[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004010612A1 - 光伝送方法及びシステム - Google Patents

光伝送方法及びシステム Download PDF

Info

Publication number
WO2004010612A1
WO2004010612A1 PCT/JP2002/007427 JP0207427W WO2004010612A1 WO 2004010612 A1 WO2004010612 A1 WO 2004010612A1 JP 0207427 W JP0207427 W JP 0207427W WO 2004010612 A1 WO2004010612 A1 WO 2004010612A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission circuit
optical
station
home
circuit
Prior art date
Application number
PCT/JP2002/007427
Other languages
English (en)
French (fr)
Inventor
Kazumitsu Maki
Haruo Yamashita
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2002/007427 priority Critical patent/WO2004010612A1/ja
Priority to JP2004522705A priority patent/JP4044558B2/ja
Publication of WO2004010612A1 publication Critical patent/WO2004010612A1/ja
Priority to US11/039,916 priority patent/US20050123293A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/078Monitoring an optical transmission system using a supervisory signal using a separate wavelength

Definitions

  • the present invention relates to an optical transmission system, and more particularly to a bidirectional optical transmission method and system using the same wavelength using a single-core optical fiber.
  • WDM wavelength division multiplexing
  • bidirectional transmission can be performed using a single-core optical fiber because of the large number.
  • a single-core bidirectional optical transmission system there is a WDM bidirectional transmission system that uses different wavelengths for upstream and downstream.However, it is necessary to prepare light-emitting elements with different wavelengths, and it depends on the wavelength division multiplexer. There is an economic limit, such as the need to have the property.
  • wavelength is the same valuable resource as radio waves, it is desirable that one service can be transmitted bidirectionally with one wavelength.
  • Such single-wavelength bidirectional transmission systems with the same wavelength include a time-axis compression multiplexed bidirectional optical transmission system and an echo canceller bidirectional optical transmission system, both of which operate on the same principle as the case of metallic transmission. .
  • the station-side transmission circuit 1 and the home-side transmission circuit 2 face each other via the optical fiber 30.
  • the information transmitted from the office-side transmission circuit 1 to the home-side transmission circuit 2 is transmitted to the office-side transmission logic circuit.
  • the signal is time-axis-compressed by the unit 11, converted into an optical pulse by the station-side electric / optical conversion circuit unit 12, and sent to the optical fiber 30 via the station-side optical coupler 13.
  • the optical pulse received from the optical fiber 30 via the in-home optical coupler 23 is converted back to an electrical signal in the in-home optical / electrical conversion circuit 24, which is further received in the in-home.
  • the logic circuit section 25 expands the time axis to extract the original speed information.
  • the time axis is compressed by the in-home transmission logic circuit 21 and the optical signal is transmitted by the in-home electric-optical conversion circuit 22. Then, the light is converted to an optical fiber 30 and transmitted to the optical fiber 30 via the optical coupler 23 inside the house.
  • the optical pulse received from the optical fiber 30 via the station-side optical coupler 13 is converted into an electric signal by the station-side optical / electrical conversion circuit section 14, and the station-side reception logic circuit section 15 Extend the time axis to extract the original speed information.
  • the station side control circuit section 16 generates a control signal and the like necessary for time axis operation from a clock pulse in the station.
  • the inside control circuit unit 26 extracts quick information necessary for time axis operation from the received pulse train, and generates necessary control signals and the like.
  • the downstream burst signal 1 1 1 2 transmitted from the station side transmission circuit 1 is received by the inside transmission circuit 2 after receiving the attenuation due to the loss in the optical fiber 30 and the propagation delay time (Tps).
  • the in-home transmission circuit 2 After receiving the downstream burst signal 1 1 1 2, the in-home transmission circuit 2 transmits the upstream burst signal 1 1 1 4 after a protection time (Tg) for preventing interference between upstream and downstream.
  • Tg protection time
  • the upstream burst signal 111 is received by the station side transmission circuit 1 after receiving the attenuation due to the loss in the optical fiber 30 and the propagation delay time (Tpr).
  • the occupation time (Tis) of the downstream burst signal 1 1 1 and the occupancy time (Tir) of the upstream burst signal are equal.
  • the downstream propagation delay time (Tps) and the upstream propagation delay time (Tpr) are equal.
  • Up 'occupation time of the downlink Pasuto signal (Tis, Tir) and uplink' becomes the downlink propagation delay time between (Tps, Tpr) and guard time (T g) the sum of Pasuto cycle time (Tb).
  • Echo canceller bidirectional optical transmission system (one-to-one connection: Fig. 9)
  • the office side echo canceller circuit section 7 and the office side subtracter 18 are provided, and the in-home transmission circuit 2 includes an in-home echo canceller circuit section 27 and an in-home subtractor 28.
  • the station-side transmission circuit 1 and the home-side transmission circuit 2 face each other via the optical fiber 30.
  • the information transmitted from the station side to the inside of the house is added with a frame synchronization signal and the like by the station side transmission logic circuit section 11, becomes an optical pulse by the station side electric / optical conversion circuit section 12, and becomes the station side optical coupler 1 It is sent to the optical fiber 30 via 3.
  • the received optical pulse is guided from the optical fiber 30 through the inside optical coupler 23 to the inside-home optical / electrical conversion circuit section 24, and the frame synchronization signal is processed by the inside reception logic circuit section 25. And then retrieve the original information.
  • a frame synchronization signal and the like are added by the inside-of-house transmission logic circuit 21 and are converted into optical pulses by the inside-of-house electrical-optical conversion circuit 22.
  • the light is sent to the optical fiber 30 via the optical coupler 23.
  • the received optical pulse is guided from the optical fiber 30 through the station-side optical coupler 13 to the station-side optical / electrical conversion circuit section 14, and the frame-side synchronization signal is sent to the station-side reception logic circuit section 15. After performing the above processing, extract the original information.
  • the above operation is the same as that of the time axis compression multiplexed bidirectional optical transmission system shown in Fig. 7, except that in the echo canceller bidirectional optical transmission system, during the information transfer, the data goes up on the optical fiber 30 and goes down in the Z direction.
  • the point that transmission signals are continuously and simultaneously mixed is different from the time axis multiplexed bidirectional optical transmission method.
  • the station-side echo canceller 17 performs a trace when starting communication.
  • the training signal 3 1 1 2 from the station side transmission logic circuit section 11 is transmitted as an optical signal 3 11 3 to the optical fiber 30 via the station side optical coupler 13.
  • the sum of the reflection signal 3 1 1 4 of the training signal 3 1 1 3 transmitted to the optical fiber 3 0 and the training signal 3 1 1 5 leaked by the optical coupler 13 at the station is the optical-to-electrical conversion at the station.
  • the signal is input to the circuit section 14 and converted into an electric signal.
  • the station-side echo canceller 17 based on the station-side training signal 3 1 1 2 Set its own operating parameters to generate a signal (called an echo signal) that cancels out the sum signal of the leakage signal 311 and the reflection signal 311 from the optical fiber. I do.
  • the station side subtractor 18 receives a signal from the station side optical / electrical conversion circuit section 14 from the inside of the house.
  • the leaked signal of the received signal and the station-side transmission signal is added, and an echo signal is added from the station-side echo canceller 17.
  • the output signal of the station side subtracter 18 becomes only the received signal from the inside of the house and is sent to the station side reception logic circuit 15. Since the operation of the echo canceller inside the house is the same, the description is omitted.
  • the station-side control circuit 16 generates necessary control signals such as a frame synchronization signal from the station-side terminal SCK.
  • the inside control circuit unit 26 extracts information such as a frame synchronization signal from the received pulse train, and generates a necessary control signal.
  • the echo canceller bidirectional optical transmission system also has a maximum applicable distance (Lmax) as a system due to restrictions due to optical fiber loss. This will be described later.
  • the upstream / downstream signals are separated in time, so that the optical coupler is simpler, but the transmission signal speed is lower than the information speed. More than twice as necessary.
  • the transmission signal speed is almost the same as the information speed, but a directional coupler must be used for the optical coupler to improve the separation between uplink and downlink. .
  • One-core same-wavelength time-axis compression multiplexed bidirectional optical transmission system (one-to-many connection -.mil)
  • the time-axis compression multiplexed bidirectional optical transmission system as a single-core bidirectional transmission system with the same wavelength is an economical single-core bidirectional optical transmission system in which multiple users share an optical fiber and information band using an optical branching device. It is applied to the same wavelength one-to-many connection type optical branching bidirectional optical transmission system.
  • This single-core, one-wavelength, one-to-many connection optical branching bidirectional optical transmission system uses PON (Passive PT / JP2002 / 007427
  • optical network This is a type of optical transmission system called an “optical network” system.
  • the PON system is detailed in, for example, the document “xDS L / FTTH” (ASCII Press Office), and thus description thereof is omitted here.
  • an optical transmission line termination circuit (hereinafter referred to as an OLT (Optical Line Termination circuit)) corresponding to the above-mentioned station-side transmission circuit 1 10.
  • an optical network unit (hereinafter referred to as ONU (Optical Network Unit)) 201 corresponding to the in-home transmission circuit 2 are connected in a 1: N connection via an optical branching device 300.
  • N is an integer indicating the number of connected ONU.
  • the transmission information is accommodated in a predetermined time slot, and control bytes necessary for communication as a PON system for performing one-to-many connection type optical branching bidirectional optical transmission are added and transmitted as necessary.
  • information time slots addressed to each ONU 201 are multiplexed and continuously transferred. Extract only information time slots addressed to you.
  • the upstream direction from each ONU 201 to the OLT 101 is transferred in units of a predetermined time slot specified by the OLT 101. That is, as shown in FIG. 12, in the burst period Tb, the time taken for the downlink burst signal 1 1 1 2 to return at the station side —LT 101 —home side ONU 201 —station side OLT 101 is the entire time.
  • the optical pulse 21 12 for delay time measurement is sent from the OLT 101 to the new ONU 201 1 inside the new home, and the delay time Ta unique to the ONU 201 1 inside the home is measured. deep. Then, a time slot Tsl is allocated to the existing ONU 2012 and a time slot Ts2 is allocated to the new ONU 2011 to transmit a burst signal.
  • the new ONU 201 1 when the new ONU 201 1 is installed while the existing ONU 201 2 is operating, the information that ⁇ unassigned time slots should be answered by ONUs '' in the ONU operation guarantee window Tw from the station side LT 101 is included.
  • the pulse train 21 12 for delay time measurement is transmitted by broadcast.
  • the new ONU 201 1 Upon receiving this, the new ONU 201 1 returns a response pulse train 2 114 including its own ID information.
  • the OLT 101 When the OLT 101 receives the response from the newly established ONU 201 1, the delay time T a And transmit the designated time slot and delay adjustment time T d to the new ONU 2011 in the frame information F.
  • the pulse train for delay time measurement 2112 can be inserted in every burst period, and a certain line can be inserted once every few seconds, and even when an ONU is newly established, it can be inserted by an external instruction. You can also.
  • the newly installed ONU 201 1 reads out its time slot position Ts2 and delay adjustment time Td from the frame information F at the head of the burst signal from the station side LT 101, and sends it from the station OLT 101 in the form of a broadcast. Only the information of the specified time slot Ts2 is received from the incoming information sequence.
  • the new ONU 201 1 sets the transmission timing to the OLT 101 on the station side as the protection time Tg (fixed value), the delay adjustment time Td (depending on the distance between the ONU and OLT), and the time slot position designation time Tt (for each ONU). Different) and sends the information to the specified time slot Ts2.
  • optical signals are transferred after being compressed on the time axis in the upstream and downstream directions.
  • the time axis compression operation and the decompression operation in the transmission of information transmitted from the station side to the house side and information in the opposite direction from the house side to the station side are performed as shown in FIG.
  • the bit stream of the transmission information of the station side LT 101 is compressed on the time axis at every noast period (Tb), put into, for example, the time slot Tsl in the signal 1112, and sent to the ONU 201 on the home side.
  • the bit stream compressed in the time axis of the time slot Tsl is expanded in the time axis by the in-house ONU 201 to return to the original speed, and is used as the bit stream of the in-house received information.
  • the difference between the single-core time axis compression multiplexed bidirectional optical transmission system and the one-to-many connection type optical branching bidirectional optical system based on the PON system is that the upstream information from each connected ONU 201 is transmitted to the optical branching device station.
  • TDMA Time Domain Multiple Access
  • the information time slots Tsl and Ts2 are transmitted at a predetermined timing based on the transmission delay time instruction from the OLT 101.
  • the information time slots Tsl and Ts2 from the ONU Be identified.
  • FIGS. 12 and 13 The operation of FIGS. 12 and 13 will be further described with reference to FIG.
  • the downstream burst signal 11 12 transmitted from the OLT 101 at the station is data containing information time slots addressed to each ONU 201, and receives the attenuation due to loss and propagation delay time (Tps) in the optical fiber. Received at k.
  • the data received by each ONU 201 has different attenuation and propagation delay time according to the distance from the OLT 101.
  • the on-premises ONU 201 extracts the information time slot addressed to the ONU # k from the downlink burst signal 11 12, and upon completion of reception, sets the uplink time from each ONU 201 during the protection time (Tg) to prevent uplink and downlink interference.
