現できる。 また、 低い転送レートでの良好な記 録保存性も両立でき、 良好な繰り返し書き換え性能も同時に実現するこ とができる。
本発明の情報記録媒体においては、 前記結晶核生成層が、 B i (Ml ) 及び T e (Ml) から選ばれる少なくとも一つを含んでいてもよい。 これにより、 結晶核生成層の融点が高く熱的安定性が良好で、 且つ長期 保存後の書き換え性能にも優れた情報記録媒体が得られる。
本発明の情報記録媒体においては、前記結晶核生成層が、 B i T e (M 1) 2、 B i 2T e (M l) 及び B i T e 2 (Ml) から選ばれる少なく とも一つを含んでいてもよい。 これにより、 結晶核生成層の融点が高く 熱的安定性が良好で、 且つ長期保存後の書き換え性能にも優れた情報記 録媒体が得られる。
本発明の情報記録媒体においては、 前記結晶核生成層が、 N及び Oか ら選ばれる少なくとも一つの元素を含んでいてもよい。 これにより、 結 晶核生成層の熱的安定性が向上する。 また、 特に、 結晶核生成層に Nを 添加すると、 結晶粒の大きさがより均一化され、 且つ小さくなる傾向に あるため、 記録する際の低周波数領域の記録ノイズを低下させることが できる。
本発明の情報記録媒体においては、 前記記録層が、 31)及び8 1から 選ばれる少なくとも一つの元素 (M2) と、 G eと、 T eとを含み、 前 記 M2、 G e及び T eを組成式 G e a (M2) b T e 3 + aと表記した場合 に、 2≤a≤ 50及び 2≤b≤4を満たす材料にて形成されていてもよ い。 これにより、 記録層が約 14 nm以下と薄い場合でも良好な記録再 生性能が得られる。 また、 M2が B iを含む場合には、 結晶化能が向上 し、 高速な転送レートの場合にも良好な書き換え性能が得られる。 本発明の情報記録媒体においては、 記録層が、 前記 G e a (M2) bT e 3 + aにおいて、 前記 G eの少なくとも一部が、 !!及び? から選ば れる少なくとも一つの元素(M 3) にて置換されて、 組成式(G e— (M 3) ) a (M2) bT e 3 + aと表記される材料にて形成されていてもよい 。 これによれば、 G e— M 2— T eの 3元系組成の G eを置換した S n 、 P bが結晶化能を向上させるので、 記録層が約 7 nm以下と極めて薄 い場合でも十分な書き換え性能が得られる。
本発明の情報記録媒体においては、 前記記録層において、 前記 M2が S bであり、 前記 S bの少なくとも一部が B iにて置換されて、 組成式 G e a (S b— B i ) b T e 3 + aと表記されるものであってもよい。 また 、 この場合、 S n原子の含有割合は、 0原子%を超え 2 0原子%未満で あることが好ましく、 B i原子の含有割合は、 0原子%を超え 1 0原子 %未満であることが好ましい。
本発明の情報記録媒体においては、 前記記録層が、 3 及ぴ8 1から 選ばれる少なくとも一つの元素 (M 2) と、 S i、 T i、 V、 C r、 M n、 F e、 C o、 N i、 Cu、 S e、 Z r、 Nb、 Mo、 Ru、 Rh、 P d、 Ag、 I n、 S n、 T a、 W、 O s、 I r、 P t及び A uから選 ばれる少なくとも一つの元素 (M4) と、 G eと、 T eとを含み、 前記 M2、 M4、 G e及び T eを組成式 (G e a (M 2 ) bT e 3 + a) t。。― c (M4) eと表記した場合に、
2≤ a≤ 5 0
2≤b≤4
0 < c≤ 20
を満たす材料にて形成されていてもよい。 これによれば、 Ge—M2— T e 3元系組成に添加した元素 M 4が記録層の融点及び結晶化温度を上 昇させ、 記録層の熱的安定性が向上する。
'. 本発明の情報記録媒体においては、 前記記録膜が、 S bと、 T eと、 Ag、 I n、 G e、 S n、 S e、 B i、 A u及び M nから選ばれる少な くとも一つの元素 (M5) とを含み、 前記 S b、 丁 6及び 5を組成式 (S bdT e 1 0 0-d) 100 - e (M 5) eで表記した場合に、
50≤ d≤ 9 5
0<e≤ 20
を満たす材料にて形成されていてもよい。 これによれば、 記録層の融点 が低く比較的小さなエネルギーでも良好な記録特性が得られる。
本発明の情報記録媒体においては、 前記結晶核生成層の厚みが、 0.
2 nm以上 3 nm以下であることが好ましい。 特に、 いわゆる青紫色レ 一ザを用いて記録再生を行う情報記録媒体の場合は、 結晶核生成層の厚 みは 0. 3 nm以上であることがより好ましい。 高速な転送レートの場 合にも、 消去性能が良好で、 長期保存後の書き換え性能が良好な情報記 録媒体が得られるからである。
本発明の情報記録媒体においては、 前記記録層の厚みが、 3 nm以上
14 nm以下であることが好ましい。 特に、 いわゆる赤色レーザを用い て記録再生を行う情報記録媒体の場合は、 記録層の厚みは 6 nm〜 1 2 nmであることがより好ましい。 これにより、 消去性能が良く、 信号振 幅も大きい情報記録媒体が得られる。
本発明の情報記録媒体が、 第 1の情報層〜第 Nの情報層 (Nは 2以上 の自然数) が積層された多層構造の情報記録媒体である場合、 前記第 1 の情報層〜第 Nの情報層の少なくとも一つを前記情報層と同構成として もよい。 これにより、 高い転送レートでの良好な情報消去率 (結晶相化 ) 及び良好な書き換え保存性と、 低い転送レートでの良好な記録保存性 と、 良好な繰り返し書き換え性能とに加えて、 大容量化も実現できる。 本発明の情報記録媒体において、 前記記録層は、 レーザビームの照射 によつて結晶相と非晶質相との間で可逆的な相変化を起こし、 前記情報 層が、 前記記録層及び前記結晶核生成層からなる積層体の両面に設けら れた誘電体層と、 前記積層体に対しレ一ザビーム入射側と反対側に配置 された反射層と、 をさらに含む構成であってもよい。 また、 前記情報層 は、 前記積層体と前記反射層との間に配置された光吸収補正層をさらに 含んでいてもよい。
本発明の情報記録媒体において、 前記記録層は、 レーザビームの照射 によつて結晶相と非晶質相との間で可逆的な相変化を起こし、 前記情報 層が、 レーザビーム入射側から、 少なくとも第 1誘電体層、 第 2誘電体 層、 前記結晶核生成層、 前記記録層、 第 3誘電体層及び反射層をこの順 に含む構成としてもよい。 また、 前記情報層は、 レーザビーム入射側か ら、 少なくとも第 1誘電体層、 第 2誘電体層、 前記記録層、 前記結晶核 生成層、 第 3誘電体層及び反射層をこの順に含む構成であってもよい。 また、 前記情報層は、 レーザビ一ム入射側から、 少なくとも第 1誘電体 層、 第 2誘電体層、 前記結晶核生成層、 前記記録層、 前記結晶核生成層 、 第 3誘電体層及び反射層をこの順に含む構成であってもよい。 また、 前記情報層が、 前記第 3誘電体層と前記反射層との間に設けられた第 4 誘電体層をさらに含んでいてもよい。 このとき、 前記第 4誘電体層は、 ( Z n S ) 8。 (S i 0 2 ) 2。を含んでいてもよい。 また、 前記情報層は 、 前記第 3誘電体層と前記反射層との間に設けられた、 前記反射層より 熱伝導率が低い界面層をさらに含んでいてもよい。
また、 本発明の情報記録媒体が、 レーザビームの照射によって情報が 記録される第 1の情報層〜第 Nの情報層 (Nは 2以上の自然数) がレー ザビーム入射側からこの順に積層された多層構造の情報記録媒体の場合 、 少なくとも前記第 1の情報層が前記情報層であり、 前記第 1の情報層 に含まれる前記記録層が、 レーザビームの照射によって結晶相と非晶質 相との間で可逆的な相変化を起こし、 前記第 1の情報層が、 レーザビー ム入射側から、 少なくとも第 1誘電体層、 第 2誘電体層、 前記結晶核生 成層、 前記記録層、 第 3誘電体層、 反射層及び透過率調整層をこの順に 含んでいることが好ましい。 これにより、 第 1の情報層の透過率を高く できるので、 第 2〜第 Nの情報層でも良好な記録特性が得られる。 本発明の情報記録媒体が、 レーザビームの照射によって情報が記録さ れる第 1の情報層〜第 Nの情報層 (Nは 2以上の自然数) がレーザビー ム入射側からこの順に積層された多層構造の情報記録媒体の場合、 少な くとも前記第 1の情報層が前記情報層であり、 前記第 1の情報層に含ま れる前記記録層が、 レーザビームの照射によって結晶相と非晶質相との 間で可逆的な相変化を起こし、 前記第 1の情報層が、 レーザビーム入射 側から、 少なくとも第 1誘電体層、 第 2誘電体層、 前記記録層、 前記結 晶核生成層、 第 3誘電体層、 反射層及び透過率調整層をこの順に含む構 成としてもよい。 これにより、 第 1の情報層の透過率を高くできるので 、 第 2〜第 Nの情報層でも良好な記録特性が得られる。 さらに、 消去性 能及び書き換え性能が良好な情報記録媒体を実現できる。
本発明の情報記録媒体が、 レーザビームの照射によつて情報が記録さ れる第 1の情報層〜第 Nの情報層 (Nは 2以上の自然数) がレ一ザビー ム入射側からこの順に積層された多層構造の情報記録媒体である場合、 少なくとも前記第 1の情報層が前記情報層であり、 前記第 1の情報層に 含まれる前記記録層が、 レーザビームの照射によって結晶相と非晶質相 との間で可逆的な相変化を起こし、 前記第 1の情報層が、 レーザビーム 入射側から、 少なくとも第 1誘電体層、 第 2誘電体層、 前記結晶核生成 層、 前記記録層、 前記結晶核生成層、 第 3誘電体層、 反射層及び透過率 調整層をこの順に含む構成としてもよい。 これにより、 第 1の情報層の 透過率を高くできるので、 第 2〜第 Nの情報層でも良好な記録特性が得 られる。 さらに、 消去性能及び書き換え性能が良好な情報記録媒体を実 現できる。
本発明の情報記録媒体において、 情報層に透過率調整層が含まれる構 成の場合、 透過率調整層が、 T i〇2、 Z r 02、 ZnO、 Nb205、 T a 205、 S i〇2、 A 1203、 B i 23、 C r 23、 S r—〇、 T i 一 N、 Z r— N、 Nb— N、 Ta_N、 S i— N、 G e _N、 C r—N 、 A 1— N、 Ge— S i— N、 Ge— C r—N及び Z n Sから選ばれる 少なくとも一つを含むことが好ましい。 これにより、 情報層の透過率を 高めることができる。
本発明の情報記録媒体において、 情報層が第 3誘電体層を含む構成の 場合、 第 3誘電体層が、 H f 02及び Z r〇2から選ばれる少なくとも一 つと、 S i 02と、 C r 23と、 フッ化物と、 を含む酸化物一フッ化物 系材料にて形成されていてもよい。 前記フッ化物には、 C e F3、 E r
F3、 Gd F3、 L a F3、 TbF3、 DyF3、 Nd F3、 丫!^及び丫
F3から選ばれる少なくとも一つが使用可能である。
また、 前記酸化物一フッ化物系材料が、 (H f 02) A1 (S i〇2) B 1 (C r 203) C 1 (フッ化物) 10。― A 1— Bい C 1または (Z r 02) A1 (
S i〇2) B 1 (C r 203) C 1 (フッ化物) 。。― A1B 1C 1と表記され る場合、
A 1が、 1 0≤A 1≤ 5 0、
B 1が、 1 0≤B 1≤ 50、
C 1が、 1 0≤ C 1≤ 50、
A 1 +B 1 +C 1が、 50≤A 1 +B 1 +C 1≤ 90
を満たすことが好ましい。
本発明の情報記録媒体において、 情報層が第 2誘電体層及び第 3誘電 体層を含む構成の場合、 前記第 2誘電体層及び前記第 3誘電体層の少な くも一つが、 H f 02及び Z r〇2から選ばれる少なくとも一つと、 S i 02と、 C r 203と、 を含む酸化物系材料にて形成されていてもよい。 また、 前記酸化物系材料が、 (H i〇2) A2 (S i 02) B2 (C r 2 03) 1 ()。_A2B2または (Z r 02) A2 (S i 02) B2 (C r 203) ,
00 - A 2 -B 2と表 れる場合、
A 2が、 1 0≤A 2≤ 50、
B 2が、 1 0≤B 2≤ 5 0、
A2 +B 2が、 2 0≤A2 +B 2≤ 8 0
を満たすことが好ましい。
次に、 本発明の情報記録媒体の製造方法について説明する。
本発明の情報記録媒体の製造方法によれば、 B i及び T eから選ばれ る少なくとも一つの元素と S c、 Y、 L a、 C e、 P r、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 E r、 Y b及び L uから選ばれる少なくとも 一つの元素 (M l) とを含む結晶核生成層を記録層に接するように形成 できる。 これにより、 高い転送レートでの良好な情報消去率 (結晶相化 ) 及び良好な書き換え保存性と、 低い転送レートでの良好な記録保存性 とを両立し、 さらに良好な繰り返し書き換え性能も同時に実現できる情 報記録媒体を提供できる。 本発明の情報記録媒体の製造方法において、 結晶核生成工程にて使用 されるスパッタリングターゲットが、 B i (M l) 及び T e (M l) よ り選ばれる少なくとも一つを含んでいてもよい。
本発明の情報記録媒体の製造方法において、 結晶核生成工程にて使用 されるスパッ夕リングターゲットが、 B i T e (M 1 ) 2、 B i 2T e (M 1) 及び B i T e 2 (M l) から選ばれる少なくとも一つを含んでいて もよい。
本発明の情報記録媒体の製造方法では、 結晶核生成層形成工程におい て、 スパッタリングの際に、 A rガスと、 K rガスと、 A rガス及び反 応ガスの混合ガスと、 K rガス及び反応ガスの混合ガスとから選ばれる 少なくとも一つを用いてもよい。 伹し、 反応ガスとは、 N2ガス及び 02 ガスから選ばれる少なくとも一つのガスのことである。
以下、 本発明の実施の形態について、 図面を参照しながら説明する。 なお、 以下の実施の形態は一例であり、 本発明は以下の実施の形態に限 定されない。 また、 以下の実施の形態では、 同一の部分については同一 の符号を付して、 重複する説明を省略する場合がある。
(実施の形態 1)
本発明の情報記録媒体の一実施形態について説明する。 本実施の形態 の情報記録媒体は、 波長 390〜420 nmのいわゆる青紫色レーザを 用いて情報の記録再生を行う場合に好適に用いられる媒体である。 図 1 は、 本実施の形態の情報記録媒体 1の部分断面図である。 情報記録媒体 1は、 レーザビーム 1 0の照射によって情報の記録再生が可能な光学的 情報記録媒体である。
情報記録媒体 1には、 基板 1 1上に一つの情報層 12が設けられ、 さ らに透明層 1 3が設けられている。 情報層 1 2は、 レ一ザビーム 1 0の 入射側から順次積層された、 第 1誘雩体層 1 0 1、 第 2誘電体層 1 0 2 、 結晶核生成層 1 0 3、 記録層 1 0 4、 第 3誘電体層 1 0 5、 第 4誘電 体層 1 0 6、 界面層 1 0 7及び反射層 1 0 8により構成されている。 透明層 1 3の材料は、 光硬化性樹脂 (特に紫外線硬化性樹脂) や遅効 性熱硬化型樹脂等の樹脂、 あるいは誘電体材料等からなり、 使用するレ 一ザビーム 1 0に対して光吸収が小さいことが好ましく、 短波長域にお いて光学的に複屈折が小さいことが好ましい。 また、 透明層 1 3には、 例えば、 透明な円盤状のポリカーポネ一ト、 アモルファスポリオレフィ ンまたは P M M A (ポリメチルメタクリレート) 等の樹脂、 あるいはガ ラス等が使用できる。 この場合、 透明層 1 3は、 例えば、 光硬化性樹脂 (特に紫外線硬化性樹脂) や遅効性熱硬化型樹脂等の樹脂によって第 1 誘電体層 1 0 1に貼り合わされることが可能である。
レーザビーム 1 0の波長 λは、 レーザピ一ム 1 0を集光した際のスポ ット径が波長 λによって決まってしまう (波長 λが短いほど、 より小さ なスポット径に集光可能である。 ) ため、 高密度記録の場合、 特に波長 λを 4 5 0 n m以下とすることが好ましい。 ただし、 波長 λが 3 5 O n m未満の場合、 透明層 1 3等による光吸収が大きくなつてしまうため、 レーザビーム 1 0の波長 λは、 3 5 0 n m〜 4 5 0 n mの範囲内である ことがより好ましい。
基板 1 1は、 例えば、 透明で円盤状の基板であり、 例えば、 ポリカー ポネ一ト、 アモルファスポリオレフインまたは P MM A等の樹脂や、 或 いはガラス等を用いることができる。
基板 1 1の情報層 1 2側 (反射層 1 0 8側) の表面には、 必要に応じ てレーザビーム 1 0を導くための案内溝が形成されていてもよい。 基板 1 1の反射層 1 0 8側と反対側の表面は、 平滑であることが好ましい。 基板 1 1の材料としては、 転写性 ·量産性に優れ、 且つ、 低コストであ ることから、 ポリ力一ポネートが特に有用である。 なお、 基板 1 1の厚 さは、 十分な強度があり、 且つ情報記録媒体 1の厚さが 1 20 0 /zm程 度となるよう、 5 0 0 m〜 1 20 0 mの範囲内であることが好まし い。 なお、 透明層 1 3の厚さが 60 0 m程度 (NA= 0. 6で良好な 記録再生が可能な厚さ。 ) の場合、 基板 1 1の厚さは 5 50 /m〜6 5 0 mの範囲内であることが好ましい。 また、 透明層 1 3の厚さが 1 0 O m程度 (NA= 0. .8 5で良好な記録再まが可能な厚さ。 ) の場合 、 基板 1 1の厚さは 1 0 5 0 m〜 1 1 5 0 mの範囲内であることが 好ましい。
第 1誘電体層 1 0 1は、 誘電体からなる。 この第 1誘電体層 1 0 1は 、 記録層 1 04の酸化、 腐食、 変形等を防止する働きと、 光学距離を調 整して記録層 1 04の光吸収効率を高める働きと、 記録前後の反射光量 の変化を大きくして信号振幅を大きくする働きと、 を有する。 第 1誘電 体層 1 0 1には、 例えば T i〇2、 Z r〇2、 Z n〇、 Nb 25、 T a 25、 S i〇2、 A 1203、 B i 23、 C r 2 O 3等の酸化物を用いるこ とができる。 また、 C— N、 T i— N、 Z r— N、 Nb— N、 T a -N 、 S i— N、 G e— N、 C r一 N、 A l— N、 Ge— S i— N、 G e - C r一 N等の窒化物を用いることもできる。 また、 Z n Sなどの硫化物 や S i C等の炭化物、 L a F3等のフッ化物を用いることもできる。 ま た、 上記材料の混合物を用いることもできる。 例えば、 Z n Sと S i 0 2との混合物である Z n S _S i 02は、第 1誘電体層 1 0 1の材料とし て特に優れている。 Z n S— S i〇2は、 非晶質材料で、 屈折率が高く 、 成膜速度が速く、 機械特性及び耐湿性が良好だからである。
第 1誘電体層 1 0 1の膜厚は、マトリクス法(例えば、久保田広著「波 動光学」 岩波書店、 1 9 7 1年、 第 3章を参照。 ) に基づく計算により 、 記録層 1 04が結晶相である場合とそれが非晶質相である場合との反 射光量の変化が大きく、 且つ記録層 1 04での光吸収が大きくなる条件 を満足するように、 厳密に決定することができる。
第 2誘電体層 1 0 2は、 繰り返し記録によって第 1誘電体層 1 0 1と 結晶核生成層 1 0 3及び記録層 1 0 4との間で生じる物質移動を防止す る働きがある。 後に説明するが、 結晶核生成層 1 0 3は、 0 . 3 n m〜 3 n mと極めて薄く形成されるため、 島状となっている可能性が高い。 このため、 第 2誘電体層 1 0 2は、 部分的に記録層 1 0 4と接している ことも考えられる。 したがって、 第 2誘電体層 1 0 2は、 光の吸収が少 なく記録の際に溶解しない高融点な材料で、 且つ、 結晶核生成層 1 0 3 及び記録層 1 0 4との密着性が良い材料であることが好ましい。 第 2誘 電体層 1 0 2を記録の際に溶解しない高融点な材料で形成することは、 高パワーのレーザビーム 1 0を照射した際に第 2誘電体層 1 0 2の一部 が溶解して結晶核生成層 1 0 3及び記録層 1 0 4に混入しないために必 要な特性である。 第 2誘電体層 1 0 2の材料が混入すると、 結晶核生成 層 1 0 3及び記録層 1 0 4の組成が変わり、 書き換え性能が著しく低下 するからである。 また、 第 2誘電体層 1 0 2の材料が結晶核生成層 1 0 3及び記録層 1 0 4と密着性が良いことは、 信頼性確保に必要な特性で ある
第 2誘電体層 1 0 2には、 第 1誘電体層 1 0 1と同様の系の材料を用 いることができる。 その中でも、 特に C r、 Z r、 0を含む材料を用い ることが好ましく、 さらに、 C rと Oが C r 2 0 3を形成し、 ∑ 1"と0が Z r〇2を形成して、 C r 2 0 3と Z r〇 2の混合物になっていることが好 ましい。 C r 2 0 3は記録層 1 0 4との密着性が良い材料である。 また Z r〇2は、 透明で融点が約 2 7 0 0 °Cと高く、 且つ酸化物の中では熱伝 導率が低い材料なので、 繰り返し書き換え性能を向上させることができ る。 この 2種類の酸化物を混合した材料にて第 2誘電体層 1 0 2を形成 することによって、 記録層 1 0 4と部分的に接して、 繰り返し書き換え 性能に優れ、 且つ信頼性の高い情報記録媒体 1 5が実現できる。 記録層 1 04との密着性を確保するため、 C r 203— Z r 02中の C r 203の 含有量は 1 Omo 1 %以上あることが好ましく、 また、 第 2誘電体層 1 02での光吸収を小さく保っため 6 Omo 1 %以下であることが好まし い (C r 203が多くなると光吸収が増加する傾向にある。 ) 。 C r 203 — Z r 02中の C r 23のより好ましい含有量は、 2 Omo 1 %以上 5 Omo 1 %以下である。
第 2誘電体層 1 02には、' C r、 Z r、 〇の他にさらに S iを含む材 料を用いても良く、 その中でも、 C rと Oが C r 23を形成し、 Z rと Oが Z r 02を形成し、 S iと〇が S i 02を形成して、 S i〇2と C r 23と Z r〇2との混合物になっていることが好ましい。 S i 02を含ま せることにより、 記録層 104の結晶化を促進する効果が高くなり、 書 き換え性能に優れた情報記録媒体 1を実現できるからである。 S i〇2 _C r 23— Z r 02中の S i 02の含有量は 5 mo 1 %以上であるこ とが好ましく、 記録層 1 04との密着性を確保するため 4 Omo 1 %以 下であることが好ましい。 S 1〇2—( 1" 203— 21"〇2中の3 i〇2の より好ましい含有量は、 1 Omo 1 %以上 3 5mo 1 %以下である。 ま た、 良好な記録書き換え性能を確保するため、 S i〇2と C r 23の含 有量の和は、 9 5 mo 1 %以下であることが好ましい。
第 2誘電体層 1 02の膜厚は、 第 2誘電体層 1 02での光吸収によつ て情報記録媒体 1の記録前後の反射光量の変化が小さくならないよう、 1 nm〜 1 0 nmの範囲内であることが望ましく、 2 nm〜 7 nmの範 囲内にあることがより好ましい。
第 3誘電体層 1 0 5は、 光学距離を調整して記録層 1 04の光吸収効 率を高める働きと、 記録前後の反射光量の変化を大きくして信号振幅を 大きくする働きと、 を有する。 第 3誘電体層 1 05には、 第 1誘電体層 1 0 1と同様の系の材料を用いることができる。 また、 第 2誘電体層 1 0 2と同様、 C r、 Z r、 Oを含む材料を用いることが好ましく、 その 中でも C rと Oが C r 203を形成し、 Z rと 0が Z r〇2を形成して、 C r 203と Z r 02の混合物になっていることが好ましい。 第 3誘電体 層 1 0 5は第 2誘電体層 1 0 2より記録層 1 04と密着性が悪い傾向に あるため、 C r 23— Z r 02中の C r 2 O 3の含有量は第 2誘電体層 1 0 2のそれより多い 2 Omo 1 %以上 8 Omo 1 %以下であることが好 ましい。 より好ましくは、 3 Omo 1 %以上 7 Omo 1 %以下である。 第 3誘電体層 1 0 5には、 第 2誘電体層 1 0 2と同様、 C r、 Z r、 〇の他にさらに S iを含む材料を用いても良く、 その中でも C rと Oが C r 203を形成し、 Z rと 0が Z r〇2を形成し、 S iと Oが S i〇 2 を形成して、 S i〇2と C r 23と Z r 02の混合物になっていることが 好ましい。 S i〇2— C r 203— Z r〇2中の S i〇2の含有量は、 記録 層 1 04との密着性を確保するため第 2誘電体層 1 0 2のそれより少な い 3 5mo 1 %以下であることが好ましい。より好ましくは、 5mo 1 % 以上 3 Omo 1 %以下である。 また、 良好な記録書き換え性能を確保す るため、 S i 02と C r 23の含有量の和は 9 5 mo 1 %以下であるこ とが好ましい。
