[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004010377A1 - Procede de traitement d'une image acquise au moyen d'un guide compose d'une pluralite de fibres optiques - Google Patents

Procede de traitement d'une image acquise au moyen d'un guide compose d'une pluralite de fibres optiques Download PDF

Info

Publication number
WO2004010377A1
WO2004010377A1 PCT/FR2003/002197 FR0302197W WO2004010377A1 WO 2004010377 A1 WO2004010377 A1 WO 2004010377A1 FR 0302197 W FR0302197 W FR 0302197W WO 2004010377 A1 WO2004010377 A1 WO 2004010377A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
zone
flux
calibration
acquired
Prior art date
Application number
PCT/FR2003/002197
Other languages
English (en)
Inventor
Aymeric Perchant
Georges Le Goualher
Frédéric BERIER
Original Assignee
Mauna Kea Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mauna Kea Technologies filed Critical Mauna Kea Technologies
Priority to CA2491751A priority Critical patent/CA2491751C/fr
Priority to CN038210312A priority patent/CN1679053B/zh
Priority to US10/520,917 priority patent/US7903848B2/en
Priority to KR10-2005-7000839A priority patent/KR20050021493A/ko
Priority to EP03750802.5A priority patent/EP1523731B1/fr
Priority to AU2003269019A priority patent/AU2003269019B2/en
Priority to ES03750802.5T priority patent/ES2687644T3/es
Priority to JP2004522235A priority patent/JP4485947B2/ja
Publication of WO2004010377A1 publication Critical patent/WO2004010377A1/fr
Priority to IL166152A priority patent/IL166152A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/94Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image