  • Tg protection time
  • Td delay adjustment time
  • the information is transferred to the time slot Ts # k specified by the OLT 101 in the time slot of the upstream burst signal 1114.
  • This upstream burst signal 1114 is received by the station side after receiving attenuation due to loss and propagation delay time (Tpr) in the optical fiber 30.
  • the upstream burst signal 1114 received by the station side ⁇ LT 101 is a set of information time slots transmitted from each ONU 201.
  • the occupation time (Tis) of the downlink burst signal 11 and 12 is equal to the occupation time (Tir) of the uplink burst signal.
  • the downstream propagation delay time (Tps) and the upstream propagation delay time (Tpr) are equal for each ONU 201, but different ONU 201s have different distances from OLT 101, so the values differ for each ONU 201. .
  • the sum of the occupation time of the uplink Z downlink burst signal, the uplink delay time, the guard time, and the delay adjustment time is the burst cycle time (Tb).
  • Lmax maximum applicable distance
  • This maximum distance is used to determine the delay time that each ONU 201 adjusts to be logically equidistant from the OLT 101. That is, in order to avoid collision of the upstream burst signal 1114 from each ONU 201 and thereby guarantee the operation of all ONUs, each ONU 201 sends out so that all ONUs 201 are at the logical distance of Lmax. Information time slot delay time adjust.
  • This delay time adjustment mechanism will be described with reference to FIG. In this figure, two home interior ⁇ NUs, a home interior O NU # j and an ONU # k, are connected.
  • the OLT 101 on the station measures the transmission path distance to each ONU 201 inside the house, and based on the measurement result, the OLT 101 on the station notifies each ONU 201 inside the house.
  • the delay adjustment time Tdi for the ONU # i inside the house is set so that the following relationship is established between the propagation delay time Tpi corresponding to the transmission distance Li and the maximum propagation time Tpmax corresponding to the maximum applicable distance Lmax. I can decide.
  • Tg is the protection time
  • ⁇ TDR Optical Time Domain Keflectometer
  • the operator manually instructs the optical fiber termination to connect the measuring instrument manually, and controls the optical switch according to the instruction from the operation support system. It was started by connecting to the system, and in each case, operator intervention was required.
  • the optical transmission device and the measuring device for detecting the optical fiber cutting point were completely different, and there was no integrated device.
  • the present invention relates to a method and system for performing bidirectional optical transmission at the same wavelength between an office-side transmission circuit and a home-side transmission circuit by using a single-core optical fiber, wherein a special measuring device is connected to detect an optical fiber disconnection fault.
  • the purpose is to be able to automatically detect without detecting. Disclosure of the invention
  • the fault point detection of the optical fiber is limited to the detection of the break point, and the operation of the station side transmission circuit is measured from the normal operation to the time from the transmission of the isolated pulse for measuring the fiber cut point to the reception. This is realized by switching to a cutting point detection operation.
  • the station-side transmission circuit detects the corresponding home-side transmission circuit based on the response fault of the home-side transmission circuit, and the station-side transmission circuit detects the response fault. And a second step of detecting a fault point by transmitting an optically isolated pulse toward the in-home transmission circuit corresponding to.
  • the station-side transmission circuit generates a response failure alarm, and at the instruction of the operator, carries a measuring device called an OTDR in front of the optical fiber termination, causing a failure. The measurement was performed by replacing the optical connector with an optical fiber that was thought to have been accessed.
  • the station-side transmission circuit detects this (first step), and automatically switches from the normal operation to the failure point detection operation.
  • the distance to the failure point can be measured (second step).
  • the disconnection point can be detected in the transmission circuit without using the OTDR. For this reason, it is not necessary to replace the optical connector and connect the measuring instrument, which reduces the number of measurement operations, and also allows the measuring instrument to be accidentally connected to a normal optical fiber due to human error. Can be prevented. Also, large-scale equipment for connecting the measuring instrument via the optical splitter and the optical switch is not required.
  • the station-side transmission circuit and the home-side transmission circuit have a one-to-one connection relationship as shown in FIGS. 7 and 9, the station-side transmission circuit performs the home step in the first step.
  • the optical isolated pulse is sent to the home transmission circuit in the second step to detect a fault point.
  • the station-side transmission circuit and the home-side transmission circuit have a one-to-many connection relationship as shown in FIG.
  • the circuit when detecting the response failure for any one of the home inside transmission circuits in the first step, in the second step, the optical isolated pulse is detected within a predetermined operation guarantee time.
  • the signal is sent to the transmission path to detect a fault point. That is, the station-side transmission circuit operates within the time to guarantee the operation of the ONU inside the entire house until the burst signal 1 1 1 2 shown in FIGS. 12 and 13 is transmitted from the station-side OLT and returned.
  • An optical isolated pulse is sent to ONU inside each house to detect the harmful points in Chapter P.
  • a measuring instrument called an OTDR is carried in front of the optical fiber termination by an operator's instruction, and the optical fiber that seems to have failed is replaced by an optical connector and accessed for measurement. I was doing.
  • the measuring instrument was connected via an optical splitter and an optical switch, the operation support system operated the optical switch and performed measurement to detect a cutting point.
  • the breakpoint of the trunk fiber from the station-side transmission circuit to the optical branching device can be detected using OTDR, but a branch line connected from the optical branching device to each user's home. Since the test light pulse is split and multiple-reflected to detect the break point in the fiber, it was difficult to specify which branch fiber failed.
  • the operation of the optical line termination circuit on the optical line at the station side is automatically switched from the normal operation to the operation of detecting the disconnection point.
  • the distance to the cutting point can be measured.
  • the optical fiber cutting point can be detected without affecting the operation.
  • the operation support system receives the notification and instructs the station-side transmission circuit to switch the station-side transmission circuit from the normal operation to the disconnection point detection operation. Distance can also be measured.
  • the present invention has means for autonomously notifying the operation support system of an optical fiber cut point detection result from the optical transmission device that has detected a failure, so that there is no need for operator intervention when a failure occurs.
  • the station-side transmission circuit detects a corresponding in-home transmission circuit based on a response failure of the in-home transmission circuit, and transmits the in-home transmission corresponding to the response failure.
  • a fault point is detected by transmitting an optical isolated pulse toward a circuit.
  • the station-side transmission circuit when the station-side transmission circuit and the home-side transmission circuit have a one-to-many connection relationship, the station-side transmission circuit includes the home-side transmission circuit.
  • the optical isolated pulse can be transmitted to the transmission line within a predetermined operation failure time to detect a failure point.
  • the station side transmission circuit when detecting the response failure, notifies the operation support system of the result, and receives a switching instruction from the normal operation to the disconnection point detection operation from the operation support system. In this case, the fault check can be performed.
  • the in-home transmission circuit corresponding to the response failure of the in-home transmission circuit is provided.
  • a transmission circuit comprising: first means for detecting; and second means for detecting a point of failure by transmitting an optical isolated pulse to a home-side transmission circuit corresponding to the response failure. Is done.
  • the second means transmits the optical isolated pulse to the transmission path within a predetermined operation guarantee time to perform a failure point detection. Can be.
  • the first means when detecting the response failure, The second means can detect a failure point when the operation support system notifies the operation support system of the result and when the operation support system receives an instruction to switch from the normal operation to the disconnection point detection operation.
  • the bidirectional optical transmission can be performed by time-axis compression multiplexing or an echo canceller method.
  • FIG. 1 is a block diagram showing an embodiment of a station-side transmission circuit according to the present invention.
  • FIG. 2 is a block diagram showing a connection relationship between the station-side transmission device and the operation support system.
  • FIG. 3 is a diagram showing an embodiment of an optical fiber cutting point detection result notification message sent from the station side transmission device to the operation support system according to the present invention.
  • FIG. 4 is a diagram for explaining an optical isolated pulse between a station side and a cutting point when an optical fiber is cut in the optical transmission system (one-to-one connection type) according to the present invention.
  • FIG. 5 is a block diagram showing another embodiment (echo canceller system) of the station side transmission circuit according to the present invention.
  • FIG. 6 is an explanatory diagram of an operation of an optical isolated pulse transmitted when an optical fiber is cut by the optical transmission system (one-to-many connection type) according to the present invention.
  • FIG. 7 is a block diagram of a conventionally known one-core one-wavelength time-axis compression one-to-one connection type bidirectional optical transmission system.
  • FIG. 8 is an explanatory diagram of an operation during one burst period in a normal operation in the one-core same-wavelength time-axis compression multiplexed bidirectional optical transmission system shown in FIG.
  • FIG. 9 is a block diagram of a conventionally known echo canceller bidirectional optical transmission system.
  • FIG. 10 is an explanatory diagram of a training operation in the station-side transmission circuit of the echo canceller bidirectional optical transmission system shown in FIG.
  • FIG. 11 is a block diagram of a conventionally known one-core one-wavelength, time-axis-compressed, one-to-many-connection optical branching bidirectional optical transmission system.
  • FIG. 9 is an explanatory diagram of the operation when measuring the delay time of a newly installed ONU in the directional transmission system.
  • FIG. 13 is a diagram for explaining a time axis compression operation in a conventionally known one-core one-wavelength time-axis compression one-to-many-connection type optical branching bidirectional transmission system.
  • FIG. 14 is a diagram illustrating the operation during one burst period during normal operation in a conventionally known one-core one-wavelength, time-axis-compressed, one-to-many-connection type optical branching bidirectional optical transmission system.
  • Fig. 15 is a diagram for explaining the delay time adjustment operation at each ONU during normal operation in a conventionally known one-core one-wavelength, time-axis-compressed, one-to-many-connection optical branching bidirectional optical transmission system.
  • FIG. 14 is a diagram illustrating the operation during one burst period during normal operation in a conventionally known one-core one-wavelength, time-axis-compressed, one-to-many-connection type optical branching bidirectional optical transmission system.
  • Fig. 15 is a diagram for explaining the delay time adjustment operation at each ONU during normal operation in a conventionally known one-core one-wavelength, time-axis-compressed, one-to-many-connection optical branching bidirectional optical transmission system.
  • FIG. 1 shows an embodiment of a station-side transmission circuit according to the single-core same-wavelength time-axis compression multiplex bidirectional optical transmission system according to the present invention.
  • the station-side transmission logic circuit section 11 is composed of a station-side transmission logic circuit 111, an isolated pulse generation circuit 112, and a transmission-side operation switching switch 113.
  • the circuit section 16 is composed of a station side control circuit 161 and a timer circuit 162, and the station side reception logic circuit section 15 is an equalization amplifier circuit 151, a timing extraction circuit 152, an identification circuit 153, a station side reception logic circuit 154, and a gain. It is characterized by comprising a switching switch 155, an identification clock switching switch 156, and a receiving-side operation switching switch 157.
  • the station-side electric / optical conversion circuit section 12 includes a driver circuit 121 and a light emitting element 122.
  • the optical-to-electrical conversion circuit section 14 on the station side comprises a light receiving element 14 1 and a preamplifier circuit 14 2.
  • the switches 113 and 115 to 157 are located on the opposite side of the figure. That is, the station-side transmission logic circuit 111 is connected to the station-side electrical-optical conversion circuit section 12, the switch 155 is connected to the variable gain terminal G2, and the timing extraction circuit 155 is an identification circuit 155. 3 and the identification circuit 15 3 is connected to the station-side reception logic circuit 15 4.
  • FIG. 2 shows a connection relationship between the station-side transmission device 10 and the operation support system 7.
  • one station-side transmission device 10 has a plurality of station-side transmission circuits 1 shown in FIG.
  • N station-side transmission circuits 1 # 1 to 1 # N are connected to other devices via a multiplexing / demultiplexing unit 4.
  • each station side transmission circuit 1 # 1 to 1 #N and the setting control for each station side transmission circuit 1 are collected by the common control unit 5 of the station side transmission device 10, and are configured with LAN, etc. It communicates with the operation support system (OSS) 7 via the information transfer network 6. Normally, communication between the operation support system and the transmission device is performed in the form of a packet message shown in Fig. 3.
  • OSS operation support system
  • the operation support system 7 has an input / output device 8 which controls a human machine interface with an operator.
  • a personal computer or a workstation is usually used for the input / output device 8.
  • the optical fiber 30 # 1 to 30 # N from each station side transmission circuit 1 is connected to an optical fiber extending to the user's home by an optical fiber termination frame 9 via an optical connector 90, where the inside of the station is connected. And failure outside the station.
