[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004013268A1 - Compositions detergentes abrasives pour surfaces dures - Google Patents

Compositions detergentes abrasives pour surfaces dures Download PDF

Info

Publication number
WO2004013268A1
WO2004013268A1 PCT/EP2003/007229 EP0307229W WO2004013268A1 WO 2004013268 A1 WO2004013268 A1 WO 2004013268A1 EP 0307229 W EP0307229 W EP 0307229W WO 2004013268 A1 WO2004013268 A1 WO 2004013268A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
cleaning composition
abrasives
cleaning
anyone
Prior art date
Application number
PCT/EP2003/007229
Other languages
English (en)
Inventor
Nitin Siddheshwar Deshpande
Bir Kapoor
Suresh Ramamurthi
Original Assignee
Unilever N.V.
Unilever Plc
Hindustan Lever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever N.V., Unilever Plc, Hindustan Lever Limited filed Critical Unilever N.V.
Priority to AU2003258507A priority Critical patent/AU2003258507A1/en
Publication of WO2004013268A1 publication Critical patent/WO2004013268A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/14Fillers; Abrasives ; Abrasive compositions; Suspending or absorbing agents not provided for in one single group of C11D3/12; Specific features concerning abrasives, e.g. granulometry or mixtures

Definitions

  • the present invention relates to synergistic cleaning compositions for cleaning hard surfaces, comprising shape selective abrasive particulates and in particular abrasive particulates of a defined roundness factor.
  • the cleaning compositions of the present invention involv ⁇ ng such shape selective abrasives provide excellent cleaning while reducing significantly the damage caused on the hard surface.
  • Abrasive cleaning compositions in the form of liquids, gels, pastes, powders and bars are commonly used for clean ⁇ ng hard surfaces .
  • Abrasive cleaning compositions usually comprise a detergent active or surfactant, an abrasive material, and liquid or solid carrier materials. They are used for cleaning- hard surfaces typically constituted of ceramic, metal (e.g. stainless steel), stone, wood, vitreous enamel and chrome plated surfaces.
  • Abrasives conventionally used in such cleaning compositions are both organic and inorganic in nature.
  • Common inorganic abrasives include calcite, chalk, quartz, feldspar, marble, dolomite and aluminium oxide.
  • Inorganic abrasives are usually irregularly shaped, powdered or mined materials of average particle diameter of about 1 to 500 microns.
  • the abrasive in the composition helps in removal and dislodgment of the soil, especially those that fix onto the substrate, such as tough soils. While abrasives should not damage or scratch the surface from which the soil is to be removed, usually the abrasive needs to be so selected as to be harder than the soil to be removed and softer than the surface to be cleaned.
  • JPO2080497 (Asahi Chem Ind Co Ltd) discloses detergent compositions comprising 5-50% of a nonionic surfactant and 5- 30% of organic abrasives such as powdered polyethylene, powdered wood or cellulosic materials.
  • the detergent compositions remove soils such as carbon without scratching the su face .
  • the abrasives have a particle size of 10-500 microns and a specific gravity of 0.7 to 2.0.
  • US4992476 (Warner-Lambert Company) discloses skin cleansing and moisturizing compositions that comprise an oil phase comprising a non-ionic surfactant, an aqueous phase comprising a thickening agent and an abrasive.
  • the shape of the abrasive parrticle can be irregular, fiber, spherical, semi-spherical or spheroidal with a preferred particle size of about 3 to 10 micron.
  • GB2351502 (Mahmoud Salem) discloses liquid abrasive cleaning and polishing materials that contain pulverized fly ash. To achieve a creamy product which can be effectively applied to any part of the body use of spherical and non-angular pulverized fly ash particles is proposed.
  • the principal application is as a suitable abrasive material for face/body wash.
  • the compositions are directed to have a runny to viscous consistency and the teachings are principally directed, towards replacing corrosive and hazardous chemicals in cleaning compositions .
  • US5213588 discloses abrasive wiping articles for cleaning hard surfaces comprising 30 to 70% by weight of carboxylated, ionically charged polymeric abrasive particles and scrubbing bead mixture .
  • Commercially available polymeric beads are generally substantially spherical .
  • the spherical particles be milled or ground to fracture the particle into smaller particles having the desired angular edges to improve their abrasive properties .
  • WO9826040 (Kao Corporation) relates to a detergent impregnated wiping article useful for cleaning hard surfaces such, as glass .
  • the articl e essentially comprises a surfactant along -with the solid abrasive particles and a protective layer forming polymeric component , an organic solvent , a drying accelerator, and thickening polysaccharide .
  • the solid abrasive particles are spherical in nature and have an average particle size of 0 .01 to 15 micron .
  • the wiping article is not intended to remove stubborn soil
  • abrasives given their purpose for cleaning, are preferably particulates with rough/ irregular and angular particles of varied shapes and sizes .