Definitions

  • Method for processing an acquired image by means of a guide composed of a plurality of optical fibers
  • the present invention relates to a method of processing an image acquired by means of a guide composed of a plurality of optical fibers. It finds a particularly interesting application in the field of medical imaging. However, the invention is of a broader scope since it can be applied to any field in which imaging is carried out by means of a guide composed of a plurality of optical fibers.
  • the image guide provides an image.
  • a device allows the laser scanning and the light source and the receiver to be moved away from the object to be observed.
  • the image guide is an assembly of several thousands of optical fibers whose spatial arrangement is identical at input and at output. The observation of an object through this guide could be compared to an observation via a grid, because of the loss of information between the optical fibers. Visualization is therefore hampered because of the presence of optical fibers: the pattern of optical fibers appears on the acquired image. This requires specific processing in order to eliminate this pattern and improve the readability of the image.
  • the object of the present invention is to propose a new method making it possible to render the images acquired by means of a readable multi-optical fiber guide.
  • Another object of the invention is to take into account the parasitic effects due to the acquisition device in the processing of the acquired image. At least one of the aforementioned objectives is achieved with a new method of image processing acquired by means of a guide constituted by a plurality of optical fibers. According to the invention, for each optical fiber, the image is isolated acquired an area corresponding to this optical fiber, each area is locally treated individually, then the acquired image is reconstructed by eliminating the pattern due to the optical fibers.
  • the act of isolating the optical fibers from the image amounts to isolating from the image the zone corresponding to each fiber.
  • the pixels representing the majority injection in terms of surface (area of influence) in a fiber are isolated, it is then possible to carry out local treatments on each optical fiber.
  • the low crosstalk of the guide and the injection settings make it possible to guarantee that the informative content of each fiber does not depend on the neighboring fiber, but only on the spatial coherence of the object observed.
  • the apparatus carrying out the image acquisition is adjusted so as to have sufficient pixels per fiber: it is thus possible to accurately estimate the information which is detected by this fiber and which is distributed over the pixels representing the optical fiber.
  • each optical fiber is isolated from the acquired image and the information detected is processed by each optical fiber.
  • the device carrying out the image acquisition is controlled to guarantee the minimum conditions of efficiency of the method according to the invention. To do this, you can modify the sampling rate, the quality of injection into the optical fibers, and the adjustment of the detection chain in order to guarantee an "egg box" type profile, in particular on the control image. .
  • the optical fibers are isolated on the image and when each isolated zone is treated, numerous applications can be envisaged such as: the reconstruction of an image without the pattern of the fibers: the fibers interfere with the readability and the subsequent treatments performed on the image; - the control of the roughness of the surface of the guide, the roughness will disturb the injection phenomenon to make it spatially variable; image registration, or image stabilization; the pattern of the fibers prevents any registration of the images between them, knowledge of the place of the fibers and of the information observed makes it possible to readjust the images; super-resolution: small movements can be used in the acquisition of a sequence of images to resample the image with a lower spatial period, and therefore obtain better resolution; quantification of images: information on the image can be extracted much more easily and precisely without the pattern of the optical fibers, - the temporal control of the internal parameters of the acquisition device: knowledge of the place of each fiber and of their optimal injection values makes it possible to control the wear of the guide, and the variations of certain optoelectronic parameters.
  • a mask corresponding to the pattern of the fibers, can be applied to the acquired image.
  • This mask corresponding to an image of the connected components representing each fiber, is obtained during a step of detecting the fibers from a control image.
  • the control image is an image making it possible to clearly distinguish the optical fibers from one another. It can result from the observation of a mirror, from a homogeneous diffusing medium, from a homogeneous fluorescent medium, it can also come from the own back-diffusion inside the bundle of optical fibers. But it can still be the acquired image. At the output of the detection, an image of the connected components (of the segments) representing each optical fiber is therefore obtained. Each gray level represents a unique index designating an optical fiber in the guide.
  • the fiber detection step can comprise the following steps: pre-filtering of the control image, segmentation by region, using the LPE "watershed” algorithm, correction of segments having an abnormally large area, and correction of segments presenting an abnormally small surface.
  • the pre-filtering step can include a morphological opening step followed by an image inversion step.
  • image inversion step we seek to eliminate the parasitic maxima located on the optical fibers.
  • an image of the filtered optical fibers of their local maxima is obtained, and smoothed at the level of the inter-fiber zones.
  • the image inversion step can be preceded by an anisotropic scalar type diffusion step.
  • the pre-filtering can also comprise a step during which an interpolation is carried out to the nearest neighbor to double the size of the image in vertical and horizontal.
  • the pre-filtering can also comprise a time filtering step.
  • the local processing of each zone can consist in calculating the photon flux detected for each zone
  • the flux calculation is carried out by means of a maximum likelihood estimator calculated on a specific injection profile of each fiber. More precisely, we can use the maximum likelihood estimator on the amplitude distribution of the specific injection profile in each optical fiber.
  • the profile is a curve representing the injection rate as a function of the distance of the light from the center of the cross section at the end of the optical fiber. Often this profile is modeled by a Gaussian.
  • the photon flux detected for each zone of the background image is also calculated, and each value is subtracted from flux of each zone of the acquired image, the flux value of each zone of the corresponding background image, and the bias correction is carried out on the result of this subtraction.
  • the background image may be the stray reflections on the optical systems of the acquisition device, and therefore including on the output of the image guide, but it may also be the offset, the electronic noise, of the chain. scanning device.
  • the offset corresponds to the term commonly called "offset". If the offset is dominant on the image, we cannot obtain the background simply by removing the image, because the offset depends on the content, and is therefore no longer the same. In this case, a quantile of the histogram is used to estimate it.
  • the histogram is that of the image acquired during the measurement in real time, and that of a calibration image during a calibration step as will be seen below.
  • the background noise can come from the background of the image or from an offset of the detection chain.
  • the correction of bias can consist in spatially separating the fibers into different blocks, in estimating the bias value in each block, in interpolating the values of the bias so as to obtain a bias value for each fiber, and in divide, for each zone, the flux value obtained in the previous step by the corresponding bias value thus obtained.
  • the reconstruction of the acquired image can involve a calibration step to calibrate the flow of the acquired image, after local processing, and a mosaic reconstruction step.
  • One can use other types of reconstruction, such as by interpolation or with bases of radial functions.
  • the present invention can be implemented without the calibration and calibration steps.
  • the witness image can be the acquired image.
  • the value of the flux obtained after local processing can be divided by a value of flux obtained following a calibration step.
  • This division operation makes it possible to compensate for bad injections in certain optical fibers.
  • the calibration step consists in: isolating each zone from a calibration image by applying the mask, corresponding to the pattern of the fibers, on this calibration image, calculating the flux of photon detected for each area of the calibration image, and correct the bias on each flux value thus calculated.
  • the image obtained at the end of the calibration can be used as a standard for the acquired image so as to obtain an acquired image for which all the optical fibers of the guide would have been injected in the same way.
  • the flux calculation is carried out by means of a maximum likelihood estimator calculated on the specific injection profile of each fiber.
  • the mask to an image representing a parasitic background, it is possible to calculate the photon flux detected for each zone of the background image, it is possible to subtract from each flux value of each zone of the image d calibration, the flux value of each zone of the corresponding background image, and the bias correction can be carried out on the result of this subtraction.
  • the same operations are carried out as during the measurement, that is to say during the processing of an image acquired in real time.
  • a calibration image is used which largely shows the pattern of the optical fibers.
  • the calibration allows, after detection of the fibers on the control image, to generate an image in which the injection rate will serve as a standard during the measurement in real time.
  • the measurement also corrects the injection rate on the acquired image, and the observed flux is calibrated as a function of the standard image so as to reconstruct an acquired image without pattern of the optical fibers.
  • bias is meant a low frequency component, this component being able to come from various causes.
  • Bias correction can be performed during calibration and during real-time measurement.
  • this can come from the fact that the calibration is done for example on a plane mirror, and that the curvature of the field will reduce the quality of injection on return to the edges (which are defocused).
  • the injection remains less good at the edges, and this results in a bias very similar to the first in terms of its shape.
  • the bias can also come from a vignetting problem. Generally, the bias has an almost circular symmetry.
  • the bias is estimated by dividing the image into NxN blocks of fixed size, then estimating the bias on each block. For this it is necessary to consider the nature of the object observed.
  • the bias can be acquired by taking the mean or median value on the block.
  • the bias can be multiplicative, and we therefore rather take an operator of mean or median (compared to a max or min for an additive bias).
  • NxN which is used, after interpolation, to find the value of the bias seen by each fiber.
  • Mosaic reconstruction can consist of distributing over the entire surface of each zone of the acquired image, the flux value of each zone obtained following the calibration step. We can then perform a recursive low-pass filtering in order to smooth the reconstructed acquired image.
  • Figure 2 is a flowchart detailing the main steps of a calibration process according to the invention.
  • FIG. 3 is a flowchart detailing the main steps of a measurement process according to the invention.
  • FIG. 4 is a flowchart detailing the final steps taking into account the calibration and measurement processes for the reconstruction of an image acquired without apparent optical fibers according to the invention.
  • FIG. 1 shows a global diagram of the method according to the invention.
  • the process can be split into four parts: part 1 for fiber detection, part 2 for calibration, part 3 for measurement, and part 4 for reconstruction.
  • Parts 1 and 2 correspond to the diagram in Figure 2
  • part 3 corresponds to the diagram in Figure 3
  • Part 4 corresponds to the diagram in Figure 4.
  • a calibration step is first carried out.
  • a control image 5 which is subjected to a fiber detection step 6 so as to obtain an image 7 of the connected components representing each fiber.
  • the control image 5 is an image acquired by means of a system comprising a guide consisting of a plurality of optical fibers from 10,000 to 30,000 for example.
  • the control image 5 is obtained in such a way that the pattern of the optical fibers is distinguished, that is to say of the "egg box" type: on the profile of the image, a fiber resulting in a small mountain surrounded by pass and valley.
  • the control image 5 undergoes a fiber detection operation so as to obtain a sort of mask representing the pattern of the optical fibers.
  • This mask is image 7 of the connected components representing each fiber.
  • Image 7 is then used for calibration 2 of the image acquisition system.
  • the purpose of the calibration is to determine an image of the injection rates of fiber-to-fiber photons. This calibration step is necessary since each fiber has slightly different physical properties from the other fibers. There is therefore a certain disparity concerning the capacity of each optical fiber to carry the same photon flux.
  • an image 8 below called the mirror image obtained by placing the mirror in front of the optical system of the image guide.
  • This image can also be that of a homogeneous diffusing medium, a homogeneous fluorescent medium, or of the own backscattering inside the bundle of optical fibers.
  • This image 8 can also be the same image used in 5, that is to say the control image.
  • the mask 7 is used to determine the photon flux of the mirror image 8 seen by each optical fiber during step 9.
  • This image 10 can correspond to parasitic reflections on the optics of the acquisition system, but also to the offset and / or the electronic noise due to the digitization chain of the system acquisition.
  • step 11 also involves the mask 7 so as to identify the zone corresponding to each fiber.
  • step 12 for each optical fiber, the photon value of the mirror image 8 is subtracted by the photon flux value of the background image 10.
  • step 13 it is estimated that for each optical fiber , the difference obtained in step 12 corresponds to the standard injection rate for each fiber (step 13).
  • step 14 a bias correction is performed on the image of step 13.
  • the image resulting from step 14 is therefore an image having, for each zone corresponding to an optical fiber, a flux value of standard and corrected photon.
  • This image from step 14 will serve as a reference for a series of images acquired in real time by the acquisition system.
  • the images acquired and processed in real time undergo the processing illustrated in parts 3 and 4.
  • the measurement part 3 receives an acquired image 15, typically the image of a measurement object.
  • the photon flux seen by each fiber is also calculated here in step 18 with regard to the acquired image 15.
  • the mask 7 is used so as to identify on the 'acquired image 15, the zone corresponding to each optical fiber.
  • a parasitic background image 16 is considered as before, which can be an image. real, that is to say corresponding to the background of the acquired image 15 or else an estimated image corresponding to the noise of the acquisition system.
  • This background image 16 also undergoes a step
  • Step 19 is an optional step during which a bias correction is made on image 20.
  • the reconstruction part 4 receives on the one hand the corrected image 20 and on the other hand the corrected (biased) image 13 so as to perform a calibration operation 22 by dividing the fluxes of the object observed ( element from step 21) by the standard flows (element from step 14). In step 22, a reconstruction is also carried out so as to obtain a reconstructed image 23 without any apparent optical fiber pattern.
  • a calibration operation 22 by dividing the fluxes of the object observed ( element from step 21) by the standard flows (element from step 14).
  • a reconstruction is also carried out so as to obtain a reconstructed image 23 without any apparent optical fiber pattern.
  • Figure 2 we see in more detail the process 1 of fiber detection and the calibration process 2. The operation
  • 6 fiber detection involves four operations: a pre-filtering, a "watershed" LPE corresponding to a segmentation by region; correction of segments having an abnormally large area; and correcting segments having an abnormally small area.
  • the two correction operations are interchangeable, and can also be performed in a loop.
  • the pre-filtering operation 61 receives as input the control image 5 and generates an image of the fibers filtered from these maxima local, and smoothed at the inter-fiber areas.
  • Pre-filtering involves a morphological opening operation, possibly followed by an anisotropic scalar type diffusion, then by an inversion of the image.
  • the image generated by the pre-filtering 61 then undergoes a watershed operation 62, making it possible to obtain an image of the connected components of the fibers detected.
  • Operation 63 is a correction of segments having an abnormally large area. To do this, we select the segments which are both too large compared to an average size and which have too many neighbors compared to a normal surface of the fibers. These segments are re-segmented with a watershed either on the original image or on a distance map image inside the detected segments (in a segment, distance between each pixel and the edge of the segment). Then, we calculate the characteristics of the segments obtained (average size, standard deviation of sizes).
  • the segments having an abnormally small surface are corrected.
  • the set of possible mergers is the set of mergers with each neighbor.
  • the second filter checks that the compactness after fusion does not not exceed a maximum value.
  • the second correction 64 makes it possible to generate the image of the connected components which will serve as a mask for the calibration 2 and the measurement 3.
  • the right part of Figure 2 relates to a calibration process 2 as shown in Figure 1 but in a simplified manner. In fact, in FIG. 2, the optional operations 10 and 11 do not appear.
  • the masking step 91 consists in locating on the mirror image 8, the zone or surface corresponding to each optical fiber of the guide. Image 7 of the related components serves as a mask.
  • step 92 for each optical fiber, the flux originating from the object observed is calculated. The flux is calculated using the maximum likelihood estimator determined on the specific injection profile of each optical fiber.
  • a bias correction is made as will be seen in more detail in FIG. 3.
  • the measurement process according to the invention is distinguished. This process takes place in real time.
  • the zone corresponding to each optical fiber is identified by carrying out a masking operation 181 by means of the mask 7.
  • the flux coming from the object observed is calculated for each fiber. As before, the calculation is carried out using the maximum likelihood estimator determined on the specific injection profile of each optical fiber.
  • the same masking operations 171 and flow calculation 172 are carried out on a parasitic background image 16.
  • step 19 for each zone corresponding to an optical fiber, the background flux (172) is subtracted from the flux of the acquired image (182). If the background image is not provided and this background exists, it must be subtracted, an offset and / or electronic noise of the measurement system is then calculated using a quantile on the histogram of the acquired image 15
  • a bias correction on the image resulting from the subtraction 19 In this case, the zones corresponding to the fibers are spatially separated at 211 into different blocks. In each of these blocks, the value of the bias is calculated in 212 using a given operator. Then in 213, the values of the bias are interpolated in order to obtain a value for each fiber. In 214, the value of the flux seen by each fiber is then divided by the value of the bias obtained.
  • an image 25 is generated representing the flux observed for each fiber.
  • the final reconstruction step takes into account the image of the standard injection rate 24 and the observed flow image 25.
  • the purpose of the calibration operation is to compensate for the injection losses by equalizing the injection rate of all the optical fibers so as to have an image of which all the fibers have been injected in the same way. For this, the image of observed flow 25 is divided into 221 by the image of the injection rate 24.
  • a mosaic reconstruction is then carried out by distributing in step 222 over the entire surface corresponding to each fiber the value obtained after calibration (division).
  • a Gaussian low pass filtering 223 for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Image Processing (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