  • the light emission pulse of the optically isolated pulse sent from the station side transmission circuit should be twice or more than the light emission pulse in normal operation. No. Needless to say, in order to accurately determine the distance to the cutting point, it is only necessary to perform multiple measurements and average the values.
  • an alarm is issued from the station-side control circuit 161 via the common control unit 5 of the station-side transmission device 10.
  • Tell system 7 The operator of the operation support system 7 refers to the alarm and issues an instruction to the corresponding station side transmission circuit 1 to switch from the normal operation to the disconnection point detection operation.
  • the transmission side operation switch 1 13 when an instruction from the operation support system 7 is received, the transmission side operation switch 1 13, the gain switch 1 55, the identification clock switch 1 56, and the reception side operation switch Switch 157 to the cutting point detection operation mode shown in Fig. 1.
  • the station side transmission logic circuit section 11 When the operation of the station side transmission circuit 1 is switched to the break point detection operation, the station side transmission logic circuit section 11 propagates an optical signal equivalent to twice the maximum applicable distance (Lmax) as shown in Fig. 4. An isolated pulse is generated with a period longer than the time (Tmax), and the isolated pulse becomes an optical isolated pulse 3 1 2 in the optical-to-optical conversion circuit section 12 on the station side. Sent to 30.
  • the optically isolated path 312 propagates through the optical fiber 30 from the station side to the home side while being attenuated due to optical loss, and is almost totally reflected at the cutoff point 31 of the optical fiber. Then come back to the station.
  • the reflected light isolated pulse 3 14 received via the optical coupler 13 on the station side is converted into an electric signal by the optical-to-electrical conversion circuit section 14 on the station side and input to the receiving logic circuit section 15 on the station side. .
  • the station side reception logic circuit section 15 is different from the normal operation state, and the equalization function of the regenerative relay function (equalization amplification, timing extraction and identification function) is fixed to the maximum gain.
  • the identification function waits for the reflected light isolated pulse 314 at the normal threshold (normally 0.5).
  • the station-side control circuit 16 starts a timer for counting the time from the point at which the above-mentioned isolated panel was generated by the station-side transmission logic circuit 11, and the received reflected light isolated pulse 3 1 4 has an identification function.
  • the timer circuit 16 2 is stopped at the time when it is determined that there is a timer. Dividing the value of this timer by 2 and dividing by the propagation delay time per unit distance of the light in the optical fiber gives the distance (L) from the optical line end to the cutting point of the optical fiber.
  • the clock for the timer may be used exclusively for the timer, or may be used by dividing or multiplying the clock CP of the transmission line signal as it is.
  • FIG. 5 shows an embodiment of a station side transmission circuit using the echo canceller bidirectional optical transmission system according to the present invention.
  • the station side transmission logic circuit section 11 is composed of the station side transmission logic circuit section 111, the isolated pulse generation circuit 112, and the transmission side operation switching switch 113.
  • the station side control circuit section 16 is composed of a station side control circuit 16 1 and a timer circuit 16 2
  • the station side reception logic circuit section 15 is an equalizing amplifier circuit 15 1 and a timing extraction circuit 1 5 2, an identification circuit 15 3, a station-side reception logic circuit 15 4, a gain switching switch 15 5, an identification clock switching switch 15 6, and a reception-side operation switching switch 15 7, and It is characterized in that a station side echo canceller operation switching switch 17 1 is added to the station side echo canceller circuit section 17.
  • the station-side electrical / optical conversion circuit 12 is composed of a driver circuit 12 1 and a light emitting element 122, and the station-side optical / electrical conversion circuit 14 is comprised of a light receiving element 14 1 and a preamplifier circuit.
  • the point composed of 1 and 2 is the same as the conventional one.
  • the transmitting side operation switching switch 13 when an instruction is received from the operation support system 7, the transmitting side operation switching switch 13, the gain switching switch 15 5, the identification switch 15 6, the receiving side operation Selector switch 157 and station side echo canceler operation changeover switch 171 Switch to cut-point detection operation mode.
  • Isolated pulse generation circuit 1 1 2 In the isolated pulse repetition period pulse and transmission line clock Generates an isolated pulse for cutting point detection from the pulse CP and sends it to the driver circuit 12 1 and the station-side echo canceller circuit 17 via the transmission-side operation switching switch 1 13 and the timer circuit 16 2 Also sends an isolated pulse to the start terminal of.
  • the station-side echo canceller circuit unit 17 stops the operation including the training because the station-side echo canceller operation switching switch 17 1 is OFF.
  • the driver circuit 122 drives the light emitting element 122 with an isolated pulse and converts it into an optical isolated pulse. This optical isolated pulse is sent to the optical fiber 30 through the optical coupler 13 on the local side.
  • the propagation time is twice the propagation time of the maximum transmission distance (Lmax) ( An isolated pulse may be transmitted at a period longer than Tmax).
  • the transmitted light isolated pulse 3 12 is totally reflected at the cut point 3 1 of the optical fiber 30 and becomes the received light isolated pulse 3 14.
  • the light isolated pulse 3 14 reflected at the cut point 31 of the optical fiber enters the light receiving element 14 1 through the local optical coupler 13 and is extracted as an electric signal by the preamplifier circuit 14 2. You. This electric signal is applied to the station side subtractor 18, but since the station side echo canceler circuit section 17 has stopped operating, it is directly amplified by the equalizing amplifier circuit 15 1 and the identification circuit 15 3 I can get calories.
  • the equalizing amplifier circuit 15 1 has a fixed gain, but since the AGC (Automatic Gain Control) is normally operating, the equalizing amplifier circuit 15 1 The gain is fixed to the maximum gain with the gain switch 1 5 5.
  • AGC Automatic Gain Control
  • the clock of the identification circuit 1553 uses the clock extracted by the timing extraction circuit 152 from the received signal.
  • the identification clock switching switch 1556 is switched and the transmission side is switched. Is used.
  • the time width of the transmitted light isolated pulse 3 1 2 is set to the reciprocal of the transmission line cut-off frequency by 2 Needless to say, it should be doubled or doubled.
  • Timer times Path 162 starts measurement when a pulse is applied to the start terminal, and stops measurement when a pulse is applied to the stop terminal.
  • the pulse applied to the start terminal of the timer circuit 16 2 must be delayed or discriminated. It goes without saying that the switching of the receiving-side operation switching switch 157 for sending the output to the stop terminal of the timer circuit 162 may be delayed.
  • the value of the measured time value 1 Z 2 is sent to the station-side control circuit 16 1, and further via the common control unit 5 of the station-side transmission device 10. Sent to the operation support system 7. The operator looks at the result of the optical fiber break point detection and arranges for repair of the optical fiber.
  • the conversion processing into the distance may be executed in the common control unit 5 or the operation support system 7 of the station-side control circuit 16 1 or the station-side transmission device 10.
  • the time window T w for guaranteeing the operation of the ONU 210 furthest inside the house is considered. Is provided.
  • the total ONU operation guarantee window Tw requires a time longer than the propagation delay time of twice the longest distance (Lmax) plus the protection time (Tg).
  • the isolated pulse generation circuit 112 generates an isolated pulse for cutting point detection from the burst frame pulse F shown in Fig. 12 and the transmission line clock pulse of the bit stream shown in Fig. 13 and switches the transmission side operation.
  • the signal is sent to the driver circuit 121 via the switch 113 and an isolated pulse is sent to the start terminal 162a of the timer circuit 162.
  • the driver circuit 122 drives the light emitting element 122 with an isolated pulse and converts it into an optical isolated pulse.
  • the optical isolated pulse is sent to the optical fiber 30 through the optical coupler 13 on the optical line side.
  • the transmitted light isolated pulse 3 1 2 is totally reflected at the cutting point 3 0 3 (when the supporting fiber 3 0 2 is present), for example, in the case of the optical fiber 30, and is coupled to the station side. It returns to the station side receiving logic circuit section 15 through the device 13 as the received light isolated pulse 3 14.
  • the station side receiving logic circuit section 15 is different from the normal operation state, in which the equalization function of the regenerative relay function (equalization amplification, timing extraction and identification function) is fixed to the maximum gain, and the identification function is It waits for a reflected light isolated pulse at a normal threshold (usually 0.5). That is, the light isolated pulse is extracted as an electric signal by the preamplifier circuit 142 to the light receiving element 144.
  • This electric signal is amplified by the equalizing amplification circuit 15 1, and is amplified by the identification circuit 15 3.
  • the equalizing amplifier circuit 15 1 has a fixed gain, but since the AGC (Automatic Gain Control) is normally operating, the equalizing amplifier circuit 15 1 The gain is fixed to the maximum gain with the gain switching switch 1 5 5.
  • the clock of the identification circuit 1553 uses the clock extracted from the received signal by the timing extraction circuit 152, but in the break point detection operation mode, the identification clock switching switch 1556 is switched to change the transmission side.
  • the time width (connection time) of the transmitted solitary pulse is twice or twice the reciprocal of the transmission line clock frequency. That is all.
  • Timer circuit 162 starts measurement when a pulse is applied to start terminal 162a, and stops measurement when a pulse is applied to stop terminal 162b.
  • delay the pulse applied to the start terminal 16 2 a of the timer circuit 16 2 It is sufficient to delay the switching timing of the receiving-side operation switching switch 157 for sending the input or the identification output of the identification circuit 153 to the stop terminal 162 b of the timer circuit 162.
  • the value of the measured time value 1 Z 2 is sent to the station side control circuit 16 1, and furthermore, the common control unit of the station side transmission device 10. It is sent to the operation support system 7 via 5.
  • this timer when the value of this timer is divided by 2 and further divided by the propagation delay time per unit distance of the light in the optical fiber, the distance (L) from the station-side transmission circuit to the cutting point 303 of the optical fiber 30 is calculated. Can be requested.
  • the clock for the timer may be used exclusively for the timer, or the clock of the transmission path signal may be used as it is, or may be divided or multiplied. The operator looks at the result of detecting the optical fiber cutting point and arranges for repair of the optical fiber 30.
  • the timer measurement value itself may be used as the value.
  • the conversion of the optical fiber 30 into the distance to the cut point 303 is performed by the station-side control circuit 161, the common control unit 5 of the station-side transmission device 10, or the operation support system 7. Needless to say, this may be done.
  • control for switching the operation of the station side transmission circuit 1 from the normal operation to the disconnection point detection operation is performed manually or from the operation support system 7 from the outside. It may be performed automatically.
  • the station-side control circuit 161 of the station-side transmission circuit 1 automatically switches off from the normal operation in the same manner as above. Switch to break point detection operation.
  • the common control unit 5 of the station-side transmission device 10 uses the station-side transmission circuit number (1 # 1 to 1 # N) that detected the failure and the numerical value of the measurement result as an operation support system in the form of a bucket message. Notify 7 autonomously.
  • Fig. 3 An example of this packet message is shown in Fig. 3, where "message number” indicates an identifier for identifying the message between the station-side transmission device and the operation support system, and "transmission circuit number” usually indicates “ Indicates the physical location identifier consisting of “building name, floor, rack number, unit number, shelf number, package number, interface number”.
  • the “type” is a major alarm such as LOS (Loss Of Signal) or LOF (Loss Of Frame), performance information such as bit error, or a numerical value such as the result of optical fiber disconnection point detection.
  • LOS Liss Of Signal
  • LOF Liss Of Frame
  • performance information such as bit error
  • a numerical value such as the result of optical fiber disconnection point detection.
  • Numerical data indicates specific numerical values such as the number of bit errors and the numerical value of a detection result of an optical fiber cut point.
  • the operation support system 7 can identify the user's home from the user data in the database and the transmission circuit number, match the distance data to the failure point with the route diagram of the optical fiber cable, and identify the failure point.
  • the operation mode is the normal operation mode, and the mode is switched to the disconnection inspection operation mode only during the entire ONU operation guarantee window Tw.
  • optical isolated pulse used for detecting the fault point is within the operation guarantee window Tw, other ONUs that have not caused the branch fiber breakage are not affected by this break point detection operation, and the normal service is not affected. Operation is not hindered.
  • the common control unit 5 of the station-side transmission device 10 autonomously notifies the operation support system of the station-side transmission circuit number that detected the failure and the numerical value of the measurement result to the operation support system in the form of a bucket message.
  • the example is the same as that shown in Fig. 3, except that the ONU number is added to the end of the transmission circuit number.
  • the measurement function is realized by switching the operation of the station-side transmission circuit of the single-core same-wavelength bidirectional optical transmission system, there is the advantage that the cost increase by adding the function is small. Also, since there is almost no increase in circuit scale, there is an advantage that functions can be integrated into a conventional optical transceiver module.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 1芯光ファイバにより局側伝送回路と宅内側伝送回路との間で同一波長で双方向光伝送を行う方法及びシステムにおいて、光ファイバの切断障害を特別な測定器を接続することなく自動的に検知できるようにするため、該局側伝送回路が、該宅内側伝送回路の応答障害により対応する宅内側伝送回路を検出し、さらに該応答障害に対応する宅内側伝送回路に向けて光孤立パルスを送出することにより障害点検出を行なう。