  • Selective spherically shaped abrasives are proposed only for use with a cleaning article or in liquid compositions for skin cleansing to achieve spreadability or maintain a smooth contact of the abrasives with the body/skin so as to avoid rough edges which can damage the skin during application/use .
  • spherical abrasive particulate in cleaning compositions to achieve spreadability and easy wiping away of the dried composition it is preferred in the prior art to limit the particle size to 15 micron .
  • cleaning compositions for cleaning hard surfaces have distinct purpose and formulation requirements vis - a-vis the cleaning articles or the liquid skin/body cleaning formulations .
  • detergent formulations for hard surface cleaning are generally considered to require particulate abrasives with rough /irregular edges of varied shapes and sizes suitable to remove tough soil by their abrasive action .
  • repeated use of such abrasive based cleaning compositions for cleaning can cause damage to the surface or loss of lustre in case of polished surfaces .
  • It is a further object of the invention to provide a process for cleaning hard surfaces comprising the step of applying to the surface a cleaning composition incorporating particulate abrasive which will enable to obtain superior tough soil cleaning and on the other- hand ensure that the cleaning achieved does not affect the desired lustre and surface character of the substrate being cleaned.
  • the invention provides hard surface cleaning compositions comprising detergent active (surfactant) and a shape selective particulate abrasive having specified roundness factor as hereinbelow defined.
  • synergistic cleaning composition for hard surface cleaning comprising:
  • abrasives 0.1 to 40% by weight of detergent active; - 0.1 to 40% by weight of shape selective particulate abrasive, . said shape selective particulate of the abrasive having 0.6 to 1.0 Roundness Factor such as herein defined; optionally other abrasives such that the total amount of abrasives is from 0.1 to 98% by weight of the total composition.
  • a cleaning composition for hard surface cleaning as defined above wherein the abrasives have a weight average particle size ranging from 1 to 600 microns, preferably 1 to 200 microns, most preferably 10 to 50 microns.
  • a cleaning composition for hard surface cleaning as defined above, wherein the abrasives have a hardness of 10-5000 Kg/mm preferably 50-5000 Kg/mm , more preferably 100-3000 kg/mm 2 .
  • the cleaning compositions as defined above may comprise as optional, but preferred ingredients any or all of: up to 25% weight of alkanolamine and/or salt thereof, preferably at least 0.1%; up to 30% by weight of organic solvent ; an alkaline material .
  • compositions according to the invention comprise detergent actives (surfactants) , which are generally chosen from anionic, non-ionic, cationic, amphoteric or zwitterionic detergent actives.
  • the detergent active is preferably non-soap
  • a suitable class of anionic surfactants are water-soluble salts of organic sulphuric acid mono-esters and sulphonic acids having in the molecular structure a branched or straight chain alkyl group containing 8-22 C atoms or an alkylaryl group containing 6-20 C atoms in the alkyl part.
  • anionic surfactants are -water-soluble salts of: long chain (i.e. 8-22 C-atom) alcohol sulphates (hereinafter referred to as PAS) , especially those obtained by sulphating the fatty alcohols produced from tallow or coconut oil or the synthetic alcohols derived from petroleum; alkylbenzene-sulphonates, such as those in which the alkyl group contains from 6 to 20 carbon atoms; secondary alkanesulphonates .
  • PAS long chain alcohol sulphates
  • a suitable class of nonionic surfactants can be broadly described as compounds produced by the condensation of simple alkylene oxides , which are hydrophilic in nature, with an aliphatic or alkyl -aromatic hydrophobic compound having a reactive hydrogen atom.
  • the length of the hydrophilic or polyoxyalkiylene chain which is attached to any particular hydrophobic group can be readily adjusted to yield a compound having the desired balance between hydrophilic and hydrophobic elements . This enables the choice of nonionic surfactants with the right HLB .
  • Particular examples include : the condensation products of aliphatic alcohols having from 8 to 22 carbon atoms in either straight or branched chain configuration with ethylene oxide , such as a coconut alcohol /ethyl ene oxide condensates having from 2 to 15 moles of ethylene oxide per mole of coconut alcohol ; condensates of alkylphenols having C6-C15 alkyl groups with 5 to 25 moles of ethylene oxide per mole of alkylphenol ; condensates of the reaction product of ethylene - diamine and propylene oxide with ethylene oxide , the condensates containing from 40 to 80% of ethyleneoxy groups by weight and having a molecular weight of from 5 , 000 to 11 , 000 .
  • ethylene oxide such as a coconut alcohol /ethyl ene oxide condensates having from 2 to 15 moles of ethylene oxide per mole of coconut alcohol ; condensates of alkylphenols having C6-C15 alkyl groups with 5 to 25 moles
  • alkyl polyglycosides which are condensation products of long chain aliphatic alcohols and saccharides
  • tertiary amine oxides of structure RRRNO where one R is an alkyl group of 8 to 20 carbon atoms and the other R's are each alkyl or hydroxyalkyl groups of 1 to 3 carbon atoms, e.g.
  • dimethyldodecylamine oxide dimethyldodecylamine oxide