L'invention concerne un procede de traitement d'image acquise au moyen d'un guide constitué par une pluralité de fibres optiques. Selon l'invention, pour chaque fibre optique, on isole sur l'image acquise une zone correspondante à cette fibre optique, on traite localement chaque zone de façon individuelle pour corriger le flux de photon détecté dans chaque fibre optique, puis on reconstruit l'image acquise en éliminant le motif dû aux fibres optiques. Le procédé comprend également un processus d'étalonnage permettant d'obtenir, pour chaque fibre optique et à partir d'une image d'étalonnage, un taux d'injection étalon qui va servir à la reconstruction des images acquises. Le procédé comprend également en premier lieu une étape de détection des fibres à partir d'une image témoin.

Description

" Procédé de traitement d' une image acquise au moyen d' un guide composé d'une pluralité de fibres optiques."
La présente invention se rapporte à un procédé de traitement d'une image acquise au moyen d'un guide composé d'une pluralité de fibres optiques. Elle trouve une application particulièrement intéressante dans le domaine de l'imagerie médicale. Toutefois l'invention est d'un cadre plus large puisqu'elle peut s'appliquer à tout domaine dans lequel on réalise de l'imagerie au moyen d'un guide composé d'une pluralité de fibres optiques.
Le guide d'image permet d'obtenir une image. Un tel dispositif permet de déporter le balayage laser et la source lumineuse et le récepteur loin de l'objet à observer. Par exemple dans un système à balayage laser avec obtention d'une image confocale, le guide d'image est un assemblage de plusieurs milliers de fibres optiques dont l'arrangement spatial est identique en entrée et en sortie. L'observation d'un objet à travers ce guide pourrait être comparée à une observation via une grille, à cause de la perte d'information entre les fibres optiques. La visualisation est donc gênée à cause de la présence des fibres optiques : le motif des fibres optiques apparaît sur l'image acquise. Cela impose un traitement spécifique de façon à éliminer ce motif et améliorer la lisibilité de l'image.
Dans les systèmes actuels, ce traitement spécifique se limite à un filtrage linéaire de l'image acquise.
La présente invention a pour but de proposer un nouveau procédé permettant de rendre les images acquises au moyen d'un guide multi-fibres optiques lisibles.
Un autre but de l'invention est de prendre en compte les effets parasites dus à l'appareil d'acquisition dans le traitement de l'image acquise. On atteint au moins l'un des objectifs précités avec un nouveau procédé de traitement d'image acquise au moyen d'un guide constitué par une pluralité de fibres optiques. Selon l'invention, pour chaque fibre optique, on isole sur l'image acquise une zone correspondante à cette fibre optique, on traite localement chaque zone de façon individuelle, puis on reconstruit l'image acquise en éliminant le motif dû aux fibres optiques.
Avec le procédé selon l'invention, le fait d'isoler les fibres optiques sur l'image, revient à isoler sur l'image, la zone correspondant à chaque fibre. Lorsque les pixels représentant l'injection majoritaire en terme de surface (zone d'influence) dans une fibre sont isolés, on peut alors effectuer des traitements locaux sur chaque fibre optique. La faible diaphonie du guide et les réglages de l'injection permettent de garantir le fait que le contenu informatif de chaque fibre ne dépend pas de la fibre voisine, mais uniquement de la cohérence spatiale de l'objet observé. L'appareil réalisant l'acquisition d'image est réglé de façon à avoir suffisamment de pixels par fibre : on peut ainsi estimer précisément l'information qui est détectée par cette fibre et qui est répartie sur les pixels représentant la fibre optique.
Ainsi, au lieu de traiter l'image de façon globale en réalisant un simple filtrage linéaire comme dans l'art antérieur, dans le procédé selon l'invention on isole chaque fibre optique sur l'image acquise et on traite l'information détectée par chaque fibre optique. Avantageusement, l'appareil réalisant l'acquisition d'image est contrôlé pour garantir les conditions minimales d'efficacité du procédé selon l'invention. Pour ce faire, on peut modifier le taux d'échantillonnage, la qualité d'injection dans les fibres optiques, et le réglage de la chaîne de détection afin de garantir un profil de type "boîte à œufs", notamment sur l'image témoin.
Avantageusement, lorsque les fibres optiques sont isolées sur l'image et lorsque chaque zone isolée est traitée, de nombreuses applications peuvent être envisagées telles que : la reconstruction d'une image sans le motif des fibres : les fibres gênent la lisibilité et les traitements ultérieurs effectués sur l'image; - le contrôle de la rugosité de la surface du guide, la rugosité va perturber le phénomène d'injection pour le rendre spatialement variant; le recalage des images, ou la stabilisation de l'image; le motif des fibres empêche tout recalage des images entre elles, la connaissance de la place des fibres et de l'information observée permettent de recaler les images; la super-résolution : on peut utiliser des faibles mouvements dans l'acquisition d'une séquence d'images pour re- échantillonner l'image avec une période spatiale plus faible, et donc obtenir une meilleure résolution; la quantification des images : on peut extraire beaucoup plus facilement et précisément des informations sur l'image sans le motif des fibres optiques, - le contrôle temporel des paramètres internes de l'appareil d'acquisition : la connaissance de la place de chaque fibre et de leurs valeurs optimales d'injection permet de contrôler l'usure du guide, et les variations de certains paramètres optoélectroniques. Dans le procédé selon l'invention, pour isoler chaque zone, on peut appliquer un masque, correspondant au motif des fibres, sur l'image acquise. Ce masque, correspondant à une image des composantes connexes représentant chaque fibre, est obtenu au cours d'une étape de détection des fibres à partir d'une image témoin .
L'image témoin est une image permettant de bien distinguer les fibres optiques les unes des autres. Elle peut être issue de l'observation d'un miroir, d'un milieu diffusant homogène, d'un milieu fluorescent homogène, elle peut aussi provenir de la retro-diffusion propre à l'intérieur du paquet de fibres optiques. Mais elle peut encore être l'image acquise. A la sortie de la détection, on obtient donc une image des composantes connexes (des segments) représentant chaque fibre optique. Chaque niveau de gris représente un index unique désignant une fibre optique dans le guide.
Selon l'invention, l'étape de détection des fibres peut comprendre les étapes suivantes : pré-filtrage de l'image témoin, segmentation par région, en utilisant l'algorithme de "ligne de partage des eaux" LPE, correction de segments présentant une surface anormalement grande, et correction de segments présentant une surface anormalement petite.
Les deux étapes de corrections sont interchangeables, et elles peuvent être réalisées de façon itérative. Avantageusement, l'étape de pré-filtrage peut comprendre une étape d'ouverture morphologique suivie d'une étape d'inversion d'image. Avec l'ouverture morphologique numérique, on cherche à éliminer les maxima parasites situés sur les fibres optiques.
C'est un pré-traitement classique de l'algorithme de "ligne de partage des eaux" LPE effectué lors de la segmentation par région.
A la sortie du pré-filtrage, on obtient une image des fibres optiques filtrées de leurs maxima locaux, et lissées au niveau des zones inter-fibres . L'étape d'inversion d'image peut être précédée d'une étape de diffusion anisotrope de type scalaire.
Selon l'invention, le pré-filtrage peut comprendre en outre une étape au cours de laquelle on réalise une interpolation au plus proche voisin pour doubler la taille de l'image en vertical et en horizontal.
Avec cette étape d'interpolation, on cherche à simuler des éléments structurant de morphologie mathématique avec un rayon inférieur à un. L'image est doublée pour que l'ouverture morphologique qui suit ne touche pas aux maximum isolés, mais seulement ceux qui sont 8-connexe, mais non 4-connexe (voisins par une diagonale) . L'intérêt est de faire une sélection des maxima éliminés par l'ouverture.
Par ailleurs, en présence d'une pluralité d'images d'acquisition, le pré-filtrage peut comprendre en outre une étape de filtrage temporel.
Avantageusement, le traitement local de chaque zone peut consister à calculer le flux de photon détecté pour chaque zone
(correspondant à une fibre donnée) de l'image acquise, et à corriger le biais sur chaque valeur de flux ainsi calculée. De préférence, on réalise le calcul de flux au moyen d'un estimateur du maximum de vraisemblance calculé sur un profil spécifique d'injection de chaque fibre. Plus précisément, on peut utiliser l'estimateur du maximum de vraisemblance sur la distribution d'amplitude du profil spécifique d'injection dans chaque fibre optique. Le profil est une courbe représentant le taux d'injection en fonction de l'éloignement de la lumière par rapport au centre de la coupe transversale à l'extrémité de la fibre optique. Souvent ce profil est modélisé par une gaussienne. Suivant un mode de mise en œuvre de l'invention, en appliquant également le masque sur une image représentant un fond parasite, on calcule également le flux de photon détecté pour chaque zone de 1 ' image de fond, et on soustrait à chaque valeur de flux de chaque zone de l'image acquise, la valeur de flux de chaque zone de l'image de fond correspondante, et on réalise la correction de biais sur le résultat de cette soustraction.