Description

明 細 書
光伝送方法及びシステム 技術分野
本発明は、 光伝送システムに関し、 特に 1芯光ファイバを用いた同一波長双方向 の光伝送方法及ぴシステムに関するものである。 背景技術
従来より、 光伝送システムにおいて双方向伝送を行なう場合には、 2芯の光ファ ィバを用いて上り 下りの伝送を行なうことが一般的である。 光ファイバの伝送容 量を拡大するためには、 上り/下り各々の方向に対して WDM (波長分割多重) 伝 送を行なうこともある。
一方、 通信事業者のオフィス (局側) とユーザ宅 (宅内側) を結ぶアクセス系で は、 その数が多いことから 1芯の光ファイバで双方向伝送が行なえると経済的であ る。 1芯双方向光伝送方式としては、 上り/下りに別々の波長を用いる WDM双方 向伝送方式があるが、 異なる波長の発光素子を用意しなければならないことや、 合 波分波器に波長依存性を持たせなければならないなど、 経済的には限度がある。 ま た、 波長は電波と同じ貴重な資源であるので、 一つのサービスは一波長で双方向伝 送できることが望ましい。
このような同一波長 1芯双方向伝送方式としては、 時間軸圧縮多重双方向光伝送 方式とエコーキャンセラ双方向光伝送方式があり、 その動作原理は両者共にメタリ ック伝送の場合と同じである。
1芯同一波長双方向伝送方式 ( 1対 1接続:図 7 )
ここで、 図 7を用いて前者の 1芯同一波長時間軸圧縮多重双方向光伝送方式の動 作を説明する。 なお、 時間軸圧縮多重双方向伝送方式の原理については、 文献 「マ ルチメディアネットワークシリーズ ディジタルアクセス方式」 (オーム社)等にお いて詳しく説明されているのでここでは省略する。
まず、 局側伝送回路 1と宅内側伝送回路 2は光ファイバ 3 0を介して対向してい る。 局側伝送回路 1から宅内側伝送回路 2に伝送される情報は、 局側送信論理回路 部 1 1で時間軸圧縮され、 局側電気 ·光変換回路部 1 2で光パルスに変換され、 局 側光結合器 1 3を介して光ファイバ 3 0へ送られる。
宅内側伝送回路 2では、 光ファイバ 3 0から宅内側光結合器 2 3を介して受信し た光パルスを宅内側光 ·電気変換回路部 2 4で電気信号に戻し、 これを更に宅内側 受信論理回路部 2 5で時間軸伸張して元の速度の情報を取り出す。
宅内側伝送回路 2から局側伝送回路 1への逆方向の情報伝送においても同様に、 宅内側送信論理回路部 2 1で時間軸圧縮し、 宅内側電気 ·光変換回路部 2 2で光パ ルスに変換し、 宅内側光結合器 2 3を介して光ファイバ 3 0へ送出される。 局側伝 送回路 1では、 光ファイバ 3 0から局側光結合器 1 3を介して受信した光パルスを 局側光 ·電気変換回路部 1 4で電気信号に戻し、 局側受信論理回路部 1 5で時間軸 伸張して元の速度の情報を取り出す。
また、 局側制御回路部 1 6は局内のクロックパルスから時間軸操作に必要な制御 信号等を生成する。 また、 宅内側制御回路部 2 6は、 受信したパルス列の中から時 間軸操作に必要なク口ック情報を抽出し、 必要な制御信号等を生成する。
次に図 8を用いて正常動作時の局側伝送回路 1と宅内側伝送回路 2の間での伝送 信号の授受について説明する。
まず、 局側伝送回路 1から送信される下りパースト信号 1 1 1 2は、 光ファイバ 30 内での損失による減衰と伝播遅延時間 (Tps) を受けて宅内側伝送回路 2で受信 される。 宅内側伝送回路 2では下りバースト信号 1 1 1 2を受信し終わると、 上り 一下り間の混信を防ぐための保護時間 (Tg) の後、 上りパースト信号 1 1 1 4を送 信する。 この上りバースト信号 1 1 1 4は、 光ファイバ 3 0内での損失による減衰 と伝播遅延時間 (Tpr) を受けて局側伝送回路 1で受信される。
ここで、 下りバースト信号 1 1 1 2の占有時間 (Tis) と上りバースト信号の占有 時間 (Tir) は等しい。 また、 下り伝播遅延時間 (Tps) と上り伝播遅延時間 (Tpr) は等しい。 上り '下りパースト信号の占有時間 (Tis, Tir) と上り '下り伝播遅延時 間 (Tps,Tpr) と保護時間 (Tg) の和がパースト周期時間 (Tb) になる。
エコーキャンセラ双方向光伝送方式 ( 1対 1接続:図 9 )
また、 図 9を用いて後者のエコーキャンセラ双方向光伝送方式を説明する。
このエコーキャンセラ双方向光伝送方式では、図 7において、局側伝送回路 1が、 局側ェコーキャンセラ回路部 7と局側減算器 1 8を有し、 宅内側伝送回路 2が宅 内側エコーキャンセラ回路部 2 7と宅内側減算器 2 8を有している。
なお、 エコーキャンセラ双方向伝送方式の原理についても、 上記の文献 「マルチ メディアネットワークシリーズ ディジタルアクセス方式」 (オーム社) に詳しいの でここでは省略する。
まず、 局側伝送回路 1と宅内側伝送回路 2は光ファイバ 3 0を介して対向してい る。 局側から宅内側に伝送される情報は、 局側送信論理回路部 1 1でフレーム同期 信号等が付加され、 局側電気 ·光変換回路部 1 2で光パルスとなり、 局側光結合器 1 3を介して光ファイバ 3 0へ送出される。 宅内側では、 光ファイバ 3 0から宅内 側光結合器 2 3を介して受信光パルスを宅内側光 ·電気変換回路部 2 4に導き、 宅 内側受信論理回路部 2 5でフレーム同期信号の処理をした後、元の情報を取り出す。 逆方向の宅内側から局側への情報の伝送も、 宅内側送信論理回路部 2 1でフレー ム同期信号等が付加され、 宅内側電気 ·光変換回路部 2 2で光パルスとなり、 宅内 側光結合器 2 3を介して光ファイバ 3 0へ送出される。 局側では、 光ファイバ 3 0 から局側側光結合器 1 3を介して受信光パルスを局側光 ·電気変換回路部 1 4に導 き、 局側受信論理回路部 1 5でフレーム同期信号の処理をした後、 元の情報を取り 出す。
上記の動作は図 7に示した時間軸圧縮多重双方向光伝送方式と同様であるが、 た だしエコーキャンセラ双方向光伝送方式では、 情報転送中は光ファイバ 3 0上に上 り Z下りの伝送信号が連続して同時に混在するところが、 時間軸圧縮多重双方向光 伝送方式と異なる。
ここで、 エコーキャンセラ方式の動作を図 1 0を用いて説明する。 局側エコーキ ヤンセラ 1 7は、 通信の開始に当たり トレーエングを行なう。 局側送信論理回路部 1 1からのトレーニング信号 3 1 1 2は、 局側光結合器 1 3を介して光ファイバ 3 0へ光信号 3 1 1 3として送出される。
この光ファイバ 3 0に送出されたトレーニング信号 3 1 1 3の反射信号 3 1 1 4 と、 局側光結合器 1 3で漏洩したトレーニング信号 3 1 1 5との和が局側光 ·電気 変換回路部 1 4に入力され電気信号に変換される。
局側エコーキャンセラ 1 7は、 この局側トレーニング信号 3 1 1 2に基づき、 そ の受信側への漏れ込み信号 3 1 1 5と光ファイバからの反射信号 3 1 1 4の和信号 を打ち消す信号 (これをエコー信号と呼ぶ) を発生するように自らの動作パラメ一 タをセットする。
通常動作時には、 光ファイバ 3 0上には上り/下りの伝送信号が連続して同時に 流れるが、 局側減算器 1 8には、 局側光 ·電気変換回路部 1 4からは宅内側からの 受信信号と局側送信信号の漏れた信号が加わり、 局側エコーキャンセラ 1 7からは エコー信号が加わる。 この結果、 局側減算器 1 8の出力信号は宅内側からの受信信 号のみとなり局側受信論理回路部 1 5に送られる。 宅内側のエコーキャンセラの動 作も同じなので説明は省略する。
局側制御回路部 1 6は局側のク口ック S C Kからフレーム同期信号等の必要な制 御信号を生成する。 また、 宅内側制御回路部 2 6は、 受信したパルス列の中からフ レーム同期信号等の情報を抽出し、 必要な制御信号を生成する。 なお、 エコーキヤ ンセラ双方向光伝送方式においても、 光ファイバの損失による制限から方式として の最大適用距離 (Lmax) がある。 これについては後述する。
前者の時間軸圧縮多重双方向光伝送方式は、 上り/下りの信号が時間的に分離さ れているので光結合器は簡易なもので済むが、 伝送信号速度は情報速度に比較して 2倍以上に必要である。
また、 後者のエコーキャンセラ双方向光伝送方式は、 伝送信号速度は情報速度と ほぼ同等であるが、 光結合器には上り/下りの分離を良くするために方向性結合器 を用いる必要がある。
1芯同一波長時間軸圧縮多重双方向光伝送方式 ( 1対多接続 -. m i l )
上記の同一波長 1芯双方向伝送方式としての時間軸圧縮多重双方向光伝送方式は、 光分岐デバイスを用いて、 複数ユーザで光ファイバおよび情報帯域をシェアするこ とで経済化を図る 1芯同一波長 1対多接続型光分岐双方向光伝送方式に適用されて いる。
図 1 1を用いて 1芯同一波長 1対多接続型光分岐双方向光伝送方式の動作を説明 する。 なお、 この伝送方式には上記のエコーキャンセラ双方向光伝送方式は適用さ れない。
この 1芯同一波長 1対多接続型光分岐双方向光伝送方式は、 P O N (Passive P T/JP2002/007427
Optical Network)方式と呼ばれる光伝送方式の一種であり、 この P O N方式にっレヽ ては、 例えば文献 「xDS L/FTTH」 (アスキー出版局) に詳しいのでここでは 説明を省略する。
この 1芯同一波長 1対多接続型光分岐双方向光伝送方式では、 上記の局側伝送回 路 1に対応した光伝送路終端回路(以下、 O L T (Optical Line Termination circuit) という。) 1 0 1と、 宅内側伝送回路 2に対応する光網終端装置 (以下、 ONU (Optical Network Unit) という。) 201が光分岐デバィス 300を介して 1 : N 接続されている。 ここで Nは整数で接続 O N U数を示す。
伝送情報は所定のタイムスロット内に収容され、 1対多接続型光分岐双方向光伝 送を行なう P ON方式としての通信に必要な制御バイトが必要に応じて付加され転 送される。 OLT 101から各 ONU201 # 1〜201 #N (以下、符号 201で 総称することがある。) への下り方向は、 各 ONU20 1宛の情報タイムスロッ トが 多重化されて連続転送され、 各 ONU201では自分宛の情報タイムスロットのみ を抽出する。
一方、 各 ONU 201から OLT 101への上り方向は、 OLT 101から指示 された所定のタイムス口ット単位で転送される。すなわち、図 12に示したように、 バースト周期 Tbにおいて、 下り方向のバースト信号 1 1 1 2が局側〇LT 101 —宅内側 ONU 201—局側 OLT 1 01で戻って来るまでの時間を全 ONU動作 保障窓 Twとして、 局側 OLT 10 1から遅延時間測定用の光パルス 21 12を新 設宅内側 ONU201 1に送出することにより、 その宅内側 ONU201 1固有の 遅延時間 T aを測定しておく。 そして、 既設の ONU 20 12にはタイムスロッ ト Tslを割り当て、 新設の ONU201 1にはタイムスロッ ト Ts2を割り当ててパー スト信号の伝送を行う。
上記の如く、既設 ONU201 2が動作中に ONU201 1を新設する場合には、 局側〇LT 101から全 ONU動作保障窓 Tw内に 「タイムスロットを未割当 O N Uは応答せよ」 との情報を含む遅延時間測定用パルス列 21 12を同報で送信する。 新設 ONU201 1はこれを受信すると自分自身の I D情報を含む応答パルス列 2 1 14を返す。
局側 OLT 101は新設 ONU201 1からの応答を受信すると、 遅延時間 T a を計測し、 新設 ONU 2011へ指定タイムスロットと遅延調整時間 T dをフレー ム情報 Fの中に入れて伝える。
遅延時間測定用パルス列 2112は、 すべてのパースト周期に挿入すること、 あ るレヽは数秒に 1回揷入することもでき、 さらには O N Uが新設される場合に外部か らの指示で挿入することもできる。
新設 ONU201 1は局側〇LT 101からのパースト信号の先頭にあるフレー ム情報 Fの中から自身のタイムスロット位置 Ts2と遅延調整時間 Tdを読み出し、 局側 OLT101から同報の形で送られて来る情報列の中から指定されたタイムス ロット Ts2の情報のみを受信する。
また、 新設 ONU 201 1は局側 O L T 101への送信タイミングを保護時間 T g (固定値)、 遅延調整時間 Td (ONUと OLTの距離により異なる) およびタイ ムスロット位置指定時間 T t (ONU毎に異なる) より割り出し、 指定されたタイ ムスロット Ts2に情報を送出することとなる。
これらの光双方向伝送では、 上り方向と下り方向で時間軸上で圧縮して光信号が 転送される。
局側から宅内側に伝送される情報および逆方向の宅内側から局側への情報の伝送 における時間軸圧縮動作並びに伸張動作は、図 13に示すように行われる。
すなわち、局側〇 LT 101の送信情報のビットストリームをノゃースト周期(Tb) 毎、 時間軸上で圧縮して信号 1112中の例えばタイムスロット Tslに入れて宅内 側 ONU201に送る。 このタイムスロット Tslの時間軸圧縮されたビットストリ 一ムを宅内側 ONU201で時間軸伸張して元の速度に戻し、 宅内側受信情報のビ ッ トストリームとしている。
この結果、 図 13のビットストリーム位置 A (矢印) の局側情報は宅内側情報の ビットストリーム位置 A' (矢印!) に再生されることになる。