第 3誘電体層 1 0 5の膜厚は、 2 nm〜 Ί 5 nmの範囲内であること が好ましく、 2 nm〜40 nmの範囲内であることがより好ましい。 第 3誘電体層 1 0 5の膜厚をこの範囲内で選ぶことによって、 記録層 1 0 4で発生した熱を効果的に反射層 1 0 8側に拡散させることができる。 第 3誘電体層 1 0 5のレーザビーム入射側と反対側の面には、 第 4誘 電体層 1 0 6が配置されている。 この場合、 第 4誘電体層 1 0 6には、 第 1誘電体層 1 0 1と同様の系の材料を用いることができ、 Z n Sと S i〇2との混合物である Z n S _ S i 02は、第 4誘電体層 1 0 6として も優れた材料である。 なお、 本実施の形態においては第 4誘電体層 1 0 6を設けているが、 第 4誘電体層 1 0 6を設けない構成でも可能である 第 4誘電体層 1 0 6の膜厚は、 2 nm〜 7 5 nmの範囲内であること が好ましく、 2 nm〜40 nmの範囲内であることがより好ましい。 第 4誘電体層 1 06の膜厚をこの範囲内で選ぶことによって、 記録層 1 0 4で発生した熱を効果的に反射層 1 08側に拡散させることができる。 本発明の結晶核生成層 1 0 3は、 結晶核を生成することによって、 記 録層 1 04の結晶化能を高めるための層である。 結晶核生成層 1 0 3の 材料は、 B iもしくは T eより選ばれる少なくとも一つの元素と M 1 (伹 し、 M lは S c、 Y、 L a、 C e、 P r、 Nd、 Sm、 Gd、 Tb、 D y、 Ho、 E r、 Y b及び L uから選ばれる少なくとも一つの元素) と を含む材料で形成できる。 このとき、 結晶核生成層 1 03ば、 B iと M 1の混合比が略 50 : 50である B i (M l) 及び T eと Μ 1の混合比 が略 5 0 : 50である T e (M l) の少なくとも何れか一方を含むこと が好ましい。 B i (M l) は融点が 1 500 以上、 T e (M l) は融 点が 1 3 00 °C以上と高いからである。 特に、 B i Gd、 B i Tb、 B i Dy、 B i Yは、 融点が 2000°C以上と高いことが 2元系の相図に 示されている。 このため、 この材料を用いることにより、 結晶核生成層 1 0 3の融点が高く熱的安定性が良好で、 且つ長期保存後の書き換え性 能にも優れた情報記録媒体 1が得られる。 また、 B i (M l) 及び T e (M l) は、 岩塩型の結晶構造を有する。 したがって、 例えば G e T e -S b2T e 3化合物系などの岩塩型の結晶構造を有する記録層 1 04 を用いる場合、 結晶核生成層 1 0 3と記録層 1 04との結晶構造が同じ であるため、 結晶核生成層 1 0 3と記録層 1 04との界面で結晶核が生 じやすく、 記録層 1 04での結晶成長が促進される。 このため、 書き換 え保存性に優れた情報記録媒体 1が得られる。
また、 結晶核生成層 1 0 3は、 B i T e (Ml) 2、 B i 2T e (M l ) 及び B i T e 2 (Ml) から選ばれる少なくとも一つを含んでもよい 。 この材料を用いることにより、 結晶核生成層 1 03の融点が高く熱的 安定性が良好で、 結晶核生成層 1 0 3と記録層 1 04との界面で結晶核 が生じやすく記録層 1 04での結晶成長が促進され、 書き換え保存性に 優れた情報記録媒体 1が得られる。
結晶核生成層 1 0 3の膜厚は、 高速な転送レートの場合にも、 消去性 能 (結晶化能) が良好で、 長期保存後の書き換え性能が良好となるよう 0. 3 nm〜 3 nmの範囲内であることが好ましく、 0. 5 nm〜2 n mの範囲内にあることがより好ましい。 なお、 結晶核生成層 1 0 3が島 状の場合でも薄膜状の場合でも、 結晶核生成層としての以上のような効 果が得られる。
記録層 1 04は、 レーザビーム 1 0の照射によって結晶相と非晶質相 との間で可逆的な相変化を起こす材料にて形成されている。 記録層 1 0 4は、 例えば Geと M2と T e (伹し、 M 2は S b及び B iから選ばれ る少なくとも一つの元素。 ) の 3元素を含む材料で形成できる。 具体的 には、 記録層 1 04は、 Ge a (M 2) b T e 3 + aで表される材料で形成 でき、 非晶質相が安定で信号振幅が大きく、 融点の上昇と結晶化速度の 低下が少ない 2≤a≤ 50の関係を満たすことが望ましく、 4≤ a≤ 2 3の関係を満たすことがより好ましい。 また、 非晶質相が安定で信号振 幅が大きく、 結晶化速度の低下が少ない 2≤ b≤ 4の関係を満たすこと が好ましく、 2≤ b≤ 3の関係を満たすことがより好ましい。
また、 記録層 1 04は、 組成式 (Ge _ (M 3 ) ) a (M 2 ) bT e 3 +a (ただし、 M 3は S n及び P bから選ばれる少なくとも一つの元素。 ) で表される材料で形成しても良い。 この材料を用いた場合、 G eを置 換した元素 M 3が結晶化能を向上させるため、 記録層 1 04の膜厚が薄 い場合でも十分な消去率が得られる。 元素 M3としては、 毒性がない点 で S nがより好ましい。 この材料を用いる場合も、 2≤ a≤ 50 (より 好ましくは 4≤a≤ 23) 、 且つ 2≤b≤4 (より好ましはは 2≤b≤ 3) であることが好ましい。
また、 記録層 1 04は、 組成式 (G e a (M2) bT e 3 + a) 丄。。― c (M 4) c (ただし、 M4は S i、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 S e、 Z r、 Nb、 Mo、 Ru、 Rh、 P d、 Ag、 I n、 S n、 T a、 W、 〇 s、 I r、 P t及び A uから選ばれる少なくとも一 つの元素。 ) で表される材料で形成されていてもよい。 この場合、 添加 された元素 M 4が記録層 1 04の融点及び結晶化温度を上昇させるため 、 記録層 1 04の熱的安定性が向上する。 また、 この材料では、 0<c ≤ 20であることが好ましく、 2≤ c≤ 1 0であることがより好ましい 。 また、 2≤ a≤ 50 (より好ましくは 4≤ a≤ 2 3) 、 且つ 2≤b≤ 4 (より好ましくは 2≤b≤ 3) であることが好ましい。
また、 記録層 1 04は、 組成式 (S bdTe i。。― d) 100_e (M5) e (ただし、 5は八8、 I n、 G e、 S n、 S e、 B i、 八11及び ]1 から選ばれる少なくとも一つの元素。 ) で表される材料で形成してもよ い。 d及び eが、 5 0≤ d≤ 9 5及び 0 < e≤ 20を満たす場合には、 記録層 1 04が結晶相の場合と非晶質相の場合との間の情報記録媒体 1 の反射率差を大きくでき、 良好な記録再生特性が得られる。 6 5 dの 場合には、 結晶化速度が特に速く、 特に良好な消去率が得られる。 また 、 d≤ 8 5の場合には、 非晶質化が容易となる。 したがって、 6 5≤d ≤ 8 5であることがより好ましい。 また、 良好な記録再生性能を得るた めには、 結晶化速度を調整するための元素 M5を添加することが好まし い。 eは、 1≤ e≤ 1 0であることがより好ましい。 e≤ 1 0の場合に は、 複数の相が現れることを抑制できるため、 繰り返し記録による特性 劣化を抑制できる。
記録層 1 04の膜厚は、 情報記録媒体 1の記録感度を高くするため、 6 nm〜 14 nmの範囲内であることが好ましい。 この範囲内において も、 記録層 1 04が厚い場合には熱の面内方向への拡散による隣接領域 への熱的影響が大きくなる。 また、 記録層 1 04が薄い場合には情報記 録媒体 1の反射率が小さくなる。 したがって、 記録層 1 04の膜厚は、 8 nm〜 1 2 n mの範囲内であることがより好ましい。
反射層 1 08は、 記録層 1 04に吸収される光量を増大させるという 光学的な機能を有する。 また、 反射層 1 08は、 記録層 1 04で生じた 熱を速やかに拡散させ、 記録層 1 04を非晶質化しやすくするという熱 的な機能も有する。 さらに、 反射層 1 08は、 使用する環境から多層膜 を保護するという機能も有する。
反射層 1 08の材料には、 例えば Ag、 Au、 ( 1^及び八 1等の熱伝 導率が高い単体金属を用いることができる。 また、 A l— C r、 A 1 - T i、 Au_P d、 Au— C r、 Ag— P d、 Ag-P d -Cu, A g — P d— T i、 Ag— Ru— Au、 Ag— Cu_N i、 A g - Z n - A 1または Cu— S i といった合金を用いることもできる。 特に A g合金 は、 熱伝導率が大きいため、 反射層 1 0 8の材料として好ましい。 反射 層 1 08の膜厚は、 熱拡散機能が十分となる 30 nm以上であることが 好ましい。 この範囲内においても、 反射層 1 08が 200 nmより厚い 場合には、 その熱拡散機能が大きくなりすぎて情報記録媒体 1の記録感 度が低下する。 したがって、 反射層 1 0 8の膜厚は 30 nm〜200 n mの範囲内であることがより好ましい。
反射層 1 08のレーザビーム入射側の界面には、 界面層 1 07が設け られている。 この場合、 界面層 1 07には、 反射層 1 0 8について説明 した材料より熱伝導率の低い材料を用いることができる。 反射層 1 08 に A g合金を用いた場合、 界面層 1 0 7には A 1または A 1合金を用い ることが好ましい。 また、 界面層 1 0 7には、 C r、 N i、 S i、 C等 の元素を含む材料や、 T i 02、 Z r 02、 Z nO、 Nb 25、 T a 20 5、 S i 02、 A 1203、 B i 203、 C r 23等の酸化物を用いること ができる。 また、 C一 N、 T i— N、 Z r— N、 Nb _N、 T a—N、 S i— N、 G e— N、 C r一 N、 A l— N、 Ge— S i— N、 G e - C r一 N等の窒化物を用いることもできる。 また、 Z n Sなどの硫化物や S i C等の炭化物、 L aF3等のフッ化物を用いることもできる。 また 、 上記材料の混合物を用いることもできる。 また、 膜厚は 3 nm〜 10 0 nm (より好ましくは 1 0 ηπ!〜 5 0 nm) の範囲内であることが好 ましい。
なお、 結晶核生成層は、 記録層 1 04と第 3誘電体層 1 0 5との間に 配置されても良い。 この場合は、 図 2に示す情報記録媒体 14のように 、 基板 1 1上に情報層 1 2及び透明層 1 3が設けられており、 情報層 1 2が、 レーザビーム入射側から順次積層された、 第 1誘電体層 1 0 1、 第 2誘電体層 1 02、 記録層 1 04、 結晶核生成層 1 0 9、 第 3誘電体 層 1 0 5、 第 4誘電体層 1 06、 界面層 1 07及び反射層 1 0にて形成 される。 また、 結晶核生成層は、 記録層 1 04と第 2誘電体層 102及 び第 3誘電体層 1 0 5と間にそれぞれ配置されていてもよい。 この場合 は、 図 3に示す情報記録媒体 1 5のように、 基板 1 1上に情報層 1 2及 び透明層 1 3が設けられており、 情報層 1 2が、 レーザビーム入射側か ら順次積層された、 第 1誘電体層 1 0 1、 第 2誘電体層 1 02、 結晶核 生成層 1 03、 記録層 1 04、 結晶核生成層 1 0 9、 第 3誘電体層 1 0 5、 第 4誘電体層 1 0 6、 界面層 1 0 7及び反射層 1 08にて形成され る。 なお、 結晶核生成層 1 0 9は、 結晶核生成層 1 03と同様の系の材 料を用いることができ、 それらの形状及び機能についても結晶核生成層
1 0 3と同様である。
次に、 図 1〜図 3に示す情報記録媒体 1 , 1 4 , 1 5の製造方法につ いて説明する。
まず、 基板 1 1 (例えば、 厚さ 1 1 0 0 / m) を用意し、 成膜装置内 に配置する。
続いて、 基板 1 1上に反射層 1 0 8を成膜する。 このとき、 基板 1 1 にレーザビーム 1 0を導くための案内溝が形成されている場合には、 案 内溝が形成された面上に反射層 1 0 8を成膜する。 反射層 1 0 8は、 反 射層 1 0 8を構成する金属または合金からなるスパッタリングターゲッ 卜を、 A rガス雰囲気中、 または A rガスと反応ガス (酸素ガス及び窒 素ガスから選ばれる少なくとも一つのガス) との混合ガス雰囲気中でス パッタリングすることによって形成できる。
続いて、 反射層 1 0 8上に、 必要に応じて界面層 1 0 7を成膜する。 界面層 1 0 7は、 界面層 1 0 7を構成する元素からなるスパッタリング ターゲットを、 A rガス雰囲気中、 または A rガスと反応ガスとの混合 ガス雰囲気中でスパッタリングすることによって形成できる。
続いて、 界面層 1 0 7上 (界面層 1 0 7を設けない構成の場合は反射 層 1 0 8上) に、 必要に応じて第 4誘電体層 1 0 6を成膜する。 第 4誘 電体層 1 0 6は、 第 4誘電体層 1 0 6を構成する化合物からなるスパッ 夕リングターゲットを、 A rガス雰囲気中、 または A rガスと反応ガス との混合ガス雰囲気中でスパッタリングすることによって形成できる。 また、 第 4誘電体層 1 0 6は、 第 4誘電体層 1 0 6を構成する元素を含 む金属からなるスパッタリングタ一ゲットを、 A rガスと反応ガスとの 混合ガス雰囲気中で反応性スパッタリングすることによつても形成でき る。 続いて、 第 4誘電体層 1 06上 (第 4誘電体層 1 06を設けない構成 の場合は界面層 1 0 7上または反射層 1 08上) に、 第 3誘電体層 1 0 5を成膜する。 第 3誘電体層 1 0 5は、 第 4誘電体層 1 06と同様の方 法で形成できる。
続いて、 第 3誘電体層 1 0 5上に、 必要に応じて (図 2及び図 3に示 す情報記録媒体 14, 1 5を作製する場合) 、 結晶核生成層 1 0 9を成 膜する。 結晶核生成層 1 0 9は、 その組成に応じて、 B i もしくは T e より選ばれる少なくとも一つの元素と M 1とを含むスパッタリング夕一 ゲット、 B i (M l) 及び T e (M l) より選ばれる少なくとも一つを 含むスパッタリングターゲット、 または B i T e (M l) 2、 B i 2T e (M l) 及び B i T e 2 (M l) から選ばれる少なくとも一つを含むス パッ夕リングターゲットを、 一つの電源を用いて、 スパッタリングする ことによって形成できる。
結晶核生成層 109を作製する際のスパッタリングに用いられる雰囲 気ガスには、 例えば、 A rガス、 K rガス、 A rガスと反応ガスとの混 合ガス、 または K rガスと反応ガスとの混合ガスを用いることができる 。 また、 結晶核生成層 1 09は、 B i、 T e及び M 1の各々のスパッ夕 リングターゲットを複数の電源を用いて同時にスパッタリングすること によって形成することもできる。 また、 結晶核生成層 1 0 9は、 B i、 T e及び M 1のうちからいずれかの元素を組み合わせた 2元系スパッタ リングターゲットや 3元系スパッ夕リングターゲットなどを、 複数の電 源を用いて同時にスパッタリングすることによって形成することもでき る。 これらのスパッタリングターゲットを用いる場合でも、 A rガス雰 囲気中、 K rガス雰囲気中、 A rガスと反応ガスとの混合ガス雰囲気中 、 または K rガスと反応ガスとの混合ガス雰囲気中でスパッタリングす ることによって結晶核生成層 1 0 9を形成できる。 続いて、 結晶核生成層 1 0 9上 (結晶核生成層 1 0 9を形成しない構 成の場合は第 3誘電体層 1 0 5上) に、 記録層 1 04を成膜する。 記録 層 1 04は、 その組成に応じて、 G e— M 2— T e合金からなるスパッ 夕リングタ一ゲット、 G e—M 2— T e— M 3合金からなるスパッタリ ングターゲット、 G e— M 2— T e— M4合金からなるスパッタリング ターゲット、 または S b -T e—M 5合金からなるスパッタリング夕一 ゲットを、 一つの電源を用いて、 スパッタリングすることによって形成 できる。
記録層 1 04を作製する際のスパッタリングの雰囲気ガスには、 A r ガス、 K rガス、 A rガスと反応ガスとの混合ガス、 または K rガスと 反応ガスとの混合ガスを用いることができる。 また、 記録層 1 04は、 Ge、 M2、 T e、 M3、 M 4及び M 5のうち必要な元素を含むスパッ タリングターゲットを複数の電源を用いて同時にスパッタリングするこ とによって形成することもできる。 また、 記録層 1 04は、 Ge、 M2 、 T e、 M3、 M 4及び M 5のうち必要な元素を組み合わせた 2元系ス パッタリングターゲットゃ 3元系スパッタリングターゲットなどを、 複 数の電源を用いて同時にスパッタリングすることによつて形成すること もできる。 これらのスパッタリングターゲットを用いる場合でも、 A r ガス雰囲気中、 K rガス雰囲気中、 A rガスと反応ガスとの混合ガス雰 囲気中、 または K rガスと反応ガスとの混合ガス雰囲気中でスパッタリ ングすることによって、 記録層 1 04を形成できる。
続いて、 記録層 1 04上に、 必要に応じて (図 1及び図 3に示す情報 記録媒体 1, 1 5を作製する場合) 、 結晶核生成層 1 0 3を成膜する。 続いて、 結晶核生成層 1 03上 (結晶核生成層 1 0 3を設けない構成 の場合は記録層 1 04上) に、 第 2誘電体層 1 02を成膜する。 第 2誘 電体層 1 02は、 第 2誘電体層 1 02を構成する化合物からなるスパッ 夕リングターゲットを、 A rガス雰囲気中、 または A rガスと反応ガス との混合ガス雰囲気中でスパッタリングすることによって形成できる。 また、 第 2誘電体層 1 0 2は、 第 2誘電体層 1 0 3を構成する金属から なるスパッタリングタ一ゲットを、 A rガスと反応ガスとの混合ガス雰 囲気中で反応性スパッタリングすることによっても形成できる。
続いて、 第 2誘電体層 1 0 2上に、 第 1誘電体層 1 0 1を成膜する。 第 1誘電体層 1 0 1は、 第 1誘電体層 1 0 1を構成する化合物からなる スパッタリングターゲットを、 A rガス雰囲気中、 または A rガスと反 応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成で きる。 また、 第 1誘電体層 1 0 1は、 第 1誘電体層 1 0 1を構成する元 素を含むスパッタリングターゲットを、 A rガスと反応ガスとの混合ガ ス雰囲気中で反応性スパッタリングすることによつても形成できる。 最後に、 第 1誘電体層 1 0 1上に透明層 1 3を形成する。 透明層 1 3 は、 光硬化性樹脂 (特に紫外線硬化性樹脂) または遅効性熱硬化型樹脂 を第 1誘電体層 1 0 1上に塗布し、 全体を回転させて樹脂を均一に延ば した (スピンコートした) したのち、 樹脂を硬化させることによって形 成できる。 また、 透明層 1 3には、 透明な円盤状のポリ力一ポネートま たはアモルファスポリオレフィンまたは P MM A等の樹脂またはガラス などの基板を用いてもよい。 このように基板を用いる場合、 透明層 1 3 は、 光硬化性樹脂 (特に紫外線硬化性樹脂) や遅効性熱硬化型樹脂等の 樹脂を第 1誘電体層 1 0 1上に塗布して、 次に基板を第 1誘電体層 1 0 1上に密着させてスピンコートした後、 樹脂を硬化させることによって 形成できる。 また、 基板に予め粘着性の樹脂を均一に塗布し、 それを第 1誘電体層 1 0 1に密着させることもできる。
なお、 第 1誘電体層 1 0 1を成膜したのち、 または透明層 1 3を形成 したのち、 必要に応じて、 記録層 1 0 4の全面を結晶化させる初期化工 程を行ってもよい。 記録層 1 04の結晶化は、 レーザビームを照射する ことによって行うことができる。
以上のようにして、 本実施の形態の情報記録媒体 1, 1 4, 1 5を製 造できる。
なお、 本実施の形態においては、 各膜の成膜方法としてスパッ夕リン グ法を用いたが、 これに限定されず、 真空蒸着法、 イオンプレ一ティン ク法、 C V D (Chemical Vapor Deposition) 法、 MB E (Molecular Beam Epitaxy) 等を用いることも可能である。
(実施の形態 2)
本発明の情報記録媒体の別の実施の形態を説明する。 本実施の形態の 情報記録媒体は、 波長 3 9 0〜42 0 nmのいわゆる青紫色レ一ザを用 いて情報の記録再生を行う場合に好適に用いられる媒体である。 図 4に 、 本実施の形態の情報記録媒体 2の一部断面構成を示す。 情報記録媒体 2は、 複数の情報層を含んでおり、 片面からのレーザビーム 1 0の照射 によって各情報層に対する情報の記録再生が可能な、 多層構造の光学的 情報記録媒体である。
情報記録媒体 2においては、 基板 2 1上に第 1〜第 Nまでの N個 (N は N≥ 2を満たす自然数) の情報層 2 2 i〜 2 2 Nが積層され、 さらに、 透明層 2 3が設けられている。 なお、 本明細書においては、 レーザビー ム 1 0の入射側から数えて 1番目の情報層を第 1の情報層 2 2ぃ N番 目の情報層を第 Nの情報層 2 2Nと記載する。 互いに隣接する情報層は 、 光学分離層 24を介して積層されている。 情報記録媒体 2においては 、 第 1の情報層 2 2ェ〜第 (N_ 1) の情報層 2 2N_1は、 光透過性を有 している。 第 Nの情報層 2 2 Nにまでレーザビ一ム 1 0を到達させる必 要があるからである。
基板 2 1及び透明層 2 3の材料には、 実施の形態 1で説明した基板 1 1及び透明層 1 3と同様の材料を用いることができる。 また、 それらの 形状及び機能についても、 実施の形態 1で説明した基板 1及び透明層 1 3の形状及び機能と同様である。
光学分離層 24は、 光硬化性樹脂 (特に紫外線硬化性樹脂) や遅効性 熱硬化型樹脂等の樹脂、 または誘電体等からなり、 使用するレーザビー ム 1 0に対して光吸収が小さいことが好ましく、 短波長域において光学 的に複屈折が小さいことが好ましい。
各情報層間に設けられる光学分離層 24は、 第 1の情報層 22い 第 2の情報層 222、 ...、 第 Nの情報層 22Nそれぞれのフォーカス位置を 区別するために用いられる。 光学分離層 24の厚さは、 対物レンズの開 口数 (NA) とレーザビーム 1 0の波長 λによって決定される焦点深度 Δ Ζ以上であることが必要である。 焦点の光強度の基準を無収差の場合 の 80 %と仮定した場合、 焦点深度 Δ Ζは Δ Ζ = λ/ { 2 (NA) 2} で近似できる。 λ = 400 ηπι、 ΝΑ= 0. 6の時、 Δ Ζ = 0. 556 mとなり、 ± 0. 6 m以内は焦点深度内となる。 そのため、 この場 合には、 光学分離層 24の厚さは 1. 2 m以上であることが必要であ る。 また、 対物レンズを用いてレーザビーム 1 0を集光可能な範囲とな るように、 各情報層間の距離を設定することが望ましい。 したがって、 光学分離層 24の厚さは、 対物レンズが許容できる公差内 (例えば 50 m以下) にすることが好ましい。
光学分離層 24において、 レーザビーム 1 0の入射側の表面には、 必 要に応じてレーザビーム 1 0を導くための案内溝が形成されていてもよ い。
この場合、 片側からのレーザビーム 1 0の照射のみにより、 第 Kの情 報層 (Kは 1く K≤Nの自然数) 22Kを第 1の情報層 2 21〜第 (K一 1) の情報層 22 を透過したレーザビーム 1 0によって記録再生す ることが可能である。
以下、 第 1の情報層 2 2 iの構成について詳細に説明する。
第 1の情報層 2 2 tには、 レーザビーム 1 0の入射側から順に配置さ れた第 1誘電体層 2 0 1、 第 2誘電体層 2 0 2、 結晶核生成層 2 0 3、 記録層 2 0 4、 第 3誘電体層 2 0 5、 反射層 2 0 6及び透過率調整層 2 0 7が設けられている。
第 1誘電体層 2 0 1には、 実施の形態 1で説明した第 1誘電体層 1 0 1と同様の材料を用いることができる。 また、 それらの機能についても 、 実施の形態 1の第 1誘電体層 1 0 1の機能と同様である。
第 1誘電体層 2 0 1の膜厚は、 マトリクス法に基づく計算により、 記 録層 2 0 4が結晶相である場合と非晶質相である場合との間の反射光量 の変化が大きく、 且つ、 記録層 2 0 4での光吸収が大きくなるという条 件を満足するように決定することができる。
第 2誘電体層 2 0 2には、 実施の形態 1で説明した第 2誘電体層 1 0 2と同様の材料を用いることができる。 また、 それらの機能及び形状に ついても、 実施の形態 1の第 2誘電体層 1 0 2と同様である。
第 3誘電体層 2 0 5には、 実施の形態 1で説明した第 3誘電体層 1 0 5と同様の材料を用いることができる。 また、 それらの機能及び形状に ついても、 実施の形態 1の第 3誘電体層 1 0 5と同様である。
結晶核生成層 2 0 3には、 実施の形態 1の結晶核生成層 1 0 3と同様 の材料を用いることができる。 また、 それらの機能についても、 実施の 形態 1の結晶核生成層 1 0 3と同様である。
結晶核生成層 2 0 3の膜厚は、 高速な転送レートの場合にも消去性能 が良好で、 長期保存後の書き換え性能が良好で、 且つ第 1の情報層 2 2 iの透過率ができるだけ高くなるように、 0 . 3 n m〜 l . 5 n mの範 囲内であることが好ましく、 0 . 5 η π!〜 1 n mの範囲内にあることが より好ましい。