L'image de fond peut être les réflexions parasites sur les systèmes optiques de l'appareil d'acquisition, et donc y compris sur la sortie du guide d'image, mais elle peut également être le décalage, le bruit électronique, de la chaîne de numérisation de l'appareil d'acquisition. Le décalage correspond au terme communément appelé "offset". Si l'offset est dominant sur l'image, on ne peut pas obtenir le fond simplement en retirant l'image, car l'offset dépend du contenu, et n'est donc plus le même. Dans ce cas, on utilise un quantile de l'histogramme pour l'estimer. L'histogramme est celui de l'image acquise lors de la mesure en temps réel, et celui d'une image d'étalonnage lors d'une étape d'étalonnage comme on le verra ci-dessous.
Le fond parasite peut provenir du fond de l'image ou d'un offset de la chaîne de détection.
Selon l'invention, la correction de biais peut consister à séparer spatialement les fibres en différents blocs, à estimer la valeur de biais dans chaque bloc, à interpoler les valeurs des biais de façon à obtenir une valeur de biais pour chaque fibre, et à diviser, pour chaque zone, la valeur de flux obtenue à l'étape précédente par la valeur de biais correspondante ainsi obtenue .
La reconstruction de l'image acquise peut faire intervenir une étape de calibrage pour calibrer le flux de l'image acquise, après traitement local, et une étape de reconstruction mosaïque. On peut utiliser d'autres types de reconstruction, telles que par interpolation ou avec des bases de fonctions radiales. Par ailleurs, la présente invention peut être mise en œuvre sans les étapes d'étalonnage et de calibrage. Dans ce cas, l'image témoin peut être l'image acquise.
Pour le calibrage et pour chaque zone de l'image acquise, on peut diviser la valeur du flux obtenue après traitement local par une valeur de flux obtenue à la suite d'une étape d'étalonnage.
Cette opération de division permet de compenser les mauvaises injections dans certaines fibres optiques.
Selon une caractéristique avantageuse de l'invention, l'étape d'étalonnage consiste à : isoler chaque zone d'une image d'étalonnage en appliquant le masque, correspondant au motif des fibres, sur cette image d'étalonnage, calculer le flux de photon détecté pour chaque zone de l'image d'étalonnage, et corriger le biais sur chaque valeur de flux ainsi calculée.
L'image obtenue à l'issue de l'étalonnage pourra servir d'étalon à l'image acquise de façon à obtenir une image acquise pour laquelle toutes les fibres optiques du guide auraient été injectées de la même manière.
De préférence, on réalise le calcul de flux au moyen d'un estimateur du maximum de vraisemblance calculé sur le profil spécifique d'injection de chaque fibre. Par ailleurs, en appliquant également le masque sur une image représentant un fond parasite, on peut calculer le flux de photon détecté pour chaque zone de l'image de fond, on peut soustraire à chaque valeur de flux de chaque zone de l'image d'étalonnage, la valeur de flux de chaque zone de l'image de fond correspondante, et on peut réaliser la correction de biais sur le résultat de cette soustraction.
En d'autres termes, au cours de l'étape d'étalonnage, on réalise les mêmes opérations que lors de la mesure, c'est-à-dire lors du traitement d'une image acquise en temps réel. Seulement, à l'étalonnage on se sert d'une image d'étalonnage faisant largement apparaître le motif des fibres optiques. L'étalonnage permet, après détection des fibres sur l'image témoin, de générer une image dans laquelle le taux d'injection va servir d'étalon lors de la mesure en temps réel. Au cours de la mesure, on corrige également le taux d'injection sur l'image acquise, et on calibre le flux observé en fonction de l'image étalon de façon à reconstruire une image acquise sans motif des fibres optiques.
Par biais, on entend une composante basse fréquence, cette composante pouvant provenir de diverses causes.
La correction de biais peut être effectuée lors de l'étalonnage et lors de la mesure en temps réel. Pour le premier cas, cela peut venir du fait que l'étalonnage se fait par exemple sur un miroir plan, et que la courbure de champ va réduire la qualité d'injection au retour sur les bords (qui sont défocalisés). Sur l'objet de mesure, ou dans un milieu diffusant homogène, l'injection reste moins bonne sur les bords, et cela se traduit par un biais très similaire au premier quant à sa forme. Le biais peut également provenir d'un problème de vignettage. Généralement, le biais a une symétrie quasi circulaire. L'estimation du biais se fait en divisant l'image en NxN blocs de taille fixe, puis en estimant le biais sur chaque bloc. Pour cela il faut considérer la nature de l'objet observé. Dans lé cas d'un objet homogène, le biais peut être acquis en prenant la valeur moyenne ou médiane sur le bloc. Quand il y a un objet, il faut savoir si cet objet est plus sombre ou plus clair que le reste de l'image. A titre d'exemple, le biais peut être multiplicatif, et on prend donc plutôt un opérateur de moyenne ou de médiane (par rapport à un max ou min pour un biais additif) . On obtient alors une image de taille NxN qui est utilisée, après interpolation, pour trouver la valeur du biais vue par chaque fibre. On peut utiliser une interpolation bilinéaire par exemple.
La reconstruction mosaïque peut consister à répartir sur toute la surface de chaque zone de l'image acquise, la valeur de flux de chaque zone obtenue à la suite de l'étape de calibrage. On peut ensuite réaliser un filtrage récursif passe-bas de façon à lisser l'image acquise reconstruite.
Selon un mode de mise en œuvre avantageux de l'invention, l'image témoin et l'image d'étalonnage sont identiques. D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés, sur lesquels : La figure 1 est une vue schématique globale du procédé de traitement d'image selon l'invention ;
La figure 2 est un organigramme détaillant les principales étapes d'un processus d'étalonnage selon l'invention ;
La figure 3 est un organigramme détaillant les principales étapes d'un processus de mesure selon l'invention ; et
La figure 4 est un organigramme détaillant les étapes finales prenant en compte les processus d'étalonnage et de mesure pour la reconstruction d'une image acquise sans fibres optiques apparentes selon l'invention.
Sur la figure 1 est représenté un schéma global du procédé selon l'invention. Le procédé peut être scindé en quatre parties : une partie 1 concernant la détection des fibres, une partie 2 d'étalonnage, une partie 3 de mesure, et une partie 4 de reconstruction. Les parties 1 et 2 correspondent au diagramme de la figure 2, alors que la partie 3 correspond au diagramme de la figure 3, et la partie 4 correspond au diagramme de la figure 4.
Sur la figure 1, selon l'invention, lorsqu'on désire acquérir une série d'image, on réalise d'abord une étape d'étalonnage. Pour ce faire, on considère une image témoin 5 à laquelle on fait subir une étape de détection des fibres 6 de façon à obtenir une image 7 des composantes connexes représentant chaque fibre. L'image témoin 5 est une image acquise au moyen d' un système comprenant un guide constitué d' une pluralité de fibres optiques de 10000 à 30000 par exemple. L'image témoin 5 est obtenue de telle sorte que l'on distingue le motif des fibres optiques, c'est à dire de type "boîte à œuf" : sur le profil de l'image, une fibre se traduisant par une petite montagne entourée de col et de vallée. L'image témoin 5 subit une opération de détection des fibres de façon à obtenir une sorte de masque représentant le motif des fibres optiques. Ce masque est l'image 7 des composantes connexes représentant chaque fibre. A chaque niveau de gris représente un index unique désignant une fibre optique dans le guide. L' image 7 est ensuite utilisée pour l'étalonnage 2 du système d'acquisition d'image. L'étalonnage a pour but de déterminer une image des taux d'injection de photons fibre à fibre. Cette étape d'étalonnage est nécessaire dans la mesure où chaque fibre présente des propriétés physiques légèrement différentes des autres fibres. Il existe donc une certaine disparité concernant la capacité de chaque fibre optique à véhiculer un même flux de photon.
Pour réaliser l'étalonnage 2, on considère une image 8, ci- dessous appelée image miroir, obtenue en plaçant le miroir devant le système optique du guide d'image. Cette image peut également être celle d'un milieu diffusant homogène, d'un milieu fluorescent homogène, ou de la rétro-diffusion propre à l'intérieur du paquet de fibres optique. Cette image 8 peut également être la même image utilisée en 5, c'est à dire l'image témoin. On utilise le masque 7 pour déterminer le flux de photon de l' image miroir 8 vue par chaque fibre optique au cours de l'étape 9. De façon facultative, on peut également, déterminer le flux de photon vu par chaque fibre au cours de l'étape 11 pour une image de fond parasite 10. Cette image 10 peut correspondre à des réflexions parasites sur les optiques du système d'acquisition, mais aussi à l'offset et/ou le bruit électronique dû à la chaîne de numérisation du système d'acquisition. Le calcul de flux de l'étape 11 fait également intervenir le masque 7 de façon à identifier la zone correspondante à chaque fibre. A l'étape 12, pour chaque fibre optique, on soustrait la valeur de photon de l'image miroir 8 par la valeur de flux de photon de l'image de fond 10. A l'étape 13 on estime que pour chaque fibre optique, la différence obtenue à l'étape 12 correspond au taux d'injection étalon pour chaque fibre, (étape 13) .
