[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004097927A1 - Purging apparatus and purging method - Google Patents

Purging apparatus and purging method Download PDF

Info

Publication number
WO2004097927A1
WO2004097927A1 PCT/JP2004/006162 JP2004006162W WO2004097927A1 WO 2004097927 A1 WO2004097927 A1 WO 2004097927A1 JP 2004006162 W JP2004006162 W JP 2004006162W WO 2004097927 A1 WO2004097927 A1 WO 2004097927A1
Authority
WO
WIPO (PCT)
Prior art keywords
pod
purging
wafer
gas supply
gas
Prior art date
Application number
PCT/JP2004/006162
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Miyajima
Hiroshi Igarashi
Hitoshi Suzuki
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003123792A external-priority patent/JP4027837B2/en
Priority claimed from JP2003273267A external-priority patent/JP3964361B2/en
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/554,504 priority Critical patent/US7654291B2/en
Publication of WO2004097927A1 publication Critical patent/WO2004097927A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover

Definitions

  • the present invention relates to a product storage container used for storing an article in a manufacturing process of an article such as a semiconductor, a panel for a flat panel display, an optical disk, etc., whose process is performed in a highly clean environment. More specifically, the present invention relates to a method for cleaning the inside of a so-called F0UP (front-opening unified pod), which is used as an object in a process of processing the above-mentioned article, mainly a semiconductor wafer having a diameter of 300 mm. is there.
  • F0UP front-opening unified pod
  • the cleanliness of the storage containers (hereinafter referred to as pods) in the processing equipment during the manufacturing process and during the movement between them is increased. And keep it.
  • This pod is collectively called F0UP as described above. In this way, by purifying only a small amount of space, the same effect as when the entire factory is converted into a clean room is achieved, and capital investment and maintenance costs are reduced, resulting in an efficient production process.
  • FIG. 15 shows the whole semiconductor wafer processing apparatus 50.
  • the semiconductor wafer processing apparatus 50 mainly includes a load port section 51, a transfer chamber 52, and a processing chamber 59. Each joint is defined by a partition 55a and a cover 58a on the load port side and a partition 55b and a cover 58b on the processing chamber side.
  • a fan (not shown) provided above the transfer chamber 52 causes an air flow from above the transfer chamber 52 to below. Is occurring. The dust will always be discharged downward.
  • a pod 2 which is a storage container for a silicon wafer or the like (hereinafter, simply referred to as a wafer), is installed on the table 53.
  • the inside of the transfer chamber 52 is maintained at a high degree of cleanliness in order to process the wafer 1, and the robot arm 54 is provided inside the transfer chamber 52.
  • the wafer is transferred between the inside of the pod 2 and the inside of the processing chamber 59 by the robot arm 54.
  • the processing chamber 59 generally includes various mechanisms for performing processing such as thin film formation and thin film processing on a wafer surface or the like. However, since these structures do not have a direct relationship with the present invention, they are used here. The description in is omitted.
  • the pod 2 has a space for accommodating the wafer 1 to be processed therein, and has a box-shaped main body 2 a having an opening on one side, and a lid 4 for sealing the opening. And Inside the main body 2a, shelves having a plurality of steps for stacking the wafers 1 in one direction are arranged, and the wafers 1 placed here are housed in the pod 2 at a constant interval. You. Note that, in the example shown here, the direction in which the wafers 1 are stacked is a vertical direction.
  • An opening 10 is provided on the load port 51 side of the transfer chamber 52. The opening 10 is arranged at a position facing the opening of the pod 2 when the pod 2 is arranged on the load port 51 so as to be close to the opening 10.
  • FIGS. 16A and 16B are enlarged cross-sectional side views of an orbner 3 in a conventional apparatus, and front views of the orbner 3 viewed from the transfer chamber 52 side, respectively.
  • FIG. 17 shows a schematic side sectional view of a state where the lid 4 has been removed from the pod 2 using the orbner 3.
  • the oven 3 includes a door 6 and a door arm 42.
  • a fixed member 46 is attached to the door 6, and the door 6 is rotatably connected to one end of the door arm 42 via the fixed member 46.
  • the other end of the door arm 42 is rotatably supported on the tip of a rod 37 which is a part of the air-driven cylinder 31 via a pivot 40 via the pivot 40. ing.
  • a through hole is provided between the one end of the door arm 42 and the other end.
  • a fulcrum 41 is formed by a pin (not shown) penetrating the hole and the hole of the fixing member 39 fixed to the support member 60 of the movable portion 56 for moving the orbner 3 up and down. Therefore, the door arm 42 can rotate about the fulcrum 41 in accordance with the expansion and contraction of the rod 37 by driving the cylinder 31.
  • a fulcrum 41 of the door arm 42 is fixed to a support member 60 provided on a movable portion 56 that can move up and down.
  • the door 6 has holding ports 11a and 11b, and can hold the lid 4 of the pod 2 by vacuum suction.
  • the wafer 1 When processing the wafer 1 with these configurations, first, the wafer 1 is placed on the table 53 so as to be close to the transfer chamber opening 10, and the lid 4 is held by the door 6.
  • the door arm 42 moves about the fulcrum 41 away from the transfer chamber opening 10.
  • the door 6 rotates together with the lid 4 to remove the lid 4 from the pod 2. This state is shown in FIG. After that, the movable part 56 is lowered to transport the lid 4 to a predetermined retreat position.
  • the interior of the pod 2 containing the wafers and the like is filled with dry nitrogen, etc., which is controlled in a highly purified manner, to prevent contaminants and oxidizing gas from entering the pod. .
  • this pod has not been tested Since c is also contained, it is conceivable that contaminants and the like adhere to the wafer in the processing chamber and the like and are brought into the pod. When such contaminants are brought into the next processing chamber, a desired wafer processing that should be originally performed may not be performed by passing through this processing chamber. Therefore, it is necessary to remove these contaminants when transferring the wafer from the pod to the transfer room.
  • an air supply hole for introducing a gas for purging into the pod and an exhaust hole for discharging the gas are provided at the bottom in order to meet the demand.
  • These air supply and exhaust holes are connected to the purge gas supply and exhaust holes provided on the support base on which the pod is mounted.
  • high-purity controlled high-pressure gas is introduced into the pod from the support base through these air supply holes.
  • gases and contaminants that existed inside the pod are discharged to the outside of the pod through these exhaust holes.
  • JP-A-2003-54933 As a method for reliably removing contaminants adhering to a wafer, a method disclosed in JP-A-2003-54933 has been proposed.
  • a space for accommodating an orbner is provided separately from the transfer chamber.
  • the space has a gas supply port in a portion located above the front of the pod opening.
  • the clean gas is supplied from the gas supply port toward the inside of the pod, and the clean gas circulating in the pod and flowing out from the lower part of the pod into the space is exhausted from the lower part of the space.
  • Japanese Patent Application Laid-Open No. H11-251,422 discloses a method of introducing a clean gas into each space between wafers held inside a pod.
  • a gas introduction flow path and a gas discharge flow path are provided in the pod and communicate with each of the grooves accommodating individual wafers.
  • a clean gas is blown to the surface of each wafer through the gas introduction passage, and the clean gas containing the contaminants and the like is exhausted through the gas discharge passage. This enables more reliable removal of contaminants.
  • the support base, the shape of the pod, and the arrangement of the supply and exhaust holes of the clean gas for purging the inside of the pod are almost standardized in the semiconductor manufacturing industry. Therefore, the pod disclosed in Japanese Unexamined Patent Publication No. Hei 11-251,422, which requires a configuration different from this standard, has a problem that it cannot be shared with a support base or the like that is currently widely used. ing. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and has as its object to provide an F0UP purging method and a purging apparatus capable of effectively removing contaminants and the like attached to a wafer. .
  • a purging apparatus includes: a main body including an opening and a plurality of shelves arranged in a predetermined direction in which objects to be loaded are respectively placed; A purging device for performing a purging operation by blowing a predetermined gas onto an object stored in a pod having a lid that closes the opening and a pod, wherein a front surface of the opening is set to a predetermined position when the lid is separated from the main body. And a gas supply nozzle capable of moving in a predetermined direction by maintaining a predetermined positional relationship with respect to the frame.
  • the frame may hold a sensor for mapping the contents accommodated in the pod, and the gas supply nozzle may be juxtaposed with the sensor. Further, in the above-described purge device, the timing at which the predetermined gas is blown out from the gas supply nozzle is synchronized with the timing at which the object passes through the plane on which the object extends when the gas supply nozzle moves in the predetermined direction. Is also good.
  • the gas supply nozzle may blow out a predetermined gas in a direction parallel to a plane in which the object extends and a direction downward at a predetermined angle with respect to the plane.
  • the object corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment.
  • Pods include F0UP as an example of one that accommodates a semiconductor wafer, but is not particularly limited to F0UP as long as it accommodates various articles.
  • the state in which the lid is separated from the main body corresponds to a state in which the pod is placed on the load port, and the wafer accommodated in the pod is transferred to the wafer processing apparatus via the mouth port.
  • the purging operation described here involves dust, organic matter, impurities, etc. It means an operation to remove contaminants such as substance elements and oxidizing gas.
  • the mating means an operation of detecting the presence or absence of a wafer accommodated in the shelf, and associating it with the position information of the shelf.
  • a purging apparatus can be separated from a main body including an opening, and a plurality of shelves arranged in a predetermined direction in which objects to be stored are placed, respectively.
  • a purge device for performing a purging operation by spraying a predetermined gas onto an object accommodated in a pod having a lid that closes an opening, and is provided at a predetermined distance from an end of the object.
  • a gas supply nozzle for spraying a predetermined gas substantially uniformly over substantially the entire area of a surface of the object extending perpendicular to the predetermined direction, and a gas supply nozzle supporting the gas supply nozzle. And a supporting member that can be driven in the predetermined direction.
  • the supporting member is a member that detaches the lid from the body of the pod.
  • the timing at which the predetermined gas is blown out from the gas supply nozzle is synchronized with the timing at which the object passes through the plane on which the object extends when the support member moves in the predetermined direction.
  • the gas supply nozzle blows out a predetermined gas to an area surrounded by a plane parallel to a plane in which the object extends and a plane extending downward at a predetermined angle with respect to the plane. Is preferred.
  • the object corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment.
  • the pod is an example of a pod that accommodates a semiconductor wafer, but is not limited to the FOUP as long as it accommodates various articles.
  • the state where the lid is separated from the main body corresponds to a state where the pod is placed on the load port and the wafer accommodated in the pod is transferred to the wafer processing apparatus via the load port.
  • the purging operation described here means an operation for removing contaminants such as dust, organic matter, impurity elements, and oxidizing gas, which are present on the article by being attached thereto.
  • pine Bing refers to the operation of detecting the presence or absence of wafers that are stored in a shelf, and associating this with shelf position information.
  • the purging method according to the present invention may be configured such that an opening, a main body including a plurality of shelves arranged in a predetermined direction in which objects to be stored are respectively placed, and a purging method are provided.
  • a purging method in which a predetermined gas is blown to an object stored in a pod having a lid that closes the opening and a pod provided with the lid. The method includes moving the gas supply nozzle along the direction of (1), and purging the object by spraying a predetermined gas to the object from the gas supply nozzle.
  • the gas supply nozzle is juxtaposed with the sensor, and at the same time as performing the purging step, the sensor performs the step of performing the mubbing of the object contained in the pod by the sensor. Is also good.
  • the step of performing the purging may be performed in synchronization with the timing at which the object passes through the plane on which the object extends when the gas supply nozzle moves in a predetermined direction. good.
  • the gas supply nozzle blows out a predetermined gas in a direction parallel to a plane in which the object extends and a direction downward at a predetermined angle with respect to the plane. It is good.
  • the object to be accommodated corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment.
  • the pod is an example of a pod that accommodates a semiconductor wafer, but is not limited to the FOUP as long as it accommodates various articles.
  • the state where the lid is separated from the main body corresponds to a state where the pod is placed on the load port and the wafer accommodated in the pod is transferred to the wafer processing apparatus via the load port.
  • the purging operation described here means an operation for removing contaminants such as dust, organic matter, impurity elements, and oxidizing gas, which are present on the article by being attached thereto.
  • the mating is to detect the presence or absence of wafers that are stored in the shelves, and to determine the position of the shelves. Means the operation to associate with the information.
  • the purging method according to the present invention may be configured such that an opening, a main body including a plurality of shelves arranged in a predetermined direction in which objects to be stored are respectively placed, and a purging method are provided.
  • the method includes a step of purging the object by spraying a predetermined gas substantially uniformly over substantially the entire area of the surface extending in various directions.
  • the gas supply nozzle is fixed to a door used for attaching and detaching the lid from the body of the pod.
  • the step of purging is performed in synchronization with the timing at which the object passes through the extending plane when the gas supply nozzle moves in a predetermined direction.
  • the gas supply nozzle supplies a predetermined gas to a space between a plane parallel to the plane in which the object extends and a plane extending downward at a predetermined angle with respect to the plane. It is better to blow out.
  • the object to be accommodated corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment.
  • the pod is an example of a pod that accommodates a semiconductor wafer, but is not limited to the FOUP as long as it accommodates various articles.
  • the state where the lid is separated from the main body corresponds to the state where the pod is placed on the load port and the wafer stored in the pod is transferred to the wafer processing apparatus via the load port.
  • the purging operation described here means an operation for removing contaminants such as dust, organic matter, impurity elements, oxidizing gas, etc., which are present on the article by being attached thereto.
  • the mating is to detect the presence or absence of wafers that are stored in the shelves, and to determine the position of the shelves. Means the operation to associate with the information.
  • the gas supply nozzle it becomes possible for the gas supply nozzle to enter the inside of the pod through the pod opening and to blow a highly clean gas toward the wafer surface.
  • the gas supply nozzle is movable in the direction in which the wafers are overlapped, and it is possible to individually blow gas to each wafer. Therefore, it is possible to effectively and reliably remove dust, impurities, and contaminants attached to the wafer surface.
  • the purging operation inside the pod can be performed at any time during the wafer processing using the gas supply nozzle, so that the wafer can be held in a higher-purity environment.
  • the present invention can be implemented simply by adding a gas supply nozzle and a gas pipe to a muting device in an existing F0UP system, and can be easily and inexpensively attached to a standardized system. It is.
  • the gas supply nozzle it becomes possible for the gas supply nozzle to spray a high-purity gas toward the entire surface of the wafer at a predetermined distance from the wafer.
  • the gas supply nozzle is movable in the direction in which the wafers are stacked, and it is possible to individually blow gas to each wafer. Therefore, it is possible to effectively and reliably remove contaminants such as dust and impurities attached to the wafer surface.
  • the purging operation inside the pod can be performed at any time during wafer processing by using a gas supply nozzle, and the wafer can be held in a higher-purity environment.
  • the present invention can be implemented by simply adding a gas supply nozzle and a gas pipe to a load port door of an existing F0UP system, and can be easily and inexpensively mounted on a standardized system. It is possible.
  • FIG. 1 shows a purge device, a pod, and a pod according to a first embodiment of the present invention.
  • FIG. 1 is a view showing a schematic configuration of a part of a cover and an orbner when viewed from the side.
  • FIG. 2 is a diagram showing a schematic configuration of the purge device according to the first embodiment of the present invention and a configuration disposed around the purge device as viewed from above.
  • FIG. 3A is a diagram showing a schematic configuration of a state in which the configuration of the orbner and its vicinity shown in FIG. 1 is reduced and viewed from the side.
  • FIG. 3B is a diagram showing a schematic configuration when the configuration shown in FIG. 3A is viewed from the transfer chamber side.
  • FIG. 4A is a front view of a movable portion of an orbner in an example related to the above-described embodiment, as seen from the load port side.
  • FIG. 4B is a diagram showing a state where the configuration shown in FIG. 3A is viewed from the side.
  • FIG. 5 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and is a diagram showing a state when mapping preparation is completed.
  • FIG. 6 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and is a diagram showing a state when the mapping operation is completed.
  • FIG. 7 is a diagram showing a sequence of the wafer mapping, and is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a state in which all of the mapping and the opening operation of the lid are completed. It is.
  • FIG. 8A is a view showing a schematic configuration of a purge device, a pod, a lid for a pod, and a part of an orbner according to the second embodiment of the present invention, when viewed from the side.
  • FIG. 8B is a view showing a schematic configuration of a purge device, a pod, and a part of a pod cover orb opener according to the second embodiment of the present invention when viewed from the side.
  • FIG. 8C is a view showing a schematic configuration of a main part of a purge device according to the second embodiment of the present invention when viewed from the side.
  • FIG. 9A is a diagram illustrating a schematic configuration of a purge device according to a second embodiment of the present invention and a configuration disposed around the purge device when viewed from above.
  • FIG. 9B is a view showing a schematic configuration of a main part of a purge device according to a second embodiment of the present invention, which is cut in a horizontal direction and the cut surface is viewed from above.
  • FIG. 1OA is a diagram showing a schematic configuration of a state in which the configuration of the orbner shown in FIGS. 8A to 8C and its vicinity is reduced and viewed from the side.
  • FIG. 1OB is a diagram showing a schematic configuration when the configuration shown in FIG. 1OA is viewed from the transfer chamber side.
  • FIG. 11A is a front view of a movable portion of an orbner in an example related to the above-described embodiment, as seen from the load port side.
  • FIG. 11B is a diagram showing a state where the configuration shown in FIG. 11A is viewed from the side.
  • FIG. 12 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and showing a state when mapping preparation is completed.
  • FIG. 13 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and showing a state when the mapping operation is completed. .
  • Fig. 14 is a diagram showing a schematic configuration of a state where the orbner and the like are viewed from the side, showing a sequence of wafer mapping, showing a state when all the mapping and lid opening operations are completed.
  • FIG. 14 is a diagram showing a schematic configuration of a state where the orbner and the like are viewed from the side, showing a sequence of wafer mapping, showing a state when all the mapping and lid opening operations are completed.
  • FIG. 15 is an overall side view showing a schematic configuration of a general semiconductor wafer processing apparatus to which the present invention and the prior art are applied.
  • Fig. 16A shows the structure of the conventional orbner and its vicinity in the device shown in Fig. 15. It is a figure which expanded the composition and which shows the schematic structure of the state which looked at this from the side.
  • FIG. 16B is a diagram showing a schematic configuration when the configuration shown in FIG. 16A is viewed from the transfer chamber side.
  • FIG. 17 is a view showing a schematic configuration of a state where an orbner or the like is viewed from the side, showing a wafer purging operation, and is a view showing a state when the preparation for purging is completed.
  • FIG. 1 relates to a schematic configuration of a purging apparatus according to the present invention, and is a view schematically showing a pod, a wafer housed inside the bod, and a purging apparatus according to the present invention when viewed from a side.
  • FIG. 2 is a diagram schematically showing the main components of the components shown in FIG. 1 and the components attached thereto when viewed from above.
  • the pod inherently includes various components such as a shelf for supporting a wafer, a scenery member disposed between the lid and the pod, and the door also has various components. However, since these configurations do not have a direct relationship with the present invention, detailed illustration and explanation are omitted here.
  • a frame 5 composed of a frame member is disposed so as to surround the door 6 in the orbner.
  • a pair of rods 13a and 13b shown in FIG. 2 are provided at the top of the frame 5, a pair of rods 13a and 13b shown in FIG. 2 are provided.
  • the rods 13a and 13b extend from the opening of the pod 2 to the inside of the pod and extend in a direction substantially perpendicular to the opening.
  • the rods 13a and 13b support the gas supply nozzles 21a and 21b such that the gas supply nozzles 21a and 21b are directed in the same direction as the rod.
  • a gas supply line (not shown) is connected to each of the gas supply nozzles 21a and 21b, so that a clean gas can be supplied to the nozzle according to an external operation. ing.
  • the gas supply nozzles 21a and 21b are separated from the center line of the pod 2, that is, the center line of the wafer 1 held inside the pod, by a predetermined distance d. However, it is located at a target position with respect to the center line.
  • Each of the nozzles 2 1 a and 2 lb has a corresponding rod shape so that gas can be supplied parallel to the surface of the wafer 1 or downward at a predetermined angle ⁇ to the plane.
  • the body is fixed to 13a, 13b.
  • the distance d and the angle ⁇ are determined according to the distance between the wafers held in the pod 2, the shape of the pod 2, etc., in order to more efficiently remove contaminants on the wafer 1, and from the inside of the pod 2. Is preferably adjusted appropriately so as to be able to discharge. For the same reason, the number of nozzles may be increased or decreased as compared with the embodiment, or the nozzles may be driven.
  • the present invention it is possible to perform an operation for removing contaminants or the like for each wafer, and it is possible to hold the wafer inside the pod with a higher degree of cleanliness than in the past. It becomes possible. Further, in the present invention, the gas flow rate, purge time, and the like required for the operation of removing contaminants and the like can be individually controlled for each wafer. Therefore, the removal operation can be always performed under constant conditions, and the management state of all wafers in the pod can be easily maintained constant.
  • the gas or the like supplied into the pod 2 from the gas supply nozzles 2 la and 21 b may be exhausted using an exhaust hole provided in the pod 2 conventionally. Further, since the purging operation is performed with the lid 4 opened, the purging operation may be performed using an exhaust system (not shown) provided in the transfer chamber. For contaminants and the like once removed from the wafer, Alternatively, it is considered preferable to prevent re-adhesion inside the pod or flow into the transfer chamber. In this case, as shown in the above-mentioned Japanese Patent Publication No. 2003-54993, in order to efficiently exhaust the clean gas used for the work of removing contaminants and the like, the pod opening communicates with the pod opening. A small chamber dedicated to exhaust air may be provided in the transfer chamber.
  • the purging apparatus according to the present invention is applied to a currently used F0UP system
  • the schematic configuration of the semiconductor wafer processing apparatus and the pod to which the present invention is applied is substantially the same as the configuration described in the related art, so that the description of the same configuration will be omitted.
  • the orbiter 3 is often provided with a configuration for performing a mapping operation of the wafer held inside the pod 2.
  • This includes a pair of transmission sensors for detecting the presence or absence of a wafer, a frame supporting these sensors, a mechanism for driving the frame, and a mechanism for detecting the current position of the sensor.
  • the embodiment of the present invention is further facilitated by sharing the frame 5 supporting the gas supply nozzle and the like according to the present invention with the frame supporting the transmission sensor.
  • the transfer chamber 52 has a transfer chamber opening 10 slightly larger than the lid 4 of the pod 2 on the load port section 51 side as shown in FIG. Provided.
  • An orbner 3 for opening and closing the lid 4 of the pod 2 is provided inside the transfer chamber 52 and on the side of the transfer chamber opening 10.
  • FIGS. 3A and 3B are diagram showing the entire apparatus by reducing the load port section 51, pod 2, orbner 3 and lid 4 in FIG. 1, and
  • FIG. 3B is a view showing the configuration shown in FIG. It is the figure seen from the inside.
  • the oven 3 has a door 6 and a frame 5.
  • the door 6 is a plate-like body large enough to close the transfer chamber opening 10 and has holding portions 11a and 11b as vacuum suction holes on its surface.
  • the surface located on the pod 2 side when the door 6 closes the transfer chamber opening 10 is a flat surface that can be in close contact with the lid 4.
  • the door 6 is provided with a fixing member 46 having a hole.
  • a pivot 45 provided at the upper end of the door arm 42 is rotatably penetrated through the hole to be fixed.
  • a hole is formed at the lower end of the door arm 42.
  • the pivot 40 penetrates through the hole and the hole at the tip of a rod 37 that is a part of an air-driven door opening / closing cylinder 31 that is a door opening / closing drive device.
  • the door arm 42 is connected to the cylinder 31 and is rotatably supported by the cylinder 31.
  • the frame 5 is a structure including a frame member arranged along the transfer chamber opening 10 and surrounding the door 6.
  • Frame 5 has a long It is attached to the upper ends of the extending frame arms 12a and 12b. Holes (not shown) are formed at the lower ends of the frame arms 12a and 12b.
  • the pivot 44 penetrates through the hole and the hole at the tip of the rod 38 which is a part of the air-driven frame driving cylinder 35 which is a frame driving device. As a result, the frame arm and the cylinder 35 are connected, and the frame arm is rotatably supported by the cylinder 35.
  • the frame arms 12a and 12b extend symmetrically and parallel to the vertical direction along the central axis of the frame 5 to evenly support the load.
  • a rod 47 perpendicular to each of the frame arms 12a and 12b is mounted between the upper and lower ends of each of the frame arms 12a and 12b.
  • a fixing member 39 serving as a fulcrum support portion having a shape extending vertically from the support member 60 is disposed.
  • the fixing member 39 has a through hole parallel to the support member 60.
  • a bearing (not shown) is disposed in the through hole of the fixing member 39, and the outer ring of the bearing pivotally supports the rod 47 with the inner ring of the bearing on the inner wall of the through hole.
  • the rod 47 constitutes the fulcrum 41 in a state of being included in the through hole of the fixing member 39.
  • the fulcrum 41 is configured as a coaxial fulcrum that also serves as a fulcrum of the arm frames 12a and 12b and a fulcrum of the door arm. That is, another through hole is provided between the upper end and the lower end of the door arm 42. A rod 47 penetrates the through hole to form a fulcrum 41.
  • the door arm 42 can rotate about the fulcrum 41 by the expansion and contraction of the door 37 by the driving of the cylinder 31.
  • the fulcrum 41 of the door arm 42 is fixed to a support member 60 provided on a movable part 56 that can move up and down.
  • the door 6 has holding ports 11a and 11b, and can hold the lid 4 of the pod 2 by vacuum suction.
  • the door arm 42 is almost lead when the door 6 is pressed against the transfer chamber opening 10 (hereinafter referred to as a standby state). The door 6 moves in a direction away from the wall surface of the transfer chamber 52 by rotating the door arm 42.
  • the frame arms 12 a and 12 b are rotatable about the fulcrum 41 in accordance with the expansion and contraction of the rod 38 by driving the frame driving cylinder 35. That is, the frame arms 12a and 12b are also fixed to the supporting member 60 provided on the movable portion 56 that can move up and down.
  • the frame 5 is arranged so as to be obliquely separated from the wall surface of the transfer chamber 52 when the door 6 is in a standby state. That is, in this state, the frame arms 12 a and 12 b are supported at an angle to the door arm 42 at an angle to the door arm 42, and the upper part of the frame 5 is A certain distance from the wall.
  • the frame 5 when the frame 5 is rotated from the standby state with the frame arms 12 a and 12 b in a direction in which the frame 5 comes into contact with the wall surface of the transfer chamber 52, the frame 5 is almost flush with the wall surface of the transfer chamber 52.
  • the support rods 13 a and 13 b are fixed to the frame member disposed on the upper portion of the frame 5 so as to protrude toward the wall surface of the force transfer chamber 52.
  • the tip of each of the support rods 13a and 13b is placed so that the first transmission type sensors 9a and 9b, which are the first transmission type sensors, face each other.
  • the bosses 21b are mounted so as to satisfy the positional relationship described above.
  • the semiconductor wafer processing apparatus 50 is provided with a movable section 56 for moving the orbner 3 up and down.
  • FIG. 4A is a diagram of the movable portion 56 of the orbner 3 as viewed from the load port portion 51 side
  • FIG. 4B is a diagram showing an arrow X in FIG. 4A.
  • the movable part 56 includes an air-driven mouthless cylinder 33 for vertically moving up and down and a support member 60, and is provided below the lower surface of the pod 2 so as to be downstream of the air flow from the pod 2. Are located.
  • a fixing member 39, an air-driven cylinder 31 and a cylinder 35 are attached to the support member 60.
  • the movable part 56 is provided on the load port part 51 side.
  • the transfer arm 52 is formed by the door arm 42 and the frame arms 12a and 12b through the elongated hole 57 provided in the partition 55. Supports side orbna 3.
  • the long hole 57 is provided with the moving direction of the movable portion 56 as a longitudinal direction, that is, in the present embodiment, the vertical direction.
  • the load port 51 and the transfer chamber 52 are separated by a force par 58 so that the long hole 57 does not lower the cleanliness in the transfer chamber 52.
  • a limiter 59 for preventing overrun when the orbner 3 descends is provided below the partition 55.
  • the partition 55 has a mouthless cylinder 33, a guide 61a, and a guide 61b along the elongated hole 57.
  • the movable part 56 is moved up and down by the rodless cylinder 33 along the guides 61a and 61b.
  • a sensor dog 7 is provided beside the movable part 56 along the mouthless cylinder 33.
  • the sensor dog 7 is a plate-like body extending in the direction along the mouthless cylinder 33, and has index means arranged at regular intervals in the longitudinal direction.
  • the index means has concave and convex portions 12 which are notches arranged at regular intervals.
  • the number of the irregularities corresponds to the number of wafer placement shelves in the pod, and the irregularities are arranged so that one notch always corresponds to any shelves with movable parts. .
  • a transmission sensor 8 as a second transmission sensor is fixed on a horizontal partition 55.
  • the sensor section of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a fixed interval provided in the sensor dog 7, and the sensor dog 7 is moved in accordance with the movement of the movable section 56.
  • the irregularities 1 and 2 can be detected.
  • the support member 60 of the movable portion 56 is provided with a third transmission sensor 62, while the partition 55 near the lower side of the elongated hole 57 is provided with a limiter 64. . In this mechanism, when the protruding portion shields the limiter 64, a stop signal is issued to the movable portion 56, and the entire operation of the opener 3 stops.
  • FIGS. 3A, 3B to 7 how the operation of removing contaminants on the wafer 1 and the operation of mubbing are performed based on these configurations.
  • 3A shows a standby state
  • FIG. 5 shows a state in which the lid 4 is opened and closed, and the frame 5 operates
  • FIG. 6 shows a state in which contaminant removal operation and mapping of the wafer 1 are performed
  • FIG. 7 shows a state in which the operation is completed.
  • FIG. 5 is a diagram showing a state where frame 5 has returned to a standby state after the operation performed on wafer 1 is completed.
  • FIGS. 4A and 4B show a front view and a side view of a sensor dog provided for detecting a driving position of the frame 5 and a related configuration, respectively.
  • the shelves in the pod 2 that have completed the previous processing process contain wafers 1 that meet the preprocessing standard, while wafers 1 that do not meet the standard are removed from the process at the preprocessing stage Have been.
  • the stage where the wafer 1 exists and the stage where the wafer 1 does not exist are mixed.
  • the pod 2 in this state is placed on the table 53 on the transfer chamber 52 as shown in FIG. 3A, and moves so as to approach the transfer chamber opening 10.
  • the orbner 3 is in a standby state. That is, the rod 37 of the door opening / closing cylinder 31 is in the most extended state, and the door arm 42 presses the door 6 around the fulcrum 41 against the transfer chamber opening 10 to close it.
  • the arm 42 stands in the vertical direction.
  • the rod 38 of the frame driving cylinder 35 is in the most contracted state, and the frame arms 12a and 12b pull the frame 5 away from the wall of the transfer chamber 52 around the fulcrum 41. It is in the state of acting as follows. That is, in the present embodiment, the frame arms 12a and 12b are inclined at a certain angle with respect to the door arm 42.
  • FIG. 5 shows a state where the pod 2 is close to the transfer chamber opening 10 and the door 6 holds the lid 4.
  • the lid 4 of the pod 2 comes into close contact with the door 6, and holds the lid 4 of the pod 2 via the holding units 11 a and 11 b by vacuum suction.
  • the door opening / closing cylinder 31 works to retract the rod 37.
  • the pivot 40 provided at the end of the door arm 42 is drawn toward the support base 60, and the door arm 42 is connected to the fulcrum 41. Rotate the door 6 away from the mini-empirion opening 10 according to the principle of leverage to open the lid 4 from the pod 2.
  • the movable portion 56 slightly descends to a position where the upper end of the frame 5 enters the position of the opening 10 and the frame arms 12a and 12b can rotate.
  • the frame arm 12 actually starts rotating. That is, the frame arms 12a and 12b rotate until the rod 38 of the frame driving cylinder 35 extends and the frame 5 substantially abuts around the transfer chamber opening 10.
  • the gas supply nozzles 21a and 21b and the transmission sensors 9a and 9b mounted on the upper side of the frame 5 go out of the transfer chamber opening 10 and are inserted into the pod 2. Is done. At this point, the gas supply nozzles 21a and 21b are located in the arrangement shown in FIG.
  • the first transmission type sensors 9a and 9b juxtaposed with the gas supply nozzles 21a and 21b are arranged so that the wafer 1 exists on a straight line connecting these, and constitute a detection space. .
  • the movable portion 56 moves in the vertical direction, and at the same time, the operation of removing contaminants by spraying the high-purity gas on the individual wafers 1 and the operation of mubbing the wafers 1 are sequentially performed. That is, the orbner 3 is lowered by the rodless cylinder 33 to the position shown in FIG.
  • the transmission sensors 9 a and 9 b descend together with the movable part 56 and the orbner 3 in a direction perpendicular to the surface of the wafer 1.
  • each sensor is set to emit a non-transmission signal when the transmission sensor 9b is blocked by the wafer 1, and to transmit a transmission signal when the transmission sensor 9b is not blocked by the wafer 1. deep.
  • the gas supply nozzles 21a and 21b are cleaner By allowing the gas to be blown onto the wafer 1 for a predetermined time and at a predetermined pressure, an operation of removing contaminants and the like from each wafer can be effectively performed.
  • the blowing of the high-purity gas may be stopped in response to the non-permeation signal in consideration of the gas use efficiency, but the gas flow rate on the wafer to be operated due to the difference between the wafers is considered. It is also possible to change the gas spraying conditions in consideration of the change in the pressure.
  • the sensor section of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a constant interval provided in the sensor doc 7. Therefore, when the movable part 56 descends, the transmission sensor 8 also descends and detects the irregularities 12 of the sensor dog 7. At this time, when the transmission type sensor 8 passes through the concave portion, the transmission type sensor 8 emits a transmission signal without being shielded from light, and when the transmission type sensor 8 passes through the convex portion, the transmission type sensor 8 is shielded from light and emits a non-transmission signal. ing.
  • the unevenness 12 of the sensor dog 7 is preset so that the time when the transmissive sensors 9a and 9b pass through each step of the shelf in the pod 2 corresponds to the time when the transmissive sensor 8 passes through the recess.
  • the transmission / non-transmission signals detected by the transmission / transmission sensor 8 indicate the signals of the steps of the shelf that the transmission sensor 9 actually passes.
  • the gas supply nozzles 21a and 21b and the transmission sensors 9a and 9b are fixed to the same frame 5. Further, frame arms 12a and 12b, which are means for rotating the frame 5, and a frame driving cylinder are provided.
  • frame arms 12a and 12b which are means for rotating the frame 5, and a frame driving cylinder are provided.
  • the fulcrum of the door arm 42 and the fulcrum of the mapping frame 5 are shared by the fulcrum 41, but the same effect can be obtained by using both fulcrums as separate fulcrums. That is, the same effect can be obtained even if different fulcrums are provided as the first fulcrum provided on the door arm 42 and the second fulcrum provided on the mapping frame.
  • the movable part 56, the fulcrum 41, the door opening / closing cylinder 31 and the mapping frame driving cylinder 35 are integrally formed, they need not be integrally formed to obtain the effects of the present invention. As long as these mechanisms are arranged downstream of the airflow with respect to the pod 2, the same effect can be obtained.
  • the gas supply nozzle is Although fixed on the support rod in parallel, the present invention is not limited to this. Specifically, the gas supply nozzle may be fixed on a frame different from the sensor. Further, a drive mechanism may be added to the gas supply nozzle so that the gas supply nozzle can be moved or rotated in parallel with the wafer surface. With this configuration, it is possible to purge the wafer surface evenly with at least the number of nozzles. In addition, the state of adhesion of contaminants and the like may fluctuate depending on the immediately preceding treatment. In this case, the number of gas supply nozzles may be increased or decreased in consideration of the adhesion state and the gas usage state.
  • the operation of removing contaminants and the like is performed only once in accordance with the mapping operation, but the present invention is not limited to this.
  • the removal operation can be performed at any time except when the robot arm in the transfer chamber is accessing the wafer in the pod. Therefore, the removal operation may be repeatedly performed on the wafer held in the pod while the wafer is subjected to various kinds of processing in the processing apparatus.
  • F0UP is described, but the application of the present invention is not limited to this system.
  • a contaminant or the like according to the present invention may be used as long as the system includes a container for accommodating a plurality of objects to be held therein and a transfer chamber for transferring the objects to be held from the container to a device for processing the objects to be held. It is possible to apply a purging device.
  • FIGS. 8A to 8C relate to a schematic configuration of a purging apparatus according to the present invention, and are diagrams schematically illustrating a pod, a wafer housed inside the pod, and a purging apparatus according to the present invention when viewed from the side. is there.
  • Figure 8A shows the start of the purge operation
  • Figure 8B shows the middle of the purge operation
  • Figure 8C shows an enlarged view of the main part of the purge device.
  • FIG. 9A is a diagram schematically showing the main components of the components shown in FIGS. 8A to 8C and the components attached thereto when viewed from above
  • FIG. 9A is a diagram schematically showing the main components of the components shown in FIGS. 8A to 8C and the components attached thereto when viewed from above, and FIG.
  • the pod originally includes various components such as a shelf for supporting a wafer, a seal member disposed between the lid and the pod, and the door also has various components.
  • a shelf for supporting a wafer a seal member disposed between the lid and the pod, and the door also has various components.
  • these configurations do not have a direct relationship with the present invention, detailed illustration and description thereof are omitted here.
  • a gas supply nozzle 21 capable of discharging clean gas is attached to the upper part of the door 6 in the oven in the direction shown by the arrow in the figure.
  • a gas supply line (not shown) is connected to each of the gas supply nozzles 21 so that a clean gas can be supplied to the nozzles according to an external operation.
  • the gas supply nozzle 21 includes a substantially tubular member 22 extending in a direction parallel to the surface of the wafer 1, and the tubular member 22 extends in parallel with the surface of the wafer 1. It has an opening 22 a formed linearly. Note that the clean gas is introduced into the inside of the evacuation member from a substantially central portion of the tubular member 22 and a portion not facing the opening 22a.
  • the gas supply nozzle 21 is sequentially moved in the direction in which the wafers 1 are stacked, and a clean gas is supplied between the wafers 1.
  • a clean gas is supplied between the wafers 1.
  • an operation of removing contaminants and the like by the clean gas on the front and back surfaces of the wafer and the inside of the pod 2, that is, a purging operation is performed.
  • the door 6 is driven in parallel with the direction in which the wafers 1 are stacked. Accordingly, when the door 6 is driven, the purging operation for the wafers 1 inside the pod 2 can be sequentially performed by releasing the clean gas from the gas supply chisels 21.
  • the center of the tubular member 22 in the gas supply nozzle 21 is separated from the opening end face of the pod body 2 by a predetermined distance L.
  • the opening 22a allows the clean gas emitted from the opening 22a to diffuse in the horizontal direction as shown in Figure 9B and in the vertical direction as shown in Figures 8A to 8C. It has an unusual shape.
  • a clean gas is sprayed on the entire surface of the wafer 1 in the horizontal direction to remove pollutants and the like.
  • the flow velocity of the gas discharged from the gas supply nozzle is the fastest near the nozzle opening, and decreases rapidly as it moves away from the opening.
  • the cleaning gas is released to a region that is angled downward from the horizontal direction, so that a new cleaning gas can be formed at a certain angle to the front and back of the wafer.
  • these distances L and angles] 3 can remove contaminants on the wafer 1 more efficiently depending on the size of the wafer held in the pod 2, the distance between the wafers, the shape of the pod 2, and the like. It is preferable to appropriately adjust such that these can be discharged from the inside of the pod 2.
  • the width, the length, the opening angle or the number of the opening 22a may be increased or decreased as compared with the embodiment, or the direction of the opening 22a may be changed.
  • the present invention it is possible to carry out the operation of removing contaminants and the like for each wafer and for the entire area on the front and back surfaces, and to achieve a higher degree of cleanliness than in the past.
  • the wafer can be held inside the pod.
  • the gas flow rate, purge time, and the like required for the operation of removing contaminants and the like can be individually controlled for each wafer. Therefore, always The removal operation can be performed depending on the situation, and the management state of all wafers in the pod can be easily maintained constant.
  • the gas or the like supplied into the pod 2 from the gas supply nozzle 21 may be exhausted using an exhaust hole provided in the pod 2 conventionally. Further, since the purging operation is performed with the lid 4 opened, the purging operation may be performed using an exhaust system (not shown) provided in the transfer chamber. In addition, it is considered preferable to prevent contaminants and the like once removed from the wafer from re-adhering to the inside of another wafer or pod, or from flowing into the transfer chamber. In this case, as shown in the above-mentioned Japanese Patent Application Laid-Open No. 2003-54993, in order to efficiently exhaust the clean gas used for the operation of removing contaminants and the like, the pod opening communicates with the pod opening. A small chamber dedicated to exhaustion may be provided in the transfer chamber ⁇ ⁇ .
  • the schematic configuration of the semiconductor wafer processing apparatus and the pod to which the present invention is applied is substantially the same as the configuration described in the related art, so that the description of the same configuration will be omitted.
  • the gas supply nozzle 21 described above may be supported and driven by a member independent of the door 6 described above.
  • the gas supply nozzle and the like according to the present invention are arranged at the upper part of the door 6, thereby making the present invention easier to implement.
  • the transfer chamber 52 has a transfer port opening 10 slightly larger than the lid 4 of the pod 2 on the side of the load port section 51 as shown in FIG. Provided.
  • An orbner 3 for opening and closing the lid 4 of the pod 2 is provided inside the transfer chamber 52 and on the side of the transfer chamber opening 10.
  • FIGS. 10A and 10B an orbner 3 to which the present invention is applied will be described with reference to FIGS. 10A and 10B.
  • FIG. 10A is a diagram showing the entire apparatus by reducing the load port portion 51, pod 2, hood 3 and lid 4 in FIG. 1, and FIG. 10B is shown in FIG. 10A.
  • FIG. 3 is a view of the configuration as viewed from the inside of a transfer chamber 52.
  • the oven 3 has a door 6 and a frame 5.
  • the door 6 is a plate-like body large enough to close the transfer chamber opening 10 and has holding portions 11a and 11b as vacuum suction holes on its surface.
  • the surface located on the pod 2 side when the door 6 closes the transfer chamber opening 10 is a flat surface that can be in close contact with the lid 4.
  • the door 6 is provided with a fixing member 46 having a hole.
  • a pivot 45 provided at the upper end of the door arm 42 is rotatably penetrated through the hole to be fixed.
  • a hole is formed at the lower end of the door arm 42.
  • the pivot 40 penetrates through the hole and the hole at the tip of a rod 37 that is a part of an air-driven door opening / closing cylinder 31 that is a door opening / closing drive device.
  • the door arm 42 is connected to the cylinder 31 and is rotatably supported by the cylinder 31. Become.
  • the frame 5 is a structure including a frame member arranged along the transfer chamber opening 10 and surrounding the door 6.
  • the frame 5 is attached to the upper ends of the frame arm 12a and the frame arm 12b which extend long in the lower frame member. Holes (not shown) are formed at the lower ends of the frame arms 12a and 12b.
  • the pivot 44 penetrates through the hole and the hole at the tip of the rod 38 which is a part of the air-driven frame driving cylinder 35 which is a frame driving device. As a result, the frame arm and the cylinder 35 are connected, and the frame arm is rotatably supported by the cylinder 35.
  • the frame arms 12a and 12b extend symmetrically and parallel to the vertical direction along the center axis of the frame 5 to evenly support the load.
  • a rod 47 perpendicular to each of the frame arms 12a and 12b is mounted between the upper and lower ends of each of the frame arms 12a and 12b.
  • the support member 60 is provided with a fixing member 39 serving as a fulcrum support portion having a shape extending vertically from the support member 60.
  • the fixing member 39 has a through hole parallel to the support member 60.
  • a bearing (not shown) is disposed in the through hole of the fixing member 39, and the outer ring of the bearing pivotally supports the rod 47 with the inner ring of the bearing on the inner wall of the through hole.
  • the mouthpiece 47 constitutes the fulcrum 41 in a state of being included in the through hole of the fixing member 39.
  • the fulcrum 41 is configured as a coaxial fulcrum that also serves as a fulcrum of the arm frames 12a and 12b and a fulcrum of the door arm. That is, another through hole is provided between the upper end and the lower end of the door arm 42. A lock 47 penetrates the through hole to form a fulcrum 41.
  • the door arm 42 can rotate about the fulcrum 41 by the expansion and contraction of the door 37 by the driving of the cylinder 31.
  • the fulcrum 4 1 of the door arm 4 2 is a support member provided on the movable portion 56 that can be moved up and down. Fixed to 60.
  • the door 6 has holding ports 11a and 11b, and can hold the lid 4 of the pod 2 by vacuum suction.
  • the door arm 42 When the door 6 is pressed against the transfer chamber opening 10 (hereinafter, referred to as a standby state), the door arm 42 is arranged almost vertically, and the door arm 42 is rotated to rotate the door 6. Moves in a direction away from the wall surface of the transfer chamber 52.
  • the frame arms 12 a and 12 b are rotatable about the fulcrum 41 in accordance with the expansion and contraction of the rod 38 by driving the frame driving cylinder 35. That is, the frame arms 12a and 12b are also fixed to the supporting member 60 provided on the movable portion 56 that can move up and down.
  • the frame 5 is arranged so as to be obliquely separated from the wall surface of the transfer chamber 52 when the door 6 is in a standby state. That is, in this state, the frame arms 12 a and 12 b are supported at an angle to the door arm 42 at an angle to the door arm 42, and the upper part of the frame 5 is A certain distance from the wall.
  • the semiconductor wafer processing apparatus 50 is provided with a movable section 56 for moving the orbner 3 up and down.
  • FIG. 11A is a diagram of the movable portion 56 of the orbner 3 as viewed from the load port portion 51 side
  • FIG. 11B is a diagram showing an arrow X of FIG. 11A.
  • the movable portion 56 includes an air-driven mouthless cylinder 33 for vertically moving up and down and a support member 60, and is provided below the lower surface of the pod 2 so as to be downstream of the air flow from the pod 2. Are located.
  • a fixing member 39, an air-driven cylinder 31 and a cylinder 35 are attached to the support member 60.
  • Moving parts 5 6 Provided on the load port 51 side, the orbner 3 on the transfer chamber 52 side is connected to the door arm 42 and the frame arms 12a and 12b through the elongated holes 57 provided in the partition 55. Supporting.
  • the long hole 57 is provided with the moving direction of the movable portion 56 as a longitudinal direction, that is, in the present embodiment, the vertical direction.
  • the load port 51 and the transfer chamber 52 are separated by a cover 58 so that the long hole 57 does not lower the cleanliness in the transfer chamber 52.
  • a limiter 59 is provided below the power divider 55 to prevent overrun when the orbner 3 is lowered.
  • the partition 55 includes a rodless cylinder 33, a guide 61a, and a guide 61b along the elongated hole 57.
  • the movable part 56 is moved up and down along the guides 61a and 61b by the mouthless cylinder 33.
  • a sensor dog 7 is provided beside the movable part 56 along the rodless cylinder 33.
  • the sensor dog 7 is a plate-like body extending in the direction along the mouthless cylinder 33, and has index means arranged at regular intervals in the longitudinal direction.
  • the index means has concave and convex portions 12 which are notches arranged at regular intervals.
  • the number of the irregularities corresponds to the number of wafer placement shelves in the pod, and the irregularities are arranged so that one notch always corresponds to any shelves with movable parts. .
  • a transmission sensor 8 as a second transmission sensor is fixed on a horizontal partition 55.
  • the sensor section of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a fixed interval provided in the sensor dog 7, and the sensor dog 7 is moved in accordance with the movement of the movable section 56.
  • the irregularities 1 and 2 can be detected.
  • the third transmission sensor 62 is provided on the support member 60 of the movable portion 56
  • a limiter 64 is provided on the partition 55 near the lower side of the elongated hole 57. I have. In this mechanism, when the protruding portion shields the limiter 64, a stop signal is issued to the movable portion 56, and the entire operation of the orbiter 3 is stopped.
  • FIGS. 10A and 10B to 14 show a description will be given of how the operation of removing contaminants on the wafer 1 and the operation of the mubbing are performed with reference to FIGS. 10A and 10B to 14 based on these configurations.
  • Fig. 10A shows the stand-by state
  • Fig. 12 shows the state in which the lid 4 is opened and closed
  • the frame 5 is in operation
  • Fig. 13 shows the ueno
  • the contaminant removal operation and the mapping operation in 1 are completed.
  • FIG. 14 is a diagram showing a state in which the frame 5 has returned to the standby state after the operation performed on the wafer 1 is completed.
  • FIGS. 11A and 11B show a front view and a side view of a sensor dog provided for detecting a driving position of the frame 5 and a related configuration, respectively.
  • the shelves in the pod 2 that have completed the previous processing process contain wafers 1 that meet the preprocessing standard, while wafers 1 that do not meet the standard are removed from the process at the preprocessing stage Have been.
  • the stage where the wafer 1 exists and the stage where the wafer 1 does not exist are mixed.
  • the pod 2 in this state is placed on the table 53 on the transfer chamber 52 as shown in FIG. 1OA, and moves to approach the transfer chamber opening 10.
  • the orbner 3 is in a standby state. That is, the rod 37 of the door opening / closing cylinder 31 is in the most extended state, and the door arm 42 presses the door 6 around the fulcrum 41 against the transfer chamber opening 10 to close it. You.
  • the arm 42 stands in the vertical direction.
  • the rod 38 of the frame driving cylinder 35 is in the most contracted state, and the frame arms 12a and 12b pull the frame 5 away from the wall of the transfer chamber 52 around the fulcrum 41. It is in the state of acting as follows. That is, in the present embodiment, the frame arms 12a and 12b are inclined at a certain angle with respect to the door arm 42.
  • FIG. 12 shows a state where the pod 2 is close to the transfer chamber opening 10 and the door 6 holds the lid 4.
  • the lid of Pod 2 4 closely adheres to the door 6, and holds the lid 4 of the pod 2 through the holding portions 11a and 1lb by vacuum suction.
  • the door opening / closing cylinder 31 works to contract the mouth 37.
  • the pivot 40 provided at the end of the door arm 42 is pulled toward the support base 60 side, and the door arm 42 is moved from the transfer chamber opening 10 to the door by the fulcrum 41 according to the principle of leverage. Rotate to pull 6 apart, and open lid 4 from pod 2.
  • the movable portion 56 slightly descends to a position where the upper end of the frame 5 enters the position of the opening 10 and the frame arms 12a and 12b can rotate.
  • the frame arm 12 actually starts rotating. That is, the frame arms 12a and 12b rotate until the rod 38 of the frame driving cylinder 35 extends and the frame 5 substantially abuts around the transfer chamber opening 10.
  • the transmission type sensors 9 a and 9 b mounted on the upper side of the frame 5 go out of the transfer chamber opening 10 and are inserted into the pod 2.
  • the gas supply nozzle 21 is located in the configuration shown in FIG. 8A.
  • the first transmission sensors 9a and 9b are arranged so that the wafer 1 exists on a straight line connecting them, and constitute a detection space.
  • the movable portion 56 moves in the vertical direction, and at the same time, the operation of removing contaminants by spraying the high-purity gas on the individual wafers 1 and the operation of mubbing the wafers 1 are sequentially performed. That is, the orbner 3 is lowered by the rodless cylinder 33 to the position shown in FIG.
  • the transmission sensors 9 a and 9 b descend together with the movable part 56 and the orbner 3 in a direction perpendicular to the surface of the wafer 1.
  • the wafer 1 is present on the shelf, the light emitted from the transmission sensor 9a is blocked, whereas when the wafer is missing from the shelf, the light from the transmission sensor 9a is not blocked.
  • Each sensor is set so as to emit a non-transmission signal when the transmission sensor 9b is blocked by the wafer 1, and to transmit a transmission signal when the transmission sensor 9b is not blocked by the wafer 1. Thereby, it can be determined that wafer 1 is present when a non-transmitted signal is detected, and it can be determined that wafer 1 is missing when a transmitted signal is detected.
  • the cleaning gas is blown from the gas supply nozzle 21 to the wafer 1 for a predetermined time and at a predetermined pressure, thereby removing contaminants and the like for each wafer. Can be performed effectively. In this case, the blowing of the high-purity gas may be stopped in response to the non-permeation signal in consideration of the gas use efficiency. However, since the interval between the wafers is different, the operation target becomes difficult.
  • the gas blowing conditions may be changed in consideration of the above change in the gas flow velocity.
  • the sensor portion of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a predetermined interval provided in the sensor dog 7. Therefore, when the movable part 56 descends, the transmission sensor 8 also descends and detects the irregularities 12 of the sensor dog 7. At this time, when the transmissive sensor 8 passes through the! 3 ⁇ 4! Portion, the transmissive sensor 8 emits a transmissive signal without being shaded, and when the transmissive sensor 8 passes through a convex portion, the transmissive sensor 8 is shielded from light and emits a non-transmissive signal. It is like that.
  • the unevenness 12 of the sensor dog 7 is preset so that the time when the transmissive sensors 9a and 9b pass through each step of the shelf in the pod 2 corresponds to the time when the transmissive sensor 8 passes through the recess.
  • the transmission / non-transmission signals detected by the transmission / transmission sensor 8 indicate the signals of the steps of the shelf that the transmission sensor 9 actually passes.
  • the gas supply nozzle 21 is fixed to the door 6 that moves in parallel with the direction in which the wafers are stacked. Therefore, it is possible to always supply a clean gas to each wafer under the same conditions.
  • the sensor dog 7 and the transmission sensor 8 it is possible to easily generate a synchronization signal corresponding to a shelf in the pod 2, so that the wafer can be used without using a drive motor as a drive device. At the same time as the mapping operation of 1, a more effective operation of removing contaminants and the like can be performed.
  • the fulcrum of the door arm 42 and the fulcrum of the mapping frame 5 are shared by the fulcrum 41, but the same effect can be obtained by using both fulcrums as separate fulcrums. That is, the same effect can be obtained even if different fulcrums are provided as the first fulcrum provided on the door arm 42 and the second fulcrum provided on the mapping frame.
  • Force that is integrated with the movable part 56, the fulcrum 41, the door opening / closing cylinder 31, and the mapping frame driving cylinder 35 It is not always necessary to integrate the movable part 56 to obtain the effects of the present invention. As long as these mechanisms are arranged downstream of the airflow with respect to the pod 2, the same effect can be obtained.
  • the gas supply nozzle is fixed to the upper part of the door for the purpose of applying the present invention without making a significant change to the configuration conforming to the F0UP standard.
  • the present invention is not limited to this. concrete Alternatively, the gas supply nozzle may be configured with a frame different from the door and fixed on the frame. Further, a driving mechanism may be added to the gas supply nozzle, and the gas supply nozzle may be rotatable about an axis parallel to the wafer surface. It is also conceivable that the state of adhesion of contaminants and the like may fluctuate depending on the immediately preceding treatment.
  • the width, length, opening angle or number of the openings in the gas supply nozzle may be increased or decreased in consideration of the adhesion state and the use state of the gas.
  • an increase in the number means both an increase in the number of openings in the horizontal direction and an increase in the number of openings in the vertical direction.
  • the operation of removing contaminants and the like is performed only once in accordance with the mapping operation, but the present invention is not limited to this.
  • the removal operation can be performed at any time except when the robot arm in the transfer chamber is accessing the wafer in the pod. Therefore, the removal operation may be repeatedly performed on the wafer held in the pod while the wafer is subjected to various kinds of processing in the processing apparatus.
  • F0UP is described, but the application of the present invention is not limited to this system.
  • a contaminant or the like according to the present invention may be used as long as the system includes a container for accommodating a plurality of objects to be held therein and a transfer chamber for transferring the objects to be held from the container to a device for processing the objects to be held. It is possible to apply a removal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A purging apparatus is disclosed which enables to easily and surely remove contaminants or the like from wafers housed in an FOUP. While holding a cover of the FOUP separated from the main body so that the FOUP has an opening, the purging apparatus moves a gas supply nozzle on the front side of the opening along the direction in which the wafers are aligned and blows a cleaning gas towards each one of the wafers through the gas supply nozzle, thereby removing contaminants or the like from the wafers.

Description

明細書 パージ装置およぴパージ方法 技術分野  Description Purge device and purge method Technical field
本発明は、半導体、フラットパネルディスプレイ用のパネル、光ディスク等、 高清浄な環境下にてそのプロセスが行われる物品の製造工程において、 当該物 品収容のために用いられる製品収容容器に関する。 より詳細には、前述の物品、 主として 300讓径の半導体用ウェハの処理工程においてこれを被収容物として 用いられる、 いわゆる F0UP (front - opening unified pod)における、 その内部 の清浄化方法に関するものである。 背景技術  The present invention relates to a product storage container used for storing an article in a manufacturing process of an article such as a semiconductor, a panel for a flat panel display, an optical disk, etc., whose process is performed in a highly clean environment. More specifically, the present invention relates to a method for cleaning the inside of a so-called F0UP (front-opening unified pod), which is used as an object in a process of processing the above-mentioned article, mainly a semiconductor wafer having a diameter of 300 mm. is there. Background art
これまで、 半導体デバイスの製造工程では、 ウェハに対して各種処理を施す ための工場全体をクリーンルーム化することで、 求められるプロセス中の高清 浄ィ匕に対応していた。 し力 し、 ウェハの大径化に伴って、 この様な対処では構 成上環境を得ることがコスト等において問題となり、 ここ数年、 各処理装置 各々に対して高清浄度に保ったミ二エンバイロンメント (微小環境) 空間を確 保する手段がとられている。  Until now, in the manufacturing process of semiconductor devices, the entire factory for performing various processes on wafers has been converted into a clean room to respond to the required high-purity cleaning during the process. However, with the increase in the diameter of the wafer, obtaining such a configuration environment has become a problem in terms of cost, etc., in such a measure. Two-environment (microenvironment) Measures are taken to ensure space.
具体的には工場全体の清浄度を高めるのではなく、 製造工程内における各処 理装置内おょぴその間の移動中における保管用容器 (以下、 ポッドと呼ぶ) 内 のみしを高清浄度に保つこととしている。 このポッドを、 上述のごとく F0UP と 総称している。 この様に、 わずかな空間のみを高清浄化することで、 工場全体 をクリーンルーム化した場合と同じ効果を得て設備投資や維持費を削減して 効率的な生産工程を実現している。  Specifically, instead of increasing the cleanliness of the entire factory, the cleanliness of the storage containers (hereinafter referred to as pods) in the processing equipment during the manufacturing process and during the movement between them is increased. And keep it. This pod is collectively called F0UP as described above. In this way, by purifying only a small amount of space, the same effect as when the entire factory is converted into a clean room is achieved, and capital investment and maintenance costs are reduced, resulting in an efficient production process.
以下、 実際に用いられる、 いわゆるミニエンバイロメント方式に対応した半 導体処理装置等について簡単に説明する。 図 1 5は半導体ウェハ処理装置 5 0 の全体を示している。半導体ウェハ処理装置 5 0は、主にロードポート部 5 1、 搬送室 5 2、 および処理室 5 9から構成されている。 それぞれの接合部分は、 ロードポート側の仕切り 5 5 aおよびカバー 5 8 aと、 処理室側の仕切り 5 5 bおよびカバー 5 8 bとにより区画されている。 半導体ウェハ処理装置 5 0に おける搬送室 5 2では塵を排出して高清浄度を保つ為、 その上部に設けられた ファン (不図示) により搬送室 5 2の上方から下方に向かって空気流を発生さ せている。 これで塵は常に下側に向かって排出されることになる。 Hereafter, a half of the mini-environment method that is actually used The conductor processing device and the like will be briefly described. FIG. 15 shows the whole semiconductor wafer processing apparatus 50. The semiconductor wafer processing apparatus 50 mainly includes a load port section 51, a transfer chamber 52, and a processing chamber 59. Each joint is defined by a partition 55a and a cover 58a on the load port side and a partition 55b and a cover 58b on the processing chamber side. In the transfer chamber 52 of the semiconductor wafer processing apparatus 50, in order to discharge dust and maintain a high degree of cleanliness, a fan (not shown) provided above the transfer chamber 52 causes an air flow from above the transfer chamber 52 to below. Is occurring. The dust will always be discharged downward.
ロードポート部 5 1上には、 シリコンウェハ等 (以下、 単にウェハと呼ぶ) の保管用容器たるポッド 2が台 5 3上に据え付けられる。 先にも述べたように、 搬送室 5 2の内部はウェハ 1を処理する為に高清浄度に保たれており、 更にそ の内部にはロボットアーム 5 4が設けられている。 このロボットアーム 5 4に よって、 ウェハはポッド 2内部と処理室 5 9の内部との間を移送される。 処理 室 5 9には、 通常ウェハ表面等に薄膜形成、 薄膜加工等の処理を施すための各 種機構が内包されているが、 これら構成は本発明と直接の関係を有さないため にここでの説明は省略する。  On the load port section 51, a pod 2, which is a storage container for a silicon wafer or the like (hereinafter, simply referred to as a wafer), is installed on the table 53. As described above, the inside of the transfer chamber 52 is maintained at a high degree of cleanliness in order to process the wafer 1, and the robot arm 54 is provided inside the transfer chamber 52. The wafer is transferred between the inside of the pod 2 and the inside of the processing chamber 59 by the robot arm 54. The processing chamber 59 generally includes various mechanisms for performing processing such as thin film formation and thin film processing on a wafer surface or the like. However, since these structures do not have a direct relationship with the present invention, they are used here. The description in is omitted.
ポッド 2は、 被処理物たるウェハ 1を内部に収めるための空間を有し、 いず れか一面に開口部を有する箱状の本体部 2 aと、 該開口部を密閉するための蓋 4とを備えている。 本体部 2 aの内部にはウェハ 1を一方向に重ねる為の複数 の段を有する棚が配置されており、 ここに載置されるウェハ 1各々はその間隔 を一定としてポッド 2内部に収容される。 なお、 ここで示した例においては、 ウェハ 1を重ねる方向は、 鉛直方向となっている。 搬送室 5 2のロードポート 部 5 1側には、 開口部 1 0が設けられている。 開口部 1 0は、 ポッド 2が開口 部 1 0に近接するようにロードポート部 5 1上で配置された際に、 ポッド 2の 開口部と対向する位置に配置されている。 また、 搬送室 5 2には内側における 開口部 1 0付近には、 後述するオーブナ 3が設けられている。 図 1 6 Aおよび 1 6 Bは、 従来の装置におけるオーブナ 3部分を拡大した側 断面図おょぴ搬送室 5 2側からオーブナ 3見た正面図をそれぞれ示している。 図 1 7は、 オーブナ 3を用いてポッド 2から蓋 4を取り外した状態についてそ の側断面概略を示している。 オーブナ 3は、 ドア 6とドアアーム 4 2とを備え ている。 ドア 6には固定部材 4 6が取り付けられており、 ドア 6は、 当該固定 部材 4 6を介してドアアーム 4 2の一端に対して回動可能に連結されている。 ドアアーム 4 2の他端は、 エアー駆動式のシリンダ 3 1の一部であるロッド 3 7の先端部に対して、 枢軸 4 0を介して、 当該枢軸 4 0に対して回転可能に支 持されている。 The pod 2 has a space for accommodating the wafer 1 to be processed therein, and has a box-shaped main body 2 a having an opening on one side, and a lid 4 for sealing the opening. And Inside the main body 2a, shelves having a plurality of steps for stacking the wafers 1 in one direction are arranged, and the wafers 1 placed here are housed in the pod 2 at a constant interval. You. Note that, in the example shown here, the direction in which the wafers 1 are stacked is a vertical direction. An opening 10 is provided on the load port 51 side of the transfer chamber 52. The opening 10 is arranged at a position facing the opening of the pod 2 when the pod 2 is arranged on the load port 51 so as to be close to the opening 10. In the vicinity of the opening 10 inside the transfer chamber 52, an orbner 3 described later is provided. FIGS. 16A and 16B are enlarged cross-sectional side views of an orbner 3 in a conventional apparatus, and front views of the orbner 3 viewed from the transfer chamber 52 side, respectively. FIG. 17 shows a schematic side sectional view of a state where the lid 4 has been removed from the pod 2 using the orbner 3. The oven 3 includes a door 6 and a door arm 42. A fixed member 46 is attached to the door 6, and the door 6 is rotatably connected to one end of the door arm 42 via the fixed member 46. The other end of the door arm 42 is rotatably supported on the tip of a rod 37 which is a part of the air-driven cylinder 31 via a pivot 40 via the pivot 40. ing.
ドアアーム 4 2の該一端と該他端との間には、 貫通穴が設けられている。 当 該穴と、 オーブナ 3を昇降させる可動部 5 6の支持部材 6 0に固定される固定 部材 3 9の穴とを不図示のピンが貫通することにより、 支点 4 1が構成されて いる。 従って、 シリンダ 3 1の駆動によるロッド 3 7の伸縮に応じて、 ドアァ ーム 4 2は支点 4 1を中心に回動可能となる。 ドアアーム 4 2の支点 4 1は、 昇降が可能な可動部 5 6に設けられる支持部材 6 0に固定されている。 ドア 6 は保持ポート 1 1 aおよび 1 1 bを有していて、 ポッド 2の蓋 4を真空吸着で 保持できる。  A through hole is provided between the one end of the door arm 42 and the other end. A fulcrum 41 is formed by a pin (not shown) penetrating the hole and the hole of the fixing member 39 fixed to the support member 60 of the movable portion 56 for moving the orbner 3 up and down. Therefore, the door arm 42 can rotate about the fulcrum 41 in accordance with the expansion and contraction of the rod 37 by driving the cylinder 31. A fulcrum 41 of the door arm 42 is fixed to a support member 60 provided on a movable portion 56 that can move up and down. The door 6 has holding ports 11a and 11b, and can hold the lid 4 of the pod 2 by vacuum suction.
これら構成によってウェハ 1の処理を行う際には、 まず搬送室開口部 1 0に 近接するように台 5 3上に配置して、 ドア 6により蓋 4を保持する。 そしてシ リンダ 3 1のロッドを縮めるとドアアーム 4 2が支点 4 1を中心に搬送室開 口部 1 0から離れるように移動する。 この動作によりドア 6は蓋 4とともに回 動して蓋 4をポッド 2から取り外す。 その状態が図 1 7に示されている。 その 後、 可動部 5 6を下降させて蓋 4を所定の待避位置まで搬送する。  When processing the wafer 1 with these configurations, first, the wafer 1 is placed on the table 53 so as to be close to the transfer chamber opening 10, and the lid 4 is held by the door 6. When the rod of the cylinder 31 is contracted, the door arm 42 moves about the fulcrum 41 away from the transfer chamber opening 10. With this operation, the door 6 rotates together with the lid 4 to remove the lid 4 from the pod 2. This state is shown in FIG. After that, the movable part 56 is lowered to transport the lid 4 to a predetermined retreat position.
通常、 ウェハ等を収容した状態でのポッド 2の内部は、 高清浄に管理された 乾燥窒素等によって満たされており、 汚染物質、 酸化性のガス等のポッド内部 への侵入を防止している。 しかしながら、 このポッドは処理室を経た後のゥェ ハも収容することから、 処理室等にて汚染物質等がウェハに付着し、 これがポ ッド内部に持ち込まれる場合が考えられる。 この様な汚染物質等が次の処理室 にまで持ち込まれた場合、 この処理室を経ることにより本来為されるべき所望 のウェハ処理が行われない場合も生じえる。 このため、 ウェハをポッドから搬 送室に移す際に、 これら汚染物質等を除去する必要がある。 Normally, the interior of the pod 2 containing the wafers and the like is filled with dry nitrogen, etc., which is controlled in a highly purified manner, to prevent contaminants and oxidizing gas from entering the pod. . However, this pod has not been tested Since c is also contained, it is conceivable that contaminants and the like adhere to the wafer in the processing chamber and the like and are brought into the pod. When such contaminants are brought into the next processing chamber, a desired wafer processing that should be originally performed may not be performed by passing through this processing chamber. Therefore, it is necessary to remove these contaminants when transferring the wafer from the pod to the transfer room.
従来の F0UP においては、 当該要求に対応するために、 パージ用のガスをポ ッド内部に導入するための給気孔およぴ排出するための排気孔が、 その底部に 設けられている。 これら給気および排気孔は、 当該ポッドを載置する支持台に 設けられたパージガス用の給気孔おょぴ排気孔と、 それぞれ接続される。 実際 の操作としては、 これら給気孔を介して、 支持台側から、 高清浄に管理された 高圧ガスをポッド内部に導入する。 同時に、 ポッド内部に存在していたガスお よび汚染物質等を、 これら排気孔を介してポッド外部に排出する。 当該操作に よって、 ポッド内部に持ち込まれた汚染物質等の除去を行っていた。  In the conventional F0UP, an air supply hole for introducing a gas for purging into the pod and an exhaust hole for discharging the gas are provided at the bottom in order to meet the demand. These air supply and exhaust holes are connected to the purge gas supply and exhaust holes provided on the support base on which the pod is mounted. As an actual operation, high-purity controlled high-pressure gas is introduced into the pod from the support base through these air supply holes. At the same time, gases and contaminants that existed inside the pod are discharged to the outside of the pod through these exhaust holes. These operations removed contaminants and other substances brought into the pod.
しかし、 単にポッド底部から高圧ガスを導入するだけでは、 ガス流は通過が 容易なウェハ外周近傍を主として通過すると考えられる。 従って、 微小間隔を 保って保持される個々のウェハの上下面に対して充分な流速を有したガスを 通過させることは困難と思われる。 し力 し、 汚染物質等は、 ウェハ上面或いは 下面に主に付着しており、 従来の方式では汚染物質等の充分な除去は困難と思 われる。  However, simply introducing high-pressure gas from the bottom of the pod would allow the gas flow to pass mainly around the wafer periphery, which is easy to pass. Therefore, it seems difficult to pass a gas having a sufficient flow rate to the upper and lower surfaces of each wafer held at a small interval. However, contaminants and the like are mainly attached to the upper or lower surface of the wafer, and it is considered difficult to sufficiently remove the contaminants and the like using the conventional method.
ウェハに付着した汚染物質を確実に除去するための方法として、 特開 2 0 0 3 - 4 5 9 3 3号公報に開示される方法が提案されている。 当該方法において は、 搬送室とは別個に、 オーブナを収容する空間が設けられている。 当該空間 は、 ポッドの開口部の正面上方に位置する部分に、 ガス供給口を有している。 このガス供給口からポッド内部に向けて清浄ガスを供給し、 ポッド内部を循環 してポッド下部から当該空間に流出した当該清浄ガスを、 当該空間下部から排 気している。 以上の構成を用いて、 ポッド内部に清浄ガスを循環させることに よって、 従来の方法と比較して、 より確実な汚染物質等の除去を行えるように している。 As a method for reliably removing contaminants adhering to a wafer, a method disclosed in JP-A-2003-54933 has been proposed. In this method, a space for accommodating an orbner is provided separately from the transfer chamber. The space has a gas supply port in a portion located above the front of the pod opening. The clean gas is supplied from the gas supply port toward the inside of the pod, and the clean gas circulating in the pod and flowing out from the lower part of the pod into the space is exhausted from the lower part of the space. Using the above configuration, circulating clean gas inside the pod Therefore, it is possible to more reliably remove contaminants and the like as compared with the conventional method.
また、 特開平 1 1 - 2 5 1 4 2 2号公報には、 ポッド内部に保持されたゥェ ハ個々の間に対して、 清浄ガスを導入する方法が開示されている。 当該方法に おいては、 ポッド内部に、 ウェハ個々を収容する溝部各々に対して各々連通す るガス導入用流路ぉよぴガス排出用流路が設けられている。 このガス導入用流 路を介して清浄ガスを個々のウェハの表面に対して吹き付け、 汚染物質等を含 むこととなった当該清浄ガスを、 ガス排出用流路を介して排気することにより、 より確実な汚染物質の除去を行えるようにしている。  In addition, Japanese Patent Application Laid-Open No. H11-251,422 discloses a method of introducing a clean gas into each space between wafers held inside a pod. In this method, a gas introduction flow path and a gas discharge flow path are provided in the pod and communicate with each of the grooves accommodating individual wafers. A clean gas is blown to the surface of each wafer through the gas introduction passage, and the clean gas containing the contaminants and the like is exhausted through the gas discharge passage. This enables more reliable removal of contaminants.
特開 2 0 0 3— 4 5 9 3 3号公報に開示される方法は、 ポッド内部の湿度お よぴ酸ィ匕性ガスの低減、 および有機汚染の防止に関してはある程度の効果が期 待できる。 し力 しながら、 微小空間を保って保持されたウェハ個々の間に存在 するガス等を、 効果的に置換することはやはり困難と思われる。 従って、 ゥェ ハ上下面に付着した汚染物質を除去する効果を得ることも、 同様に困難と思わ れる。  The method disclosed in Japanese Patent Application Laid-Open No. 2003-54993 can expect a certain effect with respect to the reduction of the humidity inside the pod, the oxidizing gas, and the prevention of organic pollution. . However, it seems difficult to effectively replace the gas and the like that exist between the individual wafers held in a very small space. Therefore, it seems similarly difficult to obtain the effect of removing contaminants attached to the upper and lower surfaces of the wafer.
特開平 1 1— 2 5 1 4 2 2号公報に開示される方法によれば、 ウェハ上下面 に付着した汚染物質の除去も可能と思われる。 しかし、 実際の構成上ガス導入 用流路の内径を大きく保つことは困難とおもわれる。 このため、 当該流路の上 流側と下流側とでは、 ウェハ表面に導入されるガスの圧力、 或いは所定圧力で 導入される時間に差が生じ、 ウェハの保持位置に応じて汚染物質の除去効果が 異なることが考えられる。  According to the method disclosed in Japanese Patent Application Laid-Open No. H11-251254, it is considered that contaminants attached to the upper and lower surfaces of the wafer can be removed. However, it is considered difficult to keep the inside diameter of the gas introduction flow channel large due to the actual configuration. For this reason, a difference occurs between the pressure of the gas introduced into the wafer surface or the time of introduction at a predetermined pressure between the upstream side and the downstream side of the flow path, and contaminants are removed according to the wafer holding position. The effects may be different.
また、 支持台、 ポッド形状、 更にはポッド内部パージ用の清浄ガスの供給孔 および排出孔の配置等は、 半導体製造業界においてほぼ規格化されている。 従 つて、 この規格と異なった構成を必要とする特開平 1 1— 2 5 1 4 2 2号公報 に開示されるポッドは、 現在汎用されている支持台等と共用できないという問 題を有している。 発明の開示 The support base, the shape of the pod, and the arrangement of the supply and exhaust holes of the clean gas for purging the inside of the pod are almost standardized in the semiconductor manufacturing industry. Therefore, the pod disclosed in Japanese Unexamined Patent Publication No. Hei 11-251,422, which requires a configuration different from this standard, has a problem that it cannot be shared with a support base or the like that is currently widely used. ing. Disclosure of the invention
本発明は、 上記状況に鑑みて為されたものであり、 ウェハ上に付着した汚染 物質等を効果的に除去することが可能な F0UP のパージ方法およびパージ装置 の提供を目的とするものである。  The present invention has been made in view of the above circumstances, and has as its object to provide an F0UP purging method and a purging apparatus capable of effectively removing contaminants and the like attached to a wafer. .
上記課題を解決するために、 本発明に係るパージ装置は、 開口、 および被収 容物が各々載置される所定の方向に並ぶ複数の棚からなる本体と、 本体から分 離可能であって開口を塞ぐ蓋と、 を備えるポッドに収容された被収容物に対し、 所定のガスを吹き付けてパージ操作を行うパージ装置であって、 蓋が本体から 分離された状態において、 開口の前面を所定の方向に移動可能なフレームと、 フレームに対して所定の位置関係を保つことで所定方向に移動可能なガス供 給ノズルとを有することを特徴としている。  In order to solve the above-mentioned problems, a purging apparatus according to the present invention includes: a main body including an opening and a plurality of shelves arranged in a predetermined direction in which objects to be loaded are respectively placed; A purging device for performing a purging operation by blowing a predetermined gas onto an object stored in a pod having a lid that closes the opening and a pod, wherein a front surface of the opening is set to a predetermined position when the lid is separated from the main body. And a gas supply nozzle capable of moving in a predetermined direction by maintaining a predetermined positional relationship with respect to the frame.
なお、 上記パージ装置においては、 フレームは、 ポッド中に収容された被収 容物のマッピングを行うセンサを保持し、 ガス供給ノズルはセンサと並置され ることとしても良い。 また、 上記パージ装置において、 所定のガスがガス供給 ノズルから吹き出されるタイミングは、 ガス供給ノズルが所定方向に移動する 際に、 被収容物が延在する平面を通過するタイミングと同期することとしても 良い。 また、 上記パージ装置においては、 ガス供給ノズルは、 被収容物が延在 する平面と平行な方向或いは平面に対して所定角度下方を向いた方向に所定 のガスを吹き出すこととしても良い。  In the above-described purging device, the frame may hold a sensor for mapping the contents accommodated in the pod, and the gas supply nozzle may be juxtaposed with the sensor. Further, in the above-described purge device, the timing at which the predetermined gas is blown out from the gas supply nozzle is synchronized with the timing at which the object passes through the plane on which the object extends when the gas supply nozzle moves in the predetermined direction. Is also good. In the above-described purging apparatus, the gas supply nozzle may blow out a predetermined gas in a direction parallel to a plane in which the object extends and a direction downward at a predetermined angle with respect to the plane.
なお、上記パージ装置において、被収容物は半導体製造に用いられるウェハ、 或いは高清浄な環境下でその処理が行われる各種物品に対応する。 また、 ポッ ドは、 半導体ウェハを収容するものの例として F0UP があるが、 各種物品を収 容するものであれば特に F0UP に限られない。 また、 蓋が本体から分離された 状態は、 ポッドがロードポー卜上に載置されて、 ポッド内に収容されたウェハ が口一ドポートを介してウェハ処理装置に移載される状態に対応する。 また、 ここで述べたパージ操作は、 物品上に付着等して存在する、 塵、 有機物、 不純 物元素、 酸化性ガス等の汚染物質を除去する操作を意味している。 また、 マツ ビングとは、 棚の格段に収容されるウェハの有無を検出し、 これを棚の位置情 報と対応付ける操作を意味する。 In the above-described purging apparatus, the object corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment. Pods include F0UP as an example of one that accommodates a semiconductor wafer, but is not particularly limited to F0UP as long as it accommodates various articles. The state in which the lid is separated from the main body corresponds to a state in which the pod is placed on the load port, and the wafer accommodated in the pod is transferred to the wafer processing apparatus via the mouth port. In addition, the purging operation described here involves dust, organic matter, impurities, etc. It means an operation to remove contaminants such as substance elements and oxidizing gas. Further, the mating means an operation of detecting the presence or absence of a wafer accommodated in the shelf, and associating it with the position information of the shelf.
また、 上記課題を解決するために、 本発明に係るパージ装置は、 開口、 およ ぴ被収容物が各々載置される所定の方向に並ぶ複数の棚からなる本体と、 本体 から分離可能であって開口を塞ぐ蓋と、 を備えるポッドに収容された被収容物 に対し、 所定のガスを吹き付けてパージ操作を行うパージ装置であって、 被収 容物の端部から所定距離隔置されていて、 被収容物における所定の方向に対し て垂直に延在する面の略全領域に対して略均一に所定のガスを吹き付けるガ ス供給ノズルと、 ガス供給ノズルを支持してガス供給ノズルを前記所定の方向 に駆動可能な支持部材を有することを特徴としている。  In order to solve the above-mentioned problems, a purging apparatus according to the present invention can be separated from a main body including an opening, and a plurality of shelves arranged in a predetermined direction in which objects to be stored are placed, respectively. A purge device for performing a purging operation by spraying a predetermined gas onto an object accommodated in a pod having a lid that closes an opening, and is provided at a predetermined distance from an end of the object. A gas supply nozzle for spraying a predetermined gas substantially uniformly over substantially the entire area of a surface of the object extending perpendicular to the predetermined direction, and a gas supply nozzle supporting the gas supply nozzle. And a supporting member that can be driven in the predetermined direction.
なお、 上述のパージ装置においては、 支持部材はポッドの本体部から前記蓋 の装脱を行う部材であることが好ましい。 また、 所定のガスが前記ガス供給ノ ズルから吹き出されるタイミングは、 支持部材が所定方向に移動する際に、 被 収容物が延在する平面を通過するタイミングと同期することが好ましい。 更に、 ガス供給ノズノレは、 被収容物が延在する平面と平行な面と平面に対して所定角 度下方を向いて延在する面とに囲まれた領域に対して所定のガスを吹き出す ことが好ましい。  In the purging apparatus described above, it is preferable that the supporting member is a member that detaches the lid from the body of the pod. Further, it is preferable that the timing at which the predetermined gas is blown out from the gas supply nozzle is synchronized with the timing at which the object passes through the plane on which the object extends when the support member moves in the predetermined direction. Further, the gas supply nozzle blows out a predetermined gas to an area surrounded by a plane parallel to a plane in which the object extends and a plane extending downward at a predetermined angle with respect to the plane. Is preferred.
なお、上記パージ装置において、被収容物は半導体製造に用いられるウェハ、 或いは高清浄な環境下でその処理が行われる各種物品に対応する。 また、 ポッ ドは、 半導体ウェハを収容するものの例として F0UPがあるが、 各種物品を収 容するものであれば特に F0UPに限られない。 また、 蓋が本体から分離された 状態は、 ポッドがロードポート上に载置されて、 ポッド内に収容されたウェハ がロードポートを介してウェハ処理装置に移载される状態に対応する。 また、 ここで述べたパージ操作は、 物品上に付着等して存在する、 塵、 有機物、 不純 物元素、 酸ィ匕性ガス等の汚染物質を除去する操作を意味している。 また、 マツ ビングとは、 棚の格段に収容されるウェハの有無を検出し、 これを棚の位置情 報と対応付ける操作を意味する。 In the above-described purging apparatus, the object corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment. Further, the pod is an example of a pod that accommodates a semiconductor wafer, but is not limited to the FOUP as long as it accommodates various articles. The state where the lid is separated from the main body corresponds to a state where the pod is placed on the load port and the wafer accommodated in the pod is transferred to the wafer processing apparatus via the load port. Further, the purging operation described here means an operation for removing contaminants such as dust, organic matter, impurity elements, and oxidizing gas, which are present on the article by being attached thereto. Also, pine Bing refers to the operation of detecting the presence or absence of wafers that are stored in a shelf, and associating this with shelf position information.
また、 上記課題を解決するために、 本発明にかかるパージ方法は、 開口、 お よぴ被収容物が各々載置される所定の方向に並ぶ複数の棚からなる本体と、 本 体から分離可能であって開口を塞ぐ蓋と、 を備えるポッドに収容された被収容 物に対し、 所定のガスを吹き付けてパージ操作を行うパージ方法であって、 蓋 を本体から分離し、 開口の前面を所定の方向に沿ってガス供給ノズルを移動さ せ、 ガス供給ノズルょり所定のガスを被収容物に対して吹き付けることによつ て被収容物のパージを行う工程を含むことを特徴としている。  Further, in order to solve the above-mentioned problem, the purging method according to the present invention may be configured such that an opening, a main body including a plurality of shelves arranged in a predetermined direction in which objects to be stored are respectively placed, and a purging method are provided. A purging method in which a predetermined gas is blown to an object stored in a pod having a lid that closes the opening and a pod provided with the lid. The method includes moving the gas supply nozzle along the direction of (1), and purging the object by spraying a predetermined gas to the object from the gas supply nozzle.
なお、 上記パージ方法においては、 ガス供給ノズルはセンサと並置され、 パ ージを行う工程と同時に、 センサにより、 ポッド内に収容された被収容物のマ ッビングを行う工程が為されることとしても良い。 また、 上記パージ方法にお いては、 パージを行う工程は、 ガス供給ノズルが所定方向に移動する際に、 被 収容物が延在する平面を通過するタイミングと同期して為されることとして も良い。 また、 上記パージ方法においては、 パージを行う工程において、 ガス 供給ノズルは、 被収容物が延在する平面と平行な方向或いは平面に対して所定 角度下方を向いた方向に所定のガスを吹き出すこととしても良い。  In the above-mentioned purging method, the gas supply nozzle is juxtaposed with the sensor, and at the same time as performing the purging step, the sensor performs the step of performing the mubbing of the object contained in the pod by the sensor. Is also good. In the above-described purging method, the step of performing the purging may be performed in synchronization with the timing at which the object passes through the plane on which the object extends when the gas supply nozzle moves in a predetermined direction. good. In the above-mentioned purging method, in the purging step, the gas supply nozzle blows out a predetermined gas in a direction parallel to a plane in which the object extends and a direction downward at a predetermined angle with respect to the plane. It is good.
なお、上記パージ方法において、被収容物は半導体製造に用いられるウェハ、 或いは高清浄な環境下でその処理が行われる各種物品に対応する。 また、 ポッ ドは、 半導体ウェハを収容するものの例として F0UPがあるが、 各種物品を収 容するものであれば特に F0UPに限られない。 また、 蓋が本体から分離された 状態は、 ポッドがロードポート上に载置されて、 ポッド内に収容されたウェハ がロードポートを介してウェハ処理装置に移載される状態に対応する。 また、 ここで述べたパージ操作は、 物品上に付着等して存在する、 塵、 有機物、 不純 物元素、 酸ィ匕性ガス等の汚染物質を除去する操作を意味している。 また、 マツ ビングとは、 棚の格段に収容されるウェハの有無を検出し、 これを棚の位置情 報と対応付ける操作を意味する。 In the above-mentioned purging method, the object to be accommodated corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment. Further, the pod is an example of a pod that accommodates a semiconductor wafer, but is not limited to the FOUP as long as it accommodates various articles. The state where the lid is separated from the main body corresponds to a state where the pod is placed on the load port and the wafer accommodated in the pod is transferred to the wafer processing apparatus via the load port. Further, the purging operation described here means an operation for removing contaminants such as dust, organic matter, impurity elements, and oxidizing gas, which are present on the article by being attached thereto. In addition, the mating is to detect the presence or absence of wafers that are stored in the shelves, and to determine the position of the shelves. Means the operation to associate with the information.
また、 上記課題を解決するために、 本発明にかかるパージ方法は、 開口、 お よぴ被収容物が各々載置される所定の方向に並ぶ複数の棚からなる本体と、 本 体から分離可能であって開口を塞ぐ蓋と、 を備えるポッドに収容された被収容 物に対し、 所定のガスを吹き付けてパージ操作を行うパージ方法であって、 蓋 を本体から分離する工程と、 開口の前面を被収容物の端部から所定距離隔置し た状態を保持して所定の方向に沿ってガス供給ノズルを移動させる工程と、 ガ ス供給ノズルょり被収容物における所定の方向とは垂直な方向に延在する面 の略全領域に対して所定のガスを略均一に吹き付けることによって被収容物 のパージを行う工程を含むことを特徴としている。  Further, in order to solve the above-mentioned problem, the purging method according to the present invention may be configured such that an opening, a main body including a plurality of shelves arranged in a predetermined direction in which objects to be stored are respectively placed, and a purging method are provided. A purging method for performing a purging operation by blowing a predetermined gas onto an object accommodated in a pod having a lid for closing the opening, and a step of separating the lid from the main body; and a front surface of the opening. Moving the gas supply nozzle along a predetermined direction while maintaining a state in which the gas supply nozzle is kept at a predetermined distance from the end of the storage object, and perpendicular to the predetermined direction of the storage object through the gas supply nozzle. The method includes a step of purging the object by spraying a predetermined gas substantially uniformly over substantially the entire area of the surface extending in various directions.
なお、 上述のパージ方法においては、 ガス供給ノズルはポッドの本体から蓋 を装脱するための用いられるドアに固定されていることが好ましい。 また、 パ ージを行う工程は、 ガス供給ノズルが所定方向に移動する際に、 被収容物が延 在する平面を通過するタイミングと同期して為されることが好ましい。 更に、 パージを行う工程において、 ガス供給ノズルは被収容物が延在する平面と平行 な面と該平面に対して所定角度下方を向いて延在する面との間に対して所定 のガスを吹き出すことが好ましレ、。  In the above-described purging method, it is preferable that the gas supply nozzle is fixed to a door used for attaching and detaching the lid from the body of the pod. In addition, it is preferable that the step of purging is performed in synchronization with the timing at which the object passes through the extending plane when the gas supply nozzle moves in a predetermined direction. Further, in the purging step, the gas supply nozzle supplies a predetermined gas to a space between a plane parallel to the plane in which the object extends and a plane extending downward at a predetermined angle with respect to the plane. It is better to blow out.
なお、上記パージ方法において、被収容物は半導体製造に用いられるウェハ、 或いは高清浄な環境下でその処理が行われる各種物品に対応する。 また、 ポッ ドは、 半導体ウェハを収容するものの例として F0UPがあるが、 各種物品を収 容するものであれば特に F0UPに限られない。 また、 蓋が本体から分離された 状態は、 ポッドがロードポート上に載置されて、 ポッド内に収容されたウェハ がロードポートを介してゥェハ処理装置に移載される状態に対応する。 また、 ここで述べたパージ操作は、 物品上に付着等して存在する、 塵、 有機物、 不純 物元素、 酸化性ガス等の汚染物質を除去する操作を意味している。 また、 マツ ビングとは、 棚の格段に収容されるウェハの有無を検出し、 これを棚の位置情 報と対応付ける操作を意味する。 In the above-mentioned purging method, the object to be accommodated corresponds to a wafer used for semiconductor manufacturing or various articles whose processing is performed in a highly clean environment. Further, the pod is an example of a pod that accommodates a semiconductor wafer, but is not limited to the FOUP as long as it accommodates various articles. The state where the lid is separated from the main body corresponds to the state where the pod is placed on the load port and the wafer stored in the pod is transferred to the wafer processing apparatus via the load port. Further, the purging operation described here means an operation for removing contaminants such as dust, organic matter, impurity elements, oxidizing gas, etc., which are present on the article by being attached thereto. In addition, the mating is to detect the presence or absence of wafers that are stored in the shelves, and to determine the position of the shelves. Means the operation to associate with the information.
本発明によれば、ガス供給ノズルが、ポッド開口よりポッド内部に入り込み、 ウェハ表面に向けて高清浄のガスを吹き付けることが可能となる。 また、 ガス 供給ノズルはゥェ八が重ねられる方向に移動可能であり、 一枚一枚のウェハに 対して個別にガスの吹き付けを行うことが可能である。 従って、 ウェハ表面に 付着している塵、 不純物といつた汚染物質等を効果的且つ確実に除去すること が可能である。 また、 ポッド内部のパージ操作を、 ガス供給ノズルを用いて、 ウェハ処理中に随時行うことも可能でありより高清浄な環境にてウェハを保 持することが可能となる。 また、 本発明は、 既存の F0UP システムにおけるマ ッビング装置に対して、 ガス供給ノズルおよびガス配管を付加するのみで実施 可能であり、 規格化されたシステムに対して安価且つ簡便に取り付けることが 可能である。  According to the present invention, it becomes possible for the gas supply nozzle to enter the inside of the pod through the pod opening and to blow a highly clean gas toward the wafer surface. Further, the gas supply nozzle is movable in the direction in which the wafers are overlapped, and it is possible to individually blow gas to each wafer. Therefore, it is possible to effectively and reliably remove dust, impurities, and contaminants attached to the wafer surface. Further, the purging operation inside the pod can be performed at any time during the wafer processing using the gas supply nozzle, so that the wafer can be held in a higher-purity environment. In addition, the present invention can be implemented simply by adding a gas supply nozzle and a gas pipe to a muting device in an existing F0UP system, and can be easily and inexpensively attached to a standardized system. It is.
また、 本発明によれば、 ガス供給ノズルが、 ウェハとは所定距離を隔てて、 ウェハ表面の全域に向けて高清浄のガスを吹き付けることが可能となる。 また、 ガス供給ノズルはウェハが重ねられる方向に移動可能であり、 一枚一枚のゥェ ハに対して個別にガスの吹き付けを行うことが可能である。 従って、 ウェハ表 面に付着している塵、 不純物といった汚染物質等を効果的且つ確実に除去する ことが可能である。 また、 ポッド内部のパージ操作を、 ガス供給ノズルを用い て、 ウェハ処理中に随時行うことも可能でありより高清浄な環境にてウェハを 保持することが可能となる。 また、 本発明は、 既存の F0UP システムにおける ロードポートのドアに対して、 ガス供給ノズルおよびガス配管を付加するのみ で実施可能であり、 規格化されたシステムに対して安価且つ簡便に取り付ける ことが可能である。 図面の簡単な説明  Further, according to the present invention, it becomes possible for the gas supply nozzle to spray a high-purity gas toward the entire surface of the wafer at a predetermined distance from the wafer. Further, the gas supply nozzle is movable in the direction in which the wafers are stacked, and it is possible to individually blow gas to each wafer. Therefore, it is possible to effectively and reliably remove contaminants such as dust and impurities attached to the wafer surface. In addition, the purging operation inside the pod can be performed at any time during wafer processing by using a gas supply nozzle, and the wafer can be held in a higher-purity environment. Further, the present invention can be implemented by simply adding a gas supply nozzle and a gas pipe to a load port door of an existing F0UP system, and can be easily and inexpensively mounted on a standardized system. It is possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明における第一の実施の形態係るパージ装置、 ポッド、 ポッド 用の蓋およぴオーブナの一部に関し、 これらを側面から見た場合の概略構成を 示す図である。 FIG. 1 shows a purge device, a pod, and a pod according to a first embodiment of the present invention. FIG. 1 is a view showing a schematic configuration of a part of a cover and an orbner when viewed from the side.
図 2は、 本発明における第一の実施の形態に係るパージ装置、 および周辺に 配置される構成を上方より見た状態の概略構成を示す図である。  FIG. 2 is a diagram showing a schematic configuration of the purge device according to the first embodiment of the present invention and a configuration disposed around the purge device as viewed from above.
図 3 Aは、 図 1に示すオーブナおよびその近傍の構成を縮小し、 これを側面 から見た状態の概略構成を示す図である。  FIG. 3A is a diagram showing a schematic configuration of a state in which the configuration of the orbner and its vicinity shown in FIG. 1 is reduced and viewed from the side.
図 3 Bは、 図 3 Aに示す構成を、 搬送室側から見た場合の概略構成を示す図 である。  FIG. 3B is a diagram showing a schematic configuration when the configuration shown in FIG. 3A is viewed from the transfer chamber side.
図 4 Aは、 上述の実施形態に関連する実施例におけるオーブナの可動部に 関し、 当該可動部をロードポート側から見た正面図である。  FIG. 4A is a front view of a movable portion of an orbner in an example related to the above-described embodiment, as seen from the load port side.
図 4 Bは、 図 3 Aに示される構成を側面から見た状態を示す図である。 図 5は、 ウェハのマッピングのシーケンスを示した、 オーブナ等を側面から 見た状態の概略構成を示す図であって、 マッピング準備が完了した際の状態を 示した図である。  FIG. 4B is a diagram showing a state where the configuration shown in FIG. 3A is viewed from the side. FIG. 5 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and is a diagram showing a state when mapping preparation is completed.
図 6は、 ウェハのマッピングのシーケンスを示した、 オーブナ等を側面から 見た状態の概略構成を示す図であって、 マッピング動作が完了した際の状態を 示した図である。  FIG. 6 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and is a diagram showing a state when the mapping operation is completed.
図 7は、 ウェハのマッピングのシーケンスを示し ,た、 オーブナ等を側面から 見た状態の概略構成を示す図であって、 マッピングおよび蓋の開放動作の全て が完了した際の状態を示した図である。  FIG. 7 is a diagram showing a sequence of the wafer mapping, and is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a state in which all of the mapping and the opening operation of the lid are completed. It is.
図 8 Aは、 本発明における第二の実施の形態係るパージ装置、 ポッド、 ポッ ド用の蓋およぴオーブナの一部に関し、 これらを側面から見た場合の概略構成 を示す図である。  FIG. 8A is a view showing a schematic configuration of a purge device, a pod, a lid for a pod, and a part of an orbner according to the second embodiment of the present invention, when viewed from the side.
図 8 Bは、 本発明における第二の実施の形態係るパージ装置、 ポッド、 ポッ ド用の蓋おょぴオーブナの一部に関し、 これらを側面から見た場合の概略構成 を示す図である。 .図 8 Cは、 本発明における第二の実施の形態係るパージ装置の主要部に関し、 これを側面から見た場合の概略構成を示す図である。 FIG. 8B is a view showing a schematic configuration of a purge device, a pod, and a part of a pod cover orb opener according to the second embodiment of the present invention when viewed from the side. FIG. 8C is a view showing a schematic configuration of a main part of a purge device according to the second embodiment of the present invention when viewed from the side.
図 9 Aは、 本発明における第二の実施の形態に係るパージ装置、 および周辺 に配置される構成を上方より見た状態の概略構成を示す図である。  FIG. 9A is a diagram illustrating a schematic configuration of a purge device according to a second embodiment of the present invention and a configuration disposed around the purge device when viewed from above.
図 9 Bは、 本発明における第二の実施の形態係るパージ装置の主要部に関し、 れを水平方向に切断し、 当該切断面を上方から見た場合の概略構成を示す図 である。  FIG. 9B is a view showing a schematic configuration of a main part of a purge device according to a second embodiment of the present invention, which is cut in a horizontal direction and the cut surface is viewed from above.
図 1 O Aは、 図 8 A乃至 Cに示すオーブナおよびその近傍の構成を縮小し、 これを側面から見た状態の概略構成を示す図である。  FIG. 1OA is a diagram showing a schematic configuration of a state in which the configuration of the orbner shown in FIGS. 8A to 8C and its vicinity is reduced and viewed from the side.
図 1 O Bは、 図 1 O Aに示す構成を、 搬送室側から見た場合の概略構成を示 す図である。  FIG. 1OB is a diagram showing a schematic configuration when the configuration shown in FIG. 1OA is viewed from the transfer chamber side.
図 1 1 Aは、 上述の実施形態に関連する実施例におけるオーブナの可動部 に関し、 当該可動部をロードポート側から見た正面図である。  FIG. 11A is a front view of a movable portion of an orbner in an example related to the above-described embodiment, as seen from the load port side.
図 1 1 Bは、 図 1 1 Aに示される構成を側面から見た状態を示す図である。 図 1 2は、 ウェハのマッピングのシーケンスを示した、 オーブナ等を側面か ら見た状態の概略構成を示す図であって、 マッピング準備が完了した際の状態 を示した図である。  FIG. 11B is a diagram showing a state where the configuration shown in FIG. 11A is viewed from the side. FIG. 12 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and showing a state when mapping preparation is completed.
図 1 3は、 ウェハのマッピングのシーケンスを示した、 オーブナ等を側面か ら見た状態の概略構成を示す図であって、 マッピング動作が完了した際の状態 を示した図である。 . .  FIG. 13 is a diagram showing a schematic configuration of a state in which an orbner or the like is viewed from the side, showing a sequence of wafer mapping, and showing a state when the mapping operation is completed. .
図 1 4は、 ウェハのマッピングのシーケンスを示した、 オーブナ等を側面か ら見た状態の概略構成を示す図であって、 マッピングおよび蓋の開放動作の全 てが完了した際の状態を示した図である。  Fig. 14 is a diagram showing a schematic configuration of a state where the orbner and the like are viewed from the side, showing a sequence of wafer mapping, showing a state when all the mapping and lid opening operations are completed. FIG.
図 1 5は、 本発明および従来技術が適用される一般的な半導体ウェハ処理装 置の概略構成を示す全体側面図である。  FIG. 15 is an overall side view showing a schematic configuration of a general semiconductor wafer processing apparatus to which the present invention and the prior art are applied.
図 1 6 Aは、 図 1 5に示す装置における従来のオーブナおよびその近傍の構 成を拡大し、 これを側面から見た状態の概略構成を示す図である。 Fig. 16A shows the structure of the conventional orbner and its vicinity in the device shown in Fig. 15. It is a figure which expanded the composition and which shows the schematic structure of the state which looked at this from the side.
図 1 6 Bは、 図 1 6 Aに示す構成を、 搬送室側から見た場合の概略構成を示 す図である。  FIG. 16B is a diagram showing a schematic configuration when the configuration shown in FIG. 16A is viewed from the transfer chamber side.
図 1 7は、 ウェハのパージ操作を示した、 オーブナ等を側面から見た状態の 概略構成を示す図であって、 パージ準備が完了した際の状態を示した図である。 発明を実施するための最良の形態  FIG. 17 is a view showing a schematic configuration of a state where an orbner or the like is viewed from the side, showing a wafer purging operation, and is a view showing a state when the preparation for purging is completed. BEST MODE FOR CARRYING OUT THE INVENTION
(第一の実施の形態)  (First embodiment)
本発明における第一の実施の形態に関して、 図面を参照して以下に説明する。 図 1は、 本発明に係るパージ装置の概略構成に関するものであり、 ポッド、 ボ ッド内部に収容されたウェハおよび本発明に係るパージ装置を側面より見た 状態の概略を示す図である。 また、 図 2は、 図 1に示した各構成およびこれに 付随する構成を、 その上方より見た状態の要部概略を示す図である。 なお、 ポ ッドには、ウェハを支持する棚、蓋とポッドとの間に配置されるシーノレ部材等、 各種構成が本来含まれ、 また、 ドアにも種々の構成が付随している。 し力 し、 これら構成は本発明と直接の関係を有さないため、 ここでの詳細な図示おょぴ 説明は省略する。  The first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 relates to a schematic configuration of a purging apparatus according to the present invention, and is a view schematically showing a pod, a wafer housed inside the bod, and a purging apparatus according to the present invention when viewed from a side. FIG. 2 is a diagram schematically showing the main components of the components shown in FIG. 1 and the components attached thereto when viewed from above. The pod inherently includes various components such as a shelf for supporting a wafer, a scenery member disposed between the lid and the pod, and the door also has various components. However, since these configurations do not have a direct relationship with the present invention, detailed illustration and explanation are omitted here.
図中、 枠部材から構成されるフレーム 5が、 オーブナにおけるドア 6の周囲 を囲むように配置される。 フレーム 5の上部には、 図 2に示す一対の棒状体 1 3 aおよび 1 3 bが設けられている。 なお、 これら棒状体 1 3 a、 1 3 bは、 ポッド 2の開口面からボッド内部に向かい、 当該開口面に対して略垂直な方向 に延在している。 この棒状体 1 3 aおよび 1 3 bは、 ガス供給ノズル 2 1 aお よび 2 1 bが当該棒状体と同方向に向かうように、 これらを支持している。 ガ ス供給ノズル 2 1 aおよび 2 1 b各々には、 不図示のガス供給ラインがそれぞ れ接続されており、 外部からの操作に応じて清浄ガスを当該ノズルに供給する ことが可能となっている。 これらガス供給ノズル 2 1 a、 2 l bをウェハ 1が 重ねられる方向に順次移動させ、 ウェハ 1各々の間に対して清浄ガスを供給す る。 その結果、 ウェハの表裏面おょぴポッド 2内部の清浄ガスによる汚染物質 等の除去操作、 いわゆるパージ操作が為されることとなる。 In the figure, a frame 5 composed of a frame member is disposed so as to surround the door 6 in the orbner. At the top of the frame 5, a pair of rods 13a and 13b shown in FIG. 2 are provided. The rods 13a and 13b extend from the opening of the pod 2 to the inside of the pod and extend in a direction substantially perpendicular to the opening. The rods 13a and 13b support the gas supply nozzles 21a and 21b such that the gas supply nozzles 21a and 21b are directed in the same direction as the rod. A gas supply line (not shown) is connected to each of the gas supply nozzles 21a and 21b, so that a clean gas can be supplied to the nozzle according to an external operation. ing. These gas supply nozzles 2 1 a, 2 lb The cleaning gas is sequentially moved in the direction in which the wafers 1 are stacked, and a cleaning gas is supplied between the wafers 1. As a result, an operation of removing contaminants and the like by the clean gas inside the front and rear pods 2 of the wafer, that is, a purging operation is performed.
本実施形態においては、 ガス供給ノズル 2 1 aおよび 2 1 bは、 ポッド 2の 中心線、 即ちポッド内部に保持されるウェハ 1の中心線に対して、 それぞれ所 定の間隔 dだけ離された、 当該中心線に関して対象となる位置に配置されてい る。 また、 個々のノズル 2 1 a、 2 l bは、 ウェハ 1の表面に対して平行或い は当該平面に対して所定角度 αだけ下方を向けてガス供給が可能となるよう に、 それぞれ対応する棒状体 1 3 a、 1 3 bに固定されている。 なお、 これら 間隔 dおよび角度 αは、 ポッド 2に保持されるウェハ各々の間隔、 ポッド 2の 形状等に応じて、 ゥェハ 1上の汚染物質をより効率的に除去し且つポッド 2内 部よりこれらを排出可能となるように、適宜調整されることが好ましい。また、 同様の理由から、 ノズルの数を当該実施例より増減させる、 あるいはノズルを 駆動可能な構成とするこ.ととしても良い。  In the present embodiment, the gas supply nozzles 21a and 21b are separated from the center line of the pod 2, that is, the center line of the wafer 1 held inside the pod, by a predetermined distance d. However, it is located at a target position with respect to the center line. Each of the nozzles 2 1 a and 2 lb has a corresponding rod shape so that gas can be supplied parallel to the surface of the wafer 1 or downward at a predetermined angle α to the plane. The body is fixed to 13a, 13b. The distance d and the angle α are determined according to the distance between the wafers held in the pod 2, the shape of the pod 2, etc., in order to more efficiently remove contaminants on the wafer 1, and from the inside of the pod 2. Is preferably adjusted appropriately so as to be able to discharge. For the same reason, the number of nozzles may be increased or decreased as compared with the embodiment, or the nozzles may be driven.
本発明においては、 ウェハー枚毎に対して、 汚染物質等の除去操作を行うこ とが可能であり、 従来と比較してより清浄度の高い状態にて、 ウェハをポッド 内部に保持することが可能となる。 また、 本発明においては、 汚染物質等の除 去操作に要するガス流量、 パージ時間等を、 ウェハ各々に対して個々に制御す ることが可能である。 従って、 常に一定の条件にて当該除去操作を行うことも 可能であり、 ポッド内における全てのウェハの管理状態を容易に一定に保つこ とができる。  According to the present invention, it is possible to perform an operation for removing contaminants or the like for each wafer, and it is possible to hold the wafer inside the pod with a higher degree of cleanliness than in the past. It becomes possible. Further, in the present invention, the gas flow rate, purge time, and the like required for the operation of removing contaminants and the like can be individually controlled for each wafer. Therefore, the removal operation can be always performed under constant conditions, and the management state of all wafers in the pod can be easily maintained constant.
なお、 ガス供給ノズル 2 l aおよび 2 1 bよりポッド 2内部に供給されたガ ス等は、 従来より、 ポッド 2に設けられている排気孔を用いて排出することと しても良い。 また、 当該パージ操作は蓋 4が開放された状態で行われることか ら、 搬送室に設けられた不図示の排気系を用いてこれを行うこととしても良い。 また、 一旦ウェハから除去された汚染物質等については、 これらが他のウェハ 或いはポッド内部への再付着、 或いは搬送室への流入することを防止すること が好ましいと考えられる。 この場合、 上述した特開 2 0 0 3 - 4 5 9 3 3号公 報に示されるように、 汚染物質等の除去作業に用いた清浄ガスを効率的に排気 するために、 ポッド開口と連通する排気専用の小室を搬送室内に設けることと しても良い。 Note that the gas or the like supplied into the pod 2 from the gas supply nozzles 2 la and 21 b may be exhausted using an exhaust hole provided in the pod 2 conventionally. Further, since the purging operation is performed with the lid 4 opened, the purging operation may be performed using an exhaust system (not shown) provided in the transfer chamber. For contaminants and the like once removed from the wafer, Alternatively, it is considered preferable to prevent re-adhesion inside the pod or flow into the transfer chamber. In this case, as shown in the above-mentioned Japanese Patent Publication No. 2003-54993, in order to efficiently exhaust the clean gas used for the work of removing contaminants and the like, the pod opening communicates with the pod opening. A small chamber dedicated to exhaust air may be provided in the transfer chamber.
上述したように、 ー且ウェハ上より除去された汚染物質等は、 速やかにポッ ド外部に運ばれることが好ましい。 このため、 より効果的に汚染物質の除去を 行う上では、 上述した特開平 1 1— 2 5 1 4 2 2号公報に示されたように、 ゥ ェハ各々に対応した排気用のポートを付加することも考えられる。 しかしなが ら、 この様な構成の付加は規格に対応したポッドの大幅な規格変更を要する。 従って、 現在用いられている F0UPに関するシステムに対して本発明を用いる 場合は、 この様な排気用ポートは設けないほうが好ましいと考えられる。  As described above, it is preferable that the contaminants and the like removed from the wafer are immediately carried out of the pod. Therefore, in order to more effectively remove pollutants, as described in the above-mentioned Japanese Patent Application Laid-Open No. H11-254142, exhaust ports corresponding to each wafer are provided. It may be added. However, the addition of such a configuration requires a significant change in the standard of the pod corresponding to the standard. Therefore, when the present invention is applied to a currently used F0UP system, it is preferable not to provide such an exhaust port.
また、 汚染物質等は、 たとえば塵の形態にてウェハに付着する場合も考えら れる。 この様な塵は、 帯電し、 静電気的な引力によってウェハに付着している 場合が多いと考えられる。 この様な塵に対しては、 単なる高清浄ガスをウェハ に吹き付けるのではなく、 イオン化したガスを吹きかけることにより、 より効 率よく除去可能である。 従って、 ガス供給ノズル或いはその近傍に、 ガス等を イオン化するいわゆるィオナイザ一を付加し、 必要に応じてイオン化されたガ スを供給することが可能となる構成とすることがより好ましレ、。  It is also conceivable that contaminants and the like adhere to the wafer in the form of dust, for example. Such dust is likely to be charged and adhered to the wafer by electrostatic attraction. Such dust can be removed more efficiently by spraying ionized gas instead of spraying high-purity gas onto the wafer. Therefore, it is more preferable that a so-called ionizer for ionizing gas or the like is added to the gas supply nozzle or its vicinity so that the ionized gas can be supplied as needed.
(本実施形態を適用した一実施例)  (One Example Applying the Present Embodiment)
次に、 本発明に係るパージ装置を、 現在用いられている F0UP に関するシス テムに対して適用した場合について、 以下に図面を参照して説明する。 なお、 本発明を適用した半導体ウェハ処理装置およぴポッドは、 その概略構成が従来 技術において述べた構成と略同一であるため、 同一の構成に関しての説明は省 略する。 なお、 オーブナ 3に対しては、 ポッド 2の内部に保持されるウェハの マッピング操作を行うための構成が加えられている場合が多い。 これら構成と しては、 ウェハの有無を検知するための一対の透過センサ、 これらセンサを支 持するフレーム、 フレームを駆動するための機構、 センサの現在位置を検知す るための機構等が含まれる。 本適用例においては、 本発明に係るガス供給ノズ ル等を支持するフレーム 5を、 この透過センサを支持するフレームと共通化す ることにより、 本発明の実施をより容易なものとしている。 Next, a case where the purging apparatus according to the present invention is applied to a currently used F0UP system will be described below with reference to the drawings. The schematic configuration of the semiconductor wafer processing apparatus and the pod to which the present invention is applied is substantially the same as the configuration described in the related art, so that the description of the same configuration will be omitted. In addition, the orbiter 3 is often provided with a configuration for performing a mapping operation of the wafer held inside the pod 2. With these configurations This includes a pair of transmission sensors for detecting the presence or absence of a wafer, a frame supporting these sensors, a mechanism for driving the frame, and a mechanism for detecting the current position of the sensor. In this application example, the embodiment of the present invention is further facilitated by sharing the frame 5 supporting the gas supply nozzle and the like according to the present invention with the frame supporting the transmission sensor.
ウェハ処理装置 5 0の概略構成に関しては、 従来技術として図 8に示すよう に、 搬送室 5 2にはロードポート部 5 1側にポッド 2の蓋 4より若干大きい搬 送室開口部 1 0が備えられている。 搬送室 5 2の内部であって搬送室開口部 1 0の側には、 ポッド 2の蓋 4を開閉する為のオーブナ 3が設けられている。 こ こで図 3 Aおよび 3 Bを参照して、 本発明を適用したオーブナ 3について説明 する。 図 3 Aは図 1 におけるロードポート部 5 1、 ポッド 2、 オーブナ 3お よび蓋 4部分を縮小し装置全体を表した図であり、 図 3 Bは図 3 Aに示す構成 を搬送室 5 2内部側から見た図である。  Regarding the schematic configuration of the wafer processing apparatus 50, as shown in FIG. 8, the transfer chamber 52 has a transfer chamber opening 10 slightly larger than the lid 4 of the pod 2 on the load port section 51 side as shown in FIG. Provided. An orbner 3 for opening and closing the lid 4 of the pod 2 is provided inside the transfer chamber 52 and on the side of the transfer chamber opening 10. Here, an orbner 3 to which the present invention is applied will be described with reference to FIGS. 3A and 3B. FIG. 3A is a diagram showing the entire apparatus by reducing the load port section 51, pod 2, orbner 3 and lid 4 in FIG. 1, and FIG. 3B is a view showing the configuration shown in FIG. It is the figure seen from the inside.
オーブナ 3は、 ドア 6とフレーム 5とを備えている。 ドア 6は、 搬送室開口 部 1 0を塞げる大きさの板状体であって、 その面には真空吸気孔である保持部 1 1 aおよび 1 1 bが備えられている。 ドア 6が搬送室開口部 1 0を塞いだ際 にポッド 2側に位置する面は蓋 4と密着できるような平面となっている。 ドア 6には穴を有する固定部材 4 6が取り付けられている。 この穴にドアアーム 4 2の上端に設けられた枢軸 4 5が回動可能に貫通することで固定されている。 ドアアーム 4 2の下端には穴が形成されている。 枢軸 4 0は、 当該穴と、 ドア 開閉用駆動装置であるエアー駆動式のドア開閉用シリンダ 3 1の一部である ロッド 3 7の先端にある穴とに貫通している。 これにより、 ドアアーム 4 2は シリンダ 3 1と結合され、 シリンダ 3 1によって回転可能に支持されることと なる。  The oven 3 has a door 6 and a frame 5. The door 6 is a plate-like body large enough to close the transfer chamber opening 10 and has holding portions 11a and 11b as vacuum suction holes on its surface. The surface located on the pod 2 side when the door 6 closes the transfer chamber opening 10 is a flat surface that can be in close contact with the lid 4. The door 6 is provided with a fixing member 46 having a hole. A pivot 45 provided at the upper end of the door arm 42 is rotatably penetrated through the hole to be fixed. A hole is formed at the lower end of the door arm 42. The pivot 40 penetrates through the hole and the hole at the tip of a rod 37 that is a part of an air-driven door opening / closing cylinder 31 that is a door opening / closing drive device. As a result, the door arm 42 is connected to the cylinder 31 and is rotatably supported by the cylinder 31.
フレーム 5は搬送室開口部 1 0に沿い、 かつドア 6を囲むように配置された 枠部材からなる構造体である。 フレーム 5は、 その下側の枠部材において長く 延びるフレームアーム 1 2 aおよびフレームアーム 1 2 bの上端に取り付け られている。 フレームアーム 1 2 aおよびフレームアーム 1 2 bの下端には不 図示の穴が形成されている。 当該穴と、 フレーム駆動装置であるエアー駆動式 のフレーム駆動用シリンダ 3 5の一部であるロッド 3 8の先端にある穴とに 枢軸 4 4が貫通している。 これにより、 これらフレームアームとシリンダ 3 5 とが結合され、 フレームアームはシリンダ 3 5によって回転可能に支持される こととなる。 The frame 5 is a structure including a frame member arranged along the transfer chamber opening 10 and surrounding the door 6. Frame 5 has a long It is attached to the upper ends of the extending frame arms 12a and 12b. Holes (not shown) are formed at the lower ends of the frame arms 12a and 12b. The pivot 44 penetrates through the hole and the hole at the tip of the rod 38 which is a part of the air-driven frame driving cylinder 35 which is a frame driving device. As a result, the frame arm and the cylinder 35 are connected, and the frame arm is rotatably supported by the cylinder 35.
フレームアーム 1 2 aおよび 1 2 bは荷重を均等に支える為に、 フレーム 5 の中心軸に沿つて対称かつ平行に鉛直方向に向かつて延在している。 フレーム アーム 1 2 aおよび 1 2 bのそれぞれの上端と下端の間には、 フレームアーム 1 2 aおよび 1 2 bのそれぞれに垂直なロッド 4 7が取り付けられている。 支 持部材 6 0には支持部材 6 0から垂直に延びた形状の支点支持部たる固定部 材 3 9が配置されて!/、る。 固定部材 3 9は支持部材 6 0に平行な貫通穴を有し ている。 固定部材 3 9の貫通穴にはベアリング (不図示) が配置されていて、 ベアリングの外輪が貫通穴の内壁に、 ベアリングの内輪がロッド 4 7を枢支し ている。 これにより、 ロッド 4 7は固定部材 3 9の貫通穴に内包された状態で 支点 4 1を構成している。  The frame arms 12a and 12b extend symmetrically and parallel to the vertical direction along the central axis of the frame 5 to evenly support the load. A rod 47 perpendicular to each of the frame arms 12a and 12b is mounted between the upper and lower ends of each of the frame arms 12a and 12b. On the support member 60, a fixing member 39 serving as a fulcrum support portion having a shape extending vertically from the support member 60 is disposed. The fixing member 39 has a through hole parallel to the support member 60. A bearing (not shown) is disposed in the through hole of the fixing member 39, and the outer ring of the bearing pivotally supports the rod 47 with the inner ring of the bearing on the inner wall of the through hole. Thus, the rod 47 constitutes the fulcrum 41 in a state of being included in the through hole of the fixing member 39.
この支点 4 1は、 アームフレーム 1 2 aおよび 1 2 bの支点と、 ドアアーム の支点とを共通的に兼ねた同軸上の支点として構成される。 すなわち、 ドアァ ーム 4 2の上端と下端との間には別の貫通穴が設けられている。 この貫通穴に ロッド 4 7が貫通して支点 4 1を構成している。 シリンダ 3 1の駆動による口 ッド 3 7の伸縮により、 ドアアーム 4 2は支点 4 1を中心に回動可能である。 ドアアーム 4 2の支点 4 1は昇降が可能な可動部 5 6に設けられる支持部材 6 0に固定されている。 ドア 6は保持ポート 1 1 aおよび 1 1 bを有していて、 ポッド 2の蓋 4を真空吸着により保持可能である。 ドアアーム 4 2は、 搬送室 開口部 1 0にドア 6を押し付けている際 (以下、 待機状態とよぶ) にはほぼ鉛 直方向になるように配置され、 ドアアーム 4 2を回転させることによりドア 6 が搬送室 5 2の壁面から離れる方向に移動する。 The fulcrum 41 is configured as a coaxial fulcrum that also serves as a fulcrum of the arm frames 12a and 12b and a fulcrum of the door arm. That is, another through hole is provided between the upper end and the lower end of the door arm 42. A rod 47 penetrates the through hole to form a fulcrum 41. The door arm 42 can rotate about the fulcrum 41 by the expansion and contraction of the door 37 by the driving of the cylinder 31. The fulcrum 41 of the door arm 42 is fixed to a support member 60 provided on a movable part 56 that can move up and down. The door 6 has holding ports 11a and 11b, and can hold the lid 4 of the pod 2 by vacuum suction. The door arm 42 is almost lead when the door 6 is pressed against the transfer chamber opening 10 (hereinafter referred to as a standby state). The door 6 moves in a direction away from the wall surface of the transfer chamber 52 by rotating the door arm 42.
フレーム駆動用シリンダ 3 5の駆動によるロッド 3 8の伸縮に応じて、 フレ ームアーム 1 2 aおよび 1 2 bは、 支点 4 1を中心に回動可能である。 すわな ち、 フレームアーム 1 2 aおよび 1 2 bも、 昇降が可能な可動部 5 6に設けら れる支持部材 6 0に固定されている。 フレーム 5は、 ドア 6が待機状態にある 際には、搬送室 5 2の壁面から斜めに離れるように配置されている。すなわち、 この状態ではフレームアーム 1 2 aおよび 1 2 bとはドアアーム 4 2に対し てある角度を持つように斜めになつた状態で支持されていて、 フレーム 5の上 部は搬送室 5 2の壁面から一定の距離だけ離れている。 一方、 この待機状態か らフレーム 5が、 搬送室 5 2の壁面に当接する方向にフレームアーム 1 2 aお ょぴ 1 2 bとを回転させると、 フレーム 5は搬送室 5 2の壁面にほぼ当接する。 フレーム 5の上部に配置されている枠部材には、 支持棒 1 3 aおよび 1 3 b 力 搬送室 5 2の壁面側に向かって突出するように固定されている。 支持棒 1 3 aと支持棒 1 3 bのそれぞれの先端には、 第 1の透過式センサたる ¾過式セ ンサ 9 aおよび 9 bとが互いに対向するようにまた、 ガス供給ノスレ 2 1 aお ょぴ 2 1 bが上述した位置関係を満たすように、 それぞれ取り付けられている。 半導体ウェハ処理装置 5 0には、 オーブナ 3を昇降させるための可動部 5 6 が設けられている。 図 4 Aは、 オーブナ 3の可動部 5 6を、 ロードポート部 5 1側から見た図であり、 図 4 Bは図 4 Aの矢視 Xを示した図である。 可動部 5 6は、 鉛直方向に昇降を行う為のエアー駆動式の口ッドレスシリンダ 3 3と支 持部材 6 0とを備え、 ポッド 2より空気流の下流となるようにポッド 2の下面 より下方に配置されている。 支持部材 6 0には、 固定部材 3 9とエアー駆動式 のシリンダ 3 1とシリンダ 3 5とが取り付けられている。 可動部 5 6はロード ポート部 5 1側に設けられており、 仕切り 5 5に設けられた長穴 5 7を介して、 ドアアーム 4 2およびフレームアーム 1 2 aおよび 1 2 bにより搬送室 5 2 側のオーブナ 3を支えている。 The frame arms 12 a and 12 b are rotatable about the fulcrum 41 in accordance with the expansion and contraction of the rod 38 by driving the frame driving cylinder 35. That is, the frame arms 12a and 12b are also fixed to the supporting member 60 provided on the movable portion 56 that can move up and down. The frame 5 is arranged so as to be obliquely separated from the wall surface of the transfer chamber 52 when the door 6 is in a standby state. That is, in this state, the frame arms 12 a and 12 b are supported at an angle to the door arm 42 at an angle to the door arm 42, and the upper part of the frame 5 is A certain distance from the wall. On the other hand, when the frame 5 is rotated from the standby state with the frame arms 12 a and 12 b in a direction in which the frame 5 comes into contact with the wall surface of the transfer chamber 52, the frame 5 is almost flush with the wall surface of the transfer chamber 52. Abut The support rods 13 a and 13 b are fixed to the frame member disposed on the upper portion of the frame 5 so as to protrude toward the wall surface of the force transfer chamber 52. The tip of each of the support rods 13a and 13b is placed so that the first transmission type sensors 9a and 9b, which are the first transmission type sensors, face each other. The bosses 21b are mounted so as to satisfy the positional relationship described above. The semiconductor wafer processing apparatus 50 is provided with a movable section 56 for moving the orbner 3 up and down. FIG. 4A is a diagram of the movable portion 56 of the orbner 3 as viewed from the load port portion 51 side, and FIG. 4B is a diagram showing an arrow X in FIG. 4A. The movable part 56 includes an air-driven mouthless cylinder 33 for vertically moving up and down and a support member 60, and is provided below the lower surface of the pod 2 so as to be downstream of the air flow from the pod 2. Are located. A fixing member 39, an air-driven cylinder 31 and a cylinder 35 are attached to the support member 60. The movable part 56 is provided on the load port part 51 side. The transfer arm 52 is formed by the door arm 42 and the frame arms 12a and 12b through the elongated hole 57 provided in the partition 55. Supports side orbna 3.
長穴 5 7は、 可動部 5 6の移動方向、 すなわち本実施例の場合には鉛直方向 を長手方向として設けられている。 また、 長穴 5 7により搬送室 5 2内の清浄 度が低下しないように、 ロードポート部 5 1と搬送室 5 2とは力パー 5 8によ り仕切られている。 更に、 オーブナ 3が下降したときのオーバランを防止する ためのリミッタ 5 9が、仕切り 5 5の下方に設けられている。仕切り 5 5には、 口ッドレスシリンダ 3 3とガイド 6 1 aとガイド 6 1 bとが長穴 5 7に沿つ て設けられている。 可動部 5 6は、 ロッドレスシリンダ 3 3によりガイド 6 1 aとガイド 6 1 bに沿って昇降を行う。 可動部 5 6の横には口ッドレスシリン ダ 3 3に沿ってセンサードグ 7が備えられている。  The long hole 57 is provided with the moving direction of the movable portion 56 as a longitudinal direction, that is, in the present embodiment, the vertical direction. The load port 51 and the transfer chamber 52 are separated by a force par 58 so that the long hole 57 does not lower the cleanliness in the transfer chamber 52. Further, a limiter 59 for preventing overrun when the orbner 3 descends is provided below the partition 55. The partition 55 has a mouthless cylinder 33, a guide 61a, and a guide 61b along the elongated hole 57. The movable part 56 is moved up and down by the rodless cylinder 33 along the guides 61a and 61b. A sensor dog 7 is provided beside the movable part 56 along the mouthless cylinder 33.
センサードグ 7は、 口ッドレスシリンダ 3 3に沿った方向に延びる板状体で あって、 その長手方向には一定間隔で配置した指標手段を有している。 本実施 例では、 指標手段として、 一定間隔で配置された切り欠きである凹凸部 1 2を 有している。 その凹凸の数はポッド内のウェハ配置用棚の段数と対応し、 更に その凹凸は可動部がある任意の棚に差し掛かった際に、 必ず一の切り欠きが対 応するように配置されている。 センサードグ 7側の可動部 5 6には、 横の仕切 り 5 5上に、 第 2の透過式センサたる透過式センサ 8が固定されている。  The sensor dog 7 is a plate-like body extending in the direction along the mouthless cylinder 33, and has index means arranged at regular intervals in the longitudinal direction. In the present embodiment, the index means has concave and convex portions 12 which are notches arranged at regular intervals. The number of the irregularities corresponds to the number of wafer placement shelves in the pod, and the irregularities are arranged so that one notch always corresponds to any shelves with movable parts. . On the movable part 56 on the sensor dog 7 side, a transmission sensor 8 as a second transmission sensor is fixed on a horizontal partition 55.
透過式センサ 8のセンサ部は、 センサードグ 7に設けられた一定の間隔の切 り欠きを備えた凹凸 1 2を挟むように配置されていて、 可動部 5 6の移動に応 じてこのセンサードグ 7の凹凸部 1 2を検出可能となっている。 可動部 5 6の 支持部材 6 0には、 第 3の透過式センサ 6 2が備え付けられている一方、 長穴 5 7の下側付近の仕切り 5 5には、 リミッタ 6 4が設けられている。 当該機構 においては、 突出部がリミッタ 6 4を遮光すると、 可動部 5 6に停止信号が発 出されォ プナ 3の全体の動作が停止する。  The sensor section of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a fixed interval provided in the sensor dog 7, and the sensor dog 7 is moved in accordance with the movement of the movable section 56. The irregularities 1 and 2 can be detected. The support member 60 of the movable portion 56 is provided with a third transmission sensor 62, while the partition 55 near the lower side of the elongated hole 57 is provided with a limiter 64. . In this mechanism, when the protruding portion shields the limiter 64, a stop signal is issued to the movable portion 56, and the entire operation of the opener 3 stops.
次に、 これらの構成に基づいて、 ウェハ 1上の汚染物質の除去操作およびマ ッビング操作がどのように行われるかについて図 3 A、 図 3 B乃至図 7を用い て説明する。 なお、 図 3 Aは待機状態、 図 5は蓋 4を開閉してフレーム 5が稼 動した状態、 図 6はウェハ 1における汚染物質の除去操作およびのマッピンク、 操作が完了した状態、 図 7はウェハ 1に対して行われた操作の完了後にフレー ム 5が待機状態に戻った状態をそれぞれ示した図である。 また、 図 4 Aおよび 4 Bは、 フレーム 5の駆動位置を検知するために設けられたセンサードグおよ ぴ関連する構成についての正面図およぴ側面図をそれぞれ示している Next, referring to FIGS. 3A, 3B to 7, how the operation of removing contaminants on the wafer 1 and the operation of mubbing are performed based on these configurations. Will be explained. 3A shows a standby state, FIG. 5 shows a state in which the lid 4 is opened and closed, and the frame 5 operates, FIG. 6 shows a state in which contaminant removal operation and mapping of the wafer 1 are performed, and FIG. 7 shows a state in which the operation is completed. FIG. 5 is a diagram showing a state where frame 5 has returned to a standby state after the operation performed on wafer 1 is completed. FIGS. 4A and 4B show a front view and a side view of a sensor dog provided for detecting a driving position of the frame 5 and a related configuration, respectively.
前の処理工程を終えたポッド 2内の棚には、 前処理の処理規格を満たしたゥ ェハ 1が収納されている一方、 規格を満たさなかったウェハ 1は前処理の段階 で工程から排除されている。 ポッド 2内の棚の格段にはウェハ 1が存在する段 と、 存在しない段とが混在している。 この状態のポッド 2が、 図 3 Aに示すよ うに搬送室 5 2上の台 5 3上に載置され、 搬送室開口部 1 0に近接するように 移動する。 この状態ではオーブナ 3は待機状態にある。 すなわち、 ドア開閉用 シリンダ 3 1のロッド 3 7が最も伸びた状態であって、 ドアアーム 4 2は支点 4 1を中心にドア 6を搬送室開口部 1 0に押し付けて塞いでいる状態にある。 本実施例では、 この状態ではアーム 4 2は鉛直方向に立った状態に有る。 一 方、 フレーム駆動用シリンダ 3 5のロッド 3 8は最も縮んだ状態にあって、 フ レームアーム 1 2 aおよび 1 2 bは支点 4 1を中心にフレーム 5を搬送室 5 2の壁面から引き離すように作用した状態に有る。 すなわち、 本実施例ではド ァアーム 4 2に対してフレームアーム 1 2 aおよび 1 2 bはある角度をもつ て斜めになつた状態である。  The shelves in the pod 2 that have completed the previous processing process contain wafers 1 that meet the preprocessing standard, while wafers 1 that do not meet the standard are removed from the process at the preprocessing stage Have been. On the shelf of the pod 2, the stage where the wafer 1 exists and the stage where the wafer 1 does not exist are mixed. The pod 2 in this state is placed on the table 53 on the transfer chamber 52 as shown in FIG. 3A, and moves so as to approach the transfer chamber opening 10. In this state, the orbner 3 is in a standby state. That is, the rod 37 of the door opening / closing cylinder 31 is in the most extended state, and the door arm 42 presses the door 6 around the fulcrum 41 against the transfer chamber opening 10 to close it. In this embodiment, in this state, the arm 42 stands in the vertical direction. On the other hand, the rod 38 of the frame driving cylinder 35 is in the most contracted state, and the frame arms 12a and 12b pull the frame 5 away from the wall of the transfer chamber 52 around the fulcrum 41. It is in the state of acting as follows. That is, in the present embodiment, the frame arms 12a and 12b are inclined at a certain angle with respect to the door arm 42.
図 5は、 ポッド 2が搬送室開口部 1 0に近接してドア 6が蓋 4を保持した状 態を示している。 ポッド 2が搬送室開口部 1 0に近接すると、 ポッド 2の蓋 4 はドア 6に密着し、 真空吸引により保持部 1 1 aおよび 1 1 bを介してポッド 2の蓋 4を保持する。 ドア 6が蓋 4を保持すると、 ドア開閉用シリンダ 3 1が 働いてロッド 3 7を縮める。 続いて、 ドアアーム 4 2の端部に設けられた枢軸 4 0が、 支持ベース 6 0側に引き寄せられ、 ドアアーム 4 2は支点 4 1によつ て梃の原理に従ってミニエンパイロンメント開口部 1 0からドア 6を引き離 すように回動し、 ポッド 2から蓋 4を開放する。 FIG. 5 shows a state where the pod 2 is close to the transfer chamber opening 10 and the door 6 holds the lid 4. When the pod 2 approaches the transfer chamber opening 10, the lid 4 of the pod 2 comes into close contact with the door 6, and holds the lid 4 of the pod 2 via the holding units 11 a and 11 b by vacuum suction. When the door 6 holds the lid 4, the door opening / closing cylinder 31 works to retract the rod 37. Subsequently, the pivot 40 provided at the end of the door arm 42 is drawn toward the support base 60, and the door arm 42 is connected to the fulcrum 41. Rotate the door 6 away from the mini-empirion opening 10 according to the principle of leverage to open the lid 4 from the pod 2.
蓋 4が開放された後、 フレーム 5の上端が開口部 1 0の位置に入る、 フレー ムアーム 1 2 aおよび 1 2 bが回動可能となる位置まで可動部 5 6がわずか に下降する。 下降終了後、 フレームアーム 1 2は、 実際にその回動動作を開始 する。 すなわち、 フレーム駆動用シリンダ 3 5のロッド 3 8が伸びてフレーム 5が搬送室開口部 1 0の周囲にほぼ当接するまでフレームアーム 1 2 aおよ ぴ 1 2 bが回動する。 すると、 フレーム 5の上側に取り付けられているガス供 給ノズル 2 1 aおよび 2 1 bおよび透過式センサ 9 aおよび 9 bが、 搬送室開 口部 1 0から外に出てポッド 2内に挿入される。 この時点で、 ガス供給ノズル 2 1 aおよび 2 1 bは図 2に示した配置に位置される。 また、 ガス供給ノズル 2 1 aおよび 2 1 bと並置された第 1の透過式センサ 9 aおよび 9 bは、 これ らを結ぶ直線上にウェハ 1が存在するように配置され検出空間を構成する。 この状態で可動部 5 6が鉛直方向に移動すると同時に、 個々のウェハ 1に対 する高清浄ガスの吹き付けによる汚染物質の除去操作、 およびウェハ 1のマツ ビング操作が、 順次実行される。 すなわち、 オーブナ 3はロッドレスシリンダ 3 3により、 図 6に示した位置まで下降する。 透過式センサ 9 aと 9 bは、 可 動部 5 6およびオーブナ 3と共にウェハ 1の面に対して垂直方向に下降する。 ウェハ 1が棚の段に存在するときには透過式センサ 9 aから発せられた光を 遮り、 一方、 ウェハが棚の段から欠落しているときには、 透過式センサ 9 aの 光は遮られない。 透過式センサ 9 bがウェハ 1により遮られたときに非透過信 号を発し、 透過式センサ 9 bがウェハ 1により遮られないときに透過信号を発 するように、 各々のセンサを設定しておく。  After the lid 4 is opened, the movable portion 56 slightly descends to a position where the upper end of the frame 5 enters the position of the opening 10 and the frame arms 12a and 12b can rotate. After the descent is completed, the frame arm 12 actually starts rotating. That is, the frame arms 12a and 12b rotate until the rod 38 of the frame driving cylinder 35 extends and the frame 5 substantially abuts around the transfer chamber opening 10. Then, the gas supply nozzles 21a and 21b and the transmission sensors 9a and 9b mounted on the upper side of the frame 5 go out of the transfer chamber opening 10 and are inserted into the pod 2. Is done. At this point, the gas supply nozzles 21a and 21b are located in the arrangement shown in FIG. Further, the first transmission type sensors 9a and 9b juxtaposed with the gas supply nozzles 21a and 21b are arranged so that the wafer 1 exists on a straight line connecting these, and constitute a detection space. . In this state, the movable portion 56 moves in the vertical direction, and at the same time, the operation of removing contaminants by spraying the high-purity gas on the individual wafers 1 and the operation of mubbing the wafers 1 are sequentially performed. That is, the orbner 3 is lowered by the rodless cylinder 33 to the position shown in FIG. The transmission sensors 9 a and 9 b descend together with the movable part 56 and the orbner 3 in a direction perpendicular to the surface of the wafer 1. When the wafer 1 is present on the shelf, the light emitted from the transmission sensor 9a is blocked, while when the wafer is missing from the shelf, the light from the transmission sensor 9a is not blocked. Each sensor is set to emit a non-transmission signal when the transmission sensor 9b is blocked by the wafer 1, and to transmit a transmission signal when the transmission sensor 9b is not blocked by the wafer 1. deep.
これにより、 非透過信号が検知されているときにはウェハ 1が存在すると判 断でき、 透過信号が検知されているときはウェハ 1が欠落していると判断でき る。 この透過信号に反応して、 ガス供給ノズル 2 1 aおよび 2 1 bより高清浄 ガスが所定時間、 所定圧力にて、 ウェハ 1に対して吹き付けられるようにする ことで、 個々のウェハに対する汚染物質等の除去操作を効果的に行うことがで きる。 なお、 この場合、 ガスの使用効率を考慮して非透過信号に応じて高清浄 ガスの吹き付けを停止しても良いが、 ウェハ間の間隔が異なることによって操 作対象となるウェハ上のガス流速が変化することを考慮して、 ガスの吹き付け 条件を変更することとしても良い。 Thereby, it can be determined that wafer 1 is present when a non-transmitted signal is detected, and it can be determined that wafer 1 is missing when a transmitted signal is detected. In response to this transmission signal, the gas supply nozzles 21a and 21b are cleaner By allowing the gas to be blown onto the wafer 1 for a predetermined time and at a predetermined pressure, an operation of removing contaminants and the like from each wafer can be effectively performed. In this case, the blowing of the high-purity gas may be stopped in response to the non-permeation signal in consideration of the gas use efficiency, but the gas flow rate on the wafer to be operated due to the difference between the wafers is considered. It is also possible to change the gas spraying conditions in consideration of the change in the pressure.
透過式センサ 8のセンサ部は、 センサードク、 7に設けられた一定の間隔の切 り欠きを備えた凹凸 1 2を挟むように配置されている。 従って、 可動部 5 6が 下降する際に、 透過式センサ 8も共に下降してセンサードグ 7の凹凸 1 2を検 出する。 このとき、 透過式センサ 8が凹部を通過するときには透過式センサ 8 は遮光されずに透過信号を発し、 凸部を通過したときには透過式センサ 8が遮 光されて非透過信号を発するようになつている。 よって、 透過式センサ 9 aと 9 bがポッド 2内の棚の各段を通過する時点と透過式センサ 8が凹部を通過 する時点とが対応するように、 センサードグ 7の凹凸 1 2を予め設定しておけ ば、 透過透過式センサ 8が検出する透過 ·非透過の信号は、 透過式センサ 9が 実際に通過する棚の段の信号を示すことになる。  The sensor section of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a constant interval provided in the sensor doc 7. Therefore, when the movable part 56 descends, the transmission sensor 8 also descends and detects the irregularities 12 of the sensor dog 7. At this time, when the transmission type sensor 8 passes through the concave portion, the transmission type sensor 8 emits a transmission signal without being shielded from light, and when the transmission type sensor 8 passes through the convex portion, the transmission type sensor 8 is shielded from light and emits a non-transmission signal. ing. Therefore, the unevenness 12 of the sensor dog 7 is preset so that the time when the transmissive sensors 9a and 9b pass through each step of the shelf in the pod 2 corresponds to the time when the transmissive sensor 8 passes through the recess. In other words, the transmission / non-transmission signals detected by the transmission / transmission sensor 8 indicate the signals of the steps of the shelf that the transmission sensor 9 actually passes.
これと透過式センサ 9 aがウェハ 1により遮光する結果検出される透過 ·非 透過の信号の検出結果と比較して、 透過式センサ 8が棚の段に対応する信号を 検知したときに透過式センサ 9 aが遮光されればウェハ 1はその棚段に存在 したと判断でき、 一方、 その時透過式センサ 9 aが遮光されなければその棚段 にはウェハ 1が欠落していたと判断できる。 これら判断に基づいて、 高清浄ガ スの吹き付けタイミング或いは吹き付け条件等を変更することにより、 より効 果的に汚染物質等の除去操作を行うことが可能となる。 すべてのウェハ 1に対 してこれを繰り返し、 オーブナ 3のマッビング終了位置に支持棒が至ることに より、 汚染物質等の除去操作おょぴマッビング操作が完了する。  Compare this with the detection result of the transmission / non-transmission signal detected as a result of the transmission sensor 9a blocking the light by the wafer 1, and when the transmission sensor 8 detects the signal corresponding to the shelf level, the transmission sensor If the sensor 9a is shielded from light, it can be determined that the wafer 1 was present at that shelf, while if the transmission sensor 9a is not shielded at that time, it can be determined that the wafer 1 was missing from that shelf. By changing the timing or conditions for spraying the high-purity gas based on these judgments, it becomes possible to more effectively perform the operation of removing contaminants and the like. This operation is repeated for all the wafers 1, and the operation of removing the contaminants and the like is completed by the support rod reaching the end of the orbiting of the orbner 3.
その後、 フレーム開閉シリンダ 3 5のロッド 3 8を再度縮めるとフレームァ ーム 1 2 aおよび 1 2 bが回動し、 フレーム 5が搬送室開口部 1 0から離れる ように移動する。 ロッド 3 8が最も縮まったところで、 フレーム 5の移動が完 了する。 そして可動部 5 6が最下点まで移動をし、 蓋 4の開放とともに、 ゥェ ハ 1に対する汚染物質等の除去およぴマッビングを行う一連の動作を完了す る。 この状態が図 7に示す状態である。 Then, when the rod 38 of the frame opening / closing cylinder 35 is retracted again, the flame The frames 12 a and 12 b rotate, and the frame 5 moves so as to move away from the transfer chamber opening 10. The movement of the frame 5 is completed when the rod 38 is contracted most. Then, the movable portion 56 moves to the lowest point, and the lid 4 is opened, and a series of operations for removing contaminants and the like and mapping the wafer 1 are completed. This state is the state shown in FIG.
上記のごとく説明したとおり、 本実施例においては、 ガス供給ノズル 2 1 a および 2 1 bおよび透過式センサ 9 aおよび 9 bを同一フレーム 5に固定し ている。 また、 フレーム 5を回動させる手段であるフレームアーム 1 2 aおよ ぴ 1 2 bおよびフレーム駆動用シリンダを設けている。 これらの構成を搬送室 開口部 1 0から十分に離れた可動部 5 6に設けたことにより、 ガス供給ノズル および透過式センサの展開動作を行う装置をウェハ 1付近に設ける必要がな くなる。 また、 センサードグ 7と透過式センサ 8とを利用することにより、 ポ ッド 2内の棚の段に対応した同期信号を容易に発生させることができるため、 ドライブモータを駆動装置に使用せずとも、 ウェハ 1のマツピング操作と同時 に、 より効果的な汚染物質等の除去操作を行うことが可能となる。 このように センサードグ 7を利用すれば、 信号を発生することのできないエアー駆動式シ リンダをウェハ 1のマッビングに利用することができる。  As described above, in this embodiment, the gas supply nozzles 21a and 21b and the transmission sensors 9a and 9b are fixed to the same frame 5. Further, frame arms 12a and 12b, which are means for rotating the frame 5, and a frame driving cylinder are provided. By providing these components in the movable part 56 sufficiently distant from the transfer chamber opening 10, it is not necessary to provide a gas supply nozzle and a device for developing the transmission sensor near the wafer 1. In addition, by using the sensor dog 7 and the transmission sensor 8, a synchronization signal corresponding to the shelf level in the pod 2 can be easily generated, so that the drive motor is not used as a drive device. At the same time as the mapping operation of the wafer 1, a more effective operation of removing contaminants and the like can be performed. By using the sensor dog 7 in this manner, an air-driven cylinder that cannot generate a signal can be used for the mapping of the wafer 1.
なお、 本実施例では、 ドアアーム 4 2の支点とマツピングフレーム 5の支点 とを支点 4 1により共通しているが、 両者を別の支点としても同様の効果を奏 する。 すなわち、 ドアアーム 4 2上に設ける第 1の支点とマッピングフレーム 上に設けられる第 2の支点として異なる支点を備えても同様の効果を奏する。 可動部 5 6と、 支点 4 1 , ドア開閉用シリンダ 3 1およびマッピングフレーム 駆動用シリンダ 3 5と一体ィヒしているが、 本発明の効果を得る上で必ずしも一 体化する必要はない。 これらの機構がポッド 2に対して空気流の下流に配置さ れる限り、 同様の効果を奏する。  In the present embodiment, the fulcrum of the door arm 42 and the fulcrum of the mapping frame 5 are shared by the fulcrum 41, but the same effect can be obtained by using both fulcrums as separate fulcrums. That is, the same effect can be obtained even if different fulcrums are provided as the first fulcrum provided on the door arm 42 and the second fulcrum provided on the mapping frame. Although the movable part 56, the fulcrum 41, the door opening / closing cylinder 31 and the mapping frame driving cylinder 35 are integrally formed, they need not be integrally formed to obtain the effects of the present invention. As long as these mechanisms are arranged downstream of the airflow with respect to the pod 2, the same effect can be obtained.
なお、本実施例においては、 F0UPの規格に準じた構成に対して大きな変更を 加えることなく本発明を適用することを目的として、 ガス供給ノズルは、 ゥェ
Figure imgf000026_0001
並列して支持棒上に固定されることとしているが、 本発明はこれに限定されない。 具体的には、 ガス供給ノズルをセンサとは異な るフレーム上に固定することとしても良い。 また、 ガス供給ノズルに駆動機構 を付加し、 ガス供給ノズルをウェハ面と平行に移動或いは回動可能としても良 い。 当該構成とすることにより、 ノズルの数が少なくとも、 ウェハ表面をまん べんなくパージすることが可能となる。 また、 汚染物質等の付着状況は直前に 行われる処理に応じて変動することも考えられる。 この場合、 付着状況および ガスの使用状態に鑑み、 ガス供給ノズルの数を増減させても良い。
In this embodiment, a significant change was made to the configuration according to the F0UP standard. For the purpose of applying the present invention without addition, the gas supply nozzle is
Figure imgf000026_0001
Although fixed on the support rod in parallel, the present invention is not limited to this. Specifically, the gas supply nozzle may be fixed on a frame different from the sensor. Further, a drive mechanism may be added to the gas supply nozzle so that the gas supply nozzle can be moved or rotated in parallel with the wafer surface. With this configuration, it is possible to purge the wafer surface evenly with at least the number of nozzles. In addition, the state of adhesion of contaminants and the like may fluctuate depending on the immediately preceding treatment. In this case, the number of gas supply nozzles may be increased or decreased in consideration of the adhesion state and the gas usage state.
また、 本実施例においては、 汚染物質等の除去操作は、 マッピング操作にあ わせて一回のみ行うこととしているが、 本発明はこれに限定されない。 当該除 去操作は、 搬送室内のロボットアームがポッド内のウェハにアクセスしている 時以外には、 常時行うことが可能である。 従って、 ウェハが処理装置内にて各 種処理を施されている間に、 ポッド内に保持されたウェハに対して、 当該除去 操作を繰り返して行うこととしても良い。  Further, in the present embodiment, the operation of removing contaminants and the like is performed only once in accordance with the mapping operation, but the present invention is not limited to this. The removal operation can be performed at any time except when the robot arm in the transfer chamber is accessing the wafer in the pod. Therefore, the removal operation may be repeatedly performed on the wafer held in the pod while the wafer is subjected to various kinds of processing in the processing apparatus.
また、 本実施例においては、 F0UPを対象として述べているが、 本発明の適用 例は当該システムに限定されない。 内部に複数の被保持物を収容する容器と、 当該容器より被保持物を搬送して被保持物を処理する装置に搬送する搬送室 とを有する系であれば、 本発明に係る汚染物質等の除去装置 (パージ装置) を 適用することは可能である。  In this embodiment, F0UP is described, but the application of the present invention is not limited to this system. A contaminant or the like according to the present invention may be used as long as the system includes a container for accommodating a plurality of objects to be held therein and a transfer chamber for transferring the objects to be held from the container to a device for processing the objects to be held. It is possible to apply a purging device.
(第二の実施の形態)  (Second embodiment)
本発明における第二の実施の形態に関して、 図面を参照して以下に説明する。 図 8 A乃至 8 Cは、 本発明に係るパージ装置の概略構成に関するものであり、 ポッド、 ポッド内部に収容されたウェハおよび本発明に係るパージ装置を側面 より見た状態の概略を示す図である。 図 8 Aはパージ操作の開始時を、 図 8 B はパージ操作の途中を、 また図 8 Cはパージ装置における主要部の拡大図をそ れぞれ示している。 また、 図 9 Aは、 図 8 A乃至 8 Cに示した各構成およびこ れに付随する構成を、 その上方より見た状態の要部概略を示す図であり、 図 9 Bはパージ装置の主要部を水平面にて切断しこれを上方より見た状態を示す 図である。 なお、 ポッドには、 ウェハを支持する棚、 蓋とポッドとの間に配置 されるシール部材等、 各種構成が本来含まれ、 また、 ドアにも種々の構成が付 随している。 しかし、 これら構成は本発明と直接の関係を有さないため、 ここ での詳細な図示および説明は省略する。 A second embodiment of the present invention will be described below with reference to the drawings. 8A to 8C relate to a schematic configuration of a purging apparatus according to the present invention, and are diagrams schematically illustrating a pod, a wafer housed inside the pod, and a purging apparatus according to the present invention when viewed from the side. is there. Figure 8A shows the start of the purge operation, Figure 8B shows the middle of the purge operation, and Figure 8C shows an enlarged view of the main part of the purge device. Each is shown. FIG. 9A is a diagram schematically showing the main components of the components shown in FIGS. 8A to 8C and the components attached thereto when viewed from above, and FIG. It is a figure which shows the state which cut | disconnected the principal part in the horizontal surface and saw this from the upper part. The pod originally includes various components such as a shelf for supporting a wafer, a seal member disposed between the lid and the pod, and the door also has various components. However, since these configurations do not have a direct relationship with the present invention, detailed illustration and description thereof are omitted here.
図中、 オーブナにおけるドア 6の上部に対し、 図中矢印で示す方向に清浄ガ スを放出可能なガス供給ノズル 2 1が取り付けられている。 ガス供給ノズル 2 1には、 不図示のガス供給ラインがそれぞれ接続されており、 外部からの操作 に応じて清浄ガスを当該ノズルに供給することが可能となっている。 図 9 Bに 示されるように、 ガス供給ノズル 2 1は、 ウェハ 1の表面と平行な方向に延在 する略管状の部材 2 2からなり、 当該管状部材 2 2はウェハ 1の表面を平行に 形成された線状に形成された開口 2 2 aを有している。 なお、 清浄ガスは管状 部材 2 2の略中央部分であって、 開口 2 2 aと対向しない部分から当該寛恕言 ぅ部材内部に導入されている。 ガス供給ノズル 2 1をウェハ 1が重ねられる方 向に順次移動させ、ウェハ 1各々の間に対して清浄ガスを供給する。その結果、 ウェハの表裏面およびポッド 2内部の清浄ガスによる汚染物質等の除去操作、 いわゆるパージ操作が為されることとなる。 ドア 6は、 ウェハ 1の重ねられた 方向と平行に駆動される。 従って、 ドア 6の駆動時にガス供給のズル 2 1から 清浄ガスを放出することによって、 ポッド 2内部のウェハ 1に対するパージ操 作を順次行うことが可能となる。  In the figure, a gas supply nozzle 21 capable of discharging clean gas is attached to the upper part of the door 6 in the oven in the direction shown by the arrow in the figure. A gas supply line (not shown) is connected to each of the gas supply nozzles 21 so that a clean gas can be supplied to the nozzles according to an external operation. As shown in FIG. 9B, the gas supply nozzle 21 includes a substantially tubular member 22 extending in a direction parallel to the surface of the wafer 1, and the tubular member 22 extends in parallel with the surface of the wafer 1. It has an opening 22 a formed linearly. Note that the clean gas is introduced into the inside of the evacuation member from a substantially central portion of the tubular member 22 and a portion not facing the opening 22a. The gas supply nozzle 21 is sequentially moved in the direction in which the wafers 1 are stacked, and a clean gas is supplied between the wafers 1. As a result, an operation of removing contaminants and the like by the clean gas on the front and back surfaces of the wafer and the inside of the pod 2, that is, a purging operation is performed. The door 6 is driven in parallel with the direction in which the wafers 1 are stacked. Accordingly, when the door 6 is driven, the purging operation for the wafers 1 inside the pod 2 can be sequentially performed by releasing the clean gas from the gas supply chisels 21.
本実施の形態においては、 ガス供給ノズル 2 1における管状部材 2 2の中心 は、 ポッド本体 2の開口端面から所定の間隔 Lだけ離されている。 開口 2 2 a は、 開口 2 2 aから放出された清浄ガスが水平方向においては図 9 Bにおいて 示すように、 また鉛直方向においては図 8 A乃至 8 Cに示すように拡散するよ うな形状を有して 、る。 管坎部材 2 2とポッド本体 2の開口部と間に間隔 Lを 設けることによって、 水平方向において清浄ガスがゥェハ 1の表面全域に対し て吹きかけられ、 汚染物質等を除去する構成となっている。 また、 通常ガス供 給ノズルから放出されるガスの流速はノズル開口近傍最も早く、 開口部から離 れるにつれて急速に低下する。 従って、 ウェハ端部にあまり近い位置からガス を供給した場合、 ウェハ表面におけるガス流の上流と下流とで大きな流速差が 生じて汚染物質等の除去効率に大きな差が生じる恐れ、 あるいは極端に早 ヽガ ス流がウェハ端部にぶっかることによって生じる乱流によって汚染物質等の 除去効率の低下が生じる可能性がある、すなわち、間隔 Lを設けることにより、 これら可能性を低減すると共に、 ウェハ表面上を略均等な流速で流れるガス流 を容易に形成することが可能となり、 ウェハの表裏面前領域に対して均等且つ 効率的な汚染物質の除去操作を行うことが可能となる。 また、 鉛直方向におい て、 水平方向より下方に角度 向かった領域に対して清浄ガスが放出される構 成とすることにより、 ウェハの表裏に対してある程度の角度を持って新たな清 浄ガスが接触することとなり、 汚染物質等をより効率的に除去することが可能 となる。 なお、 これら間隔 Lおよび角度 ]3は、 ポッド 2に保持されるウェハの 大きさ、 各々の間隔、 ポッド 2の形状等に応じて、 ウェハ 1上の汚染物質をよ り効率的に除去し且つポッド 2内部よりこれらを排出可能となるように、 適宜 調整されることが好ましい。 また、 同様の理由から、 開口 2 2 aの幅、 長さ、 開口角あるいは数を当該実施例より増減させる、 あるいは開口 2 2 aの向きを 変更可能な構成とすることとしても良い。 In the present embodiment, the center of the tubular member 22 in the gas supply nozzle 21 is separated from the opening end face of the pod body 2 by a predetermined distance L. The opening 22a allows the clean gas emitted from the opening 22a to diffuse in the horizontal direction as shown in Figure 9B and in the vertical direction as shown in Figures 8A to 8C. It has an unusual shape. By providing a gap L between the tube member 2 2 and the opening of the pod body 2, a clean gas is sprayed on the entire surface of the wafer 1 in the horizontal direction to remove pollutants and the like. . In addition, the flow velocity of the gas discharged from the gas supply nozzle is the fastest near the nozzle opening, and decreases rapidly as it moves away from the opening. Therefore, if gas is supplied from a position very close to the wafer edge, a large flow velocity difference may occur between the upstream and downstream of the gas flow on the wafer surface, resulting in a large difference in the efficiency of removing contaminants and the like, or extremely fast.乱 The turbulence generated by the gas flow striking the edge of the wafer may reduce the efficiency of removing contaminants and the like. It is possible to easily form a gas flow flowing at a substantially uniform flow rate on the front surface, and it is possible to perform a uniform and efficient contaminant removal operation on the front and back front regions of the wafer. In addition, in the vertical direction, the cleaning gas is released to a region that is angled downward from the horizontal direction, so that a new cleaning gas can be formed at a certain angle to the front and back of the wafer. As a result, the pollutants can be removed more efficiently. Note that these distances L and angles] 3 can remove contaminants on the wafer 1 more efficiently depending on the size of the wafer held in the pod 2, the distance between the wafers, the shape of the pod 2, and the like. It is preferable to appropriately adjust such that these can be discharged from the inside of the pod 2. For the same reason, the width, the length, the opening angle or the number of the opening 22a may be increased or decreased as compared with the embodiment, or the direction of the opening 22a may be changed.
本発明においては、 ウェハー枚毎に対して、 また、 その表裏面の全領域に対 して汚染物質等の除去操作を行うことが可能であり、 従来と比較してより清浄 度の高い状態にて、 ウェハをポッド内部に保持することが可能となる。 また、 本発明においては、汚染物質等の除去操作に要するガス流量、パージ時間等を、 ウェハ各々に対して個々に制御することが可能である。 従って、 常に一定の条 件にて当該除去操作を行うことも可能であり、 ポッド内における全てのウェハ の管理状態を容易に一定に保つことができる。 In the present invention, it is possible to carry out the operation of removing contaminants and the like for each wafer and for the entire area on the front and back surfaces, and to achieve a higher degree of cleanliness than in the past. Thus, the wafer can be held inside the pod. Further, in the present invention, the gas flow rate, purge time, and the like required for the operation of removing contaminants and the like can be individually controlled for each wafer. Therefore, always The removal operation can be performed depending on the situation, and the management state of all wafers in the pod can be easily maintained constant.
なお、 ガス供給ノズル 2 1よりポッド 2内部に供給されたガス等は、 従来よ りポッド 2に設けられている排気孔を用いて排出することとしても良い。 また、 当該パージ操作は蓋 4が開放された状態で行われることから、 搬送室に設けら れた不図示の排気系を用いてこれを行うこととしても良い。 また、 一旦ウェハ から除去された汚染物質等については、 これらが他のゥェハ或いはポッド内部 への再付着、 或いは搬送室への流入することを防止することが好ましいと考え られる。 この場合、 上述した特開 2 0 0 3 - 4 5 9 3 3号公報に示されるよう に、 汚染物質等の除去作業に用いた清浄ガスを効率的に排気するために、 ポッ ド開口と連通する排気専用の小室を搬送室內に設けることとしても良い。  The gas or the like supplied into the pod 2 from the gas supply nozzle 21 may be exhausted using an exhaust hole provided in the pod 2 conventionally. Further, since the purging operation is performed with the lid 4 opened, the purging operation may be performed using an exhaust system (not shown) provided in the transfer chamber. In addition, it is considered preferable to prevent contaminants and the like once removed from the wafer from re-adhering to the inside of another wafer or pod, or from flowing into the transfer chamber. In this case, as shown in the above-mentioned Japanese Patent Application Laid-Open No. 2003-54993, in order to efficiently exhaust the clean gas used for the operation of removing contaminants and the like, the pod opening communicates with the pod opening. A small chamber dedicated to exhaustion may be provided in the transfer chamber す る.
上述したように、 一旦ウェハ上より除去された汚染物質等は、 速やかにポッ ド外部に運ばれることが好ましい。 このため、 より効果的に汚染物質の除去を 行う上では、 上述した特開平 1 1 - 2 5 1 4 2 2号公報に示されたように、 ゥ ェハ各々に対応したお気用のポートを付加することも考えられる。 しかしなが ら、 この様な構成の付カ卩は規格に対応したポッドの大幅な規格変更を要する。 従って、 現在用いられている F0UP に関するシステムに対して本発明を用いる 場合は、 この様な排気用ポートは設けないほうが好ましいと考えられる。  As described above, it is preferable that the contaminants and the like once removed from the wafer are immediately carried out of the pod. For this reason, in order to more effectively remove pollutants, as shown in the above-mentioned Japanese Patent Application Laid-Open No. H11-251,422, a port for care corresponding to each wafer is provided. It may be added. However, with such a structure, it is necessary to significantly change the standard of the pod corresponding to the standard. Therefore, when the present invention is used for the F0UP system currently used, it is preferable not to provide such an exhaust port.
また、 汚染物質等は、 たとえば塵の形態にてウェハに付着する場合も考えら れる。 この様な塵は、 帯電し、 静電気的な引力によってウェハに付着している 場合が多いと考えられる。 この様な塵に対しては、 単なる高清浄ガスをウェハ に吹き付けるのではなく、 イオン化したガスを吹きかけることにより、 より効 率よく除去可能である。 従って、 ガス供給ノズル或いはその近傍に、 ガス等を イオン化するいわゆるィオナイザ一を付加し、 必要に応じてイオン化されたガ スを供給することが可能となる構成とすることがより好ましレ、。  It is also conceivable that contaminants and the like adhere to the wafer in the form of dust, for example. Such dust is likely to be charged and adhered to the wafer by electrostatic attraction. Such dust can be removed more efficiently by spraying ionized gas instead of spraying high-purity gas onto the wafer. Therefore, it is more preferable that a so-called ionizer for ionizing gas or the like is added to the gas supply nozzle or its vicinity so that the ionized gas can be supplied as needed.
(本実施形態を適用した一実施例) 次に、 本発明に係るパージ装置を、 現在用いられている F0UP に関するシス テムに対して適用した場合について、 以下に図面を参照して説明する。 なお、 本発明を適用した半導体ウェハ処理装置およびポッドは、 その概略構成が従来 技術において述べた構成と略同一であるため、 同一の構成に関しての説明は省 略する。 なお、 前述した、 ガス供給ノズル 2 1は、 前述したドア 6とは独立し た部材によって、 支持及び駆動することとしても良い。 し力 しながら、 本適用 例においては、 本発明に係るガス供給ノズル等をドア 6の上部に配置すること により、 本発明の実施をより容易なものとしている。 (One Example Applying the Present Embodiment) Next, a case where the purging apparatus according to the present invention is applied to a currently used F0UP system will be described below with reference to the drawings. The schematic configuration of the semiconductor wafer processing apparatus and the pod to which the present invention is applied is substantially the same as the configuration described in the related art, so that the description of the same configuration will be omitted. The gas supply nozzle 21 described above may be supported and driven by a member independent of the door 6 described above. However, in the present application example, the gas supply nozzle and the like according to the present invention are arranged at the upper part of the door 6, thereby making the present invention easier to implement.
ウェハ処理装置 5 0の概略構成に関しては、 従来技術として図 1 5に示すよ うに、 搬送室 5 2にはロードポート部 5 1側にポッド 2の蓋 4より若干大きい 搬送室開口部 1 0が備えられている。 搬送室 5 2の内部であって搬送室開口部 1 0の側には、 ポッド 2の蓋 4を開閉する為のオーブナ 3が設けられている。 ここで図 1 O Aおよび 1 0 Bを参照して、 本発明を適用したオーブナ 3につい て説明する。 図 1 0 Aは図 1 におけるロードポート部 5 1、 ポッド 2、 ォー ブナ 3およぴ蓋 4部分を縮小し装置全体を表した図であり、 図 1 0 Bは図 1 0 Aに示す構成を搬送室 5 2内部側から見た図である。  Regarding the schematic configuration of the wafer processing apparatus 50, as shown in FIG. 15, the transfer chamber 52 has a transfer port opening 10 slightly larger than the lid 4 of the pod 2 on the side of the load port section 51 as shown in FIG. Provided. An orbner 3 for opening and closing the lid 4 of the pod 2 is provided inside the transfer chamber 52 and on the side of the transfer chamber opening 10. Here, an orbner 3 to which the present invention is applied will be described with reference to FIGS. 10A and 10B. FIG. 10A is a diagram showing the entire apparatus by reducing the load port portion 51, pod 2, hood 3 and lid 4 in FIG. 1, and FIG. 10B is shown in FIG. 10A. FIG. 3 is a view of the configuration as viewed from the inside of a transfer chamber 52.
オーブナ 3は、 ドア 6とフレーム 5とを備えている。 ドア 6は、 搬送室開口 部 1 0を塞げる大きさの板状体であって、 その面には真空吸気孔である保持部 1 1 aおよび 1 1 bが備えられている。 ドア 6が搬送室開口部 1 0を塞いだ際 にポッド 2側に位置する面は蓋 4と密着できるような平面となっている。 ドア 6には穴を有する固定部材 4 6が取り付けられている。 この穴にドアアーム 4 2の上端に設けられた枢軸 4 5が回動可能に貫通するこどで固定されている。 ドアアーム 4 2の下端には穴が形成されている。 枢軸 4 0は、 当該穴と、 ドア 開閉用駆動装置であるエアー駆動式のドア開閉用シリンダ 3 1の一部である ロッド 3 7の先端にある穴とに貫通している。 これにより、 ドアアーム 4 2は シリンダ 3 1と結合され、 シリンダ 3 1によって回転可能に支持されることと なる。 The oven 3 has a door 6 and a frame 5. The door 6 is a plate-like body large enough to close the transfer chamber opening 10 and has holding portions 11a and 11b as vacuum suction holes on its surface. The surface located on the pod 2 side when the door 6 closes the transfer chamber opening 10 is a flat surface that can be in close contact with the lid 4. The door 6 is provided with a fixing member 46 having a hole. A pivot 45 provided at the upper end of the door arm 42 is rotatably penetrated through the hole to be fixed. A hole is formed at the lower end of the door arm 42. The pivot 40 penetrates through the hole and the hole at the tip of a rod 37 that is a part of an air-driven door opening / closing cylinder 31 that is a door opening / closing drive device. As a result, the door arm 42 is connected to the cylinder 31 and is rotatably supported by the cylinder 31. Become.
フレーム 5は搬送室開口部 1 0に沿い、 かつドア 6を囲むように配置された 枠部材からなる構造体である。 フレーム 5は、 その下側の枠部材において長く 延びるフレームアーム 1 2 aおよびフレームアーム 1 2 bの上端に取り付け られている。 フレームアーム 1 2 aおよぴフレームアーム 1 2 bの下端には不 図示の穴が形成されている。 当該穴と、 フレーム駆動装置であるエアー駆動式 のフレーム駆動用シリンダ 3 5の一部であるロッド 3 8の先端にある穴とに 枢軸 4 4が貫通している。 これにより、 これらフレームアームとシリンダ 3 5 とが結合され、 フレームアームはシリンダ 3 5によって回転可能に支持される こととなる。  The frame 5 is a structure including a frame member arranged along the transfer chamber opening 10 and surrounding the door 6. The frame 5 is attached to the upper ends of the frame arm 12a and the frame arm 12b which extend long in the lower frame member. Holes (not shown) are formed at the lower ends of the frame arms 12a and 12b. The pivot 44 penetrates through the hole and the hole at the tip of the rod 38 which is a part of the air-driven frame driving cylinder 35 which is a frame driving device. As a result, the frame arm and the cylinder 35 are connected, and the frame arm is rotatably supported by the cylinder 35.
フレームアーム 1 2 aおよび 1 2 bは荷重を均等に支える為に、 フレーム 5 の中心軸に沿つて対称かつ平行に鉛直方向に向かって延在している。 フレーム アーム 1 2 aおよび 1 2 bのそれぞれの上端と下端の間には、 フレームアーム 1 2 aおよび 1 2 bのそれぞれに垂直なロッド 4 7が取り付けられている。 支 持部材 6 0には支持部材 6 0から垂直に延びた形状の支点支持部たる固定部 材 3 9が配置されている。 固定部材 3 9は支持部材 6 0に平行な貫通穴を有し ている。 固定部材 3 9の貫通穴にはベアリング (不図示) が配置されていて、 ベアリングの外輪が貫通穴の内壁に、 ベアリングの内輪がロッド 4 7を枢支し ている。 これにより、 口ッド 4 7は固定部材 3 9の貫通穴に内包された状態で 支点 4 1を構成している。  The frame arms 12a and 12b extend symmetrically and parallel to the vertical direction along the center axis of the frame 5 to evenly support the load. A rod 47 perpendicular to each of the frame arms 12a and 12b is mounted between the upper and lower ends of each of the frame arms 12a and 12b. The support member 60 is provided with a fixing member 39 serving as a fulcrum support portion having a shape extending vertically from the support member 60. The fixing member 39 has a through hole parallel to the support member 60. A bearing (not shown) is disposed in the through hole of the fixing member 39, and the outer ring of the bearing pivotally supports the rod 47 with the inner ring of the bearing on the inner wall of the through hole. As a result, the mouthpiece 47 constitutes the fulcrum 41 in a state of being included in the through hole of the fixing member 39.
この支点 4 1は、 アームフレーム 1 2 aおよび 1 2 bの支点と、 ドアアーム の支点とを共通的に兼ねた同軸上の支点として構成される。 すなわち、 ドアァ ーム 4 2の上端と下端との間には別の貫通穴が設けられている。 この貫通穴に ロッ 4 7が貫通して支点 4 1を構成している。 シリンダ 3 1の駆動による口 ッド 3 7の伸縮により、 ドアアーム 4 2は支点 4 1を中心に回動可能である。 ドアアーム 4 2の支点 4 1は昇降が可能な可動部 5 6に設けられる支持部材 6 0に固定されている。 ドア 6は保持ポート 1 1 aおよび 1 1 bを有していて、 ポッド 2の蓋 4を真空吸着により保持可能である。 ドアアーム 4 2は、 搬送室 開口部 1 0にドア 6を押し付けている際 (以下、 待機状態とよぶ) にはほぼ鉛 直方向になるように配置され、 ドアアーム 4 2を回転させることにより ドア 6 が搬送室 5 2の壁面から離れる方向に移動する。 The fulcrum 41 is configured as a coaxial fulcrum that also serves as a fulcrum of the arm frames 12a and 12b and a fulcrum of the door arm. That is, another through hole is provided between the upper end and the lower end of the door arm 42. A lock 47 penetrates the through hole to form a fulcrum 41. The door arm 42 can rotate about the fulcrum 41 by the expansion and contraction of the door 37 by the driving of the cylinder 31. The fulcrum 4 1 of the door arm 4 2 is a support member provided on the movable portion 56 that can be moved up and down. Fixed to 60. The door 6 has holding ports 11a and 11b, and can hold the lid 4 of the pod 2 by vacuum suction. When the door 6 is pressed against the transfer chamber opening 10 (hereinafter, referred to as a standby state), the door arm 42 is arranged almost vertically, and the door arm 42 is rotated to rotate the door 6. Moves in a direction away from the wall surface of the transfer chamber 52.
フレーム駆動用シリンダ 3 5の駆動によるロッド 3 8の伸縮に応じて、 フレ ームアーム 1 2 aおよび 1 2 bは、 支点 4 1を中心に回動可能である。 すわな ち、 フレームアーム 1 2 aおよび 1 2 bも、 昇降が可能な可動部 5 6に設けら れる支持部材 6 0に固定されている。 フレーム 5は、 ドア 6が待機状態にある 際には、搬送室 5 2の壁面から斜めに離れるように配置されている。すなわち、 この状態ではフレームアーム 1 2 aおよび 1 2 bとはドアアーム 4 2に対し てある角度を持つように斜めになつた状態で支持されていて、 フレーム 5の上 部は搬送室 5 2の壁面から一定の距離だけ離れている。 一方、 この待機状態か らフレーム 5が、 搬送室 5 2の壁面に当接する方向にフレームアーム 1 2 aお ょぴ 1 2 bとを回転させると、 フレーム 5は搬送室 5 2の壁面にほぼ当接する。 フレーム 5の上部に配置されている枠部材には、 支持棒 1 3 aおよび 1 3 b 力 搬送室 5 2の壁面側に向かって突出するように固定されている。 支持棒 1 3 aと支持棒 1 3 bのそれぞれの先端には、 第 1の透過式センサたる透過式セ ンサ 9 aおよび 9 bとが互いに対向するように取り付けられている。  The frame arms 12 a and 12 b are rotatable about the fulcrum 41 in accordance with the expansion and contraction of the rod 38 by driving the frame driving cylinder 35. That is, the frame arms 12a and 12b are also fixed to the supporting member 60 provided on the movable portion 56 that can move up and down. The frame 5 is arranged so as to be obliquely separated from the wall surface of the transfer chamber 52 when the door 6 is in a standby state. That is, in this state, the frame arms 12 a and 12 b are supported at an angle to the door arm 42 at an angle to the door arm 42, and the upper part of the frame 5 is A certain distance from the wall. On the other hand, when the frame 5 is rotated from the standby state with the frame arms 12 a and 12 b in a direction in which the frame 5 comes into contact with the wall surface of the transfer chamber 52, the frame 5 is almost flush with the wall surface of the transfer chamber 52. Abut. The support rods 13 a and 13 b are fixed to the frame member disposed on the upper portion of the frame 5 so as to protrude toward the wall surface of the force transfer chamber 52. At the tips of the support rods 13a and 13b, transmission sensors 9a and 9b, which are first transmission sensors, are attached so as to face each other.
半導体ウェハ処理装置 5 0には、 オーブナ 3を昇降させるための可動部 5 6 が設けられている。 図 1 1 Aは、 オーブナ 3の可動部 5 6を、 ロードポート部 5 1側から見た図であり、 図 1 1 Bは図 1 1 Aの矢視 Xを示した図である。 可 動部 5 6は、 鉛直方向に昇降を行う為のエアー駆動式の口ッドレスシリンダ 3 3と支持部材 6 0とを備え、 ポッド 2より空気流の下流となるようにポッド 2 の下面より下方に配置されている。 支持部材 6 0には、 固定部材 3 9とエアー 駆動式のシリンダ 3 1とシリンダ 3 5とが取り付けられている。 可動部 5 6は ロードポート部 5 1側に設けられており、 仕切り 5 5に設けられた長穴 5 7を 介して、 ドアアーム 4 2およびフレームアーム 1 2 aおよび 1 2 bにより搬送 室 5 2側のオーブナ 3を支えている。 The semiconductor wafer processing apparatus 50 is provided with a movable section 56 for moving the orbner 3 up and down. FIG. 11A is a diagram of the movable portion 56 of the orbner 3 as viewed from the load port portion 51 side, and FIG. 11B is a diagram showing an arrow X of FIG. 11A. The movable portion 56 includes an air-driven mouthless cylinder 33 for vertically moving up and down and a support member 60, and is provided below the lower surface of the pod 2 so as to be downstream of the air flow from the pod 2. Are located. A fixing member 39, an air-driven cylinder 31 and a cylinder 35 are attached to the support member 60. Moving parts 5 6 Provided on the load port 51 side, the orbner 3 on the transfer chamber 52 side is connected to the door arm 42 and the frame arms 12a and 12b through the elongated holes 57 provided in the partition 55. Supporting.
長穴 5 7は、 可動部 5 6の移動方向、 すなわち本実施例の場合には鉛直方向 を長手方向として設けられている。 また、 長穴 5 7により搬送室 5 2内の清浄 度が低下しないように、 ロードポート部 5 1と搬送室 5 2とはカバー 5 8によ り仕切られている。 更に、 オーブナ 3が下降したときのオーバランを防止する ためのリミッタ 5 9力 仕切り 5 5の下方に設けられている。仕切り 5 5には、 ロッドレスシリンダ 3 3とガイド 6 1 aとガイド 6 1 bとが長穴 5 7に沿つ て設けられている。 可動部 5 6は、 口ッドレスシリンダ 3 3によりガイド 6 1 aとガイド 6 1 bに沿って昇降を行う。 可動部 5 6の横にはロッドレスシリン ダ 3 3に沿ってセンサードグ 7が備えられている。  The long hole 57 is provided with the moving direction of the movable portion 56 as a longitudinal direction, that is, in the present embodiment, the vertical direction. The load port 51 and the transfer chamber 52 are separated by a cover 58 so that the long hole 57 does not lower the cleanliness in the transfer chamber 52. Further, a limiter 59 is provided below the power divider 55 to prevent overrun when the orbner 3 is lowered. The partition 55 includes a rodless cylinder 33, a guide 61a, and a guide 61b along the elongated hole 57. The movable part 56 is moved up and down along the guides 61a and 61b by the mouthless cylinder 33. A sensor dog 7 is provided beside the movable part 56 along the rodless cylinder 33.
センサードグ 7は、 口ッドレスシリンダ 3 3に沿った方向に延びる板状体で あって、 その長手方向には一定間隔で配置した指標手段を有している。 本実施 例では、 指標手段として、 一定間隔で配置された切り欠きである凹凸部 1 2を 有している。 その凹凸の数はポッド内のウェハ配置用棚の段数と対応し、 更に その凹凸は可動部がある任意の棚に差し掛かった際に、 必ず一の切り欠きが対 応するように配置されている。 センサードグ 7側の可動部 5 6には、 横の仕切 り 5 5上に、 第 2の透過式センサたる透過式センサ 8が固定されている。  The sensor dog 7 is a plate-like body extending in the direction along the mouthless cylinder 33, and has index means arranged at regular intervals in the longitudinal direction. In the present embodiment, the index means has concave and convex portions 12 which are notches arranged at regular intervals. The number of the irregularities corresponds to the number of wafer placement shelves in the pod, and the irregularities are arranged so that one notch always corresponds to any shelves with movable parts. . On the movable part 56 on the sensor dog 7 side, a transmission sensor 8 as a second transmission sensor is fixed on a horizontal partition 55.
透過式センサ 8のセンサ部は、 センサードグ 7に設けられた一定の間隔の切 り欠きを備えた凹凸 1 2を挟むように配置されていて、 可動部 5 6の移動に応 じてこのセンサードグ 7の凹凸部 1 2を検出可能となっている。 可動部 5 6の ■ 支持部材 6 0には、 第 3の透過式センサ 6 2が備え付けられている一方、 長穴 5 7の下側付近の仕切り 5 5には、 リミッタ 6 4が設けられている。 当該機構 においては、 突出部がリミッタ 6 4を遮光すると、 可動部 5 6に停止信号が発 出されオーブナ 3の全体の動作が停止する。 次に、 これらの構成に基づいて、 ウェハ 1上の汚染物質の除去操作おょぴマ ッビング操作がどのように行われるかについて図 1 0 A、 図 1 0 B乃至図 1 4 を用いて説明する。 なお、 図 1 0 Aは待機状態、 図 1 2は蓋 4を開閉してフレ ーム 5が稼動した状態、 図 1 3はウエノ、 1における汚染物質の除去操作およぴ のマッビング操作が完了した状態、 図 1 4はウェハ 1に対して行われた操作の 完了後にフレーム 5が待機状態に戻った状態をそれぞれ示した図である。 また、 図 1 1 Aおよび 1 1 Bは、 フレーム 5の駆動位置を検知するために設けられた センサードグおよび関連する構成についての正面図および側面図をそれぞれ 示している The sensor section of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a fixed interval provided in the sensor dog 7, and the sensor dog 7 is moved in accordance with the movement of the movable section 56. The irregularities 1 and 2 can be detected. While the third transmission sensor 62 is provided on the support member 60 of the movable portion 56, a limiter 64 is provided on the partition 55 near the lower side of the elongated hole 57. I have. In this mechanism, when the protruding portion shields the limiter 64, a stop signal is issued to the movable portion 56, and the entire operation of the orbiter 3 is stopped. Next, a description will be given of how the operation of removing contaminants on the wafer 1 and the operation of the mubbing are performed with reference to FIGS. 10A and 10B to 14 based on these configurations. I do. Fig. 10A shows the stand-by state, Fig. 12 shows the state in which the lid 4 is opened and closed, and the frame 5 is in operation. Fig. 13 shows the ueno, and the contaminant removal operation and the mapping operation in 1 are completed. FIG. 14 is a diagram showing a state in which the frame 5 has returned to the standby state after the operation performed on the wafer 1 is completed. FIGS. 11A and 11B show a front view and a side view of a sensor dog provided for detecting a driving position of the frame 5 and a related configuration, respectively.
前の処理工程を終えたポッド 2内の棚には、 前処理の処理規格を満たしたゥ ェハ 1が収納されている一方、 規格を満たさなかったウェハ 1は前処理の段階 で工程から排除されている。 ポッド 2内の棚の格段にはウェハ 1が存在する段 と、 存在しない段とが混在している。 この状態のポッド 2が、 図 1 O Aに示す ように搬送室 5 2上の台 5 3上に載置され、 搬送室開口部 1 0に近接するよう に移動'する。 この状態ではオーブナ 3は待機状態にある。 すなわち、 ドア開閉 用シリンダ 3 1のロッド 3 7が最も伸びた状態であって、 ドアアーム 4 2は支 点 4 1を中心にドア 6を搬送室開口部 1 0に押し付けて塞いでいる状態にあ る。  The shelves in the pod 2 that have completed the previous processing process contain wafers 1 that meet the preprocessing standard, while wafers 1 that do not meet the standard are removed from the process at the preprocessing stage Have been. On the shelf of the pod 2, the stage where the wafer 1 exists and the stage where the wafer 1 does not exist are mixed. The pod 2 in this state is placed on the table 53 on the transfer chamber 52 as shown in FIG. 1OA, and moves to approach the transfer chamber opening 10. In this state, the orbner 3 is in a standby state. That is, the rod 37 of the door opening / closing cylinder 31 is in the most extended state, and the door arm 42 presses the door 6 around the fulcrum 41 against the transfer chamber opening 10 to close it. You.
本実施例では、 この状態ではアーム 4 2は鉛直方向に立った状態に有る。 一 方、 フレーム駆動用シリンダ 3 5のロッド 3 8は最も縮んだ状態にあって、 フ レームアーム 1 2 aおよび 1 2 bは支点 4 1を中心にフレーム 5を搬送室 5 2の壁面から引き離すように作用した状態に有る。 すなわち、 本実施例ではド ァアーム 4 2に対してフレームアーム 1 2 aおよび 1 2 bはある角度をもつ て斜めになつた状態である。  In this embodiment, in this state, the arm 42 stands in the vertical direction. On the other hand, the rod 38 of the frame driving cylinder 35 is in the most contracted state, and the frame arms 12a and 12b pull the frame 5 away from the wall of the transfer chamber 52 around the fulcrum 41. It is in the state of acting as follows. That is, in the present embodiment, the frame arms 12a and 12b are inclined at a certain angle with respect to the door arm 42.
図 1 2は、 'ポッド 2が搬送室開口部 1 0に近接してドア 6が蓋 4を保持した 状態を示している。 ポッド 2が搬送室開口部 1 0に近接すると、 ポッド 2の蓋 4はドア 6に密着し、 真空吸引により保持部 1 1 aおよび 1 l bを介してポッ ド 2の蓋 4を保持する。 ドア 6が蓋 4を保持すると、 ドア開閉用シリンダ 3 1 が働いて口ッド 3 7を縮める。 続いて、 ドアアーム 4 2の端部に設けられた枢 軸 4 0が、 支持ベース 6 0側に引き寄せられ、 ドアアーム 4 2は支点 4 1によ つて梃の原理に従って搬送室開口部 1 0からドア 6を引き離すように回動し、 ポッド 2から蓋 4を開放する。 FIG. 12 shows a state where the pod 2 is close to the transfer chamber opening 10 and the door 6 holds the lid 4. When Pod 2 approaches the transfer chamber opening 10, the lid of Pod 2 4 closely adheres to the door 6, and holds the lid 4 of the pod 2 through the holding portions 11a and 1lb by vacuum suction. When the door 6 holds the lid 4, the door opening / closing cylinder 31 works to contract the mouth 37. Subsequently, the pivot 40 provided at the end of the door arm 42 is pulled toward the support base 60 side, and the door arm 42 is moved from the transfer chamber opening 10 to the door by the fulcrum 41 according to the principle of leverage. Rotate to pull 6 apart, and open lid 4 from pod 2.
蓋 4が開放された後、 フレーム 5の上端が開口部 1 0の位置に入る、 フレー ムアーム 1 2 aおよび 1 2 bが回動可能となる位置まで可動部 5 6がわずか に下降する。 下降終了後、 フレームアーム 1 2は、 実際にその回動動作を開始 する。 すなわち、 フレーム駆動用シリンダ 3 5のロッド 3 8が伸びてフレーム 5が搬送室開口部 1 0の周囲にほぼ当接するまでフレームアーム 1 2 aおよ び 1 2 bが回動する。 すると、 フレーム 5の上側に取り付けられている透過式 センサ 9 aおよび 9 b力 搬送室開口部 1 0から外に出てポッド 2内に挿入さ れる。 この時点で、 ガス供給ノズル 2 1は図 8 Aに示した配置に位置される。 また、 第 1の透過式センサ 9 aおよび 9 bは、 これらを結ぶ直線上にウェハ 1 が存在するように配置され検出空間を構成する。  After the lid 4 is opened, the movable portion 56 slightly descends to a position where the upper end of the frame 5 enters the position of the opening 10 and the frame arms 12a and 12b can rotate. After the descent is completed, the frame arm 12 actually starts rotating. That is, the frame arms 12a and 12b rotate until the rod 38 of the frame driving cylinder 35 extends and the frame 5 substantially abuts around the transfer chamber opening 10. Then, the transmission type sensors 9 a and 9 b mounted on the upper side of the frame 5 go out of the transfer chamber opening 10 and are inserted into the pod 2. At this point, the gas supply nozzle 21 is located in the configuration shown in FIG. 8A. Further, the first transmission sensors 9a and 9b are arranged so that the wafer 1 exists on a straight line connecting them, and constitute a detection space.
この状態で可動部 5 6が鉛直方向に移動すると同時に、 個々のウェハ 1に対 する高清浄ガスの吹き付けによる汚染物質の除去操作、 およびウェハ 1のマツ ビング操作が、 順次実行される。 すなわち、 オーブナ 3はロッドレスシリンダ 3 3により、 図 1 3に示した位置まで下降する。 透過式センサ 9 aと 9 bは、 可動部 5 6およびオーブナ 3と共にウェハ 1の面に対して垂直方向に下降す る。 ウェハ 1が棚の段に存在するときには透過式センサ 9 aから発せられた光 を遮り、 一方、 ウェハが棚の段から欠落しているときには、 透過式センサ 9 a の光は遮られない。 透過式センサ 9 bがウェハ 1により遮られたときに非透過 信号を発し、 透過式センサ 9 bがウェハ 1により遮られないときに透過信号を 発するように、 各々のセンサを設定しておく。 これにより、 非透過信号が検知されているときにはウェハ 1が存在すると判 断でき、 透過信号が検知されているときはウェハ 1が欠落していると判断でき る。 この透過信号に反応して、 ガス供給ノズル 2 1より清浄ガスが所定時間、 所定圧力にて、 ウェハ 1に対して吹き付けられるようにすることで、 個々のゥ ェハに対する汚染物質等の除去操作を効果的に行うことができる。 なお、 この 場合、 ガスの使用効率を考慮して非透過信号に応じて高清浄ガスの吹き付けを 停止しても良 、が、 ウェハ間の間隔が異なることによつて操作対象となるゥェ ハ上のガス流速が変化することを考慮して、 ガスの吹き付け条件を変更するこ ととしても良い。 In this state, the movable portion 56 moves in the vertical direction, and at the same time, the operation of removing contaminants by spraying the high-purity gas on the individual wafers 1 and the operation of mubbing the wafers 1 are sequentially performed. That is, the orbner 3 is lowered by the rodless cylinder 33 to the position shown in FIG. The transmission sensors 9 a and 9 b descend together with the movable part 56 and the orbner 3 in a direction perpendicular to the surface of the wafer 1. When the wafer 1 is present on the shelf, the light emitted from the transmission sensor 9a is blocked, whereas when the wafer is missing from the shelf, the light from the transmission sensor 9a is not blocked. Each sensor is set so as to emit a non-transmission signal when the transmission sensor 9b is blocked by the wafer 1, and to transmit a transmission signal when the transmission sensor 9b is not blocked by the wafer 1. Thereby, it can be determined that wafer 1 is present when a non-transmitted signal is detected, and it can be determined that wafer 1 is missing when a transmitted signal is detected. In response to the permeation signal, the cleaning gas is blown from the gas supply nozzle 21 to the wafer 1 for a predetermined time and at a predetermined pressure, thereby removing contaminants and the like for each wafer. Can be performed effectively. In this case, the blowing of the high-purity gas may be stopped in response to the non-permeation signal in consideration of the gas use efficiency. However, since the interval between the wafers is different, the operation target becomes difficult. The gas blowing conditions may be changed in consideration of the above change in the gas flow velocity.
透過式センサ 8のセンサ部は、 センサードグ 7に設けられた一定の間隔の切 り欠きを備えた凹凸 1 2を挟むように配置されている。 従って、 可動部 5 6が 下降する際に、 透過式センサ 8も共に下降してセンサードグ 7の凹凸 1 2を検 出する。 このとき、 透過式センサ 8が !¾!部を通過するときには透過式センサ 8 は遮光されずに透過信号を発し、 凸部を通過したときには透過式センサ 8が遮 光されて非透過信号を発するようになつている。 よって、 透過式センサ 9 aと 9 bがポッド 2内の棚の各段を通過する時点と透過式センサ 8が凹部を通過 する時点とが対応するように、 センサードグ 7の凹凸 1 2を予め設定しておけ ば、 透過透過式センサ 8が検出する透過 ·非透過の信号は、 透過式センサ 9が 実際に通過する棚の段の信号を示すことになる。  The sensor portion of the transmission sensor 8 is arranged so as to sandwich the unevenness 12 provided with notches at a predetermined interval provided in the sensor dog 7. Therefore, when the movable part 56 descends, the transmission sensor 8 also descends and detects the irregularities 12 of the sensor dog 7. At this time, when the transmissive sensor 8 passes through the! ¾! Portion, the transmissive sensor 8 emits a transmissive signal without being shaded, and when the transmissive sensor 8 passes through a convex portion, the transmissive sensor 8 is shielded from light and emits a non-transmissive signal. It is like that. Therefore, the unevenness 12 of the sensor dog 7 is preset so that the time when the transmissive sensors 9a and 9b pass through each step of the shelf in the pod 2 corresponds to the time when the transmissive sensor 8 passes through the recess. In other words, the transmission / non-transmission signals detected by the transmission / transmission sensor 8 indicate the signals of the steps of the shelf that the transmission sensor 9 actually passes.
これと透過式センサ 9 aがウェハ 1により遮光する結果検出される透過 ·非 透過の信号の検出結果と比較して、 透過式センサ 8が棚の段に対応する信号を 検知したときに透過式センサ 9 aが遮光されればウェハ 1はその棚段に存在 したと判断でき、 一方、 その時透過式センサ 9 aが遮光されなければその棚段 にはウェハ 1が欠落していたと判断できる。 これら判断に基づいて、 高清浄ガ スの吹き付けタイミング或いは吹き付け条件等を変更することにより、 より効 果的に汚染物質等の除去操作を行うことが可能となる。 すべてのウェハ 1に対 してこれを繰り返し、 オーブナ 3のマッビング終了位置に支持棒が至ることに より、 汚染物質等の除去操作およびマッピング操作が完了する。 Compare this with the detection result of the transmission / non-transmission signal detected as a result of the transmission sensor 9a blocking the light by the wafer 1, and when the transmission sensor 8 detects the signal corresponding to the shelf level, the transmission sensor If the sensor 9a is shielded from light, it can be determined that the wafer 1 was present at that shelf, while if the transmission sensor 9a is not shielded at that time, it can be determined that the wafer 1 was missing from that shelf. By changing the timing or conditions for spraying the high-purity gas based on these judgments, it becomes possible to more effectively perform the operation of removing contaminants and the like. For all wafers 1 This operation is repeated, and the operation of removing the contaminants and the mapping operation is completed by the support rod reaching the end of the orbiting of the orbner 3 at the end of the mapping.
その後、 フレーム開閉シリンダ 3 5のロッド 3 8を再度縮めるとフレームァ ーム 1 2 aおよび 1 2 bが回動し、 フレーム 5が搬送室開口部 1 0から離れる ように移動する。 ロッド 3 8が最も縮まったところで、 フレーム 5の移動が完 了する。 そして可動部 5 6が最下点まで移動をし、 蓋 4の開放とともに、 ゥェ ハ 1に対する汚染物質等の除去おょぴマッビングを行う一連の動作を完了す る。 この状態が図 1 4に示す状態である。  Thereafter, when the rod 38 of the frame opening / closing cylinder 35 is contracted again, the frame arms 12a and 12b rotate, and the frame 5 moves so as to move away from the transfer chamber opening 10. The movement of the frame 5 is completed when the rod 38 is contracted most. Then, the movable portion 56 moves to the lowest point, and the lid 4 is opened, and a series of operations for removing and mapping contaminants and the like to the wafer 1 are completed. This state is the state shown in FIG.
上記のごとく説明したとおり、本実施例においては、ガス供給ノズル 2 1を、 ウェハの重ねられら方向と平行に動く ドア 6に固定している。 従って、 各ゥェ ハに対して、常に同一の条件にて清浄ガス.を供給することが可能となる。また、 センサードグ 7と透過式センサ 8とを利用することにより、 ポッド 2内の棚の 段に対応した同期信号を容易に発生させることができるため、 ドライブモータ を駆動装置に使用せずとも、 ウェハ 1のマッピング操作と同時に、 より効果的 な汚染物質等の除去操作を行うことが可能となる。  As described above, in the present embodiment, the gas supply nozzle 21 is fixed to the door 6 that moves in parallel with the direction in which the wafers are stacked. Therefore, it is possible to always supply a clean gas to each wafer under the same conditions. In addition, by using the sensor dog 7 and the transmission sensor 8, it is possible to easily generate a synchronization signal corresponding to a shelf in the pod 2, so that the wafer can be used without using a drive motor as a drive device. At the same time as the mapping operation of 1, a more effective operation of removing contaminants and the like can be performed.
なお、 本実施例では、 ドアアーム 4 2の支点とマツピングフレーム 5の支点 とを支点 4 1により共通しているが、 両者を別の支点としても同様の効果を奏 する。 すなわち、 ドアアーム 4 2上に設ける第 1の支点とマッピングフレーム 上に設けられる第 2の支点として異なる支点を備えても同様の効果を奏する。 可動部 5 6と、 支点 4 1, ドア開閉用シリンダ 3 1およびマッピングフレーム 駆動用シリンダ 3 5と一体ィ匕している力 本発明の効果を得る上で必ずしも一 体化する必要はない。 これらの機構がポッド 2に対して空気流の下流に配置さ れる限り、 同様の効果を奏する。  In the present embodiment, the fulcrum of the door arm 42 and the fulcrum of the mapping frame 5 are shared by the fulcrum 41, but the same effect can be obtained by using both fulcrums as separate fulcrums. That is, the same effect can be obtained even if different fulcrums are provided as the first fulcrum provided on the door arm 42 and the second fulcrum provided on the mapping frame. Force that is integrated with the movable part 56, the fulcrum 41, the door opening / closing cylinder 31, and the mapping frame driving cylinder 35. It is not always necessary to integrate the movable part 56 to obtain the effects of the present invention. As long as these mechanisms are arranged downstream of the airflow with respect to the pod 2, the same effect can be obtained.
なお、本実施例においては、 F0UPの規格に準じた構成に対して大きな変更を 加えることなく本発明を適用することを目的として、 ガス供給ノズルは、 ドア の上部に固定されることとしているが、 本発明はこれに限定されない。 具体的 には、 ガス供給ノズルをドアは異なるフレームを構成し当該フレーム上に固定 することとしても良い。 また、 ガス供給ノズルに駆動機構を付加し、 ガス供給 ノズルをウェハ面と平行な軸に対して回動可能としても良い。 また、 汚染物質 等の付着状況は直前に行われる処理に応じて変動することも考えられる。 この 場合、 付着状況およびガスの使用状態に鑑み、 ガス供給ノズルにおける開口の 幅、 長さ、 開口角あるいは数を増減させても良い。 この場合、 数の増加とは水 平方向における開口の数の増加および鉛直方向における開口の数の増加双方 をさす。 In the present embodiment, the gas supply nozzle is fixed to the upper part of the door for the purpose of applying the present invention without making a significant change to the configuration conforming to the F0UP standard. However, the present invention is not limited to this. concrete Alternatively, the gas supply nozzle may be configured with a frame different from the door and fixed on the frame. Further, a driving mechanism may be added to the gas supply nozzle, and the gas supply nozzle may be rotatable about an axis parallel to the wafer surface. It is also conceivable that the state of adhesion of contaminants and the like may fluctuate depending on the immediately preceding treatment. In this case, the width, length, opening angle or number of the openings in the gas supply nozzle may be increased or decreased in consideration of the adhesion state and the use state of the gas. In this case, an increase in the number means both an increase in the number of openings in the horizontal direction and an increase in the number of openings in the vertical direction.
また、 本実施例においては、 汚染物質等の除去操作は、 マッピング操作にあ わせて一回のみ行うこととしているが、 本発明はこれに限定されない。 当該除 去操作は、 搬送室内のロボットアームがポッド内のウェハにアクセスしている 時以外には、 常時行うことが可能である。 従って、 ウェハが処理装置内にて各 種処理を施されている間に、 ポッド内に保持されたウェハに対して、 当該除去 操作を繰り返して行うこととしても良い。  Further, in the present embodiment, the operation of removing contaminants and the like is performed only once in accordance with the mapping operation, but the present invention is not limited to this. The removal operation can be performed at any time except when the robot arm in the transfer chamber is accessing the wafer in the pod. Therefore, the removal operation may be repeatedly performed on the wafer held in the pod while the wafer is subjected to various kinds of processing in the processing apparatus.
また、 本実施例においては、 F0UPを対象として述べているが、 本発明の適用 例は当該システムに限定されない。 内部に複数の被保持物を収容する容器と、 当該容器より被保持物を搬送して被保持物を処理する装置に搬送する搬送室 とを有する系であれば、 本発明に係る汚染物質等の除去装置 ひ \°ージ装置) を 適用することは可能である。  In this embodiment, F0UP is described, but the application of the present invention is not limited to this system. A contaminant or the like according to the present invention may be used as long as the system includes a container for accommodating a plurality of objects to be held therein and a transfer chamber for transferring the objects to be held from the container to a device for processing the objects to be held. It is possible to apply a removal device.

Claims

請求の範囲 The scope of the claims
1 . 開口、 およぴ被収容物が各々载置される所定の方向に並ぶ複数 の棚からなる本体と、 前記本体から分離可能であって前記開口を塞ぐ蓋と、 を 備えるポッドに収容された前記被収容物に対し、 所定のガスを吹き付けてパー ジ操作を行うパージ装置であって、 1. An opening and a main body comprising a plurality of shelves arranged in a predetermined direction in which the objects to be accommodated are respectively arranged, and a lid which is separable from the main body and covers the opening, and is housed in a pod. A purge device for performing a purging operation by blowing a predetermined gas to the container.
前記蓋が前記本体から分離された状態において、 前記開口の前面を前 ' 記所定の方向に移動可能なフレームと、  A frame capable of moving the front surface of the opening in the predetermined direction in a state where the lid is separated from the main body;
前記フレームに対して所定の位置関係を保つことで前記所定方向に移 動可能なガス供給ノズルとを有することを特徴とするパージ装置。  A purging apparatus, comprising: a gas supply nozzle movable in the predetermined direction by maintaining a predetermined positional relationship with respect to the frame.
2 . 前記フレームは、 前記ポッド中に収容された前記被収容物のマ ッビングを行うセンサを保持し、 前記ガス供給ノズルは前記センサと並置され ることを特徴とする請求項 1記載のパージ装置。 '  2. The purging apparatus according to claim 1, wherein the frame holds a sensor that performs a mubbing of the object contained in the pod, and the gas supply nozzle is arranged in parallel with the sensor. . '
3 . 前記所定のガスが前記ガス供給ノズルから吹き出されるタイ ミングは、 前記ガス供給ノズルが前記所定方向に移動する際に、 前記被収容物 が延在する平面を通過するタイミングと同期することを特徴とする請求項 1 記載のパージ装置。  3. The timing at which the predetermined gas is blown out from the gas supply nozzle is synchronized with the timing at which the object passes through the plane on which the object extends when the gas supply nozzle moves in the predetermined direction. The purging apparatus according to claim 1, wherein:
4 . 前記ガス供給ノズルは、 前記被収容物が延在する平面と平行な 方向或いは前記平面に対して所定角度下方を向いた方向に前記所定のガスを 吹き出すことを特徴とする請求項 1記載のパージ装置。  4. The gas supply nozzle according to claim 1, wherein the gas supply nozzle blows out the predetermined gas in a direction parallel to a plane in which the object extends and in a direction downward at a predetermined angle with respect to the plane. Purge device.
5 . 前記被収容物は半導体製造に用いられるウェハであり、 前記蓋 が前記本体から分離された状態は、 前記ポッドがロードポート上に載置されて、 前記ポッド内に収容された前記ウェハが前記ロードポートを介してウェハ処 理装置に移載される状態であることを特徴とする請求項 1記載のパージ装置。  5. The object is a wafer used for semiconductor manufacturing, and the state where the lid is separated from the main body is such that the pod is placed on a load port, and the wafer accommodated in the pod is 2. The purging apparatus according to claim 1, wherein the apparatus is in a state of being transferred to a wafer processing apparatus via the load port.
6 . 開口、 およぴ被収容物が各々載置される所定の方向に並ぶ複数 の棚からなる本体と、 前記本体から分離可能であって前記開口を塞ぐ蓋と、 を 備えるポッドに収容された前記被収容物に対し、 所定のガスを吹き付けてパー ジ操作を行うパージ装置であって、 6. An opening, and a main body composed of a plurality of shelves arranged in a predetermined direction in which the objects are placed, and a lid that is separable from the main body and closes the opening. A purging device for performing a purging operation by blowing a predetermined gas to the object stored in the pod provided,
前記被収容物の端部から所定距離隔置されていて、 前記被収容物にお ける前記所定の方向に対して垂直に延在する面の略全領域に対して略均一に 前記所定のガスを吹き付けるガス供給ノズルと、  The predetermined gas is spaced from the end of the object by a predetermined distance, and substantially uniformly over substantially the entire area of the surface of the object extending perpendicular to the predetermined direction. A gas supply nozzle for blowing
前記ガス供給ノズルを支持し、 前記ガス供給ノズルを前記所定の方向 に駆動可能な支持部材を有することを特徴とするパージ装置。  A purging apparatus, comprising: a support member that supports the gas supply nozzle and that can drive the gas supply nozzle in the predetermined direction.
7 . 前記支持部材は、 前記ポッドの本体部から前記蓋の装脱を行う 部材であることを特徴とする請求項 6記載のパージ装置。 .  7. The purging apparatus according to claim 6, wherein the support member is a member for attaching and detaching the lid from a main body of the pod. .
8 . 前記所定のガスが前記ガス供給ノズルから吹き出されるタイ ミングは、 前記支持部材が前記所定方向に移動する際に、 前記被収容物が延在 する平面を通過するタイミングと同期することを特徴とする請求項 6記載の パージ装置。  8. The timing at which the predetermined gas is blown out from the gas supply nozzle is synchronized with the timing at which the object passes through the plane on which the object extends when the support member moves in the predetermined direction. 7. The purging device according to claim 6, wherein the purging device is used.
9 . 前記ガス供給ノズルは、 前記被収容物が延在する平面と平行な 面と前記平面に対して所定角度下方を向いて延在する面とに囲まれた領域に 対して前記所定のガスを吹き出すことを特徴とする請求項 6記載のパージ装 置。 ·  9. The gas supply nozzle is configured to apply the predetermined gas to a region surrounded by a plane parallel to a plane on which the object extends and a plane extending downward at a predetermined angle with respect to the plane. 7. The purging device according to claim 6, wherein the gas is blown out. ·
1 0 . 前記被収容物は半導体製造に用いられるウェハであり、 前記蓋 が前記本体から分離された状態は、 前記ポッドがロードポート上に載置されて、 前記ポッド内に収容された前記ウェハが前記ロードポートを介してウェハ処 理装置に移載される状態であることを特徴とする請求項 6記載のパージ装置。  10. The object is a wafer used in semiconductor manufacturing. The state in which the lid is separated from the main body is such that the pod is placed on a load port, and the wafer is accommodated in the pod. 7. The purging apparatus according to claim 6, wherein the wafer is transferred to a wafer processing apparatus via the load port.
1 1 . 開口、 およぴ被収容物が各々載置される所定の方向に並ぶ複数 の棚からなる本体と、 前記本体から分離可能であって前記開口を塞ぐ蓋と、 を 備えるポッドに収容された前記被収容物に対し、 所定のガスを吹き付けてパー ジ操作を行うパージ方法であって、  11. A pod having an opening, a main body composed of a plurality of shelves arranged in a predetermined direction in which objects to be stored are respectively placed, and a lid separable from the main body and closing the opening. A purging method for performing a purging operation by blowing a predetermined gas to the accommodated object,
前記蓋を前記本体から分離し、 前記開口の前面を前記所定の方向に沿ってガス供給ノズルを移動させ、 前記ガス供給ノズルより前記所定のガスを前記被収容物に対して吹き 付けることによつて前記被収容物のパージを行う工程を含むことを特徴とす るパージ方法。 Separating the lid from the body, A gas supply nozzle is moved along the predetermined direction along the front surface of the opening, and the object is purged by blowing the predetermined gas onto the object from the gas supply nozzle. A purging method characterized by including a step.
1 2 . 前記ガス供給ノズルはセンサと並置され、 前記パージを行うェ 程と同時に、 前記センサにより、 前記ポッド内に収容された前記被収容物のマ ッビングを行う工程が為されることを特徴とする請求項 1 1記載のパージ方 法。  12. The gas supply nozzle is juxtaposed with a sensor, and at the same time as the step of performing the purging, a step of performing a mubbing of the object to be accommodated in the pod by the sensor is performed. The purging method according to claim 11, wherein:
1 3 . 前記パージを行う工程は、 前記ガス供給ノズルが前記所定方向 に移動する際に、 前記被収容物が延在する平面を通過するタイミングと同期し て為されることを特徴とする請求項 1 1記載のパージ方法。  13. The step of performing the purging is performed in synchronization with a timing at which the object passes through a plane on which the object extends when the gas supply nozzle moves in the predetermined direction. The purging method described in Item 11 1.
1 4 . 前記パージを行う工程において、 前記ガス供給ノズルは、 前記 被収容物が延在する平面と平行な方向或いは前記平面に対して所定角度下方 を向いた方向に前記所定のガスを吹き出すことを特徴とする請求項 1 1記載 のパージ方法。  14. In the step of performing the purging, the gas supply nozzle blows out the predetermined gas in a direction parallel to a plane in which the object extends or in a direction downward at a predetermined angle with respect to the plane. The purging method according to claim 11, wherein:
1 5 . 前記被収容物は半導体製造に用いられるウェハであり、 前記蓋 が前記本体から分離された状態は、 前記ポッドがロードポート上に载置されて、 前記ポッド内に収容された前記ウェハが前記ロードポートを介してウェハ処 理装置に移载される状態であることを特徴とする請求項 1 1記載のパージ方 法。  15. The container is a wafer used in semiconductor manufacturing, and the state where the lid is separated from the main body is such that the pod is placed on a load port and the wafer stored in the pod 21. The purging method according to claim 11, wherein the state is transferred to a wafer processing apparatus via the load port.
1 6 . 開口、 およぴ被収容物が各々載置される所定の方向に並ぶ複数 の棚からなる本体と、 前記本体から分離可能であって前記開口を塞ぐ蓋と、 を 備えるポッドに収容された前記被収容物に対し、 所定のガスを吹き付けてパー ジ操作を行うパージ方法であって、  16. Housed in a pod having an opening, a main body composed of a plurality of shelves arranged in a predetermined direction in which the objects to be mounted are respectively placed, and a lid separable from the main body and closing the opening. A purging method of performing a purging operation by blowing a predetermined gas to the stored object,
前記蓋を前記本体から分離する工程と、  Separating the lid from the body;
前記開口の前面を、 前記被収容物の端部から所定距離隔置した状態を 保持して、 前記所定の方向に沿つてガス供給ノズルを移動させる工程と、 前記ガス供給ノズルょり、 前記被収容物における前記所定の方向とは 垂直な方向に延在する面の略全領域に対して、 前記所定のガスを略均一に吹き 付けることによって前記被収容物のパージを行う工程を含むことを特徴とす るパージ方法。 A state in which the front surface of the opening is separated from the end of the object by a predetermined distance Holding and moving the gas supply nozzle along the predetermined direction; and substantially the entire area of the surface of the storage object extending in a direction perpendicular to the predetermined direction in the object. A purging method for purging the object by spraying the predetermined gas substantially uniformly.
1 7 . 前記ガス供給ノズルは、 前記ポッドの本体から前記羞を装脱す るための用いられるドアに固定されていることを特徴とする請求項 1 6記載 のパージ方法。  17. The purging method according to claim 16, wherein the gas supply nozzle is fixed to a door used for loading / unloading the pod from a body of the pod.
1 8 . 前記パージを行う工程は、 前記ガス供給ノズルが前記所定方向 に移動する際に、 前記被収容物が延在する平面を通過するタイミングと同期し て為されることを特徴とする請求項 1 6記載のパージ方法。  18. The step of performing the purging is performed in synchronization with a timing at which the object passes through a plane on which the object extends when the gas supply nozzle moves in the predetermined direction. The purging method described in Item 16 above.
1 9 . 前記パージを行う工程において、 前記ガス供給ノズルは、 前記 被収容物が延在する平面と平行な面と前記平面に対して所定角度下方を向い て延在する面との間に対して前記所定のガスを吹き出すことを特徴とする請 求項 1 6記載のパージ方法。  19. In the step of performing the purging, the gas supply nozzle is provided between a surface parallel to a plane extending the object and a surface extending downward at a predetermined angle with respect to the plane. 17. The purging method according to claim 16, wherein the predetermined gas is blown out.
2 0 . 前記被収容物は半導体製造に用いられるウェハであり、 前記蓋 が前記本体から分離された状態は、 前記ポッドがロードポート上に載置されて、 前記ポッド内に収容された前記ゥェハが前記ロードポートを介してゥェハ処 理装置に移載される状態であることを特徴とする請求項 1 6記載のパージ方 法。  20. The object to be accommodated is a wafer used for semiconductor manufacturing, and the state where the lid is separated from the main body is such that the pod is placed on a load port, and the wafer is accommodated in the pod. 17. The purging method according to claim 16, wherein the gas is transferred to the wafer processing apparatus via the load port.
PCT/JP2004/006162 2003-04-28 2004-04-28 Purging apparatus and purging method WO2004097927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/554,504 US7654291B2 (en) 2003-04-28 2004-04-28 Purging apparatus and purging method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003123792A JP4027837B2 (en) 2003-04-28 2003-04-28 Purge apparatus and purge method
JP2003-123792 2003-04-28
JP2003273267A JP3964361B2 (en) 2003-07-11 2003-07-11 Purge apparatus and purge method
JP2003-273267 2003-07-11

Publications (1)

Publication Number Publication Date
WO2004097927A1 true WO2004097927A1 (en) 2004-11-11

Family

ID=33422066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006162 WO2004097927A1 (en) 2003-04-28 2004-04-28 Purging apparatus and purging method

Country Status (3)

Country Link
KR (1) KR100679591B1 (en)
TW (1) TWI249220B (en)
WO (1) WO2004097927A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400786A (en) * 2013-08-14 2013-11-20 上海华力微电子有限公司 Cooling and cleaning device for photoresist removing equipment
US9403196B2 (en) 2010-06-29 2016-08-02 Adixen Vacuum Products Treatment device for transport and storage boxes
US9779972B2 (en) 2009-12-18 2017-10-03 Adixen Vacuum Products Method and device for controlling the manufacture of semiconductor by measuring contamination

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765850B1 (en) * 2006-04-18 2007-10-29 뉴영엠테크 주식회사 FOUP opener for charge nitrogen gas of semicuctor manufacturing apparatus
CN102449752B (en) * 2009-05-27 2015-04-01 罗兹株式会社 Atmosphere replacement device
JP6260109B2 (en) * 2013-05-16 2018-01-17 シンフォニアテクノロジー株式会社 Load port device
KR101636242B1 (en) 2016-03-21 2016-07-05 주식회사 제이디티 Durability improving apparatus of drain flow sensor for semiconductor manufacturing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007182A (en) * 1999-06-21 2001-01-12 Dainippon Screen Mfg Co Ltd Substrate carry-in/out device and substrate processor using the same
JP2002170876A (en) * 2000-12-04 2002-06-14 Ebara Corp Substrate transport container
JP2004200669A (en) * 2002-12-02 2004-07-15 Rorze Corp Minienvironment equipment, sheet-like object manufacturing system, and method of replacing atmosphere in sanitized vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007182A (en) * 1999-06-21 2001-01-12 Dainippon Screen Mfg Co Ltd Substrate carry-in/out device and substrate processor using the same
JP2002170876A (en) * 2000-12-04 2002-06-14 Ebara Corp Substrate transport container
JP2004200669A (en) * 2002-12-02 2004-07-15 Rorze Corp Minienvironment equipment, sheet-like object manufacturing system, and method of replacing atmosphere in sanitized vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9779972B2 (en) 2009-12-18 2017-10-03 Adixen Vacuum Products Method and device for controlling the manufacture of semiconductor by measuring contamination
US9403196B2 (en) 2010-06-29 2016-08-02 Adixen Vacuum Products Treatment device for transport and storage boxes
CN103400786A (en) * 2013-08-14 2013-11-20 上海华力微电子有限公司 Cooling and cleaning device for photoresist removing equipment

Also Published As

Publication number Publication date
TW200426971A (en) 2004-12-01
KR100679591B1 (en) 2007-02-07
TWI249220B (en) 2006-02-11
KR20050114285A (en) 2005-12-05

Similar Documents

Publication Publication Date Title
JP4027837B2 (en) Purge apparatus and purge method
US7284560B2 (en) Liquid processing apparatus
JP4012190B2 (en) Closed container lid opening and closing system and opening and closing method
US5752796A (en) Vacuum integrated SMIF system
TWI651802B (en) Clamping device and substrate using the same are transported into the transport device and the substrate processing device
JPH04226049A (en) Wafer treatment module and wafer treatment method
US9810617B2 (en) Station and method for measuring particle contamination of a transport carrier for conveying and storing semiconductor substrates at atmospheric pressure
JP2002198348A (en) Solution processing apparatus
WO2004097927A1 (en) Purging apparatus and purging method
JP3964361B2 (en) Purge apparatus and purge method
JP6321671B2 (en) Measuring station and measuring method for measuring particle contamination in transport carriers that transport and store semiconductor substrates at atmospheric pressure
JP2003007801A (en) Substrate processing device
JP2005079250A (en) Substrate processing apparatus
JP2011159834A (en) Substrate carrier device with gas replacement device, substrate carrier system, and replacement method
JP3438826B2 (en) Processing device and method of using the same
JP2011061156A (en) Substrate processing apparatus, gas introducing apparatus, and method of manufacturing semiconductor device
JP2005347667A (en) Semiconductor fabrication device
JP2002270671A (en) Substrate processing apparatus
JP3922881B2 (en) Liquid processing equipment
JP2006261502A (en) Substrate processing apparatus
JP2006344980A (en) Liquid treatment equipment and liquid treating method
JP2006080507A (en) Liquid processing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006272169

Country of ref document: US

Ref document number: 10554504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057020381

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057020381

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10554504

Country of ref document: US