記録層 204には、 実施の形態 1で説明した記録層 1 04と同様の材 料を用いることができる。 記録層 204の膜厚はなるべく薄くすること が好ましい。 これは、 第 1の情報層 22ェを透過したレーザ光にて情報 の記録再生を行う情報層 (第 1の情報層 22ェよりもレーザビーム 1 0 の入射側から遠くに配置された情報層) に記録再生の際に必要なレーザ 光量を到達させるために、 第 1の情報層 22 の透過率を高くする必要 があるからである。 例えば、 組成式 Ge a (M2) bT e 3 + aで表される 材料、 Ge a (M 2 ) bT e 3 + aにおいて G eの一部を (M3) にて置換 した材料 ( (Ge— (M 3) ) aS bbT e 3 + a) 、 及び組成式 (G e a (M2) bT e 3 + a) 1 0 o - c (M4) cで表される材料の場合には、 4 n m〜 9 nmの範囲内であることが好ましく、 5 nm〜 8 nmの範囲内で あることがより好ましい。 また、 記録層 204が組成式 (S b dT e 1 ()
0-d) l O Q - e (M 5) eで表される材料にて形成されている場合は、 厚 みは 3 nm〜 8 nmの範囲内であることが好ましく、 4 nm〜6 nmの 範囲内であることがより好ましい。 ' 反射層 206には、 実施の形態 1で説明した反射層 1 0 8と同様の材 料を用いることができる。 また、 それらの機能についても、 実施の形態 1の反射層 1 0 8の機能と同様である。 反射層 20 6の膜厚は、 第 1の 情報層 22 iの透過率をできるだけ高くするため、 3 nm〜 1 5 nmの 範囲内であることが好ましく、 8 nm〜 1 2 nmの範囲内であることが より好ましい。 反射層 206の膜厚がこの範囲内にあることにより、 そ の熱拡散機能が十分で、 且つ第 1の情報層 22ェにおける十分な反射率 が確保でき、 さらに第 1の情報層 22 tの透過率も十分となる。
透過率調整層 20 7は誘電体からなり、 第 1の情報層 2 2ェの透過率 を調整する機能を有する。 この透過率調整層 20 7によって、 記録層 2 04が結晶相である場合の第 1の情報層 2 2ェにおける透過率 Tc (%) と、 記録層 2 04が非晶質相である場合の第 1の情報層 22ェにおける 透過率 Ta (%) とを、 共に高くすることができる。 具体的には、 透過 率調整層 20 7を備える第 1の情報層 2 2 iでは、 透過率調整層 20 7 が無い場合に比べて、 透過率 Tc及び Taが 2 %〜 1 0 %程度上昇する。 また、 透過率調整層 2 07は、 記録層 204で発生した熱を効果的に拡 散させる機能も有する。
透過率調整層 2 07の屈折率 n及び消衰係数 kは、 第 1の情報層 2 2 ェの透過率 Tc及び Taを高める作用をより大きくするために、 2. 0≤ n、 且つ、 k≤0. 1を満たすことが好ましく、 2. 0≤n≤ 3. 0、 且つ、 k≤ 0. 0 5を満たすことがより好ましい。
透過率調整層 207の膜厚 は、 (1Z32) A/n≤d x≤ (3/ 1 6 ) λΖηまたは (1 7/32) λ /n≤ d (1 1/1 6) λ/ ηの範囲内であることが好ましく、 ( 1/1 6) λ/η≤ d !≤ ( 5 /■ 32) λ/ηまたは (9/ 1 6) λ/η≤ d χ≤ (2 1/32) λ/η の範囲内であることがより好ましい。 なお、 例えばレーザビーム 1 0の 波長 λと透過率調整層 207の屈折率 ηとを 3 50 nm≤ λ≤ 450 n m、 2. 0≤n≤ 3. 0とすると、 膜厚 d丄は 3 n m≤ d ≤ 40 n mま たは 60 nm≤d 1 30 nmの範囲内であることが好ましく、 7 n m≤ (11≤3 0 11111または65 nm≤ d 1 20 nm©範囲内である ことがより好ましいことになる。 膜厚 d iをこの範囲内で選ぶことによ つて、 第 1の情報層 22 の透過率 Tc及び Taを共に高くすることがで さる。
透過率調整層 2 07には、 例えば、 T i〇2、 Z r 02、 Z nO、 Nb 205、 T a 205、 S i〇2、 A 1203、 B i 203、 C r 23、 S r - O等の酸化物を用いることができる。 また、 T i一 N、 Z r—N、 Nb 一 N T a - N S i _N Ge - N C r一 N A l - N Ge - S i— N Ge—C r—N等の窒化物を用いることもできる。 また、 Z n Sなどの硫化物を用いることもできる。 また、 上記材料の混合物を用い ることもできる。 これらの中でも、 特に、 T i〇2、 または T i〇2を含 む材料を用いることが好ましい。 これらの材料は屈折率が大きく (n 2. 5 2. 8) 、 消衰係数も小さい (k= 0. 0 Ό. 0 5) ため、 第 1の情報層 22ェの透過率を高める作用が大きくなる。
第 1の情報層 22 の透過率 Tc及び Taは、 記録再生の際に必要なレ —ザ光量を第 2の情報層 222〜第 Nの情報層 22 Nに到達させるため、 40<TC、 且つ、 40く Taを満たすことが好ましく、 46<TC、 且 つ、 46<Taを満たすことがより好ましい。
第 1の情報層 2 2 iの透過率 Tc及び Taは、 _ 5≤ (Tc-Ta) ≤ 5 を満たすことが好ましく、 — 3≤ (Tc-Ta) ≤ 3を満たすことがより 好ましい。 透過率 Tc及び Taがこの条件を満たすことにより、 第 2〜第 nの情報層 222 22 nに情報の記録再生を行う際、第 1の情報層 22 !における記録層 2 04の状態による透過率の変化の影響が小さくなる ので、 良好な記録再生特性が得られる。
記録層 204が結晶相の時の第 1の情報層 22 の反射率 Rc:及び記 録層 204が非晶質相の時の第 1の情報層 2?ェの反射率尺^は、 Ra l <Rc lを満たすことが好ましい。 このことにより、 情報が記録された状 態よりも情報が記録されていない初期の状態で反射率が高く、 安定に記 録再生動作を行うことができる。 また、 反射率差 (Rc l_Ra l) を大き くして良好な記録再生特性が得られるように、 Re Ra lは、 0. 1≤ Ra l≤ 5、 且つ、 4≤Rc l≤ l 5を満たすことが好ましく、 0. 1≤R a l≤ 3、 且つ、 4≤Rc l≤ 1 0を満たすことがより好ましい。
なお、 第 1の情報層 22 こおいて、 結晶核生成層は、 記録層 2 04 と第 3誘電体層 2 0 5との間に配置されても良い。 この場合は、 図 5に 示す情報記録媒体 2 5のように、 基板 2 1上に第 1〜第 Nの情報層 2 2 ェ〜 2 2 N及び透明層 2 3が設けられており、 第 1の情報層 2 2ェが、 レ —ザビーム入射側から順次積層された、 第 1誘電体層 2 0 1、 第 2誘電 体層 2 0 2、 記録層 2 0 4、 結晶核生成層 2 0 8、 第 3誘電体層 2 0 5 、 反射層 2 0 6及び透過率調整層 2 0 7にて形成される。 また、 第 1の 情報層 2 2ェにおいて、 結晶核生成層は、 記録層 2 0 4と第 2誘電体層 2 0 2及び第 3誘電体層 2 0 5と間にそれぞれ配置されていてもよい。 この場合は、 図 6に示す情報記録媒体 2 6のように、 基板 2 1上に第 1 〜第 Nの情報層 2 2 i〜 2 2 N及び透明層 2 3が設けられており、第 1の 情報層 2 2ェが、 レーザビーム入射側から順次積層された、 第 1誘電体 層 2 0 1、 第 2誘電体層 2 0 2、 結晶核生成層 2 0 3、 記録層 2 0 4、 結晶核生成層 2 0 8、 第 3誘電体層 2 0 5、 反射層 2 0 6及び透過率調 整層 2 0 7にて形成される。 なお、 結晶核生成層 2 0 8は、 結晶核生成 層 2 0 3と同様の系の材料を用いることができ、 それらの形状及び機能 についても結晶核生成層 2 0 3と同様である。
なお、 本実施の形態の光学的情報記録媒体 2, 2 5 , 2 6に含まれる 第 1の情報層 2 2ェ以外の他の情報層の膜構造は、第 1の情報層 2 2 と 同様であってもよく、 また、 別の構造であってもよい。 また、 複数の情 報層のうちの少なくとも一つを本実施の形態で説明した第 1の情報層 2 2 と同様の膜構造とし、 他の情報層は異なる構造であっても構わない が、 レーザビーム入射側の面に最も近い位置に配置される第 1の情報層 2 2ェを本実施の形態で説明した膜構造にすることが好ましい。 また、 第 1の情報層 2 2 i以外の他の情報層の何れか一つを、 再生専用タイプ の情報層 (R O M (Re ad On l y Memo ry) ) または 1回のみ書き込み可能 な追記型の情報層 (W〇 (Wr i t e Once) ) としても良い。 次に、 本実施の形態の情報記録媒体 2 , 2 5 , 2 6の製造方法につい て説明する。
まず、 基板 2 1 (例えば厚さ 1 1 0 0 m) 上に、 第 Nの情報層 2 2 N〜第 2の情報層 2 2 2の (N— 1 ) 層の情報層を、 光学分離層 2 4を介 して順次積層する。 各情報層は、 単層膜または多層膜からなり、 それら の各膜は、 成膜装置内で材料となるスパッタリングターゲットを順次ス パッタリングすることによって形成できる。 また、 光学分離層 2 4は、 光硬化型樹脂 (特に紫外線硬化型樹脂) または遅効性熱硬化型樹脂を情 報層上に塗布し、 スピンコートにより樹脂を均一に延ばし、 その後で樹 脂を硬化させることによって形成できる。 なお、 光学分離層 2 4にレ一 ザビーム 1 0の案内溝を形成する場合は、 表面に所定の形状の溝が形成 された転写用基板 (型) を硬化前の樹脂に密着させた後、 基板 2 1と転 写用基板とを回転させてスピンコートし、 その後に樹脂を硬化させ、 さ らにその後に転写用基板を硬化させた樹脂から剥がすことによって、 表 面に所定の案内溝が形成された光学分離層 2 4を形成できる。
このようにして、 基板 2 1上に、 (N _ l ) 層の情報層を光学分離層 2 4を介して順次積層した後、 さらに光学分離層 2 4を形成したものを 用意する。
続いて、 (N— 1 ) 層の情報層上に形成された光学分離層 2 4上に、 第 1の情報層 2 2ェを形成する。 具体的には、 まず、 (N— 1 ) 層の情 報層及び光学分離層 2 4が形成された基板 2 1を成膜装置内に配置し、 光学分離層 2 4上に透過率調整層 2 0 7を成膜する。 透過率調整層 2 0 7は、 透過率調整層 2 0 7を構成する化合物からなるスパッタリング夕 —ゲットを、 A rガス雰囲気中、 または A rガスと反応ガスとの混合ガ ス雰囲気中でスパッタリングすることによって形成できる。 また、 透過 率調整層 2 0 7は、 透過率調整層 2 0 7を構成する元素からなる金属を スパッタリングターゲットとして用い、 A rガスと反応ガスとの混合ガ ス雰囲気中で反応性スパッタリングすることによつても形成できる。 続いて、 透過率調整層 2 0 7上に、 反射層 2 0 6を成膜する。 反射層 2 0 6は、 実施の形態 1で説明した反射層 1 0 8の形成方法と同様の方 法で形成できる。
続いて、 反射層 2 0 6上に、 第 3誘電体層 2 0 5を成膜する。 第 3誘 電体層 2 0 5は、 実施の形態 1で説明した第 3誘電体層 1 0 5の形成方 法と同様の方法で形成できる。
続いて、 第 3誘電体層 2 0 5上に、 必要に応じて (図 5及び図 6に示 す情報記録媒体 2 5, 2 6を作製する場合) 、 結晶核生成層 2 0 8を成 膜する。 結晶核生成層 2 0 8は、 実施の形態 1で説明した結晶核生成層 1 0 9と同様の方法で形成できる。 なお、 第 3誘電体層 2 0 5上に結晶 核生成層 2 0 8を成膜しない場合 (図 4に示す情報記録媒体 2の場合) には、 後述の記録層 2 0 4上に結晶核生成層 2 0 3を成膜する。
続いて、 結晶核生成層 2 0 8上 (結晶核生成層 2 0 9を設けない構成 の場合は第 3誘電体層 2 0 5上) に、 記録層 2 0 4を成膜する。 記録層 2 0 4は、 実施の形態 1で説明した記録層 1 0 4の形成方法と同様の方 法で形成できる。
続いて、 記録層 2 0 4上に、 必要に応じて (図 4及び図 6に示す情報 記録媒体 2 , 2 6を作製する場合) 、 結晶核生成層 2 0 3を成膜する。 続いて、 結晶核生成層 2 0 3上 (結晶核生成層 2 0 3を設けない場合 は記録層 2 0 4上) に、 第 2誘電体層 2 0 2を成膜する。 第 2誘電体層 2 0 2は、 実施の形態 1で説明した第 2誘電体層 1 0 2の形成方法と同 様の方法で形成できる。
続いて、 第 2誘電体層 2 0 2上に、 第 1誘電体層 2 0 1を成膜する。 第 1誘電体層 2 0 1は、 実施の形態 1で説明した第 1誘電体層 1 0 1の 形成方法と同様の方法で形成できる。
最後に、 第 1誘電体層 2 0 1上に透明層 2 3を形成する。 透明層 2 3 は、 実施の形態 1で説明した透明層 1 3の形成方法と同様の方法で形成 できる。
なお、 第 1誘電体層 2 0 1を成膜したのち、 または透明層 2 3を形成 したのち、 必要に応じて、 記録層 2 0 4の全面を結晶化させる初期化工 程を行ってもよい。 記録層 2 0 4の結晶化は、 レーザビームを照射する ことによって行うことができる。
以上のようにして、 本実施の形態の情報記録媒体 2, 2 5, 2 6を製 造できる。 なお、 本実施の形態においては、 各膜の成膜方法としてスパ ッタリング法を用いたが、 これに限定されず、 真空蒸着法、 イオンプレ —ティング法、 C V D法、 M B E等を用いることも可能である。
(実施の形態 3 )
本発明の情報記録媒体のさらに別の実施の形態を説明する。 本実施の 形態の情報記録媒体は、 波長 3 9 0〜4 2 0 n mのいわゆる青紫色レ一 ザを用いて情報の記録再生を行う場合に好適に用いられる媒体である。 図 7に、 本実施の形態の情報記録媒体 3の一部断面構成を示す。 情報記 録媒体 3は、 2つの情報層を含んでおり、 片面からのレーザビーム 1 0 の照射によって各情報層に対する情報の記録再生が可能な 2層構造の光 学的情報記録媒体である。
情報記録媒体 3は、 基板 3 1上に順次積層した、 第 2の情報層 3 2 2 、 光学分離層 3 4、 第 1の情報層 3 2い 及び透明層 3 3により構成さ れている。 レーザビーム 1 0は透明層 3 3側から入射される。 基板 3 1 、 光学分離層 3 4、 第 1の情報層 3 2い 及び透明層 3 3には、 実施の 形態 1または 2で説明した基板 1 1, 2 1、 光学分離層 2 4、 第 1の情 報層 2 2い 透明層 1 3 , 2 3と同様の材料を用いることができ、 また 、 それらの形状及び機能も同様である。
以下、 第 2の情報層 3 2 2の構成について詳細に説明する。
第 2の情報層 3 2 2は、 レーザビーム 1 0の入射側から順に配置され た第 1誘電体層 3 0 1、 第 2誘電体層 3 0 2、 結晶核生成層 3 0 3、 記 録層 3 0 4、 第 3誘電体層 3 0 5、 第 4誘電体層 3 0 6、 界面層 3 0 7 及び反射層 3 0 8を備える。 第 2の情報層 3 2 2は、 透明層 3 3、 第 1 の情報層 3 2 及び光学分離層 3 4を透過したレーザビーム 1 0によつ て記録再生が行われる。
第 1誘電体層 3 0 1には、 実施の形態 1で説明した第 1誘電体層 1 0 1と同様の材料を用いることができる。 また、 それらの機能についても 、 実施の形態 1の第 1誘電体層 1 0 1の機能と同様である。
第 1誘電体層 3 0 1の膜厚は、 マトリクス法に基づく計算により、 記 録層 3 0 4が結晶相である場合と非晶質相である場合との間の反射光量 の変化が大きくなり、 且つ記録層 3 0 4での光吸収が大きくなるという 条件を満足するように決定することができる。
第 2誘電体層 3 0 2には、 実施の形態 1で説明した第 2誘電体層 1 0 2と同様の材料を用いることができる。 また、 それらの機能及び形状に ついても、 実施の形態 1の第 2誘電体層 1 0 2と同様である。
第 3誘電体層 3 0 5には、 実施の形態 1で説明した第 3誘電体層 1 0 5と同様の材料を用いることができる。 また、 それらの機能及び形状に ついても、 実施の形態 1の第 3誘電体層 1 0 5と同様である。
結晶核生成層 3 0 3には、 実施の形態 1で説明した結晶核生成層 1 0 3と同様の材料を用いることができる。 また、 それらの膜厚についても 、 実施の形態 1の結晶核生成層 1 0 3と同様である。
記録層 3 0 4には、 実施の形態 1の記録層 1 0 4と同様の材料を用い ることができる。 また、 それらの膜厚についても、 実施の形態 1の記録 層 1 0 4の膜厚と同様である。
第 4誘電体層 3 0 6には、 実施の形態 1で説明した第 4誘電体層 1 0 6と同様の材料を用いることができる。 また、 それらの機能及び形状に ついても、 実施の形態 1の第 4誘電体層 1 0 6の機能及び形状と同様で ある。 なお、 第 4誘電体層 3 0 6を設けない構成とすることも可能であ る。
反射層 3 0 8には 、実施の形態 1で説明した反射層 1 0 8と同様の材 料を用いることができる。 また、 それらの機能及び形状についても、 実 施の形態 1の反射層 1 0 8の機能と同様である。
界面層 3 0 7には、 実施の形態 1で説明した界面層 1 0 7と同様の材 料を用いることができる。 また、 それらの機能及び形状についても、 実 施の形態 1の界面層 1 0 7の機能及び形状と同様である。 なお、 界面層 3 0 7を設けない構成とすることも可能である。
なお、 第 2の情報層 3 2 2において、 結晶核生成層は、 記録層 3 0 4 と第 3誘電体層 3 0 5との間に配置されても良い。 この場合は、 図 8に 示す情報記録媒体 3 5のように、 第 2の情報層 3 2 2が、 レーザビーム 入射側から順次積層された、 第 1誘電体層 3 0 1、 第 2誘電体層 3 0 2 、 記録層 3 0 4、 結晶核生成層 3 0 9、 第 3誘電体層 3 0 5、 第 4誘電 体層 3 0 6、 界面層 3 0 7及び反射層 3 0 8にて形成される。 また、 第 2の情報層 3 2 ^こおいて、'結晶核生成層は、 記録層 3 0 4と第 2誘電 体層 3 0 2及び第 3誘電体層 3 0 5と間にそれぞれ配置されていてもよ い。 この場合は、 図 9に示す情報記録媒体 3 6のように、 第 2の情報層 3 2 2が、 レ一ザビーム入射側から順次積層された、 第 1誘電体層 3 0 1、 第 2誘電体層 3 0 2、 結晶核生成層 3 0 3、 記録層 3 0 4、 結晶核 生成層 3 0 9、 第 3誘電体層 3 0 5、 第 4誘電体層 3 0 6、 界面層 3 0 7及び反射層 3 0 8にて形成される。 なお、 結晶核生成層 3 0 9は、 結 晶核生成層 3 0 3と同様の系の材料を用いることができ、 それらの形状 及び機能についても結晶核生成層 3 0 3と同様である。
次に、 本実施の形態の情報記録媒体 3 , 3 5, 3 6の製造方法につい て説明する。
まず、 基板 3 1上に第 2の情報層 3 2 2を形成する。 具体的には、 ま ず、 基板 3 1 (例えば厚さ 1 1 0 0 z m) を用意し、 成膜装置内に配置 する。
続いて、 基板 3 1上に反射層 3 0 8を成膜する。 この時、 基板 3 1に レーザビーム 1 0を導くための案内溝が形成されている場合には、 案内 溝が形成された面上に反射層 3 0 8を成膜する。 反射層 3 0 8は、 実施 の形態 1で説明した反射層 1 0 8と同様の方法で形成できる。
続いて、 反射層 3 0 8上に、 必要に応じて界面層 3 0 7を成膜する。 界面層 3 0 7は、 実施の形態 1で説明した界面層 1 0 7と同様の方法で 形成できる。
続いて、 界面層 3 0 7上 (界面層 3 0 7を設けない場合は反射層 3 0 8上) に、 必要に応じて第 4誘電体層 3 0 6を成膜する。 第 4誘電体層 3 0 6は、 実施の形態 1で説明した第 4誘電体層 1 0 6と同様の方法で 形成できる。
続いて、 第 4誘電体層 3 0 6上 (第 4誘電体層 3 0 6を設けない場合 は界面層 3 0 7または反射層 3 0 8上) に、 第 3誘電体層 3 0 5を成膜 する。 第 3誘電体層 3 0 5は、 実施の形態 1の第 3誘電体層 1 0 5と同 様の方法で形成できる。
続いて、 第 3誘電体層 3 0 5上に、 必要に応じて (図 8及び図 9に示 す情報記録媒体 3 5, 3 6の場合) 、 結晶核生成層 3 0 9を成膜する。 結晶核生成層 3 0 9は、 実施の形態 1で説明した結晶核生成層 1 0 9と 同様の方法で形成できる。 なお、 第 3誘電体層 3 0 5上に結晶核生成層 3 0 9を成膜しない場合には、 後述の記録層 3 0 4上に結晶核生成層 3 0 3を成膜する。
続いて、 結晶核生成層 3 0 9上 (結晶核生成層 3 0 9を設けない場合 は第 3誘電体層 3 0 5上) に、 記録層 3 0 4を成膜する。 記録層 3 0 4 は、 実施の形態 1で説明した記録層 1 0 4と同様の方法で形成できる。 続いて、 記録層 3 0 4上に、 必要に応じて (図 7及び図 9に示す情報 記録媒体 3, 3 6の場合) 、 結晶核生成層 3 0 3を成膜する。
続いて、 結晶核生成層 3 0 4上 (結晶核生成層 3 0 4を設けない場合 は記録層 3 0 4上) に、 第 2誘電体層 3 0 2を成膜する。 第 2誘電体層 3 0 2は、 実施の形態 1の第 2誘電体層 1 0 3と同様の方法で形成でき る。
続いて、 第 2誘電体層.3 0 2上に、 第 1誘電体層 3 0 1を成膜する。 第 1誘電体層 3 0 1は、 実施の形態 1の第 1誘電体層 1 0 1と同様の方 法で形成できる。
このようにして、 第 2の情報層 3 2 2を形成する。
続いて、 第 2の情報層 3 2 2の第 1誘電体層 3 0 1上に光学分離層 3 4を形成する。 光学分離層 3 4は、 光硬化性樹脂 (特に紫外線硬化性榭 脂) または遅効性硬化型樹脂を第 1誘電体層 3 0 1上に塗布してスピン コートしたのち、 樹脂を硬化させることによって形成できる。 なお、 光 学分離層 3 4がレーザビーム 1 0の案内溝を備える場合には、 溝が形成 された転写用基板 (型) を硬化前の樹脂に密着させたのち、 樹脂を硬化 させ、 その後、 転写用基板 (型) をはがすことによって、 案内溝を形成 できる。
なお、 第 1誘電体層 3 0 1を成膜したのち、 または光学分離層 3 4を 形成したのち、 必要に応じて、 記録層 3 0 4の全面を結晶化させる初期 化工程を行ってもよい。 記録層 3 0 4の結晶化は、 レ一ザビームを照射 することによって行うことができる。
続いて、 光学分離層 3 4上に第 1の情報層 3, 2 iを形成する。 具体的 には、 まず、 光学分離層 3 4上に、 透過率調整層 2 0 7、 反射層 2 0 6 、 第 3誘電体層 2 0 5、 結晶核生成層 2 0 8、 記録層 2 0 4、 第 2誘電 体層 2 0 2及び第 1誘電体層 2 0 1をこの順序で成膜する。 または、 光 学分離層 3 4上に、 透過率調整層 2 0 7、 反射層 2 0 6、 第 3誘電体層 2 0 5、 記録層 2 0 4、 結晶核生成層 2 0 3、 第 2誘電体層 2 0 2及び 第 1誘電体層 2 0 1をこの順序で成膜する。 あるいは、 光学分離層 3 4 上に、 透過率調整層 2 0 7、 反射層 2 0 6、 第 3誘電体層 2 0 5、 結晶 核生成層 2 0 8、 記録層 2 0 4、 結晶核生成層 2 0 3、 第 2誘電体層 2 0 2及び第 1誘電体層 2 0 1をこの順序で成膜する。 これらの各層は、 実施の形態 2で説明した方法で形成できる。
最後に、 第 1誘電体層 2 0 1上に透明層 3 3を形成する。 透明層 3 3 は、 実施の形態 1で説明した透明層 1 3と同様の方法で形成できる。 なお、 第 1誘電体層 2 0 1を成膜したのち、 または透明層 3 3を形成 したのち、 必要に応じて、 記録層 2 0 4の全面を結晶化させる初期化工 程を行ってもよい。 記録層 2 0 4の結晶化は、 レーザビームを照射する ことによって行うことができる。
また、 第 1誘電体層 2 0 1を成膜したのち、 または透明層 3 3を形成 したのち、 必要に応じて、 第 2の情報層 3 2 2の記録層 3 0 4及び第 1 の情報層 3 2ェの記録層 2 0 4の全面を結晶化させる初期化工程を行つ てもよい。 この場合、 第 1の情報層 3 2 の記録層 2 0 4の結晶化を先 に行うと、 第 2の情報層 3 2 2の記録層 3 0 4を結晶化するために必要 なレーザパワーが大きくなる傾向にあるため、 第 2の情報層 3 2 2の記 録層 3 0 4を先に結晶化させることが好ましい。
以上のようにして、 本実施の形態の情報記録媒体 3 , 3 5 , 3 6を製 造できる。 なお、 本実施の形態においては、 各膜の成膜方法としてスパ ッタリング法を用いたが、 これに限定されず、 真空蒸着法、 イオンプレ 一ティング法、 C V D法、 M B E等を用いることも可能である。
(実施の形態 4 )