A l'étape 14, on réalise une correction de biais sur l'image de l'étape 13. L'image issue de l'étape 14 est donc une image présentant pour chaque zone correspondant à une fibre optique, une valeur de flux de photon étalon et corrigé. Cette image issue de l'étape 14 va servir de référence pour une série d'images acquises en temps réel par le système d'acquisition. Les images acquises et traitées en temps réel subissent le traitement illustré dans les parties 3 et 4. La partie 3 de mesure reçoit une image acquise 15, typiquement l'image d'un objet de mesure. Comme réalisé dans la partie étalonnage 2, on calcule également ici à l'étape 18 le flux de photon vu par chaque fibre en ce qui concerne l'image acquise 15. Pour ce faire, on utilise le masque 7 de façon à identifier sur l'image acquise 15, la zone correspondant à chaque fibre optique. De façon facultative, on considère une image de fond parasite 16 comme précédemment, qui peut être une image. réelle, c'est à dire correspondant au fond de l'image acquise 15 ou alors une image estimée correspondant au parasite du système d'acquisition. Cette image de fond 16 subit également une étape
17 au moyen du masque 7 de façon à déterminer le flux de photon vu par chaque fibre. A l'étape 19 on réalise une soustraction. Le résultat de la soustraction est une image présentant pour chaque zone correspondant à une fibre optique donnée, un flux de photon utile. L'étape 21 est une étape facultative au cours de laquelle on réalise une correction de biais sur l'image 20.
La partie 4 de reconstruction reçoit d'une part l'image 20 corrigée et d'une autre part l'image 13 corrigée (dé-biaisée) de façon à effectuer une opération de calibrage 22 en divisant les flux de l'objet observé (élément issu de l'étape 21) par les flux étalons (élément issu de l'étape 14). A l'étape 22 on réalise également une reconstruction de façon à obtenir une image reconstruite 23 sans motif des fibres optiques apparent. Sur la figure 2 on voit plus en détail le processus 1 de détection des fibres et le processus 2 d'étalonnage. L'opération
6 de détection des fibres fait intervenir quatre opérations : un pré-filtrage, une "ligne de partage des eaux" LPE correspondant à une segmentation par région ; une correction des segments ayant une surface anormalement grande ; et une correction des segments ayant une surface anormalement petite . Les deux opérations de correction sont interchangeables, et on peut également les effectuer en boucle.
L'opération de pré-filtrage 61 reçoit en entrée l'image témoin 5 et génère une image des fibres filtrées de ces maxima locaux, et lissées au niveau des zones inter-fibres . Le préfiltrage fait intervenir une opération d'ouverture morphologique, suivi éventuellement d'une diffusion anisotrope de type scalaire, puis d'une inversion de l'image. Lorsqu'on est en présence de plusieurs images d'un même objet fixe, on peut effectuer un filtrage temporel des images. On peut également effectuer une interpolation au plus proche voisin pour doubler la taille de l'image en vertical et horizontal.
L' image générée par le pré-filtrage 61 subit ensuite une opération de ligne de partage des eaux 62, permettant l'obtention d'une image des composantes connexes des fibres détectées.
L'opération de ligne de partage des eaux, de type conventionnel, va permettre de repérer des segments se trouvant au bord de l'image de façon à les retirer du résultat final. On calcule ensuite les caractéristiques de ces segments obtenus (taille moyenne, écart type, voisinage). L'image issue de l'opération 62 va subir deux corrections 63 et 64 successives. L'opération 63 est une correction des segments ayant une surface anormalement grande. Pour ce faire, on sélectionne les segments qui sont à la fois trop gros par rapport à une taille moyenne et qui ont trop de voisins par rapport à une surface normale des fibres. Ces segments sont re-segmentés avec une ligne de partage des eaux soit sur l'image d'origine, soit sur une image de carte de distance à l'intérieur des segments détectés (dans un segment, distance entre chaque pixel et le bord du segment) . Puis, on calcule les caractéristiques des segments obtenus (taille moyenne, écart type des tailles) .
En 64, on corrige les segments ayant une surface anormalement petite. On calcule aussi le graphe d'adjacence des segments, puis on décide quelles fibres doivent être obligatoirement fusionnées et celles qui sont juste candidates. Dans tous les cas, l'ensemble des fusions possibles est l'ensemble des fusions avec chaque voisine. Pour les fibres obligatoirement fusionnées, on prend la fusion possible qui donne la valeur de compacité la plus petite. Pour les autres qui sont candidates seulement, on utilise successivement trois filtres pour éliminer les fusions qui donnent de mauvais résultats. Le premier filtre vérifie que la taille après fusion n'est pas trop grande. Le second filtre vérifie que la compacité après fusion ne dépasse pas une valeur maximale. Le dernier filtre vérifie que la fusion améliore la compacité. S'il reste plusieurs fusions, on garde celles qui donnent un résultat de meilleure compacité (la plus petite) . Une fois toutes les fusions effectuées sur le graphe d'adjacence, on répercute les résultats sur l'image des composantes connexes, en sortie. Puis on calcule les caractéristiques des segments obtenus (taille moyenne, écart type des tailles) . La seconde correction 64 permet de générer l'image des composantes connexes qui va servir de masque pour l'étalonnage 2 et la mesure 3.
La partie droite de la figure 2 concerne un processus d'étalonnage 2 telle que représenté sur la figure 1 mais de façon simplifiée. En effet, sur la figure 2, les opérations optionnelles 10 et 11 n'apparaissent pas. L'étape 91 de masquage, consiste à repérer sur l'image miroir 8, la zone ou surface correspondant à chaque fibre optique du guide. L'image 7 des composantes connexes sert de masque. A l'étape 92, pour chaque fibre optique, on calcule le flux provenant de l'objet observé. Le flux est calculé grâce à l'estimateur du maximum de vraisemblance déterminé sur le profil spécifique d'injection de chaque fibre optique. A l'étape 14, on réalise une correction de biais comme on le verra plus en détails sur la figure 3. A la sortie de l'étape 14, on obtient en 24 pour chaque fibre optique, une valeur étalon du taux d'injection de photons .
Sur la figure 3, on distingue le processus de mesure selon l'invention. Ce processus se fait en temps réel. Sur l'image acquise 15, on repère la zone correspondante à chaque fibre optique en effectuant une opération de masquage 181 au moyen du masque 7. On calcule ensuite en 182, pour chaque fibre, le flux provenant de l'objet observé. Comme précédemment, le calcul est réalisé grâce à l'estimateur du maximum de vraisemblance déterminé sur le profil spécifique d'injection de chaque fibre optique. On effectue les mêmes opérations de masquage 171 et de calcul de flux 172 sur une image de fond parasite 16.
A l'étape 19, pour chaque zone correspondant à une fibre optique, on soustrait le flux de fond (172) du flux de l'image acquise (182) . Si l'image de fond n'est pas fournie et que ce fond existe, il faut le soustraire, on calcule alors un offset et/ou bruit électronique du système de mesure grâce à un quantile sur l'histogramme de l'image acquise 15. On peut ensuite réaliser à l'étape 21 une correction de biais sur l'image issue de la soustraction 19. Dans ce cas, on sépare spatialement en 211 les zones correspondant aux fibres en différents blocs. Dans chacun de ces blocs, on calcul en 212 la valeur du biais grâce à un opérateur donné. Puis en 213, on interpole les valeurs du biais afin d'obtenir une valeur pour chaque fibre. On réalise alors en 214 une division de la valeur du flux vu par chaque fibre par la valeur du biais obtenu.
A l'issue de l'étape 21, on génère une image 25 représentant le flux observé pour chaque fibre. L'ultime étape de reconstruction prend en compte l'image du taux d'injection étalon 24 et l'image de flux observé 25. L'opération de calibrage a pour but de compenser les pertes d'injection en égalisant le taux d'injection de toutes les fibres optiques de façon à avoir une image dont toutes les fibres ont été injecté de la même façon. Pour cela, on divise en 221 l'image de flux observé 25 par l'image du taux d'injection 24.
On réalise ensuite une reconstruction mosaïque en répartissant à l'étape 222 sur toute la surface correspondant à chaque fibre la valeur obtenue après calibrage (division) . Afin de donner un aspect plus régulier, on peut effectuer un filtrage 223 passe-bas gaussien par exemple.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé de traitement d'image acquise au moyen d'un guide constitué par une pluralité de fibres optiques, caractérisé en ce que, pour chaque fibre optique, on isole sur l'image acquise une zone correspondante à cette fibre optique, on traite localement chaque zone de façon individuelle, puis on reconstruit l'image acquise en éliminant le motif dû aux fibres optiques.
2. Procédé selon la revendication 1, caractérisé en ce que pour isoler chaque zone, on applique un masque, correspondant au motif des fibres, sur l'image acquise.
3. Procédé selon la revendication 2, caractérisé en ce que le masque, correspondant à une image des composantes connexes représentant chaque fibre, est obtenu au cours d'une étape de détection des fibres à partir d'une image témoin.
4. Procédé selon la revendication 3, caractérisé en ce que l'étape de détection des fibres comprend les étapes suivantes : pré-filtrage de l'image témoin, segmentation par région, correction de segments présentant une surface anormalement grande, et - correction de segments présentant une surface anormalement petite.
5. Procédé selon la revendication 4, caractérisé en ce que les deux étapes de corrections sont interchangeables.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que les deux étapes de corrections sont réalisées de façon itérative .
7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que l'étape de pré-filtrage comprend une étape d'ouverture morphologique suivie d'une étape d'inversion d'image.
8. Procédé selon la revendication 7, caractérisé en ce que l'étape d'inversion d'image est précédée d'une étape de diffusion anisotrope de type scalaire.
9. Procédé selon l'une quelconque des revendications 4 à 8, caractérisé en ce que le pré-filtrage comprend en outre une étape au cours de laquelle on réalise une interpolation au plus proche voisin pour doubler la taille de l'image en vertical et en horizontal .
10. Procédé selon l'une quelconque des revendications 4 à 9, caractérisé en ce que, en présence d'une pluralité d'images d'acquisition, le pré-filtrage comprend en outre une étape de filtrage temporel.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le traitement local de chaque zone consiste à calculer le flux de photon détecté pour chaque zone de l'image acquise, et à corriger le biais sur chaque valeur de flux ainsi calculée.
12. Procédé selon la revendication 11, caractérisé en ce qu'on réalise le calcul de flux au moyen d'un estimateur du maximum de vraisemblance calculé sur un profil spécifique d'injection de chaque fibre.
13. Procédé selon la revendication 7, caractérisé en ce qu'en appliquant également le masque sur une image représentant un fond parasite, on calcule également le flux de photon détecté pour chaque zone de 1 ' image de fond, et on soustrait à chaque valeur de flux de chaque zone de l'image acquise, la valeur de flux de chaque zone de l'image de fond correspondante, et on réalise la correction de biais sur le résultat de cette soustraction.
14. Procédé selon la revendication 13, caractérisé en ce que le fond parasite provient du fond de l'image.
15. Procédé selon la revendication 13, caractérisé en ce que le fond parasite provient du calcul d'un décalage de la chaîne de détection
16. Procédé selon l'une quelconque des revendications 11 à 15, caractérisé en ce que la correction de biais consiste à séparer spatialement les fibres en différents blocs, à estimer la valeur de biais dans chaque bloc, à interpoler les valeurs des biais de façon à obtenir une valeur de biais pour chaque fibre, et à diviser, pour chaque zone, la valeur de flux obtenue à l'étape précédente par la valeur de biais correspondante ainsi obtenue .
17. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la reconstruction de l'image acquise fait intervenir une étape de calibrage pour calibrer le flux de l'image acquise, après traitement local, et une étape de reconstruction mosaïque.
18. Procédé selon la revendication 17, caractérisé en ce que pour le calibrage et pour chaque zone de l'image acquise, on divise la valeur du flux obtenue après traitement local par une valeur de flux obtenue à la suite d'une étape d'étalonnage.
19. Procédé selon la revendication 18, caractérisé en ce que l'étape d'étalonnage consiste à : isoler chaque zone d'une image d'étalonnage en appliquant le masque, correspondant au motif des fibres, sur cette image d'étalonnage, - calculer le flux de photon détecté pour chaque zone de l'image d'étalonnage, et corriger le biais sur chaque valeur de flux ainsi calculée.
20. Procédé selon la revendication 19, caractérisé en ce qu'on réalise le calcul de flux au moyen d'un estimateur du maximum de vraisemblance calculé sur le profil spécifique d'injection de chaque fibre.
21. Procédé selon la revendication 18 ou 19, caractérisé en ce qu'en appliquant également le masque sur une image représentant un fond parasite, on calcule également le flux de photon détecté pour chaque zone de l'image de fond, on soustrait à chaque valeur de flux de chaque zone de l'image d'étalonnage, la valeur de flux de chaque zone de 1 ' image de fond correspondante, et on réalise la correction de biais sur le résultat de cette soustraction.
22. Procédé selon la revendication 21, caractérisé en ce que le fond parasite provient du fond de l'image.
23 Procédé selon la revendication 21, caractérisé en ce que le fond parasite provient du calcul d'un décalage et du bruit de la chaîne de détection.
24. Procédé selon l'une quelconque des revendications 17 à
23, caractérisé en ce que la reconstruction mosaïque consiste à répartir sur toute la surface de chaque zone de l'image acquise, la valeur de flux de chaque zone obtenue à la suite de 1 ' étape de calibrage.
25 Procédé selon la revendication 24, caractérisé en ce qu'on réalise un filtrage passe-bas de façon à rendre plus régulière l'image acquise reconstruite.
26. Procédé selon l'une quelconque des revendications 3 à 25, caractérisé en ce que l'image témoin est une image obtenue en plaçant un miroir face au guide.
27. Procédé selon l'une quelconque des revendications 3 à 25, caractérisé en ce que l'image témoin est une image obtenue à partir d'un milieu diffusant homogène.
28. Procédé selon l'une quelconque des revendications 3 à 25, caractérisé en ce que l'image témoin est une image obtenue à partir d'un milieu fluorescent homogène
29. Procédé selon l'une quelconque des revendications 3 à
25, caractérisé en ce que l'image témoin est une image obtenue à partir de la retro-diffusion à l'intérieur du paquet de fibres optiques constituant le guide.
30. Procédé selon l'une quelconque des revendications 3 à 25, caractérisé en ce que l'image témoin est l'image acquise.
31. Procédé selon l'une quelconque des revendications 19 à 30, caractérisé en ce que l'image témoin et l'image d'étalonnage sont identiques.
32. Appareil d'acquisition d'image au moyen d'un guide constitué par une pluralité de fibres optiques, et mettant en œuvre un procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour chaque fibre optique, il comprend : des moyens pour isoler sur l'image acquise une zone correspondante à cette fibre optique, - des moyens pour traiter localement chaque zone de façon individuelle, et des moyens pour reconstruire l'image acquise en éliminant le motif dû aux fibres optiques.
33. Appareil selon la revendication 32, caractérisé en ce qu'il comprend des moyens pour modifier le taux d'échantillonnage, la qualité d'injection dans les fibres optiques, et le réglage d'une chaîne de détection afin de garantir un profil "boîte à œufs".
34. Application du procédé de traitement d'image selon l'une quelconque des revendications précédentes pour l'un des domaines suivants : le contrôle de la rugosité de la surface du guide; - le recalage des images, ou la stabilisation de l'image; la super-résolution d'une image acquise; la quantification des images; et le contrôle temporel des paramètres internes de l'appareil d' acquisition.
PCT/FR2003/002197 2002-07-18 2003-07-11 Procede de traitement d'une image acquise au moyen d'un guide compose d'une pluralite de fibres optiques WO2004010377A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2491751A CA2491751C (fr) 2002-07-18 2003-07-11 Procede de traitement d'image acquise au moyen d'un guide constitue par une pluralite de fibres optiques
CN038210312A CN1679053B (zh) 2002-07-18 2003-07-11 用于处理通过包含多个光纤的波导获取的图像的方法
US10/520,917 US7903848B2 (en) 2002-07-18 2003-07-11 Method for processing an image acquired through a guide consisting of a plurality of optical fibers
KR10-2005-7000839A KR20050021493A (ko) 2002-07-18 2003-07-11 복수의 광섬유로 이루어진 가이드에 의하여 획득된이미지를 처리하는 방법
EP03750802.5A EP1523731B1 (fr) 2002-07-18 2003-07-11 Procede de traitement d'une image acquise au moyen d'un guide compose d'une pluralite de fibres optiques
AU2003269019A AU2003269019B2 (en) 2002-07-18 2003-07-11 Method for processing an image acquired through a guide consisting of a plurality of optical fibers
ES03750802.5T ES2687644T3 (es) 2002-07-18 2003-07-11 Procedimiento de procesamiento de una imagen adquirida por medio de una guía compuesta por una pluralidad de fibras ópticas
JP2004522235A JP4485947B2 (ja) 2002-07-18 2003-07-11 複数の光ファイバからなるガイドによって取得した画像を処理する方法
IL166152A IL166152A (en) 2002-07-18 2005-01-05 Method for processing an image acquired by means of a guide consisting of a plurality of optical fibres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/09100 2002-07-18
FR0209100A FR2842628B1 (fr) 2002-07-18 2002-07-18 "procede de traitement d'une image acquise au moyen d'un guide compose d'une pluralite de fibres optiques"

Publications (1)

Publication Number Publication Date
WO2004010377A1 true WO2004010377A1 (fr) 2004-01-29

Family

ID=29797536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002197 WO2004010377A1 (fr) 2002-07-18 2003-07-11 Procede de traitement d'une image acquise au moyen d'un guide compose d'une pluralite de fibres optiques

Country Status (11)

Country Link
US (1) US7903848B2 (fr)
EP (1) EP1523731B1 (fr)
JP (1) JP4485947B2 (fr)
KR (1) KR20050021493A (fr)
CN (1) CN1679053B (fr)
AU (1) AU2003269019B2 (fr)
CA (1) CA2491751C (fr)
ES (1) ES2687644T3 (fr)
FR (1) FR2842628B1 (fr)
IL (1) IL166152A (fr)
WO (1) WO2004010377A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081310B2 (en) 2004-06-14 2011-12-20 Mauna Kea Technologies Multimarking fibre-type fluorescence microscopic imaging method and system
US8237131B2 (en) 2004-10-22 2012-08-07 Mauna Kea Technologies System and method for carrying out fibre-type multiphoton microscopic imaging of a sample

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346346B1 (en) 2005-01-24 2013-01-01 The Board Of Trustees Of The Leland Stanford Junior University Optical analysis system and approach therefor
US8788021B1 (en) 2005-01-24 2014-07-22 The Board Of Trustees Of The Leland Stanford Junior Univerity Live being optical analysis system and approach
US7307774B1 (en) 2005-01-24 2007-12-11 The Board Of Trustees Of The Leland Standford Junior University Micro-optical analysis system and approach therefor
KR100682978B1 (ko) * 2005-08-19 2007-02-15 한국전자통신연구원 영상을 이용한 얼굴의 광학 특성 맵 추출 시스템 및 그방법
DE102006011707B4 (de) * 2006-03-14 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen einer strukturfreien fiberskopischen Aufnahme
FR2901029B1 (fr) * 2006-05-12 2012-12-21 Mauna Kea Technologies Dispositif et procede d'endoscopie pour une observation simultanee de plusieurs zones d'interet.
WO2007143723A2 (fr) * 2006-06-07 2007-12-13 Qualcomm Incorportated Propagation des changements de l'état de session aux fonctions de réseau dans un ensemble actif
US8099156B1 (en) 2006-09-15 2012-01-17 The Board Of Trustees Of The Leland Stanford Junior University Cochlear optical analysis system and approach therefor
JP4892316B2 (ja) 2006-11-06 2012-03-07 株式会社フジクラ マルチコアファイバ
US8068899B2 (en) * 2007-07-03 2011-11-29 The Board Of Trustees Of The Leland Stanford Junior University Method and system of using intrinsic-based photosensing with high-speed line scanning for characterization of biological thick tissue including muscle
KR100869469B1 (ko) * 2008-04-01 2008-11-19 한국과학기술원 섬유 이미지의 검출 성능을 향상시키기 위한 처리 방법
US8983581B2 (en) 2008-05-27 2015-03-17 Massachusetts Institute Of Technology System and method for large field of view, single cell analysis
US8270762B1 (en) * 2008-09-27 2012-09-18 Schott Corporation Automated light-line calibration system and method of calibrating an optical fiber light line assembly
CA2748416C (fr) 2008-12-29 2016-07-26 Mauna Kea Technologies Procede et appareil de traitement d'image
EP2391981B1 (fr) 2009-01-30 2017-04-05 Mauna Kea Technologies Procédé et système permettant de traiter des images acquises en temps réel par l'intermédiaire d'un dispositif médical
US9155471B2 (en) * 2009-05-27 2015-10-13 Lumicell, Inc'. Methods and systems for spatially identifying abnormal cells
US8332332B2 (en) * 2010-01-29 2012-12-11 Xerox Corporation Methods and apparatus for managing pre-paid printing system accounts
JP5570373B2 (ja) * 2010-09-29 2014-08-13 富士フイルム株式会社 内視鏡システム
US9314304B2 (en) 2010-12-08 2016-04-19 Lumicell, Inc. Methods and system for image guided cell ablation with microscopic resolution
EP2710551B1 (fr) 2011-05-16 2015-03-11 Mauna Kea Technologies Calibrage continu et en temps réel d'images microscopiques à base de fibres
EP2785250A4 (fr) 2011-11-28 2015-07-29 Univ Leland Stanford Junior Système et procédé utiles pour imagerie de sarcomère par l'intermédiaire de microscopie basée sur objectif
JP6478971B2 (ja) 2013-03-14 2019-03-06 ルミセル, インコーポレーテッドLumicell, Inc. 医用撮像装置
EP3426135B1 (fr) 2016-03-08 2024-01-03 Enspectra Health, Inc. Détection non invasive d'une maladie de peau
US10959608B2 (en) 2016-03-31 2021-03-30 Tohoku University Optical imaging device
EP3439531B1 (fr) 2016-04-06 2023-11-08 The University Court of the University of Edinburgh Appareil d'imagerie endoscopique
EP3614915A4 (fr) 2017-04-28 2021-01-20 Enspectra Health, Inc. Systèmes et méthodes d'imagerie et de mesure de sarcomes
GB201707239D0 (en) 2017-05-05 2017-06-21 Univ Edinburgh Optical system and method
US11426075B1 (en) 2017-08-23 2022-08-30 Lumicell, Inc. System and method for residual cancer cell detection
CN107622491B (zh) * 2017-10-16 2022-03-11 苏州微景医学科技有限公司 光纤束图像分析方法和装置
CN107678153B (zh) 2017-10-16 2020-08-11 苏州微景医学科技有限公司 光纤束图像处理方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257100A (en) * 1990-09-28 1993-10-26 Olympus Optical Co., Ltd. Apparatus for reducing network patterns from the image of a fiber scope
WO1997042600A1 (fr) 1996-05-02 1997-11-13 Andromis S.A. Procede de traitement d'images obtenues par fibres multicoeurs ou multifibres, en particulier d'images endoscopiques

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810032A (ja) * 1981-07-09 1983-01-20 オリンパス光学工業株式会社 内視鏡
JPS63155115A (ja) * 1986-12-19 1988-06-28 Olympus Optical Co Ltd 立体観察電子内視鏡
JP3078085B2 (ja) * 1991-03-26 2000-08-21 オリンパス光学工業株式会社 画像処理装置および画像処理方法
JPH08191439A (ja) 1995-01-10 1996-07-23 Fukuda Denshi Co Ltd 内視画像補正方法及び装置
US6080104A (en) * 1995-05-16 2000-06-27 Asahi Kogaku Kogyo Kabushiki Kaisha Electronic endoscope system
WO1997007627A2 (fr) * 1995-08-17 1997-02-27 Karl Storz Gmbh & Co. Systeme d'endoscopie video
JP4008184B2 (ja) * 1996-03-06 2007-11-14 富士フイルム株式会社 蛍光検出装置
US5764409A (en) * 1996-04-26 1998-06-09 Alpha Innotech Corp Elimination of vibration by vibration coupling in microscopy applications
JP3176574B2 (ja) * 1997-10-15 2001-06-18 住友電気工業株式会社 光ファイバ観察装置および光ファイバ融着接続装置
AU2001247275A1 (en) * 2000-03-06 2001-09-17 Gene Logic, Inc. Virtual gel profiling system
US6885801B1 (en) * 2001-12-06 2005-04-26 Clear Image Technology Llc Enhancement of fiber based images

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257100A (en) * 1990-09-28 1993-10-26 Olympus Optical Co., Ltd. Apparatus for reducing network patterns from the image of a fiber scope
WO1997042600A1 (fr) 1996-05-02 1997-11-13 Andromis S.A. Procede de traitement d'images obtenues par fibres multicoeurs ou multifibres, en particulier d'images endoscopiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAO ZHANG ET AL: "Nonlinear distortion correction in endoscopic video images", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 2, 10 September 2000 (2000-09-10), pages 439 - 442, XP010530017 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081310B2 (en) 2004-06-14 2011-12-20 Mauna Kea Technologies Multimarking fibre-type fluorescence microscopic imaging method and system
US8237131B2 (en) 2004-10-22 2012-08-07 Mauna Kea Technologies System and method for carrying out fibre-type multiphoton microscopic imaging of a sample

Also Published As

Publication number Publication date
IL166152A0 (en) 2006-01-15
EP1523731B1 (fr) 2018-06-27
KR20050021493A (ko) 2005-03-07
US7903848B2 (en) 2011-03-08
CN1679053A (zh) 2005-10-05
JP4485947B2 (ja) 2010-06-23
US20050207668A1 (en) 2005-09-22
CA2491751C (fr) 2015-10-13
EP1523731A1 (fr) 2005-04-20
ES2687644T3 (es) 2018-10-26
CA2491751A1 (fr) 2004-01-29
JP2005532884A (ja) 2005-11-04
IL166152A (en) 2010-12-30
AU2003269019B2 (en) 2009-09-10
FR2842628B1 (fr) 2004-09-24
CN1679053B (zh) 2013-07-17
FR2842628A1 (fr) 2004-01-23
AU2003269019A1 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
EP1523731B1 (fr) Procede de traitement d'une image acquise au moyen d'un guide compose d'une pluralite de fibres optiques
EP2174289B1 (fr) Procede de traitement d'objet numerique et systeme associe.
EP1410331B1 (fr) Procede et systeme pour modifier une image numerique en prenant en compte son bruit
EP0054598B1 (fr) Procédé d'inspection et de tri automatique d'objets présentant des configurations avec des tolérances dimensionnelles fixes et équipement de mise en oeuvre
EP0720125B1 (fr) Dispositif de formation d'image et procédé pour effectuer des corrections de distorsions optiques géométriques dans une image
EP0945830B1 (fr) Procédé de traitement d'images incluant des étapes de segmentation d'une image multidimensionnelle et appareil d'imagerie médicale utilisant ce procédé
FR2932911A1 (fr) Procede et dispositif de remplissage des zones d'occultation d'une carte de profondeur ou de disparites estimee a partir d'au moins deux images.
EP0822515A1 (fr) Procédé de segmentation automatique d'une image numérique et dispositif mettant en oeuvre ce procédé
EP3114831B1 (fr) Débruitage vidéo optimisé pour système multicapteur hétérogène
WO1997042600A1 (fr) Procede de traitement d'images obtenues par fibres multicoeurs ou multifibres, en particulier d'images endoscopiques
EP1223763A1 (fr) Procédé de traitement de données d'image
FR2948521A1 (fr) Procede d'estimation d'un defaut d'un systeme de capture d'images et systemes associes
WO2018109372A1 (fr) Procédé de traitement d'image numérique
EP0927953A1 (fr) Procédé de traitement d'une image multidimensionelle bruitée et appareil d'imagerie médicale mettant en oeuvre ce procédé
EP3301644B1 (fr) Procédé de construction d'une carte de profondeur d'une scène et/ou d'une image entièrement focalisée
FR2701766A1 (fr) Procédé d'acquisition et de traitement de l'image d'un article plan, du type étoffe de tissu, en vue de la détection de défauts de fabrication.
FR2884948A1 (fr) Procede et dispositif de reduction du bruit dans une sequence d'images fluoroscopiques
EP3072081B1 (fr) Determination de la carte de profondeur image d'une scene
EP2887307B1 (fr) Procédé de traitement d'images, notamment issues de systèmes de visualisation de nuit et système associé
FR3078427A1 (fr) Detection dynamique de lumiere parasite dans une image numerique
FR2910673A1 (fr) Procede de traitement d'image et dispositif implementant ledit procede
FR3108176A1 (fr) Dispositif de détection de défauts de surface sur au moins une face terminale d’au moins une fibre optique.
EP4020978B1 (fr) Procede d'etalonnage d'une matrice de photodetecteurs, dispositif d'etalonnage et systeme d'imagerie associes
WO2013045853A1 (fr) Méthode et dispositif de filtrage d'une carte de disparité
EP1080448B1 (fr) Procede de simplification d'image et application dudit procede a la segmentation et au codage d'images

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 166152

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2491751

Country of ref document: CA

Ref document number: 2003269019

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 66/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10520917

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004522235

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057000839

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003750802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038210312

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057000839

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003750802

Country of ref document: EP