[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004089218A1 - 機能画像の表示方法及び装置 - Google Patents

機能画像の表示方法及び装置 Download PDF

Info

Publication number
WO2004089218A1
WO2004089218A1 PCT/JP2004/004884 JP2004004884W WO2004089218A1 WO 2004089218 A1 WO2004089218 A1 WO 2004089218A1 JP 2004004884 W JP2004004884 W JP 2004004884W WO 2004089218 A1 WO2004089218 A1 WO 2004089218A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
functional
creating
tomographic
images
Prior art date
Application number
PCT/JP2004/004884
Other languages
English (en)
French (fr)
Inventor
Yasuo Omi
Osamu Miyazaki
Mitsugu Yasuda
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2005505274A priority Critical patent/JP4558645B2/ja
Priority to US10/551,885 priority patent/US8032202B2/en
Publication of WO2004089218A1 publication Critical patent/WO2004089218A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT

Definitions

  • the present invention relates to analyzing and evaluating biological function information based on tomographic images obtained from an image diagnostic apparatus such as a CT apparatus and an MRI apparatus.
  • a diagnosis may be made in view of a plurality of functional information comprehensively.
  • cerebral blood flow Cerebral Blood Flow N clogging CBF
  • amount of cerebral blood Cerebral Blood Volume, i.e. CBV
  • mean transit time Mean Transit Time, i.e. Diagnosis by comprehensively observing information obtained from each of multiple functional images such as MTT) images and information obtained from tomographic images (eg, anatomical findings such as early CTsign, blood vessel running, and tissue position) .
  • SPECT Single Photon Emission Computed Tomography
  • SISCOM Single Photon Emission Computed Tomography
  • An object of the present invention is to integrate information obtained from a tomographic image and information obtained from a plurality of functional images into a single image by using a single diagnostic imaging device (modality) to easily determine the severity. It is an object of the present invention to provide an image diagnostic apparatus that can be implemented. An object of the present invention is to display only information of a necessary part of information in a plurality of necessary functional images, prevent a user from being confused by complicated information, and enable an efficient judgment of severity. A diagnostic device and an image diagnostic method are provided.
  • Another object of the present invention is to provide a method for temporally changing biofunction information from functional images created based on CT or MR images during a plurality of examinations without losing the original shape of the examination site. It is an object of the present invention to provide an image diagnostic apparatus and an image diagnostic method capable of analyzing performance information by easily grasping a dagger.
  • Another object of the present invention is to evaluate the temporal change in performance information in a manner that is independent of the habit of an operator even when different operators analyze the same data.
  • An object of the present invention is to provide an image diagnostic apparatus and an image diagnostic method that can be analyzed.
  • Another object of the present invention is to provide a CT device or It is an object of the present invention to provide an image diagnostic apparatus and an image diagnostic method capable of grasping and analyzing time-dependent changes in biological function information using any modality such as an MR apparatus. That is, according to the first aspect of the present invention, a means for collecting image data of a subject, a means for creating a tomographic image from the image data, and calculating at least one piece of performance information from the tomographic image Means for creating at least one functional image based on the raw function information; an image after operation obtained by calculating the functional images; a composite image of the functional images; Means for creating a composite image obtained by combining at least one of the functional images with the tomographic image; and display means capable of displaying the functional image, the post-computation image, the tomographic image, and the composite image.
  • the means for creating the functional image and the means for creating a composite image may include at least a part of the area in the functional image and the post-computation image corresponding to the evaluation value of the functional information. Any group that responded It displayed in retardation color scale, other regions of the functional image and the post-operation in the image and displaying the Guradeshi 'tio down or transparent any not included in the color scale color.
  • the composite image is displayed by any one of superimposed display, side-by-side display, or partial display. .
  • the means for creating the functional image includes the functional image in the other area in the functional image.
  • the ratio is set to zero.
  • the means for creating the functional image may arbitrarily change a gradation force scale assigned to the biological function information. It is characterized by being possible.
  • the means for creating the composite image arbitrarily sets a ratio of each functional image and the tomographic image in the composite image. It can be set.
  • the image data value in the pixel unit is set outside the predetermined range by an external force ⁇ .
  • the above-mentioned partial area in the functional image is specified.
  • the means for creating the functional image includes an arbitrary region of interest in the functional image, It is characterized in that it is determined as a partial area.
  • the means for creating the functional image includes a predetermined window level using a pixel value which is a value for each pixel of the image data. And the one within the window width are associated with a conversion coefficient, and the gradation color scale is determined based on the conversion coefficient.
  • a gradation color scale to be assigned to the functional image is set to a pixel of image data for each RGB. It is characterized in that it is determined by various look-up tables in which a pixel value, which is a value for each, is associated with a conversion coefficient.
  • the biological function information is one of blood flow function information represented by a blood flow, a blood volume, an average transit time, and the like. At least one of the following.
  • An image display method comprising: at least one step of creating a composite image by combining the tomographic image; and a display step capable of displaying the functional image, the post-computation image, the tomographic image, and the composite image.
  • the means for creating the functional image and the step of creating the composite image include: evaluating at least a part of the area in the functional image and the post-computation image by evaluating the biological function information Any displayed in gradient color skating Honoré corresponding to other regions of the functional image and the post-operation in the image and displaying the gradation force or transparent any color that is not included in Lars scale.
  • the composite image is displayed by one of superimposed display, side-by-side display, or partial display. Is displayed.
  • the ratio of the functional image in another part in the functional image Is characterized by the fact that
  • the gradation color scale assigned to the raw fiber information image may be arbitrarily set. Can be changed.
  • the ratio of each of the functional image and the tomographic image in the composite image is determined. It can be set arbitrarily.
  • the image data value in the pixel unit is set to a value within a predetermined range.
  • the method is characterized in that the partial area in the image is specified.
  • the step of creating the functional image in the step of creating the functional image, an arbitrary region of interest in the functional image is displayed in the functional image. It is characterized in that it is determined as a partial area.
  • the predetermined window in the image display method according to the eleventh to ninth features, is defined by a pixel value that is a value for each pixel of the image data.
  • the gradation color scale is determined by associating the level and the window width with a conversion coefficient, and determining the gradation color scale based on the conversion coefficient.
  • the gradation color scale to be assigned to the functional image is set to image data for each RGB. It is determined by various look-up tables in which a pixel value, which is a value for each pixel, and a conversion coefficient are associated with each other.
  • the biological function information is a blood flow represented by a blood flow rate, a blood volume, an average transit time, and the like. It is at least one of the flow function information.
  • FIG. 1 is a configuration diagram of a method and an apparatus for displaying a functional image according to the present invention.
  • FIG. 2 is a flowchart from data collection to display of a composite image.
  • FIG. 3 is a diagram illustrating a method of calculating a conversion coefficient.
  • FIG. 4 is a diagram showing a configuration of a functional image lookup table.
  • FIG. 5 is an explanatory diagram of a functional image lookup table.
  • FIG. 6 is a diagram showing a configuration of a tomographic image lookup table.
  • Figure 7 is a sample image of the blend function image.
  • FIG. 8 is a sample image of the tomographic image projection blending function image.
  • FIG. 9 is a flowchart from the data collection to the display of the composite image according to the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of an ROI setting method at the time of calculation between images according to the second embodiment of the present invention.
  • FIG. 11 is an MTT functional image before treatment in Example 2 of the present invention.
  • FIG. 12 is an MTT functional image after treatment in Example 2 of the present invention.
  • FIG. 13 is an image obtained by synthesizing the MTT difference image and the CT tomogram before and after the treatment in Example 2 of the present invention.
  • FIG. 14 is a CBV functional image before treatment.
  • FIG. 15 is a functional CBV image after treatment.
  • FIG. 16 is an image obtained by synthesizing the CT tomogram and the CBV and MTT differential images before and after the treatment with respect to FIGS. 11, 12, 14, and 15 above.
  • FIG. 1 is a diagram showing a preferred embodiment of a method and apparatus for displaying a functional image according to the present invention.
  • a method and an apparatus for displaying a functional image according to the present invention are tomographic image data collecting means 1 for an X-ray attenuation signal or an echo signal emitted from nuclear magnetic resonance, such as a CT apparatus or an MRI apparatus. It comprises a computer 2 for controlling the collection means 1 and performing various calculations, a console 3 such as a mouse and a keyboard, and a display means 4 such as a display.
  • the computer 2 includes a program for controlling the collection means 1 and an image reconstructing device. It has a program for creating tomographic images, a program for analyzing and mapping biological function information, and a program for creating composite images.
  • each of the programs may be installed in a single computer, or may be installed separately in a plurality of computers for each type of operation. May be.
  • FIG. 2 is a flowchart showing from the data collection of the method and apparatus for displaying a functional image according to the present invention to the display of a composite image. This flowchart is realized by software incorporated in the computer 2 of FIG. 1 or an external computer (not shown).
  • X-ray attenuation data and magnetic susceptibility signal intensity data are collected by the collecting means 1 controlled by a control program mounted on the computer 2 (step 201).
  • the X-ray attenuation signal and the echo signal emitted from nuclear magnetic resonance are collected by the collecting means 1 controlled by the control program on the computer 2.
  • the data acquisition device is a CT device and the performance information to be analyzed is head perfusion information
  • a contrast-enhancing substance such as an Eodo-based contrast agent
  • the inflow of the substance is determined.
  • step 202 a tomographic image is created using a program such as image reconstruction installed in the computer 2.
  • step 203 the tomographic image created in step 202 is displayed.
  • a parameter representing the biological function information that is, for example, a pixel value P is calculated using a biological function information analysis program installed in the computer 2.
  • Typical parameters are cerebral blood flow (CBF) image, cerebral blood volume (CBV) image, mean transit time (MTT) image.
  • the calculation can be performed in a short time, such as when diagnosing performance information immediately.
  • the calculation may be performed by reducing the image, or may be performed every several pixels.
  • step 205 a functional image is created by mapping the operation result obtained in step 204 using a mapping program installed in the computer 2.
  • step 206 the function image created in step 205 is displayed on the display means 4.
  • step 206 not only the functional image is displayed, but also the functional image and the tomographic image may be displayed as necessary.
  • the image need not be displayed here.
  • step 207 as described later, a composite image is created using a composite image creation program mounted on the computer 2.
  • step 208 the composite image is displayed on the display means 4.
  • step 208 not only the image is displayed, but at least two of the composite image, the functional image, and the tomographic image may be displayed together as necessary.
  • step 202 and subsequent steps may be executed.
  • the tomographic image is read from the storage means 5 such as a hard disk that is built in or external to the computer 2, and the steps from step 203 onward are executed. Good.
  • Step 206 and subsequent steps may be executed.
  • step 207 a method of creating a composite image in step 207 will be described.
  • the type of biological function information in a certain organ that is, the total number of functional images will be described as M sheets.
  • the number of gradations is a positive integer, for example, 8 bits (256 gradations) or 12 bits (4,096 levels), 16 bits (65,536 levels) and 32 bits (4,294,967,296 levels).
  • the color tone means hue, saturation, lightness, or a combination of at least two of them.
  • the color gradation scale is a scale in which the range between the maximum value and the minimum value of the pixel value is divided into at least one or more stages, and each stage is assigned a different color tone, that is, a continuum of color gradation.
  • the blend function image is obtained by compositing a plurality of function images displaying function information in correspondence with the color gradation scale.
  • the color tones used between the functional images are different.
  • the functional image which is the original image of the blended functional image includes an image in which only a specific area in the image is displayed on a certain color gradation scale. In this case, the area outside the specific area may be displayed in any specific color.
  • the conversion coefficient C is calculated based on the pixel value P of the function image, the display window value WL, and the display window width stomach.
  • the conversion coefficient C is obtained, for example, with reference to FIG.
  • WL is the window level
  • WW is the window width.
  • the display density is assigned to the range of WW / 2 above and below the window level. Outside this range WW, the concentration disappears or saturates and there is no change. In other words, the area where the pixel value is larger than the display window width WW is saturated and skipped white, and the area where the pixel value is smaller than the display window width WW is darkest.
  • PMAX represents the maximum pixel value
  • CMAX represents the maximum value of the conversion coefficient.
  • the section from (WL-Z2) to (WL + WW / 2) is linearly converted, but any non-linear conversion may be performed if necessary. Also, It is also conceivable to use the prime value P as it is as the conversion coefficient c.
  • Figure 4 shows the look-up table (hereinafter referred to as LUT) used to create the blend function image.
  • the LUT described in the present embodiment is a correspondence table between the above-described conversion coefficient C and each component of the display color (for example, the R component, the G component, and the B component).
  • the conversion coefficient C to be applied to the pixels in the following areas is the lowest color (bottom color) at one end of the color gradation scale.
  • the darkest colors of R, G, and B are denoted as Rl, Gl, and B1, respectively. If only the hue in the color tone is changed and assigned to each stage of the color gradation scale, the darkest color may not always be assigned to the darkest part. However, such a case is also referred to as the darkest color (lower end color) for convenience.
  • the conversion coefficient C applied to the pixels in the area where the value of the conversion coefficient C is (WL + WW / 2) or more is the brightest brightest color (uppermost color) at the other end of the color gradation scale.
  • the brightest colors (upper colors) of R, G, and B for color display are denoted as Rh, Gh, and Bh.
  • the brightest color part must not be assigned to the brightest color part. There is also. However, for the sake of convenience, such referred to as the brightest color (top color).
  • R, G, and B components R (C), G (C), and B (C) are, for example, as shown in the functional image LUT shown in Fig. 5. What is necessary is just to determine according to Formula (2). Note that Fig. 5 is an example of LU for each RGB color, and the initial value and slope of the RGB table assigned to each functional image are usually different. The combination of the darkest colors Rl, Gl, and B1, which are the RGB initial values, determines the color system that expresses performance information.
  • R (C) Rk ⁇ Rl -C ⁇ Rl
  • R, G, and B components that determine the display color of a pixel (i, j) in the blend function image are denoted by RF (i, j), GF (i, j), and BF (i, j). And these can be determined as in the following Equation 3.
  • Wk represents the weight (distribution) for combining multiple functional images
  • Ck (i, j) represents the conversion coefficient of functional image k at pixel (i, j).
  • Bk (Ck (i, j)) is R, G specified by LUTk in the conversion coefficient Ck (i ,; j).
  • B and is a value calculated by inputting the conversion coefficient Ck (i, j) for each pixel to the conversion coefficient C in Equation 2.
  • the functional image The number of types k is an integer from 1 to M.
  • the area displayed on the gradation color scale may be the entire image or a part of the image.
  • Gradient color s When displaying in scale, it can be set via console 4 by at least one of threshold, range, ROI, etc.
  • One or a plurality of such thresholds, ranges, and ROIs may be set for each type of functional image (Process 1).
  • a certain pixel (i, j) of a certain functional image k just represents performance, for example, when the pixel (i, j) is within the ROI, or when the pixel value is If it is within the range determined by the threshold value for image k, Rk (Ck (i, j)), Gk (Ck (i, j)), Bk (Ck (i, j)) Each component is determined. If the pixel value or pixel does not fall within any of the threshold, range, and ROI ranges as described above, the specific value is set to Rk (Ck (i, j)), Gk (Ck (i, j)), and Bk (Ck (i, j)) are assigned to each component (Process 2).
  • Processing 1 and processing 2 By performing the processing 1 and the processing 2 for all the pixels, only a part within the above set range can be displayed with a gradation color scale in a certain functional image, and the other range can be displayed with a specific color. Processing 1 and processing 2 may be performed on all functional images, or may be performed only on some functional images.
  • Blend function image data is obtained for each pixel.
  • RF (i, j) 5 GF (i, j), BF (i, j) is determined for each pixel according to Equation 3, and in this case, the pixel displayed in a specific color is the functional image Calculate the weight Wk of 0 as 0.
  • image display is performed by mapping according to the coordinates of (i, j).
  • the weights of the functional images that do not need to be combined may be combined with zero.
  • the threshold, the range, and the ROI have been exemplified as the specific range setting, other parameters may be set as necessary.
  • a method of creating a superimposed composite image of a tomographic image and a blend function image (hereinafter, a projection blend function image on a tomographic image) will be described.
  • the display color components of a pixel (i,: j) in the tomographic projection blending function image are RTF (i, j), GTF (i, j), and BTF (i, j)
  • the tomographic image look-up table LUTT may be set, for example, as shown in FIG.
  • RTF (i, j), GTF (i, j), and BTF (i, j) are calculated according to Equation 4 for a pixel displayed on a gradation color scale.
  • the weight WB is set to 0 in Equation 4, and RTF (i, j), GTF (i, j) 5 BTF (i, j) are determined. If this process is performed for all pixels and mapping is performed, a projection function image on a tomographic image is completed.
  • WB and WT in the above equation 4 may be changed based on the parameters input from the console 4.
  • FIG. 7 and 8 show examples in which the embodiment according to the present invention is applied to a cerebral blood flow function image created from a CT image.
  • Figure 7 is a sample image of the blended function image created by the three types of functional information (cerebral blood flow, cerebral blood volume, and average transit time).
  • Abnormal cerebral blood flow area 31 abnormal cerebral blood flow This is a composite image of the area 32, the abnormal area 33 with the average transit time, and the other areas 39.
  • FIG. 8 is a sample plane image of a blended function image created from three types of functional information (cerebral blood flow, cerebral blood volume, average transit time) and a tomographic projected blended function image created from a CT image 30.
  • the abnormal region 31 of cerebral blood flow is displayed on a green gradation color scale
  • the abnormal region 32 of cerebral blood volume is displayed on a blue gradation color scale
  • the abnormal region 33 of average transit time is red. It is displayed in the gradation color scale of the system.
  • blended function images and tomographic projection projection blended image are not limited to one type, but by selecting and combining different ones of many existing functional images, a plurality of different blended functional image and tomographic images are obtained. It is possible to create an upper projection blend function image. It is possible to simultaneously display these plurality of blend function images and tomographic image projection blend function images on the screen.
  • a pixel having a value equal to or larger than the threshold value in the functional image is estimated and displayed as a characteristic portion such as a lesion.
  • information for determination can be increased.
  • displaying these features in different colors for each parameter it is possible to see at a glance which parameter is showing what kind of abnormality at which part. It can also be seen at a glance that the parameter is abnormal.
  • the shading and hue of the color can be changed in accordance with the size of the pixel value, so that it is possible to determine the degree of abnormality.
  • the screen shape is visually It can be changed to the state. Furthermore, since the outer periphery of the characteristic part and particularly the part to be diagnosed can be selected on the image and only that part can be colored and displayed as an ROI as described above, unnecessary information does not hinder the diagnosis.
  • the positional relationship with the outside such as the skull can be easily grasped, and diagnosis can be performed more easily.
  • the function images can be displayed in parallel, superimposed, or partially superimposed, so that an arbitrary arrangement can be selected, so that it is possible to make a diagnosis occasionally or use it according to the user's intention.
  • the functional images mainly use CBF, CBV, and MTT, and their measured values can be checked on the screen at the same time.
  • diagnosis under the same conditions can be repeated at any time, making it easy to compare functional images before and after surgery and treatment. As a result, it is possible to measure the effects of surgery and treatment without being arbitrarily caused by differences in operators.
  • difference images before and after the treatment can be displayed.
  • the second embodiment also uses a configuration as shown in FIG. 1 as in the first embodiment.
  • Each component is the same as in the first embodiment, and a description thereof will be omitted.
  • the image processing apparatus 2 is, for example, a computer, a program for controlling the data collection unit 1, a program for creating tomographic images such as image reconstruction, and a program for analyzing and mapping biological function information. , And a program for creating composite images.
  • Each of the programs may be installed in one computer, or may be installed in a plurality of computers for each type of operation.
  • FIG. 9 is a flowchart showing from the data collection to the display of the synthesized image by the program of the diagnostic imaging apparatus according to the present embodiment. The processing according to the present embodiment will be described with reference to this flowchart.
  • step 301 the X-ray attenuation signal and the echo signal emitted from nuclear magnetic resonance are collected by the collecting means 1 controlled by the control program installed in the computer 2 (see FIG. 1).
  • dynamic imaging can be performed by injecting a contrast-enhancing substance such as an Eodo contrast agent into patient 5 and then Collects data necessary for analysis of biological function information it can.
  • a contrast-enhancing substance such as an Eodo contrast agent
  • a tomographic image is created using an image reconstruction program or the like mounted on the computer 2.
  • the tomographic image may be any cross section such as axial, coronal, or sagittal.
  • the tomographic image created in step 302 is displayed.
  • a parameter representing the performance information is calculated using a biological function information analysis program mounted on the computer 2 or the like.
  • step 305 a functional image is created by mapping the operation result obtained in step 304 using a mapping program installed in the computer 2 or the like.
  • step 306 the function image created in step 305 is displayed on the display unit 4. In step 306, not only the functional image is displayed, but also the functional image and the tomographic image may be displayed simultaneously, if necessary.
  • step 307 the operator selects whether or not the inter-image operation such as the difference operation is necessary. If not, the process proceeds to step 309. When it is desired to emphasize and display a region where the biological function information has significantly changed in a plurality of detections, it is desirable to execute an inter-image operation such as a difference operation.
  • step 307 the operator selects whether or not the quantitative value correction is necessary. If not, the process proceeds to step 308.
  • the CT value is accurately calculated in a tomographic image along the slice, especially in a high CT value part such as the main artery, due to the presence of an object with a low CT value that crosses the slice depending on the slice to be taken.
  • the effect of the partial volume effect which is a phenomenon not observed, cannot be properly corrected, and the quantitative value may be overestimated. In such a case, it is desirable to perform the calculation between images after correcting the quantitative value.
  • step 308 when quantitative value correction is required, quantitative value correction is performed using the quantitative value correction program mounted on the computer 2.
  • a post-computation image is created by using an inter-image computation program installed in the computer 2.
  • the calculation between images in step 308 may be any calculation such as a difference calculation.
  • step 309 The condition of the area to be combined with the tomographic image is set for the post-computation image or the functional image. However, this step is not necessary when the entire area of the post-computation image or functional image is superimposed and synthesized on the tomographic image.
  • the post-computation image is a difference image of the cerebral perfusion function image in a plurality of examinations and you want to display only the area where the right hemisphere shows a noticeable change
  • the ROI is set to the entire right hemisphere. Then, only the pixels whose pixel value P satisfies the condition of the following equation 5 need be superimposed on the sectional image and synthesized.
  • Mean indicates the average value of all the pixel values of the image after calculation
  • SD indicates the standard deviation value
  • k indicates an arbitrary real number.
  • the functional image is a cerebral perfusion function image in a plurality of examinations and it is desired to display a temporal change in an abnormal region
  • only a pixel whose pixel value is equal to or less than a threshold value or equal to or greater than the threshold value is tomographically displayed. Superimpose and combine on the image.
  • step 310 a composite image is created using a composite image creation program installed in the computer 2. The details of creating the composite image will be described later.
  • step 311 the synthesized image is displayed on the display means 4.
  • step 311 in addition to displaying the composite image, the composite image and an image such as a functional image, an image after calculation, and a tomographic image may be simultaneously displayed as necessary. At this time, by displaying the number of pixels, the average value, the standard deviation value, the histogram, and the like in the area to be combined set in step 309, useful information can be provided by analyzing the performance information.
  • X-ray attenuation data and magnetic susceptibility signal intensity data are read from storage means 5 such as a hard disk that is built in or external to the computer 2. Then, execute step 302 and subsequent steps. If a tomographic image has already been created, it is built in or external to the computer 2. After reading the tomographic image from the storage means 5 such as a hard disk, step 303 and subsequent steps are executed. Also, if you have already created a functional image, After reading the functional image from the storage means 5 such as a hard disk which is built in or external to the computer 2 and, if necessary, reading the functional image and the tomographic image, execute Step 306 and subsequent steps.
  • step 308 creation of a new diagnostic image by calculation of a plurality of functional images obtained in a plurality of examinations will be described in detail.
  • functional images in a plurality of tests may be differentiated.
  • the type of operation is not limited to the difference operation, but may be addition, integration, division, or a combination of any four arithmetic operations, depending on the application.
  • the calculation between images may be performed on all pixels for each pixel.
  • the calculation may be performed for each region surrounded by an arbitrarily set ROI 8 as shown in Fig. 10, and the characteristics such as the average value, intermediate value, maximum value, and minimum value within this ROI region Quantities can also be taken into account. This makes it possible to perform a visual evaluation at a size that is easy to diagnose.
  • the functional image may be divided into several regions by drawing isolines, and the calculation may be performed for each of the divided regions.
  • the functional image is a cerebral perfusion image, it can be divided into white matter, gray matter, vascular bed, etc. by drawing contour lines, and by specifying the ROI, the thalamus, lens nucleus, brain area, etc. It is possible to divide each anatomical segment, such as the rim. Performing inter-image calculations for each of these anatomical segments is also useful for evaluating changes in performance information.
  • the influence of the partial volume effect as described in Example 1 was captured based on the maximum value of the time concentration curve in the superior sagittal sinus and the area under the curve, and the quantitative stability Have gained.
  • the upper sagittal sinus may not be included in the radiographs depending on the radiographs. In such a case, the effect of the partial volume effect cannot be properly corrected, and the quantitative value becomes inaccurate. If there is an image that can be judged that the correction of the partial volume effect has been properly performed in multiple tests, other tests can be performed using the correction parameters (maximum value or area under the curve) in that test. The quantitative value at is measured.
  • a method of creating a combined image of a post-computation image or functional image and a tomographic image (hereinafter referred to as a tomographic image projection blending functional image) will be described.
  • the number of gradations M is a positive integer, 8 bits (256 gradations), 12 bits (4,096 gradations), 16 bits (65,536 gradations) and 32 bits (4,294,967,296 gradations)
  • M is a positive integer, 8 bits (256 gradations), 12 bits (4,096 gradations), 16 bits (65,536 gradations) and 32 bits (4,294,967,296 gradations)
  • color gradation includes color gradation of hue, lightness, and saturation, and there are various types.
  • the conversion coefficient C is calculated based on the pixel value P of the post-computation image or functional image, the display window value WL, and the display window width.
  • the conversion coefficient C is determined, for example, as shown in Equation 1 and FIG.
  • a linearly converted force in the section from L-WW / 2 to WL + WW / 2 may be used to perform any non-linear conversion as needed.
  • the pixel value may be used as it is as a conversion coefficient.
  • Figure 4 shows the look-up table (LUT) used to create the composite image.
  • the LUT described in this embodiment refers to a correspondence table between the above-described conversion coefficient C and each component (R component, G component, B component) of the display color.
  • the darkest pixels in the display window that is, R, G, and B components of the minimum color (bottom color) whose conversion value is WL-WW / 2 or less are Rl, Gl, and B1, and the darkest pixel in the display window is Let R, Gh, and Bh be the brightest colors to be applied to a bright pixel, that is, a pixel whose conversion value is WL + WW / 2 or more.
  • B, the components R (C), GKC), B (C) are determined, for example, as shown in Equation 2 and FIG.
  • the component values from the minimum color (bottom color) to the brightest color (top color) are connected linearly, but may be arbitrarily connected as needed.
  • a plurality of post-computation images can be created. If the post-operation image If there are M images, functional images, or post-computation images and functional images, post-computation image 1 (or functional image 1), post-computation image 2 (or functional image 2) ... post-computation image M ( Alternatively, it is desirable to set M lookup tables corresponding to each of the functional images M), that is, LUTl, LUT2, ... LUTM.
  • the same look-up table can be shared by multiple post-computation images or functional images.
  • the composite image display in step 311 will be described in detail. If the components of the display color of a certain pixel (i, j) in the composite image are RTF (i, j), GTF (iJ), and BTF (i, j), these are determined as shown in Equation 4. You.
  • WB represents the weight of the post-computation image or functional image
  • WT represents the weight of the tomographic image
  • CC (i, j) represents the transformation coefficient of the tomographic image at pixel (i,). The determination is made in the same manner as the method for obtaining the image conversion coefficient.
  • RT (CC (i, j)
  • GT (CC (i, j)
  • BT (CC (i, j)
  • CT Represents the component values of R, G, and B.
  • the tomographic image look-up table LUTT may be set, for example, as shown in FIG.
  • an RGB table As shown in Fig. 5 is required.
  • RF (i, j), GF (i, j), and BF are parameters that are determined based on the ratio of the combined images or functional images, and are determined as shown in Equation 3. .
  • Wk represents a weight for synthesizing the post-computation image k or the functional image k
  • C i, j) represents a conversion coefficient of the post-computation image k or the functional image k at the pixel (i, j).
  • Rk (Ck (i, j)), Gk (Ck (i, j)), and Bk (Ck (i, j)) are R, G specified by LUTk in the conversion coefficient Ck (i, j).
  • B represent the component values.
  • 'k is an integer from 1 to M, and M is equal to the number of post-computation images or functional images. When the number of post-computation images or functional images is one, Expression 4 becomes Expression 6.
  • Ck (i, j) represents the conversion coefficient of the post-computation image or functional image at pixel (i, j).
  • RTF (i, j) and GTF (i, j) for pixels displayed on the gradation color scale are calculated according to Equation 4 or Equation 6.
  • BTF (i, j) are determined, and for pixels displayed in a specific color, RTF (i, j), GTF (i, j), BTF ( Determine i, j). This may be performed for all pixels according to RTF (i, j), GTF (i, j) and BTF (i, j).
  • the area (specific area) to be displayed on the gradation color scale may be set by a threshold value set via the console 4, an arbitrary conditional expression, or an ROI.
  • One or more thresholds, conditional expressions, and ROIs are set for each image after calculation.
  • the pixel value at a certain pixel (i, j) of the image or the functional image k is within the range set by the threshold value or the conditional expression for the post-operation image k or the functional image k.
  • the range ⁇ is set by, the components of Rk (Ck (i, j)) and Gk (Ck (i, Bk (Ck (i, j))) are determined according to the LU setting method described above. , Rk any particular value if a range (Ck (i, j)) , Gk (Ck (i 5 j)), assigned to each component of Bk (Ck (i, j) ).
  • a specific area in a certain post-computation image or functional image is displayed on a gradation color scale. Other areas are displayed in areas of only the CT tomogram 40 represented by a specific color, for example, black or gray in FIGS. 7 to 8 and 11 to 18.
  • the above processing is performed on all the post-computation images or functional images. If it is not necessary to combine all of the M post-computation images or functional images, the compositing may be performed by setting the weight of the post-computation image or functional image that does not need to be combined to 0.
  • Wk in Equation 5 may be changed based on parameters input from console 4.
  • the threshold, the conditional expression, and the ROI may be changed based on the parameters input from the console 4.
  • FIGS. 11 to 13 are sample images in which a composite image of a difference image before and after treatment of the MTT and a CT image before and after treatment of a patient with right internal carotid artery stenosis is shown.
  • WB of Equation 5 is set to 0.8 and WT to 0.2. In other areas, WB is set to 0 and WT is set to 1 for synthesis.
  • 34 indicates the portion of the MTT change that is relatively large and is displayed in a warm color system
  • 35 is the portion of the MTT change that is relatively small and is displayed in a cool color system
  • 0 is the fault displayed in gray scale.
  • colors are assigned according to the magnitude of the difference between FIG. 11 and FIG.
  • Figures 11, 12, and 14 to 16 show composite images of average transit time image MT, difference image of cerebral blood volume image CBV, and CT image before and after treatment of patients with right internal carotid artery stenosis. It is a sample image. In this sample image, the area where the cerebral blood volume image CBV significantly changes is displayed on a blue color gradation scale 36, and the area where the average transit time MTT changes significantly is the red color gradation 3 The scale is displayed at 37. In addition, W1 (that is, the weight of the difference image of the cerebral blood volume image) in Equation 3 is set to 0.75, and W2 (that is, the weight of the difference image of the average transit time image) is set to 0.25.
  • W1 that is, the weight of the difference image of the cerebral blood volume image
  • W2 that is, the weight of the difference image of the average transit time image
  • the WB in Equation 4 is synthesized by setting WB to 0.8 and WT to 0.2, and in other regions, WB to 0 and WT to 1 It is set and synthesized.
  • Figures 11 to 13 show the application example when the post-computation image or functional image is one
  • Figures 11 and 12 and Figures 14 to 16 show the application example when the post-computation image or functional image is two.
  • the information obtained from the tomographic image and the information obtained from each of the plurality of functional images can be obtained from one image, and the seriousness of the raw function abnormality can be obtained. This has the effect of making the determination easier.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

生体機能情報の解析において、複数枚の機能画像と断層像とを逐次目線を動かしながら観察する必要がなく、断層像から得られる情報と複数の機能画像の各々から得られる情報とを一枚の画像から得られ、かつ生体機能異常の重篤度の判定が容易に可能であるような機能画像の表示方法および装置を提供するため、各々固有かつ任意のグラデーションカラースケールで表示されている複数枚の機能画像を任意の重みで合成し、あるいは、複数機能画像間を演算して求めた画像を表示し、あるいはこれらと断層像を任意の重みで重ね合わせる。さらに、重みを適用する範囲、グラデーションカラースケール表示をする範囲、および合成する範囲を操作者が任意に設定および変更可能とする。

Description

機能画像の表示方法及び装置 技術分野
本発明は、 CT装置や MRI装置等の画像診断装置において、 これらから得られ る断層像に基づいて、 生体機能情報の解析や評価を行なうことに関する。
明 背景技術
生 ί«能情報を解析する際、 複数の機能情報を総合的に鑑みて診断する場合が ある。例えば、脳灌流機能情報の解析においては、一般的に、脳血流量(Cerebral Blood FlowNつまり CBF)像、脳血液量(Cerebral Blood Volume、つまり CBV) 像、 平均通過時間 (Mean Transit Time, つまり MTT) 像など複数の機能画像 の各々から得られる情報と断層像から得られる情報(例えば early CTsignや血管 の走行、 組織の位置などの解剖学的所見) とを総合的に観察して診断する。
生 ί«能情報を示す画像の表示方法として、特開 2002-282248号公報に示され ているように、 一枚の機能画像と断層像を重ね合わせ、 一枚の合成画像として表 示する方法がある。 この方法によれば、 断層像から得られる情報とある機能画像 から得られる情報とを一枚の画像上に表示するものである。 血流、 血液量、 平均 通過時間などのうちの 1つのパラメータについて、 計測値の範囲を複数に分割し て、 カラーマップを使用してその計測値の範囲ごとに異なった色相を割り当てて レ、る。 し力 し、 表示可能なパラメータが 1つであるため生体機能の異常、 症状、 および危険性が軽度であるのか重度であるのか (以下、 重篤度という) を、 総合 的に認識ができないという問題があった。 また、 断層像全面に色表示が乗るため 情報が煩雑で異常の判定が困難という問題があった。
複数回の検査において得られた複数の機能画像を表示させて観察する方法とし て、 SPECT (Single Photon Emission Computed Tomography) 画像を差分し 顕著な変化が現われている領域を標準脳 MR 画像上に合成する SISCOM (Subtracted Ictal SPECT Co-Registered to MRI) と呼ばれる手法もある。この 手法は、 特にてんかんの患者などに対して発作時 (ictal) と発作間 (interictal) でそれぞれ撮影した SPECT画像を差分して機能画像を得るもので、 この際捕助 的に、 電極式の脳波計 (electroencephalogram(EEG)) を併用してい-る。 上記 SISCOMは SPECT画像にのみ対応しており、 CT画像や MR画像から作成した 機能画像には適用できない。 つまり、 単一の画像診断装置で撮影するときと比べ て異なる画像診断装置で撮影した断層像同士を重ねる時、 CT画像や MRI画像を 標準脳にする必要があるが、 そのための位置合わせや形状合わせが困難である。' また、 SPECT画像と MR画像の両方を取得しなければならず、 患者を拘束する 時間が長くなるという問題がある。 また、 SPECT画像と MR画像の重ね合わせ 時には、 SPECT画像を標準脳にあわせて変形して上記 MR画像と位置合わせす るため、 患者本来の脳の形状が失われ重要な形態情報が失われる可能性がある。 特に、 患者の頭蓋が変形している場合にはこの形態情報の喪失は深刻な問題であ る。 発明の開示
本発明の目的は、 単一の画像診断機器 (モダリティ) により、 断層像から得ら れる情報と複数の機能画像から得られる情報とを一枚の画像に集約して重篤度の 判定を容易化できる画像診断装置を提供することにある。 本発明の目的は、 必要 な複数の機能画像中の情報のうち必要な部分の情報のみ表示させ、 煩雑な情報に よる判断の迷いを防ぎ、 効率的な重篤度の判定を可能とする画像診断装置および 画像診断方法を提供することにある。
また、 本発明の他の目的は、 複数回の検査間における CT画像あるいは MR画 像を元に作成した機能画像から、 検査部位の本来の形状を失うことなく、 生体機 能情報の経時変ィ匕を容易に把握することで生 能情報の解析が可能な画像診断 装置および画像診断方法を提供することにある。
さらに、 本発明の他の目的は、 同一データに対して異なる操作者が解析した場 合でも、 操作者の癖に係わらず^ m的に生 ί«能情報の経時変化が評価おょぴ解 析できる画像診断装置おょぴ画像診断方法を提供することにある。
本発明の他の目的は、 複数のモダリティを使用することなく CT装置あるいは MR装置等のいずれかのモダリティを使用して、 生体機能情報の経時変ィ匕の把握 および解析ができる画像診断装置および画像診断方法を提供することにある。 すなわち、'本発明第 1の特徴によれば、被検者の画像データを収集する手段と、 前記画像データから断層像を作成する手段と、 前記断層像から少なくとも一つの 生 能情報を算出する手段と、 前記生 f«能情報をもとに少なくとも一つの機 能画像を作成する手段と、 前記機能画像同士を演算した演算後画像や前記機能画 像同士の合成像や前記演算後画像または前記機能画像のうち少なくとも一つと前 記断層像を合成した合成像を作成する手段と、 前記機能画像、 前記演算後画像、 前記断層像およぴ前記合成像を表示可能な表示手段とを含む画像表示装置にお 、 て、 前記機能画像を作成する手段と合成画像を作成する手段は、 前記機能画像お よび前記演算後画像内の少なくとも一部の領域を前記生 能情報の評価値に対 応した任意のグラデーションカラースケールで表示し、 前記機能画像および前記 演算後画像内の他の領域は前記グラデーシ'ョンカラースケールに含まれない任意 色でまたは透明に表示することを特徴とする。
本発明第 2の特徴によれば、 上記 1の画像表示装置において、 前記合成像は、 重ね合わせ表示、 並列表示、 あるいは部分表示のいずれかによつて表示されるこ とを特 ί敷とする。
本発明第 3の特徴によれば、上記第 1または 2の特徴による画像表示装置にお いて、 前記機能画像を作成する手段では、 前記機能画像内の上記他の領域におけ る前記機能画像の比率をゼロとすることを特徴とする。
本発明第 4の特徴によれば、上記第 1カゝら 3の特徴による画像表示装置におい て、 前記機能画像を作成する手段では、 前記生体機能情報に割り当てるグラデー シヨン力ラースケールを任意に変更可能であることを特徴とする。
本発明第 5の特徴によれば、上記第 1から 4の特徴による画像表示装置におい て、 前記合成像を作成する手段では、 前記合成像における各々の機能画像および 前記断層像の比率を任意に設定可能であることを特徴とする。
本発明第 6の特徴によれば、上記第 1から 5の特徴による画像表示装置におい て、 前記機能画像を作成する手段では、 上記画素単位の画像データ値が所定範囲 内力ゝ外によつて前記機能画像内の上記一部の領域を特定することを特徴とする。 本発明第 7の特徴によれば、上記第 1カ ら 6の特徴による画像表示装置におい て、 前記機能画像を作成する手段では、 前記機能画像内の任意の関心領域を前記 機能画像内の上記一部の領域として決定することを特徴とする。
本発明第 8の特徴によれば、上記第 1力ら 6の特徴による画像表示装置におい て、 前記機能画像を作成する手段では、 画像データの画素ごとの値である画素値 で所定のウインドゥレベルとウィンドウ幅内にあるものを、変換係数と対応付け、 この変換係数をもとに前記グラデーションカラースケールを決めることを特徴と する。
本発明第 9の特徴によれば、上記第 1から 8の特徴による画像表示装置におい て、 前記機能画像を作成する手段では、 前記機能画像に割り当てるグラデーショ ンカラースケールを RGB毎に画像データの画素ごとの値である画素値と変換係 数を対応付けた各種のルックアツプテーブルによつて決めることを特徴とする。 本発明第 10の特徴によれば、 上記第 1から 9の特徴による画像表示装置にお いて、 上記生体機能情報は血流量、 血液量、 平均通過時間などに代表される血流 機能情報のうちの少なくとも一つであることを特徴とする。
本発明第 πの特徴によれば、 被検者の画像データを収集するステップと、 前 記画像データから断層像を作成するステップと、 前記断層像から少なくとも一つ の生 能情報を算出するステップと、 前記生 能情報をもとに少なくとも一 つの機能画像を作成するステップと、 前記機能画像同士を演算した演算後画像や 前記機能画像同士の合成像や前記演算後画像または前記機能画像のうち少なくと も一つと前記断層像を合成した合成像を作成するステップと、 前記機能画像、 前 記演算後画像、 前記断層像および前記合成像を表示可能な表示ステップとを含む 画像表示方法において、 前記機能画像を作成する手段と合成画像を作成するステ ップは、 前記機能画像および前記演算後画像内の少なくとも一部の領域を前記生 体機能情報の評価値に対応した任意のグラデーションカラースケーノレで表示し、 前記機能画像および前記演算後画像内の他の領域は前記グラデーション力ラース ケールに含まれない任意色でまたは透明に表示することを特徴とする。
本発明第 12の特徴によれば、 上記第 11の特徴による画像表示方法において、 前記合成像は、 重ね合わせ表示、 並列表示、 あるいは部分表示のいずれかによつ て表示されることを特徴とする。
本発明第 13の特徴によれば、 上記第 11から 12の特徴による画像表示方法に おいて、 前記機能画像を作成するステップでは、 前記機能画像内の他の部分にお ける前記機能画像の比率をゼ口とすることを特徴とする。
本発明第 14の特徴によれば、 上記第 11から 13の特徴による画像表示方法に おいて、 前記機能画像を作成するステップでは、 前記生繊能情報画像に割り当 てるグラデーションカラースケールを任意に変更可能である。
本発明第 15の特徴によれば、 上記第 11から 14の特徴による画像表示方法に おいて、 前記合成像を作成するステップでは、 前記合成像における各々の機能画 像および前記断層像の比率を任意に設定可能であることを特徴とする。
本発明第 16の特徴によれば、 上記第 11から 15の特徴による画像表示方法に おいて、 前記機能画像を作成するステップでは、 上記画素単位の画像データ値が 所定範囲内力ゝ外によって前記機能画像内の上記一部の領域を特定することを特徴 とする。
本発明第 17の特徴によれば、 上記第 11から 16の特徵による画像表示方法に おいて、 前記機能画像を作成するステップでは、 前記機能画像内の任意の関心 領域を前記機能画像内の上記一部の領域として決定することを特徴とする。 本発明第 18の特徴によれば、 上記第 11から Γ の特徴による画像表示方法に おいて、 前記機能画像を作成するステップでは、 画像データの画素ごとの値であ る画素値で所定のウィンドウレベルとウィンドウ幅内にあるものを、 変換係数と 対応付け、 この変換係数をもとに前記グラデーションカラースケールを決めるこ とを特徴とする。
本発明第 19の特徴によれば、 上記第 11から 18の特徴による画像表示方法に おいて、 前記機能画像を作成するステップでは、 前記機能画像に割り当てるグラ デーシヨンカラースケールを RGB毎に画像データの画素ごとの値である画素値 と変換係数を対応付けた各種のルックアツプテーブルによつて決めることを特徴 とする。
本発明第 20の特徴によれば、 上記第 11から 19の特徴による画像表示方法に おいて、 上記生体機能情報は血流量、 血液量、.平均通過時間などに代表される血 流機能情報のうちの少なくとも一つであることを特徴とする。 図面の簡単な説明
図 1は、 本宪明の機能画像の表示方法および装置の構成図である。 図 2は、 デ ータ収集から合成画像表示までのフローチャートである。 図 3は、 変換係数の算 出方法 < 説明図である。 図 4は、 機能画像用ルックアップテーブルの構成を示す 図である。 図 5は、 機能画像用ルックアップテーブルの説明図である。 図 6は、 断層像用ルックアップテーブルの構成を示す図である。 図 7は、 プレンド機能画 像のサンプル画像である。 図8は、 断層像上投影ブレンド機能画像のサンプル画 像である。 図 9は、 本発明の実施例 2におけるデータ収集から合成画像表示まで のフローチヤ一トである。 図 10は、 本発明の実施例 2における画像間演算時の ROI設定方法の一例を説明する図である。 図 11は、 本発明の実施例 2における 治療前における MTT機能画像である。図 12は、本発明の実施例 2における治療 後における MTT機能画像である。図 13は、本発明の実施例 2における治療前後 の MTT差分画像と CT断層像を合成した画像である。図 14は、治療前における CBV機能画像である。図 15は、治療後における CBV機能画像である。図 16は、 上記図 11、 12、 14、 15に関して、 治療前後の CBVおよび MTT差分画像と CT 断層像を合成した画像である。 発明を実施するための最良の形態
以下、 添付図面に従つて本発明に係る機能画像の表示方法および装置の好まし い実施の形態について詳説する。
[実施例 1]
図 1は本発明に係る機能画像の表示方法おょぴ装置の好ましい実施の形態を示 す図である。 本発明に係る機能画像の表示方法および装置は、 X線減衰信号や核 磁気共鳴から放出されるエコー信号などの断層像データ収集手段 1 で、 例えば CT装置や MRI装置を す。 収集手段 1の制御や各種演算を行うコンピュータ 2 と、 マウスやキーボード等のコンソール 3と、 ディスプレイ等の表示手段 4から なる。 コンピュータ 2には、 収集手段 1を制御するプログラムや画像再構成等の 断層像の作成を行うプログラム、 生体機能情報の解析やマッビングを行ぅプログ ラム、 合成像を作成するプログラムが搭載されている。 本発明に係る機能画像の 表示方法および装置を構成するにあたり、 前記各プログラムは、 一台のコンビュ ータ内に搭載されていてもよく、 演算の種類毎に複数のコンピュータに分けて搭 - 載してもよい。
図 2は本発明に係る機能画像の表示方法および装置のデータ収集から合成画像 の表示までを示すフローチヤ一トである。 このフローチャートは図 1のコンビュ ータ 2または図示しない外部のコンピュータに内蔵されるソフトウェアにより実 現される。
本実施例をこのフローチャートに沿って説明する。 まず、 コンピュータ 2に搭 載された制御プログラムにより制御された収集手段 1により、 X線減衰データや ' 磁化率信号強度データを収集する (ステップ 201)。
ステップ 201では、 コンピュータ 2上の制御プログラムにより制御された収集 手段 1により、 X線減衰信号や核磁気共鳴から放出されるェコ一信号を収集する。 例えばデータ収集装置が CT装置で、 解析したい生 «能情報が頭部の灌流情報 であるならば、 患者 5にョード系造影剤のようなコントラスト強調物質を注した 後に、 その物質の流入する特定の臓器や部位に的を絞り時間を追って撮影 (いわ ゆるダイナミック撮影) を行うことで、 生体機能情報の解析に必要なデータを収. 集できる。
ステップ 202では、 コンピュータ 2に搭載された画像再構成等のプログラムを 用いて、 断層像を作成する。
ステップ 203では、 ステップ 202で作成した断層像を表示する。
ステップ 204では、例えばコンピュータ 2に搭載された生体機能情報の解析プロ グラムを用いて、生体機能情報を表すパラメータ、すなわち例えば画素値 Pを算 出する。 ここでいうパラメータの代表的なものとしては、 脳血流量 (Cerebral Blood Flow,つまり CBF)像,脳血液量(Cerebral Blood Volume、つまり CBV) 像,平均通過時間 (Mean Transit Time、 つまり MTT) 像がある。
パラメータの算出は、 分解能の低下を防ぐ目的では断層像の 1画素毎に行うこ とが望ましいが、 生 能情報の診断を早急に行うときのように短時間で演算を 終了すると必要に迫られた場合には、 画像を縮小して演算してもよいし、 数画素 毎に演算してもよい。
ステップ 205では、コンピュータ 2に搭載されたマッピングプログラムを用い て、ステップ 204で得られた演算結果をマッビングすることで機能画像を作成す る。
ステップ 206では、ステップ 205で作成した機能画像を表示手段 4に表示十る。 なお、 ステップ 206において、機能画像を表示するだけでなく、 必要に応じて機 能画像と断層像と一緒に表示してもよい。 なお、 続けて合成像を作成するときは ここで画像表示をしなくてもよい。 - ステップ 207では、後述するように、 コンピュータ 2に搭載された合成像作成 プログラムを用いて合成像を作成する。
ステップ 208では、合成像を表示手段 4に表示する。なお、ステップ 208では、 画像を表示するだけでなく、 必要に応じて合成画像、 機能画像、 および断層像の うち少なくとも 2つを一緒に表示してもよい。
図 2のフローチャートに関して、既に X線減衰データや磁化率信号強度データ が既に収集済みの場合は、 コンピュータ 2に内蔵または外付けされているハード ディスク等のストレージ手段 6から X線減衰データや磁化率信号強度データを読 み込んだ後、 ステップ 202以降を実行すればよい。
さらに、 図 2のフローチャートに関して、 断層像が既に作成済みの場合は、 コ ンピュータ 2に内蔵または外付けされているハードディスク等のストレージ手段 5から断層像を読み込んだ後、 ステップ 203以降を実行すればよい。
さらに、 図 2のフローチャートに関して、 機能画像が既に作成済みの場合は、 コンピュータ 2に內蔵または外付けされているハードディスク等のストレ一ジ手 段 5から機能画像を読み込んだ後、 また必要に応じて機能画像と断層像を読み込 んだ後、 ステップ 206以降を実行すればよい。
次に、ステップ 207の合成像の作成方法について説明する。本実施の形態では、 ある臓器における生体機能情報の種類すなわち機能画像の総数を M枚として説明 する。
また、 階調数は正の整数であり、 例えば、 8ビット (256階調) や、 12ビット (4,096階調) や、 16ビット (65,536階調) や 32ビット (4,294,967,296階調) である。
以下、 色調とは、 色相、 彩度、 明度、 あるいはそれらのうち少なくとも 2つの 組み合わせをいう。 また、 カラーグラデーションスケールとは、 画素値の最大値 と最小値の範囲を少なくとも 1段階以上に分割して、各段階にそれぞれ別の色調 を割り当てたもの、 つまり色階調の連続体をいう。
(1) 画素から変換係数への変換
ブレンド機能画像と呼称するものを説明する。 このブレンド機能画像とは、 生 能情報をカラーグラデーションスケールに対応して表示している機能画像を 複数枚重ね合わせるように合成したものである。 ここで、 機能画像間での使用色 調は異なる。 なお、 ブレンド機能画像の元画像である機能画像の中には、 画像中 の特定領域のみをあるカラーグラデーションスケールで表示したものも含まれる。 この場合、 特定領域外は任意の特定色で表示してもよい。 プレンド機能画像を作 成するにあたっては、機能画像の画素値 Pと表示ウィンドウ値 WL、 表示ウィン ドウ幅胃を基に変換係数 Cを算出する。 変換係数 Cは、 たとえば図 3を参照 して次式 1のように求める。 ここで、 WLはウィンドウレベルで、 WWはウィン ドウ幅を示す。 表示の濃度はウィンドウレベルを中心として、 その上下 WW/2 ずつの範囲に対して割り当てられる。この範囲 WWの外側では濃度がなくなるか あるいは飽和して変化がない。つまり、表示ウィンドウ幅 WWより画素値の大き いところは飽和させて白く飛ばし、 逆に小さいところは最も暗くつぶすことにな る。 また、 PMAXは最大画素値を、 CMAXは変換係数の最大値を表す。
Figure imgf000011_0001
なお、 図 3に示した例では、 (WL— Z2) から (WL+WW/2) の区間を 線形に変換したが、 必要に応じて任意の非線形の変換を行ってもよい。 また、 画 素値 Pをそのまま変換係数 cとすることも考えられる。
図 4に、 ブレンド機能画像の作成に用いるルックアップテーブル (以下 LUT と称する) を示す。 本実施の形態で述べるところの LUT とは、 前述の変換係数 Cと、表示色の各成分(例えば R成分, G成分, B成分) との対応表である。 (WL -WW/2) 以下の領域の画素にあてはめる変換係数 Cは、 カラーグラデーショ ンスケール中の一端にある最喑色 (下端色) である。 以下、 カラー表示するため の: R, G, Bのそれぞれの最暗色を Rl, Gl, B1と表示する。 なお、 色調中の色相の みを変えて上記カラーグラデーションスケールの各段階に割り当てたときは、 必 ずしも最暗色部に一番暗く見える色が割り当てられないこともある。 しかし、 こ のような場合も便宜上、 最暗色 (下端色) と呼ぶことにする。
一方、変換係数 Cの値が (WL+WW/2) 以上の領域の画素にあてはめる変換 係数 Cは、 カラーグラデーションスケール中の他端にあり最も明るい最明色(上 端色) である。 以下、 カラー表示するための R, G, Bのそれぞれの最明色 (上端 色) を Rh, Gh, Bhと表示する。 なお、 上述と同じように、 色調中の色相のみを 変えて上記力ラーダラデーシヨンスケールの各段階に割り当てたときは、 必ずし も最明色部に一番明るく見える色が割り当てられないこともある。 し力 し、 この ような場合も便宜上、 最明色 (上端色) と呼ぶことにする。
ある変換係数 Cにおける LUTの: R, G, Bの各成分 R(C), G(C), B(C)は、例えば 図 5に示すような機能画像用の LUTを参照して、 次式 (2) に従って決定すれば よい。 なお、 図 5は RGB各色毎の LU の一例で、 機能画像ごとに割り当てる RGBのテーブルの初期値と傾斜はそれぞれ異なるのが通常である。 RGBの初期 値である最暗色 Rl, Gl, B1の組み合わせによって生 能情報を表現する色の系 統が定まる。
R(C) = Rk~Rl - C ^ Rl
Figure imgf000012_0001
B{C) = ? - .c + Bl 図 5に示した例では、 最暗色から最明色までの各成分値を線形に結んだが、 必 要に応じて任意の非線形に結んでもよい。機能画像が M枚であるならば、機能画 像 1,機能画像 2…機能画像 Mの各々に対応した M個のルツクァップテーブル、 すなわち LUT1,LUT2...LUTMを設定することが望ましい。 しカゝし、 これに限ら ず複数の機能画像間で同—のものを使用してもよい。
(2) ブレンド機能画像の作成
複数の機能画像が重なった部分における表示画素の取り扱いについて.説明する。 ここでプレンド機能画像におけるある画素 (i, j)の表示色を左右する R, G, Bの各 成分を RF(i, j), GF(i, j), BF(i, j)とおくと、 これらは次式 3のように決定すること ができる。
Figure imgf000013_0001
ここで Wkは複数の機能画像を合成する重み (配分) を、 Ck(i,; j)は画素 (i,j)に おける機能画像 kの変換係数を表す。また、 Rk(Ck(i,j», Gk(Ck(i,j))? Bk(Ck(i,j)) は、変換係数 Ck(i,; j)における LUTkで規定される R,G,Bの各成分値を表し、式 2の変換係数 Cに画素ごとの変換係数 Ck(i,j)を入力して計算される値である。な お、 上述の通り、 ここでは特に機能画像の種類の数 kを 1〜Mまでの整数として いる。
グラデーションカラースケールで表示する領域は、 画像全体であっても画像の 一部であってもよい。 画像の一部つまり特定領域のみをグラデーションカラース ケールで表示するときは、 コンソール 4を介して閾値、範囲、および ROIなどの うちの少なくとも一つによって設定できる。 このような閾値、 範囲、 および ROI は機能画像の種類毎に一個または複数個設定してもよい (処理 1) 。
ある機能画像 kのある画素 (i, j)が丁度生 能を表わしているようなとき、 つ まり例えばその画素 (i, j)が ROI内にあるようなとき、またはその画素値が機能画 像 kに対する閾値で決まる範囲内であるならば、前述の図 4のような LUTkに従 つて Rk(Ck(i,j)), Gk(Ck(i,j)),Bk(Ck(i,j)) の各成分を決定する。画素値や画素が、 上述のように閾値、 範囲、 および ROIのいずれの範囲内にも該当しないならば、 肝心な機能表示を妨げないような特定色で表示するように特定値を Rk(Ck(i, j)), Gk(Ck(i, j)), Bk(Ck(i, j))の各成分に割り当てる (処理 2) 。
処理 1と処理 2を全画素に対して行うことにより、 ある機能画像において上記 設定範囲内のみをグラデーションカラースケールで表示し、 他の範囲は特定色で 表示することができる。 処理 1と処理 2は全ての機能画像に対して行ってもよい し、 一部の機能画像に対して行うだけでもよい。
処理 1と処理 2を施した各機能画像の合成について説明する。 このように合成 される機能画像は以下プレンド機能画像と呼称する。 プレンド機能画像のデータ は画素ごとに得られる。 式 3に従つて画素ごとに RF(i, j)5 GF(i, j), BF(i, j)を決定 するが、 この際には特定色で表示されている画素は、 その機能画像の重み Wkを 0にして計算する。 全画素ごとのデータ RF(i, j), GF(i, j), BF(i, j)が得られたら、 (i, j)の座標に従ってマッビングして画像表示を行う。 こうして、 ブレンド機能画 像を作成することができる。もし N枚の機能画像の全てを合成する必要がなレ、場 合は、 合成する必要がない機能画像の重みを 0にして合成すればよい。 なお、 特 定の範囲の設定として、 閾値と、範囲と、 ROIとを例示したが;必要に応じて他 のパラメータを用いて設定してもよい。
(3) 断層像上投影ブレンド機能画像の作成
次に、 断層像とブレンド機能画像との重ね合わせ合成像 (以下、 断層像上の投 影ブレンド機能画像) の作成方法を説明する。 ここで、 断層像上投影ブレンド機 能画像におけるある画素 (i,: j)の表示色の各成分を RTF(i, j), GTF (i, j), BTF (i, j) とすると、 上式 3 のように求めたプレンド機能画像の画素毎の色成分 RF(i, j), GF(i,j) , BF(i, j) と画素 (i,j)における断層像の変換係数 CC(i,j)と、 記号 tで判別 される複数の断層像用ルツクァップテ プル LUTTに対応させて変換係数 CC(P) について求めた各色成分値 RT(CC (i, j)), GT(CC (i, j)), BT(CC (i, j))と、それぞれ プレンド機能画像と断層像の重み WBおよび WTとを、用いて次式 4のように決
RF(i, j) WB + RT(CC(i,ゾ)) . WT
RTF(i ) =
Figure imgf000015_0001
BTF (i ― BF{i, j) WB + BT(CC(i,ゾ)) . WT
WB + WT
定できる。
断層像は一般的にグレースケールで表示するので、 断層像用ルックアツプテー ブル LUTTは例えば図 6のように設定すればよい。断層像上投影プレンド機能画 像を作成するには、 グラデーションカラースケールで表示されている画素の場合 は式 4に従って RTF(i,j), GTF(i, j), BTF(i, j)を決定し、 特定色で表示されている 画素は式 4において重み WB を 0にして、 RTF(i, j), GTF(i, j)5 BTF(i, j)を決定す る。 これを全画素に対して行ってマッピングすれば断層像上投影プレンド機能画 像が完成する。
プレンド画像や断層像上投影ブレンド機能画像において、 ある機能画像 kのグ ラデーシヨンカラースケールを変更したい場合には、 コンソール 4から入力され るパラメータに基づレ、てその機能画像に対応するルックアツプテーブル LUTk を前述の方法で変更することで、上式 3中の Rk(Ck(i,j)), Gk(Ck(i, j)), Bk(Ck(i, j)) を変更すればよい。 なお、 kは l〜mまでの整数である。
プレンド画像や断層像上投影プレンド機能画像において、 ある機能画像 kから 得られる情報の強調度を変更する場合には、 コンソール 4から入力されるパラメ 一タに基づレ、て上式 3中の Wkを変更すればよい。
プレンド画像や断層像上投影プレンド機能画像において、 グラデーションカラ 一スケールで表示されている領域を変更したい場合は、閾値や範囲や ROIなどこ の領域を規定するパラメータをコンソール 4から入力して変更すればよ 、。
断層像上投影プレンド機能画像において、 プレンド機能画像の強調度を変更す る場合には、 コンソール 4から入力されるパラメータに基づいて上式 4中の WB や WTを変更すればよい。
図 7と図 8に本発明にかかわる実施例を CT画像から作成した脳血流機能画像 へ適用した例を示す。 図 7は、 3種の機能情報 (脳血流量、 脳血液量、 平均通過 時間) カゝら作成したブレンド機能画像のサンプル画像であり、 脳血流量の異常領 域 31、 脳血液量の異常領域 32、 平均通過時間の異常領域 33.とその他の領域 39 の合成像である。 図 8は、 3種の機能情報 . (脳血流量、脳血液量、 平均通過時間) から作成したプレンド機能画像と CT像 30から作成した断層像上投影プレンド 機能画像のサンプル面像である。 これらサンプル画像では、 脳血流量の異常領域 31を緑系のグラデーションカラースケールで表示し、 脳血液量の異常領域 32を 青系のグラデーションカラースケールで表示し、 平均通過時間の異常領域 33を 赤系のグラデーションカラースケールで表示している。 これらサンプル画像は単 に脳血流量,脳血液量,平均通過時間の各生体学的パラメータに異常が認められる 領域を一枚の画像上に表示するだけでなく、 色合いの濃淡や各色の混ざり具合に よって異常の重篤度をも示しており、 本発明の効果が理解されるであろう。 これ らプレンド機能画像や断層像上投影プレンド機能画像は 1種類ではなく、 多数存 在する機能画像のうちの異なる幾つかを選択して合成することにより、 異なる複 数のプレンド機能画像や断層像上投影プレンド機能画像を作成することが可能で ある。 これら複数のプレンド機能画像や断層像上投影プレンド機能画像を同時に 画面上に表示することが可能である。
以上本実施例 1によれば、 機能画像中しきい値以上の値を示す画素を病変部な どの特徴部と推測して表示する。 この機能画像のパラメータを複数とすることで 判断の情報を増やすことができる。 これら特徴部をパラメータごとに別の色で表 示することでどのパラメータがどこの部位でどのような異常を示しているのか一 目でわかり、 これらを重ね合わせて表示することである部位に複数のパラメータ の異常が発生している点も一見してわかる。 _
さらに上記色付けした特徴部の内部で、 画素値の大きさに応じて色の濃淡や色 合いを変更可能で、 これによりどの程度異常であるのかが判別できる。
また、 これら特徴部の透明度を変更可能なので、 操作者が視認しゃすい画面状 態に変更可能である。 さらに特徴部外周や特に診断したい部位を画像上で選択し て ROIとしてその部分のみを上記のように色付けして表示可能であるため、不要 な情報で診断の妨げとなることもない。
また、 図 8のように断層像 40と重ね合わせて表示することで、 頭蓋など外部 との位置関係が把握しやすく、 診断がよりやりやすくなつている。 また、 機能画 像は並列して表示したり重ね合わせたり、 一部重ね合わせたりと任意の配置を選 択できるため、時々の診断や使用者の意図にあわせた使 、方が可能である。また、 機能画像は主に CBF, CBV, MTTを使用し、それらの計測値も同時に画面上で確 認できる。 また、 上記の特徴部作成の ROIや閾値や配置を記録しておくことで、 同じ条件下での診断をいつでも繰りかえすことが可能で、 これにより手術や治療 の前後での機能画像の比較が容易になるとともに、 操作者の違い ¾どに起因する 恣意の入らな 、手術や治療の効果測定が行える。
さらには治療前後の差分画像も表示できる。
実施例 2
実施例 2も、実施例 1と同様に、図 1のような構成を利用する。各構成要素は、 実施例 1のとおりであるので、 それらの説明は省略する。 実施例 2においても、 画像処理装置 2はたとえばコンピュータであり、データ収集手段 1を制御するプ 口グラムや画像再構成等の断層像の作成を行うプログラム、 生体機能情報の解析 やマッピングを行うプログラム、合成像を作成するプログラム 搭載されている。 なお、 前記各プログラムは、 一台のコンピュータ内に搭載しても、 あるいは、 演 算の種類毎に複数のコンピュータに分けて搭載してもよい。
図 9は本実施例に係わる画像診断装置のプログラムによる、 データ収集から合 成画像の表示までを示すフローチャートである。 本実施例による処理をこのフロ -一チャートに従って説明する。 ステップ 301では、 コンピュータ 2に搭載された 制御プログラムにより制御された収集手段 1により (図 1参照) 、 X線減衰信号 や核磁気共鳴から放出されるエコー信号を収集する。
たとえば、 収集装置が CT装置で、 解析したい生 ί«能情報が頭部の灌流情報 であるならば、 患者 5にョード系造影剤のようなコントラスト強調物質を注した 後にダイナミック撮影を行うことで、 生体機能情報の解析に必要なデータを収集 できる。
ステップ 302では、コンピュータ 2に搭載された画像再構成用のプログラム等 を用いて、 断層像を作成する。 断層像はアキシャル、 コロナル、 サジタル等の任 意の断面でよい。ステップ 303では、ステップ 302で作成した断層像を表示する。 ステップ 304では、コンピュータ 2などに搭載された生体機能情報の解析プログ ラムを用いて、生 «能情報を表すパラメータを算出する。パラメータの算出は、 分解能の低下を防ぐという観点からは断層像の 1画素毎に行うことが望ましいが、 生体機能情報の診断を早急に行う場合のように短時間で演算を^了する必要のあ る場合には、 画像を縮小して演算してもよく、 数画素毎に演算してもよレヽ。 ステ ップ 305では、コンピュータ 2などに搭載されたマッピングプログラムを用いて、 ステップ 304で得られた演算結果をマッピングすることで機能画像を作成する。 ステップ 306では、 ステップ 305で作成した機能画像を表示手段 4に表示する。 なお、 ステップ 306においては、機能画像を表示するだけでなく、 必要に応じて 機能画像と断層像とを同時に表示してもよい。
ステップ 307では、差分演算などの画像間演算が必要カゝ否かを操作者が選択し、 不要ならばステップ 309に進む。複数回の検查において生体機能情報が有意に変 化している領域を強調して表示したい場合などでは、 差分演算などの画像間演算 を実行することが望ましい。
ステップ 307で、画像間演算必要と選択した場合、 定量値補正も必要力否かを 操作者が選択し、 不要ならばステップ 308に進む。 例えば脳灌流画像において、 撮影断面によっては、 撮影スライスにまたがる低 CT値の物体の存在によって、 そのスライスに沿った断層像中特に主幹動脈などの高 CT値の部分で CT値が正 確に算出されない現象である部分容積効果 (Partial Volume Effect) の影響を適 切に補正することができず、 定量値が過大評価される場合がある。 このような場 合には、 定量値を捕正してから画像間演算を行うことが望ましい。 ステップ 308 では、 定量値補正が必要な場合にコンピュータ 2に搭載された定量値補正プログ ラムを用いて定量値捕正を行う。 ステップ 308では、 さらにコンピュータ 2に搭 載された画像間演算プログラムを用いて演算後画像を作成する。 なお、 ステップ 308における画像間演算は、差分演算等の任意の演算でよい。ステップ 309では、 演算後画像または機能画像に対して断層像と合成する領域の条件を設定する。 ただし、 演算後画像または機能画像の全領域をそのまま断層像上に重ね合わせ 合成する場合、 このステップは不要である。 演算後画像または機能画像の特定の 領域のみを断層像上に重ね合わせ合成する場合には、 閾値や ROIを設定したり、 任意の条件式を満たす画素のみを選択することにより重ね合わせる領域を指定す る。 たとえば演算後画像が、 複数の検査における脳灌流機能画像の差分画像であ る場合において、 右半球で顕著に変ィ匕が表れている領域のみを表示したい場合に は、 ROIを右半球全体に指定し、画素値 Pが次式 5の条件を満たす画素のみを断 層像上に重ね合わせ合成すればよい。
P = Mean+k -SD (5)
なお、 上式において、 Meanは演算後画像の全画素値の平均値、 SD は標準偏 差値、 kは任意の実数を示す。
また、 たとえば機能画像が、 複数の検査における脳灌流機能画像である場合に おいて、 異常領域の経時変ィ匕を表示したい場合には、 画素値が閾値以下または閾 値以上の画素のみを断層像上に重ね合わせ合成する。
ステップ 310では、コンピュータ 2に搭載された合成像作成プログラムを用い て合成像を作成する。 この合成像作成の詳細は後述する。 ステップ 311では、 合 成像を表示手段 4に表示する。 なお、 ステップ 311において、 合成像を表示する だけでなく、 必要に応じて合成像と機能画像、 演算後画像、 断層像などの画像を 同時に表示してもよい。 また、 このとき、 ステップ 309で設定した合成する領域 における画素数、 平均値、 標準偏差値、 ヒストグラムなどを合わせて表示するこ とで、 生 能情報の解析により有用な情報が提供できる。
既に X線減衰データや磁化率信号強度データが既に収集済みの場合は、コンビ ユータ 2に内蔵または外付けされそいるハードディスク等のストレージ手段 5か ら X線減衰データや磁化率信号強度データを読み込んだ後、ステップ 302以降を 実行する。 また、 断層像が既に作成済みの場合は、 コンピュータ 2に内蔵または 外付けされている。 ハードディスク等のストレージ手段 5から断層像を読み込ん だ後、 ステップ 303以降を実行する。 また、 機能画像が既に作成済みの場合は、 コンピュータ 2に内蔵または外付けされているハードディスク等のストレージ手 段 5から機能画像を読み込んだ後、 また必要〖こ応じて、 機能画像と断層像を読み 込んだ後、 ステップ 306以降を実行する。
次に、 ステップ 308に関して、複数回の検査において得た複数の機能画像同士 の演算による新たな診断用画像の作成を詳細に説明する。 たとえば複数の検査に おける生 ί«能情報の変ィ匕をみる場合には、 複数回の検査における機能画像を差 分すればよい。 演算の種類は差分演算に限定されるものではなく、 用途に応じて 加算、 積算、 除算、 あるいは任意の四則演算の組み合わせ演算でもよい。 画像間 演算は 1画素ごとに全画素を演算してもよい。
また、 必要に応じて図 10のようにたとえば任意に設定した ROI8で囲まれた 領域ごとに計算してもよいし、 この ROI領域内で平均値、 中間値、最大値、最小 値などの特徴量を演算対象とすることもできる。 こうすることで診断しやすいサ ィズでの視覚的評価が可能となる。
また、 等値線を引くことにより機能画像を幾つかの領域に分割し、 分割した領 域ごとに演算してもよい。 例えば機能画像が脳灌流画像である場合には、 等値線 を引くことにより白質、灰白質、血管床等に分割可能であり、 さらに ROIを指定 することにより、 視床、 レンズ核、 脳粱辺縁などの各解剖学的セグメントに分割 することが可能である。 こういった解剖学的セグメントごとに画像間演算を行う ことも生 ί«能情報の変化の評価に有用である。
次に、 ステップ 308に関して、 定量値の補正方法について説明する。 例えば、 脳灌流画像においては、 上矢状静脈洞における時間濃度曲線の最大値や曲線下面 積を基に実施例 1に記載したような部分容積効果の影響を捕正し、 定量的な安定 性を得ている。 しカゝし、 撮影断面によっては上矢状静脈洞が撮影断面内に含まれ ない場合もある。 このような場合には部分容積効果の影響を適切に補正すること ができず、 定量値が不正確になる。 もし、 複数回の検査の中で部分容積効果の補 正が適切に行われたと判断できる画像があれば、 その検査における捕正パラメ一 タ (最大値または曲線下面積) を用いて他の検査における定量値を捕正する。 その他の補正方法として、健常領域における平均値を基に補正する方法がある。 これは同一被検者の健常領域での生体機能情報は検査日時によらず安定している ことを仮定した手法である。 ある検査での機能画像上の健常領域における定量値 . の平均を Meanl、 他の検査での機能画像上の健常領域における定量値の平均を Mean2とおく。 ここで Meanlと Mean2が一致するようにどちらかの機能画像 の画素値 (定量値) をシフトすることにより、 定量値が補正できる。
次に、ステップ 310に関して、演算後画像または機能画像と断層像の合成像(以 下、 断層像上投影ブレンド機能画像と呼ぶ) の作成方法を説明する。 本実施例で は、 カラーグラデーションの階調数を Mとして説明する。 階調数 Mは正の整数 であり、 8ビット (256階調) 、 12 ビット (4,096階調) 、 16ビット (65,536 階調) や 32ビット (4,294,967,296階調) など、任意の階調数に設定する。 階調 数が上がるほど表示できる階調が豊富となる。 一般的にカラーグラデーションに は色相、 明度、 彩度のカラーグラデーションがあり、 その種類も各種ある。
合成像を作成するにあたり、演算後画像または機能画像の画素値 Pと表示ウイ ンドウ値 WL、表示ウインドウ幅胃を基に変換係数 Cを算出する。変換係数 C は、 実施例 1と同様に、 たとえば式 1および図 3に示すように決定する。 この例 では L— WW/2から WL+WW/2の区間を線形に変換した力 必要に応じて 任意の非線形の変換を行ってもよい。 また、 画素値をそのまま変換係数として用 いてもよい。
図 4に、 合成画像の作成に用いるルックアップテーブル (LUT) を示す。 本実 施例で述べるところの LUTとは、 前述の変換係数 Cと、 表示色の各成分 (R成 分, G成分, B成分) との対応表のことを指す。 表示ウィンドウにおける最も暗い 画素、 すなわち、 変換系数値が WL-WW/2以下である上記最喑色 (下端色) の R, G, Bの各成分を Rl, Gl, B1とし、表示ウィンドウにおける最も明るい画素、 すなわち変換系数値が WL+WW/2以上である画素にあてはめる最明色の R, G, Bの各成分を Rh, Gh, Bhとすると、ある変換係数 Cにおける LUTの R, G, Bの 各成分 R(C), GKC), B(C)は、 例えば式 2と図 5に示すように決定する。
図 5に示した例では、 最喑色 (下端色) から最明色 (上端色) までの各成分値 を線形に結んだが、 必要に応じて任意の非線形に結んでもよい。 もし、 生体機能 情報を表すパラメータが複数存在し、 それぞれこの複数パラメータに対応する機 能画像が複数ある場合には、 複数個の演算後画像が作成できる。 もし、 演算後画 像、機能画像、または演算後画像および機能画像が M個存在するのであれば、演 算後画像 1 (または機能画像 1) 、 演算後画像 2 (または機能画像 2) …演算後画 像 M (または機能画像 M) の各々に対応した M個のルックアップテーブル、 す なわち LUTl, LUT2,...LUTMを設定することが望ましい。 しカゝし、 複数の演算 後画像または機能画像で同一のルツクアツプテーブルを共用しても差し支えなレ、。 次に、 ステップ 311の合成像表示について詳しく説明する。 合成像におけるあ る画素(i,j)の表示色の各成分をRTF(i,j),GTF (iJ),BTF (i,j)とぉくと、これらは 式 4のように決定される。
ここで WBは演算後画像または機能画像の重みを、 WTは断層像の重みを、 CC(i, j)は画素 (i, における断層像の変換係数を表し、前述した演算後画像または機能画 像の変換係数を求める方法と同様にして決定する。
また、 RT(CC(i, j)), GT(CC(i, j)), BT(CC(i, j))は変換係数 CT(P)における断層像 用ルックアツプテーブル LUTTで規定されている R, G, Bの各成分値を表す。断 層像をグレースケールで表示する場合は、 断層像用ルックアツプテーブル LUTT は例えば図 6のように設定すればよい。 断層像をカラーで表示する場合は図 5の ような RGBのテーブルが必要である。 また RF(i, j) , GF (i, j), BF (i, は、 各演 算後画像または機能画像を合成する比率に基づいて決定されるパラメータであり、 式 3のように決定する。
ここで Wkは演算後画像 kまたは機能画像 kを合成する重みを、 C i, j)は画素 (i, j)における演算後画像 kまたは機能画像 kの変換係数を表す。また、 Rk(Ck(i, j)), Gk(Ck(i, j)), Bk(Ck(i, j))は変換係数 Ck(i, j)における LUTkで規定されている R, G, Bの各成分値を表す。 なお、' kは 1〜Mまでの整数であり、 Mは演算後画像ま たは機能画像の枚数と一致する。 なお、 演算後画像または機能画像の枚数が一枚 である場合、 式 4は式 6のようになる。
RF{CF(i, j)) · WB + RT(CC(i, j)) · WT
RTF(i, j) =
WB + WT
Figure imgf000022_0001
BTF(i ― BF{CF{i, j)) . WB + BT(CC(i,ゾ)) . WT
WB + WT ここで Ck(i, j)は画素 (i, j)における演算後画像または機能画像の変換係数を表 す。 演算後画像または機能画像と断層像との合成像を作成するには、 グラデーシ ヨンカラースケールで表示されている画素の場合は式 4 または式 6 に従って RTF(i, j), GTF(i, j), BTF(i, j)を決定し、 特定色で表示されている画素は式 4また は式 6において重み WBを 0にして RTF(i, j), GTF(i, j), BTF(i, j)を決定する。こ れを全画素に対して行レ、、 RTF(i, j), GTF(i, j), BTF(i, j)に従ってマッビングすれ ばよい。
グラデーションカラースケールで表示する領域 (特定の領域) はコンソール 4 を介して設定される閾値や任意の条件式や ROIによって設定すればよい。閾値や 条件式、 ROIは演算後画像毎に一個または複数個設 する。 ある演算後、 画像 または機能画像 kのある画素 (i, j)における画素値が演算後画像 kまたは機能画像 kに対する閾値や条件式で設定される範囲内、 カゝっ画素 (i, が ROIで設定される 範囲內であるならば、前述 LU の設定方法に従つて Rk(Ck(i, j)), Gk (Ck (i, Bk (Ck (i, j)) の各成分を決定し、範囲外であるならば任意の特定値を Rk(Ck(i, j)), Gk (Ck (i5 j)), Bk (Ck (i, j))の各成分に割り当てる。
以上の処理を全画素に対して行うことにより、 ある演算後画像または機能画像 において特定の領域のみをグラデーションカラースケールで表示する。 また、 他 の領域は特定色、 たとえば図 7から 8と 11から 18における黒や灰色で表した CT断層像 40のみの領域で表示する。上記処理は全ての演算後画像または機能画 像に対して行う。 もし、 M枚の演算後画像または機能画像の全てを合成する必要 がない場合は、 合成する必要がない演算後画像または機能画像の重みを 0にして 合成すればよい。
合成像において、ある演算後画像 kまたは機能画像 kから得られる情報の強調 度を変更する場合には、 コンソール 4から入力されるパラメータに基づいて式 5 中の Wkを変更すればよい。
合成像において、 グラデーションカラースケールで表示されている領域を変更 したい場合は、コンソール 4から入力されるパラメータに基づいて閾値や条件式、 ROIを変更すればよい。
合成像において、 演算後画像または機能画像や断層像の強調度を変更する場合 には、 コンソール 4から入力されるパラメータに基づいて式 4または式 6中の WBや WTを変更すればよ Vヽ。
図 11から図 18に本発明を CT画像から作成した脳灌流機能画像へ適用した例 を示す。 図 11から図 13は、右内頸動脈狭窄症の患者の治療前後における平均通 過時間像 MTTの治療前後の差分画像と CT画像との合成像を作成したサンプル 画像である。 このサンプノレにおいては、 平均通過時間 MTTが有意に変化してい る領域のみを虹色のカラーグラデーションスケールで表示し、 有意に変化してい る領域では式 5の WBを 0.8に WTを 0.2に設定して合成し、他の領域では WB を 0に WTを 1に設定して合成している。 図 13中、 34は MTTの変化が比較的 大きく暖色系で表示された部分を、 35は MTTの変化が比較的小さく寒色系で表 示された部分を、 0はグレースケールで表示された断層画像のみの部分を各々示 している。 ここで、色は図 11と図 12の差分の大きさに応じて割り当てられてレ、 る。
図 11、 12、 図 14から 16は、 右内頸動脈狭窄症の患者の治療前後における平 均通過時間像 MT の差分画像、脳血液量像 CBVの差分画像、 CT画像の合成像 を作成したサンプル画像である。 このサンプル画像においては、脳血液量像 CBV が有意に変化している領域を青色系のカラーグラデーションスケール 36で表示 し、 平均通過時間 MTTが有意に変化している領域を赤色系のカラーグラデーシ 3ンスケール 37で表示している。また式 3の W1 (すなわち脳血液量像の差分画 像の重み) を 0.75に、 W2 (すなおち平均通過時間像の差分画像の重み) を 0.25 に設定して合成している。さらに脳血液量 CBVまたは平均通過時間 MTTが有意 に変ィ匕している領域では式 4の WBを 0.8に WTを 0.2に設定して合成し、他の 領域では WBを 0に WTを 1に設定して合成している。
図 11から 13では演算後画像または機能画像が 1枚である場合の、図 11、 12、 図 14から 16では演算後画像または機能画像が 2枚である場合の適用例を示した 力 演算後画像または機能画像が 3枚以上である場合にも同様に適用できる。 こ れらサンプル画像では、 生体機能情報に顕著な変化が現われた領域や疾患領域の 経時変化を容易に把握することができ、操作者の先入観による ROI設定の不確定 性が生じる余地が少なく、 検査部位本来の形状を損ねることもない。 以上説明し たように本実施例によれば、操作者の先入観による ROI設定の不確定性が生じる 余地が少なく、 かつ検査部位本来の形状を損ねることなく、 生 ί«能情報に顕著 な変ィ匕が現われた領域や疾患領域の経時変化を容易に把握することができるとい う効果がある。
以上説明したように本発明によれば、'断層像から得られる情報と複数の機能画 像の各々から得られる情報とを一枚の画像から得られ、 かつ生^ «能異常の重篤 度の判定が容易になるという効果がある。

Claims

の 囲 - 被検者の画像データを収集する手段と、 前記画像データから断層像を作 成する手段と、 前記断層像から少なくとも一つの生 «能情報を算出する 手段と、 前記生 能情報をもとに少なくとも一つの機能画像を作成する 手段と、前記機能画像同士を演算した演算後画像や前記機能画像同士の合 成像や前記演算後画像または前記機能画像のうち少なくとも一つと前記 断層像を合成した合成像を作成する手段と、 前記機能画像、 前記演算後画 像、 前記断層像および前記合成像を表示可能な表示手段とを含む画像表示 装置において、 前記機能画像を作成する手段と合成画像を作成する手段は、 前記機能画像および前記演算後画像内の少なくとも一部の領域を前記生 体機能情報の評価値に対応した任意のグラデーション力ラースケールで 表示し、 前記機能画像および前記演算後画像内の他の領域は前記グラデー シヨンカラースケールに含まれない任意色でまたは透明に表示すること を特徴とする画像表示装置。
前記合成像は、 重ね合わせ表示、 並列表示、 あるいは部分表示のいずれ かによつて表示されることを特徴とする請求項 1に記載の画像表示装置。 前記機能画像を作成する手段では、 前記機能画像内の上記他の領域にお ける前記機能画像の比率をゼロとすることを特徴とする請求項 1または 2 に記載の画像表示装置。
前記機能画像を作成する手段では、 前記生体機能情報に割り当てるダラ デーションカラースケールを任意に変更可能である請求項 1から 3のいず れかに記載の画像表示装置。
前記合成像を作成する手段では、 前記合成像における各々の機能画像お よび前記断層像の比率を任意に設定可能である請求項 1カゝら 4のいずれか に記載の画像表示装置。
前記機能画像を作成する手段では、 上記画素単位の画像データ値が所定 範囲内か外によつて前記機能画像內の上記一部の領域を特定することを 特徴とする請求項 1力 ら 5のいずれかに記載の画像表示装置。 前記機能画像を作成する手段では、 前記機能画像内の任意の関心領域を 前記機能画像内の上記一部の領域として決定することを特徴とする請求 項 1から 6のいずれかに記載の画像表示装置。
前記機能画像を作成する手段では、 画像データの画素ごとの値である画 素値で所定のウインドウレベルとウインドウ幅内にあるものを、変換係数 と対応付け、 この変換係数をもとに前記グラデーションカラースケールを 決めることを特徴とする請求項 1カゝら 7のいずれかに記載の画像表示装置。 前記機能画像を作成する手段で 、 前記機能画像に割り当てるグラデー シヨンカラースケールを RGB毎に画像データの画素ごとの値である画素 値と変換係数を対応付けた各種のルックアツプテーブルによつて決める ことを特徴とする請求項 1から 8のいずれかに記載の画像表示装置。
前記生体機能情報は血流量、 血液量、 平均通過時間などに代表される血 流機能情報のうちの少なくとも一つであることを特徴とする請求項 1から 9のいずれかに記載の画像表示装置。
被検者の画像データを収集するステップと、 前記画像データから断層像 を作成するステップと、 前記断層像から少なくとも一つの生 ί«能情報を 算出するステップと、 前記生 能情報をもとに少なくとも一つの機能画 像を作成するステップと、 前記機能画像同士を演算した演算後画像や前記 機能画像同士の合成像や前記演算後画像または前記機能画像のうち少な くとも一つと前記断層像を合成した合成像を作成するステップと、 前記機 能画像、 前記演算後画像、 前記断層像および前記合成像を表示可能な表示 ステップとを含む画像表示方法において、前記機能画像を作成する手段と 合成画像を作成するステップは、 前記機能画像およぴ前記演算後画像内の 少なくとも一部の領域を前記生体機能情報の評価値に対応した任意のグ ラデーションカラースケールで表示し、前記機能画像および前記演算後画 像内の他の領域は前記グラデーションカラースケールに含まれない任意 色でまたは透明に表示することを特徴とする画像表示方法。 '
前記合成像は、 重ね合わせ表示、 並列表示、 あるいは部分表示のいずれ かによつて表示されることを特徴とする請求項 1に記載の画像表示方法。
13. 前記機能画像を作成するステップでは、 前記機能画像内の他の部分にお . ける前記機能画像の比率をゼロとすることを特徴とする請求項 11または
12のいずれか一つに記載の画像表示方法。
14. 前記機能画像を作成するステップでは、前記生 ί極能情報画像に割り当 てるグラデーションカラースケールを任意に変更可能である請求項 11か ら 13に記載の画像表示方法。 '
15. 前記合成像を作成するステップでは、 前記合成像における各々の機能画 像および前記断層像の比率を任意に設定可能である請求項 11から 14のい ずれかに記載の画像表示方法。
16. 前記機能画像を作成するステップでは、 上記画素単位の画像データ値が 所定範囲内か外によつて前記機能画像内の上記一部の領域を特定するこ とを特徴とする請求項 12から 15のいずれかに記載の画像表示方法。
17. 前記機能画像を作成するステップでは、 前記機能画像内の任意の関心領 域を前記機能画像内の上記一部の領域として決定することを特徴とする 請求項 12から 16のいずれかに記载の画像表示方法。
18. 前記機能画像を作成するステップでは、 画像データの画素ごとの値であ る画素値で所定のウィンドウレベルとウィンドウ幅内にあるものを、 変換 係数と対応付け、 この変換係数をもとに前記グラデーションカラースケー ルを決めることを特徴とする請求項 11から 17のいずれかに記載の画像表 示方法。
19. 前記機能画像を作成するステップでは、 前記機能画像に割り当てるグラ デーションカラースケールを RGB毎に画像データの画素ごとの値である 画素値と変換係数を対応付けた各種のルックアツプテーブルによつて決 めることを特徴とする請求項 11から 18のいずれかに記載の画像表示方法。
20. 記生 能情報は血流量、 血液量、 平均通過時間などに代表される血流 機能情報のうちの少なくとも一つであることを特徴とする請求項 11から 19のいずれかに記載の画像表示方法。
PCT/JP2004/004884 2003-04-04 2004-04-02 機能画像の表示方法及び装置 WO2004089218A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005505274A JP4558645B2 (ja) 2003-04-04 2004-04-02 画像表示方法及び装置
US10/551,885 US8032202B2 (en) 2003-04-04 2004-04-02 Function image display method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003101284 2003-04-04
JP2003-101284 2003-04-04
JP2003345364 2003-10-03
JP2003-345364 2003-10-03

Publications (1)

Publication Number Publication Date
WO2004089218A1 true WO2004089218A1 (ja) 2004-10-21

Family

ID=33161506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004884 WO2004089218A1 (ja) 2003-04-04 2004-04-02 機能画像の表示方法及び装置

Country Status (3)