本発明の情報記録媒体のさらに別の実施の形態を説明する。 本実施の 形態の情報記録媒体は、 波長 3 9 0 ~ 4 2 0 n mのいわゆる青紫色レー ザを用いて情報の記録再生を行う場合に好適に用いられる媒体である。 図 1 0に、 本実施の形態の情報記録媒体 4の断面図を示す。 情報記録媒 体 4は、 複数の情報層を含んでおり、 片面からのレーザビーム 1 0の照 射によって各情報層に対する記録再生が可能な多層構造の光学的情報記 録媒体である。
情報記録媒体 4では、 実施の形態 1〜 3で説明した情報記録媒体と異 なり、 基板 4 1がレーザビーム 1 0の入射側に配置されている。 この基 板 4 1上に N個の第 1〜第 Nの情報層 4 2ェ〜4 2 Nが積層され、 さらに 、 接着層 4 4を介してダミー基板 4 5が配置されている。 N個の情報層 4 2 i〜4 2 Nは、 光学分離層 4 3を介して互いに積層されている。 基板 4 1及びダミー基板 4 5は、 実施の形態 1で説明した基板 1 1と 同様に、 透明で円盤状の基板である。 基板 4 1及びダミー基板 4 5には 、 例えば、 ポリカーボネート、 アモルファスポリオレフイン、 または P MM A等の樹脂、 或いはガラスを用いることができる。
基板 4 1の第 1の情報層 4 2ェ側の表面には、 必要に応じてレーザビ ーム 1 0を導くための案内溝が形成されていても良い。 基板 4 1の第 1 の情報層 4 2ェ側と反対側の表面は、 平滑であることが好ましい。 基板 4 1及びダミー基板 4 5の材料としては、 転写性及び量産性に優れ、 低 コストであることから、 ポリ力一ポネートが特に好ましい。 なお、 基板 4 1の厚さは、 十分な強度があり、 且つ情報記録媒体 4の厚さが全体で 1 2 0 0 m程度となるよう、 5 0 0 ΠΙ〜 1 2 0 0 mの範囲内であ ることが好ましい。
接着層 4 4は、 光硬化型樹脂 (特に紫外線硬化型樹脂) や遅効性熱硬 化型樹脂等の樹脂からなり、 使用するレーザビーム 1 0に対して光吸収 が小さいことが好ましく、 短波長域において光学的に複屈折が小さいこ とが好ましい。
その他、 実施の形態 2の情報記録媒体と同一の符号を付した層につい ては、 材料、 形状及び機能が実施の形態 2の場合と同様であるため、 こ こではその説明を省略する。
なお、 第 1の情報層 4 2 こおいて、 結晶核生成層は、 記録層 2 0 4 のレーザビーム入射側とは反対の界面に配置されても良い。 この場合は 、 図 1 1の情報記録媒体 4 6に示すように、 第 1の情報層 4 2ェは、 レ —ザビーム入射側から順に配置された第 1誘電体層 2 0 1、 第 2誘電体 層 2 0 2、 記録層 2 0 4、 結晶核生成層 2 0 8、 第 3誘電体層 2 0 5、 反射層 2 0 6及び透過率調整層 2 0 7より構成される。 また、 第 1の情 報層 4 2 において、 記録層 2 0 4と第 2誘電体層 2 0 2及び第 3誘電 体層 2 0 5と間にそれぞれ配置されていてもよい。 この場合は、 図 1 2 に示す情報記録媒体 4 7のように、 第 1の情報層 4 2 が、 レーザビ一 ム入射側から順次積層された、 第 1誘電体層 2 0 1、 第 2誘電体層 2 0 2、 結晶核生成層 2 0 3、 記録層 2 0 4、 結晶核生成層 2 0 8、 第 3誘 電体層 2 0 5、 反射層 2 0 6及び透過率調整層 2 0 7にて形成される。 なお、 結晶核生成層 2 0 8は、 結晶核生成層 2 0 3と同様の系の材料を 用いることができ、 それらの形状及び機能についても結晶核生成層 2 0 3と同様である。
次に、 本実施の形態の情報記録媒体 4 , 4 6 , 4 7の製造方法につい て説明する。 まず、 基板 4 1 (例えば厚さ 6 0 0 m) 上に、 第 1の情報層 4 2 を形成する。 この時、 基板 4 1にレーザビーム 1 0を導くための案内溝 が形成されている場合には、 案内溝が形成された面上に第 1の情報層 4 2 iを形成する。 具体的には、 基板 4 1を成膜装置内に配置し、 実施の 形態 2で説明した第 1の情報層 2 2 1と逆の順番で、 第 1誘電体層 2 0 1、 第 2誘電体層 2 0 2、 結晶核生成層 2 0 3、 記録層 2 0 4、 第 3誘 電体層 2 0 5、 反射層 2 0 6及び透過率調整層 2 0 7を順次積層する。 または、 基板 4 1上に、 第 1誘電体層 2 0 1、 第 2誘電体層 2 0 2、 記 録層 2 0 4、 結晶核生成層 2 0 8、 第 3誘電体層 2 0 5、 反射層 2 0 6 及び透過率調整層 2 0 7を順次積層する。 あるいは、 基板 4 1上に、 第 1誘電体層 2 0 1、 第 2誘電体層 2 0 2、 結晶核生成層 2 0 3、 記録層 2 0 4、 結晶核生成層 2 0 8、 第 3誘電体層 2 0 5、 反射層 2 0 6及び 透過率調整層 2 0 7を順次積層する。 各層の成膜方法は、 実施の形態 2 で説明したとおりである。
その後、 第 2の情報層 5 2 2〜第 Nの情報層 5 2 ^^の (N— 1 ) 層の情 報層を、 光学分離層 4 3を介して順次積層する。 各情報層は、 単層膜ま たは多層膜からなり、 それらの各膜は、 実施の形態 2で説明した方法と 同様、 成膜装置内で材料となるスパッタリング夕一ゲットを順次スパッ 夕リングすることによって形成できる。
最後に、 第 Nの情報層 4 2„とダミー基板 4 5とを、 接着層 4 4を用 いて貼り合わせる。 具体的には、 光硬化型樹脂 (特に紫外線硬化型樹脂 ) や遅効性熱硬化型樹脂等の樹脂を第 Nの情報層 4 2 N上に塗布し、 こ の樹脂を介してダミー基板 4 5を第 Nの情報層 4 2 N上に密着させてス ピンコートした後、 樹脂を硬化させると良い。 また、 ダミー基板 4 5に 予め粘着性の樹脂を均一に塗布しておき、 それを第 Nの情報層 4 2 Nに 密着させることもできる。 なお、 ダミ一基板 4 5を密着させた後、 必要に応じて、 第 1の情報層 4 2 iの記録層 2 0 4の全面を結晶化させる初期化工程を行っても良い 。 記録層 2 0 4の結晶化は、 レーザビームを照射することによって行う ことができる。
以上のようにして、 本実施の形態の情報記録媒体 4, 4 6, 4 7を製 造できる。 なお、 本実施の形態においては、 各膜の成膜方法としてスパ ッタリング法を用いたが、 これに限定されず、 真空蒸着法、 イオンプレ —ティング法、 C V D法、 M B E等を用いることも可能である。 また、 本実施の形態の光学的情報記録媒体 4 , 4 6, 4 7に含まれる第 1の情 報層 4 2ェ以外の他の情報層の膜構造は、第 1の情報層 4 2 iと同様であ つてもよく、 また、 別の構造であってもよい。 また、 複数の情報層のう ちの少なくとも一つを本実施の形態で説明した第 1の情報層 4 2 と同 様の膜構造とし、 他の情報層は異なる構造であっても構わないが、 レー ザビーム入射側の面に最も近い位置に配置される第 1の情報層 4 2ェを 本実施の形態で説明した膜構造にすることが好ましい。 また、 第 1の情 報層 4 2 以外の他の情報層の何れか一つを、 再生専用タイプの情報層 ( R O M (Read Only Memory) ) または 1回のみ書き込み可能な追記型 の情報層 (WO (Wr i t e Once) ) としても良い。
(実施の形態 5 )
実施の形態 1〜 4で説明した情報記録媒体に対して情報の記録再生を 行う方法について説明する。
図 1 3には、 本実施の形態の記録再生方法に用いられる記録再生装置
8 1の一部の構成が、 模式的に示されている。 記録再生装置 8 1は、 情 報記録媒体 8 6を回転させるためのスピンドルモ一夕 8 5と、 半導体レ —ザ 8 3を備える光学ヘッド 8 4と、 半導体レーザ 8 3から出射される レーザビーム 1 0を集光する対物レンズ 8 2とを含んでいる。 情報記録 媒体 8 6は、 実施の形態 1〜4で説明した何れかの情報記録媒体であり 、 一つの情報層または複数の情報層 (例えば、 情報記録媒体 3における 第 1の情報層 3 2 i及び第 2の情報層 3 2 2 ) を含んでいる。 対物レンズ 8 2により、 レーザビーム 1 0が情報記録媒体 8 6の情報層上に集光さ れる。 '
情報記録媒体 8 6への情報の記録、 消去、 及び上書き記録は、 レーザ ビーム 1 0のパワーを、 高パワーのピークパワー (P p (mW) ) と低 パワーのバイアスパワー (P b (mW) ) とに変調させることによって 行う。 ピークパワーのレーザビーム 1 0を照射することによって、 情報 層に含まれる記録層の局所的な一部分に非晶質相が形成され、 その非晶 質相が記録マークとなる。 記録マーク間では、 バイアスパワーのレーザ ビーム 1 0が照射され、 結晶相 (消去部分) が形成される。 なお、 ピー クパワーのレーザビーム 1 0を照射する場合には、 パルスの列で形成す る、 いわゆるマルチパルスとするのが一般的である。 なお、 マルチパル スは、 ピークパワー及びバイアスパワーのパワーレベルだけで変調され ても良いし、 0 mW〜ピークパワーの範囲のパワーレベルによって変調 されても良い。
また、 ピークパヮ一及びバイアスパワーの何れのパワーレベルよりも 低く、 そのパワーレベルでのレーザビ一ム 1 0の照射によって記録マー クの光学的な状態が影響を受けず、 且つ情報記録媒体 8 6から記録マー ク再生のための十分な反射光量が得られるパワーを再生パワー ( mW) ) とし、 再生パワーのレーザ光を照射することによって得られる 情報記録媒体 8 6からの信号を検出器で読みとることにより、 情報信号 の再生が行われる。
対物レンズ 8 2の開口数 (N A) は、 レーザビーム 1 0のスポット径 を 0 . 4 / m〜0 . 7 z mの範囲内に調整するため、 0 . 5〜 1 . 1の 範囲内 (より好ましくは、 0 . 6〜1 . 0の範囲内) であることが好ま しい。 レーザビーム 1 0の波長は、 4 5 0 n m以下 (より好ましくは、 3 5 0 η π!〜 4 5 0 n mの範囲内) であることが好ましい。 情報を記録 する際の情報記録媒体 8 6の線速度は、 再生光による結晶化が起こりに くく、 且つ十分な消去率が得られる l m/秒〜 2 O mZ秒の範囲内 (よ り好ましくは、 2 m/秒〜 1 5 m/秒の範囲内) であることが好ましい 例えば、 情報記録媒体 8 6が二つの情報層を備えた情報記録媒体 3 ( 図 7参照。 ) である場合において、 第 1の情報層 3 2 こ対して記録を 行う際には、 レーザビーム 1 0の焦点を記録層 2 0 4に合わせ、 透明層 3 3を透過したレーザビーム 1 0によって記録層 2 0 4に情報を記録す る。 情報の再生は、 記録層 2 0 4.によって反射され、 透明層 3 3を透過 してきたレーザビーム 1 0を用いて行う。 一方、 第 2の情報層 3 2 2に 対して記録を行う際には、 レーザビーム 1 0の焦点を記録層 3 0 4に合 わせ、 透明層 3 3、 第 1の情報層 3 2 i及び光学分離層 3 4を透過した レーザビーム 1 0によって情報を記録する。 情報の再生は、 記録層 3 0 4によって反射され、 光学分離層 3 4、 第 1の情報層 3 2 i及び透明層 3 3を透過してきたレーザビーム 1 0を用いて行う。
なお、 情報記録媒体 3の基板 3 1及び光学分離層 3 4の表面にレーザ ビーム 1 0を導くための案内溝が形成されている場合、 情報は、 レーザ ビーム 1 0の入射側から近い方の溝面 (グループ) に行われても良いし
、 遠い方の溝面 (ランド) に行われても良い。 また、 グループとランド の両方に情報を記録しても良い。
(実施の形態 6 )
本発明の情報記録媒体のさらに別の実施の形態を説明する。 図 1 4に 、 本実施の形態の情報記録媒体 5の断面図を示す。 本実施の形態の情報 記録媒体 5は、 波長 6 0 0〜 7 0 0 n mのいわゆる赤色レーザを用いて 情報の記録再生を行う場合に好適に用いられる媒体である。
本実施の形態の情報記録媒体 5には、 基板 5 1上に一つの情報層 5 2 が設けられ、 情報層 5 2上には接着層 5 3によりダミー基板 5 4が貼り 合わされている。 情報層 5 2には、 レーザビ一ム 1 0の入射側から順に 、 第 1誘電体層 5 0 1、 第 2誘電体層 5 0 2、 結晶核生成層 5 0 3、 記 録層 5 0 4、 第 3誘電体層 5 0 5、 光吸収補正層 5 0 6及び反射層 5 0 7が積層されている。
基板 5 1には、 成形が容易な材料を用いることが好ましく、 実施の形 態 1で説明した基板 1 1と同様の材料を用いることができる。 また、 基 板 5 1は、 円盤状で光ビームのトラッキングのために、 例えばトラック ピッチ 0 . 6 1 5 mの案内溝を備えている。 図 1 4に示すように、 案 内溝はランド部 5 5及びグループ部 5 6からなり、 両方の領域に情報を 記録することが可能である。 基板 5 1の厚さは、 0 . 5 mm〜0 . 7 m mの範囲内であることが好ましい。
以下に、 情報層 5 2を構成する各層について、 製造方法と共に説明す る。
まず、 基板 5 1上に、 第 1誘電体層 5 0 1を形成する。 第 1誘電体層 5 0 1は、 A rガスもしくは A rガスと反応ガス雰囲気中で材料となる スパッタリング夕一ゲットを反応性スパッタリングすることによって形 成できる。
第 1誘電体層 5 0 1は、 記録層 5 0 4の酸化、 腐食、 変形等を防止す る働きと、 光学距離を調整して記録層 5 0 4の光吸収効率を高める働き と、 記録前後の反射光量の変化を大きくして信号振幅を大きくする働き と、 を有する。 さらに、 記録層 5 0 4の非晶質相と結晶相との間での光 の位相差を調整する働きもある。 本実施の形態における第 1誘電体層 5 0 1は、 例えば、 Y、 C e、 T i、 Z r、 Nb、 T a、 C o、 Z n、 A 1、 S i、 Ge、 S n、 P b、 C r、 S b、 B i、 Te等の酸化物、 T i、 Z r、 Nb、 T a、 C r、 Mo、 W、 B、 A l、 G a、 I n、 S i 、 Ge、 S n、 P b等の窒化物、 T i、 Z r、 Nb、 T a、 C r、 Mo 、 W、 S i等の炭化物、 Z n、 C d等の硫化物、 セレン化物またはテル ル化物、 L a、 Mg、 C a、 C e、 E r、 Gd、 Tb、 Dy、 Nd、 Y 、 Yb等のフッ化物、 C、 S i、 Ge等の単体、 またはこれらの混合物 からなる誘電体を用いることができる。
これらの中でも、 (Z n S) 8。 (S i 02) 2。 (mo 1 %) は、 非晶 質材料で、 高屈折率を有し、 成膜速度も速く、 機械特性及び耐湿性も良 好で優れた誘電体材料であるため、 第 1誘電体層 50 1に好適に用いら れる。
次に、 第 1誘電体層 50 1上に、 第 2誘電体層 5 02を形成する。 第 2誘電体層 502は、 第 2誘電体層 502を構成する元素を含むスパッ 夕リングターゲットを、 A rガス雰囲気中でスパッタリングすることに よって形成することができる。
第 2誘電体層 502は、 第 1誘電体層 50 1と結,.晶核生成層 503と の間の物質移動を防止する機能を有しており、 例えば、 第 1誘電体層 5 0 1に (Z n S) 8。 (S i 02) 2。 (mo l %) を用いた場合に、 結晶 核生成層 5 0 3への Sの混入を防止することができる。 これにより、 繰 り返し書き換え性能が向上する。
第 2誘電体層 50 2の材料としては、 例えば、 H f 02及び Z r 02か ら選ばれる少なくともいずれか一つと、 S i 02と、 C r 23と、 を含 む酸化物系材料を用いることができる。
Z r〇2及び H f 02は、 融点が 2 7 00 °C以上の高融点材料であり、 記録する際に溶解して記録層 5 04に混入することがないため、 Z r O 2または H f 02を用いると、 優れた繰り返し書き換え性能が得られる。 S i〇2は、 非晶質材料で、 透明性を高める作用及び誘電体材料の結 晶化を抑制する作用を有する。 C r 203は、 結晶核生成層 50 3との密 着性が良好で、 使用環境に対する耐候性に優れている。 なお、 密着性の 評価は、 温度 9 0° ( 、 湿度 80 %の高温環境下で 1 00時間保存を行つ た後、 第 2誘電体層 50 2と結晶核生成層 50 3との間が剥離していな いか目視検査することにより行った。
また、 第 2誘電体層 5 0 2に用いた酸化物系材料は、 例えば、 (H f
02) A 2 (S ΐ 02) B 2 (C r 23) ! o 0 -A 2 -B 2 (Π1 θ 1 %) 、 もし くは (Z r 02) A2 (S i〇2) B 2 (C r 203) 丄。。- A2_B2 (mo 1 % ) と表記される。 この場合、 1 0≤A2≤ 50、 1 0≤B 2≤ 5 0, 2 0≤A2 + B 2≤ 8 0を満たすことが好ましい。 結晶核生成層 503と の密着性に優れた第 2誘電体層 502を作製でき、 且つ良好な繰り返し 書き換え性能が得られるからである。
詳しくは、 Z r 02または H f 〇2の濃度 (A2) を 1 Omo 1 %以上 とすることにより良好な繰り返し書き換え性能が得られ、 5 Omo 1 % 以下とすることにより結晶核生成層 5 0 3と第 2誘電体層 5 02との密 着性を向上させることができる。
また、 S i 02の濃度 (B 2) を 1 Omo 1 %以上とすることにより 良好な繰り返し書き換え性能が得られ、 5 Omo 1 %以下とすることに より結晶核生成層 5 0 3と第 2誘電体層 5 02との密着性を向上させる ことができる。
また、 C r 23の濃度 (1 0 0—A2— B 2) を 2 0mo l %以上よ することにより結晶核生成層 50 3と第 2誘電体層 50 2との密着性を 向上させることができ、 8 Omo 1 %以下とすることにより良好な繰り 返し書き換え性能が得られる。 次に、 第 2誘電体層 502上に、 結晶核生成層 5 0 3を形成する。 結 晶核生成層 503は、 結晶核生成層 5 0 3を構成する元素を含むスパッ タリングターゲットを、 例えば、 A rガスもしくは A r— N2混合ガス 雰囲気中でスパッタリングすることによって形成できる。
結晶核生成層 5 03を形成する工程では、 B i と元素 Mlとを含む材 料、 または T eと元素 M 1とを含む材料からなるスパッタリングターゲ ットを用いると、 記録層 504に比べて融点が高い結晶核生成層 503 を成膜することができる。 元素 M lとは、 S c、 Y、 L a、 C e、 P r 、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 E r、 及び !!から選ば れる少なくとも一つの元素である。
また、 結晶核生成層 503を形成する工程で、 B i、 T e、 元素 M 1 を含む化合物である B i 2T e (M l) 、 B i T e 2 (Ml) または B i T e (Ml) 2を含む材料からなるスパッタリングターゲットを用いる ことによつても、 記録層 5 04に比べて融点が高温である結晶核生成層 503を成膜することができる。
このように形成した結晶核生成層 5 0 3によれば、 互いに異なる線速 度であっても、 それぞれの線速度に対して良好な記録特性を実現するこ とができる。
線速度が大きい場合、 情報記録媒体 5にレーザビーム 1 0が照射され る時間が短いため、 記録層 504は短い時間で結晶化しなくてはならな レ すなわち、 情報記録媒体 5の線速度が大きいほど、 記録層 504の 結晶化速度を大きくすることが必要である。
そこで、 本実施の形態の情報記録媒体 5のように結晶核生成層 50 3 を設けると、 情報記録媒体 5の線速度が大きい場合において、 記録層 5 04の結晶化速度を大きくすることができる。 同時に、 情報記録媒体 5 の線速度が小さい場合においても、 非晶質相の安定性を低下させること なく、 良好な記録特性を得ることができる。
これに対し、 結晶核生成層 5 0 3を用いずに、 記録層 5 0 4に S nや B i等を添加することによって結晶化速度を大きくすると、 情報記録媒 体 5の線速度が小さい場合に非晶質相の安定性が低下してしまうという 問題が生じる。
このように、 記録層 5 0 4の材料を変化させることのみでは結晶化速 度を大きくすることと線速度が小さい場合の非晶質相の安定性とを両立 することが困難であるが、 本実施の形態のように結晶核生成層 5 0 3を 用いることにより、 これらの両立が実現できる。
.また、 結晶核生成層 5 0 3は、 初期化工程や記録層 5 0 4に情報信号 を記録する際に、 構成物質が溶解して記録層 5 0 4に混入しないように 、 融点が高い材料にて形成されることが好ましい。 例えば、 B i と元素 M lとの組み合わせ、 または T eと元素 M 1との組み合わせは、 融点が 1 3 0 0 °C以上と高温であるので、 情報信号の書き換えを繰り返しても 、 結晶核生成層 5 0 3の材料が記録層 5 0 4に混入しにくい。 特に、 元 素 M lの中でも N d、 G d、 T bを用いるとさらに融点が高くなり、 例 えば、 T e N dでは 2 0 2 5 ° (:、 B i G dでは 2 0 1 5 °C、 B i T bで は 2 0 0 0 °Cである。
例えば、 S n T eで形成された結晶核生成層 5 0 3に比べて、 B i と 元素 M 1とからなる材料にて形成された結晶核生成層 5 0 3は融点が高 いため、 記録時に結晶核生成層 5 0 3の材料が記録層 5 0 4へ混入する ことを防ぐことができる。 このため、 情報信号の書き換えを繰り返して も記録層 5 0 4へ不純物が混入する可能性が低く、 良好な繰り返し書き 換え性能が得られる。
これに対して、 S n T eで形成された結晶核生成層 5 0 3は、 S n T eの融点が低いため、 記録時に S n T eの一部が記録層 5 0 4へ混入す る可能性が高い。 そのため、 情報信号の書き換えを繰り返していくと、 特に高線速度において、 結晶化促進効果に差が生じ、 ジッターが大きく なる (繰り返し書き換え性能が低下する。 ) 。
結晶核生成層 5 0 3は、 成膜後、 少なくとも一部が結晶化しているこ とが好ましいが、 後に初期化工程にて結晶化することもできる。 さらに 、 結晶核生成層 5 0 3の結晶構造は、 記録層 5 0 4の結晶構造と同じで あるほうが、 記録層 5 0 4の結晶化を促進する効果が大きいため好まし い。
例えば、記録層 5 0 4を& 6丁 6—3 13 2丁 6 3ラィン上の擬ニ元系組 成を用いる場合、 記録層 5 0 4は N a C 1型の結晶構造を有するので、 結晶核生成層 5 0 3を、 B iと元素 M 1、 T eと元素 M 1を 1 : 1で含 む B i (M l ) または T e (M l ) にて形成することが特に好ましい。 これらの化合物は、 N a C 1型の結晶構造を有するからである。
また、 B i と T eと元素 M 1との組み合わせである B i 2 T e (M l ) 、 B i T e 2 (M 1 ) 、 B i T e (M 1 ) 2においても同様に融点が高 いので、 これらの材料からなる結晶核生成層 5 0 3は、 倩報信号の書き 換えを繰り返しても、 結晶核生成層 5 0 3の材料が溶解して記録層 5 0 4に混入しにくく、 記録層 5 0 4の結晶化を促進させることができる。 また、 結晶核生成層 5 0 3に Nを添加すると、 結晶粒の大きさがより 均一化され、 且つ小さくなる傾向にある。 この場合、 記録する際に、 低 周波数領域の記録ノイズを低下させることができるので、 結晶核生成層 5 0 3に Nを添加してもよい。
結晶核生成層 5 0 3の膜厚が薄いと原子数が少ないため、 結晶核生成 層 5 0 3を成膜後、 結晶化しにくくなる。 このため、 結晶核生成層 5 0 3の膜厚は 0 . 2 n m以上が好ましい。 また、 結晶核生成層 5 0 3の膜 厚が厚いと、 記録層 5 0 4の結晶化を促進する効果はより大きくなるが 、 非晶質相の安定性を損なうこと、 結晶核生成層 5 0 3で光を吸収し記 録層 5 0 4に到達する光が減少すること等の問題が生じるため、 結晶核 生成層 5 0 3の膜厚は 3 n m以下が好ましい。
次に、 結晶核生成層 5 0 3上に、 記録層 5 0 4を形成する。 記録層 5 0 4は、 記録層 5 0 4を構成する元素を含むスパッタリングターゲット を、 例えば A rガスもしくは A r一 N 2混合ガス雰囲気中でスパッタリ ングすることによって形成することができる。
記録層 5 0 4を形成する工程では、 G e a S b 2 T e a + 3 (本実施の形 態においては、 aは、 2≤ a≤2 2を満たす。 ) のスパッタリングター ゲットを用いると、 安定性に優れた薄膜を成膜することができる。 本実 施の形態の記録層 5 0 4は、 レーザビーム 1 0の照射によって結晶相と 非晶質相との間で可逆的変化を起こし、 所定のレーザ波長における結晶 相と非晶質相の光学定数 (屈折率、 消衰係数) が変化する材料を用いる ことが好ましい。 また、 記録層 5 0 4は、 繰り返し書き換え性能に優れ ている材料を用いることが好ましい。 さらに、 結晶化速度が大きい材料 を用いることが好ましい。