  • tertiary phosphine oxides of structure RRRPO where one R is an alkyl group of 8 to 20 carbon atoms and the other R's are each alkyl or hydroxyalkyl groups of 1 to 3 carbon atoms, for instance dimethyl-dodecylphosphine oxide
  • dialkyl sulphoxides of structure RRS0 where one R is an alkyl group of from 10 to 18 carbon atoms and the other is methyl or ethyl, for instance methyl-tetradecyl sulphoxide
  • atty acid alkylolamides such as the ethanol amides
  • - alkylene oxide condensates of fatty acid alkylolamides
  • alkyl mercaptans ary phosphine oxides of structure RRRPO, where one R is an alkyl group of 8 to 20 carbon atoms and the other R's are
  • a specific group of surfactants are the tertiary amines obtained by condensation of ethylene and/or propylene oxide with long chain aliphatic amines.
  • the compounds behave like nonionic surfactants in alkaline medium and like cationic surfactants in acid medium.
  • Suitaole amphoteric surfactants are derivatives of aliphatic secondary and tertiary amines containing an alkyl group of 8 to 20 carhon atoms and an aliphatic group substituted by an anionic water— solubilising group, for instance sodium 3-dodecylamino- propionate, sodium 3-dodecylaminopropane-sulphonate and sodium N-2-hydroxy-dodecyl-N-methyltaurate.
  • Suitable cationic surfactants can be found among quaternary ammonium salts having one or two alkyl or aralkyl groups of from 8 to 20 carbon atoms and two or three small aliphatic (e . g . methyl) groups , for instance cetyltrimethylammonium bromide .
  • Suitable zwitterionic surfactants can be found among derivatives of aliphatic quaternary ammonium, sulphonium and phosphonium compounds having an aliphatic group of from 8 to 18 carbon atoms and an aliphatic group substituted by an anionic water-solubilising group , for instance : 3 - (N, N-dimethyl-N- hexadecyl ammonium) -propane- 1-sulphonate betaine, 3 - (dodecylmethyl-sulphonium) -propane- 1-sulphonate betaine and 3 - (cetyl methyl -phosphonium) -ethanesulphonate betaine .
  • Other well known betaines are the alkyl ami dopropyl betaines e . g . those wherein the alkylamido group is derived from coconut oil fatty acids .
  • surfactants are compounds commonly used as surface-active agents given in the well-known textbooks: “Surface Active Agents” Vol.l, by Schwartz & Perry, Interscience 1949; “Surface Active Agents” Vol .2 by Schwartz, Perry & Berch, Interscience 1958; the current edition of "McCutcheon 1 s Emulsifiers and Detergents” published by Manufacturing Confectioners Company; “Tenside- Taschenbuch” , H. Stache, 2nd Edn. , Carl Hauser Nerlag, 1981.
  • compositions according to the invention comprise an anionic detergent active such as the alkali metal (e.g. sodium or potassium) and alkaline earth metal (such as calcium and magnesium) salts of alkyl benzene sulphonates, olefin sulphonates, alkyl sulphates, and the fatty acid monoglyceride sulphates and mixtures thereof. Soap may also optionally and additionally be added to the cleaning composition of the invention.
  • the term "soap" is used to denote the metal, ammonium or alkylammonium salt of a fatty acid of natural or synthetic origin.
  • the usual metal counterions are sodium and potassium, but other metal ions such as zinc, aluminium or magnesium may de used as desired.
  • a shape selective particulate abrasive is an essential component of compositions according to the present invention.
  • the particulate can be organic or inorganic in nature and is present in an amount of 0.1-40% wt of the total composition, preferably in an amount of at least 1%, more preferably at least 2%.
  • the shape selective abrasive particles of the invention have a Roundness Factor of from 0.6 to 1, preferably 0.7 to 1, more preferably 0.9 to 1.
  • Shape measures are physical dimensional measures that characterize the appearance of an object. Measures that determine the departure or approach of an object towards a circular/spherical shape include convexity, roundness, sphericity etc. For the purposes of this invention, the Roundness Factor is used to determine the circular/spherical nature of the abrasive particles.
  • the Roundness Factor is a measure that excludes local irregularities and is obtained as the ratio of the projected area of an object to the area of a circle with the same convex perimeter. It is usually based on measurement of the two dimensional projection of a particle. Optical microscopy is one method of measuring the Roundness Factor.
  • the Roundness Factor can be calculated as follows:
  • RF is less than 1 for an object that departs from circularity.
  • Suitable abrasives are selected rom inorganic or organic, synthetic or natural sources. These abrasives can be solid, porous or hollow. Examples of natural inorganic abrasives include apatite, feldspar, quartz, topaz, calcite, alumina, limonite, kimenite, ceramic, leucite, glass, taconite, silica sand, lint, vermiculite, fire clay, diaspore, bauxite, limestone, iron pyrite, magnetite and hematite.
  • Examples of synthetic inorganic abrasives include various silicates & silica, glass, alumina, ferrite, pearlite, austenite, martensite, cemetite, carbides of chromium, tungsten, silicon, titanium and vanadium.
  • Suitable organic abrasives are selected from polystyrene, polyacrylate, polmethylmethacrylate, polycarbonate, polyethylene etc, and can be with varying degrees of cross polymerisation.
