[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004023017A1 - 金属製ベローズ管とその製造方法、および高圧流体用フレキシブルチューブ - Google Patents

金属製ベローズ管とその製造方法、および高圧流体用フレキシブルチューブ Download PDF

Info

Publication number
WO2004023017A1
WO2004023017A1 PCT/JP2003/011282 JP0311282W WO2004023017A1 WO 2004023017 A1 WO2004023017 A1 WO 2004023017A1 JP 0311282 W JP0311282 W JP 0311282W WO 2004023017 A1 WO2004023017 A1 WO 2004023017A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
metal
bellows
braid
pressure fluid
Prior art date
Application number
PCT/JP2003/011282
Other languages
English (en)
French (fr)
Inventor
Kazuo Koizumi
Original Assignee
Ork Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002262072A external-priority patent/JP2004100787A/ja
Application filed by Ork Corporation filed Critical Ork Corporation
Priority to EP03794215A priority Critical patent/EP1536172B1/en
Priority to US10/526,496 priority patent/US7556065B2/en
Priority to CA2497748A priority patent/CA2497748C/en
Priority to AU2003261920A priority patent/AU2003261920A1/en
Priority to DE60326599T priority patent/DE60326599D1/de
Publication of WO2004023017A1 publication Critical patent/WO2004023017A1/ja
Priority to HK05110754.0A priority patent/HK1076305A1/xx
Priority to HK06101146A priority patent/HK1078637A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/11Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/04Corrugating tubes transversely, e.g. helically
    • B21D15/06Corrugating tubes transversely, e.g. helically annularly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
    • F16L11/15Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • F16L9/06Corrugated pipes