G e— S b— T eは、 結晶相と非晶質相の光学定数が変化し、 繰り返 し書き換え性能も優れていて、 結晶化速度が大きく優れた材料である。 実用的には、 G e a S b 2 T e a + 3において、 aが 2より小さい場合、 結 晶相と非晶質相の屈折率差及び消衰係数差が小さくなる。 したがって、 aは 2以上であることが好ましい。 また、 aが 2 2より大きい場合、 結 晶化速度が小さくなるため結晶化しにくくなり、 また、 融点が高くなる ために記録感度が劣化する。 さらに、 結晶相と非晶質相との間で体積変 化が大きくなるため、 繰り返し書き換え性能が劣化する。 これらのこと から、 aは 2 2以下であることが好ましい。
また、 記録層 5 0 4に含まれる G eの一部を S nで置換することによ つて、 さらに結晶化速度を増加させることができる。 この場合、 (Ge - S n) a S b 2T e a + 3と表記でき、 aは、 2≤ a≤22を満たすこと が好ましい。 この場合、記録層 504に含まれる S n原子の含有割合(原 子%) が多いほど結晶化が促進されるが、 同時に結晶化温度が低くなり 、 非晶質相の安定性が低下する。 また、 S n原子の含有割合が多いほど 、 結晶相と非晶質相の光学定数の変化が小さくなる。 これらのことから 、 S n原子の含有割合は、 20原子%未満であることが好ましい。
また、 記録層 5 04に含まれる S bの一部を B iで置換することによ つても、 さらに結晶化速度を増加させることができる。 この場合、 Ge a (S b -B i ) 2T e a + 3と表記でき、 aは、 2≤ a≤ 22を満たすこ とが好ましい。 この場合、 記録層 504に含まれる B i原子の含有割合 を多くすると、 結晶相と非晶質相の光学定数の変化を小さくすることな く、 結晶化速度を大きくできる。 しかしながら、 同時に、 結晶化温度が 低くなり非晶質相の安定性が低下するという現象も生じる。 このことか ら、 B i原子の含有割合は、 1 0原子%未満であることが好ましい。 記録層 504に含まれる G eの一部を S nに、 S bの一部を B iで置 換することによつても、 さらに結晶化速度を増加させることができる。 この場合、 (Ge— S n) a (S b - B i ) 2T e a + 3と表記でき、 aは 、 2≤ a≤ 22を満たすことが好ましい。 また、 記録層 504に Nを添 加すると、 繰り返し書き換え性能が向上するため、 記録層 504に Nを 添加してもよい。
記録層 504の膜厚が薄すぎると結晶化しにくくなるので、 記録層 5 04の膜厚は 6 nm以上であることが好ましい。 また、 記録層 504の 膜厚が厚すぎると情報信号の繰り返し書き換え性能が劣化することから 記録層 1 04の膜厚は、 12 nm以下であることが好ましい。
次に、 記録層 504上に、 第 3誘電体層 50 5を形成する。 第 3誘電 体層 505は、 第 3誘電体層 503を構成する元素を含むスパッ夕リン グターゲットを、 A rガス雰囲気中でスパッタリングすることによって 形成することができる。 第 3誘電体層 505は、 光学距離を調節して記 録層 504への光吸収効率を高める働き、 記録前後の反射率差を大きく して信号振幅を大きくする働きを有する。 さらに、 記録層 504の非晶 質相と結晶相との間での光の位相差を調整する働きや、 使用環境から記 録層 504を保護する働きも有する。 また、 第 3誘電体層 505の融点 は、 記録層 504の融点よりも高いことが好ましい。 、 第 3誘電体層 505の材料としては、 H f 〇2もしくは Z r〇2から選 ばれる少なくともいずれか一つと、 S i 02と C r 23とフッ化物とを 含む酸化物一フッ化物系材料を用いることができる。
Z r 02及び H f 02は融点が 2700 °C以上の高融点材料であるた め、 これらの酸化物を第 3誘電体層 505に用いた場合、 記録の際に第 3誘電体層 505が溶解して記録層 504に混入する可能性が少なくな る。 したがって、 Z r〇2または H f 〇2を第 3誘電体層 505に用いる と、 優れた繰り返し書き換え性能が得られる。
S i〇2は非晶質材料で、 透明性を高める作用及び誘電体材料の結晶 化を抑制する作用 (すなわち、 第 3誘電体層に用いた場合は第 3誘電体 層自体の結晶化を抑制する作用) を有し、 さらに、 記録層 504の結晶 化を促進する効果を高めて書き換え性能を向上させる働きを行う。 さらに、 フッ化物は、 酸化物と混合することによって誘電体層の構造 を複雑化し、 誘電体層の熱伝導率を下げる役割を果たす。 誘電体層の熱 伝導率を低くすることにより、 記録層 504が急冷されやすくなるため 、 記録感度を高めることができる。 希土類金属のフッ化物 (Ce F3、 E r F3、 GdF3、 L aF3、 TbF3、 DyF3、 NdF3、 YF3、 Y b F 3) は、 水に不溶で優れた耐湿性を有する。 特に、 L aF3は、 融点 が約 1 5 0 0 °Cと最も高く、 価格が安いので、 誘電体層に混合するフッ 化物材料として最も実用性がある。 これら、 Z r 02及び H f 02から選 ばれる少なくとも一つと、 3 1〇2と(3 23とフッ化物とを混合した 酸化物一フッ化物系材料を用いることにより、 記録層 504に直接積層 しても、 良好な繰り返し書き換え性能と耐候性を有する第 3誘電体層 5 0 5が作製できる。
また、 第 3誘電体層 505に用いた酸化物一フッ化物系材料は、 (H f 02) A1 (S i〇2) B1 (C r 203) C 1 (フッ化物) 100_A 1B 1— c ! (mo 1 %) または (Z r 02) A1 (S i〇2) B 1 (C r 23) C 1 (フ ッ化物) 100-A 1 - B 1C1 (mo 1 %) と表記できる。 この場合、 A l、 B 1及び C Iが、 1 0≤A 1≤ 5 0、 1 0≤B 1≤ 50、 1 0≤C 1≤ 50、 50≤A 1 + B 1 + C 1≤ 9 0を満たすことにより、 記録層 50 4との密着性に優れた第 3誘電体層 5 0 5を作製でき、 且つ良好な繰り 返し書き換え性能が得られる。
詳しくは、 Z r 02及び H f 〇2から選ばれる少なくとも何れか一つの 濃度 (A 1) を 1 Omo 1 %以上とすると良好な繰り返し書き換え性能 が得られ、 5 Omo 1 %以下とすると第 3誘電体層 50 5と記録層 50 4との密着性を向上させることができる。
また、 S i 02の濃度 (B 1) を 1 Omo 1 %以上とすると良好な繰 り返し書き換え性能が損なわれ、 5 Omo 1 %以下とすると第 3誘電体 層 50 5と記録層 5 04との密着性を向上させることができる。 C r 2 03の濃度 (C 1 ) を 1 Omo 1 %以上とすると第 3誘電体層 5 0 5と 記録層 504との密着性を向上させることができ、 5 Omo 1 %以上と すると良好な繰り返し書き換え性能が得られる。 フッ化物の濃度 ( 1 0 0 - A 1 - B 1— C 1 ) は、 1 0mo l %から 50mo l %の範囲であ ることが好ましく、 これにより良好な記録感度が得られる。 なお、 酸化 物—フッ化物系材料は、 第 1誘電体層 5 0 1にも用いることができる。 次に、 第 3誘電体層 50 5上に、 光吸収補正層 506を形成する。 光 吸収補正層 5 0 6は、 記録層 504が結晶相である場合と非晶質相であ る場合との光吸収率比を調整し、 書き換え時に記録マークの形が歪まな いようにすること、 さらに、 記録層 5 04が結晶相である場合と非晶質 相である場合との間の反射率差を大きくして信号振幅を大きくすること 等の目的で設けられる。 光吸収補正層 5 06は、 屈折率が高く、 適度に 光を吸収する材料が好ましい。 例えば、 屈折率が 3以上 6以下で、 消衰 係数が 1以上 4以下であることが好ましい。
一般的には、 結晶相である場合の記録層 504の光吸収率 (Ac) が 、 非晶質相である場合の記録層 504の光吸収率 (Aa) よりも大きく なる (Ac>Aa) ように調節する。 例えば、 Ge— C r、 Ge— M、 S i— C r、 S i— Moまたは S i— W等の非晶質である G e合金や S i合金、 T e化物、 あるいは T i、 Z r、 Nb、 T a、 C r、 Mo、 W 、 S nT e、 P b T e等の結晶性の金属、 半金属及び半導体材料を用い ることが好ましい。
次に、 光吸収補正層 506上に、 反射層 50 7を形成する。 反射層 5 0 7はスパッタリング法または蒸着法等で形成することができる。
反射層 50 7は、 光学的には記録層 504に吸収される光量を増大さ せ、 また、 記録層 504で生じた熱を速やかに拡散させて非晶質化しや すくする機能を有し、 さらには、 情報記録媒体 5を使用環境から保護す る役割も兼ね備えている。
反射層 507の材料としては、 例えば、 A l、 Au、 Ag、 C u等の 熱伝導率の高い単体金属材料、 または、 これらのうちの 1つまたは複数 の元素を主成分として、 耐湿性の向上あるいは熱伝導率の調整等のため に 1つまたは複数の他の元素を添加した A 1— C r、 A l—T i、 Ag 一 P d、 A g - P d - C u , A g— P d— T i等の合金材料を用いるこ とができる。 これらの材料は、 いずれも耐湿性に優れ、 かつ急冷条件を 満足する材料である。
以上のように基板 5 1上に第 1誘電体層 5 0 1から反射層 5 0 7まで 形成した後、 反射層 5 0 7上に接着層 5 3を用いてダミー基板 5 4を貼 り合わせる。 接着層 5 3には、 耐熱性及び接着性の高い材料、 例えば、 紫外線硬化樹脂等の接着樹脂を用いることができ、 例えば、 アクリル樹 脂を主成分とした材料またはエポキシ樹脂を主成分とした材料を用いる ことができる。 これと同じ材質、 または異なる材質の紫外線硬化樹脂等 の接着樹脂、 両面テープ、 誘電体膜等を用いることもできる。
なお、 ダミー基板 5 4の代わりに他の情報記録媒体を貼り合わせて、 両面構造の情報記録媒体を形成することもできる。
また、 結晶核生成層は、 記録層 5 4と第 3誘電体層 5 0 5との間に配 置されても良い。 この場合は、 図 1 5に示す情報記録媒体 5 7のように 、 情報層 5 2が、 レーザビーム入射側から順次積層された、 第 1誘電体 層 5 0 1、 .第 2誘電体層 5 0 2、 記録層 5 0 4、 結晶核生成層 5 0 8、 第 3誘電体層 5 0 5、 光吸収補正層 5 0 6及び反射層 5 0 7にて形成さ れる。 また、 結晶核生成層は、 記録層 5 0 4と第 2誘電体層 5 0 2及び 第 3誘電体層 5 0 5と間にそれぞれ配置されていてもよい。 この場合は 、 図 1 6に示す情報記録媒体 5 8のように、 情報層 5 2が、 レーザビー ム入射側から順次積層された、 第 1誘電体層 5 0 1、 第 2誘電体層 5 0 2、 結晶核生成層 5 0 3、 記録層 5 0 4、 結晶核生成層 5 0 8、 第 3誘 電体層 5 0 5、 光吸収補正層 5 0 6及び反射層 5 0 7にて形成される。 この構成の場合、 記録層 5 0 4の両面に結晶核生成層が設けられている ので、 両側の結晶化生成層 5 0 3、 5 0 8によって記録層 5 0 4の両面 から結晶化が促進され、 より結晶化速度が大きくなる。 なお、 結晶核生 成層 5 0 8は、 結晶核生成層 5 0 3と同様の系の材料を用いることがで き、 それらの形状及び機能についても結晶核生成層 1 0 3と同様である 。 なお、 結晶核生成層 5 0 3と結晶核生成層 5 0 8とは、 同じ材料にて 形成してもよく、 互いに異なる材料 (異なる組成) にて形成してもよい また、 第 3誘電体層 5 0 5と光吸収補正層 5 0 6との間に第 4誘電体 層 5 0 9を設けてもよい。 この場合は、 図 1 7に示す情報記録媒体 5 9 のように、 情報層 5 2が、 レーザビーム入射側から順次積層された、 第 1誘電体層 5 0 1、 第 2誘電体層 5 0 2、 結晶核生成層 5 0 3、 記録層 5 0 4、 第 3誘電体層 5 0 5、 第 4誘電体層 5 0 9、 光吸収補正層 5 0 6及び反射層 5 0 7にて形成される。
第 4誘電体層 5 0 9は、 第 1誘電体層 5 0 1と同様の機能を有する層 であり、 同様の系の材料が使用可能である。 例えば、 (Z n S ) 8 Q ( S i 0 2 ) 2。 (m o 1 % ) を用いることができる。 (Z n S ) 8。 (S i〇 2 ) 2 Q (m o 1 % ) は、 高屈折率を有し、 成膜速度も速く、 機械特性及 び耐湿性も良好な優れた材料であるが、 記録層 5 0 4と接して設けると 、 Sの一部が記録層 5 0 4に混入して信号品質の低下が起こる。 しかし ながら、 第 4誘電体層 5 0 9と記録層 5 0 4との間には第 3誘電体層 5 0 5が設けられているので、 第 4誘電体層 5 0 9が Sを含む場合であつ ても問題ない。 なお、 図 1 7に示す情報記録媒体 5 9は、 結晶核生成層 が記録層 5 0 4と第 2誘電体層 5 0 3との間にのみ設けられた構成であ るが、 記録層 5 0 4と第 3誘電体層 5 0 5との間にのみ設けられていて もよく、 また、 記録層 5 0 4と第 2誘電体層 5 0 3及び第 3誘電体層 5 0 5との間にそれぞれ設けられていてもよい。
ここで、 本実施の形態の情報記録媒体 5 , 5 7 , 5 8, 5 9の記録再 生方法について説明する。 信号に応じてレーザパワーの大きさを変調し たレーザビーム 1 0を照射することによって、 記録層 5 0 4に非晶質相 と結晶相とを形成し、 信号の記録を行う。 具体的には、 レーザビーム 1 0を低パワーにして記録層 5 0 4の非晶質相に照射し、 徐冷することに よって、 照射部分の非晶質相を結晶化することができる。 また、 レーザ ビーム 1 0を高パワーにして記録層 5 0 4の結晶相に照射し、 急冷する ことによって、 照射部分の結晶相を非晶質相にすることができる。
このようにして信号の記録が行われた領域を、 信号が劣化しない程度 のパワーのレーザピ一ム 1 0を照射し、 反射光の大きさによって信号の 再生を行う。 このような記録再生方法によれば、 信頼性よく情報信号の 記録を行うことができる。
(実施の形態 7 )
本発明の情報記録媒体のさらに別の実施の形態を説明する。 図 1 8は 、 本実施の形態の情報記録媒体 6の一部断面と、 電気的情報記録再生装 置の概略構成とを示す説明図である。 本実施の形態の情報記録媒体 6は 、 電流の印加によって情報の記録再生が可能な電気的情報記録媒体であ る。
本実施の形態の情報記録媒体 6は、 基板 6 1上に、 下部電極 6 2、 記 録層 6 3、 結晶核生成層 6 4及び上部電極 6 5をこの順に積層した構成 である。
基板 6 1の材料としては、 ポリカーボネート等の樹脂基板、 ガラス基 板、 A 1 2 0 3等のセラミック基板、 S i基板、 または C u等の各種金属 基板等を用いることができる。 ここでは、 基板 6 1として S i基板を用 いた場合について説明する。
下部電極 6 2及び上部電極 6 5は、 記録層 6 2及び結晶核生成層 6 4 に電流を印加するために設けられた電極である。
記録層 6 3は、 電流の印加により発生するジュール熱によって結晶相 と非晶質相との間で可逆的な相変化を起こす材料であり、 結晶相と非晶 質相との間で抵抗率が変化する現象を情報の記録に利用する。 記録層 6 3の材料は、 実施の形態 1で説明した記録層 1 0 4と同様の材料を用い ることができる。
結晶核生成層 6 4は、 結晶核を生成することによって、 記録層 6 3の 結晶化能を高め、 情報の高速な記録を可能にするための層である。 結晶 核生成層 6 3の材料は、 実施の形態 1で説明した結晶核生成層 1 0 3と 同様の材料を用いることができる。
記録層 6 3及び結晶核生成層 6 4は、 それぞれ実施の形態 1で説明し た記録層 1 0 4及び結晶核生成層 1 0 3の形成方法と同様の方法で形成 できる。
また、 下部電極 6. 2及び上部電極 6 5には、 A l 、 A u、 A g、 C u 、 P t等の単体金属材料、 あるいはこれらのうちの 1つまたは複数の元 素を主成分とし、 耐湿性の向上あるいは熱伝導率の調整等のために適宜 1つまたは複数の他の元素を添加した合金材料を用いることができる。 下部電極 6 2及び上部電極 6 5は、 A rガス雰囲気中で材料となる金属 母材または合金母材をスパッタリング夕一ゲットとし、 スパッタリング によって形成できる。
次に、 情報記録媒体 6に情報を記録再生する電気的情報記録再生装置 9 2について説明する。 本実施の形態における電気的情報記録再生装置 9 2は、 印加部 8 7を介して、 情報記録媒体 6と電気的に接続される。 この電気的情報記録再生装置 9 2により、 情報記録媒体 6の下部電極 6 2と上部電極 6 5との間に配置された記録層 6 3及び結晶核生成層 6 4 に電流パルスを印加するために、 パルス電源 9 0がスィッチ 8 9を介し て接続される。 また、 記録層 6 3の相変化による抵抗値の変化を検出す るために、 下部電極 6 2と上部電極 6 5の間にスィツチ 9 1を介して抵 抗測定器 8 8が接続される。 非晶質相 (高抵抗状態) にある記録層 6 3 を結晶相 (低抵抗状態) に変化させるためには、 スィッチ 8 9を閉じて (スィッチ 9 1は開く) 電極間に電流パルスを印加し、 電流パルスが印 加される部分の温度が、 材料の結晶化温度より高く、 且つ融点より低い 温度で、 結晶化時間の間保持されるようにする。 結晶相から再度非晶質 相に戻す場合には、 結晶化時よりも相対的に高い電流パルスをより短い 時間で印加し、 記録層を融点より高い温度にして溶融した後、 急激に冷 却する。
ここで、 記録層 6 3が非晶質相の場合の抵抗値を r a、 記録層 6 3が 結晶相での抵抗値 r cとすると、 r a > r cとなる。 したがって、 電極 間の抵抗値を抵抗測定器 8 8で測定することにより、 2つの異なる状態 、 すなわち 1値の情報を検出できる。
この情報記録媒体 6をマトリクス状に多数配置することによって、 図 1 9に示すような大容量の電気的情報記録媒体 7を構成することができ る。 電気的情報記録媒体 7の各メモリセル 7 1には、 微小領域に情報記 録媒体 6と同様の構成が形成されている。 各々のメモリセル 7 1への情 報の記録再生は、 ワード線 7 2及びビット線 7 3をそれぞれ一つ指定す ることによって行う。
図 2 0は、 電気的情報記録媒体 7を用いた、 情報記録システムの一構 成例を示したものである。 記憶装置 9 3は、 電気的情報記録媒体 7と、 アドレス指定回路 9 4とを含んでいる。 アドレス指定回路 9 4により、 電気的情報記録媒体 7のヮ一ド線 7 2及びビット線 7 3がそれぞれ指定 され、 各々のメモリセル 7 1への情報の記録再生を行うことができる。 また、 記憶装置 9 3を、 少なくともパルス電源 9 6と抵抗測定器 9 7と を含む外部回路 9 5と電気的に接続することにより、 電気的情報記録媒 体 7への情報の記録再生を行うことができる。 以上のように、 本実施の形態の電気的情報記録媒体においても、 記録 層に接して結晶核生成層が設けられているので、 記録層の結晶化速度を 向上させることができる。
[実施例]
以下に、 実施例を用いて本発明をさらに詳細に説明する。
(実施例 1)
実施例 1では、 図 1の情報記録媒体 1を作製し、 結晶核生成層 1 03 の材料と、 情報記録媒体 1の消去率、 記録書き換え回数 (繰り返し書き 換え性能) 、 記録保存性、 及び書き換え保存性との関係を調べた。 具体 的には、 結晶核生成層 1 0 3の材料が異なる情報記録媒体 1のサンプル を作製した。 作製したサンプルそれぞれについて、 情報記録媒体 1の消 去率、 記録書き換え回数、 記録保存性及び書き換え保存性を測定した。 サンプルは以下のようにして製造した。 まず、 基板 1 1として、 レー ザビーム 1 0を導くための案内溝 (深さ 20 nm、 トラックピッチ 0. 32 urn) が形成されたポリカーボネート基板 (直径 1 2 0mm, 厚さ 1 1 00 m) を用意した。 そして、 そのポリカーポネ一ト基板上に、 反射層 1 08として Ag— P d— Cu層 (厚さ : 80 n m) 、 界面層 1 07として A 1層 (厚さ : 1 0 nm) 、 第 4誘電体層 1 0 6として Z n S— S i〇2層 (厚さ :約 20 nm、 Z n S : 80mo l %、 S i〇2 : 20mo l %) 、 第 3誘電体層 1 0 5として S i〇2— C r 23— Z r 〇2層(厚さ: 5 nm、 S i 02: 2 5mo 1 %、 C r 23: 50 m o 1 % 、 Z r 02 : 25mo l %) 、 記録層 1 04として G e 22S b2T e 25 層 (厚さ : 1 0 nm) 、 結晶核生成層 1 03 (厚さ : l nm) 、 第 2誘 電体層 1 02として3 102—〇 ]: 23— 2 1~ 02層 (厚さ: 5 11111、 S i O 2: 2 5 m o 1 %、 C r 23 : 5 0mo 1 %、 Z r O 2: 2 5 m o 1 % ) 、 第 1誘電体層 1 0 1として Z n S— S i〇2層 (厚さ :約 60 nm 、 S i 02 : 2 Omo 1 ) を順次スパッタリング法によって積層した 。 最後に、 紫外線硬化性樹脂を第 1誘電体層 1 0 1上に塗布し、 ポリ力 ーポネートシート (直径 1 20mm、 厚さ 90 zm) を第 1誘電体層 1 0 1に密着し回転させることによって均一な樹脂層を形成したのち、 紫 外線を照射して樹脂を硬化させることによって、 透明層 1 3を形成した 。 その後、 記録層 1 04をレーザビームで結晶化させる初期化工程を行 つた。 以上のようにして、 結晶核生成層 1 03の材料が異なる複数のサ ンプルを製造した。
ここで、 第 4誘電体層 1 0 6及び第 1誘電体層 1 0 1の膜厚は、 マト リクス法に基づく計算により、 厳密に決定されたものである。 具体的に は、 これらの厚さは、 波長 40 5 nmにおいて、 記録層 1 04が結晶相 の時の情報記録媒体 1の基板の鏡面部における反射率 Re (%) ができ るだけ 1 5≤RC≤ 2 5の範囲内に収まるように、 また、 記録層 1 04 が非晶質相である場合の情報記録媒体 1における基板の鏡面部における 反射率 Ra (%) ができるだけ 0. 5≤Ra≤ 5の範囲内に収まるように 決定した。
このようにして得られた情報記録媒体のサンプルについて、 最初に図 1 3に示すの記録再生装置 8 1を用いて消去率を測定した。 このとき、 レーザビーム 1 0の波長は 40 5 nm, 対物レンズ 82の開口数 (NA ) は 0. 8 5、 測定時のサンプルの線速度は 5. 3mZsまたは 1 0. 6mZs、 最短マーク長は 0. 149 111とした。 また、 情報はグルー ブに記録した。
消去率は、 レーザビーム 1 0を Ppと Pbの間でパヮ一変調し、 (1一 7) 変調方式でマーク長 0. 149 m (2 T) と 0. 6 7 1 m (9 T) の信号を同じグループに連続交互記録し、 2 T信号を 9 T信号で書 き換えた場合の 2 T信号振幅の減衰率をスぺクトラムアナライザーで測 定した。 なお、 消去率は負の値となるが、 絶対値が大きいほど好ましく
、 具体的には— 3 0 d B以下となるのが好ましい。
記録書き換え回数は、 レーザビ一ム 1 0を Ppと Pbの間、でパワー変調 し、 ( 1— 7 ) 変調方式でマーク長 0 · 149 m ( 2 T) から 0. 5 96 (8 T) までのランダム信号を同じグループに連続記録し、 各 記録書き換え回数における前端ジッター (記録マーク前端部におけるジ ッ夕一) 、 後端ジッター (記録マーク後端部におけるジッター) をタイ ムィンタ一バルアナライザ一で測定することによって評価した。 1回目 の前端ジッターと後端ジッターとの平均ジッター値に対し 3 %増加する 書き換え回数を、 記録書き換え回数の上限値とした。 なお、 Ppと Pb
、 平均ジッター値が最も小さくなるように決定した。
記録保存性及び書き換え保存性は、 以下のようにして測定した。 まず
、 レ一ザビーム 1 0をこの Ppと Pbの間でパワー変調し、 (1— 7) 変 調方式でマーク長 0. 149 m ( 2 T) から 0. 596 m (8 T) までのランダム信号を同じグループに連続記録し、 書き換え回数 1 0回 における前端ジッター及び後端ジッターをタイムィンターバルアナライ ザ一で測定した。 その後、 信号を記録したサンプルを温度 9 0°C、 相対 湿度 20 %の条件で恒温恒湿槽に 1 0 0時間放置し、 記録した信号を 1 00時間放置した後の前端ジッター及び後端ジッターを測定し、 放置前 のジッター値と比較することによって、 記録保存性を評価した。 また、 記録した信号を 1 00時間放置した後に 1回書き換えた後の前端ジッタ 一及び後端ジッ夕一を測定し、 放置前のジッター値と比較することによ つて、 書き換え保存性を評価した。
情報記録媒体 1の結晶核生成層 1 0 3の材料と、 情報記録媒体 1の消 去率、 記録書き換え回数、 記録保存性、 及び書き換え保存性の評価結果 とについて、 サンプルの線速度が 5. 3 mZ sの場合の結果を表 1に、 サンプルの線速度が 1 0. 6m/ sの場合の結果を表 2に示す。 なお、 記録保存性及び書き換え保存性については、 放置前のジッター値と放置 後のジッター値の差が 2 %未満の場合は〇、 2 %以上の場合は Xと評価 した。
(表 1)
(線速度 5.3m/s)
Figure imgf000073_0001
(表 2)
(線速度 10.6m/s)
Figure imgf000073_0002
この結果、 結晶核生成層 1 03が Dyを含まず、 従来の B i— T eに て形成されたサンプル 1一 f の場合には、 記録書き換え回数が 1 000 回と不十分であることがわかった。 また、 結晶核生成層 1 0 3が設けら れていないサンプル 1— gの場合には、 線速度 1 0. 6m/sの高転送 レートでの消去率、 及び書き換え保存性が不十分であり、 さらに、 記録 書き換え回数も 1 0 00回と不十分であることがわかった。 結晶核生成 層 1 03に Dyを含むサンプル 1一 a、 1一 b、 1— c、 1 _(1及び1 一 eについては、 線速度 5. 3 mZ sの低転送レートの場合でも、 線速 度 1 0. 6mZsの高転送レートの場合でも、 共に消去率、 繰り返し書 き換え性能、 記録保存性及び書き換え保存性が良好であることがわかつ た。
なお、 結晶核生成層 1 0 3として、 B iまたは T eの少なくとも一つ と、 Dy以外の M 1を少なくとも一つ含む材料、 及び B i (Ml) また は Te (M l) の少なくとも一つを含む材料、 及び B i T e (M l) 2 、 B i 2T e (M l) 、 または B i T e 2 (M l) の少なくとも一つを含 む材料を用いた場合でも同様の実験を行ったところ、 線速度 5. 3m/ sの低転送レー卜の場合でも、 線速度 1 0. 6mZsの高転送レートの 場合でも、 共に消去率、 繰り返し書き換え性能、 記録保存性、 及び書き 換え保存性が良好であることがわかった。
また、 図 2の情報記録媒体 14のように、 結晶核生成層 1 0 3が記録 層 1 04と第 3誘電体層 1 0 5と界面に配置されている場合や、 図 3の 情報記録媒体 1 5のように、記録層 1 04の両面に結晶核生成層 1 0 3, 1 09が配置されている場合についても同様にサンプルを作製し、 各サ ンプルについて同様に消去率、 記録書き換え回数、 記録保存性、 及び書 き換え保存性を測定したところ、 同様の結果が得られた。
(実施例 2)
実施例 2では、 図 7の情報記録媒体 3において、 結晶核生成層 203 及び結晶核生成層 3 03の材料と、 情報記録媒体 3の第 1の情報層 32 ェ及び第 2の情報層 3 22それぞれの消去率、 記録書き換え回数、 記録保 存性、 及び書き換え保存性との関係を調べた。 具体的には、 結晶核生成 層 2 0 3、 及び結晶核生成層 3 0 3の材料が異なる情報記録媒体 3のサ ンプルを作製した。 作製したサンプルについて、 情報記録媒体 3の第 1 の情報層 3 2ェ及び第 2の情報層 3 22それぞれの消去率、記録書き換え 回数、 記録保存性及び書き換え保存性を測定した。
サンプルは以下のようにして製造した。 まず、 基板 3 1として、 レー ザビーム 1 0を導くための案内溝 (深さ 2 0 nm、 トラックピッチ 0. 3 2 m) が形成されたポリカーボネート基板 (直径 1 2 0mm、 厚さ 1 1 0 0 τη) を用意した。 そして、 そのポリカーポネ一ト基板上に、 反射層 3 0 8として Ag— P d— C u層 (厚さ : 8 0 n m) 、 界面層 3 0 7として A 1層 (厚さ : 1 0 nm) 、 第 4誘電体層 3 0 6として Z n S— S i〇2層 (厚さ : 2 2 nm、 Z n S : 8 0 mo l %、 S i 02 : 2 Omo 1 %)、第 3誘電体層 3 0 5として S i〇2— C r 203— Z r〇2 層 (厚さ : 5 nm、 S i〇2 : 2 5 mo 1 , C r 203 : 5 0 m o 1 % 、 Z r〇2 : 2 5mo l %) 、 記録層 3 0 4として06223 132丁 6 2 5 層 (厚さ : 1 0 nm) 、 結晶核生成層 3 0 3 (厚さ : 1 nm) 、 第 2誘 電体層 3 0 2として S i 〇2— C r 23— Z r〇2層 (厚さ: 5 nm、 S i 02: 2 5mo l %、 C r 23 : 5 0 mo 1 %、 Z r O 2 : 2 5 m o 1 % ) 、 第 1誘電体層 3 0.2として2113— 3 1 02層 (厚さ : 6 0 n m、 Z n S : 8 0mo l %、 S i 02 : 2 0 mo 1 %) を順次スパッタリン グ法によって積層した。 ここで、 第 4誘電体層 3 0 6及び第 1誘電体層 3 0 1の膜厚は、 マトリクス法に基づく計算により、 波長 4 0 5 nmに おいて、 記録層 3 0 4が結晶相のときの反射光量が記録層 3 0 4が非晶 質相のときの反射光量よりも大きく、 且つ記録層 3 0 4が結晶相のとき と非晶質相のときとで反射光量の変化がより大きく、 且つ記録層 3 0 4 の光吸収効率が大きくなるように、 厳密に決定したものである。
次に、 第 1誘電体層 30 1上に紫外線硬化性樹脂を塗布し、 その上に 案内溝 (深さ 20 nm、 トラックピッチ 0. 32 / m) を形成した転写 用基板を載置して密着し、 回転させることによって均一な樹脂層を形成 した。 この樹脂を硬化させた後に転写用基板を剥がした。 この工程によ つて、 レーザビーム 1 0を導く案内溝が第 1の情報層 3 2 i側に形成さ れた光学分離層 34を形成した。
その後、 光学分離層 34の上に、 透過率調整層 20 7として T i 02 層 (厚さ: 20 nm) 、 反射層 20 6として Ag— P d— C u層 (厚さ : 1 0 nm) 、 第 3誘電体層 20 5として S i〇 2— C r 2 O 3— Z r O 2 層 (厚さ: 1 0 nm、 S i〇2 : 2 0 m o 1 %、 C r 203 : 30 m o 1 % 、 Z r O 2 : 5 Omo 1 %) 、 記録層 204として Ge 22S b 2T e 25 層 (厚さ : 6 nm) 、 結晶核生成層 20 3 (厚さ : 1 nm) 、 第 2誘電 体層 2 02として S i 02_C r 23— Z r 02層 (厚さ: 5 nm、 S i 02: 3 5 m o 1 C r 23 : 3 0mo l %、 Z r O 2 : 3 5 m o 1 % ) 、 第 1誘電体層 20 1として Z n S— S i〇2層 (厚さ : 40 n m、 Z n S : 80mo l %、 S i 02 : 20 mo 1 %) を順次スパッタリン グ法によって積層した。 その後、 紫外線硬化性樹脂を第 1誘電体層 20 1上に塗布し、 ポリカーボネートシ一ト (直径 1 20mm、 厚さ 90 m) を第 1誘電体層 20 1に密着し回転させることによって均一な樹脂 層を形成したのち、 紫外線を照射して樹脂を硬化させ、 透明層 23を形 成した。 最後に、 第 2の情報層 322の記録層 304の全面を結晶化さ せる初期化工程と、 第 1の情報層 32ェの記録層 204の全面を結晶化 させる初期化工程とを、 この順に行った。 以上のようにして、 結晶核生 成層 2 0 3, 303材料が異なる複数のサンプルを製造した。
このようにして得られたサンプルについて、 実施例 1と同様の方法に よって、情報記録媒体 3の第 1の情報層 32 i及び第 2の情報層 322そ れぞれの消去率、 記録書き換え回数、 記録保存性、 及び書き換え保存性 を測定した。 線速度が 5. 3 mZsの場合の測定結果を表 3に示し、 線 速度が 1 0. 6 mZsの場合の測定結果を表 4に示す。 なお、 記録保存 性及び書き換え保存性については、 放置前のジッター値と放置後のジッ タ一値の差が 2 %未満の場合は〇、 2 %以上の場合は Xと評価した。 (表 3)
(fe速度 5.3m/s) サンプル 結晶核生成
情報層 No. 消去率 繰り返し書き 書き換え
No. 層材料 (dB) 換え性能 (回) 保存性
2— a 第 1情報層 BiDy 一 32 10000 〇 〇
第 2情報層 BiDy -35 10000 〇 〇
2-b 第 1情報層 TeDy 一 32 10000 〇 〇
第 2情報層 TeDy 一 35 10000 o 〇
2— c 第 1情報層 BiTeDy2 -32 10000 〇 〇
第 2情報層 BiTeDy2 -35 10000 S 〇 〇
2-d 第 1情報層 Bi2TeDy 一 32 10000 〇 〇
第 2情報層 Bi2TeDy -35 10000 〇 〇
2-e 第 1情報層 BiTe2Dy 一 32 10000 〇 〇
第 2情報層 BiTe2Dy 一 35 10000 〇 〇
2— f 第 1情報層 Bio i"e3 -32 1000 〇 〇
第 2情報層 Bi2 i"e3 -35 1000 〇 〇
2-g 第 1情報層 '無し -27 10000 〇 0
第 2情報層 無し 一 30 10000 〇 o
(表 4 )
(線速度 10. 6m/s)
Figure imgf000078_0001
この結果、 結晶核生成層 2 0 3及び結晶核,生成層 30 3が Dyを含ま ないサンプル 2— f の場合には、 繰り返し書き換え性能が 1 000回と 不十分であることがわかった。 また、 第 1の情報層 32 i及び第 2の情 報層 322に共に結晶核生成層を設けなかったサンプル 2— gの場合に は、 線速度 10. 6 m sの高転送レートでの消去率及び書き換え保存 性が不十分であることがわかった。 結晶核生成層 2 03及び結晶核生成 層 303の両方に D yが含まれるサンプル 2— a、 2— b、 2 - c , 2 一 d及び 2 _ eについては、 線速度 5. 3 mZ sの低転送レ一卜の場合 でも、 線速度 1 0. 6mZ sの高転送レートの場合でも、 共に消去率、 繰り返し書き換え性能、 記録保存性及び書き換え保存性が良好であるこ とがわかった。
なお、 結晶核生成層 203 30 3として、 B iまたは T eの少なく とも一つと Dy以外の M 1とを少なくとも一つとを含む材料、 B i (M 1) 及び T e (M l) の少なくとも一つを含む材料、 または、 B i T e (M l) 2、 B i 2T e (M l) 及び B i T e 2 (M l) の少なくとも一 つを含む材料を用いた場合でも同様の実験を行ったところ、 線速度 5. 3m/ sの低転送レートの場合でも、 線速度 1 0. 6mZsの高転送レ ートの場合でも、 共に消去率、 繰り返し書き換え性能、 記録保存性及び 書き換え保存性が良好であることがわかった。
また、 図 8の情報記録媒 3 5のように、 結晶核生成層 2 0 8が記録層
204と第 3誘電体層 20 5との界面に配置され、 結晶核生成層 30 9 が記録層 304と第 3誘電体層 30 5との間に配されている場合や、 図
9の情報記録媒体 36のように、 記録層 204の両面に結晶核生成層 2 03, 208が配置され、 記録層 304の両面に結晶核生成層 303,
30 9が配置されている場合についても同様にサンプルを作製し、 各サ ンプルについて同様に消去率、 記録書き換え回数、 記録保存性、 及び書 き換え保存性を測定したところ、 同様の結果が得られた。
(実施例 3)
実施例 3では、 図 1 0の情報記録媒体 4において、 第 1の情報層 42 iのみが形成されたサンプルを作製し、 結晶核生成層 20 3の材料と、 情報記録媒体 4の第 1の情報層 42ェの消去率、 記録書き換え回数、 記 録保存性、 及び書き換え保存性との関係を調べた。 具体的には、 結晶核 生成層 20 3材料が異なるサンプルを作製し、 各サンプルについて、 情 報記録媒体 4の第 1の情報層 42 iそれぞれの消去率、 記録書き換え回 数、 記録保存性及び書き換え保存性を測定した。
サンプルは以下のようにして製造した。 まず、 基板 4 1として、 レー ザビーム 1 0を導くための案内溝 (深さ 40 nm、 トラックピッチ 0. 34 A urn) が形成されたポリカーボネート基板 (直径 1 2 0mm、 厚 さ 60 0 m) を用意した。 そして、 そのポリ力一ポネ一ト基板上に、 第 1誘電体層 20 1として Z n S— S i 02層 (厚さ : 40 nm、 Z n S : 80mo l %、 S i 02 : 20 m o 1 %) 、 第 2誘電体層 2 02と して3 1〇2_じ 1" 23— 2 1"〇2層 (厚さ : 5 nm、 S i 02 : 3 5m o l %、 C r 23 : 30 mo 1 Z r 02 : 3 5 mo 1 %) 、 結晶核 生成層 20 3 (厚さ: 1 nm) 、 記録層 204として Ge 22S b2T e 2 5層 (厚さ : 6 nm) 、 第 3誘電体層 2 0 5として S i〇2— C r 203 一 Z r 02層 (厚さ : 1 0 nm、 S i O2 : 20mo l %、 C r 23 : 3 0mo l %、 Z r O2 : 5 0mo l %) 、 反射層 2 0 6として Ag— P d— Cu層 (厚さ : 1 0 nm) 、 透過率調整層 207として T i 02層 (厚さ : 20 nm) を順次スパッタリング法によって積層した。 その後 、 紫外線硬化性樹脂を透過率調整層 207上に塗布し、 ダミー基板 45 (直径 1 20mm、 厚さ 6 00 xm) を透過率調整層 207に密着させ 、 スピンコートによって均一な樹脂層を形成したのち、 この樹脂層に紫 外線を照射して硬化させ、 接着層 44とした。 このように、 接着層 44 を介して透過率調整層 20 7とダミ一基板 45を接着させた。 最後に、 記録層 204の全面を結晶化させる初期化工程を行った。 以上のように して、 結晶核生成層 20 3の材料が異なる複数のサンプルを製造した。 なお、 本実施例においては、 結晶核生成層 20 3の材料として実施例 2 の場合と同様のものを用い、 各サンプルを作製した。
このようにして得られたサンプルについて、 実施例 1と同様の方法に よって、 第 1の情報層 42ェの消去率、 記録書き換え回数、 記録保存性 及び書き換え保存性を測定した。
このとき、 レーザビーム 1 0の波長は 40 5 nm、対物レンズ 82 (図 1 3参照。 ) の開口数 (NA) は 0. 6 5、 測定時のサンプルの線速度 は 8. 6m/sまたは 1 7. 2 mZ s、 最短マーク長は 0. 294 m とした。 また、 情報はグループに記録した。
この結果、 実施例 2と同様、 結晶核生成層 20 3が B i及び T eより 選ばれる少なくとも一つの元素と M 1とを含む場合、 消去率、 記録書き 換え回数、 記録保存性及び書き換え保存性が良好な情報記録媒体が得ら れることが確認できた。
また、 図 1 1の情報記録媒 46のように、 結晶核生成層 208が記録 層 204と第 3誘電体層 20 5と界面に配置されている場合や、 図 1 2 の情報記録媒体 47のように、 記録層 2 04の両面に結晶核生成層 20 3, 208が配置されている場合についても同様にサンプルを作製し、 各サンプルについて同様に消去率、 記録書き換え回数、 記録保存性、 及 び書き換え保存性を測定したところ、 同様の結果が得られた。
(実施例 4)
実施例 1〜3の情報記録媒体の記録層 1 04, 204, 3 04を、 組 成式 G e a S b bT e 3 + a、 G e a B i b T e 3 + aで表される材料、 または G e a S b bT e 3 + aの S bの一部を B iで置換した G e a (S b -B i ) bT e 3 + aで表される材料で形成した場合について、 消去率、 記録書き 換え回数、 記録保存性及び書き換え保存性を同様に測定した。 これらの 場合についても、 実施例 1〜3の場合と同様の結果が得られた。 さらに 、 2≤ aの場合は、 記録層の光学変化が大きくでき、 信号振幅の大きな 情報記録媒体を作製できた。 また、 a≤ 50の場合は、 記録層の融点が 高くなりすぎず、 良好な記録感度が得られた。 また、 2≤b≤4の場合 は、 より良好な記録書き換え性能が得られた。
(実施例 5) .
実施例 1〜 3の情報記録媒体の記録層 1 04, 204, 304を、 組 成式 (G e— (M 3) ) a S b bT e 3 + a、 (G e - (M 3) ) aB i b T e 3 + aで表される材料、 または (G e— (M 3 ) ) aS bbT e 3 + aの S bの一部を B iで置換した (Ge— (M 3) ) a (S b— B i ) bT e 3 + aで表される材料で形成した場合について、 消去率、 記録書き換え回 数、 記録保存性及び書き換え保存性を同様に測定した。 これらの場合に ついても、 実施例 1〜 3の場合と同様の結果が得られた。 なお、 M3と しては、 S n及び P bの少なくともいずれか一つを用いた。 さらに、 2 ≤ aの場合は、 記録層の光学変化が大きくでき、 信号振幅の大きな情報 記録媒体を作製できた。 また、 a≤ 50の場合は、 記録層の融点が高く なりすぎず、 良好な記録感度が得られた。 また、 2≤b≤4の場合は、 より良好な記録書き換え性能が得られた。
(実施例 6)
実施例 1〜 3の情報記録媒体の記録層 1 04, 204, 304を、 組 成式 (Ge aS bbT e 3 + a) 100-c (M4) c、 (G e aB i bTe 3 + a ) ! o o- c (M4) cで表される材料、 または (G e a S b bT e 3 + a) 10 。_c (M4) cの S bの一部を B iで置換した (G e a (S b— B i ) b T e 3 + a) 100_c (M4) cで表される材料で形成した場合について、 消去率、 記録書き換え回数、 記録保存性及び書き換え保存性を同様に測 定した。 これらの場合についても、 実施例 1〜 3と同様の結果が得られ た。 なお、 M4としては、 S i、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 S e、 Z r、 Nb、 Mo、 Ru、 Rh、 P d、 Ag、 I n 、 S n、 T a、 W、 O s、 I r、 P t及び A uから選ばれる少なくとも いずれか一つの元素を用いた。 さらに、 2≤ aの場合は、 記録層の光学 変化が大きくでき、 信号振幅の大きな情報記録媒体を作製できた。 また 、 a≤ 50の場合は、 記録層の融点が高くなりすぎず、 良好な記録感度 が得られた。 また、 2≤b≤4の場合及び 0<c≤20の場合は、 より 良好な記録書き換え性能が得られた。
(実施例 7) 実施例 1〜 3の情報記録媒体の記録層 1 04, 2 04, 3 04を、 組 成式 (S bdTe ^o d) 100_e (M 5) eで表される材料を用いて形成 した場合について、 消去率、 記録書き換え回数、 記録保存性及び書き換 え保存性を同様に測定した。 これらの場合についても、 実施例 1〜3と 同様の結果が得られた。 なお、 M 5としては、 G e、 Ag、 I n、 S n 、 S e、 B i、 Au及び Mnから選ばれる少なくともいずれか一つの元 素を用いた。 さらに、 50≤dの場合は、 記録層の結晶化能が高く、 消 去率が向上した。 また、 d≤ 95の場合は、 結晶化能が高くなりすぎな いため、 十分な記録保存性が得られた。 また、 0<e≤20の場合は、 、 良好な記録書き換え性能が得られた。
(実施例 8)
実施例 1 ~3の情報記録媒体の結晶核生成層 1 0 3, 203, 30 3 を、 膜厚を変化させて形成した場合について、 消去率、 記録書き換え回 数、 記録保存性及び書き換え保存性を同様に測定した。 これらの場合に ついても実施例 1〜3と同様の結果が得られたが、 結晶核生成層の膜厚 を 0. 3 nm以上とすることにより、 記録層の結晶化促進効果が十分に 得られ、 線速度が高速の場合であっても良好な書き換え保存性が得られ た。 また、 結晶核生成層の膜厚を 3 nm以下とすることにより、 記録層 の結晶化能が高くなりすぎることを防ぐことができ、 線速度が低速の場 合であっても良好な記録保存性が得られた。
(実施例 9)
実施例 1及び 2の情報記録媒体を、 記録層 1 04, 304の膜厚を変 化させて形成した場合について、 消去率、 記録書き換え回数、 記録保存 性及び書き換え保存性を、 実施例 1の場合と同様に測定した。 これらの 場合についても実施例 1と同様の結果が得られたが、 記録層 1 04, 3 04の膜厚を 6 nm以上とすると記録層 1 04, 3 04の結晶化能が向 上してより良好な消去率が得られた。 また、 膜厚を 14 nm以下とする と、 非晶質化が容易となるためより良好な記録感度が得られた。 また、 実施例 2の情報記録媒体の第 1の情報層 32 iの記録層 204について も同様に膜厚を変化させたところ、 記録層 2 04の膜厚を 3 nm以上と すると結晶化能が向上してより良好な消去率が得られ、 9 nm以下とす ると第 1の情報層 3 2ェの透過率が大きく低下せず、第 2の情報層 3 22 についても十分な記録感度が得られた。
(実施例 1 0)
実施例 2の情報記録媒体の透過率調整層 2 0 7を、 T i〇2、 Z r〇2 、 Z nO、 Nb 205、 T a205、 S i 02、 A l 23、 B i 23、 C r 23、 S r— 0、 T i一 N、 Z r— N、 Nb_N、 T a— N、 S i— N、 Ge— N、 C r一 N、 A l— N、 G e— S i— N、 G e— C r一 N 及び Z n Sから選ばれる少なくとも一つを含む材料を用いて形成した場 合について、 消去率、 記録書き換え回数、 記録保存性及び書き換え保存 性を同様に測定した。 これらの場合についても実施例 2と同様の結果が 得られた。
(実施例 1 1 )
実施例 1〜 1 0の情報記録媒体の基板 1 1 , 2 1, 3 1, 41に直径 50. 8mm、 厚さ 8 00 zmのポリカーボネート基板を用いた場合に ついて、 消去率、 記録書き換え回数、 記録保存性及び書き換え保存性を 同様に測定した。 これらの場合についても実施例 1〜 1 0と同様の結果 が得られた。
(実施例 1 2)
実施例 1 2では、 図 1 8の情報記録媒体 6を製造し、 その電流の印加 による相変化を確認した。
基板 6 1として、 表面を窒化処理した S i基板を準備し、 その上に下 部電極 6 2として P tを面積 1 0 xmX 1 0 mで厚さ 0. 1 m、 記 録層 6 3として G e 2S b 2T e 5を面積 5 ^mX 5 mで厚さ 0 · 1 β m、 結晶核生成層 64として B i T e D y 2を面積 5 mX 5 mで厚 さ 3 nm、 上部電極 6 5として P tを面積 5 mX 5 mで厚さ 0. 1 mに、 順次スパッタリング法により積層した。 その後、 下部電極 6 2 及び上部電極 6 5に Auリード線をボンディングし、 印加部 8 7を介し て電気的情報記録再生装置 9 2を情報記録媒体 6に接続した。 この電気 的情報記録再生装置 9 2により、 下部電極 6 2と上部電極 6 5の間には パルス電源 9 0がスィッチ 8 9を介して接続され、 さらに、 記録層 6 3 の相変化による抵抗値の変化が、 下部電極 6 2と上部電極 6 5の間にス イッチ 9 1を介して接続された抵抗測定器 8 8によって検出された。 記録層 6 3が非晶質相で高抵抗状態のとき、 下部電極 6 2と上部電極 6 5の間に、 振幅 2mA、 パルス幅 8 0 n sの電流パルスを印加したと ころ、 記録層 6 3が非晶質相から結晶相に転移した。 また、 記録層 6 3 が結晶相で低抵抗状態のき、 下部電極 6 2と上部電極 6 5の間に、 振幅 1 0mA, パルス幅 5 0 n sの電流パルスを印加したところ、 記録層 6 3が結晶相から非晶質相に転移した。 なお、 結晶核生成層 64を形成し ないサンプルも同時に作製して同様の実験を行ったところ、 1 0 0 n s 以上のパルス幅の電流パルスを印加しなければ記録層 6 3が非晶質相か ら結晶相に転移しなかった。
以上のことから、 電気的手段によって相変化を起こす情報記録媒体に おいても、 結晶核生成層 64が記録層 6 3の結晶化速度の向上に寄与し ていることがわかった。
(実施例 1 3)
実施例 1 3では、 図 1 4の情報記録媒体 5について、 B i と元素 M 1 とをさまざまに組み合わせて結晶核生成層 5を作製した複数のサンプル を用意した。 基板 5 1としては、 直径 1 2 cm、 厚さ 0. 6 mmのポリ カーボネート樹脂からなる基板を用いた。 基板 5 1の一方の表面には、 トラックピッチ 0. 6 1 5 m、 グループ深さが 50 nmのスパイラル 状の溝を形成した。 基板 5 1の他方の表面は、 平らな面とした。
基板 5 1の溝 (ランド部 5 5及びグループ部 56) が形成された表面 上に、 第 1誘電体層 50 1を厚さ 1 3 0 nm、 第 2誘電体層 5 02を厚 さ 2 nm、 結晶核生成層 503を厚さ 1 nm、 記録層 504を厚さ 8 n m、 第 3誘電体層 5 05を厚さ 5 5 nm、 光吸収補正層 50 6を厚さ 4 0 nm、 反射層 5 0 7を厚さ 80 nmと、 この順に形成した。
基板 5 1上に形成した情報層 52を構成する各層は、 具体的には、 第 1誘電体層 50 1は、 (Z n S) 8。 (S i 02) 2。 (mo 1 %) のスパ ッタリングターゲットを用いて形成した。 第 2誘電体層 502は、 (Z r〇2) 25 (S i 02) 25 (C r 23) 5。 (mo 1 %) の夕一ゲットを 用いて形成した。
結晶核生成層 5 0 3は、 B i L a、 B i P r、 B i Gd、 B i Tb、 B i Dyのスパッタリングターゲットを用いて形成した。
記録層 504は、 Ge 8S b2T eェ のスパッタリングターゲットを用 いて形成した。 第 3誘電体層 50 5は、 (Z r 02) 28. 6 (S i 02) 2 8. 6 (C r 23) 21.4 (L a F 3) 21. 4 (mo 1 %) のスパッ夕リン グターゲットを用いて形成した。 光吸収補正層 506は、 G e 8。C r 2 。のスパッタリングターゲットを用いて形成した。 反射層 507は、 A g 98 P d丄 C u丄のスパッタリング夕一ゲットを用いて形成した。
このようにして形成された多層膜の表面上に、 スピンコート法によつ て紫外線硬化樹脂からなる接着層 5 3を塗布し、 紫外線を照射すること によってダミー基板 54と貼り合せた。 さらに、 形成時の記録層 5 04 は非晶質相であるので、 基板 5 1側からレーザビームを照射することに よって、 記録層 5 04の全面を結晶相にする初期化工程を行った。 本実施例において作製したサンプルを、 波長 6 50 nm、 NA 0. 6 の光学系を用いて、 線速度 8. 2m/ s、 20. 5m//sの条件で、 ラ ンダム信号の記録を 1 0回行った。 ランダム信号は、 最短マーク (3 T ) が 0. 42 m、 最長マーク ( 1 1 T) が 1. 54 mであり、 3 T 〜1 1 Tの信号をランダムに配列した信号である。 これは、 本実施例の 情報記録媒体 5において容量 4. 7 GBに相当する。 このような記録を 行ったトラックを再生し、 各サンプルについてジッターを測定した。 本 実施例で測定したジッターは、 記録マークの前端ジッターと後端ジッタ 一との平均ジッターである。
表 5に、 結晶核生成層 50 3の材料が異なる各サンプルに対して測定 した、 線速度 8. 2mZsでのグループ部 56のジッターと、 線速度 2 0. 5 m/ sでのダル一ブ部 56のジッターとを示す。 サンプル 1 3 _ f は比較例であり、 記録層 504に結晶核生成層 503として S nTe を積層した情報記録媒体である。
(表 5)
Figure imgf000087_0001
表 5より、 結晶核生成層 5 03を B i と元素 M 1とを含む材料にて形 成したサンプル 1 3— a〜 1 3 _ eでは、 8. 2 m/ s、 2 0. 5m/ sと線速度が大きく異なるにもかかわらず、 それぞれの線速度において 良好なジッター値が得られている。
以上の結果より、 B iと元素 Mlとからなる材料にて形成された結晶 核生成層 50 3が、 記録層 5 04の結晶化速度を大きくするので、 より 短い時間で結晶相に相変化させることができるので、線速度が大きい(線 速度 2 0. 5mZs) 場合であっても良好なジッターを維持することが できる。
(実施例 14)
実施例 14では、 実施例 1 3で示した各サンプル 1 3— a〜 1 3— f を、 温度 80° ( 、 湿度 20 %の高温環境で 50時間保存した。 高温環境 下での保存前に、 各サンプルに対して、 線速度 8. 2mZs及び 20. 5m/ sでランダム信号の 1 0回記録を行った。
表 6には、 高温環境下での保存後に測定した記録保存性 (アーカイバ ル) 及び書き換え保存性 (アーカイバルオーバーライト) のジッターと 高温環境下での保存前に測定したジッターとの差分 (保存後のジッター 保存前のジッター) を示す。 なお、 本実施例においては、 アーカイバル のジッターについては低速度 (線速度 8. 2m/s) の場合のみ測定し た。 これは、 アーカイバルのジッターは、 記録速度が遅いほど悪くなる ため、 線速度 8. 2m/sよりも高速である線速度 20. 5mZsの場 合は、 線速度 8. 2mZsの時よりもジッター値が良いと考えられるか らである。 また、 アーカイバルオーバ一ライトのジッターについては、 高速度 (線速度 2 0. 5m/s ) の場合のみ測定した。 これは、 ァ一力 ィバルオーバ一ライトのジッターは、 記録速度が速いほど悪くなるため 、 線速度 20. 5m/sよりも高速である線速度 8. 2m/ sの場合は 、 線速度 20. 5 m/sの時よりもジッター値が良いと考えられるから である。
本実施例でのァ一カイバルのジッ夕一及びアーカイバルオーバーライ トのジッターの測定方法について説明する。
高温環境下で保存後におけるァ一カイバルのジッターは、 高温環境下 で保存したサンプルを取り出して、 保存前に記録したトラックを、 同じ 線速度で再生することによって測定した。
次に、 高温環境下で保存後におけるァ一カイバルオーバーライトのジ ッ夕一は、 高温環境下で保存しだサンプルを取り出して、 保存前に記録 したトラックに同じ線速度でランダム信号の 1回記録を行い、 この信号 を再生することによって測定した。
(表 6 )
Figure imgf000089_0001
サンプル 1 4一 a〜 l 4一 : f では、 表 6に示すように、 高温環境下で の保存後でも保存前からの差分が 2 %以内と、 良好な記録保存特性を示 した。 一方、 書き換え保存性については、 B i と元素 M lとからなる材 料にて結晶核生成層 5 0 3を形成したサンプル 1 4一 a〜 1 4一 eのみ ジッターの差分が 2 %以内となり良好な書き換え保存性を示し、 s n T eを用いたサンプル 1 4一 f については、 ジッターの差分が 5 . 1 %と 大きく、 良好な書き換え保存性が得られないことが確認された。 このよ うに、 B i と元素 M 1とからなる材料にて結晶核生成層 5 0 3を形成し た場合、 線速度 8 . 2 m/ s (低速度) の場合の良好なァ一カイバルと 、 線速度 2 0 . 5 m/ s (高速度) の場合の良好なァ一カイバルオーバ 一ライトとを両立させることが可能であると確認された。
高温環境下で保存を行うと、 記録層 5 0 4の非晶質相が、 保存前のェ ネルギー状態から異なるエネルギー状態へ変わり、 より安定なエネルギ 一状態になる。 このように非晶質相がより安定なエネルギー状態となる と、 記録層 5 0 4の非晶質相が結晶化しにくくなる。 しかしながら、 以 上の結果に示すように、 B i と元素 M 1とからなる材料にて結晶核生成 層 5 0 3を形成したサンプル 1 4— a〜 l 4 _ eは、 保存後の非晶質相 を容易に結晶化することができ、 良好な書き換え保存性を得ることがで きた。 一方、 S n T eを用いたサンプル 1 4一 f については、 高温環境 下で保存した後で信号を記録したアーカイバルオーバーライトのジッ夕 —の差分は 5 . 1 %と大きくなつた。 これは、 S n T eの融点が低いた め、 高温環境下において結晶核生成層 5 0 3が溶解して記録層 5 0 4に 混入し、 記録層 5 0 4に不純物が含まれたためであると考えられる。 こ れに対し、 B i と元素 M 1とからなる材料は S n T eよりも融点が高い ので、 高温環境下での保存後も記録層 5 0 4に不純物が混入することが なく、 良好な書き換え保存性が得られると考えられる。
ァ一カイバルのジッターについては、 各サンプルについて、 引き続き 5 0 0時間まで高温環境で保存した後のジッターの値も測定した。 ァー カイバルは、 保存時間が長くなるに従い悪くなる傾向にあるからである 。 高温環境下で 5 0 0時間保存したところ、 B iと元素 M lとの組み合 わせの材料にて形成された結晶核生成層 5 0 3を用いたサンプル 1 4一 a〜 1 4一 eについては、 保存前のジッ夕一に対して差分 1 %以内と、 優れた記録保存性を示した。 また、 S n T eを結晶核生成層 5 0 3に用 いたサンプル 1 4一 f についても、 サンプル 1 4一 a〜 1 4一 eよりは ジッターの差分の値はやや大きくなつたが、 良好な記録保存性が確認さ れた。 なお、 アーカイバルオーバーライトのジッターについては、 5 0 0時間保持後についての測定を行わなかった。 これは、 書き換え保存性 は、 保存時間が約 5 0時間程度の場合が最も悪く、 その後さらに時間が 経過すると少しずつ良くなる傾向が見られたため、 保存時間 5 0時間程 度のアーカイバルォ一バーライトのジッターが最も悪いと考えられるか らである。
以上の結果より、 結晶核生成層 5 0 3を B i と元素 M lとを含む材料 にて形成する方が、 従来の S nT eにて形成するよりも、 結晶化促進の 効果が大きく優れていることが確認できた。
(実施例 1 5)
実施例 1 5では、 結晶核生成層 5 0 3に B i Te 2Dyを用い、 結晶 核生成層 503の膜厚が異なるサンプルを複数作製した。
基板 5 1上に形成し广こ各層は、 具体的には、 第 1誘電体層 50 1は、 (Z n S) 80 (S i〇2) 20 (mo 1 %) のスパッタリングタ一ゲット を用いて形成した。 第 2誘電体層 502は、 (Z r〇2) 25 (S i〇2 ) 25 (C r 203) 50 (mo 1 %) のスパッタリングターゲットを用い て形成した。 結晶核生成層 5 0 3は、 B i 25T e 5。Dy 25のスパッ夕 リング夕一ゲット、記録層 504は、 G e 8S b2T e iェのスパッタリン グターゲットを用いて形成した。 第 3誘電体層 50 5は、 (Z r〇2) 2 8. 6 (S i〇2) 2 8. 6 (C r 23) 2 ! . 4 (L a F3) 21. 4 (m o 1 % ) のスパッタリングターゲットを用いて形成した。 光吸収補正層 506 は、 Ge 8 QC r 2。のスパッタリングタ一ゲットを用いて形成した。反射 層 50 7は、八898? 31(:1 1のスパッタリング夕ーゲットを用いて形 成した。
作製したサンプルは、 波長 6 50 nm、 NA0. 6の光学系を用いて 、 線速度 8. 2m/s、 20. 5mZsの条件で、 ランダム信号の記録 を 1 0回行った。 ランダム信号は、 実施例 1 3の場合と同様の条件であ る。 この記録を行ったトラックを再生し、 ジッ夕一を測定した。 ジッ夕 一は、 記録マークの前端ジッターと後端ジッターとの平均ジッターであ る。 表 7には、 結晶核生成層 5 0 3の膜厚に対する線速度 8. 2m/s でのグル一ブ部 5 6のジッターと線速度 20. 5m/sでのグル一ブ部 56のジッターを示す。
(表 7)
Figure imgf000092_0001
表 7より、 結晶核生成層 5 0 3の膜.厚が 0. 2 nmから 3. O nmま での膜厚範囲において、 線速度が 8. 2mZs、 2 0. 5mZsともに 、 良好なジッター値が得られた。
(実施例 1 6)
実施例 1 6では、 図 1 5に示すような、 記録層 504と第 3誘電体層 50 5との間に結晶核生成層 5 08を設けたサンプルを作製した。 結晶 核生成層 508は B i 2T e Dyを用いて形成し、 記録層 5 04は Ge - S 13 _丁 6のー部を3 nまたは B iで置換した Ge - S n-S b -T e、 G e— S b— B i _Te、 G e— S n— S b— B i— T eを用いて 形成した。
基板 5 1上に形成した各層は、 具体的には、 第 1誘電体層 50 1は、 (Z n S) 8。 (S i 02) 2。 (mo l %) のスパッタリングターゲット を用いて形成した。 第 2誘電体層 50 2は、 (Z r〇2) 25 (S i〇2 ) 25 (C r 203) 5。 (mo l %) のスパッタリングターゲットを用い て形成した。 次に、 本実施例では、 第 2誘電体層 502上に、 記録層 5 04を形成した。 記録層 504には、 (G e— S n) 8 S b 2T eェ で S nの含有割合が 8原子%の組成、 Ge 8 (S b— B i ) sT e uで B の 含有割合が 4原子%の組成、 (Ge— S n) 8 (S b_B i ) 2T e 1 X で S nの含有割合が 3原子%及び B iの含有割合が 4原子%の組成を用 いた。 記録層 504を形成した後、 結晶核生成層 508は、 B i 5 QT e 25Dy 25 (a t . %) のスパッタリングターゲットを用いて形成した。 結晶核生成層 508を形成後、 第 3誘電体層 50 5は、 (Z r 02) 28. a (S i〇2) 28. 6 (C r 203) 21. 4 (L a F 3) 21. 4 (mo 1 %) のスパッタリングタ一ゲットを用いて形成した。 光吸収補正層 506は 、 G e 8。C r 2。のスパッタリング夕一ゲットを用いて形成した。反射層 50 7は、 Ag98P d 1Cu 1のスパッタリング夕ーゲットを用いて形成 した。
作製したサンプルは、 波長 6 50 nm、 NA 0. 6の光学系を用いて 、 線速度 8. 2mZs、 20. 5mZsの条件で、 ランダム信号の記録 を 1 0回行った。 ランダム信号は、 実施例 1 3と同様の条件である。 こ の記録を行ったトラックを再生し、 ジッターを測定した。 ジッターは、 記録マークの前端ジッターと後端ジッターとの平均ジッ夕一である。 表 8には、 各サンプルの記録層 5 04に対する線速度 8. 2m/sで のグループ部 56のジッターと、 線速度 20. 5m/sでのグループ部 56のジッターとを示す。 (表 8)
Figure imgf000094_0001
表 8に示すように、 実施例 1 6においても、 それぞれの線速度で良好 なジッターが得られているが、 サンプル 1 6— a〜 1 6— cと比較のた めのサンプル 1 6— d及び 1 6 _ eとの結果によれば、 記録層 504に おける S nの含有量が 0〜20原子%の範囲内である場合、 B iの含有 量が 0〜 10原子%の範囲内である場合、 特にジッターが良好である。 以上のように、 記録層 504と第 3誘電体層 50 5との間に結晶核生 成層 50 8を設けた構成であっても、 線速度が大きい場合に良好な書き 換え性能が得られることがわかる。
(実施例 1 7 )
実施例 1 7では、 図 14に示す情報記録媒体 5において、 結晶核生成 層 503の膜厚及び記録層 504の膜厚が異なるサンプルを複数作製し た。 結晶核生成層 50 3には B i T e 2Dyを用い、 記録層 504には G e -S b-T eの一部を B iに置換した G e— S b— B i—Teを用 いた。
基板 5 1上に形成した各層は、 具体的には、 第 1誘電体層 50 1は、 (Z n S) 80 (S i 02) 20 (mo 1 %) のスパッタリング夕ーゲット を用いて形成した。 第 2誘電体層 50 2は、 (Z r〇2) 25 (S i 02 ) 25 (C r 203) s o (mo 1 %) のスパッタリングターゲットを用い て形成した。 結晶核生成層 50 3は、 B i 25丁 6 5。0 25のスパッタ リング夕一ゲット、 記録層 5 04には、 (G e— S n) 8 (S b _B i ) 2T e ェで S nの含有割合が 5原子%及び B iの含有割合が 6原子% の組成のスパッタリング夕一ゲットを用いて形成した。 第 3誘電体層 5 0 5は、 (Z r〇2) 28. 6 (S i 02) 28. 6 (C r 203) 21. 4 (L a F 3) 2 1. 4 (mo 1 %) のスパッタリングターゲットを用いて形成した 。 光吸収補正層 5 0 6は、 G e 8。C r 2。 (a t . %) のスパッタリング ターゲットを用いて形成した。 反射層 5 0 7は、 AggsP d iC ii i Ca t . %) のスパッタリングターゲットを用いて形成した。 結晶核生成層 5 0 3の膜厚は、 記録層 5 04の膜厚を 8 nmに固定して、 0. 5 nm 、 1. O nm、 1. 5 nmと用意した。 また、 記録層 54の膜厚は、 結 晶核生成層 5 0 3の膜厚を 1. 5 nmと固定して、 6 nm、 8 nm、 1 2 nmと用意した。
実施例 1 7で作製したサンプルは、 波長 6 5 0 nm、 NA 0. 6の光 学系を用いて、 線速度 8. 2 m/ s、 2 0. 5 / s、 3 2. 8 m/ s の条件で、 ランダム信号の記録を 1 0回行った。 ランダム信号は、 実施 例 1 3と同様の条件である。 次に、 実施例 1 4と同様に温度 8 0°C、 湿 度 2 0 %の高温環境下で 5 0時間の保存を行った。
表 9には、 線速度 8. 2 m/ s、 2 0. 5 m/ s、 3 2. 8 m/ sに 対して、 高温環境下での保存後に測定したグループ部 5 6のアーカイバ ルのジッター及びグループ 5 6のァ一カイバルオーバ一ライトのジッタ ―と高温環境下での保存前に測定したジッターとの差分 (保存後のジッ ター保存前のジッター) を示す。 ジッターは、 記録マークの前端ジッタ 一と後端ジッターとの平均ジッタ一である。
ァ一カイバルのジッター及びアーカイバルオーバーライ卜のジッ夕一 の測定方法は実施例 14と同様の測定方法を用いた。 (表 9)
Figure imgf000096_0001
線速度が 3 2. 8m/sと非常に大きい場合であっても、 高温環境下 で保存前後のアーカイバルオーバーライトの差分が 2 %以内であり、 且 つ線速度が 8. 2m/ sでのァ一カイバルの差分も 0. 7 %以下である 。 また、 線速度が 8. 2m/sでのアーカイバルは、 温度 80°C、 湿度 20 %の高温環境下で 50 0時間の保存を行った後においても、 保存前 との差分は 2 %であることを確認した。
実施例 1 7から、 線速度が 8. 2111/ 3から 3 2. 8mZsと 4倍異 なる場合でも、 それぞれの線速度において、 良好な記録特性を両立する ことが確認された。 また、 記録層 504単体 (記録層に接して結晶核生 成層を設けない構成) では、 記録層 5 04の膜厚を薄くするにつれて結 晶化しにくくなるが、 結晶核生成層 50 3を設けることにより、 膜厚が 6 nmと薄い場合でも、 結晶核生成層 1 03の結晶促進効果により、 線 速度が大きい場合に良好なアーカイバルオーバーライト特性を実現する ことができる。
(実施例 1 8)
実施例 1 8では、 図 1 6に示すように記録層 5 04の両側に結晶核生 成層 50 3, 508を形成したサンプルを作製した。 結晶核生成層 5 0 3, 508には B i 2T e Dyを用い、 記録層 504には、 G e _S b -T eの一部を S nまたは B iで置換した G e— S n— S b— T e、 G e _ S b— B i— T e、 Ge -S n-S b-B i -T eを用いて形成し た。
基板 5 1上に形成した各層は、 具体的には、 第 1誘電体層 50 1は、 (Z n S) 80 (S i〇2) 20 (mo 1 %) のスパッタリング夕一ゲット を用いて形成した。 第 2誘電体層 502は、 (Z r〇2) 25 (S i〇2 ) 25 (C r 23) 50 (mo 1 %) のスパッタリングターゲットを用い て形成した。 次に、 実施例 1 8では、 第 2誘電体層 502上に、 結晶核 生成層 50 3を形成した。 結晶核生成層 5 03は、 B i 5 QT e 25Dy2 5 (a t . % ) のスパッタリングターゲットを用いて形成した。 結晶核 生成層 50 3上に、 記録層 504を形成した。 記録層 504には、 (G e— S r sS bsT e uで S nの含有割合が 8原子%の組成、 G e 8 (S b—B i ) 2T e i で B iの含有割合が 4原子%の組成、 (Ge— S n ) 8 (S b -B i ) 2T e で S nの含有割合が 3原子%と B iの含有割 合が 4原子%の組成を用いた。
さらに、 記録層 504を形成した後、 結晶核生成層 50 8を形成した 。 結晶核生成層 50 8は、 B i 5。T e 25Dy 25のスパッタリング夕一 ゲットを用いて形成した。第 3誘電体層 505は、 (Z r〇2) 28. 6 (S i〇2) 28. 6 (C r 203) 2 1. 4 (L a F 3) 21. 4 (mo 1 %) のスパ ッタリングターゲットを用いて形成した。 光吸収補正層 5 06は、 Ge s o C r 2。のスパッタリング夕一ゲットを用いて形成した。反射層 507 は、 Ag 98 P d C u のスパッ夕リングタ一ゲットを用いて形成した。 作製したサンプルは、 波長 6 50 nm、 NA 0. 6の光学系を用いて 、 線速度 8. 2m/s、 20. 5m/sの条件で、 ランダム信号の記録 を 1 0回行った。 ランダム信号は、 実施例 1 3と同様の条件である。 こ の記録を行ったトラックを再生し、 ジッターを測定した。 ジッターは、 記録マークの前端ジッターと後端ジッターとの平均ジッターである。 表 1 0には、 各サンプルの記録層 5 0 4に対する線速度 8 . 2 m/ s でのジッターと線速度 2 0 . 5 m/ sでのジッターを示す。
(表 1 0 )
Figure imgf000098_0001
表 1 0に示すように、 本実施例においてもそれぞれの線速度で良好な ジッターが得られているが、 サンプル 1 8— a〜 l 8— cと比較のため のサンプル 1 8— d及び 1 8— eとの結果によれば、 記録層 5 0 4にお ける S nの含有量が 0〜2 0原子%の範囲内である場合、 B iの含有量 が 0〜 1 0原子%の範囲内である場合、 特にジッターが良好である。 こ のように、 記録層 5 0 4の両面に結晶核生成層 5 0 3 , 5 0 8を形成し た場合においても、 結晶核生成層 5 0 3 , 5 0 8が記録層 5 0 4の結晶 化速度を大きくし、 線速度が大きい場合に、 より短い時間で結晶相に相 変態させるので、 書き換え性能が向上するといえる。
(実施例 1 9 )
実施例 1 9では、 図 1 7に示す情報記録媒体 5 9のように、 第 3誘電 体層 5 0 5と光吸収補正層 5 0 6との間に第 4誘電体層 5 0 9がさらに 設けられ、 且つ、 第 2誘電体層 5 0 2と第 3誘電体層 5 0 5の材料が互 いに異なる 2つのサンプルを作製した。 これらのサンプルにおいて、 第 4誘電体層 1 0 5には、 (Z n S) 8。 (S i〇2) 2。 (mo 1 %) を用 いた。 結晶核生成層 503には B i T e Dy2を用い、 記録層 5 04に は G e— S b— T eの一部を B iで置換した G e— S b— B i— T eを 用いて形成した。
基板 5 1上に形成した各層は、 具体的には、 第 1誘電体層 50 1は、 (Z n S) 80 (S i〇2) 2。 (mo 1 %) のスパッタリングターゲット を用いて形成した。 第 2誘電体層 502は、 (Z r〇2) 25 (S i〇2 ) a s (C r 203) s o (mo 1 ) のスパッタリングターゲットを用い て形成した。 次に、 第 2誘電体層 502上に、 結晶核生成層 5 0 3を形 成した。 結晶核生成層 503は、 B i 25T e 25Dy 5 Qのスパッ夕リン グターゲットを用いて形成した。 結晶核生成層 50 3上に、 記録層 50
4を形成した。 記録層 504には、 G e 8 (S b— B i ) 2T eェェで B i の含有割合が 4原子%の組成を用いた。
記録層 504を形成した後、 第 3誘電体層 50 5を形成した。 第 3誘 電体層 50 5は、 それぞれ (Z r〇2) 25 (S i〇2) 25 (C r 23) s o (mo 1 %) 、 (H f 02) 25 (S i 02) 25 (C r 203) 5。 (mo 1 %) のスパッタリングターゲットを用いて形成した。 第 3誘電体層 5 0 5を形成後、 第 4誘電体層 5 0 9を形成した。 第 4誘電体層 509は 、 (Z n S) 80 (S i〇2) 2。 (mo 1 %) のスパッタリングターゲッ トを用いて形成した。 さらに、 光吸収補正層 506は、 G e 8。C r 2。 のスパッタリングターゲットを用いて形成した。 反射層 5 0 7は、 Ag 98 P d x C u丄のスパッタリング夕一ゲットを用いて形成した。
作製したサンプルは、 波長 6 50 nm、 NA 0. 6の光学系を用いて 、 線速度 8. 2mZs、 20. 5mZsの条件で、 ランダム信号の記録 を 1 0回行った。 ランダム信号は、 実施例 1 3と同様の条件である。 こ の記録を行ったトラックを再生し、 ジッターを測定した。 ジッターは、 記録マークの前端ジッターと後端ジッターとの平均ジッターである。 表 1 1には、 それぞれの記録層 5 0 4に対する線速度 8 . 2 mZ sで のジッターと線速度 2 0 . 5 m/ sでのジッターを示す。
(表 1 1 )
Figure imgf000100_0001
図 1 7に示す構成の情報記録媒体であっても、 それぞれの線速度で良 好なジッターが得られた。 産業上の利用の可能性
本発明の情報記録媒体及び情報記録媒体の製造方法によれば、 結晶核 生成層の融点が高く熱的安定性が良好で、 高い転送レートでの書き換え 保存性と低い転送レートでの記録保存性を両立し、 且つ良好な繰り返し 書き換え性能を有する情報記録媒体が得られる。

Claims

請 求 の 範 囲
1. 基板と、 前記基板上に配置された情報層とを含んでおり、 前記情報層が、
光学的手段及び電気的手段の少なくとも一方によって結晶相と非晶質 相との間で可逆的な相変化を起こす記録層と、
B i及び T eから選ばれる少なくとも一つの元素と S c、 Y、 L a、 C e、 P r、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 E r、 Yb及び L uから選ばれる少なくとも一つの元素 (M l) とを含み、 前記記録層に 接して設けられた少なくとも一つの結晶核生成層と、 を含むことを特徴 とする情報記録媒体。
2. 前記結晶核生成層が、 B i (M l) 及び T e (M l) から選ばれ る少なくとも一つを含む請求の範囲 1に記載の情報記録媒体。
3. 前記結晶核生成層が、 B i T e (M l) 2、 B i 2T e (M l) 及 び B i T e 2 (M l) から選ばれる少なくとも一つを含む請求の範囲 1 に記載の情報記録媒体。
4. 前記結晶核生成層が、 N及び Oから選ばれる少なくとも一つの元 素を含む請求の範囲 1に記載の情報記録媒体。
5. 前記記録層が、 S b及び B iから選ばれる少なくとも一つの元素 (M2) と、 G eと、 T eとを含み、 前記 M2、 06及び丁 6を組成式
G e a (M2) bT e 3 + aと表記した場合に、
2≤ a≤ 5 0
2≤b≤4
である請求の範囲 1に記載の情報記録媒体。
6. 前記 Ge a (M 2 ) bT e 3 + aにおいて、 前記 G eの少なくとも一 部が、 S n及び P bから選ばれる少なくとも一つの元素 (M3) にて置 換されている請求の範囲 5に記載の情報記録媒体。
7. 前記記録層において、 前記 M2が S bであり、 前記 S bの少なく とも一部が B iにて置換されている請求の範囲 5に記載の情報記録媒体
8. 前記記録層において、 S n原子の含有割合は、 0原子%を超え 2 0原子%未満である請求の範囲 7に記載の情報記録媒体。
9. 前記記録層において、 B i原子の含有割合は、 0原子%を超え 1 0原子%未満である請求の範囲 7に記載の情報記録媒体。
1 0. 前記記録層が、 S b及び B iから選ばれる少なくとも一つの元 素 (M2) と、 S i、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 C u
、 S e、 Z r、 Nb、 Mo、 Ru、 Rh、 P d、 Ag、 I n、 S n、 T a、 W、 O s、 I r、 P t及び A uから選ばれる少なくとも一つの元素 (M4) と、 G eと、 T eとを含み、 前記 M 2、 M4、 G e及び T eを 組成式 (Ge a (M2) bT e 3 + a) 1 0 0 - c (M4) cと表記した場合に、 2≤ a≤ 5 0
2≤ b≤ 4
0 < c≤ 20
である請求の範囲 1に記載の情報記録媒体。
1 1. 前記記録膜が、 S bと、 T eと、 Ag、 I n、 Ge、 S n、 S e、 B i、 A u及び Mnから選ばれる少なくとも一つの元素 (M 5 ) と を含み、 前記 S b、 T e及び M5を組成式 (S bdT e 。。- d) ^。^ (M 5) eで表記した場合に、
50≤ d≤ 9 5
0 < e≤ 20
である請求の範囲 1に記載の情報記録媒体。
1 2. 前記結晶核生成層の厚みが、 0. 2 nm以上 3 nm以下である 請求の範囲 1に記載の情報記録媒体。
1 3 . 前記記録層の厚みが、 3 n m以上 1 4 n m以下である請求の範 囲 1に記載の情報記録媒体。
1 4 . 第 1の情報層〜第 Nの情報層 (Nは 2以上の自然数) が積層さ れた多層構造の情報記録媒体であって、 前記第 1の情報層〜第 Nの情報 層の少なくとも一つが前記情報層である請求の範囲 1に記載の情報記録 媒体。
1 5 . 前記記録層は、 レーザビームの照射によって結晶相と非晶質相 との間で可逆的な相変化を起こし、
前記情報層が、 前記記録層及び前記結晶核生成層からなる積層体の両 面に設けられた誘電体層と、 前記積層体に対しレーザビーム入射側と反 対側に配置された反射層と、 をさらに含む請求の範囲 1に記載の情報記 録媒体。
1 6 . 前記情報層が、 前記積層体と前記反射層との間に配置された光 吸収補正層をさらに含む請求の範囲 1 5に記載の情報記録媒体。
1 7 . 前記記録層は、 レーザビームの照射によって結晶相と非晶質相 との間で可逆的な相変化を起こし、
前記情報層は、 レーザビーム入射側から、 少なくとも第 1誘電体層、 第 2誘電体層、 前記結晶核生成層、 前記記録層、 第 3誘電体層及び反射 層をこの順に含む請求の範囲 1に記載の情報記録媒体。
1 8 . 前記記録層は、 レーザビームの照射によって結晶相と非晶質相 との間で可逆的な相変化を起こし、
前記情報層は、 レーザビーム入射側から、 少なくとも第 1誘電体層、 第 2誘電体層、 前記記録層、 前記結晶核生成層、 第 3誘電体層及び反射 層をこの順に含む請求の範囲 1に記載の情報記録媒体。
1 9 . 前記記録層は、 レーザビームの照射によって結晶相と非晶質相 との間で可逆的な相変化を起こし、
前記情報層は、 レーザピ一ム入射側から、 少なくとも第 1誘電体層、 第 2誘電体層、 前記結晶核生成層、 前記記録層、 前記結晶核生成層、 第 3誘電体層及び反射層をこの順に含む請求の範囲 1に記載の情報記録媒 体。
2 0 . 前記情報層は、 前記第 3誘電体層と前記反射層との間に設けら れた第 4誘電体層をさらに含む請求の範囲 1 7〜 1 9の何れか一項に記 載の情報記録媒体。
2 1 . 前記情報層は、 前記第 3誘電体層と前記反射層との間に設けら れた、 前記反射層より熱伝導率が低い界面層をさらに含む請求の範囲 1 7〜 1 9の何れか一項に記載の情報記録媒体。
2 2 . レーザビームの照射によって情報が記録される第 1の情報層〜 第 Nの情報層 (Nは 2以上の自然数) がレーザビーム入射側からこの順 に積層された多層構造の情報記録媒体であって、
少なくとも前記第 1の情報層が前記情報層であり、
前記第 1の情報層に含まれる前記記録層は、 レ一ザビームの照射によ つて結晶相と非晶質相との間で可逆的な相変化を起こし、
前記第 1の情報層が、 レーザビーム入射側から、 少なくとも第 1誘電 体層、 第 2誘電体層、 前記結晶核生成層、 前記記録層、 第 3誘電体層、 反射層及び透過率調整層をこの順に含む請求の範囲 1に記載の情報記録 媒体。
2 3 . レーザビームの照射によって情報が記録される第 1の情報層〜 第 Nの情報層 (Nは 2以上の自然数) がレーザビーム入ナ側からこの順 に積層された多層構造の情報記録媒体であって、
少なくとも前記第 1の情報層が前記情報層であり、
前記第 1の情報層に含まれる前記記録層は、 レーザビームの照射によ つて結晶相と非晶質相との間で可逆的な相変化を起こし、
前記第 1の情報層が、 レーザビーム入射側から、 少なくとも第 1誘電 体層、 第 2誘電体層、 前記記録層、 前記結晶核生成層、 第 3誘電体層、 反射層及び透過率調整層をこの順に含む請求の範囲 1に記載の情報記録 媒体。
2 4. レーザビームの照射によって情報が記録される第 1の情報層〜 第 Nの情報層 (Nは 2以上の自然数) がレ一ザビーム入射側からこの順 に積層された多層構造の情報記録媒体であって、
少なくとも前記第 1の情報層が前記情報層であり、
前記第 1の情報層に含まれる前記記録層は、 レ一ザビームの照射によ つて結晶相と非晶質相との間で可逆的な相変化を起こし、
前記第 1の情報層が、 レーザビーム入射側から、 少なくとも第 1誘電 体層、 第 2誘電体層、 前記結晶核生成層、 前記記録層、 前記結晶核生成 層、 第 3誘電体層、 反射層及び透過率調整層をこの順に含む請求の範囲 1に記載の情報記録媒体。
2 5. 前記透過率調整層が、 T i〇2、 Z r〇2、 Z n〇、 N b 205 、 T a 25、 S i〇2、 A 1 203、 B i 23、 C r 23、 S r — 0、 T i 一 N、 Z r— N、 N b - N、 T a— N、 S i — N、 G e— N、 C r — N、 A l — N、 G e— S i — N、 G e — C r— N及び Z n Sから選ば れる少なくとも一つを含む請求の範囲 2 2〜 2 4の何れか一項に記載の
,ι'虫報記録媒体 t
2 6. 前記第 4誘電体層が、 (Z n S) 8。 (S i 02) 2。を含む請求 の範囲 2 0に記載の情報記録媒体。
2 7. 前記第 3誘電体層が、 H f 02及び Z r 02から選ばれる少なく とも一つと、 S i〇2と、 C r 203と、 フッ化物と、 を含む酸化物ーフ ッ化物系材料にて形成されている請求の範囲 1 7〜 2 5の何れか一項に 記載の情報記録媒体。
28. 前記フッ化物は、 C e F3、 E r F3、 Gd F3、 L a F 3> T b F3、 Dy F3、 Nd F3、 Y F 3及び Y b F 3から選ばれる少なくとも一 つを含む請求の範囲 27に記載の情報記録媒体。
29. 前記酸化物一フッ化物系材料が、
(H f 02) A1 (S i 02) B 1 (C r 203) C1 (フッ化物) 10。 一 A 1B 1C 1または (Z r〇2) A1 (S i〇2) B 1 (C r 23) C1 (フッ化 物) 1 00— A1-B 1-C 1と表記される場合、
A 1が、 1 0≤A 1≤ 50、
B 1が、 1 0≤B 1≤ 50、
C 1が、 1 0≤ C 1≤ 50、
A 1 +B 1 +C 1が、 50≤A 1 +B 1 +C 1≤ 9 0
である請求の範囲 27に記載の情報記録媒体。
30. 前記第 2誘電体層及び前記第 3誘電体層の少なくも一つが、 H f 〇2及び Z r 02から選ばれる少なくとも一つと、 S i 02と、 C r 2
3と、 を含む酸化物系材料にて形成されている請求の範囲 1 7〜2 5 の何れか一項に記載の情報記録媒体。
3 1. 前記酸化物系材料が、
(h f 02ノ A2 (S 1 〇2) B 2 し Γ 203) — Α2— Β 2ま ま ^ ^ r 02) A2 (S i 02) B2 (C r 203) 丄 0 0A 2 _B 2と表記され、
A 2が、 1 0≤A 2≤ 50、
B 2が、 1 0≤B 2≤ 50、
A2 +B 2が、 20≤A2 +B 2≤ 8 0
である請求の範囲 2 9に記載の情報記録媒体。
32. 基板上に少なくとも一つの情報層が設けられた情報記録媒体を 製造する方法であって、 前記情報層を形成する工程が、
光学的手段及び電気的手段の少なくとも何れか一方によつて結晶相と 非晶質相との間で可逆的な相変化を起こす記録層を形成する記録層形成 工程と、
B i及び T eから選ばれる少なくとも一つの元素と S c、 Y、 L a、 C e、 P r、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 E r、 Yb及び L uから選ばれる少なくとも一つの元素 (M l) とを含むスパッタリング 夕一ゲットを用いて、 スパッ夕リングにより結晶核生成層を形成する結 晶核生成層形成工程と、 を含み、
前記記録層形成工程と前記結晶核生成工程とが連続して行われること を特徴とする情報記録媒体の製造方法。
3 3. 前記スパッタリングターゲットが、 B i (M l) 及び T e (M 1) より選ばれる少なくとも一つを含む請求の範囲 32に記載の情報記 録媒体の製造方法。
34. 前記スパッタリングターゲットが、 B i Te (M l) 2、 B i 2 T e (M 1 ) 及び B i T e 2 (M 1 ) から選ばれる少なくとも一つを含 む請求の範囲 32に記載の情報記録媒体の製造方法。
3 5. 前記結晶核生成層形成工程において、 スパッタリングの際に、 A rガスと、 K rガスと、 A rガス及び反応ガスの混合ガスと、 K rガ ス及び反応ガスの混合ガスとから選ばれる少なくとも一つを用いる請求 の範囲 32に記載の情報記録媒体の製造方法。
但し、 反応ガスとは、 N2ガス及び 02ガスから選ばれる少なくとも一 つのガスのことである。
PCT/JP2003/011680 2002-09-13 2003-09-12 情報記録媒体とその製造方法 WO2004025640A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03795417A EP1560210A4 (en) 2002-09-13 2003-09-12 INFORMATION RECORDING MEDIUM AND METHOD FOR THE PRODUCTION THEREOF
AU2003264415A AU2003264415A1 (en) 2002-09-13 2003-09-12 Information recording medium and method for manufacturing same
JP2004535957A JP4217213B2 (ja) 2002-09-13 2003-09-12 情報記録媒体とその製造方法
US10/527,354 US7449225B2 (en) 2002-09-13 2003-09-12 Information recording medium and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002268537 2002-09-13
JP2002-268537 2002-09-13
JP2002-271121 2002-09-18
JP2002271121 2002-09-18

Publications (1)

Publication Number Publication Date
WO2004025640A1 true WO2004025640A1 (ja) 2004-03-25

Family

ID=31996175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011680 WO2004025640A1 (ja) 2002-09-13 2003-09-12 情報記録媒体とその製造方法

Country Status (6)

Country Link
US (1) US7449225B2 (ja)
EP (1) EP1560210A4 (ja)
JP (1) JP4217213B2 (ja)
CN (1) CN100341060C (ja)
AU (1) AU2003264415A1 (ja)
WO (1) WO2004025640A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1463043A1 (en) * 2003-03-25 2004-09-29 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
EP1688929A2 (en) * 2004-11-30 2006-08-09 TDK Corporation Optical recording medium and method for testing the same
JP2006295157A (ja) * 2005-04-13 2006-10-26 Samsung Electronics Co Ltd 直列連結構造の抵抗ノードを有するメモリ素子
JP2007311791A (ja) * 2006-05-19 2007-11-29 Samsung Electronics Co Ltd GeBiTe膜を相変化物質膜として採用する相変化記憶セル、それを有する相変化記憶素子、それを有する電子システム及びその製造方法
JP2008507151A (ja) * 2004-07-19 2008-03-06 マイクロン テクノロジー,インコーポレイテッド 抵抗可変メモリ・ディバイスと製造方法
JP2008532285A (ja) * 2005-02-23 2008-08-14 マイクロン テクノロジー, インク. SnSeベースの限定リプログラマブルセル
JP2009503897A (ja) * 2005-08-02 2009-01-29 マイクロン テクノロジー, インク. 相変化メモリセル及び形成方法
JPWO2007119439A1 (ja) * 2006-03-31 2009-08-27 パナソニック株式会社 情報記録媒体およびその製造方法
US7883930B2 (en) 2005-05-19 2011-02-08 Kabushiki Kaisha Toshiba Phase change memory including a plurality of electrically conductive bodies, and manufacturing method thereof
JP5042019B2 (ja) * 2005-06-07 2012-10-03 パナソニック株式会社 情報記録媒体とその製造方法
JP5225372B2 (ja) * 2008-04-01 2013-07-03 株式会社東芝 情報記録再生装置
KR20170117942A (ko) * 2015-03-28 2017-10-24 인텔 코포레이션 상변화 메모리에 대한 멀티스테이지 설정 절차

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327691B2 (ja) * 2004-09-30 2009-09-09 株式会社東芝 光記録媒体
JP2006202430A (ja) * 2005-01-21 2006-08-03 Tdk Corp 光記録媒体
KR100867124B1 (ko) * 2007-02-15 2008-11-06 삼성전자주식회사 광디스크의 데이터 기록 및 재생 장치 및 방법
JP4711143B2 (ja) * 2007-03-19 2011-06-29 Tdk株式会社 情報媒体
US20090022932A1 (en) * 2007-07-04 2009-01-22 Toshishige Fujii Optical recording medium
JP4433325B2 (ja) * 2007-12-03 2010-03-17 ソニー株式会社 光情報記録媒体
US8530140B2 (en) * 2008-01-31 2013-09-10 Panasonic Corporation Optical information recording medium and method for manufacturing the same
WO2009096165A1 (ja) * 2008-01-31 2009-08-06 Panasonic Corporation 光学的情報記録媒体とその製造方法、及びターゲット
JP4605257B2 (ja) * 2008-06-11 2011-01-05 ソニー株式会社 光情報記録媒体
US8526293B2 (en) * 2008-06-13 2013-09-03 Panasonic Corporation Information recording medium and recording/reproducing method for the same
US8467236B2 (en) 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US20100297381A1 (en) * 2009-05-22 2010-11-25 Cmc Magnetics Corporation Method of improving read stability of optical recording medium and optical recording medium manufactured using the method
CN103367633A (zh) * 2012-03-27 2013-10-23 中国科学院上海微系统与信息技术研究所 一种用于相变存储器的钨掺杂改性的相变材料及其应用
CN106611814B (zh) * 2015-10-23 2020-05-05 中国科学院上海微系统与信息技术研究所 用于相变存储器的相变材料及其制备方法
GB2561168B (en) * 2017-03-31 2019-08-07 Ucl Business Plc A switching resistor and method of making such a device
GB2564844B (en) 2017-07-17 2019-11-13 Ucl Business Plc A light-activated switching resistor, an optical sensor incorporating a light-activated switching resistor, and methods of using such devices
CN113594359B (zh) * 2021-07-01 2023-08-29 深圳大学 相变超晶格材料及其相变存储器单元

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209970A (ja) * 1999-03-26 2001-08-03 Matsushita Electric Ind Co Ltd 情報記録媒体とその製造方法およびその記録再生方法
JP2001273673A (ja) * 1999-11-17 2001-10-05 Matsushita Electric Ind Co Ltd 光記録媒体およびその製造方法
US20010033991A1 (en) * 2000-04-20 2001-10-25 Guo-Fu Zhou Optical recording medium and use of such optical recording medium
JP2002002116A (ja) * 1999-09-21 2002-01-08 Ricoh Co Ltd 光情報記録媒体及びその製造方法
JP2002123977A (ja) * 2000-10-19 2002-04-26 Sony Corp 追記型光学記録媒体
JP2002225436A (ja) * 2001-02-06 2002-08-14 Ricoh Co Ltd 光情報記録媒体及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3885156T2 (de) * 1987-06-11 1994-03-17 Asahi Chemical Ind Verfahren zum Aufzeichnen und Löschen von Daten.
US5591501A (en) * 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
JP3612927B2 (ja) 1997-03-31 2005-01-26 松下電器産業株式会社 光学情報記録媒体
DE69729990T2 (de) 1996-03-11 2004-12-09 Matsushita Electric Industrial Co., Ltd., Kadoma Optischer datenaufzeichnungsmedium, verfahren zur herstellung dasselbe und verfahren zur wiedergabe/löschen einer aufzeichnung
EP0980068B1 (en) * 1997-04-16 2003-07-02 Asahi Kasei Kabushiki Kaisha Process for producing optical information recording medium and optical information recording medium produced by the process
JP3250989B2 (ja) 1998-05-15 2002-01-28 松下電器産業株式会社 光学情報記録媒体、その記録再生方法、その製造法及び光学情報記録再生装置
EP0957477A3 (en) * 1998-05-15 2003-11-05 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
TW448443B (en) * 1998-08-05 2001-08-01 Matsushita Electric Ind Co Ltd Optical information storage media and production method as well as the storage reproducing method and device
TW484126B (en) 1999-03-26 2002-04-21 Matsushita Electric Ind Co Ltd Manufacturing and recording regeneration method for information record medium
US6432502B1 (en) * 1999-11-17 2002-08-13 Matsushita Electric Industrial Co., Ltd. Optical recording medium and method of manufacturing the same
TWI233098B (en) * 2000-08-31 2005-05-21 Matsushita Electric Ind Co Ltd Data recoding medium, the manufacturing method thereof, and the record reproducing method thereof
US20020160306A1 (en) * 2001-01-31 2002-10-31 Katsunari Hanaoka Optical information recording medium and method
JP2003178487A (ja) * 2001-12-12 2003-06-27 Hitachi Ltd 情報記録媒体および製造方法
JP2003288737A (ja) 2002-01-25 2003-10-10 Ricoh Co Ltd 光情報記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209970A (ja) * 1999-03-26 2001-08-03 Matsushita Electric Ind Co Ltd 情報記録媒体とその製造方法およびその記録再生方法
JP2002002116A (ja) * 1999-09-21 2002-01-08 Ricoh Co Ltd 光情報記録媒体及びその製造方法
JP2001273673A (ja) * 1999-11-17 2001-10-05 Matsushita Electric Ind Co Ltd 光記録媒体およびその製造方法
US20010033991A1 (en) * 2000-04-20 2001-10-25 Guo-Fu Zhou Optical recording medium and use of such optical recording medium
JP2002123977A (ja) * 2000-10-19 2002-04-26 Sony Corp 追記型光学記録媒体
JP2002225436A (ja) * 2001-02-06 2002-08-14 Ricoh Co Ltd 光情報記録媒体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1560210A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1463043A1 (en) * 2003-03-25 2004-09-29 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
US7063876B2 (en) 2003-03-25 2006-06-20 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
JP2008507151A (ja) * 2004-07-19 2008-03-06 マイクロン テクノロジー,インコーポレイテッド 抵抗可変メモリ・ディバイスと製造方法
US7580340B2 (en) 2004-11-30 2009-08-25 Tdk Corporation Optical recording medium and a method for testing the same
EP1688929A3 (en) * 2004-11-30 2007-11-07 TDK Corporation Optical recording medium and method for testing the same
EP1688929A2 (en) * 2004-11-30 2006-08-09 TDK Corporation Optical recording medium and method for testing the same
JP2008532285A (ja) * 2005-02-23 2008-08-14 マイクロン テクノロジー, インク. SnSeベースの限定リプログラマブルセル
US8101936B2 (en) 2005-02-23 2012-01-24 Micron Technology, Inc. SnSe-based limited reprogrammable cell
JP2006295157A (ja) * 2005-04-13 2006-10-26 Samsung Electronics Co Ltd 直列連結構造の抵抗ノードを有するメモリ素子
US7883930B2 (en) 2005-05-19 2011-02-08 Kabushiki Kaisha Toshiba Phase change memory including a plurality of electrically conductive bodies, and manufacturing method thereof
JP5042019B2 (ja) * 2005-06-07 2012-10-03 パナソニック株式会社 情報記録媒体とその製造方法
JP2009503897A (ja) * 2005-08-02 2009-01-29 マイクロン テクノロジー, インク. 相変化メモリセル及び形成方法
JPWO2007119439A1 (ja) * 2006-03-31 2009-08-27 パナソニック株式会社 情報記録媒体およびその製造方法
JP4750844B2 (ja) * 2006-03-31 2011-08-17 パナソニック株式会社 情報記録媒体およびその製造方法
JP2007311791A (ja) * 2006-05-19 2007-11-29 Samsung Electronics Co Ltd GeBiTe膜を相変化物質膜として採用する相変化記憶セル、それを有する相変化記憶素子、それを有する電子システム及びその製造方法
JP5225372B2 (ja) * 2008-04-01 2013-07-03 株式会社東芝 情報記録再生装置
KR20170117942A (ko) * 2015-03-28 2017-10-24 인텔 코포레이션 상변화 메모리에 대한 멀티스테이지 설정 절차
KR20210135205A (ko) * 2015-03-28 2021-11-12 인텔 코포레이션 상변화 메모리에 대한 멀티스테이지 설정 절차
KR102325307B1 (ko) 2015-03-28 2021-11-12 인텔 코포레이션 상변화 메모리에 대한 멀티스테이지 설정 절차
KR102367348B1 (ko) 2015-03-28 2022-02-25 인텔 코포레이션 상변화 메모리에 대한 멀티스테이지 설정 절차

Also Published As

Publication number Publication date
JPWO2004025640A1 (ja) 2006-01-12
CN1682297A (zh) 2005-10-12
US7449225B2 (en) 2008-11-11
EP1560210A4 (en) 2008-03-26
US20060044991A1 (en) 2006-03-02
EP1560210A1 (en) 2005-08-03
JP4217213B2 (ja) 2009-01-28
CN100341060C (zh) 2007-10-03
AU2003264415A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
WO2004025640A1 (ja) 情報記録媒体とその製造方法
KR101011581B1 (ko) 정보 기록 매체와 그 제조 방법
JP4567750B2 (ja) 情報記録媒体とその製造方法
US7858290B2 (en) Information recording medium and method for manufacturing the same
KR20030076279A (ko) 정보기록 매체와 그 제조 방법
KR20060043831A (ko) 정보 기록 매체 및 이를 제조하기 위한 방법
JP4593617B2 (ja) 情報記録媒体とその製造方法
WO2004085167A1 (ja) 情報記録媒体およびその製造方法
JPH10226173A (ja) 光記録媒体およびその製造方法
JP4308160B2 (ja) 情報記録媒体とその製造方法
JP4871733B2 (ja) 情報記録媒体とその製造方法
JP4308741B2 (ja) 情報記録媒体及びその製造方法
JP2003233931A (ja) 情報記録媒体とその製造方法
JP2003341241A (ja) 情報記録媒体とその製造方法
US8273438B2 (en) Information recording medium, process for producing the information recording medium, sputtering target and film forming apparatus
JPWO2007063672A1 (ja) 情報記録媒体とその製造方法
JP3653390B2 (ja) 情報記録媒体
JP4086689B2 (ja) 光学的情報記録媒体とその製造方法
JP2002298436A (ja) 光学的情報記録媒体とその製造方法
WO2006112165A1 (ja) 光学的情報記録媒体とその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004535957

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006044991

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527354

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038217236

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003795417

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003795417

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10527354

Country of ref document: US