  • abrasives examples include Zeeospheres TM & Scotchlite TM available from 3M.
  • glass beads are DurasphereTM and AccusphereTM available from MO-SCI Corporation, Rolla, US; glass bead BL , glass bead AF, glass bead AQ available from Bharat Glass Beads, Mumbai, INDIA.
  • a range of spherical glass materials is also available from Potters Industries Inc. US.
  • the spherical glass materials can be solid or hollow and hence have varying bulk density ranging from 0.1 to 3.0 g/ml . They are available in varying colours , while the preferred colour is colourl ess .
  • the refractive index typically ranges from 1 . 46 to around 1 . 9 .
  • Polymeric spherical beads can be of varying softening or melting point .
  • the preferred melting point is above 100°C .
  • Example is various polymeric beads available from Reliance Co, INDIA, Phenoset microsphere from Eastech, Philadelphia, US .
  • the hardness of the abrasives may range from 10 to 5 O00 Kg/mm 2 and the preferred abrasives for use in general purpose compositions have a hardness 50 to 5000 Kg/mm 2 , more preferably 100-3000 Kg/mm 2 .
  • the bulk density of the abrasives may range from 0 . 1 to 3 . 5 g/ml and the preferred bulk density is from 0 . 3 to 2 . 8 g/ml .
  • the average particle size of the shape selective abrasives may range from 1-600 microns and the preferred average particle size is at least lO ⁇ m and more preferably above 15 ⁇ m .
  • the preferred maximum average particle size is 300 ⁇ m, more preferably 200 ⁇ m, even more preferably lOO ⁇ m or even 50 ⁇ m. Particles sizes as mentioned herein are obtained using a Malvern Particle Sizer Hydro 200S .
  • abrasives may be present in the compositions of the invention, such that the total amount of abras ive in the composit ion is between 0 . 1 to 98% .
  • the amount of detergent active and abrasive can be suitably varied to ensure optimum properties as to formulation and consumer benefits.
  • the optional abrasives can be irregularly shaped, can be organic or inorganic in nature, can have, an average particle size from 1 to 500 ⁇ m and a hardness from 70-5000 Kg/mm 2 .
  • the optional abrasive can be a water insoluble particulate or the abrasive may be soluble and present in such excess to its solubility in any water present in the composition that solid abrasive exists in the composition.
  • a particulate abrasive with a liquid absorptive capacity of 100 to 300% may optionally be incorporated and can be selected from precipitated or spray dried silica.
  • the cleaning compositions of the present invention preferably contain from 10% to 95%, more preferably from 20% or even 40% to 90%, even more preferably from 60% to 85%, of total abrasive material (inclusive of the shape selective abrasive) .
  • Preferred other abrasive materials for use herein are silica, various forms of calcium carbonate, feldspar, and mixtures thereof.
  • Other abrasives such as plastic, polymeric beads, kaolin, anthracite, gypsum, mica, bauxite, calcite, dolomite, siderite, fluorite can be used.
  • the abrasive particles should have a average particle size of from 300 ⁇ m to about I ⁇ m, preferably 200-10 ⁇ m. Suitable abrasive materials are disclosed for example in US Patent Nos. 3,583,922; 3,829,385; 3,715,314; and 4,287,080. (Alkanol) amines and salts thereof
  • the amine may be a mono- or di-a ine or a substituted amine such as an alkanolamine . It is preferable that the molecular weight of the amine is less than 300 and the pKa is greater than 8 . 0 . It is also preferable that the amine is a primary amine .
  • the alkanolamine for the present invention can be mono- or poly- functional as regards the amine and hydroxy moieties .
  • Preferred alkanolamines are generally of the formula H 2 N-R ⁇ -OH where R x is a linear or branched alkyl chain having 2 - 6 carbons .
  • Preferred alkanolamines include 2 ⁇ amino-2 -methyl - 1 -propanol , aminomethyl propane-diol , mono- di - and tri-ethanolamine, mono- di- and tri- isopropanolamine , dimethyl - , diethyl - or dibutyl — ethanolamine , and mixtures thereof .
  • alkanolamines such as orpholine can also be employed .
  • Particularly preferred alkanolamines especially to help cleaning tough or aged soil are 2 -amino- 2 -methyl -1 -propanol (AMP) and onoethanolamine (MEA) .
  • AMP 2 -amino- 2 -methyl -1 -propanol
  • MEA onoethanolamine
  • the acid part of the amine salts may be inorganic or organic .
  • Suitable inorganic acid are phosphoric , hydrochloric , sulphuric acid, and organic acids are oxalic , acetic , malonic , etc .
  • the alkaline material can optionally be used in the composition of the invention.
  • the alkaline material is preferably chosen from alkali and alkaline earth metal hydroxides like Na, K or Ca hydroxide, or alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium tripolyphosphate (STPP) , tetrasodium pyrophosphate (TSPP) , alkaline silicate, alkaline meta silicate, sodium aluminate, and combinations of these.
  • These builder/buffer salts are suitably used in an amount ranging from 0.5 to 25% by wt, preferably from 5 to 15% by wt .
  • an amine salt is employed in the composition of the invention, it is preferred to use an alkaline material .
  • Solvents can optionally be used in the cleaning compositions of the inventio .
  • Suitable solvents include saturated and unsaturated, linear or branched hydrocarbons, and/or materials of the general formula:
  • R x and R 2 are independently Cl-7 alkyl or H, but not both hydrogen, m and n are independently 0-5.
  • Preferred solvents are selected from the group comprising terpenes , C ⁇ 0 - C ⁇ 6 straight chain paraffins , and the glycol ethers .
  • Suitable glycol ethers include di-ethylene glycol mono n-butyl ether , mono-ethyl ene glycol mono n-butyl ether, propylene glycol n-butyl ether and mixtures thereof .
  • Suitable terpenes include d-limonene.
  • Preferred paraffins include the materials such as those available in the marketplace as Shellsol-TTM.
  • Typical levels of solvent range from 1-15% wt. It is particularly preferred to use terpenes at levels 1-3% wt . Some of these terpene materials, such as limonene, have the further advantage that they exhibit insect-repellency.
  • the straight chain paraffins can be used at higher levels than the terpenes, as these materials are less aggressive to plastics.
  • glycol ethers are preferred over the other solvents, at typical levels of 3-10% wt . on product with di-ethylene glycol mono n-butyl ether being particularly preferred.
  • a portion of the solvent can be introduced as a perfume component, although the levels of solvent required would generally require the addition of higher levels of this component that would normally be present as a perfume ingredient in cleaning compositions.
  • the terpenes are used in this manner as selected terpenes, such as limonene, have a pleasant citrus smell, whereas paraffins and glycol ethers are generally odourless or have a low odour.
  • the composition according to the invention can contain other ingredients that aid in their cleaning performance.
  • the composition can contain detergent builders other than the alkaline salts mentioned above, such as nitrilo- triacetates, polycarboxylates, citrates, dicarboxylic acids, water-soluble phosphates especially polyphosphates, mixtures of ortho- and pyrophosphates , zeolites and mixtures thereof .
  • Such builders can additionally function as abrasives if present in an amount in excess of their solubility in water and having the required particle size and hardness .
  • the builder other than the alkaline salts when employed preferably will form from 0 . 1 to 25% by weight of the composition .
  • Composition according to the invention can also contain, in addition to the ingredients already mentioned, various other optional ingredients such as structurants , polymers , viscosity modifiers , colourants , hydrotropes , whiteners , optical bright eners , soil suspending agents, detersive enzymes , compatible bleaching agents (particularly hypohalites) , and preservatives .
  • the composition of the invention can be in the form of a liquid, gel, paste, mousse, aerosol, powder or a bar.
  • Preferred forms are a solid composition and aqueous liquids.
  • the pH of the compositions may range from 0.5-13 , depending on the cleaning purpose for which they are intended.
  • Solid compositions preferably have pH 6-11. They are particularly suitable for removing fatty and other food-derived soils.
  • Acidic compositions are particularly suited for cleaning hard surfaces where lime scale and hard soap deposition and/or rust is a problem e.g. bathrooms. Such compositions will be capable of providing superior cleaning without scratching the surface.
  • cleaning compositions of the invention in the form of a cleaning kit, for example providing the composition with a cleaning implement like a sponge, pouf or scrubber along with an instruction manual describing the appropriate procedure to be followed or the effective use of the cleaning system.
  • the cleaning compositions of the invention can be made by any conventional process known in the art. Preferred forms are liquid abrasive cleaners, pastes, gels, powders and bars.
  • the cleaning compositions of the invention could in principle be converted into a ready to use wet wipe by absorbing the composition onto a flexible base body, this is not a preferred embodiment of the invention.
  • the compositions of the invention do preferably not have a protective layer-forming component such as defined in O98/26040, as they have no role to play in the cleaning processes for which the compositions according to the invention are intended.
  • the invention does not comprise compositions in which the shape selective abrasive particles are affixed to a flexible base body.
  • a process for cleaning hard surfaces comprising the step of applying to the surface a cleaning composition as defined above.
  • the composition may be applied directly to the surface, or it may first be applied to a cleaning tool such as a brush, cloth, scrubber or similar implement whereafter the surface is cleaned with the cleaning tool.
  • a cleaning tool such as a brush, cloth, scrubber or similar implement
  • the cleaning composition is thereafter removed from the surface, together with the soil, by rinsing with water, and further wiping if desired.
  • Comparative Example A The procedure of Comparative Example A was followed except that 0.54 Kg of synthetically prepared calcium carbonate with a roundness factor of 0.9 and a hardness of 100 Kg/mm 2 was added instead of calcined alumina.
  • Example 2 The procedure of Comparative Example A was followed except that
  • the Roundness Factor of the abrasive particles of Comparative Example A and Examples 1-2 were obtained from the SEM pictures of representative samples of the selected abrasives. Evaluation of tough soil cleaning:
  • a mixture of sunflower oil and wheat flour was used as the 'soil' whose removal was evaluated.
  • the soil was placed evenly on a square SS-304 stainless steel plate of 1mm thickness.
  • a sponge was used to spread the soil mixture on the plate.
  • the soiled plate was placed on a hot plate of >300°C.
  • the soil mixture turned into a black carbonized soil.
  • the carbonized soil plate was aged for 2 h at room temperature and then taken for cleaning.
  • the soiled stainless steel plates were cleaned with the formulations of Comparative Example A and Examples 1-2 . 10% product concentration is used for the cleaning and the plates are cleaned by providing a constant cleaning effort for 90 seconds . The cleaning efficacy is reported as percentage tough soil cleaned .
  • Table 1 shows that the cleaning compositions 1 and 2 according to the invention demonstrates superior tough soil cleaning.
  • Comparative Example A The procedure of Comparative Example A was followed except that 0 . 54 Kg of spherical alumina (GMU from Indal Ltd . , India) that had a hardness of 200 Kg/mm 2 was added in place of calcined alumina .
  • GMU spherical alumina
  • Comparative Example A The procedure of Comparative Example A was followed except that 0.54 Kg of spherical ceramic abrasive (G850TM ex 3M Minnesota Mining and Manufacturing Company, U.S) that had a hardness of 900 Kg/mm 2 was added in place of calcined alumina.
  • the detergent bars of Examples 3-4 were processed as a batch of 18 kg.
  • the Roundness Factor of the abrasive particles of Comparative Examples 3-4 were determined as described for Comparative Example A and Example 1-2.
  • Example 5 0.54 kg of calcined alumina (irregular shape) was added.
  • the spherical abrasive, 0.54 Kg of G850TM ex 3M was added instead of the calcined alumina of Comparative Example C.
  • the detergent bars were processed as a batch of 18 kg.
  • the tough soil cleaning for the formulations of Comparative Example B, C and Example 5 was evaluated as per the procedure given for Comparative Example A and Example 1-4.
  • the shine loss was determined as per the procedure for Examples A and 3-4.
  • Table 3 The composition details and the results of evaluation of the detergent formulations are presented in Table 3.
  • composition was formulated in the form of a cream.
  • the ingredients described in Table 4 were added in a sequential manner in a 2 1 glass beaker and mixed using an overhead stirrer. A gap of 5-10 minutes mixing was given prior to addition of a fresh ingredient. Perfume was added after the final temperature of the mixture was below 25 C.
  • composition is described in Table 4 and part (5% by wt . ) of calcite was replaced with glass beads, which is an abrasive with a roundness factor of 0.96 which is according to the invention.
  • Soils of calcium soap were prepared by coating a uniform layer of the solution on enamel plates. These soils were dried in an oven for fixed period of time and were then cooled to room temperature. Samples were tested by placing 5 g of product (Examples D, 6 and 7, on the soil area of 25 sq. cm and cleaned with a load of 1 kg using a cloth tool. Cleaning efficacy was evaluated by calculation the area cleaned using a grid. Evaluation of loss of shine:
  • compositions were formulated in the form of a cream.
  • the ingredients described in Table 6 were added in a sequential manner in a 2 1 glass beaker and mixed using an overhead stirrer. A gap of 5-10 minutes mixing was given prior to addition of a fresh ingredient .
  • Perfume was added after the final temperature of the mixture was below 25° C .
  • the composition was formulated at different pH ranges 2 , 7 and 11 . Calcite was used as the abrasive when the pH of the formulation was 7 or 11 and feldspar -was used as the abrasive when the pH of the formulation was 2 .
  • compositions described in Table 6 were prepared and part (5% by wt.) of calcite or Feldspar was replaced with glass beads, which is an abrasive with a roundness factor of 0.96 according to the invention.
  • the composition was formulated at different pH ranges 2, 7 and 11.
  • the evaluation of the cleaning of accumulated calcium soap was done by the procedure described above .
  • the data presented show that the superior cleaning benefit obtained by replacing the abrasive with shape selective abrasive having a roundness factor according to the invention is not influenced even when the pH of the composition is varied over a wide range from 2 to 11.
  • the cleaning compositions of the present invention surprisingly achieved superior tough soil cleaning in use of the shape selective particulate abrasives and also avoided shine loss with reduced scratching on the hard surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne des compositions détergentes synergiques, ainsi qu'un procédé pour nettoyer des surfaces dures. Ladite composition comprend 0,1 à 40 % de principe actif détergent et 0,1 à 40 % de particules abrasives à sélectivité de forme possédant un facteur d'arrondi compris entre 0,6 et 1.
PCT/EP2003/007229 2002-07-30 2003-07-04 Compositions detergentes abrasives pour surfaces dures WO2004013268A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003258507A AU2003258507A1 (en) 2002-07-30 2003-07-04 Abrasive hard surface cleaning compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN681/MUM/2002 2002-07-30
IN681MU2002 2002-07-30