Definitions

  • the present invention relates to a metal bellows tube, a method for manufacturing the same, and a flexible tube for high-pressure fluid using the bellows tube.
  • the high-pressure fluid flexible tube is used to supply and transfer a high-pressure fluid such as high-pressure hydrogen gas used in a hydrogen fuel cell.
  • Metal bellows pipes are bellows-shaped metal pipes that can be expanded, contracted, bent, or bent.
  • movable pipes for industrial equipment and equipment; steel, petroleum, and oil It is used for the purpose of absorbing displacement such as thermal expansion and contraction, vibration, earthquake resistance, seismic isolation, and ground subsidence in plant piping in refinery, petrochemical, electric power and other key industries.
  • metal bellows pipes (hereinafter simply referred to as “bellows pipes”) have conventionally been formed by laminating a plurality of disks pressed into the required cross-sectional shape and welding the inner and outer edges of the disks adjacent to each other. It has been manufactured by doing. However, this method requires a large number of manufacturing steps and is not suitable for mass production, so the metal bellows tube is expensive, and when stress is applied to the welded portion, the portion is liable to break or crack at that portion, and the durability is sufficient. Was not. Therefore, a method of manufacturing bellows tubes from metal tubes (raw tubes) has been developed. Examples of such a method include a hydraulic molding method, an elastomer molding method, and a continuous die molding method.
  • a ring-shaped mold is arranged at regular intervals on the outer circumference of a metal tube, and in this state, the inside of the tube is filled with liquid and pressurized to form the tube wall of the metal tube in a bellows shape. Is the law.
  • an elastic body elastomer
  • an elastic body is inserted into a predetermined portion of the metal pipe in a state where a metal pipe is set between a molding die and a core metal, and the elastic body is inserted into both ends (of the pipe).
  • metal bellows pipes By the way, the use of metal bellows pipes has been expanding in recent years, and with this, the flexibility of metal bellows pipes has been further improved, especially the durability under repeated bending deformation (ie, , Bending fatigue resistance) are desired.
  • the technology that can sufficiently improve the bending fatigue resistance of metal bellows pipes has not yet been fully established.
  • a hydrogen fuel cell is a device that generates electricity by electrochemically reacting hydrogen gas externally supplied as fuel with oxygen (usually in the atmosphere) in the cell.
  • the only by-products generated by the electrochemical reaction in the battery are heat and water vapor, so they are attracting attention as clean energy that does not pollute the global environment.
  • Hydrogen gas supply Commercialization is being considered under the common name of “Hyeon Station” and “Hydrogen Station”.
  • compressed natural gas has been used as fuel gas for vehicles, but the gas pressure in that case was about 20 MPa (200 atm).
  • the hydrogen gas used in hydrogen fuel cells has a higher pressure, such as 25 MPa (about 250 atm) and 35 MPa (about 35 atm).
  • the above-mentioned resin tube is not preferable because the hydrogen gas permeates the tube wall.
  • the metal bellows tube described above is not formed so that it can be used to supply an ultra-high pressure gas as high as 70 MPa. Due to repetitive action of direction stress, bending fatigue caused by repeated bending deformation of pipe
  • a first object of the present invention is to provide a metal mouth tube having a sufficiently improved bending fatigue resistance as compared with the prior art, and a method for manufacturing the same.
  • a second object of the present invention is to provide a flexible fluid that can be used safely even for a high-pressure fluid exceeding 20 MPa, in particular, even for an ultra-high-pressure fluid of 70 MPa without permeating the molecules of the fluid and transferring the fluid. It is to provide a tube.
  • the present inventor has conducted intensive studies to achieve the above object, and as a result, it is effective to reduce the bellows pitch in the bellows-like tube wall to improve the bending fatigue resistance of the metal bellows tube. As a result of further study based on such knowledge, the present inventors have completed the metal bellows tube of the present invention and a method of manufacturing the same.
  • the present inventors have made the use of the metal bellows tube according to the present invention and increasing the strength of the braided body for suppressing the elongation of the metal bellows tube to make the above-described super-above-mentioned super-ultraviolet tube. This has led to the construction of a flexible tube that can safely transfer high-pressure fluid without allowing it to permeate.
  • the present invention has the following features.
  • a metal bellows base tube having a U-shaped cross section of peaks and valleys in the bellows-like tube wall is produced, and then the tube is compressed in the longitudinal direction of the tube to be adjacent to the bellows-like tube wall.
  • the ridges and valleys are closely contacted with each other, and press-forming is performed by press working until the internal space of each ridge and the gap between adjacent ridges are substantially eliminated. Do not stretch the pipe lengthwise until the gap between the peaks A method for producing a metal bellows tube.
  • the distance between the peaks of adjacent peaks was set to 1.5 mm or less, and the height of the peaks was set to 0,5 to The manufacturing method according to (5), wherein the thickness is 4.0 mm.
  • a flexible tube capable of transferring a high-pressure fluid of 70 MPa comprising: a metal bellows tube; and a tubular metal braided body that covers the outside of the tube.
  • the cross-sectional shape of the peaks and valleys in the bellows-like tube wall is formed to be V-shaped,
  • the flexible tube for high-pressure fluid wherein the total cross-sectional area S of the metal braid and the metal wire material are selected so as to satisfy the following.
  • the metal pipe is joined to both ends of the metal bellows pipe as a base, and an end of the metal braid is joined to the base by welding or brazing.
  • Flexible tube for high pressure fluid is provided.
  • the end of the metal braid is joined to the base by brazing, and the end of the metal braid is further equipped with a braid holding ring that covers it.
  • the metal braid and the braid holding ring are brazed such that the end faces thereof are substantially aligned, and the braid holding ring exposes the metal braid at a predetermined position from the end face.
  • the high-pressure fluid flexiple according to the above (7), wherein a through-hole is provided, and the through-hole makes it possible to confirm that the wax has penetrated the braid at least to a predetermined position. Tube.
  • the end of the metal braid is joined to the base by brazing, and the end of the metal braid is further equipped with a braid holding ring that covers the end of the braid.
  • the braided body and the braid holding ring are brazed with their end faces substantially aligned, and the inside of the braid holding ring and the outside of the Z or the base are annular recesses or single-shot holes that prevent the wax from flowing out and retaining.
  • the flexible tube for a high-pressure fluid according to the above (7), wherein a flexible concave portion is provided.
  • the metal bellows tube is made of stainless steel, the inner diameter of the tube is 4 to 17 mm, and the bellows tube wall thickness is 0.1 to 0.5 mm.
  • the metal braid consists of a dense braided layer of stainless steel with a strand diameter of 0.3 mm, a strand diameter of 6 to 10 and 2 to 6 layers outside the metal bellows tube.
  • FIG. 1 is a partial front sectional view showing an example of the metal bellows pipe of the present invention.
  • FIG. 2 is a cross-sectional view of an example of an apparatus used for manufacturing the metal pipe of the present invention.
  • FIG. 3 is a fragmentary cutaway view showing a metal bellows base tube manufactured in the first step in the method for manufacturing a metal bellows tube of the present invention.
  • FIG. 4 is a fragmentary cutaway view showing a metal bellows raw tube processed in the second step in the method for manufacturing a metal bellows tube of the present invention.
  • FIG. 5 is a fragmentary cutaway view showing a metal bellows base tube processed in the third step in the method for manufacturing a metal bellows tube of the present invention.
  • FIG. 6 is a fragmentary cutaway view showing a metal bellows raw tube being processed in the fourth step of the method for manufacturing a metal bellows tube of the present invention.
  • FIG. 7 is an explanatory diagram of a bending fatigue resistance test of a metal bellows tube.
  • FIG. 8 is a partial sectional view showing an example of the structure of the flexible tube for high-pressure fluid of the present invention.
  • the metal bellows tube shows only the end face that appeared in the cross section.
  • the braided structure of the metal braid is shown schematically without detail.
  • FIG. 9 is a schematic diagram for explaining the braid configuration of the metal braid.
  • the appearance of the braid shows a pattern in which strands of the number of holdings (five in the figure) are woven alternately as one bundle.
  • the center line indicates the longitudinal direction of the tube.
  • One of the strands is hatched.
  • FIG. 10 is a partial cross-sectional view showing an example of the structure of the flexible tube for high-pressure fluid of the present invention, and is a diagram showing an example of a structure having a braided body holding ring.
  • FIG. 1 is a partial front sectional view of an example of a metal bellows tube of the present invention.
  • the metal bellows tube of the present invention has a bellows-like tube like the metal bellows tube 10 of the example.
  • the main feature is that the cross-sectional shape of the ridges 2 and valleys 3 on the wall 1 is V-shaped.
  • the outer shape of the tube is usually cylindrical.
  • the “mountain” is a portion of the bellows-like tube wall 1 that projects to the outside of the tube.
  • the “valley” is a portion of the bellows-like tube wall 1 protruding toward the inside of the tube.
  • Cross-sectional shape of peaks and valleys means that “peaks” and “valleys” are cut along a plane that includes the axis L of the pipe.
  • the cross-sectional shape of the peak and the valley is V-shaped” means, as shown in FIG. Means that each edge (cutting line) of the surface is bent in a V-shape.
  • the top of the bent end (cut line) may have a curve with a radius of curvature of 0.4 mm or less.
  • the metal bellows pipe having the V-shaped cross-section of the peaks and valleys in the bellows-like pipe wall of the present invention is realized by the manufacturing method of the present invention described later, It cannot be manufactured by the elastomer molding method or the continuous die molding method.
  • the cross-sectional shape of the “peaks” and “valleys” of the bellows-shaped pipe wall formed by the conventional method for manufacturing a metal bellows pipe is “U-shaped”.
  • the “ ⁇ ” shape means that the surface of the “mountain” inside the pipe and the surface of the “valley” outside the pipe are curved (the state shown in FIG. 3).
  • the metal bellows pipe of the present invention has a V-shaped cross section of the peaks 2 and the valleys 3 in the bellows-like pipe wall 1, so that it is easily bent and deformed, and the bellows pitch in the bellows-like pipe wall 1. Can be reduced.
  • the “bellows pitch” is the distance between the tops of two adjacent peaks 3 in FIG.
  • substantially the same means that the pitch is not intentionally changed, and a change in pitch caused by a manufacturing error is allowed.
  • the pitch of the bellows-like tube wall 1 can be reduced without excessively reducing the thickness. It can be smaller than that.
  • the pitch D 1 can be 1.5 mm or less, preferably 1.0 mm or less, and more preferably 0.8 mm or less.
  • the lower limit of the pitch D 1 is preferably 0.3 mm or more. 0.4 mm or more is more preferable.
  • the pitch D1 is 1.6 mm or less, preferably 1. It can be 4 mm or less, more preferably 1.2 mm or less.
  • the lower limit of the pitch D1 in the above case is preferably 1.0 mm or more.
  • the wall thickness of the bellows-like tube wall 1 (symbol S in FIG. 1) varies depending on the outer diameter, material, etc. of the bellows tube, but is generally preferably about 0.1 to 0.3 mm, and preferably 0.1 to 0.3 mm. It is more preferably about 0.2 mm.
  • the wall thickness of the bellows-shaped tube wall varies depending on the inner diameter, outer diameter, material, etc. of the metal bellows tube, but considering the pressure during use and the manufacturing process, It is preferably about 0.15 to 0.5 mm, and 0.15 to 0.5.
  • the wall thickness of the bellows-like tube wall is less than the above range, it is difficult to manufacture the raw tube itself before the bellows processing, and the bellows tube becomes expensive, and cannot be maintained at the high pressure. If the wall thickness of the bellows tube wall is larger than the above range, the bellows tube becomes difficult to bend, and the bending fatigue resistance is reduced.
  • the bellows pitch on the bellows-like tube wall is reduced as described above.
  • the bellows state with such a small pitch is expressed in terms of the number of peaks per unit length (l cm) in the lengthwise direction of the pipe, the number of peaks is 6 to 34 (preferably 10 to 10). ⁇ 25).
  • the pitch of the bellows is expressed by the number of peaks per 10 cm in the length direction of the tube, the number of peaks is preferably 63 to 83. , 71-83 are more preferred.
  • the height of the peak 2 (reference numeral HI in FIG. 1) in the bellows-like tube wall 1 is preferably 0.5 to 4.0 mm, more preferably 1.0 to 3.0 Omm. It is good.
  • the peak height H1 on the bellows-shaped tube wall is preferably 2.0 to 5.0 mm, more preferably 2.5 to 4.0 mm.
  • the metal bellows pipe of the present invention is, like the conventional one, movable pipes of industrial equipment and equipment, steel, oil refining, and petroleum oil. It can be used for plant piping in chemical, electric power and other key industries, and can also be used as an expansion tube (bellows) for bellows type expansion joints, but it can be used particularly suitably as a flexible tube. .
  • a flexible tube is a bellows tube whose outer diameter is relatively small, mainly used in applications where repeated bending movements are performed while flowing fluid.
  • hydraulic tubes for vehicle brake systems and various industries For absorbing pressure accumulation and pulsation of the hydraulic system for automobiles, members for absorbing the relative displacement of the engine vibration engine and the piping system in the fuel system, exhaust system, and refrigerant system of automobiles, automobiles It is used as a member for absorbing vibration and relative displacement in the refrigerant piping system of an air conditioner.
  • the outer diameter of the bellows tube of the present invention (the distance D 2 between the tops of the opposite peaks 2 shown in FIG.
  • the bellows tube is It is selected according to the specific application of the bellows tube, and is not particularly limited, but when used as a flexible tube, it is generally 4.5 to 20 mm, preferably 5 to 20 mm. Further, in such a flexible tube, the difference between the outer diameter and the inner diameter of the tube (the distance D3 between the tops of the opposed valleys shown in FIG. 1) is preferably 2 to 6 mm.
  • the effective diameter of the metal pipe used in the flexible tube for high pressure (the diameter of the pipe that can be used for calculation when the internal pressure exerts a tensile force F in the longitudinal direction of the pipe, ie, (D2 + D3 ) / 2) is not particularly limited, but is preferably from 12 to 1611111, and more preferably from 13 to 16111111.
  • the material constituting the bellows tube of the present invention is appropriately selected depending on the fluid to be passed, but stainless steel, plated iron, aluminum, brass, and the like can be used, and generally, stainless steel is used. Is preferred in terms of corrosion resistance.
  • the metal bellows tube of the present invention can be manufactured by the following method.
  • a bellows tube having a U-shaped cross section of a peak and a valley in a bellows-like tube wall is manufactured by a conventional method for manufacturing a metal bellows tube (first step).
  • a conventional method for manufacturing a metal bellows pipe may be used, even for a pipe having a relatively small diameter. It is preferable to use a continuous die forming method because a bellows having a relatively narrow pitch (a bellows having a relatively large number of peaks) can be formed. In the continuous die forming method, as shown in FIG.
  • a metal pipe 20 is usually passed through a corrugated die 12 attached to a die holder 11 having bearings interposed therebetween, and the center of the pipe 20 and the center of the die 12 are formed.
  • the protrusion 13 of the die 12 is cut into the metal tube 20 while rotating the corrugated die 12 around the center of the tube 20 to form the circumferential groove 21 continuously.
  • a metal bellows base tube 2 OA having a U-shaped cross section of the peaks and valleys in the bellows-like tube wall shown in FIG. 3 is formed.
  • the bellows pitch D 4 on the bellows-like tube wall 21 is preferably 1.5 to 3.5 mm. This is However, in the following second step, in the work of adhering adjacent peaks and valleys, workability is improved, and a pipe having a stable shape (a uniform shape in the pipe length direction) is easily obtained. is there.
  • the metal bellows base tube 2OA prepared in the first step is compressed in the length direction of the tube using, for example, an external compression machine, and the adjacent peaks 22 of the bellows-like tube wall 21 are connected to each other.
  • Valley 2
  • the metal bellows raw tube 2OA is annealed before the process proceeds to the second step.
  • the annealing improves the workability of the pipe compression performed in the second step and the third step described below and the pipe stretching performed in the fourth step described below, and suppresses the fatigue deterioration of the pipe due to the processing. be able to.
  • the tube material (material) is stainless steel
  • the annealing conditions are not particularly limited. Conventionally known annealing conditions for metal pipes according to the material of the metal pipe may be applied, but when the pipe material (material) is stainless steel (austenitic steel).
  • the bright annealing is preferably performed at 110 ° C. to 110 ° C.
  • a shaft is inserted into the inside of the metal bellows base tube 2 OA in which the adjacent peaks 22 and valleys 23 of the bellows-like tube wall 21 are brought into close contact with each other, for example, by a hydraulic press machine.
  • the metal bellows base tube 2 OA is pressurized in the longitudinal direction until the internal space 24 of each peak 22 and the gap 25 between the adjacent peaks 22 shown in FIG. 4 are substantially eliminated.
  • Compression molding (Fig. 5) (3rd step).
  • “the interior space of the mountain and the gap between adjacent mountains are substantially eliminated” means that the adjacent walls forming the mountains and valleys are in surface contact, preferably until the entire surface is in surface contact. It means compressed state.
  • FIG. 8 is a partially cutaway sectional view showing an example of the structure of the flexible tube for high-pressure fluid of the present invention (hereinafter also referred to as “the tube”).
  • the tube includes a metal bellows tube 101 according to the present invention and a tubular metal braided body 102 covering the outside of the tube.
  • the metal bellows tube 101 has a metal material and a wall thickness selected to withstand the high pressure of the fluid filled therein, and has flexibility as a tube due to a tubular metal bellows portion. It is configured to:
  • the tubular metal braid 102 covers the outside of the metal bellows tube 101, and both end portions 102 a and 102 b of the braid 102 correspond thereto. It is joined to both ends of a metal base tube.
  • metal pipes 103 and 104 are joined to both ends of the metal base pipe 101, respectively, and the bases 103 and 104 are joined.
  • the ends 102 a and 102 b of the metal braid are joined by welding or brazing, respectively.
  • the bellows tube of the metal bellows tube 101 is formed so that the cross-sectional shape of the peaks and valleys in the bellows-like tube wall becomes V-shaped, and the metal braided body 10 2 is that the total cross-sectional area S of the metal braid and the material of the metal wire are selected so as to withstand the high pressure in the pipe which has not hitherto reached 7 OMPa.
  • the hydrogen gas used in the hydrogen fuel cell is not high pressure (eg, 25 MPa, 35MPa, 70MPa) and the use of a flexible tube that does not leak hydrogen is necessary.
  • the utility of the present invention in the application of high-pressure hydrogen gas to a hydrogen fuel cell Becomes more pronounced. '
  • the metal bellows tube used for the tube and the manufacturing method thereof are as described above.
  • the metal bellows tube used for the high-pressure tube achieves a small pitch D1, which was not possible with the conventional metal bellows tube, so that the bending reaction force is small, and as described above, In addition to providing excellent flexibility, the fatigue life is improved and the allowable pressure against fracture in the radial direction of the pipe is higher than that of the conventional coarse pitch (when cut along a plane including the longitudinal axis of the pipe). Because the cross-sectional area of the pipe wall becomes larger due to the high-density pitch), the pressure loss of the fluid passing through the inside decreases. (The high-density pitch reduces the unevenness of the inner wall of the pipe, making it difficult for vortices to form.) Therefore, new advantages such as
  • the bellows pitch is set to the metal bellows used in the present invention.
  • stainless steel described later is a preferable material in consideration of the strength and corrosion resistance against an internal ultra-high pressure.
  • the metal braid is a tubular braid, also called a braid, and the braid configuration is such that a plurality of metal wires are arranged in parallel to form a bundle as shown in FIG.
  • the basic structure is a single-layered structure that is knitted in a tubular shape at an intersection angle of 0 and the number of strokes according to the outer diameter of the tube. The required number of layers are superimposed on each other to ensure tensile strength.
  • the strand diameter is the same, but between different layers
  • the wire diameter may be different.
  • the number of strands in a bundle is called the “number”, and the number of bundles used in the braid is called the “number of strokes”. Therefore, the total number of metal strands surrounding the metal bellows tube is the number of holdings X number of struts X number of layers.
  • the metal braid has the formula (crxcos ( ⁇ / 2)) no n ⁇ F / S
  • the total cross-sectional area S of the metal braid and the metal element material are selected and formed. Is the tensile strength [MPa] of the metal wire material.
  • a material having strength and corrosion resistance is used as the metal strand to handle a high-pressure fluid reaching 70 MPa.
  • stainless steel is preferable.
  • stainless steel specified in JIS G4305 for example, SUS304, SUS329J1, etc.
  • JIS G4305 for example, SUS304, SUS329J1, etc.
  • Such improved stainless steels include: Ostenite 'ferritic duplex stainless steel (C; 0.012 wt%, Si; 0.74 wt%, Mn; 0.70 wt%, Ni 6.30% by weight; Cr; 25.00% by weight; Mo; 3.30% by weight; N; 0.10% by weight).
  • corrosion-resistant steel manufactured by Nippon Yakin Kogyo Co., Ltd. product number NAS 64).
  • the tensile strength of stainless steel is usually between 480 and 853 [MPa].
  • SUS 304 has a tensile strength of 520 MPa;] and SUS 329 J1 has a tensile strength of 590 [MPa].
  • NAS 64 has a tensile strength of 853 [MPa] as a cold-rolled plate.
  • the value tested based on the test method specified in JIS Z 2241 shall be used.
  • metal wire a wire manufactured for a conventionally known metal braid may be used.
  • the diameter of the metal strand is limited However, it is preferably from 0.3 mm to 0.6 mm, particularly preferably from 0.3 mm to 0.5 mm.
  • the total cross-sectional area S [mm 2 ] of the cross section of the metal strand appearing in the cross section (section when cut perpendicular to the longitudinal direction of the pipe) of the metal knitting body is calculated as It is obtained from the area X the total number of metal wires (number of holdings X number of strokes X number of layers).
  • the angle of intersection is between 50 and 120 degrees, preferably between 60 and 100 degrees.
  • the number of layers of the metal braid is preferably 4 to 5 layers, and particularly preferably 5 layers in view of the currently available wire diameter and the strength of the material. It is possible to achieve both flexibility and strength of the tube.
  • the force F [N] at which the high-pressure fluid tries to extend the metal bellows pipe is determined by the product of the internal pressure (maximum 7 OMPa) by the high-pressure fluid and the effective diameter of the metal bellows pipe.
  • the effective diameter of a metal bellows tube is 5 mn! If it is 1818 mm, assuming that hydrogen gas of 70 MPa is charged, the force F becomes 1374 [N :) to 17813 [N].
  • the safety factor may be a value determined with due consideration for safety in handling ultra-high pressure hydrogen gas, but 2 to 4 is appropriate from the viewpoint of avoiding excessive reinforcement. Also, if there is a law that prescribes pipe safety, such as the High Pressure Gas Safety Law, the safety factor derived from the design at that time (for example, if a test with an internal pressure four times the target internal pressure is specified). For example, a value that satisfies the safety factor 4) may be adopted, and if the safety factor changes due to a law revision, the design value may be fine-tuned in accordance with the change.
  • Metal bellows tube Material N AS 64, inner diameter 9.5 mm, outer diameter 16.5 mm, bellows tube wall thickness 0.2mn! ⁇ 0.4 mm, number of bellows peaks per 10 Omm tube length 83, peak height 3.2 mm 0
  • Metal braid strand material SUS304, strand diameter 0.3mmm ⁇ 0.5mm, holding number 6 ⁇ 8, number of strokes 24 ⁇ 32, intersection angle about 90 degrees, number of layers 5 (or In the case of the strand material NAS64, the number of holdings is 6, the number of strokes is 24, the intersection angle is about 90 degrees, and the number of layers is 3).
  • the structure for joining the two ends of the metal braid to the two ends of the metal bellows tube is not limited, but as shown in Fig. 8, the metal pipes are connected to bases 103, 104. And welded or brazed to both ends of the metal bellows pipe, and extend the ends 102 a, 102 b of the metal braid 102 to a position covering the base.
  • a structure which is joined by welding or brazing is preferable. That is, it is a structure in which the metal braid and the metal bellows tube are joined via the base. .
  • the technique itself for welding and brazing the braid to the metal may refer to a known technique.
  • the outer diameter and the inner diameter are determined in consideration of the connection with the metal bellows pipe, and the total outer diameter and the inner diameter of the bellows of the bellows pipe are provided. It is preferable to make them substantially match.
  • the base may be provided at the outermost end with a structure J (FIG. 10) for connection to an external pipeline, such as a threaded pipe joint structure.
  • a braid holding ring 105 that further covers the joint between the base 103 and the metal braid 102 is attached to the metal braid 10. It is preferable that the braided body holding ring 105 and the braided body holding ring 105 be joined to the base by brazing or welding with the end faces substantially aligned. By providing the braided body holding ring 105, the joint portion is protected and the appearance of the braided end can be beautifully finished.
  • brazing e.g, silver brazing
  • the braided body holding ring 105 is provided with a through hole 106 for exposing the metal braid at a predetermined position m from the end face.
  • the “predetermined position” is the minimum brazing material penetration distance required for joining.
  • the wax has penetrated to the range of P indicated by the hatching, and the wax that has penetrated into the braid through the through hole 106 can be confirmed.
  • the predetermined position from the end face be 5 mm or more, particularly 7 mm or more.
  • the upper limit of the position from the end face is not particularly limited, a practical range for avoiding excessive penetration is preferably 15 mm or less, particularly preferably 13 mm or less. A recommended value for practical use is 10 mm.
  • the opening diameter of the through-hole is not particularly limited, but it is 7 mn! In consideration of easy confirmation and reduction in ring strength. It is preferably about 13 mm.
  • a plurality of the through holes may be provided in the circumferential direction of the body of the braided body holding ring in consideration of strength.
  • a concave portion 107 into which the brazing can flow to prevent the brazing body from coming off inside the braided body holding ring and / or outside the base.
  • the concave portion may be an annular groove extending in the inner circumferential direction of the braided body holding ring and the outer circumferential direction of the base, or may be a single hole.
  • the concave portion may be provided either inside the braid holding ring or outside the base. However, in consideration of the effect on the braid at the time of assembling, it is preferable to provide the recess only outside the base (FIG. 10). Then, for the sake of explanation, recesses are provided on both sides).
  • the number of the concave portions, the opening size, the shape, and the depth of the concave portions may be appropriately determined according to the strength obtained by filling the concave portions with the wax.
  • the tube may be used not only for connecting between the fixed tank and the hydrogen fuel cell vehicle, but also for piping around the tank and inside the vehicle. Also, 7 0
  • a stainless steel cylindrical tube was formed into a bellows base tube (bellows pitch 2.5 mm) with a U-shaped cross section of the peaks and valleys in the bellows-like tube wall by a continuous die forming method.
  • a bellows tube flexible tube having a V-shaped cross section of the peaks and valleys in the bellows-like tube wall was produced.
  • a cylindrical tube made of stainless steel was formed by a continuous die forming method to produce a U-shaped bellows tube (flexible tube) with a U-shaped cross section of the peaks and valleys in the bellows-like tube outer diameter 9.3 mm, inner diameter 5.2 mm, bellows tube wall thickness 0.15 mm, bellows pitch 2.5 mm (four peaks per cm in length direction of tube), total length of tube 30 cm.
  • a bending fatigue resistance test was performed on the bellows tubes of Example 1 and Comparative Example 1 produced above. As shown in Fig. 7, the test was performed by repeating 90 ° pulsation with nitrogen gas applied at an internal pressure of 5 kgf / cm 2 G, and measuring the number of repetitions until gas leakage occurred. In addition, the number of repetitions was set to 1 from A state " ⁇ state ⁇ A state”.
  • the flexible tube of the present invention can supply and transfer a high-pressure fluid of 25 MPa or more, particularly high-pressure hydrogen for a hydrogen fuel cell reaching 70 MPa, safely and without leakage through the tube. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

金属製ベローズ管の蛇腹状管壁1における山2及び谷3の断面形状をV字状とする。これによって、従来よりも耐曲げ疲労性が大きく向上した金属ベローズ管を提供することができる。また、この金属製ベローズ管と、該管の外側を覆う管状の金属製編組体とによって、本発明による高圧流体用フレキシブルチューブが構成される。これによって、20MPaを越える高圧流体、特に70MPaの超高圧流体であっても、流体の分子を透過させることなく、安全に移送し得る。

Description

明細書
金属製べ口ーズ管とその製造方法、
および高圧流体用フレキシプルチューブ
技術分野
本発明は、 金属製べローズ管とその製造方法、 および該ベロ一ズ管を用いた高 圧流体用フレキシブルチューブに関するものである。 該高圧流体用フレキシプル チューブは、 水素燃料電池に用いられる高圧水素ガスなどといった高圧流体を、 供給、 移送するために用いられる。
背景技術
金属製べローズ管は、 管壁が蛇腹状の金属管であり、 伸縮させたり、 たわみを 与えたり、 曲げることも可能であることから、 例えば、 産業設備 ·装置の可動配 管;鉄鋼、 石油精製、 石油化学、 電力及びその他の基幹産業におけるプラント配 管等における熱伸縮、 振動、 耐震、 免震、 地盤沈下等の変位吸収の目的で使用さ れている。
金属製べローズ管 (以下、 単に 「ベロ一ズ管」 ともいう。 ) は、 従来、 所要断 面形状にプレス加工した円盤を複数枚重ね、 互いに隣接する円盤の内周縁と外周 縁とを溶接することで製造されてきた。 しかし、 この方法は製造手数が多くなり 、 大量生産には適さないため、 金属べローズ管を高価にし、 また、 溶接部に応力 が作用するとその部分で破断や亀裂が生じやすく、 耐久性が十分でなかった。 そ こで、 金属管 (素管) からべローズ管を製造する方法が開発されている。 かかる 方法としては、 例えば、 液圧成形法、 エラストマ一成形法、 連続ダイス成形法等 が挙げられる。
液圧成形法は、 金属管の外周に環状の成形型を一定の間隔で配置し、 この状態 で管の内部に液体を満たし、 加圧することで金属管の管壁を蛇腹状に成形する方 法である。 また、 エラストマ一成形法は、 成形金型と芯金間に金属管をセットし た状態で弾性体 (エラストマ一) を金属管内の所定部位に挿入し、 該弾性体をそ の両端 (管の長さ方向の両端) から加圧することで金属管の所定部位を弾性体の 加圧変形力により膨出させ、 ついで該膨出部を成形金型で圧縮成形するという作 業を、 金属管の長さ方向に成形部位を移動しながら繰り返し行って蛇腹を形成す る方法である。 連続ダイス成形法は、 ベアリングを介装させたダイスホルダ一に 取り付けられた波付けダイスの中に金属管を通し、 管の中心とダイスの中心を偏 心するように支持して、 波付けダイスを管の中心の回りに回転させながらダイス の突起を金属管に食い込ませて連続的に円周溝を形成し、 管壁を蛇腹状に形成す る方法である。 これらの方法の詳細は、 下記の先行文献 1に記載されている。
ところで、 近時において金属製べローズ管の用途はさらに拡大しており、 それ に伴って、 金属製べローズ管のフレキシビリティーの更なる向上、 特に曲げ変形 を繰り返した時の耐久性 (すなわち、 耐曲げ疲労性) の更なる向上が望まれてい る。 しかしながら、 金属製べローズ管の耐曲げ疲労性を十分に向上し得る技術は 未だ十分に確立されていない。
—方、 金属製べローズ管の今後の重要な用途として、 水素燃料電池など高圧流 体を搬送しなければならない用途がある。
水素燃料電池は、 燃料として外部より供給した水素ガスと、 酸素 (通常、 大気 中のもの) とを、 該電池内で電気化学的に反応させて電気を発生させる装置であ る。 該電池内での電気化学反応で発生する副産物は、 熱と水蒸気だけなので、 地 球環境を汚染しないクリーンエネルギーとして注目されている。
なかでも、 乗用車やバスなどの交通機関に動力用電源として搭載したもの (所 請、 燃料電池車) は、 次世代の交通機関として重要であり、 実用化するための種 々の技術が開発されている (例えば、 下記先行文献 2参照) 。
先行文献 1 : 「塑性と加工」 (日本塑性加工学会誌) 第 32卷 第 366号
(1991-7) 第 818-823頁
先行文献 2 :特開 2 0 0 3 - 0 8 6 2 1 3号公報
燃料電池車を社会で実用化するには、 車両に搭載される水素燃料電池自体の技 術の他に、 ガソリンスタンドのごとく、 燃料電池車に対して水素ガスを供給する ための設備が必要である。 そのような水素ガス供給設備は、 「水素ガス供給ステ ーシヨン」、 「水素スタンド」 などの通称で、 実用化が検討されている。
しかしながら、 本発明者が上記水素ガス供給設備について検討したところ、 供 給設備に固定された貯蔵夕ンクから燃料電池車へ水素ガスを供給するためのフレ キシブルホースについては、 未だ充分に検討されておらず、 問題が存在している ことがわかった。 該問題とは、 供給すべき水素ガスが従来に無い高圧のガスであ る点に起因する問題である。
従来、 車両用の燃料ガスとして圧縮天然ガスが用いられた例があるが、 その場 合のガス圧は約 2 0 MP a ( 2 0 0気圧) であった。
これに対して水素燃料電池に用いられる水素ガスは、 2 5 M P a (約 2 5 0気 圧) 、 3 5 M P a (約 3 5◦気圧) など、 より高圧となっており、 将来的には、
7 O MP a (約 7 0 0気圧) という超高圧での供給が検討されている。
このような高圧の水素を、 固定されたガスタンクから種々の大きさの車両 (し かも車両停止位置にはバラヅキがある) に供給するためには、 その仲介として、 フレキシブルチューブが必要となる。
従来、 約 2 O MP a程度の高圧ガス供給に用いられているフレキシブルチュー ブには、 金属ワイヤ一を含有することで強化された樹脂製のチューブや、 金属編 組体で被覆することで伸長を制限した金属製べローズ管が挙げられる。
しかし、 水素燃料電池に用いられる高圧水素ガスを供給するには、 上記の樹脂 製のチューブでは、 水素ガスが管壁を透過するため、 好ましくない。 また、 上記 の金属製べローズ管は、 7 0 MP aもの超高圧ガス供給に使用し得るようには形 成されておらず、 ガスの充填と開放とによる伸縮の繰り返し、 管胴体の円周方向 応力の繰り返し作用、 管の曲げ変形を繰り返すことによる曲げ疲労などによって
、 蛇腹部分に金属疲労が生じ、 破断するおそれがある。 また、 金属編組体の被覆 にも改善がなされておらず、 破断のおそれがある。
このような問題は、 水素燃料電池における高圧水素ガス供給の場合のみならず
、 他の超高圧流体の供給においても同様に生じる問題である。
発明の開示 従って、 本発明の第一の目的は、 従来よりも耐曲げ疲労性が十分に向上した金 属製べ口一ズ管およびその製造方法を提供することにある。
また、 本発明の第 2の目的は、 20 MP aを越える高圧流体、 特に 70MPa の超高圧流体であっても、 流体の分子を透過させることなく、 また、 その移送に 安全に使用し得るフレキシブルチュ一ブを提供することである。
本発明者は、 上記目的を達成すべく鋭意研究した結果、 金属製べローズ管の耐 曲げ疲労性の向上には、 蛇腹状の管壁における蛇腹のピッチをより小さくするこ とが有効であることを知見し、 かかる知見に基づきさらに研究を重ねた結果、 本 発明の金属製べローズ管およびその製造方法を完成するに至った。
さらに、 本発明者等は、 本発明による金属製べローズ管を用い、 かつ、 該金属 製べ口一ズ管の伸長を抑制するための編組体の強度を高めることによって、 上記 のような超高圧流体であっても、 透過させず安全に移送し得るフレキシブルチュ ーブを構成するに至った。
即ち、 本発明は以下の特徴を有するものである。
(1) 蛇腹状管壁における山及び谷の断面形状が V字状である、 金属製べローズ
(2) 蛇腹のピッチが 1. 5 mm以下であり、 かつ、 山の高さが 0. 5〜4. 0 mmである、 上記 (1)記載の金属製べローズ管。
(3) 蛇腹状管壁の壁厚が 0. 1〜0. 3 mmである、 上記 (2)記載の金属製 ベロ一ズ管。
(4) 管外径が 4. 5〜20mmである、 上記 (1) 〜 (3) のいずれかに記載 の金属製べローズ管。
(5)蛇腹状管壁における山及び谷の断面形状が U字状の金属製べローズ素管を 作製し、 次いで、 該素管を管の長さ方向に圧縮して蛇腹状管壁の隣接する山同士 及び谷同士を密着させ、 さらにプレス加工で各山の内部空間及び隣接する山の間 の隙間が実質的になくなるまで加圧成形した後、 該加圧成形後の素管を、 隣接す る山の頂部間の間隔が所定の間隔になるまで、 管の長さ方向へ引き伸ばすことを 特徴とする、 金属製べローズ管の製造方法。
(6) 上記加圧成形後の素管を管の長さ方向へ引き伸ばした結果において、 隣接 する山の頂部間の間隔を 1. 5 mm以下とし、 かつ、 山の高さを 0, 5〜4. 0 mmとする、 上記 (5) 記載の製造方法。
(7) 70 MP aの高圧流体を移送し得るフレキシブルチューブであって、 金属製べローズ管と、 該管の外側を覆う管状の金属製編組体とを有し、 金属製べローズ管は、 その蛇腹状管壁における山及び谷の断面形状が V字状と なるように形成されており、
管状の金属製編組体は、 その両端部がそれそれに対応する金属製べローズ管の 両端部に接合されており、 かつ、 高圧流体が金属製べローズ管を伸長させようと する力を F 〔N〕、 金属製編組体の横断面に現れる金属素線断面の総断面積を S 〔mm2〕 、 金属製編組体の交角 6> = 50〜120度、 該金属素線材料の引張り 強さをび 〔MPa〕、 安全率を nとして、
(び xcos (Θ/2) ) /n ≥ F/S
を満たすように、 金属製編組体の総断面積 Sと金属素線材料とが選択されている ことを特徴とする高圧流体用フレキシブルチューブ。
(8) 力 Fが、 1374〜178 13 〔N〕 、 安全率 nが 4である、 上記 (7) 記載の高圧流体用フレキシブノレチューブ。
(9) 高圧流体が、 永素ガスであるか、 または水素ガスと液体水素との混合物で ある、 上記 (7) 記載の高圧流体用フレキシブルチューブ。
( 10) 金属製べローズ管の両端部には口金として金属パイプが接合されており 、 該口金に、 金属製編組体の端部が溶接またはロウ付けによって接合されている 、 上記 (7) 記載の高圧流体用フレキシブルチューブ。
( 1 1) 口金に、 金属製編組体の端部がロウ付けによって接合されており、 金属 製編組体の端部には、 さらにその上を覆う編組体押さえリングが装着され、 口金 に対して金属製編組体と編組体押さえリングとが端面を略揃えてロウ付けされて おり、 編組体押さえリングには、 端面から所定の位置に金属製編組体を露出させ る貫通孔が設けられ、 該貫通孔によって、 少なくとも所定の位置までロウが編組 体中を浸透していることを確認することが可能となっている、 上記 (7)記載の 高圧流体用フレキシプルチュ―ブ。
(12) 口金に、 金属製編組体の端部がロウ付けによって接合されており、 金属 製編組体の端部には、 さらにその上を覆う編組体押さえリングが装着され、 口金 に対して金属製編組体と編組体押さえリングとが端面を略揃えてロウ付けされて おり、 編組体押さえリングの内側および Zまたは口金の外側には、 ロウが流れ込 んで抜け止めとなる環状の凹部または単発的な凹部が設けられている、 上記 (7 ) 記載の高圧流体用フレキシプルチュ一ブ。
( 13)金属製べローズ管の蛇腹のピッチが 2mm以下であり、 かつ、 山の高さ が l~4mmである、 上記 (7)記載の高圧流体用フレキシブルチューブ。
( 14)金属製べローズ管の蛇腹状管壁の壁厚が 0. 1〜0. 5mmである、 上 記 (7)記載の高圧流体用フレキシブノレチュ一ブ。
(15)金属製べローズ管の内径が 4〜17mmである、 上記 (7) 記載の高圧 流体用フレキシプルチュ一ブ。
(16)金属製べローズ管が、 上記 (5) の製造方法によって形成されたもので ある、 上記 ( 7 ) 記載の高圧流体用フレキシプルチュ一ブ。
(17)上言 3力 Fが 1374〜: L 7813 〔N〕、 n=4であり、
金属製べローズ管は、 材料がステンレス鋼、 管の内径が 4〜17mm、 蛇腹状 管壁の壁厚が 0. 1〜0. 5 mmであり、
金属製編組体は、 素線の材料がステンレス鋼、 素線径が 0. 3mm、 持数 6〜 10の密編とした編組体層を、 金属製べローズ管の外側に 2〜 6層に重ねた構造 である、 上記(7)記載の高圧流体用フレキシブルチューブ。
図面の簡単な説明
図 1は、 本発明の金属製べローズ管の一例を示す一部正面断面図である。
図 2は、 本発明の金属製べ口一ズ管の製造に使用する一例の装置の断面図であ 。 図 3は、 本発明の金属製べローズ管の製造方法における第 1工程で作製される 金属製べローズ素管を示す要部破断図である。
図 4は、 本発明の金属製べローズ管の製造方法における第 2工程で加工された 金属製べローズ素管を示す要部破断図である。
図 5は、 本発明の金属製べローズ管の製造方法における第 3工程で加工された 金属製べローズ素管を示す要部破断図である。
図 6は、 本発明の金属製べローズ管の製造方法における第 4工程で加工される 途上の金属製べローズ素管を示す要部破断図である。
図 7は、 金属製べローズ管の耐曲げ疲労性試験の説明図である。
図 8は、 本発明の高圧流体用フレキシブルチューブの構造の一例を示す部分断 面図である。 金属製べローズ管は、 断面に現れた端面だけを示している。 金属製 編組体の編組構造は、 詳細に描写せず、 模式的に示している。
図 9は、 金属製編組体の編組構成を説明するための模式図である。 編組の外観 は、 持数 (図では持数 5 ) の素線を 1束としてこれを交互に編み込まれた模様を 呈する。 中心線は、 管の長手方向を示している。 素線の 1つにハッチングを施し て示している。
図 1 0は、 本発明の高圧流体用フレキシブルチューブの構造の一例を示す部分 断面図であって、 編組体押さえリングを備えた構造例を示す図である。
発明を実施するための最良の形態
以下、 本発明をより詳細に説明する。
図 1は本発明の金属製べローズ管の一例の一部正面断面図であり、 本発明の金 属製べローズ管は、 当該一例の金属製べローズ管 1 0のように、 蛇腹状管壁 1に おける山 2及び谷 3の断面形状が V字状であることが主たる特徴である。 なお、 管の外形は通常円筒状である。
ここで、 「山」 とは、 蛇腹状管壁 1における管の外部側へ突出する部位であり
、 「谷」 とは蛇腹状管壁 1における管の内部側へ突出する部位である。 また、 「 山及び谷の断面形状」 とは、 「山」及び 「谷」 を管の軸線 Lを含む平面で切った 断面の形状を意味し、 「山及び谷の断面形状が V字状である」 とは、 図 1に示す ように、 前記断面に現れる山 2の管内部側の面及び谷 3の管外部側の面の各端辺 (切断線) が V字を成して折れ曲がった状態にあることを意味する。 なお、 当該 折れ曲がった端辺 (切断線) の頂部は曲率半径 0 . 4 mm以下の曲線を成してい てもよい。
かかる本発明の蛇腹状管壁における山及び谷の断面形状が V字状である金属製 ベローズ管は、 後述の本発明の製造方法によって実現され、 前記背景技術で説明 した、 液圧成形法、 エラストマ一成形法、 連続ダイス成形法では製造することが できない。 なお、 従来の金属製べローズ管の製造方法によって形成される蛇腹状 管壁の 「山」 及び 「谷」 の断面形状は 「U字状」 である。 該 「ϋ字状」 とは、 「 山」 の管内部側の面及び「谷」 の管外部側の面が湾曲している (図 3の状態にあ る) ことである。
本発明の金属製べローズ管は、 蛇腹状管壁 1における山 2及び谷 3の断面形状 が V字状であることで、 曲げ変形しやすく、 かつ、 蛇腹状の管壁 1における蛇腹 のピッチを小さくすることができる。
ここで、 「蛇腹のピッチ」 とは、 図 1中の隣接する 2つの山 3の頂部間の間隔
D 1であり、 該 「蛇腹のピヅチ (間隔 D 1 ) 」 は、 ベロ一ズ管 1 0の管長さ方向 における少なくとも繰り返しの曲げ運動に寄与する部分では実質的に同じであり
、 通常、 管の長さ方向全体で実質的に同じである。 なお、 「実質的に同じ」 とは 、 意図的にピッチを変更していないという意味であり、 製造上の誤差で生ずるピ ヅチの変動は許容される。
本発明のベロ一ズ管は、 蛇腹状管壁 1における山と谷の断面形状が V字状であ ることから、 蛇腹状管壁 1の厚さを過剰に小さくせずに、 ピッチを従来よりも小 さくできる。 例えば、 蛇腹状管壁 1の厚さが 0 . 2 mmの場合では、 ピヅチ D 1 を 1 . 5 mm以下、 好ましくは 1 . 0 mm以下、 より好ましくは 0 . 8 mm以下 にすることができる。 これにより、 山と谷が V字状であることに加え、 蛇腹のピ ツチが十分に小さくなることから、 高いフレキシビリティーを有し、 管壁の厚み も十分に確保されるので、 耐曲げ疲労性が極めて向上する。 ただし、 ピッチ D 1 が小さ過ぎると、 隣接する山 (谷) 同士が干渉することから、 フレキシビリティ —が低下するので、 本発明において、 ピッチ D 1の下限は 0. 3 mm以上が好ま しく、 0. 4 mm以上がより好ましい。
なお、 従来の製造方法で製造される蛇腹状管壁における山及び谷の断面形状が U字状のベロ一ズ管においては、 蛇腹のピッチは小さいものでも 1. 5mmを超 えている。
また、 高圧流体用フレキシブルチューブに用いられる金属製べローズ管では、 例えば、 管壁の厚みが 0. 3 mmの場合であれば、 ピッチ D 1は、 1. 6 mm以 下、 好ましくは 1. 4mm以下、 より好ましくは 1. 2mm以下にすることがで きる。 これにより、 山と谷が V字状であることに加え、 蛇腹のピッチが十分に小 さくなることから、 高いフレキシビリティーを有し、 管壁の厚みも十分に確保さ れるので、 耐曲げ疲労性が極めて向上する。 ただし、 ピッチ D 1が小さ過ぎると
、 隣接する山 (谷) 同士が干渉することから、 フレキシビリティーが低下するの で、 前記の場合のピヅチ D 1の下限は 1. 0 mm以上が好ましい。
蛇腹状管壁 1の壁厚 (図 1中の符号 S) は、 ベローズ管の外径、 材質等によつ ても異なるが、 一般に 0. 1〜0. 3mm程度が好ましく、 0. 1〜0. 2 mm 程度がより好ましい。
また、 高圧流体用フレキシブルチューブの用途では、 蛇腹状管壁の壁厚は、 金 属製べローズ管の内径、 外径、 材質等によっても異なるが、 使用時の圧力および 製造工程を考慮すると、 0. 15〜0. 5 mm程度が好ましく、 0. 15〜0.
4 mm程度がより好ましい。
蛇腹状管壁の壁厚が上記範囲未満であると、 蛇腹加工する前の素管そのものの 製造が困難であり、 ベロ一ズ管を高価なものにし、 かつ上記高圧に絶えられず、 一方、 蛇腹状管壁の壁厚が上記範囲より大きい場合は、 ベロ一ズ管が曲がりにく くなることから、 耐曲げ疲労性が低下してしまう。
本発明のベロ一ズ管では、 蛇腹状管壁における蛇腹のピッチを上記のように小 さくできるが、 かかるピッチを小さくした蛇腹の状態を、 管の長さ方向の単位長 さ (l cm) 当たりの山の数で表した場合、 山の数が 6~34個 (好ましくは 1 0〜25個) である。
また、 高圧流体用フレキシブルチューブに用いられる金属製べローズ管では、 蛇腹のピッチを、 管の長さ方向の 10 cm当たりの山の数で表した場合、 山の数 は 63〜83個が好ましく、 71〜83個がより好ましい。
また、 本発明のベロ一ズ管において、 蛇腹状管壁 1における山 2の高さ (図 1 中の符号 HI) は 0. 5~4. 0mmが好ましく、 1. 0〜3. Ommがより好 ましい。
当該高圧用フレキシブルチューブに用いられる金属製べローズ管では、 蛇腹状 管壁における山の高さ H 1は、 2. 0〜5. 0mmが好ましく、 2. 5-4. 0 mmがより好ましい。
これは、 山 2の高さが大きくなると、 ベロ一ズ管の伸縮の点からは好ましいが 、 曲げにくくなるので耐曲げ疲労性の低下につながり、 山 2の高さが小さくなる と、 ベロ一ズ管が曲げにくくなつて、 耐曲げ疲労性の低下につながるためである 本発明の金属製べローズ管は、 従来のそれと同様に、 産業設備■装置の可動配 管、 鉄鋼、 石油精製、 石油化学、 電力及びその他の基幹産業におけるプラント配 管等に使用でき、 また、 ベローズ式伸縮管継手の伸縮管 (ベロ一ズ) としても使 用できるが、 フレキシブルチューブとして特に好適に使用することができる。 フ レキシブルチューブとは、 主に流体を流しながら、 繰り返しの曲げ運動がなされ る用途で使用される比較的管の外径が小さいベローズ管であり、 例えば、 車両用 ブレーキシステムの油圧装置や各種産業用液圧システムの蓄圧ゃ脈動を吸収する ための部材、 自動車の燃料系、 排気系及び冷媒系におけるエンジンの振動ゃェン ジンと該配管系との相対変位等を吸収するための部材、 自動車の力一エアコンの 冷媒配管系における振動、 相対変位の吸収するための部材等として使用される。 本発明のベロ一ズ管の外径 (図 1に示す相対する山 2の頂部間の距離 D 2) は ベローズ管の具体的用途に応じて選択され、 特に制限はされないが、 フレキシブ ルチュ一ブとして使用する場合、 4. 5〜20mmが一般的であり、 好ましくは 5〜20mmである。 また、 かかるフレキシブルチューブにおいて、 管の外径と 内径 (図 1に示す相対する谷の頂部間の距離 D 3) との差は 2〜 6 mmが好まし い。
当該高圧用フレキシブルチューブに用いられる金属製べ口一ズ管の有効径 (管 内圧が管長手方向に引張り力 Fを作用させるときの計算に用い得る管径、 即ち、 図 1における (D2+D3) /2で計算される直径) は、 特に制限はされないが 、 12~1 6111111が好ましく、 13〜1 6111111がょり好ましぃ。
本発明のベローズ管を構成する材料は、 通過させる流体に応じて適宜選択され るが、 ステンレス鋼、 メヅキした鉄、 アルミニウム、 真鍮等が使用可能であり、 一般的にはステンレス鋼を使用することが耐蝕性の点で好適である。
本発明の金属製べローズ管は以下の方法で製造することができる。
先ず、 従来の金属製べローズ管の製造方法により、 蛇腹状管壁における山及び 谷の断面形状が U字状のベロ一ズ管を作製する (第 1工程) 。 該蛇腹状管壁にお ける山及び谷の断面形状が U字状のベローズ管の作製には、 従来の金属製べロー ズ管の製造方法の中でも、 比較的細い径の管に対しても、 比較的狭ピッチの蛇腹 (比較的山数の多い蛇腹) を形成できる点から、 連続ダイス成形法を使用するの が好ましい。 連続ダイス成形法は、 通常、 図 2に示すように、 ベアリングを介装 させたダイスホルダ一 11に取り付けられた波付けダイス 12の中に金属管 20 を通し、 管 20の中心とダイス 12の中心を偏心するように支持して、 波付けダ イス 12を管 20の中心の回りに回転させながらダイス 12の突起 13を金属管 20に食い込ませて連続的に円周溝 21を形成する。 これによつて、 図 3に示す 、 蛇腹状管壁における山及び谷の断面形状が U字状の金属製べローズ素管 2 OA が形成される。
当該第 1工程で作製する金属製べローズ素管 2 OAにおいて、 蛇腹状管壁 21 における蛇腹のピッチ D 4は、 1. 5〜3. 5mmであるのが好ましい。 これは 、 次の第 2工程での隣接する山同士及び谷同士の密着作業において、 作業性が向 上し、 また、 安定した形状 (管長さ方向で一様な形状) の管を得やすくなるため である。
上記第 1工程で作製した金属製べローズ素管 2 O Aを、 例えば、 外圧縮め機を 用いて、 管の長さ方向に圧縮し、 蛇腹状管壁 2 1の隣接する山 2 2同士及び谷 2
3同士を密着させる (図 4 ) (第 2工程) 。
なお、 該第 2工程へ移行する前に、 金属製べローズ素管 2 O Aを焼鈍しておく のが好ましい。 該焼鈍により該第 2工程と下記の第 3工程で行う管の圧縮加工及 び下記の第 4工程で行う管の引き伸ばし加工における加工性が向上し、 加工によ る管の疲労劣化を抑制することができる。 該焼鈍は、 管材料 (素材) がステンレ ス鋼である場合、 ステンレス鋼の表面に酸化スケールを形成させないために、 光 輝焼鈍するのが好ましい。 なお、 焼鈍条件は特に限定されず、 金属管の素材に応 じた従来公知の金属管への焼鈍条件を適用すればよいが、 管材料 (素材) がステ ンレス鋼 (オーステナイト鋼) である場合の光輝焼鈍においては 1 0 1 0〜 1 1 0 0 °Cで焼鈍するのが好ましい。
次に、 上記の蛇腹状管壁 2 1の隣接する山 2 2同士及び谷 2 3同士を密着させ た金属製べローズ素管 2 O Aの内側にシャフトを挿入し、 例えば、 油圧プレス機 にて、 該金属製べローズ素管 2 O Aを長さ方向に加圧して、 図 4に示す各山 2 2 の内部空間 2 4及び隣接する山 2 2の間の隙間 2 5が実質的になくなるまで圧縮 成形する (図 5 ) (第 3工程) 。 なお、 ここでの 「山の内部空間及び隣接する山 の間の隙間が実質的になくなる」 とは、 山及び谷を成す隣接する壁が面接触、 好 ましくはその全面が面接触するまで圧縮された状態を意味する。
次に、 上記加圧成形後の金属製べローズ素管 2 0 Aの両端をチャックし、 図 6 に示すように、 隣接する山 2 2の頂部間の間隔が所定の間隔 (前記のピヅチ D 1 ) になるまで当該素管を長さ方向へ引き伸ばすと、 図 1に示す、 金属製べローズ 管 1 0が完成する (第 4工程) o
以上は、 本発明による金属製べローズ管とその製造方法についての説明である 。 次に、 この金属製べローズ管を用いた本発明の高圧流体用フレキシブルチュー プを説明する。
図 8は、 本発明の高圧流体用フレキシブルチューブ (以下、 「当該チューブ」 とも呼ぶ) の構造の一例を示す部分切欠き断面図である。
同図に示すように、 当該チューブは、 本発明による金属製べローズ管 1 0 1と 、 該管の外側を覆う管状の金属製編組体 1 0 2とを有して構成される。 金属製べ ローズ管 1 0 1は、 内部に充填される流体の高圧に耐えるように金属材料と肉厚 とを選択されており、 かつ管状の金属蛇腹部分によって管としての可撓性を有す るよう構成されている。
管状の金属製編組体 1 0 2は、 金属製べローズ管 1 0 1の外部を覆っており、 該編組体 1 0 2の両端部 1 0 2 a、 1 0 2 bは、 それそれに対応する金属製べ口 ーズ管の両端部に接合されている。 図 8の例では、 金属製べ口一ズ管 1 0 1の両 端部には、 金属パイプが口金 1 0 3、 1 0 4としてそれぞれ接合されており、 該 口金 1 0 3、 1 0 4に、 金属製編組体の端部部 1 0 2 a、 1 0 2 bがそれそれ溶 接またはロウ付けによって接合されている。 この構成によって、 金属製べローズ 管の可撓性を損なわないようにしながらも、 金属製べローズ管 1 0 1の伸長を規 制している。
当該チューブの重要な特徴は、 金属製べローズ管 1 0 1の蛇腹状管壁における 山及び谷の断面形状が、 V字状となるように形成されており、 かつ、 金属製編組 体 1 0 2が、 7 O MP aに達する従来には無い管内の高圧に耐え得るように、 金 属製編組体の総断面積 Sと金属素線材料とが選択されている点にある。