1芯時間軸圧縮多重双方向光伝送方式と P ON方式による 1対多接続型光分岐双 方向光方式との差異は、 接続されている各 ONU 201からの上り情報が光分岐デ パイスの局側で衝突して情報が壊れないようにするための T DMA (Time Domain Multiple Access) 制御が行われていることである。
OLT 101に向けて送出する各 ONU 2012, 201 1 (図 12参照) から の情報タイムスロット Tsl, Ts2 (図 12参照) は、 OLT 101からの送出遅延時 間指示の元に所定のタイミングで送出され、 OLT 101では各 ONU2012, 201 1からの情報タイムスロット Tsl, Ts2が識別される。
図 12及び 13の動作を、 さらに図 14を用いて説明する。
局側 OLT 101から送信される下りバースト信号 11 12は、 各 ONU201 宛ての情報タイムスロッ トを含むデータで、光ファイバ内で損失による減衰と伝播 遅延時間 (Tps) を受けて、 例えば宅内側 ONU#kで受信される。
この時、各 ONU 201で受信されるデータは OLT 101からの距離に応じて、 減衰と伝播遅延時間が異なる。 宅内側 ONU201では下りバースト信号 11 12 から当該 ONU#k宛ての情報タイムスロッ トを抽出し、 受信し終わると、 上り · 下り間の混信を防ぐための保護時間 (Tg) に、 各 ONU201からの上り情報の衝 突を避けるための遅延調整時間 (Td) を加えた時間だけ待機させた後、 上りパース ト信号 1114の時間帯の中の、 OLT 101から指示されたタイムスロット Ts# k に情報を送信する。 この上りパースト信号 1114は、 光ファイバ 30内で損失 による減衰と伝播遅延時間 (Tpr) を受けて局側で受信される。
ここで、 局側〇LT 101で受信される上りパースト信号 11 14は、 各 ONU 201から送出された情報タイムスロットの集合である。この場合、下りバースト信 号 11 12の占有時間(Tis) と上りバースト信号の占有時間(Tir)は等しい。また、 下り伝播遅延時間 (Tps) と上り伝播遅延時間 (Tpr) は各 ONU201毎には等し レ、が、 ONU201が異なると OLT 101からの距離が異なるため、 それぞれの ONU 201で値も異なる。
上り Z下りバースト信号の占有時間と上りノ下り伝播遅延時間と保護時間および 遅延調整時間との和がバースト周期時間 (Tb) になる。
なお、 1芯同一波長 1対多接続型光分岐双方向光伝送方式においては、 方式とし ての最大適用距離 (Lmax) がある。 この最大距離は、 各 ONU201が OLT10 1から論理的に等距離にあるように調整する遅延時間を決めるために使用される。 すなわち、 各 ONU201からの上りバースト信号 1114の衝突を避け、 以っ て全 ONUの動作を保障するため、 全 ONU 201が論理的距離として Lmaxの位 置に存在するように、 各 ONU201は送出する情報タイムスロットの遅延時間を 調整する。
この遅延時間調整メカニズムを図 15を用いて説明する。 この図では、 宅内側 O NU# j と ONU# kの 2台の宅内側〇NUが接続されている。 遅延調整時間は局 側 O LT 101が各宅内側 ONU 201との伝送路距離を測定し、 その結果に基づ き局側 OLT 101より各宅内側 ONU201に通知される。
この時、 宅内側 ONU# iに対する遅延調整時間 Tdiは、伝送距離 Liに対応する 伝播遅延時間 Tpiと最大適用距離 Lmaxに対応する最大伝播時間 Tpmaxとの間で 次式に示す関係が成り立つように決められる。
2Tpi+Tg+Tdi= 2Tpmax+Tg · · · ·式 (1)
=一定値
ここで Tgは保護時間である。
光ファイバの切断故障
一方、 上記の全ての伝送方式、 すなわち同一波長 1芯双方向光伝送方式において 光ファイバの切断故障が発生した場合には、 〇TDR (Optical Time Domain Keflectometer) と呼ばれる測定器を用いて切断点の検出を行なっていた。
すなわち、 この〇TDRでは、 光ファイバの切断点を精密に検出するため、 測定 用光パルスのフレネル反射光および後方散乱光を受信し積分操作を行レ、ディスプレ ィに表示していた。
このような方法は故障点を精度よく検出する点では優れているが、 故障を起こし た光ファイバの光成端架の端子へ光コネクタを差し替えて接続する力、 既に知られ ている光線路保守支援システムのように光スプリッタと光スィツチを介して測定器 を接続しなければならない。
このため、 光コネクタを差し替える際には数多くの光成端端子の中から故障を起 こした光フアイパの端子を特定し測定器を接続することが必要で、 多くの稼動を要 する上、 人為的なミスで正常な光ファイバに誤って測定器を接続してしまうことが 防ぎ切れないという欠点がある。
また、 光スプリツタと光スィッチを介して測定器を接続するためには、 大掛かり な設備が必要となる欠点がある。
さらに、 従来の光ファイバ切断点検出のためには、 情報を伝送する波長とは違う 測定専用の波長を使うことが必要で、 光送受信回路の中に測定機能を組み込むこと は回路規模が大きくなることから困難であった。
また、 従来の光ファイバ切断点検出作業は故障発生時にオペレータの指示により 光フアイパ成端架で測定器を人手により接続する力、、 オペレーションサポートシス テムからの指示により光スィッチを制御して測定器と接続することで開始されてお り、 いずれの場合もオペレータの介在が必要であった。
また、 同一波長 1対多接続型光分岐双方向光伝送方式では局側伝送回路から光分 岐デバイスまでの基幹ファイバは O T D Rを用いて切断点の検出は可能であるが、 光分岐デバィスから各ユーザ宅へ接続される支線ファイバでの切断点の検出は試験 光パルスが分岐され多重反射して来るので、 どの支線ファイバで故障が生じたのか を特定することは困難であった。
さらに、従来は、光伝送装置と光フアイバ切断点検出用測定器は全く別のもので、 一体になつたものはなかつた。
従つて本発明は、 1芯光ファイバにより局側伝送回路と宅内側伝送回路との間で 同一波長で双方向光伝送を行う方法及びシステムにおいて、 光ファイバの切断障害 を特別な測定器を接続することなく自動的に検知できるようにすることを目的とす る。 発明の開示
本発明では、 光ファイバの故障点検出を、 切断点の検出に限り、 局側伝送回路の 動作を通常動作から、 光フアイバ切断点測定用の孤立パルスを送信し受信までの時 間を計測する切断点検出動作に切り替えることで実現するものである。
このため、 本発明に係る光伝送方法は、 局側伝送回路が、 宅内側伝送回路の応答 障害により対応する宅内側伝送回路を検出する第 1ステップと、該局側伝送回路が、 該応答障害に対応する宅内側伝送回路に向けて光孤立パルスを送出することにより 障害点検出を行なう第 2ステップと、 を備えたことを特徴としている。
すなわち、 伝送媒体である光ファイバが例えば切断される故障が発生すると、 宅 内側からは応答しようとしてもできず、 局側伝送回路からは宅内側伝送回路からの 上り信号が受信できなレ、状態になる。 このような場合、 従来では、 局側伝送回路では応答障害の警報を発生させると共 に、 オペレータの指示により O T D Rと呼ばれる測定器を光ファイバ成端架の前に 運んで来て、 故障を起こしたと思われる光ファィバに光コネクタを差し替えてァク セスして測定を行なっていた。
また、 光スプリツタと光スィッチを介して測定器を接続する場合には、 オペレー シヨンサポートシステムから光スィツチの操作を行ない切断点を検出するための測 定を行なっていた。
これに対し、 本発明では、 宅内側伝送回路から応答故障が発生した場合には、 こ れを局側伝送回路が検出し (第 1ステップ)、 通常動作から障害点検出動作に自動的 に切り替え、 その応答障害に係る宅内側伝送回路に向けて光孤立パルスを送出する ことにより、 障害点までの距離を測定する (第 2ステップ) ことができる。
このように本発明では、 1芯同一波長双方向伝送方式において光ファイバの切断 故障が発生した場合に O T D Rを用いることなく伝送回路内で切断点の検出が行な える。 このため、 光コネクタを差し替え、 測定器を接続することは不要になり、 測 定稼動を減らすことができる上、 人為的なミスで正常な光ファイバに誤って測定器 を接続してしまうことも防ぐことができる。 また、 光スプリツタと光スィッチを介 して測定器を接続するための大掛かりな設備も不要となる。
さらに、 光ファイバ切断点検出のために測定専用の波長を使う必要はなく、 情報 を伝送する波長そのものでよいので、 回路規模の僅かな増大で光送受信回路の中に 測定機能を組み込むことができる。
上記の場合、 該局側伝送回路と該宅内側伝送回路とが図 7および図 9に示したよ うな 1対 1の接続関係にあるとき、 該局側伝送回路は、 該第 1ステップで該宅内側 伝送回路の該応答障害を検出したとき、 該第 2ステツプで該光孤立パルスを該宅内 側伝送回路に送出して障害点検出を行うこととなる。
一方、 1対多接続型光分岐双方向光伝送システムにおいて該局側伝送回路と該宅 内側伝送回路とが図 1 1に示したような 1対多の接続関係にあるとき、 該局側伝送 回路は、 該第 1ステップで該宅内側伝送回路の中のいずれか一つについて該応答障 害を検出したとき、 該第 2ステップで、 予め定めた動作保障時間内で該光孤立パル スを伝送路に送出して障害点検出を行うこととなる。 すなわち、 局側伝送回路は図 1 2及ぴ 1 3に示したバースト信号 1 1 1 2が、 局 側 O L Tから送信して戻つて来るまでの全宅内側 O NUの動作を保障する時間内に 光孤立パルスを各宅内側 O NUに送出し、 P章害点を検出している。
これをもう少し具体的に説明すると、 伝送媒体である光ファイバ上での応答障害 が発生すると、 光分岐デバイスの局側の基幹ファイバ切断時には全宅内側伝送回路 O NUからは通信しようとしてもできず、 局側から見ると通信しようとしても宅内 側からの上りバースト信号が受信できない状態になる。
また、 支線ファイバ障害時には、 当該宅内側 O NUからの上りバースト信号 (当 該宅内側 O NUからの情報タイムスロット) が受信できない状態となる。 従って、 支線ファイバ切断時は、 局側 O L Tでは受信フレーム同期外または当該 O NUから のタイムスロット未受信等として警報が発生される。
従来は、 この状態になるとオペレータの指示により O T D Rと呼ばれる測定器を 光フアイパ成端架の前に運んで来て、 故障を起こしたと思われる光ファィバに光コ ネクタを差し替えてアクセスして測定を行なっていた。 また、 光スプリッタと光ス ィツチを介して測定器を接続する場合には、 オペレーションサポートシステムから 光スィツチの操作を行ない切断点を検出するための測定を行なつていた。
しかし、 前述したように、 この方式では局側伝送回路から光分岐デバイスまでの 基幹ファイバは O T D Rを用いて切断点の検出は可能であるが、 光分岐デパイスか ら各ユーザ宅へ接続される支線ファイバでの切断点の検出は試験光パルスが分岐さ れ多重反射して来るので、 どの支線ファイバで故障が生じたのかを特定することは 困難であった。
本発明では、 光ファイバが切断される故障が発生した時には、 局側光伝送路終端 回路の動作を通常動作から切断点検出動作に自動的に切り替えることにより、 局側 光伝送路終端回路内で切断点までの距離を測定することができる。
このように本発明による 1芯同一波長 1対多接続型光分岐双方向光伝送方式では、 支線ファィパの切断故障の場合に故障を起こした支線ファィバ以外の支線フアイバ に収容されている O NUの動作に影響を与えることなく光ファイバ切断点検出を行 なうことができる。
また、 応答障害が発生した場合には、 その結果をオペレーションサポートシステ ムに通知し、 これを受けたオペレーションサポートシステムが局側伝送回路を通常 動作から切断点検出動作に切り替えるように局側伝送回路に指示することにより、 局側伝送回路内で応答障害点までの距離を測定することもできる。
従って本発明は、 故障を検出した光伝送装置から光ファイバ切断点検出結果がォ ペレーシヨンサポートシステムに自律的に通知される手段を有するので、 故障の発 生時にオペレータの介在が不要になる。
上記の本発明に係る光伝送方法を実現するシステムとして、 該局側伝送回路が、 該宅内側伝送回路の応答障害により対応する宅内側伝送回路を検出し、 該応答障害 に対応する宅内側伝送回路に向けて光孤立パルスを送出することにより障害点検出 を行なうことを特徴としたシステムが提供される。
上記の 1対多接続型光分岐双方向光伝送システムにおいて、 該局側伝送回路と該 宅内側伝送回路とが 1対多の接続関係にあるとき、 該局側伝送回路は、 該宅内側伝 送回路の中のいずれか一つについて該応答障害を検出したとき、 予め定めた動作保 障時間内で該光孤立パルスを伝送路に送出して障害点検出を行うことができる。 また、上記のシステムにおいて、該局側伝送回路は、該応答障害を検出したとき、 その結果をオペレーションサポートシステムに通知し、 該オペレーションサポート システムより通常動作から切断点検出動作への切替指示を受けたとき、 該障害点検 出を行うことができる。
さらに本発明では、 1芯の光ファイバにより宅内側伝送回路に対して同一波長で 双方向光伝送を行う局側の伝送回路において、 該宅内側伝送回路の応答障害により 対応する宅内側伝送回路を検出する第 1手段と、 該応答障害に対応する宅内側伝送 回路に向けて光孤立パルスを送出することにより障害点検出を行なう第 2手段と、 を備えたことを特徴とする伝送回路が提供される。
上記の 1対多接続型光分岐双方向光伝送システムの伝送回路において、 該局側伝 送回路と該宅内側伝送回路とが 1対多の接続関係にあるとき、 該第 1手段で該宅内 側伝送回路の中のいずれか一つについて該応答障害を検出したとき、該第 2手段で、 予め定めた動作保障時間内で該光孤立パルスを伝送路に送出して障害点検出を行う ことができる。
また、 上記の伝送回路において、 該第 1手段は、 該応答障害を検出したとき、 そ の結果をオペレーションサポートシステムに通知し、 該オペレーションサポートシ ステムより通常動作から切断点検出動作への切替指示を受けたとき、 該第 2手段が 障害点検出することができる。
さらに、 上記の方法、 システム、 及び伝送回路において、 該双方向光伝送を時間 軸圧縮多重又はエコーキャンセラ方式で行うことができる。 図面の簡単な説明
図 1は、 本発明に係る局側伝送回路の実施例を示したプロック図である。
図 2は、 局側伝送装置とオペレーションサポートシステムとの接続関係を示した ブロック図である。
図 3は、 本発明により局側伝送装置からオペレーションサポートシステムへ送ら れる光ファイバ切断点検出結果通知電文の実施例を示した図である。
図 4は、 本発明に係る光伝送システム ( 1対 1接続型) における光ファイバ切断 時の局側と切断点との間の光孤立パルスを説明する図である。
図 5は、 本発明に係る局側伝送回路の別の実施例 (エコーキャンセラ方式) を示 したプロック図である。
図 6は、 本発明に係る光伝送システム (1対多接続型) により光ファイバ切断時 に送出される光孤立パルスの動作説明図である。
図 7は、 従来から知られている 1芯同一波長時間軸圧縮 1対 1接続型双方向光伝 送システムのプロック図である。
図 8は、 図 7に示した 1芯同一波長時間軸圧縮多重双方向光伝送システムにおけ る通常動作時の 1バースト周期中の動作説明図である。
図 9は、 従来から知られているエコーキャンセラ双方向光伝送システムのプロッ ク図である。
図 1 0は、 図 9に示したエコーキャンセラ双方向光伝送システムの局側伝送回路 におけるトレーニング動作の説明図である。
図 1 1は、 従来より知られている 1芯同一波長時間軸圧縮 1対多接続型光分岐双 方向光伝送システムのブロック図である。
図 1 2は、 従来より知られている 1芯同一波長時間軸圧縮 1対多接続型光分岐双 方向伝送システムにおいて新設 O N Uの遅延時間を測定するときの動作説明図であ る。
図 1 3は、 従来より知られている 1芯同一波長時間軸圧縮 1対多接続型光分岐双 方向伝送システムにおいて時間軸圧縮動作を説明するための図である。
図 1 4は、 従来より知られている 1芯同一波長時間軸圧縮 1対多接続型光分岐双 方向光伝送システムにおける通常動作時の 1パースト周期中の動作説明図である。 図 1 5は、 従来より知られている 1芯同一波長時間軸圧縮 1対多接続型光分岐双 方向光伝送システムにおける通常動作時の各 O NUでの遅延時間調整動作を説明す るための図である。
符号の説明
1 局側伝送回路
2 宅内側伝送回路
4 多重 ·分離部
5 共通制御部
6 情報転送網
7 オペレーションサポートシステム (〇S S )
8 人出力装置
9 光ファイバ成端架
1 0 局側伝送装置
1 1 局側送信論理回路部
1 2 局側電気 ·光変換回路部
1 3 局側光結合器
1 4 局側光 ·電気変換回路部
1 5 局側受信論理回路部
1 6 局側制御回路部
1 7 局側エコーキャンセラ回路部
1 8 局側減算器
2 1 宅内側送信論理回路部
2 2 宅内側電気 ·光変換回路部 23 宅内側光結合器
24 宅内側光 ·電気変換回路部
25 宅内側受信論理回路部
26 宅内側制御回路部
27 宅内側エコーキャンセラ回路部
28 宅内側減算器
30, 30 # 1〜30#N 光ファイバ
31 光ファイバの切断点
90 光コネクタ
101 局側 OLT (伝送回路)
1 11 局側送信論理回路
112 孤立パルス発生回路
1 13 送信側動作切替スィツチ
121 ドライバ回路
122 発光素子
141 受光素子
142 前置増幅回路
151 等化増幅回路
152 タイミング抽出回路
153 識別回路
154 局側受信論理回路
155 利得切替スィッチ
156 識別クロック切替スィッチ
157 受信側動作切替スィツチ
161 局側制御回路
162 タイマ回路
171 局側エコーキャンセラ動作切替スィツチ
201 宅内側 ONU (伝送回路)
300 光分岐デパイス ( 1 : N光分岐) 301 1芯同一波長 1対多接続型時間軸圧縮光分岐双方向光伝送方式における 基幹光ファイバ
302 1対多接続型光分岐双方向光伝送方式における支線光ファイバ
312 局側から送信される光孤立パルス
314 受信光孤立パルス
331 支線光フアイバの切断点
11 12 1対多接続型光分岐双方向光伝送方式における局側から送信される各 ONU宛ての情報タイムスロッ トの集合 (下りバースト信号)
11 14 1対多接続型光分岐双方向光伝送方式における局側で受信される各 O NUから送信された情報タイムスロッ トの集合 (上りバースト信号)
21 12 遅延時間測定用パルス列
21 14 遅延時間測定応答パルス列
31 12 トレーニング信号
31 13 光ファイバに送出されるレーニング信号
3114 光ファイバから反射して来たトレーニング信号
31 15 局側光結合器 13で漏洩したトレーニング信号
図中、 同一符号は同一又は相当部分を示す。 発明を実施するための最良の形態
1芯同一波長双方向伝送方式 ( 1対 1接続:図 1 , 7)
図 1は本発明に係る 1芯同一波長時間軸圧縮多重双方向光伝送方式による局側伝 送回路の一実施例を示している。 この実施例では、 図 7の従来例において、 局側送 信論理回路部 11が局側送信論理回路 111と孤立パルス発生回路 1 12と送信側 動作切替スィツチ 1 13とで構成され、 局側制御回路部 16が局側制御回路 161 とタイマ回路 162とで構成され、 そして局側受信論理回路部 15が等化増幅回路 151とタイミング抽出回路 152と識別回路 153と局側受信論理回路 154と 利得切替スィツチ 155と識別クロック切替スィツチ 156と受信側動作切替スィ ツチ 157とで構成されている点を特徴としている。
なお、 局側電気 ·光変換回路部 12がドライバ回路 121と発光素子 122とで 構成され、 局側光 ·電気変換回路部 1 4が受光素子 1 4 1と前置増幅回路 1 4 2と で構成している点は上記の従来例と同様である。
次に、 この実施例の動作を説明する。
今、 この局側伝送回路 1が通常動作を行っているときには、 スィッチ 1 1 3 , 1 1 5〜1 5 7は図示とは反対側の位置にある。 すなわち、 局側送信論理回路 1 1 1 が局側電気 ·光変換回路部 1 2に接続され、 スィッチ 1 5 5は可変利得端子 G 2に 接続され、 タイミング抽出回路 1 5 2が識別回路 1 5 3に接続され、 そして識別回 路 1 5 3が局側受信論理回路 1 5 4に接続されている。
図 2には、 局側伝送装置 1 0とオペレーションサポートシステム 7との接続関係 が示されている。 一般に 1個の局側伝送装置 1 0には、 図 1に示した局側伝送回路 1がユーザ対応に複数個ある。 伝送する情報については、 N個の局側伝送回路 1 # 1〜1 # Nが多重 ·分離部 4を介して他の装置と接続されている。
各局側伝送回路 1 # 1〜1 # Nからの警報や、 各局側伝送回路 1への設定制御に ついては、 局側伝送装置 1 0の共通制御部 5でまとめられ、 L AN等で構成される 情報転送網 6を介してオペレーションサポートシステム (O S S ) 7と通信する。 通常、 オペレーションサポートシステムと伝送装置との間の通信は図 3に示す内 容のパケット電文の形で行われる。
才ペレーションサポートシステム 7はオペレータとのヒューマン 'マシンィンタ フェースを司る入出力装置 8を有する。 この入出力装置 8には通常パーソナルコン ピュータもしくはワークステーションが用いられている。 各局側伝送回路 1からの 光ファイバ 3 0 # 1〜3 0 # Nは、 光ファイバ成端架 9でユーザ宅へ伸びる光ファ ィパと光コネクタ 9 0で接続されており、 ここで局内側の故障か局外側の故障かを 切り分けている。
切断点の検出をより確実にするためには、 局側伝送回路から送出する光孤立パル スの発光パヮ一を通常動作時の発光パヮ一の 2倍あるいは 2倍以上にすればよいこ とは言うまでもない。 また、 切断点までの距離を正確に求めるために、 複数回の測 定を行ない、 それらの値の平均を取る操作をすればよいことは言うまでもない。 そして、 局側受信論理回路 1 5 4で受信信号の断状態を検出すると、 警報を局側 制御回路 1 6 1から局側伝送装置 1 0の共通制御部 5を介してオペレーションサポ 一トシステム 7に伝える。 オペレーションサポートシステム 7のオペレータは、 警 報を見て該当する局側伝送回路 1へ通常動作から切断点検出動作へ切り替える旨の 指示を出す。
局側制御回路 1 6 1では、 オペレーションサポートシステム 7からの指示が来る と送信側動作切替スイッチ 1 1 3、 利得切替スイッチ 1 5 5、 識別クロック切替ス イッチ 1 5 6、 および受信側動作切替スィツチ 1 5 7を図 1に示す切断点検出動作 モードに切り替える。
局側伝送回路 1の動作を切断点検出動作に切り替えると、 局側送信論理回路部 1 1では、 図 4に示すように最大適用距離 (Lmax) の 2倍の距離に相当する光信号の 伝播時間 (Tmax) よりも長い周期で孤立パルスを発生させ、 その孤立パルスが局側 電気 ·光変換回路部 1 2で光孤立パルス 3 1 2となり、 局側光結合器 1 3を介して 光ファイバ 3 0へ送出される。
図示のように、 この光孤立パ^^ス 3 1 2は、 光ファイバ 3 0の中を局側から宅内 側へ光損失により減衰しながら伝播し、 光ファイバの切断点 3 1でほぼ全反射して 局側へ戻って来る。 局側光結合器 1 3を介して受信された反射光孤立パルス 3 1 4 は局側光 ·電気変換回路部 1 4で電気信号に変換され、 局側受信論理回路部 1 5に 入力される。
切断点検出動作においては、 局側受信論理回路部 1 5は、 通常の動作状態とは異 なり、 再生中継機能 (等化増幅、 タイミング抽出および識別機能) のうち等化機能 は最大利得に固定された状態とし、 識別機能は通常の閾値 (通常は 0 . 5 ) で反射 光孤立パルス 3 1 4を待ち受ける。
局側制御回路部 1 6では、 局側送信論理回路部 1 1で上記の孤立パノレスが生成さ れた時点から時間計数用のタイマをスタートさせ、 受信した反射光孤立パルス 3 1 4が識別機能により有りと判定された時点でタイマ回路 1 6 2をストップさせる。 このタイマの値を 2で割り、 さらに光ファイバ内の光の単位距離当たりの伝播遅 延時間で割れば、 局側側から光ファイバの切断点までの距離 (L ) を求めることが できる。 このタイマ用のクロックはタイマ専用でも、 伝送路信号のクロック C Pを そのまま、 分周あるいは遁倍して用いてもよい。
エコーキャンセラ双方向光伝送方式 (1対 1接続:図 5 , 9 ) 図 5は、 本発明に係るエコーキャンセラ双方向光伝送方式による局側伝送回路の 一実施例を示している。
この実施例では、 図 9の従来例において、 局側送信論理回路部 1 1が局側送信論 理回路部 1 1 1と孤立パルス発生回路 1 1 2と送信側動作切替スィツチ 1 1 3とで 構成され、 局側制御回路部 1 6が局側制御回路 1 6 1とタイマ回路 1 6 2とで構成 され、 局側受信論理回路部 1 5が等化増幅回路 1 5 1とタイミング抽出回路 1 5 2 と識別回路 1 5 3と局側受信論理回路 1 5 4と利得切替スィツチ 1 5 5と識別ク口 ック切替スィツチ 1 5 6と受信側動作切替スィツチ 1 5 7とで構成され、 そして局 側エコーキャンセラ回路部 1 7に局側エコーキャンセラ動作切替スィッチ 1 7 1が 付加されている点を特徴としている。
なお、 局側電気 ·光変換回路部 1 2がドライバ回路 1 2 1と発行素子 1 2 2とで 構成され、 局側光,電気変換回路部 1 4が受光素子 1 4 1と前置増幅回路 1 4 2と で構成している点は従来と同様である。
次に、 この実施例の動作を説明する。
局側伝送回路 1の切断点検出動作について図 5及び前述の図 4を用いて詳細に説 明する。 同図において送信側動作切替スィッチ 1 1 3、 利得切替スィッチ 1 5 5、 識別クロック切替スィッチ 1 5 6、 受信側動作切替スィツチ 1 5 7およぴ局側ェコ 一キャンセラ動作切替スィッチ 1 7 1は、 切断点検出動作モードに切替えられてお り、 通常動作モードでは各スィツチは反対側に切替えられるものとする。
すなわち、 局側受信論理回路 1 5 4で受信信号の断を検出すると、 局側制御回路 1 6 1から警報を局側伝送装置 1 0の共通制御部 5を介してオペレーションサポー トシステム 7に伝える。 才ペレーションサポートシステム O S Sのオペレータは、 警報を見て該当する局側伝送回路 1へ通常動作から図示の切断点検出動作へ切り替 える指示を出す。
局側制御回路 1 6 1では、 オペレーションサポートシステム 7からの指示が来る と送信側動作切替スィツチ 1 1 3、 利得切替スィツチ 1 5 5、 識別ク口ック切替ス イッチ 1 5 6、 受信側動作切替スイッチ 1 5 7およぴ局側ェコーキャンセラ動作切 替スィッチ 1 7 1を切断点検出動作モードに切り替える。
孤立パルス発生回路 1 1 2では孤立パルス繰り返し周期パルスと伝送路クロック パルス C Pから切断点検出用孤立パルスを生成し、 送信側動作切替スィッチ 1 1 3 を経由してドライバ回路 1 2 1、 局側エコーキャンセラ回路部 1 7へ送出するとと もにタイマ回路 1 6 2の開始端子にも孤立パルスを送る。
切断点検出動作においては、 局側エコーキャンセラ回路部 1 7は局側エコーキヤ ンセラ動作切替スィッチ 1 7 1が O F Fとなっているのでトレーエングを含め動作 を停止する。 ドライバ回路 1 2 1は発光素子 1 2 2を孤立パルスで駆動して光孤立 パルスに変換する。 この光孤立パルスは局側光結合器 1 3を通り光ファイバ 3 0へ 送り込まれる。
そして図 4に示したように、 エコーキャンセラ双方向光伝送方式では、 時間軸圧 縮多重双方向光伝送方式のようなバースト周期はないので、 最大伝送距離 (Lmax) の伝播時間の 2倍(Tmax)よりも長い周期で孤立パルスを送出すればよい。同図で、 送信光孤立パルス 3 1 2は光ファイバ 3 0の切断点 3 1で全反射して受信光孤立パ ルス 3 1 4となる。
すなわち、 光ファイバの切断点 3 1で反射した光孤立パルス 3 1 4は局側光結合 器 1 3を通り受光素子 1 4 1へ入り、 前置増幅回路 1 4 2で電気信号として取り出 される。 この電気信号は局側減算器 1 8に加えられるが、 局側エコーキャンセラ回 路部 1 7が動作を停止しているので、 そのまま等化増幅回路 1 5 1で増幅して識別 回路 1 5 3にカロえられる。
ここで、 等化増幅回路 1 5 1が固定利得であれば問題は無いが、 通常は A G C (Automatic Gain Control) が動作しているので、 切断点検出動作モードでは等化 増幅回路 1 5 1の利得を利得切替スィッチ 1 5 5で最大利得に固定する。
また、 通常動作モードでは識別回路 1 5 3のクロックは受信信号からタイミング 抽出回路 1 5 2で抽出されたクロックを用いるが、 切断点検出動作モードでは識別 クロック切替スィツチ 1 5 6を切り替えて送信側の伝送路クロックを用いる。
ここで、 受信光孤立パルス 3 1 4を送信側の伝送路クロックで確実に識別するた めには、 送信する光孤立パルス 3 1 2の時間幅を伝送路ク口ック周波数の逆数の 2 倍あるいは 2倍以上にすればよいことは言うまでもない。
識別回路 1 5 3で受信孤立パルス 3 1 4が識別されると識別出力は受信側動作切 替スィツチ 1 5 7を経由してタイマ回路 1 6 2の停止端子に加えられる。 タイマ回 路 1 6 2は開始端子にパルスが加わると計測を開始し、 停止端子にパルスが加わる と計測を停止する。
ここで、 送信光孤立パルス 3 1 2が受信側に回り込んで切断点検出動作を不安定 にすることを防ぐためには、 タイマ回路 1 6 2の開始端子に加わるパルスを遅延さ せるか、 識別出力をタイマ回路 1 6 2の停止端子へ送る受信側動作切替スィッチ 1 5 7の切替えを遅延させればよいことは言うまでもない。
タイマ回路 1 6 2の検出結果出力端子からは、 計測した時間値の 1 Z 2の値が局 側制御回路 1 6 1に送られ、 さらに局側伝送装置 1 0の共通制御部 5を介してオペ レーシヨンサポートシステム 7へ送られる。 この光ファイバ切断点検出結果をオペ レータが見て光ファイバの故障修理を手配する。
ここでは、 タイマ回路 1 6 2の検出結果出力端子からは計測した時間値の 1 / 2 の値が読み出されるとした力 値としてはタイマの計測値そのものでも問題はなく、 光ファイバの切断点までの距離への換算処理は、 局側制御回路 1 6 1あるいは局側 伝送装置 1 0の共通制御部 5あるいはオペレーションサポートシステム 7において 実行してもよいことは言うまでもない。
1芯同一波長時間軸圧縮多重双方向光伝送方式 ( 1対多接続:図 1, 図 1 1 ) 次に、 図 1 1に示した 1芯同一波長時間軸圧縮 1対多接続型光分岐双方向光伝送 方式に図 1の伝送回路を適用した場合における支線ファイバ 3 0 2で光ファイバの 切断故障が発生した場合を例にとって図 6を参照して説明する。 なお、 図 5のェコ 一キャンセラ方式は従来例と同様に適用されな!/、。
この場合には、 各 O NU 2 0 1と O L T 1 0 1との伝送距離 (伝播遅延時間) を 考慮して、 最も遠い宅内側 O NU 2 0 1の動作を保障するための時間窓 T wが設け られている。
図 6に示すように、 全 O NU動作保障窓 T wは最遠距離 (Lmax) の 2倍の距離分 の伝播遅延時間に保護時間 (Tg) を加えた時間以上の時間が必要である。
すなわち、 局側〇L T 1 0 1の受信パースト 1 1 1 4の中で特定の O NU 2 0 1 からの上り信号断を検出したら、支線ファイバ 3 0 2でのファイバ切断と判定して 局側送受信部の動作を通常動作から切断点検出動作に切り替える。 この時、 全 O N U動作保障窓 T wの開始時点で、 光孤立パルス 3 1 2を発生させ、 局側光結合器 1 3を介して全ての宅内側 O NUへ向けて光ファイバ 3 0 1へ送出する。
すなわち、 孤立パルス発生回路 1 1 2では図 1 2に示したパーストフレームパル ス Fと図 1 3に示したビットストリームの伝送路クロックパルスから切断点検出用 孤立パルスを生成し、 送信側動作切替スィッチ 1 1 3を経由してドライバ回路 1 2 1へ送出するとともにタイマ回路 1 6 2の開始端子 1 6 2 aにも孤立パルスを送る。 ドライバ回路 1 2 1は発光素子 1 2 2を孤立パルスで駆動して光孤立パルスに変 換する。 この光孤立パルスは局側光結合器 1 3を通り光ファイバ 3 0へ送り込まれ る。
そして、 図 6に示すように、 送信光孤立パルス 3 1 2は、 光ファイバ 3 0の例え ば切断点 3 0 3 (支援ファイバ 3 0 2が存在する場合) で全反射して局側光結合器 1 3を通り局側受信論理回路部 1 5に受信光孤立パルス 3 1 4として戻って来る。 局側受信論理回路部 1 5は、通常の動作状態とは異なり、再生中継機能(等化増幅、 タイミング抽出および識別機能) のうち等化機能は最大利得に固定された状態とし、 識別機能は通常の閾値 (通常は 0 . 5 ) で反射光孤立パルスを待ち受ける。 すなわ ち、 光孤立パルスは受光素子 1 4 1へ、 前置増幅回路 1 4 2で電気信号として取り 出される。 この電気信号を等化増幅回路 1 5 1で増幅して識別回路 1 5 3にカロえる。 ここで、 等化増幅回路 1 5 1が固定利得であれば問題は無いが、 通常は A G C (Automatic Gain Control) が動作しているので、 切断点検出動作モードでは等化 増幅回路 1 5 1の利得を利得切替スィツチ 1 5 5で最大利得に固定する。
また、 通常動作モードでは識別回路 1 5 3のクロックは受信信号からタイミング 抽出回路 1 5 2で抽出されたクロックを用いるが、 切断点検出動作モードでは識別 クロック切替スィッチ 1 5 6を切り替えて送信側の伝送路クロック C Pを用いる。 ここで、 受信孤立パルスを送信側の伝送路ク口ック C Pで確実に識別するために は、 送信する孤立パルスの時間幅 (接続時間) を伝送路クロック周波数の逆数の 2 倍あるいは 2倍以上にすればよい。
識別回路 1 5 3で受信孤立パルスが識別されると、 この識別出力は受信側動作切 替スィッチ 1 5 7を経由してタイマ回路 1 6 2の停止端子 1 6 2 bにカロえられる。 タイマ回路 1 6 2は開始端子 1 6 2 aにパルスが加わると計測を開始し、 停止端子 1 6 2 bにパルスが加わると計測を停止する。 ここで、 送信光孤立パルス 3 1 2が受信側に回り込んで切断点検出動作を不安定 にすることを防ぐためには、 タイマ回路 1 6 2の開始端子 1 6 2 aに加わるパルス を遅延させる力、 或いは識別回路 1 5 3の識別出力を、 タイマ回路 1 6 2の停止端 子 1 6 2 bへ送る受信側動作切替スィツチ 1 5 7の切替タイミングを遅延させれば よい。
タイマ回路 1 6 2の検出結果出力端子 1 6 2 cからは、 計測した時間値の 1 Z 2 の値が局側制御回路 1 6 1に送られ、 さらに局側伝送装置 1 0の共通制御部 5を介 してオペレーションサポートシステム 7へ送られる。
そして、 このタイマの値を 2で割り、 さらに光ファイバ内の光の単位距離当たり の伝播遅延時間で割れば、 局側伝送回路から光ファィバ 3 0の切断点 3 0 3までの 距離 (L ) を求めることができる。 このタイマ用のクロックはタイマ専用でも、 伝 送路信号のクロックをそのまま、 又は分周、 あるいは通倍して用いてもよレ、。 この 光ファイバ切断点検出結果をオペレータが見て光ファイバ 3 0の故障修理を手配す る。
なお、 ここでは、 タイマ回路 1 6 2の検出結果出力端子 1 6 2 cからは計測した 時間値の 1 / 2の値が読み出されるとしたが、 この値としてはタイマの計測値その ものでもよく、 光ファイバ 3 0の切断点 3 0 3までの距離への換算処理は、 局側制 御回路 1 6 1、 局側伝送装置 1 0の共通制御部 5、 あるいはオペレーションサポー トシステム 7において実行してもよいことは言うまでもない。
上記の実施例では、 局側伝送回路 1の動作を通常動作から切断点検出動作に切り 替える制御は、 外部から人手あるいはオペレーションサポートシステム 7から行う としたが、 これを局側伝送回路 1内部で自動的に行ってもよい。
すなわち、 局側伝送回路 1の局側制御回路 1 6 1は、 局側受信論理回路 1 5 4か ら伝送信号が断となった警報出力を受けると、 通常動作から自動的に上記と同じ切 断点検出動作に切り替える。
そして、 タイマ回路 1 6 2内で切断点までの距離を測定し、 その結果を局側伝送 装置 1 0の共通制御部 5へ伝えるとともに、 動作を通常動作へ切り戻す。 さらに、 局側伝送装置 1 0の共通制御部 5では故障を検出した局側伝送回路番号 ( 1 # 1〜 1 # N) と測定結果の数値をバケツト電文の形でオペレーションサポートシステム 7へ自律的に通知する。
このパケット電文の実施例が図 3に示されおり、 「電文番号」は局側伝送装置とォ ペレーションサポートシステムの間で電文を特定するための識別子を示し、 「伝送 回路番号」 は通常「ビル名、 フロア、 架番号、 ユニット番号、 シェルフ番号、 パッケ ージ番号、 インタフェース番号」等からなる物理的位置の識別子を示す。
また、 「種別」 は、 L O S (Loss Of Signal) や L O F (Loss Of Frame) といつ たメジャー警報か、 ビットエラーのようなパフォーマンス情報か、 あるいは光ファ ィパ切断点検出結果のような後に数値データが続くものかの種別を示す。 「数値デ ータ」 は、 ビットエラーの個数や光ファイバ切断点検出結果数値のような具体的数 値をデータを示す。
オペレーションサポートシステム 7では、 保有するデータベースのユーザデータ と伝送回路番号からユーザ宅を特定し、 故障点までの距離データを光ファイバケー ブルのルート図と突き合わせ故障点を特定することができる。
なお、 通常動作モードと切断点検出動作モードの切替は、 局側 O L T 1 0 1が下 りバースト信号 1 1 1 2を送信している間中と上りパースト信号 1 1 1 4を受信し ている間中は通常動作モードであり、 全 O NU動作保障窓 T wの期間のみ切断点検 出動作モードに切り替えられる。
また、障害点検出のために使われる光孤立パルスは動作保障窓 T w内にあるため、 支線ファイバ断を起こしていない他の O NUは、 この切断点検出動作に影響されず、 通常のサービス運用を妨げられることはない。
また、 局側伝送装置 1 0の共通制御部 5では故障を検出した局側伝送回路番号と 測定結果の数値をバケツト電文の形でオペレーションサポートシステムへ自律的に 通知するが、 このパケット電文の実施例は図 3に示したものと同様であり、 ただし 伝送回路番号の最後に O N U番号が加わる点が異なる。
以上説明したように、 本発明によれば、 光ファイバの切断点を高価な測定器を用 いずに検出できる利点がある。 また、 測定器を故障を起こした光ファイバの光成端 端子の光コネクタを差し替えてアクセスする必要も、 光スプリッタと光スィッチを 介して測定器を接続する必要もない。
このため、 光コネクタを差し替える際に数多くの光成端端子の中から故障を起こ した光ファイバの端子を特定し測定器を接続するための多くの作業は不用になる上、 人為的なミスで正常な光ファイバに誤って測定器を接続してしまうことも防げると いう利点がある。
また、 光スプリッタと光スィツチを介して測定器を接続するための大掛かりな設 備が不要となる利点がある。
さらに、 従来の光ファイバの切断点検出のように情報を伝送する波長とは違う測 定専用の波長を使うことが不要で、 情報を伝送する波長のみで光ファイバの切断点 を検出できるという利点がある。
1芯同一波長双方向光伝送方式の局側伝送回路の動作を切り替えることにより測 定機能を実現しているので、 機能付加によるコスト上昇は僅かであるという利点が ある。 また、 回路規模の増大はほとんどないので、 従来の光送受信モジュールの中 に機能を一体化することができる利点がある。
さらに、 1対多接続型光分岐双方向光伝送方式においては、 P O N伝送方式で具 備している遅延測定機能を流用することで、 現用サービス中の他のユーザに影響す ることなく、 支線ファイバ障害断点を検出できる利点がある。
光ファイバの切断故障を伝送信号断により検出し、 局側伝送回路で自律的に動作 を切替検出結果をオペレーションサポートシステムに自律的に伝えることができる ので、 オペレータの稼動が大幅に削減される利点がある。

Claims

請 求 の 範 囲
1 . 1芯の光フアイパにより局側伝送回路と宅内側伝送回路との間で同一波長で双 方向光伝送を行う方法において、
該局側伝送回路が、 該宅内側伝送回路の応答障害により対応する宅内側伝送回路 を検出する第 1ステップと、
該局側伝送回路が、 該応答障害に対応する宅内側伝送回路に向けて光孤立パルス を送出することにより障害点検出を行なう第 2ステップと、
を備えたことを特徴とする方法。
2 . 請求の範囲 1において、
該局側伝送回路と該宅内側伝送回路とが 1対多接続型光分岐双方向光伝送システ ムにおいて 1対多の接続関係にあるとき、 該局側伝送回路は、 該第 1ステップで該 宅内側伝送回路の中のいずれか一つについて該応答障害を検出したとき、 該第 2ス テツプで、 予め定めた動作保障時間内で該光孤立パルスを伝送路に送出して障害点 検出を行うことを特徴とした方法。
3 . 請求の範囲 1又は 2において、
該局側伝送回路は、 該第 1ステップで該応答障害を検出したとき、 その結果をォ ペレーションサポートシステムに通知し、 該オペレーションサポートシステムより 通常動作から切断点検出動作への切替指示を受けたとき、 該第 2ステップを実行す ることを特徴とした方法。
4 . 請求の範囲 1において、
該双方向光伝送を時間軸圧縮多重又はエコーキャンセラ方式で行うことを特徴と した方法。
5 . 1芯の光ファィパにより局側伝送回路と宅内側伝送回路との間で同一波長で双 方向光伝送を行うシステムにおいて、
該局側伝送回路が、 該宅内側伝送回路の応答障害により対応する宅内側伝送回路 を検出し、 該応答障害に対応する宅内側伝送回路に向けて光孤立パルスを送出する ことにより障害点検出を行なうことを特徴としたシステム。
6 . 請求の範囲 5において、 該局側伝送回路と該宅內側伝送回路とが 1対多接続型光分岐双方向光伝送システ ムにおいて 1対多の接続関係にあるとき、 該局側伝送回路は、 該宅内側伝送回路の 中のいずれか一つについて該応答障害を検出し、 予め定めた動作保障時間内で該光 孤立パルスを伝送路に送出して障害点検出を行うことを特徴としたシステム。
7 . 請求の範囲 5又は 6において、
該局側伝送回路は、 該応答障害を検出したとき、 その結果をオペレーションサボ 一トシステムに通知し、 該オペレーションサポートシステムより通常動作から切断 点検出動作への切替指示を受けたとき、 該障害点検出を行うことを特徴としたシス テム。
8 . 請求の範囲 5において、
該双方向光伝送を時間軸圧縮多重又はエコーキャンセラ方式で行うことを特徴と
9 . 1芯の光ファイバにより宅内側伝送回路に対して同一波長で双方向光伝送を行 う局側の伝送回路において、
該宅内側伝送回路の応答障害により対応する宅内側伝送回路を検出する第 1手段 と、
該応答障害に対応する宅内側伝送回路に向けて光孤立パルスを送出することによ り障害点検出を行なう第 2手段と、
を備えたことを特徴とする伝送回路。
1 0 . 請求の範囲 9において、
該局側伝送回路と該宅内側伝送回路とが 1対多接続型光分岐双方向光伝送システ ムにおいて 1対多の接続関係にあるとき、 該第 1手段で該宅内側伝送回路の中のい ずれか一つについて該応答障害を検出し、 該第 2手段で、 予め定めた動作保障時間 内で該光孤立パルスを伝送路に送出して障害点検出を行うことを特徴とした伝送回 路。
1 1 . 請求の範囲 9又は 1 0において、
該第 1手段は、 該応答障害を検出したとき、 その結果をオペレーションサポート システムに通知し、 該オペレーションサポートシステムより通常動作から切断点検 出動作への切替指示を受けたとき、 該第 2手段が障害点検出することを特徴とした 伝送回路。
12. 請求の範囲 9において、
該双方向光伝送を時間軸圧縮多重又はエコーキャンセラ方式で行うことを特徴と した伝送回路。
PCT/JP2002/007427 2002-07-23 2002-07-23 光伝送方法及びシステム WO2004010612A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2002/007427 WO2004010612A1 (ja) 2002-07-23 2002-07-23 光伝送方法及びシステム
JP2004522705A JP4044558B2 (ja) 2002-07-23 2002-07-23 光伝送装置及びシステム
US11/039,916 US20050123293A1 (en) 2002-07-23 2005-01-24 Optical transmission method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/007427 WO2004010612A1 (ja) 2002-07-23 2002-07-23 光伝送方法及びシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/039,916 Continuation US20050123293A1 (en) 2002-07-23 2005-01-24 Optical transmission method and system

Publications (1)

Publication Number Publication Date
WO2004010612A1 true WO2004010612A1 (ja) 2004-01-29

Family

ID=30490769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007427 WO2004010612A1 (ja) 2002-07-23 2002-07-23 光伝送方法及びシステム

Country Status (2)

Country Link
JP (1) JP4044558B2 (ja)
WO (1) WO2004010612A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180475A (ja) * 2004-12-21 2006-07-06 Alcatel 受動光ネットワーク監視方法および受動光ネットワーク
JP2006197489A (ja) * 2005-01-17 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> 光波長多重システム、光終端装置および光ネットワークユニット
WO2008092397A1 (fr) * 2007-01-26 2008-08-07 Huawei Technologies Co., Ltd. Procédé de repérage de point d'événement de fibre, et réseau optique et équipement de réseau associés
JP2009232077A (ja) * 2008-03-21 2009-10-08 Nec Corp 局側終端装置、通信システム、加入者装置管理方法、および局側終端装置のプログラム
JP2015133645A (ja) * 2014-01-15 2015-07-23 日本電信電話株式会社 ノード及びスケジューラ
JP2017521981A (ja) * 2014-06-27 2017-08-03 ソリッド システムズ インコーポレイテッド 光通信線路監視装置及び方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219005A (en) * 1975-08-06 1977-01-14 Central Res Inst Of Electric Power Ind Optical fiber communication system
JPH02264527A (ja) * 1989-04-04 1990-10-29 Nec Corp 単条光ファイバ双方向通信方式
JPH07212280A (ja) * 1994-01-14 1995-08-11 Fujitsu Ltd 通信装置の自己診断方式
JPH09205452A (ja) * 1996-01-25 1997-08-05 Fujitsu Ltd 光加入者線伝送方法
JPH11340916A (ja) * 1998-05-26 1999-12-10 Nec Corp 光通信システムおよびその局装置
JP2000059654A (ja) * 1998-08-07 2000-02-25 Hitachi Denshi Ltd 双方向ディジタル信号伝送装置
JP2000312169A (ja) * 1999-04-28 2000-11-07 Nec Corp 通信システム及び方法、並びに通信局装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219005A (en) * 1975-08-06 1977-01-14 Central Res Inst Of Electric Power Ind Optical fiber communication system
JPH02264527A (ja) * 1989-04-04 1990-10-29 Nec Corp 単条光ファイバ双方向通信方式
JPH07212280A (ja) * 1994-01-14 1995-08-11 Fujitsu Ltd 通信装置の自己診断方式
JPH09205452A (ja) * 1996-01-25 1997-08-05 Fujitsu Ltd 光加入者線伝送方法
JPH11340916A (ja) * 1998-05-26 1999-12-10 Nec Corp 光通信システムおよびその局装置
JP2000059654A (ja) * 1998-08-07 2000-02-25 Hitachi Denshi Ltd 双方向ディジタル信号伝送装置
JP2000312169A (ja) * 1999-04-28 2000-11-07 Nec Corp 通信システム及び方法、並びに通信局装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180475A (ja) * 2004-12-21 2006-07-06 Alcatel 受動光ネットワーク監視方法および受動光ネットワーク
JP4570555B2 (ja) * 2004-12-21 2010-10-27 アルカテル−ルーセント 受動光ネットワーク監視方法および受動光ネットワーク
JP2006197489A (ja) * 2005-01-17 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> 光波長多重システム、光終端装置および光ネットワークユニット
JP4499576B2 (ja) * 2005-01-17 2010-07-07 日本電信電話株式会社 光波長多重システム、光終端装置および光ネットワークユニット
WO2008092397A1 (fr) * 2007-01-26 2008-08-07 Huawei Technologies Co., Ltd. Procédé de repérage de point d'événement de fibre, et réseau optique et équipement de réseau associés
US8290364B2 (en) 2007-01-26 2012-10-16 Huawei Technologies Co., Ltd Method, optical network and network device for locating fiber events
JP2009232077A (ja) * 2008-03-21 2009-10-08 Nec Corp 局側終端装置、通信システム、加入者装置管理方法、および局側終端装置のプログラム
JP2015133645A (ja) * 2014-01-15 2015-07-23 日本電信電話株式会社 ノード及びスケジューラ
JP2017521981A (ja) * 2014-06-27 2017-08-03 ソリッド システムズ インコーポレイテッド 光通信線路監視装置及び方法

Also Published As

Publication number Publication date
JPWO2004010612A1 (ja) 2005-11-17
JP4044558B2 (ja) 2008-02-06

Similar Documents

Publication Publication Date Title
US4911515A (en) Optical fiber communications system with optical fiber monitoring
KR100663462B1 (ko) 수동형 광 가입자 망
JP4183699B2 (ja) 光分配ネットワーク監視方法およびシステム
CN101651492B (zh) 光接入网络的延长器设备、系统和异常发光故障处理方法
EP2393229B1 (en) Optical access network, secondary network side termination node of an optical access network, and method for operating a network side termination node
CN110380809B (zh) 一种波分复用传输系统及其传输方法
US9059798B2 (en) Passive optical loopback
EP0652651A1 (en) Positionally independent application of an OTDR technique based on correlation in a branched optical fibre network during operation
JPH06505134A (ja) 受動光ネットワーク
CN101826917A (zh) 一种光纤线路保护装置和系统
CN101282586B (zh) 无源光网络中的光纤故障检测方法、系统及装置
EP0558561A1 (en) Test apparatus
CN101005317A (zh) 检测上行发送错误和保护无源光网络终端的方法和装置
US5790293A (en) Systems for monitoring optical path characteristics in an optical communication system
CN104205676B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
US20050123293A1 (en) Optical transmission method and system
US5760940A (en) Methods for monitoring optical path characteristics in an optical communication system
WO2004010612A1 (ja) 光伝送方法及びシステム
JP2007166496A (ja) 光加入者線端局装置、異常監視装置および光加入者線終端装置の異常検出方法
JP2781720B2 (ja) 光加入者システム監視方式
CN105981312B (zh) 一种无源光网络设备
JP2012173184A (ja) 光多重反射点特定装置及び方法
JP3102406B2 (ja) 光インタフェース障害検出装置
KR101453974B1 (ko) 광케이블 중계 구간 장애 판단 장치 및 그 방법
JP3077598B2 (ja) 光伝送システムにおける障害検出方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004522705

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11039916

Country of ref document: US

122 Ep: pct application non-entry in european phase