Publications (1)

Publication Number Publication Date
WO2004013268A1 true WO2004013268A1 (fr) 2004-02-12

Family

ID=31198593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/007229 WO2004013268A1 (fr) 2002-07-30 2003-07-04 Compositions detergentes abrasives pour surfaces dures

Country Status (3)

Country Link
AR (1) AR040716A1 (fr)
AU (1) AU2003258507A1 (fr)
WO (1) WO2004013268A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043728A1 (fr) * 2009-10-06 2011-04-14 Bwe I Malmö Ab Traitement de planchers
WO2011016958A3 (fr) * 2009-07-27 2011-09-09 The Procter & Gamble Company Composition détergente
US8173815B2 (en) 2004-03-11 2012-05-08 Theravance, Inc. Biphenyl compounds useful as muscarinic receptor antagonists
WO2015078679A1 (fr) * 2013-11-28 2015-06-04 Unilever N.V. Composition de nettoyage de surfaces dures
WO2016037975A1 (fr) * 2014-09-11 2016-03-17 Unilever N.V. Composition en pâte pour le nettoyage des surfaces dures
WO2016037884A1 (fr) * 2014-09-11 2016-03-17 Unilever N.V. Composition en pâte pour le nettoyage des surfaces dures
KR20230000783A (ko) * 2021-06-25 2023-01-03 류승현 반도체 웨이퍼 세정용 조성물 및 이를 이용한 반도체 웨이퍼 세정 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038653A (en) * 1933-09-20 1936-04-28 Research Corp Cleaning composition
US3325415A (en) * 1965-05-07 1967-06-13 Colgate Pahmolive Company Emulsion compositions
JPH0280497A (ja) * 1988-09-19 1990-03-20 Asahi Chem Ind Co Ltd 研磨材含有洗浄組成物
WO2000020544A1 (fr) * 1998-10-06 2000-04-13 Unilever Plc Composition abrasive non liquide
WO2000020545A1 (fr) * 1998-10-06 2000-04-13 Unilever Plc Arre de nettoyage pour surfaces dures
WO2000068349A1 (fr) * 1999-05-11 2000-11-16 Unilever N.V. Composition detergente solide contenant un oxyde d'aluminium
GB2351502A (en) * 1999-04-17 2001-01-03 Mahmoud Salem Cleaning materials including fly ash
WO2001083727A2 (fr) * 2000-05-04 2001-11-08 Dsm N.V. Procede permettant de produire des granules enzymatiques
WO2002038720A1 (fr) * 2000-11-03 2002-05-16 Unilever N.V. Composition de nettoyage de surfaces dures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038653A (en) * 1933-09-20 1936-04-28 Research Corp Cleaning composition
US3325415A (en) * 1965-05-07 1967-06-13 Colgate Pahmolive Company Emulsion compositions
JPH0280497A (ja) * 1988-09-19 1990-03-20 Asahi Chem Ind Co Ltd 研磨材含有洗浄組成物
WO2000020544A1 (fr) * 1998-10-06 2000-04-13 Unilever Plc Composition abrasive non liquide
WO2000020545A1 (fr) * 1998-10-06 2000-04-13 Unilever Plc Arre de nettoyage pour surfaces dures
GB2351502A (en) * 1999-04-17 2001-01-03 Mahmoud Salem Cleaning materials including fly ash
WO2000068349A1 (fr) * 1999-05-11 2000-11-16 Unilever N.V. Composition detergente solide contenant un oxyde d'aluminium