上記構成とすることによって、 金属蛇腹部分の疲労が低減すると共に、 金属製 編組体が適切に金属蛇腹部分の伸長を抑制するので、 従来の高圧流体はもちろん のこと、 7 O M P aの高圧流体であっても、 安全に管内移送を行うことが可能と なる。
当該チューブによって移送すべき流体は限定されないが、 従来技術で述べたと おり、 水素燃料電池に用いられる水素ガスが、 従来にはない高圧 (例えば、 2 5 MP a、 3 5 M P a、 7 0 M P a ) であり、 かつ、 水素を漏洩させないフレキシ ブルチュープの使用が必要である点から、 水素燃料電池への高圧水素ガスの供給 用途において本発明の有用性はより顕著となる。 '
当該チューブに用いられる金属製べローズ管とその製造方法については上記説 明のとおりである。
当該高圧用チューブに用いられる金属製べローズ管は、 従来の金属製べローズ 管では得られかった小さいピッチ D 1を達成しているので、 曲げ反力が小さく、 それによつて上記のように優れた可撓性が得られる他、 従来の粗いピツチのもの と比べて、 疲労寿命が向上し、 また管径方向の破断に対する許容圧力が高くなり (管の長手軸を含む平面で切断したときの管壁部の断面積が高密度のピッチによ つてより大きくなるため) 、 内部を通過する流体の圧損が小さくなる (高密度の ピヅチによって管内壁の凹凸が細かくなり、 渦ができ難くなるため) などの利点 も新たに得られる。
なお、 従来の製造方法で製造される蛇腹状管壁における山及び谷の断面形状が U字状のベローズ管においては、 蛇腹のピッチは本発明に用いられる金属製べ口
—ズ管のピッチよりも大きい。
当該高圧用フレキシブルチューブに用いられる金属製べローズ管を構成する材 料は、 内部の超高圧に対する強度、 耐食性を考慮すると、 後述のステンレス鋼が 好ましい材料として挙げられる。
次に、 当該高圧用フレキシブルチューブに用いられる金属製編組体について説 明する。
当該金属製編組体は、 braid とも呼ばれる管状編組体であって、 その編組構成 は、 図 9に示すように、 複数の金属素線を並列配置して 1束としたものを、 金属 製べローズ管の外径に応じて、 隙間が生じない交角 0および打数にて管状に編ん だ構造を基本の 1層としたものである。 これを必要な層数だけ重ね合わせて引張 り強度を確保する。
同一層内では、 素線径は同一とすることが好ましいが、 異なる層同士の間では 、 素線径は異なっていてもよい。
1束中の素線の数を 「持数」 と呼び、 編組に用いた束の本数を 「打数」 と呼ぶ 。 よって、 金属製べローズ管の周囲を取り巻く金属素線の総数は、 持数 X打数 X 層数である。
編組パターン、 編組技術については、 従来公知の技術を参照してよい。
金属製編組体は、 式 (crxcos (Θ/2) ) ノ n ≥ F/S
を満たすように、 属製編組体の総断面積 Sと金属素線材料とを選択して形成す る。 びは、 金属素線材料の引張り強さ 〔MPa〕 である。 本発明では、 70MP aに達する高圧流体を取り扱うため、 金属素線として、 強度と耐食性を備えた材 料を用いる。 そのような金属素線の材料としては、 ステンレス鋼が好ましい。
本発明において、 金属製べローズ管、 金属製編組体に用いられるステンレス鋼 としては、 J I S G4305に規定されたステンレス鋼 (例えば、 SUS 30 4、 SUS 329J 1など) が好ましいものとして挙げられるが、 J I S規定の ステンレス鋼をさらに改良したものであってもよい。 そのような改良されたステ ンレス鋼としては、 ォ一ステナイト 'フェライト 2相ステンレス鋼 (C; 0. 0 12重量%、 S i ; 0. 74重量%、 Mn; 0. 70重量%、 N i ; 6. 30重 量%、 Cr ; 25. 00重量%、 Mo ; 3. 30重量%、 N; 0. 10重量%) が挙げられ、 例えば、 日本冶金工業株式会社製の耐食鋼 (製品番号 NAS 64) として入手することができる。
ステンレス鋼の引張り強さは、 NAS 64などの改良品を含めて、 通常、 48 0〜853 〔MPa〕 である。例えば、 SUS 304の引張り強さは 520 M Pa;] 、 SUS 329 J 1の引張り強さは 590 〔MPa〕 である。 NAS 64 は冷間圧延板としての引張り強さが 853 〔MPa〕 である。 J I S規格以外の 材料の引張り強さについては、 J I S Z 2241に規定された試験法に基づい て試験された値を用いるものとする。
金属素線は、 従来公知の金属編組体用として製造されたものを用いてよく、 J
I S G4309に規定されたものが挙げられる。 該金属素線の径は、 限定され ないが、 0. 3mm〜0. 6mm、 特に 0. 3mm〜0. 5 mmが好ましい。
金属製編糸且体の横断面 (管の長手方向に対して垂直に切断したときの断面) に 現れる金属素線断面の総断面積 S 〔mm2〕 は、 金属素線 1本当たりの断面積 X 金属素線の総数 (持数 X打数 X層数) によって求められる。
交角は、 50度〜 120度、 好ましくは 60度〜 100度である。
金属製編組体の層数は、 7 OMPaの内圧を考慮すると、 4層〜 5層、 特に、 現状利用可能な素線径と材料の強度を鑑みれば、 5層が好ましく、 これによつて 、 当該チューブの可撓性と強度とを両立させることが可能となる。
金属製べローズ管の周囲に 5層の金属製編組体を設けたフレキシブルチューブ は従来 は無い。 これは、 本発明に用いた金属製べ口一ズ管の優れた可撓性によ つて、 可能となった層数であるとも言える。
高圧流体が金属製べ口一ズ管を伸長させようとする力 F 〔N〕 は、 高圧流体に よる内圧 (最大 7 OMPa) と金属製べローズ管の有効径との積によって求めら れる。
例えば、 金属製べローズ管の有効径を 5 mn!〜 18 mmとするならば、 70M Paの水素ガスが充填されるとして、 力 Fは、 1374 〔N:) 〜 17813 〔N 〕 となる。
安全率は、 超高圧の水素ガスを扱う関係上、 安全を充分に考慮して決定した値 であればよいが、 過剰な補強を避ける点からは、 2〜4が適当である。 また、 高 圧ガス保安法など、 管の安全を規定した法律があれば、 その時の法から設計上導 かれる安全率 (例えば、 目的内圧の 4倍の内圧力による試験が規定されているな らば、 安全率 4など) を満たす値を採用し、 法改正によって安全率に変更があれ ばそれに準拠して、 設計値を微調整すればよい。
7 OMP aの水素ガス移送に利用可能な当該チューブの仕様の一例を示す。 金属製べローズ管:材料 N AS 64、 内径 9. 5 mm, 外径 16. 5 mm, 蛇 腹状管壁の壁厚 0. 2mn!〜 0. 4 mm、 管長 10 Omm当たりの蛇腹の山の数 83、 山の高さ 3. 2mm0 金属製編組体:素線材料 S U S 3 0 4、 素線径 0 . 3 mmm〜0 . 5 mm、 持 数 6〜8、 打数 2 4〜3 2、 交角約 9 0度、 層数 5 (または、 素線材料 N A S 6 4の場合には、 持数 6、 打数 2 4、 交角約 9 0度、 層数 3 ) 。
チューブの総外径 2 3 mm。
金属製編組体の両端部を、 金属製べローズ管の両端部にそれそれ接合するため の構造に限定はないが、 図 8に示すように、 金属パイプを口金 1 0 3、 1 0 4と して、 金属製べローズ管の両端部に溶接またはロウ付けによって接合しておき、 該口金を覆う位置まで金属製編組体 1 0 2の端部 1 0 2 a, 1 0 2 bを延ばし、 溶接またはロウ付けによって接合する構造が好ましい。 即ち、 金属製編組体と金 属製べローズ管とを口金を介して接合する構造である。 .
編組体を金属に溶接 ·ロウ付けするための技術自体は、 公知技術を参照しても よい。
口金に用いる金属パイプの材料としては、 ステンレス鋼が好ましいものとして 挙げられ、 外径、 内径は、 金属製べローズ管との接合を鑑みて、 該ベロ一ズ管の 蛇腹の総外径、 内径と略一致させることが好ましい。
この口金は、 最外端部に、 ネジゃ管継手構造など、 外部管路との接続のための 構造 J (図 1 0 )を備えていてもよい。
図 1 0に示すように、 口金 1 0 3と金属製編組体 1 0 2との接合部には、 さら にその上を覆う編組体押さえリング 1 0 5を装着し、 金属製編組体 1 0 2と編組 体押さえリング 1 0 5とを、 端面を略揃えて口金にロウ付けまたは溶接にて接合 する構造が好ましい。 編組体押さえリング 1 0 5を設けることによって、 接合部 分は保護され、 かつ、 編組端部の外観を美しく仕上げることができる。
編組体押さえリング 1 0 5を用い、 接合方法をロウ付けとする場合、 編組体中 をロウ (例えば、 銀ロウ) がどこまで浸透したかが編組体押さえリングの存在に よって不明になる。
そこで、 本発明では、 図 1 0に示すように、 編組体押さえリング 1 0 5に、 端 面から所定の位置 mに金属製編組体を露出させる貫通孔 1 0 6を設けておくこと を提案する。 「所定の位置」 とは、 接合に必要な最低限のロウ材浸透距離である 。 該貫通孔を設けることによって、 少なくとも所定の位置までロウが編組体中を 浸透していることを目視等で確認することが可能となり、 充分な強度にて金属製 編組体が金属製べローズ管に接合されていることが容易に確認できる。
図 1 0では、 ロウが、 ハヅチングで示した Pの範囲まで浸透しており、 貫通孔 1 0 6を通して、 編組体中に浸透したロウを確認できる。
編組体押さえリングに設ける貫通孔の位置、 形状、 大きさ、 個数は限定されな いが、 位置は限定されないが、 充分なロウ付けの浸透距離 (=強度) を確保し、 かつ、 それを明確に確認するためには、 端面から所定の位置を 5 mm以上、 特に 7 mm以上とすることが好ましい。 端面からの位置の上限は特に限定されないが 、 過剰な浸透を避ける実際的な範囲としては、 1 5 mm以下、 特に 1 3 mm以下 が好ましい。 実使用上の推奨値としては、 1 0 mmが挙げられる。
貫通孔の開口径は、 特に限定はないが、 確認のし易さ、 リングの強度低下など を考慮すると 7 mn!〜 1 3 mm程度とするのが好ましい。 該貫通孔は、 編組体押 さえリングの胴体円周方向については、 強度を考慮して、 複数設けてもよい。
ロウ付けによって接合する場合、 図 1 0に示すように、 編組体押さえリングの 内側および/または口金の外側には、 ロウが流れ込んで抜け止めとなり得る凹部 1 0 7を設けることが好ましい。 凹部は、 編組体押さえリングの内周方向、 口金 の外周方向を巡る環状の溝であってもよいし、 単発的な穴であってもよい。 また 、 凹部は、 編組体押さえリングの内側、 口金の外側のいずれに設けてもよいが、 組み立て時の編組体への影響を考慮すると、 口金の外側だけに設ける態様が好ま しい (図 1 0では、 説明のために、 凹部を両方に設けている) 。
凹部の数、 凹部の開口寸法、 形状、 深さは、 凹部内にロウが充填することによ つて得られる強度に応じて適宜決定してよい。
当該チューブは、 固定されたタンクと水素燃料電池車の間を接続する用途のみ ならず、 タンク周辺での配管、 車両内部での配管に利用してもよい。 また、 7 0
M P aの高圧水素だけに限定されず、 それ以下の高圧流体を扱う産業設備 ·装置 の可動配管などに使用できる。
実施例
以下、 実施例により本発明をさらに具体的に説明するが、 本発明は以下に記載 の実施例に限定されるものでない。
実施例 1
ステンレス鋼製の円筒管を、 連続ダイス成形法により、 蛇腹状管壁における山 及び谷の断面形状が U字状のベロ一ズ素管 (蛇腹のピッチ 2. 5 mm) に成形し た。 次に、 前述の第 2〜第 4工程を経て、 蛇腹状管壁における山及び谷の断面形 状が V字状のベロ一ズ管 (フレキシブルチューブ) を作製した。
外径 9. 3 mm、 内径 5. 2mm、 蛇腹状管壁の厚み 0. 15 mm、 蛇腹のピ ツチ 0. 5 mm (管の長さ方向 1 cm当たりの山の数 20個) 、 管の全長 30 c mである。
比較例 1
ステンレス鋼製の円筒管を連続ダイス成形法で成形して、 蛇腹状管壁における 山及び谷の断面形状が U字状のぺローズ管 (フレキシブルチューブ) を作製した 外径 9. 3 mm, 内径 5. 2 mm, 蛇腹状管壁の厚み 0. 15 mm、 蛇腹のピ ツチ 2. 5mm (管の長さ方向 1 cm当たりの山の数 4個) 、 管の全長 30 cm である。
上記作製した実施例 1および比較例 1のべローズ管に対して耐曲げ疲労性試験 を実施した。 試験は、 図 7に示すように、 窒素ガスにより内圧 5 kgf/cm2 Gを加えた状態で 90°片振りの繰り返しを行い、 ガス洩れ発生までの繰り返し 回数を測定することで行った。 なお、 繰り返し回数は、 A状態" · Β状態→A状態 を 1回とした。
その結果、 実施例 1のべローズ管の繰り返し回数は 13000回であったのに 対し、 比較例 1のべローズ管の繰り返し回数は 2200回で、 実施例 1のべ口一 ズ管の耐曲げ疲労性は比較例 1のべローズ管に比べて約 6倍優れたものであった 産業上の利用分野
以上の説明により明らかなように、 本発明によれば、 従来よりも耐曲げ疲労性 が大きく向上した金属製べローズ管を得ることができ、 特に、 耐久性に優れたフ レキシプルチュ一ブを実現することができる。
また、 本発明のフレキシブルチューブによって、 25 MP a以上の高圧流体、 特に 70 M P aに達する水素燃料電池用の高圧水素であっても、 当該管内を通じ て安全かつ漏洩なく供給移送することが可能である。
本出願は、 日本で出願された特願 2002— 262072、 特願 2003 - 1 13508を基礎としておりそれらの内容は本明細書に全て包含される。

Claims

請求の範囲
1. 蛇腹状管壁における山及び谷の断面形状が V字状である、 金属製べローズ管
2. 蛇腹のピヅチが 1. 5 mm以下であり、 かつ、 山の高さが 0. 5〜4. 0 m mである、 請求の範囲 1記載の金属製べローズ管。
3. 蛇腹状管壁の壁厚が 0. 1〜0. 3 mmである、 請求の範囲 2記載の金属製 ベローズ管。
4. 管外径が 4. 5〜20mmである、 請求の範囲 1記載の金属製べローズ管。
5. 蛇腹状管壁における山及び谷の断面形状が U字状の金属製べローズ素管を作 製し、 次いで、 該素管を管の長さ方向に圧縮して蛇腹状管壁の隣接する山同士及 び谷同士を密着させ、 さらにプレス加工で各山の内部空間及び隣接する山の間の 隙間が実質的になくなるまで加圧成形した後、 該加圧成形後の素管を、 隣接する 山の頂部間の間隔が所定の間隔になるまで、 管の長さ方向へ引き伸ばすことを特 徴とする、 金属製べローズ管の製造方法。
6. 上記加圧成形後の素管を管の長さ方向へ引き伸ばした結果において、 隣接す る山の頂部間の間隔を 1. 5 mm以下とし、 かつ、 山の高さを 0. 5〜4. 0m mとする、 請求の範囲 5記載の製造方法。
7. 70 MP aの高圧流体を移送し得るフレキシブルチューブであって、
金属製べローズ管と、 該管の外側を覆う管状の金属製編組体とを有し、 金属製べローズ管は、 その蛇腹状管壁における山及び谷の断面形状が V字状と なるように形成されており、
管状の金属製編組体は、 その両端部がそれそれに対応する金属製べローズ管の 両端部に接合されており、 かつ、 高圧流体が金属製べローズ管を伸長させようと する力を F 〔N〕、 金属製編組体の横断面に現れる金属素線断面の総断面積を S 〔mm2〕 、 金属製編組体の交角 0 = 50〜120度、 該金属素線材料の引張り 強さをび 〔MPa〕、 安全率を nとして、
( xcos (Θ/2) ) /n ≥ F/S を満たすように、 金属製編組体の総断面積 Sと金属素線材料とが選択されている ことを特徴とする高圧流体用フレキシブルチューブ。
8 . 力 Fが、 1 3 7 4〜 1 7 8 1 3 〔N〕、 安全率 nが 4である、 請求の範囲 7 記載の高圧流体用フレキシブルチューブ。
9 . 高圧流体が、 水素ガスであるか、 または水素ガスと液体水素との混合物であ る、 請求の範囲 7記載の高圧流体用フレキシブルチューブ。
1 0 . 金属製べローズ管の両端部には口金として金属パイプが接合されており、 該口金に、 金属製編組体の端部が溶接またはロウ付けによって接合されている、 請求の範囲 7記載の高圧流体用フレキシブルチューブ。
1 1 . 口金に、 金属製編組体の端部がロウ付けによって接合されており、 金属製 編組体の端部には、 さらにその上を覆う編組体押さえリングが装着され、 口金に 対して金属製編組体と編組体押さえリングとが端面を略揃えてロウ付けされてお り、
編組体押さえリングには、 端面から所定の位置に金属製編組体を露出させる貫 通孔が設けられ、 該貫通孔によって、 少なくとも所定の位置までロウが編組体中 を浸透していることを確認することが可能となっている、 請求の範囲 7記載の高 圧流体用フレキシブルチュープ。
1 2 . 口金に、 金属製編組体の端部がロウ付けによって接合されており、 金属製 編組体の端部には、 さらにその上を覆う編組体押さえリングが装着され、 口金に 対して金属製編組体と編組体押さえリングとが端面を略揃えてロウ付けされてお り、
編組体押さえリングの内側および Zまたは口金の外側には、 口ゥが流れ込んで 抜け止めとなる環状の凹部または単発的な凹部が設けられている、 請求の範囲 7 記載の高圧流体用フレキシブノレチューブ。
1 3 . 金属製べローズ管の蛇腹のピッチが 2 mm以下であり、 かつ、 山の高さが
1〜4 mmである、 請求の範囲 7記載の高圧流体用フレキシブルチュ一ブ。
1 4 . 金属製べローズ管の蛇腹状管壁の壁厚が 0 . 1〜0 . 5 mmである、 請求 の範囲 7記載の高圧流体用フレキシブルチュ一ブ。
15. 金属製べローズ管の内径が 4 ~ 17 mmである、 請求の範囲 7記載の高圧 流体用フレキシブルチューブ。
16. 金属製べローズ管が、 上記請求の範囲 5の製造方法によって形成されたも のである、 請求の範囲 7記載の高圧流体用フレキシブルチュ一ブ。
17. 上言己力 Fが 1374〜17813 〔N〕、 n=4であり、
金属製べローズ管は、 材料がステンレス鋼、 管の内径が 4〜17mm、 蛇腹状 管壁の壁厚が 0. 1〜0. 5 mmであり、
金属製編組体は、 素線の材料がステンレス鋼、 素線径が 0. 3mm、 持数 6〜 10の密編とした編組体層を、 金属製べローズ管の外側に 2〜6層に重ねた構造 である、 請求の範囲 7記載の高圧流体用フレキシブルチュープ。
PCT/JP2003/011282 2002-09-06 2003-09-04 金属製ベローズ管とその製造方法、および高圧流体用フレキシブルチューブ WO2004023017A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP03794215A EP1536172B1 (en) 2002-09-06 2003-09-04 Metal bellows tube, method of producing the same, and flexible tube for high-pressure fluid
US10/526,496 US7556065B2 (en) 2002-09-06 2003-09-04 Metal bellows tube, method of producing the same, and flexible tube for high-pressure fluid
CA2497748A CA2497748C (en) 2002-09-06 2003-09-04 Metal bellows tube, method of producing the same, and flexible tube for high-pressure fluid
AU2003261920A AU2003261920A1 (en) 2002-09-06 2003-09-04 Metal bellows tube, method of producing the same, and flexible tube for high-pressure fluid
DE60326599T DE60326599D1 (de) 2002-09-06 2003-09-04 Metallbalgrohr, verfahren zur herstellung desselben und flexibles rohr für hochdruckfluid
HK05110754.0A HK1076305A1 (en) 2002-09-06 2005-11-25 Metal bellows tube, method of producing the same, and flexible tube for high-pressure fluid
HK06101146A HK1078637A1 (en) 2002-09-06 2006-01-25 Metal bellows tube, method of producing the same, and flexible tube for high-pressure fluid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002262072A JP2004100787A (ja) 2002-09-06 2002-09-06 金属製ベローズ管及びその製造方法
JP2002-262072 2002-09-06
JP2003-113508 2003-04-17
JP2003113508 2003-04-17

Publications (1)

Publication Number Publication Date
WO2004023017A1 true WO2004023017A1 (ja) 2004-03-18

Family

ID=31980596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011282 WO2004023017A1 (ja) 2002-09-06 2003-09-04 金属製ベローズ管とその製造方法、および高圧流体用フレキシブルチューブ

Country Status (9)

Country Link
US (1) US7556065B2 (ja)
EP (1) EP1536172B1 (ja)
KR (1) KR100970407B1 (ja)
CN (1) CN1323256C (ja)
AU (1) AU2003261920A1 (ja)
CA (1) CA2497748C (ja)
DE (1) DE60326599D1 (ja)
HK (2) HK1076305A1 (ja)
WO (1) WO2004023017A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283699A (ja) * 2005-04-01 2006-10-19 Toyota Motor Corp 熱エネルギ回収装置
DE102005037165A1 (de) * 2005-08-06 2007-02-15 Witzenmann Gmbh Kältemittelleitung
DE102005037166A1 (de) * 2005-08-06 2007-02-08 Witzenmann Gmbh Kältemittelleitung
JP5039299B2 (ja) * 2005-11-24 2012-10-03 三菱重工業株式会社 配管
KR100683404B1 (ko) * 2005-12-14 2007-02-20 넥스트론시스템즈(주) 플렉시블 튜브 절단부 성형방법과 그 장치 및 그에 의해제조된 플렉시블 튜브
US20090004533A1 (en) * 2006-09-08 2009-01-01 Honda Motor Co., Ltd. Fuel cell stack
DE102008001297B4 (de) * 2007-04-27 2014-10-30 Westfalia Metallschlauchtechnik Gmbh & Co. Kg Wendelgewellter Membranbalg sowie Verfahren zu seiner Herstellung
EP1997468A1 (en) * 2007-05-31 2008-12-03 Molift A/S Distance piece for patient rail system
CN100564958C (zh) * 2007-09-14 2009-12-02 成都赛乐化新机电有限公司 金属波纹管的生产工艺
DE202011106742U1 (de) * 2011-06-06 2011-12-05 Trumpf Laser- Und Systemtechnik Gmbh Faltenbalg
CH706036A1 (de) * 2012-01-23 2013-07-31 Brugg Rohr Ag Holding Verfahren zur Verbindung eines Anschlussstücks mit einem wärmeisolierten Leitungsrohr.
US20150218886A1 (en) * 2012-08-13 2015-08-06 Matthew A. Dawson Penetrating A Subterranean Formation
US8997794B2 (en) * 2013-04-18 2015-04-07 Sung-Kyu Chang Vibration absorbing pipe for refrigeration compressor
US10062936B2 (en) * 2015-06-19 2018-08-28 Ford Global Technologies, Llc Flex tubing for vehicle assemblies
FR3050006B1 (fr) * 2016-04-11 2018-09-07 Peugeot Citroen Automobiles Sa Ensemble de tubulures adaptables pour reservoir de fluide additionnel de moteur a combustion interne
US11011772B2 (en) * 2016-04-21 2021-05-18 Fuelcell Energy, Inc. Cathode flow fuel cell systems and manifolds with an add-on stiffener
EP3312525B1 (en) * 2016-10-20 2020-10-21 LG Electronics Inc. Air conditioner
JP6820196B2 (ja) * 2016-12-26 2021-01-27 株式会社ブリヂストン 複合管
KR20180104513A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104512A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
EP3802165B1 (de) * 2018-07-18 2023-10-11 Siemens Mobility GmbH Fahrzeug und betriebsverfahren für ein fahrzeug
US11035515B2 (en) * 2018-12-20 2021-06-15 The Boeing Company Conduits for transporting fluids
CN109494011A (zh) * 2018-12-27 2019-03-19 上海胜华电气股份有限公司 一种低成本超导电缆
CN109882390B (zh) * 2019-03-08 2020-01-21 西安佰能达动力科技有限公司 一种无余隙桶形隔膜压缩机
CN111421469A (zh) * 2020-04-24 2020-07-17 西安奕斯伟硅片技术有限公司 一种浆料运输管道及浆料运输系统
CN112296154B (zh) * 2020-09-09 2023-08-08 天津由鑫建筑材料制造有限公司 一种金属波纹管成型机及应用该成型机的成型方法
DE102020129048A1 (de) * 2020-11-04 2022-05-05 Fränkische Industrial Pipes GmbH & Co. KG Hochdruck-fluidleitung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186091A (ja) * 1987-01-28 1988-08-01 富士精工株式会社 ベロ−ズおよびその製造方法
JPH0914528A (ja) * 1995-06-26 1997-01-17 Toyoda Gosei Co Ltd フレキシブルホース
JPH11190469A (ja) * 1997-12-26 1999-07-13 Nikkan Kizai Kk 高圧チューブ
JP2001295963A (ja) * 2000-04-13 2001-10-26 Toyoda Gosei Co Ltd フレキシブルホース

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US401706A (en) * 1889-04-16 Desire mathurin legat
US461997A (en) * 1891-10-27 Sand-pump or other pipes
US2836200A (en) * 1954-02-26 1958-05-27 American Brass Co Flexible corrugated metal hose assembly
DE1214062B (de) 1961-07-21 1966-04-07 Mulconroy Company Befestigung des Endes eines Schlauches zwischen einer inneren Tuelle und einer aeusseren Huelse
GB1100114A (en) 1963-08-01 1968-01-24 Avica Equip Improvements in or relating to tube fittings and their attachment to tubes
US3336950A (en) * 1964-05-19 1967-08-22 Continental Oil Co Culvert construction
US3326091A (en) * 1964-08-10 1967-06-20 Carmen S Allen Bellows
US3420553A (en) * 1966-02-09 1969-01-07 Calumet & Hecla Apparatus for absorbing sound and vibration in a piping system
US3468560A (en) * 1967-08-11 1969-09-23 Gen Motors Corp Connection for tubular members
US3605232A (en) * 1969-02-17 1971-09-20 Vernon C Hines Method of lining flexible metal l's
US3577621A (en) * 1969-05-14 1971-05-04 Koppy Tool Corp Stretch method for making a tubular product
US3699624A (en) * 1969-05-14 1972-10-24 Koppy Corp Stretch method for making a tubular product
US3847184A (en) * 1972-10-05 1974-11-12 A God Metal pipe with spaced flexible portions
GB1499853A (en) * 1975-03-07 1978-02-01 Avica Equip Flexible metal hose unit
JPS63231085A (ja) 1987-03-19 1988-09-27 株式会社タツノ・メカトロニクス ホ−ス
DE3808383A1 (de) 1988-03-12 1989-09-28 Witzenmann Metallschlauchfab Leitungsverbindung
US5560396A (en) * 1994-08-10 1996-10-01 Kramer, Jr.; Vance M. Rigid end socket for flexible tubing and method of making same
IT238834Y1 (it) 1995-02-14 2000-11-15 Zanussi Grandi Impianti Spa Tubo deformabile a superficie interna di sezioneintermittentemente variabile
FR2759141B1 (fr) 1997-02-06 1999-03-26 Sergio Castelli Tuyau a gaz et procede de fabrication
KR19980061549U (ko) * 1997-03-26 1998-11-05 박주신 유류 저장시설 배관용 벨로우즈형 나선파이프
JP2000240889A (ja) * 1999-02-22 2000-09-08 Totaku Kogyo Kk 断熱ホース
US6354332B1 (en) * 1999-04-30 2002-03-12 Witzenmann Gmbh, Metallschlauch-Fabrik Pforzheim Coolant line for air conditioning systems
DE20022457U1 (de) 1999-04-30 2001-10-18 Witzenmann GmbH, 75175 Pforzheim Kältemittelleitung für Klimaanlagen
CN2384085Y (zh) 1999-06-09 2000-06-21 中国科学院金属腐蚀与防护研究所 一种耐腐蚀金属波纹管
IT1318197B1 (it) 2000-07-19 2003-07-28 Valsir Spa Dispositivo di connessione per tubi, in particolare per tubi compositi multistrato
KR200213684Y1 (ko) * 2000-09-27 2001-02-15 주식회사동양플렉스 벨로우즈
CN2470635Y (zh) * 2000-12-08 2002-01-09 海尔集团公司 洗衣机排水管
US20040007278A1 (en) * 2002-06-06 2004-01-15 Williams Robert M. Flexible conduit and method for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186091A (ja) * 1987-01-28 1988-08-01 富士精工株式会社 ベロ−ズおよびその製造方法
JPH0914528A (ja) * 1995-06-26 1997-01-17 Toyoda Gosei Co Ltd フレキシブルホース
JPH11190469A (ja) * 1997-12-26 1999-07-13 Nikkan Kizai Kk 高圧チューブ
JP2001295963A (ja) * 2000-04-13 2001-10-26 Toyoda Gosei Co Ltd フレキシブルホース

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"SOSEI TO KAKOU" (JOURNAL OF THE JAPAN SOCIETY FOR TECHNOLOGY OF PLASTICITY), vol. 32, no. 366, pages 818 - 823
See also references of EP1536172A4 *

Also Published As

Publication number Publication date
CN1682057A (zh) 2005-10-12
EP1536172B1 (en) 2009-03-11
DE60326599D1 (de) 2009-04-23
CA2497748C (en) 2011-06-14
HK1078637A1 (en) 2006-03-17
EP1536172A4 (en) 2007-06-27
KR100970407B1 (ko) 2010-07-15
KR20050057241A (ko) 2005-06-16
EP1536172A1 (en) 2005-06-01
US7556065B2 (en) 2009-07-07
CN1323256C (zh) 2007-06-27
HK1076305A1 (en) 2006-01-13
US20060151041A1 (en) 2006-07-13
CA2497748A1 (en) 2004-03-18
AU2003261920A1 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
WO2004023017A1 (ja) 金属製ベローズ管とその製造方法、および高圧流体用フレキシブルチューブ
JP5237839B2 (ja) 金属製のこ歯形ガスケット及び組み合わせガスケット
EP1291567A2 (en) Impermeable metal film and hose having the same
KR20190120274A (ko) 유체 가열기, 유체 제어 장치, 및 유체 가열기의 제조 방법
AU747333B2 (en) Subsea flexible pipe
AU2009241032B2 (en) Fiber-reinforced resin pipe
KR19980042077A (ko) 나선 권취형 가스켓
JP4681957B2 (ja) 耐振動管支持体
US20070079885A1 (en) Hose assembly
JP4505252B2 (ja) 高圧流体用フレキシブルチューブ
CN100580298C (zh) 非焊接法兰连接ω型不锈钢金属软管及制作方法
CN112780877A (zh) 一种用于三通支管与对接钢管间环焊缝缺陷修复的b型套筒及其安装方法
WO2020175343A1 (ja) 金属管および金属管の製造方法
KR101925679B1 (ko) 와이어 감은 압력 용기
JP2009008184A (ja) 金属製ベローズ
US20210041053A1 (en) Seismic pipe joint
CN208347877U (zh) 一种整体式催化器进气弯管及汽车排气系统
JP2003202088A (ja) 振動吸収管
CN111853409A (zh) 一种具有不同形变强化层的波纹管
JP2004100787A (ja) 金属製ベローズ管及びその製造方法
CN217815735U (zh) 一种抗压保温不锈钢管
CN201028221Y (zh) 带承压环的多波厚壁ω形膨胀节
JP2001032942A (ja) 渦巻形ガスケット
DE19624955A1 (de) Verfahren zur Herstellung von Rohren durch eine Umformung mittels Wirkmedien
JP2004301192A (ja) 金属製コルゲートパイプ及び金属製コルゲートパイプの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2497748

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006151041

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057003882

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038211637

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003794215

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003794215

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057003882

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10526496

Country of ref document: US