Country Link
US (1) US8032202B2 (ja)
JP (1) JP4558645B2 (ja)
WO (1) WO2004089218A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187412A (ja) * 2005-01-05 2006-07-20 Hitachi Medical Corp 医用画像診断支援装置
JP2006247388A (ja) * 2005-03-10 2006-09-21 Toshiba Medical Systems Corp X線ct装置および心筋パーフュージョン像生成システム
JP2006325966A (ja) * 2005-05-26 2006-12-07 Ge Medical Systems Global Technology Co Llc 撮影装置および、その表示装置
JP2006326078A (ja) * 2005-05-27 2006-12-07 Hitachi Medical Corp 血流動態解析装置、x線ct装置、mri装置、及び血流動態解析プログラム
JP2007135828A (ja) * 2005-11-17 2007-06-07 Daiichi Radioisotope Labs Ltd 画像診断支援装置及び画像表示方法
JP2008237747A (ja) * 2007-03-28 2008-10-09 Dainippon Printing Co Ltd 関心領域決定装置
JP2009261479A (ja) * 2008-04-23 2009-11-12 National Agency For The Advancement Of Sports & Health 画像処理装置、画像処理プログラム及び磁気共鳴装置
JP2010194261A (ja) * 2009-02-27 2010-09-09 Toshiba Corp X線撮影装置及びx線画像処理方法
JP2010286472A (ja) * 2009-05-13 2010-12-24 Toshiba Corp 核医学イメージング装置、画像処理装置および画像処理方法
JP2011143105A (ja) * 2010-01-15 2011-07-28 Toshiba Corp 医用画像処理装置
JP2012125407A (ja) * 2010-12-15 2012-07-05 Toshiba Corp 医用画像処理装置
JP2013521919A (ja) * 2010-03-18 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 機能的画像データ強調及び/又はエンハンサ
JP2013531322A (ja) * 2010-07-22 2013-08-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 多重画像の融合
JP2014000182A (ja) * 2012-06-18 2014-01-09 Aze Ltd 医用画像生成装置及びプログラム
WO2014104212A1 (ja) * 2012-12-26 2014-07-03 株式会社 東芝 医用画像診断装置
CN103988230A (zh) * 2011-12-07 2014-08-13 皇家飞利浦有限公司 3d医学灌注图像的可视化
WO2014133104A1 (ja) * 2013-02-27 2014-09-04 株式会社東芝 X線診断装置及び画像処理装置
JP2015126868A (ja) * 2013-11-29 2015-07-09 株式会社東芝 医用画像処理装置、x線診断装置及び医用画像処理プログラム
JP2015226692A (ja) * 2014-06-02 2015-12-17 株式会社東芝 医用画像処理装置、医用画像処理方法およびプログラム
US11295487B2 (en) 2018-09-07 2022-04-05 Canon Medical Systems Corporation X-ray CT apparatus, medical image processing apparatus, and X-ray CT system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013128B2 (ja) * 2002-09-12 2007-11-28 株式会社日立メディコ 血流動態解析装置、方法、及び画像診断装置
DE102005006659A1 (de) * 2005-02-14 2006-08-24 Siemens Ag Verfahren zur Vorhersage des Kontrastmittelflusses in einem lebenden Körper
JP2009537241A (ja) * 2006-05-19 2009-10-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 誤差適応的な機能的画像化
JP2008036284A (ja) * 2006-08-09 2008-02-21 Toshiba Corp 医用画像合成方法及びその装置
DE102007001116A1 (de) * 2007-01-04 2008-07-10 Siemens Ag Verfahren und Vorrichtung zur Registrierung von zumindest drei unterschiedlichen Bilddatensätzen eines Objektes
WO2010038161A2 (en) * 2008-09-30 2010-04-08 Koninklijke Philips Electronics, N.V. Perfusion imaging
US20100130860A1 (en) * 2008-11-21 2010-05-27 Kabushiki Kaisha Toshiba Medical image-processing device, medical image-processing method, medical image-processing system, and medical image-acquiring device
JP5642398B2 (ja) * 2009-04-24 2014-12-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 血流動態解析装置、磁気共鳴イメージング装置、およびプログラム
WO2011058459A1 (en) * 2009-11-16 2011-05-19 Koninklijke Philips Electronics, N.V. Functional imaging
JP2011115404A (ja) * 2009-12-03 2011-06-16 Canon Inc X線画像合成装置、およびx線画像合成方法
US9256951B2 (en) * 2009-12-10 2016-02-09 Koninklijke Philips N.V. System for rapid and accurate quantitative assessment of traumatic brain injury
CN104103083A (zh) 2013-04-03 2014-10-15 株式会社东芝 图像处理装置和方法以及医学成像设备
CN108292430A (zh) 2015-11-10 2018-07-17 皇家飞利浦有限公司 用于对功能医学成像中的定量图生成进行自动优化的方法
WO2020116067A1 (ja) * 2018-12-04 2020-06-11 ソニー株式会社 医療システム、情報処理装置及び情報処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116343A (ja) * 1981-12-28 1983-07-11 株式会社島津製作所 Ct装置の画像表示回路
JPS59183459A (ja) * 1983-04-01 1984-10-18 Hitachi Ltd 画像合成方式
JPH06215150A (ja) * 1993-01-18 1994-08-05 Toshiba Corp 三次元画像表示装置
JPH0877329A (ja) * 1994-09-02 1996-03-22 Konica Corp 時系列処理画像の表示装置
JP2001212138A (ja) * 2000-02-02 2001-08-07 Mitsubishi Plastics Ind Ltd 画像処理システム
JP2003070781A (ja) * 2001-09-04 2003-03-11 Hitachi Medical Corp 医用画像診断支援装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132272A (ja) * 1989-10-18 1991-06-05 Fuji Photo Film Co Ltd サブトラクション画像の表示方法および装置
US5982953A (en) * 1994-09-02 1999-11-09 Konica Corporation Image displaying apparatus of a processed image from temporally sequential images
AU6673498A (en) * 1997-03-10 1998-09-29 Robin Medical Inc. Method and apparatus for the assessment and display of variability in mechanicalactivity of the heart, and enhancement of ultrasound contrast imaging by variab ility analysis
US6116244A (en) * 1998-06-02 2000-09-12 Acuson Corporation Ultrasonic system and method for three-dimensional imaging with opacity control
US6901156B2 (en) * 2000-02-04 2005-05-31 Arch Development Corporation Method, system and computer readable medium for an intelligent search workstation for computer assisted interpretation of medical images
US6792302B2 (en) * 2001-02-21 2004-09-14 Universite De Lausanne Method and apparatus for determining treatment for stroke
JP2003190134A (ja) * 2001-12-28 2003-07-08 Konica Corp 医用画像処理装置、医用画像処理方法、プログラム、及び記憶媒体
WO2004024003A1 (ja) * 2002-09-12 2004-03-25 Hitachi Medical Corporation 生体組織の動き追跡方法、その追跡方法を用いた画像診断装置
EP1420367A1 (en) * 2002-11-15 2004-05-19 MeVis GmbH A method for coloring of voxels and image data processing and visualization system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116343A (ja) * 1981-12-28 1983-07-11 株式会社島津製作所 Ct装置の画像表示回路
JPS59183459A (ja) * 1983-04-01 1984-10-18 Hitachi Ltd 画像合成方式
JPH06215150A (ja) * 1993-01-18 1994-08-05 Toshiba Corp 三次元画像表示装置
JPH0877329A (ja) * 1994-09-02 1996-03-22 Konica Corp 時系列処理画像の表示装置
JP2001212138A (ja) * 2000-02-02 2001-08-07 Mitsubishi Plastics Ind Ltd 画像処理システム
JP2003070781A (ja) * 2001-09-04 2003-03-11 Hitachi Medical Corp 医用画像診断支援装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187412A (ja) * 2005-01-05 2006-07-20 Hitachi Medical Corp 医用画像診断支援装置
JP2011156402A (ja) * 2005-03-10 2011-08-18 Toshiba Medical Systems Corp X線ct装置
JP2006247388A (ja) * 2005-03-10 2006-09-21 Toshiba Medical Systems Corp X線ct装置および心筋パーフュージョン像生成システム
JP2006325966A (ja) * 2005-05-26 2006-12-07 Ge Medical Systems Global Technology Co Llc 撮影装置および、その表示装置
JP2006326078A (ja) * 2005-05-27 2006-12-07 Hitachi Medical Corp 血流動態解析装置、x線ct装置、mri装置、及び血流動態解析プログラム
JP2007135828A (ja) * 2005-11-17 2007-06-07 Daiichi Radioisotope Labs Ltd 画像診断支援装置及び画像表示方法
JP2008237747A (ja) * 2007-03-28 2008-10-09 Dainippon Printing Co Ltd 関心領域決定装置
JP2009261479A (ja) * 2008-04-23 2009-11-12 National Agency For The Advancement Of Sports & Health 画像処理装置、画像処理プログラム及び磁気共鳴装置
JP2010194261A (ja) * 2009-02-27 2010-09-09 Toshiba Corp X線撮影装置及びx線画像処理方法
JP2010286472A (ja) * 2009-05-13 2010-12-24 Toshiba Corp 核医学イメージング装置、画像処理装置および画像処理方法
US9392980B2 (en) 2009-05-13 2016-07-19 Kabushiki Kaisha Toshiba Nuclear medical imaging apparatus, image processing apparatus, and image processing method
JP2011143105A (ja) * 2010-01-15 2011-07-28 Toshiba Corp 医用画像処理装置
JP2013521919A (ja) * 2010-03-18 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 機能的画像データ強調及び/又はエンハンサ
JP2013531322A (ja) * 2010-07-22 2013-08-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 多重画像の融合
JP2012125407A (ja) * 2010-12-15 2012-07-05 Toshiba Corp 医用画像処理装置
US8913812B2 (en) 2010-12-15 2014-12-16 Kabushiki Kaisha Toshiba Medical image processing apparatus
JP2015505690A (ja) * 2011-12-07 2015-02-26 コーニンクレッカ フィリップス エヌ ヴェ 3d医療灌流画像の視覚化
CN103988230A (zh) * 2011-12-07 2014-08-13 皇家飞利浦有限公司 3d医学灌注图像的可视化
CN103988230B (zh) * 2011-12-07 2019-04-05 皇家飞利浦有限公司 3d医学灌注图像的可视化
JP2014000182A (ja) * 2012-06-18 2014-01-09 Aze Ltd 医用画像生成装置及びプログラム
JP2014140679A (ja) * 2012-12-26 2014-08-07 Toshiba Corp 医用画像診断装置
WO2014104212A1 (ja) * 2012-12-26 2014-07-03 株式会社 東芝 医用画像診断装置
WO2014133104A1 (ja) * 2013-02-27 2014-09-04 株式会社東芝 X線診断装置及び画像処理装置
JP2014193320A (ja) * 2013-02-27 2014-10-09 Toshiba Corp X線診断装置及び画像処理装置
US10499871B2 (en) 2013-02-27 2019-12-10 Canon Medical Systems Corporation X-ray diagnostic apparatus and image processing apparatus
JP2015126868A (ja) * 2013-11-29 2015-07-09 株式会社東芝 医用画像処理装置、x線診断装置及び医用画像処理プログラム
JP2015226692A (ja) * 2014-06-02 2015-12-17 株式会社東芝 医用画像処理装置、医用画像処理方法およびプログラム
US11295487B2 (en) 2018-09-07 2022-04-05 Canon Medical Systems Corporation X-ray CT apparatus, medical image processing apparatus, and X-ray CT system

Also Published As

Publication number Publication date
US8032202B2 (en) 2011-10-04
JP4558645B2 (ja) 2010-10-06
US20060215889A1 (en) 2006-09-28
JPWO2004089218A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4558645B2 (ja) 画像表示方法及び装置
JP6968840B2 (ja) 医用画像処理法
US8538107B2 (en) Method for visualizing a sequence of tomographic volume data records for medical imaging
JP4980723B2 (ja) 画像生成方法及び画像生成装置
JP4767512B2 (ja) パフュージョンパラメータ画像の自動較正方法
JP6979151B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴画像処理方法
US20060239524A1 (en) Dedicated display for processing and analyzing multi-modality cardiac data
JP6017281B2 (ja) ステージ判定支援システム
US20100014729A1 (en) Multi-grayscale overlay window
CN100577107C (zh) 功能图像的显示方法和装置
JP2020192068A (ja) 画像診断支援装置、画像診断支援プログラム、および、医用画像取得装置
EP3671649A1 (en) Method and computer system for generating a combined tissue-vessel representation
US9905001B2 (en) Image processing apparatus and image processing method
JP4268695B2 (ja) 画像診断装置及び超音波診断装置
US20060173279A1 (en) Method for implementing a medical imaging examination procedure
JP2004133736A (ja) 医用画像表示方法及びその装置
WO2020179234A1 (ja) 画像診断支援装置および画像処理方法
US7280681B2 (en) Method and apparatus for generating a combined parameter map
US10552954B2 (en) Method and apparatus for generation of a physiologically-derived map correlated with anatomical image data
JP2007190208A (ja) 比較読影支援装置
JP2006051170A (ja) 画像診断装置、頭部虚血部位解析システム、頭部虚血部位解析プログラムおよび頭部虚血部位解析方法
CN105615906A (zh) 用于确定合成图像的方法、计算机程序、机器可读的数据载体和成像设备
JP6411072B2 (ja) 医用画像処理装置、医用画像処理方法およびプログラム
RU2627270C1 (ru) Способ формирования составного параметрического изображения из серии ангиографических цифровых субтракционных кадров
Chan et al. Interactive fusion and contrast enhancement for whole body PET/CT data using multi-image pixel composting

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505274

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048088445

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006215889

Country of ref document: US

Ref document number: 10551885

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10551885

Country of ref document: US