WO2001083727A2 (fr) * 2000-05-04 2001-11-08 Dsm N.V. Procede permettant de produire des granules enzymatiques
WO2002038720A1 (fr) * 2000-11-03 2002-05-16 Unilever N.V. Composition de nettoyage de surfaces dures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 270 (C - 0727) 12 June 1990 (1990-06-12) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173815B2 (en) 2004-03-11 2012-05-08 Theravance, Inc. Biphenyl compounds useful as muscarinic receptor antagonists
WO2011016958A3 (fr) * 2009-07-27 2011-09-09 The Procter & Gamble Company Composition détergente
CN102471733A (zh) * 2009-07-27 2012-05-23 宝洁公司 洗涤剂组合物
WO2011043728A1 (fr) * 2009-10-06 2011-04-14 Bwe I Malmö Ab Traitement de planchers
WO2015078679A1 (fr) * 2013-11-28 2015-06-04 Unilever N.V. Composition de nettoyage de surfaces dures
WO2016037975A1 (fr) * 2014-09-11 2016-03-17 Unilever N.V. Composition en pâte pour le nettoyage des surfaces dures
WO2016037884A1 (fr) * 2014-09-11 2016-03-17 Unilever N.V. Composition en pâte pour le nettoyage des surfaces dures
EA031894B1 (ru) * 2014-09-11 2019-03-29 Юнилевер Н.В. Композиция пасты для чистки твердых поверхностей
EA031869B1 (ru) * 2014-09-11 2019-03-29 Юнилевер Н.В. Композиция пасты для очистки твердых поверхностей
KR20230000783A (ko) * 2021-06-25 2023-01-03 류승현 반도체 웨이퍼 세정용 조성물 및 이를 이용한 반도체 웨이퍼 세정 방법
KR102521693B1 (ko) 2021-06-25 2023-04-13 류승현 반도체 웨이퍼 세정용 조성물 및 이를 이용한 반도체 웨이퍼 세정 방법

Also Published As

Publication number Publication date
AU2003258507A1 (en) 2004-02-23
AR040716A1 (es) 2005-04-20

Similar Documents

Publication Publication Date Title
JP5658278B2 (ja) 液体クリーニング及び/又はクレンジング組成物
US8440604B2 (en) Liquid hard surface cleaning composition
EP2350247B1 (fr) Composition liquide de nettoyage de surfaces dures
JP5864584B2 (ja) 液体洗浄組成物
US8569223B2 (en) Liquid hard surface cleaning composition
US20140352722A1 (en) Liquid cleaning and/or cleansing composition
CA1104027A (fr) Traduction non-disponible
JP2020180286A (ja) 改善された泡立ちを有する食器洗浄組成物
WO2004013268A1 (fr) Compositions detergentes abrasives pour surfaces dures
US9771551B2 (en) Liquid cleaning composition with abrasives
WO2000020545A1 (fr) Arre de nettoyage pour surfaces dures
JPS601919B2 (ja) 研摩材含有の液体洗剤組成物
CA1048365A (fr) Detergent abrasif
EP3191574B1 (fr) Composition de pâte pour le nettoyage de surface dure
JPS62241999A (ja) 液体研磨クリ−ナ−組成物
JPS6015680B2 (ja) すりみがきクリ−ニング組成物
WO2000041468A2 (fr) Composition detergente
WO2000020544A1 (fr) Composition abrasive non liquide
EP3004304A1 (fr) Composition pour le nettoyage de surfaces dures
JPS6050400B2 (ja) 液体洗浄剤組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP