[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004080767A1 - Gas generator - Google Patents

Gas generator Download PDF

Info

Publication number
WO2004080767A1
WO2004080767A1 PCT/JP2004/003183 JP2004003183W WO2004080767A1 WO 2004080767 A1 WO2004080767 A1 WO 2004080767A1 JP 2004003183 W JP2004003183 W JP 2004003183W WO 2004080767 A1 WO2004080767 A1 WO 2004080767A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas generator
agent
generating agent
housing
Prior art date
Application number
PCT/JP2004/003183
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Yoshida
Eishi Sato
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Publication of WO2004080767A1 publication Critical patent/WO2004080767A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder

Definitions

  • the present invention relates to a gas generator suitable for inflating a side airbag or the like, and more particularly to a small, lightweight, and inexpensive gas generator.
  • Airbags are known. This airbag operates with a large amount of high-temperature, high-pressure gas generated by a gas generator.
  • gas generators that generate gas.
  • One is a hybrid system in which a high-pressure gas is held and a large amount of high-temperature, high-pressure gas is released by a small amount of explosive composition for supplying heat to the high-pressure gas in each cylinder ( For example, see JP-A-8-253100).
  • the other is a pie mouth system in which all generated gas is generated by burning a solid gas generating agent (for example, International Publication No. 01/74633 pamphlet, Japanese Patent Laid-Open No. 2002-362298, Japanese Patent Laid-Open No. 2002-002). -362299 and JP-A-2003-2153).
  • Japanese Patent Application Laid-Open No. 8-253100 discloses an eight-brid system, which requires two chambers, a gas filling chamber and an explosive composition chamber, which increases the size and weight.
  • the welding structure is mainly used, which increases costs.
  • the pie mouth type gas generator described as a known technology in the pamphlet of International Publication No. 01Z74633 has a filter chamber, a partition member, a combustion chamber, and an igniter.
  • this gas generator does not exhibit satisfactory combustion performance when a gas generating agent that does not easily burn is used.
  • the pie mouth type gas generator described in JP-A-2002-362298, JP-A-2002-362299 and JP-A-2003-2153 discloses a filter chamber, It has a partition, a combustion chamber, an igniter, and a transfer agent chamber.
  • a transfer agent chamber due to the provision of a transfer agent chamber, the number of parts has increased, and it has not yet been possible to reduce the size and weight of the gas generator.
  • the present invention has been made in view of the above problems, and has as its object to provide a gas generator that can be reduced in size, weight, and cost. Disclosure of the invention
  • a combustion chamber (6) filled with a gas generating agent (5) that generates high-temperature gas by combustion in a cylindrical housing (4), and a filter chamber (7) fitted with a filter material (7) 8) and an igniter (10) attached to an end (3) of the housing (4) and igniting and burning a gas generating agent (5) in the combustion chamber (6).
  • a generator (1) comprising a partition member (9) for partitioning the combustion chamber (6) and the filter chamber (8) in which the filter material (7) is mounted;
  • a gas generator characterized in that (6) is filled with an enhancer agent (14);
  • the combustion chamber (6) is filled with a gas generating agent (5) and an enhancer agent (14) so as to be in direct contact with each other.
  • a gas generating agent (5) and an enhancer agent (14) so as to be in direct contact with each other.
  • the partition member (9) is? The gas generator according to any one of [1] to [5], wherein the gas generator has a hole (18), and the hole (18) is closed by a sealing member (16). [7] The gas supply apparatus according to any one of [1] to [6], wherein the gas discharge hole (11) is provided in a cylindrical portion (20) of the filter chamber (8). Gas generator,
  • FIG. 1 is a sectional view of a gas generator according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view of a gas generator according to a second embodiment of the present invention.
  • FIG. 3 is a sectional view of a gas generator according to a third embodiment of the present invention.
  • a gas generator 1 is provided with a cylindrical housing 4, a combustion chamber 6 filled with a gas generating agent 5 that generates high-temperature gas by combustion, and a filter material 7.
  • the combustion chamber 6 is filled with the enhancer agent 14.
  • the gas generator 1 includes a cylindrical housing 4 having a bottom, and a filter chamber 8, a partition member 9, a combustion chamber 6, and an igniter 10 installed in the housing 4 in order from the bottom toward the opening.
  • the combustion chamber 6 is filled with the gas generating agent 5 on the partition member 9 side and the enhancer agent 14 on the igniter 10 side.
  • the combustion chamber 6 is provided with a gas generating agent layer and an enhancer agent layer in order from the partition member 9 toward the igniter 10.
  • the housing corresponding to one filter chamber 8 is provided with a gas discharge hole 11.
  • the enhancer agent and the gas generating agent adhere to each other, and the difference in the distance between the enhancer agent and the gas generating agent depends on the filling state of the gas generating agent. Does not occur, so the performance of the gas generator can be stabilized. it can.
  • the housing 4 has a bottomed cylindrical shape in which the other end 2 is closed and the end 3 is open. End 3 is preferably cylindrical with a bottom.
  • the outer diameter of the housing 4 is preferably 30 mm or less, more preferably 20 mm to 30 mm. Assuming that the thickness of the cylindrical portion 20 is 1, the ratio of the thickness of the cylindrical portion 20 of the housing 4 to the outer diameter of the housing 4 is preferably 1.9 to: L 0.7. , More preferably in the range of 3-6.8.
  • the other end 2 of the housing 4 may have any shape such as a rounded shape, a square shape, etc., but a powl shape (FIG. 1) or a flat bottom shape (FIGS. 2 and 3) as shown in the drawings described later. Is preferred. Therefore, even if the pressure in the housing increases, it does not deform. In addition, since the other end 2 is closed in this way, only the end 3 needs to be sealed, so that the number of parts can be reduced, and the sealing portion is only one at the end 3 Therefore, the safety of the gas generator 1 can be improved and the size can be reduced.
  • the housing 4 is formed of a metal such as iron, for example.
  • a gas discharge hole 11 is provided on the outer periphery of the other end 2 of the housing 4.
  • the gas discharge hole 11 is preferably provided in a position where no propulsive force is generated during inflation during gas release, for example, in the cylindrical portion 20 of the filter chamber 8, and a plurality of gas discharge holes may be provided, preferably It is more preferable that four are provided, and four are provided every 90 degrees on the same outer periphery.
  • the gas discharge holes 11 may be provided not only in one row in the axial direction but also in two or more rows. In this case, the gas discharge holes 11 may be provided in a zigzag shape. From these gas discharge holes 11, high-temperature, high-pressure gas generated by the combustion of the gas generating agent 5 in the combustion chamber 6 passes through the filter material 7 attached to the filter chamber 8, and cools down. Released after filtration.
  • the partition member 9 preferably has a flat cylindrical or columnar shape, has a hole 18, and is divided into a fill chamber and a gas generating chamber (combustion chamber) to form a two-chamber structure. This prevents the filter from being damaged (melted) by the heat of combustion.
  • the partition member 9 is made of, for example, stainless steel, iron, or the like.
  • Gas discharge hole 1 Inner side of housing 4 or partition member 9 or both On one side, a sealing member 16 such as an aluminum tape is attached. This seals the inside of the housing 4. It is preferable that the seal member 16 is attached to the upper surface of the partition member 9 and not attached to the gas discharge hole side. When the sealing member 16 has a flat cylindrical or columnar shape, its diameter may be at least 4 mm larger than the diameter of the hole 18. Attachment to the partition member 9 is simple, and this attachment can reduce the manufacturing cost of the gas generator.
  • a holder 12 for holding an igniter 10 is attached to an end 3 of the housing 4 to close the end 3 of the housing 4.
  • the igniter 10 is preferably one in which the embolus is formed of plastic or resin. This is because the cost can be reduced. Of course, it is also possible to use a conventionally used embolus made of glass.
  • the holder 12 is fitted to the end 3 of the housing 4, and is held by caulking with the shaft end 13 of the housing 4 to close the end 3 of the housing 4.
  • the filter material 7, the gas generating agent 5, the X enhancer agent 14 and the cushion material 15 are filled in this order from the other end 2, and the holder 1 to which the igniter 10 is fixed by force shrinkage. 2 is inserted. If necessary, a partition member 9 can be provided between the fill material 7 and the gas generating agent 5.
  • the filter material 7 for example, a cylindrical or cylindrical shape, preferably a cylindrical shape is used, depending on an assembly of a knitted wire mesh, a plain woven wire mesh, and a crimp woven metal wire.
  • the filter member 7 has a shape in which the other end 2 has a rounded shape. Is cylindrical or circular with the other end 2 rounded Those having a cylindrical shape are used.
  • FIG. 1 illustrates an example in which the other end 2 has a rounded cylindrical shape.
  • the filter material 7 preferably has a cylindrical or columnar shape, and in FIGS. An example having a shape like a letter is shown.
  • the filter member 7 is mounted in contact with the tip of the other end 2 of the housing 4.
  • the housing 4 is pressed and fixed to the other end 2 of the housing 4 by a partition member 9 formed of metal or the like that partitions the inside of the housing 4.
  • the partition member 9 is fixed in the housing 4 by being caulked (two caulking) from the outer peripheral portion of the housing 4 on both sides of the other end 2 and the end 3 of the partition member 9. Is divided into a filling chamber 8 and a combustion chamber 6.
  • the partitioning member 9 and the partitioning member 9 on the outer peripheral surface of the housing 4 are joined together so that the partitioning member 9 is inserted into the wall of the housing 4 by 0.1 mm or more from the outer peripheral end surface.
  • the two parts are straddled (for example, with a caulking force of 80 kN or more) to make them adhere to each other. ⁇ Length to be penetrated .. After cutting and exposing the relevant part, it can be measured with a magnifying microscope manufactured by Keyence Corporation.
  • the thickness of the outer peripheral end face of the partition member 9 is preferably 0.5 to 2.5 mm.
  • the wall thickness of the main body of the partition member 9 is preferably 2 to 5 mm.
  • the crimping interval is preferably in the range of 5 to 10 mm.
  • the thickness of the housing 4 is preferably 1.5 to 2.3 mm.
  • the partition member 9 is preferably made of SUS304.
  • a highly airtight gas generator can be obtained in combination with a sealing member such as an aluminum sheet.
  • a space 19 is formed in the filter material 7 so as to hollow out the filter material 7.
  • the gas generator 1 of the present invention which is preferably used for inflating the side airbag and the like, uses a relatively large amount of chemicals such as the gas generating agent 5, so that the partition member 9 is preferably used.
  • the filter chamber 8 and the combustion chamber 6 are partitioned to prevent damage to the filter due to the heat of combustion of the gas generating agent 5.
  • the gas generating agent 5 and the enhancer agent 14 are filled in the combustion chamber 6 while being in direct contact with each other while being divided into two layers, a layer of the gas generator 5 and a layer of the enhancer agent 14. ing.
  • the enhancer agent 14 is protected by the cushioning material 15 from being powdered by vibration.
  • a cross-shaped notch is formed in the cushion material 15 so as to reliably transmit the power of the flame from the igniter 10 to the enhancer agent 14 without delay.
  • the cushion material 15 for example, it is preferable to form a ceramic fiber, a foamed silicon or the like, and to use an elastic material such as a silicon rubber or a silicone foam.
  • the gas generating agent 5 may be a non-azide-based composition, for example, a material composed of a fuel, an oxidizing agent, and additives (binder, slag forming agent, combustion regulator).
  • Examples of the fuel include a nitrogen-containing compound.
  • Examples of the nitrogen-containing compound include one or a mixture of two or more selected from a triazole derivative, a tetrazole derivative, a guanidine derivative, an azodicarbonamide derivative, a hydrazine derivative, and a urea derivative ammine complex.
  • triazole derivative examples include, for example, 5-oxo-1,2,4-triazole, aminotriazole and the like.
  • tetrazole derivatives include, for example, tetrazole, 5-aminotetrazole, aminotetrazol nitrate, nitroaminotetrazole, 5,5, -bi-1H-tetrazole, 5,5,1B-1H-tetrazole diammonium Pum salt, 5,5,1-azotetrazo-l-diguanidium salt and the like.
  • guanidine derivative examples include, for example, guanidine, nitroguanidine, cyanoguanidine, triaminoguanidine nitrate, guanidine nitrate, aminoguanidine nitrate, guanidine carbonate and the like.
  • azodicarbonamide derivative examples include, for example, azodicarbonamide.
  • hydrazine derivative examples include, for example, lipohydrazide, lipohydrazide nitrate complex, oxalic acid dihydrazide, hydrazine nitrate complex, and the like. Is mentioned.
  • the rare derivatives include biuret.
  • ammine complex examples include hexammine copper complex, hexammine cobalt complex, tetraammine copper complex, and tetraammine zinc complex.
  • nitrogen-containing compounds one or two or more selected from tetrazole derivatives and guanidine derivatives are preferable, and nitroguanidine, guanidine nitrate, cyanoguanidine, 5-aminotetrazole, aminoguanidine nitrate, and guanidine carbonate are particularly preferable.
  • the mixing ratio of these nitrogen-containing compounds in the gas generating agent 5 varies depending on the number of carbon atoms, hydrogen atoms and other oxidized atoms in the molecular formula, but is usually preferably in the range of 20 to 70% by weight. A range of 30 to 60% by weight is particularly preferred.
  • the absolute value of the mixing ratio of the nitrogen-containing compound varies depending on the type of the oxidizing agent added to the gas generating agent. However, if the absolute value of the compounding ratio of the nitrogen-containing compound is larger than the theoretical amount of complete oxidation, the concentration of trace CO in the generated gas increases, while the absolute value of the compounding ratio of the nitrogen-containing compound is Below this, the concentration of trace NOX in the generated gas increases.
  • the oxidizing agent is preferably an oxidizing agent selected from at least one of a nitrate-nitrite perchlorate containing a cation selected from an alkali metal, an alkaline earth metal, a transition metal, and ammonium.
  • Oxidants other than nitrates that is, oxidants widely used in the field of airbag inflation, such as nitrite and perchlorate, can also be used, but the number of oxygen in nitrite molecules decreases as compared to nitrate.
  • Nitrate is preferred from the viewpoint of reducing the production of fine mist that is easily released to the outside of the bag.
  • nitrate examples include sodium nitrate, potassium nitrate, magnesium nitrate, strontium nitrate, phase-stabilized ammonium nitrate, and basic copper nitrate.Strontium nitrate, phase-stabilized ammonium nitrate, and basic copper nitrate are exemplified. More preferred.
  • the mixing ratio of the oxidizing agent in the gas generating agent 5 is more definitely numeric type and amount of the nitrogen-containing compound used different 3 0-8 0 wt% range are preferred, particularly above CO and N_ ⁇ x A range from 40 to 75% by weight in relation to the concentration is preferred.
  • the binder does not significantly affect the combustion behavior of the gas generant, Any of these can be used.
  • the binder include metal salts of propyloxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, nitrocellulose, microcrystalline cellulose, guar gum, polyvinyl alcohol, and polyacrylamide.
  • the mixing ratio of the binder is preferably in the range of 0 to 10% by weight in the case of press molding, and is preferably in the range of 2 to 15% by weight in extrusion molding.
  • the breaking strength of the molded body increases.
  • the concentration of trace CO gas which is the product of incomplete combustion of carbon atoms, increases, and the quality of generated gas deteriorates.
  • the use of a minimum amount is preferable because it inhibits the combustion of the gas generating agent.
  • the amount exceeds 15% by weight the relative proportion of the oxidizing agent must be increased, and the relative proportion of the gas generating compound decreases, making it difficult to establish a practical gas generator system.
  • a slag forming agent can be blended as a component other than the binder.
  • the slag forming agent is added in order to facilitate the filtration through the filter material 7 in the gas generator 1 due to the interaction with the metal oxide generated from the oxidizing agent component in the gas generating agent.
  • the slag forming agent examples include, for example, naturally occurring clay, mainly composed of aluminosilicates such as silicon nitride, silicon carbide, acid clay, silica, bentonite, and violin, synthetic viscous power, and synthetic viability. And clay selected from artificial clay such as synthetic smectite and talc which is a kind of hydrous magnesium maleate mineral. Among them, acidic clay or silica is preferred, and acidic clay is particularly preferred.
  • the mixing ratio of the slag forming agent is preferably in the range of 0 to 20% by weight, and particularly preferably in the range of 2 to 10% by weight. If the amount is too large, the linear burning speed and the gas generation efficiency decrease, and if the amount is too small, the slag forming ability cannot be sufficiently exhibited.
  • gas generating agent 5 examples include 5-aminotetrazole, strontium nitrate, synthetic hydrotalcite, and a gas generating agent containing silicon nitride, or Gas generators containing guanidine nitrate, strontium nitrate, basic copper nitrate, and acid clay are listed.
  • a combustion regulator may be added as needed.
  • a combustion regulator metal oxides, silicon oxide in the mouth, activated carbon, graphite, or a combination explosive such as hexogen, octogen, 5-oxo-3-nitro-1,2,4-triazole can be used.
  • the mixing ratio of the combustion regulator is preferably in the range of 0 to 20% by weight, and particularly preferably in the range of 2 to 10% by weight. If the amount is too large, the gas generation efficiency is reduced, and if the amount is too small, a sufficient combustion rate cannot be obtained.
  • the gas generating agent 5 having the above-described configuration is preferably formed by press molding or extrusion, more preferably an extruded product, and has a shape such as a pellet shape (generally, a shape of a drug. Tablet), columnar, cylindrical, disk-shaped or hollow with both ends closed.
  • the cylindrical shape includes a cylindrical shape, and the cylindrical shape includes a single-hole cylindrical shape and a porous cylindrical shape.
  • the hollow body shape with both ends closed includes a cylindrical shape with both ends closed.
  • the state in which both ends of the molded body of the gas generating agent 5 are closed means a state in which the holes opened at both ends are closed by two forces from outside to inside. The holes can be completely closed or not closed.
  • the non-azide composition composed of the nitrogen-containing compound, the oxidizing agent, the slag forming agent and the binder is first mixed by a V-type mixer, a pole mill or the like. Further, mixing is performed while adding water or a solvent (eg, ethanol) to obtain a wet drug mass.
  • a solvent eg, ethanol
  • the wet state is a state having a certain degree of plasticity, and preferably contains water or a solvent in a content of preferably 10 to 25% by weight, more preferably 13 to 18% by weight.
  • the wet drug mass is directly used by an extruder (for example, a device provided with a die and a pin for an inner hole at an outlet), and the outer diameter is preferably 1.4 mm to 4 mm. Preferably 1.5 mn! It is extruded into a hollow cylindrical molded body having an inner diameter of preferably 0.3 mm to 1.2 mm, more preferably 0.5 mm to 1.2 mm. After that, the hollow cylindrical molded body extruded by the extruder is pressed at regular intervals, A shaped body is obtained.
  • an extruder for example, a device provided with a die and a pin for an inner hole at an outlet
  • the hollow cylindrical molded body is pressed at regular intervals, and then cut in such a manner that each of the hollow cylindrical molded bodies is folded at a closed dent portion, and then usually cut at a temperature of 50 to 60 ° C for 4 to 1 ° C. After drying for two hours, usually in a temperature range of 105 ° C to 120 ° C for 6 to 10 hours, the inner part is dried with the end closed.
  • a cylindrical gas generating agent having a space can be obtained.
  • the length of the gas generating agent thus obtained is usually in the range of 1.5 to 8 mm, preferably in the range of 1.5 to 7 mm, more preferably in the range of 2 to 6.5 mm. In the range.
  • the linear burning velocity of the gas generating agent is measured under a constant pressure condition, and empirically follows the equation of Vie11e.
  • r is the linear burning rate
  • a is a constant
  • P is the pressure
  • n is the pressure index.
  • This pressure index n indicates the slope of the logarithmic plot of the pressure on the X-axis against the logarithm of the combustion velocity on the Y-axis.
  • the preferred range of the linear burning rate of the gas generating agent used in the gas generator according to the present embodiment is 3 to 60 mmZ seconds under 70 kgf / cm2, more preferably 5 to 35 mm / sec.
  • the methods for measuring the linear burning rate include the strand burner method, small motor method, and closed pressure vessel method. Specifically, after press-molding to a predetermined size, the burning rate is measured in a high-pressure vessel by a method such as a fuse cutting method using a test piece obtained by applying a restrictive liquid to the surface. At this time, the linear combustion rate is measured using the pressure in the high-pressure vessel as a variable, and the pressure index can be obtained from the above equation Vie11e.
  • the gas generating agent is formed as a non-azide gas generating agent, the raw materials used are those that are less harmful to humans.
  • the amount of heat generated per mole of generated gas can be suppressed, and the size and weight of the gas generator can be reduced.
  • the enhancer agent 14 that is filled in the combustion chamber 6 in contact with the gas generating agent 5 configured as described above is a composition generally used as an enhancer agent as follows.
  • Metal powder represented by B / KN_ ⁇ 3 the oxidizing agent containing composition, the composition comprising a nitrogen-containing compound oxidizing agent Z metal powder, or the like can be given the same composition as the gas generating agent 5 above.
  • the nitrogen-containing compound include those usable as a fuel component of a gas generating agent (aminotetrazole, guanidine nitrate, etc.).
  • the oxidizing agent include nitrates such as potassium nitrate, sodium nitrate, and strontium nitrate.
  • the metal powder examples include boron, magnesium, aluminum, madanarium (magnesium-aluminum alloy), titanium, zirconium, and tungsten.
  • Preferred combinations include those containing 5-aminotetrazole, potassium nitrate, and boron, guanidine nitrate, potassium nitrate, boron, and the like.
  • a molding binder may be contained in an amount of 0 to 10% by weight.
  • the shape of the enhancer agent 14 is preferably a molded product obtained by press molding or extrusion molding, more preferably an extruded molded product, the shape of which is a pellet (generally corresponding to the shape of a pharmaceutical tablet) or a column. , A cylinder, a disk, or a hollow body with both ends closed.
  • the cylindrical shape includes, for example, a cylindrical shape, and the cylindrical shape includes, for example, a single-hole cylindrical shape, a porous cylindrical shape, and the like.
  • the hollow body shape with both ends closed includes a cylindrical shape with both ends closed.
  • the outer diameter of the enhancer agent 14 is 1 mm or more, preferably 1 mm to 5 mm, and more preferably 1 to 3 mm.
  • the height of the agent 14 is preferably 1 mm to 5 mm.
  • the gas generating agent 5 and the enhancer agent 14 are preferably filled in the combustion chamber 6 in contact with each other. Therefore, there is no difference in the distance between the enhancer agent 14 and the gas generating agent 5 due to the difference in the filling state of the gas generating agent 5, so that the performance of the gas generator 1 can be stabilized.
  • the enhancer agent 14 preferably in a columnar shape, it is difficult to enter the gap of the gas generating agent 5 when the enhancer agent 14 is filled, so that the enhancer agent 14 is harder to enter into the gap than the powder or granular form. Even after being attached to a car or the like, it is possible to suppress mixing of these in the combustion chamber 6.
  • the gas generator 1 sends a signal to the igniter 10 to ignite.
  • the flame of the igniter 10 ruptures and opens the cushion material 15 and then squirts into the combustion chamber 6 to ignite the enhancer agent 14 and forcibly ignite and burn the gas generating agent 5.
  • the ignition combustion of the gas generating agent 5 is sequentially transferred from the end 3 of the housing 4 to the filter material 7 side.
  • the high-temperature gas generated in the combustion chamber 6 passes through the hole 18, enters the filter material 7, and flows into the housing 4. Here, through slag collection and cooling, it becomes a clean gas. This clean gas is discharged from the gas discharge holes 11.
  • the sufficiently cooled and clean gas discharged from the gas discharge holes 11 is directly introduced into the inside of an air belt, an airbag, or the like, and instantly expands.
  • the gas generator 17 according to the present invention differs from the gas generator 1 according to the first embodiment shown in FIG. 1 in that the other end 2 of the housing has a flat bottom shape and a filter material. 7 is a cylindrical point. Even in this case, just like the gas generator 1 of the present invention, since the other end 2 is closed, only the end 3 needs to be sealed, and the number of parts can be reduced, and Since the sealing portion can be formed at only one portion of the end portion 3, the safety of the gas generator can be improved and the size can be reduced.
  • the high-temperature gas generated in the combustion chamber 6 passes through the hole 18, enters the space 19 of the filter member 7, passes through the filter member 7, and passes through the slag. After being collected and cooled, it becomes a clean gas and is released from the gas discharge holes 11.
  • the filter material 7 since the filter material 7 is cylindrical, the cooling efficiency of the filter material 7 is increased by increasing the surface area of the gas passage. As a result, the weight of the filter material 7 can be reduced, and the effect that the weight of the gas generator can be further reduced can be expected. Note that, in this embodiment, the same reference numerals are used for parts common to the gas generator 1 in the above-described first embodiment, and detailed description is omitted.
  • a gas generator 45 according to a third embodiment of the present invention will be described with reference to FIG.
  • the same reference numerals are used for parts common to the gas generator 1 in the first embodiment and the gas generator 17 in the second embodiment. The detailed description is omitted.
  • a gas generator 45 according to the present invention differs from the gas generator 1 according to the first embodiment shown in FIG. 1 in that the other end 2 of the housing has a flat bottom shape, and a filter material. 7 is a cylindrical point and the gas discharge holes 11 are arranged in two rows in the axial direction.
  • the difference from the gas generator 17 according to the second embodiment shown in FIG. 2 is that the gas discharge holes 11 are arranged in two rows in the axial direction.
  • the gas generated in the housing 4 is released without being concentrated by being arranged in two rows in the direction of the force of the gas discharge holes 11. Suppress damage to material 7.
  • the filter material 7 can be used in a wide range, and the filter material 7 can be used efficiently.
  • the gas generators 1, 1 745 of the present invention are suitably used as side (side collision) gas generators.
  • Example of manufacturing a gas generating agent in the form of a hollow body with both ends closed for use in a gas generator 43.5% by weight of guanidine nitrate, 25% by weight of strontium nitrate, 25% by weight of basic copper nitrate, 2% by weight of acid clay 5% by weight and 4% by weight of polyacrylamide were mixed with 3% by weight of ethanol and 13% by weight of water. The mixture was mixed and kneaded to form a kneaded mass. And an extruder equipped with an inner hole pin with an outer diameter of 0.5 mm, extruded at an extrusion pressure of 8 MPa, and sent out between molding gears while taking out an extruded rod-like molded product with a take-off belt.
  • Depressions were formed at intervals of 4.4 mm by the convex teeth of the molding gear, and cut off at the depressions. Thereafter, drying was performed at 55 ° C. for 8 hours, and then at 110 ° C. for 8 hours to obtain a gas generating agent.
  • the gas generator of this invention even if the gas generator is reduced in size and weight, it is possible to safely cool and discharge the high-temperature gas generated by the combustion of the gas generating agent. It becomes. Also, by filling the combustion chamber with the enhancer agent and the gas generating agent, the enhancer agent and the gas generating agent adhere to each other, and the difference in the distance between the enhancer agent and the gas generating agent due to the difference in the filling state of the gas generating agent. Since no gas is generated, the performance of the gas generator can be stabilized.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

A micro gas generator (1) having an automatic igniting function operating before being made brittle by heat without losing the cleanliness of exhaust gas, comprising a combustion chamber (6) in which gas generating agent (5) generating hot gas by combustion is filled, a filter chamber (8) in which a filter material (7) is installed, and an ignitor (10) fitted to the end part (3) of a tubular housing (4) and igniting and burning the gas generating agent (5) in the combustion chamber (6) all of which are installed in the housing (4). The gas generator is characterized by comprising a partition member (9) to separate the combustion chamber (6) from the filter chamber (8) in which the filter material (7) is installed, wherein an enhancer agent (14) is filled in the combustion chamber (6).

Description

明 細 書 ガス発生器 技術分野  Description Gas generator Technical field
本発明は、 サイド用エアバッグ等を膨張させるのに好適なガス発生器に関し、 特に、 小型、 軽量、 安価なガス発生器に関する。 背景技術  The present invention relates to a gas generator suitable for inflating a side airbag or the like, and more particularly to a small, lightweight, and inexpensive gas generator. Background art
自動車の衝突時に生じる衝撃から乗員を保護するための安全装置の 1つとして As one of the safety devices to protect the occupants from the impact caused by a car collision
、 エアバッグが知られている。 このエアバッグは、 ガス発生器が発生する多量の 高温、 高圧ガスにて作動するものである。 従来、 このガス発生器がガスを発生す る方式として、 大きく分けて 2種類のものが知られている。 1つは、 高圧のガス が保持されたボンベと、 各ボンべ中の高圧のガスに熱を供給するための少量の火 薬組成物により大量の高温 ·高圧ガスを放出せしめるハイブリッド方式である ( 例えば、特開平 8— 253100号公報参照)。 もう一つは、発生するガスを全て 固体のガス発生剤を燃焼させて生成するパイ口方式である (例えば、 国際公開第 01/74633号パンフレツト、 特開 2002— 362298号公報、 特開 2 002-362299号公報及び特開 2003— 2153号公報参照)。 Airbags are known. This airbag operates with a large amount of high-temperature, high-pressure gas generated by a gas generator. Conventionally, there are two broad types of known gas generators that generate gas. One is a hybrid system in which a high-pressure gas is held and a large amount of high-temperature, high-pressure gas is released by a small amount of explosive composition for supplying heat to the high-pressure gas in each cylinder ( For example, see JP-A-8-253100). The other is a pie mouth system in which all generated gas is generated by burning a solid gas generating agent (for example, International Publication No. 01/74633 pamphlet, Japanese Patent Laid-Open No. 2002-362298, Japanese Patent Laid-Open No. 2002-002). -362299 and JP-A-2003-2153).
近年、 ガス発生器に求められる性能として、 小型化 ·低コストがあげられる。 例えば、 特開平 8— 253100号に記載のものは、 八イブリッド方式のため、 ガス充填室と火薬組成物室の 2室が必要であり、 大型化し重量も増加する。 また 溶接構造が主であり、 コスト的にも高くなる。  In recent years, the performance required for gas generators includes miniaturization and low cost. For example, Japanese Patent Application Laid-Open No. 8-253100 discloses an eight-brid system, which requires two chambers, a gas filling chamber and an explosive composition chamber, which increases the size and weight. In addition, the welding structure is mainly used, which increases costs.
上記国際公開第 01Z74633号パンフレットに公知技術として記載されて いるパイ口式ガス発生器は、 フィルタ室、 仕切り部材、 燃焼室、 点火器を有して いる。 しかし、 このガス発生器は、 燃焼しにくいガス発生剤を使用すると、 満足 な燃焼性能を発揮しない。  The pie mouth type gas generator described as a known technology in the pamphlet of International Publication No. 01Z74633 has a filter chamber, a partition member, a combustion chamber, and an igniter. However, this gas generator does not exhibit satisfactory combustion performance when a gas generating agent that does not easily burn is used.
また、 特開 2002— 362298号公報、 特開 2002— 362299号公 報及び特開 2003— 2153号公報記載のパイ口式ガス発生器は、フィルタ室、 仕切り板、 燃焼室、 点火器を有し、 さらに、 伝火剤室を設けている。 しかしなが ら、 伝火剤室を設けているため、 部品点数が増え、 ガス発生器の小型化、 軽量化 を実現するには至っていない。 In addition, the pie mouth type gas generator described in JP-A-2002-362298, JP-A-2002-362299 and JP-A-2003-2153 discloses a filter chamber, It has a partition, a combustion chamber, an igniter, and a transfer agent chamber. However, due to the provision of a transfer agent chamber, the number of parts has increased, and it has not yet been possible to reduce the size and weight of the gas generator.
本発明は、 上記問題点に鑑みてなされたものであり、 小型化、 軽量化、 低コス ト化が可能なガス発生器を提供することを目的とする。 発明の開示  The present invention has been made in view of the above problems, and has as its object to provide a gas generator that can be reduced in size, weight, and cost. Disclosure of the invention
即ち、 本発明は、  That is, the present invention
〔1〕筒状ハウジング(4)内に、燃焼により高温ガスを発生するガス発生剤(5) が充填される燃焼室 (6) と、 フィルター材 (7) が装着されるフィル夕 一室 (8) と、 前記ハウジング (4) の端部 (3) に装着され、 前記燃焼 室 (6) 内のガス発生剤 (5) を着火燃焼させる点火器 (10) と、 を有 してなるガス発生器 (1) であって、 前記燃焼室 (6) と前記フィルター 材(7)が装着される前記フィル夕一室(8)とを区画する仕切り部材(9) を有し、 前記燃焼室 (6) 内に、 ェンハンサ剤 (14) が充填されている ことを特徵とするガス発生器、  [1] A combustion chamber (6) filled with a gas generating agent (5) that generates high-temperature gas by combustion in a cylindrical housing (4), and a filter chamber (7) fitted with a filter material (7) 8) and an igniter (10) attached to an end (3) of the housing (4) and igniting and burning a gas generating agent (5) in the combustion chamber (6). A generator (1), comprising a partition member (9) for partitioning the combustion chamber (6) and the filter chamber (8) in which the filter material (7) is mounted; A gas generator characterized in that (6) is filled with an enhancer agent (14);
〔2〕 前記ェンハンサ剤 (14) が前記点火器 (10) 側に充填されていること を特徴とする 〔1〕 に記載のガス発生器、  [2] The gas generator according to [1], wherein the enhancer agent (14) is filled in the igniter (10) side.
〔3〕 前記ェンハンサ剤 (14) が、 成形体であることを特徴とする 〔1〕 又は 〔2〕 に記載のガス発生器、  (3) The gas generator according to (1) or (2), wherein the enhancer agent (14) is a molded product.
〔4〕 前記燃焼室 (6) 内に、 ガス発生剤 (5) とェンハンサ剤 (14) とが直 接接触するように充填されていることを特徴とする 〔1〕 〜 〔3〕 のいず れか一項に記載のガス発生器、  [4] The combustion chamber (6) is filled with a gas generating agent (5) and an enhancer agent (14) so as to be in direct contact with each other. [1] to [3] The gas generator according to any one of the above,
〔5〕 前記ガス発生剤 (5) が、 両端が閉鎖された中空体形状又は円柱状である ことを特徴とする 〔1〕 〜 〔4〕 のいずれか一項に記載のガス発生器、 (5) The gas generator according to any one of (1) to (4), wherein the gas generating agent (5) has a hollow body shape or a column shape having both ends closed.
〔6〕 前記仕切り部材 (9) は、 ?し (18) を有し、 該孔 (18) は、 シール部 材 (16) で封鎖されていることを特徴とする 〔1〕 〜 〔5〕 のいずれか 一項に記載のガス発生器、 〔7〕 ガス放出孔 (1 1 ) が、 前記フィルタ一室 (8 ) の円筒部 (2 0 ) に設け られていることを特徴とする 〔1〕 〜 〔6〕 のいずれか一項に記載のガス 発生器、 [6] The partition member (9) is? The gas generator according to any one of [1] to [5], wherein the gas generator has a hole (18), and the hole (18) is closed by a sealing member (16). [7] The gas supply apparatus according to any one of [1] to [6], wherein the gas discharge hole (11) is provided in a cylindrical portion (20) of the filter chamber (8). Gas generator,
〔8〕 前記仕切り部材 (9 ) が、 ハウジング (4 ) の外周部分からかしめられる ことを特徴とする 〔1〕 〜 〔7〕 のいずれか一項に記載のガス発生器、 に関する。 図面の簡単な説明  [8] The gas generator according to any one of [1] to [7], wherein the partition member (9) is swaged from an outer peripheral portion of the housing (4). BRIEF DESCRIPTION OF THE FIGURES
第 1図は、本発明に係わるガス発生器の第 1の実施形態における断面図である。 第 2図は、 本発明に係わるガス発生器の第 2の実施形態における断面図である。 第 3図は、 本発明に係わるガス発生器の第 3の実施形態における断面図である。 発明を実施するための最良の形態  FIG. 1 is a sectional view of a gas generator according to a first embodiment of the present invention. FIG. 2 is a sectional view of a gas generator according to a second embodiment of the present invention. FIG. 3 is a sectional view of a gas generator according to a third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係るガス発生器の第 1の実施形態の一例を、 第 1図を参照して説明す る。 第 1図において、 ガス発生器 1は、 筒状のハウジング 4と、 ハウジング 4内 を、 燃焼により高温ガスを発生するガス発生剤 5が充填される燃焼室 6と、 フィ ルター材 7が装着されるフィルタ一室 8と、 両室を区画する仕切り部材 9と、 ハ ウジング 4の端部 3に装着され、 燃焼室 6内のガス発生剤 5を着火燃焼させる点 火器 1 0と、 を有し、 燃焼室 6内に、 ェンハンサ剤 1 4が充填されている。  An example of the first embodiment of the gas generator according to the present invention will be described with reference to FIG. In FIG. 1, a gas generator 1 is provided with a cylindrical housing 4, a combustion chamber 6 filled with a gas generating agent 5 that generates high-temperature gas by combustion, and a filter material 7. A filter member 8 for partitioning the two chambers, and a firearm 10 attached to the end 3 of the housing 4 for igniting and burning the gas generating agent 5 in the combustion chamber 6. The combustion chamber 6 is filled with the enhancer agent 14.
即ち、 ガス発生器 1は、 有底筒状のハウジング 4と、 ハウジング 4内に、 底部 より開口部に向って順に、 フィルタ—室 8、 仕切り部材 9、 燃焼室 6、 点火器 1 0が設置されている。 そして、 燃焼室 6には、 仕切り部材 9側にガス発生剤 5が 充填され、 点火器 1 0側にェンハンサ剤 1 4が充填されている。 別の言葉で述べ ると、 燃焼室 6は、 仕切り部材 9より、 点火器 1 0に向って順に、 ガス発生剤層 とェンハンサ剤層が設けられている。 また、 フィルタ一室 8に対応するハウジン グには、 ガス放出孔 1 1が設けられている。  That is, the gas generator 1 includes a cylindrical housing 4 having a bottom, and a filter chamber 8, a partition member 9, a combustion chamber 6, and an igniter 10 installed in the housing 4 in order from the bottom toward the opening. Have been. The combustion chamber 6 is filled with the gas generating agent 5 on the partition member 9 side and the enhancer agent 14 on the igniter 10 side. In other words, the combustion chamber 6 is provided with a gas generating agent layer and an enhancer agent layer in order from the partition member 9 toward the igniter 10. The housing corresponding to one filter chamber 8 is provided with a gas discharge hole 11.
燃焼室 6にガス発生剤層とェンハンサ剤層が設けられることで、 ェンハンサ剤 とガス発生剤とが密着し、 ガス発生剤の充填状況の違いによってェンハンサ剤と ガス発生剤との距離の差が生じないため、 ガス発生器の性能を安定させることが できる。 By providing a gas generating agent layer and an enhancer agent layer in the combustion chamber 6, the enhancer agent and the gas generating agent adhere to each other, and the difference in the distance between the enhancer agent and the gas generating agent depends on the filling state of the gas generating agent. Does not occur, so the performance of the gas generator can be stabilized. it can.
ハウジング 4は、 その他端部 2が閉塞し、 端部 3が開放した有底筒状であるこ とが好ましい。端部 3は、好ましくは有底円筒状である。ハウジング 4の外径は、 3 O mm以下が好ましく、 2 O mm以上〜 3 0 mm以下の範囲にあるものがより 好ましい。このハウジング 4の円筒部 2 0の厚みとハウジング 4の外径との比は、 その円筒部 2 0の厚みを 1とすると、 その外径は、 好ましくは、 1 . 9〜: L 0 . 7の範囲にあり、 より好ましくは、 3〜6 . 8の範囲にある。  It is preferable that the housing 4 has a bottomed cylindrical shape in which the other end 2 is closed and the end 3 is open. End 3 is preferably cylindrical with a bottom. The outer diameter of the housing 4 is preferably 30 mm or less, more preferably 20 mm to 30 mm. Assuming that the thickness of the cylindrical portion 20 is 1, the ratio of the thickness of the cylindrical portion 20 of the housing 4 to the outer diameter of the housing 4 is preferably 1.9 to: L 0.7. , More preferably in the range of 3-6.8.
ハウジング 4の他端部 2は、丸みを帯びた形状、角ばつた形状等何でも良いが、 後述の図面にあるようなポウル形状 (第 1図) 又は平底形状 (第 2図、 第 3図) が好ましい。 このため、 ハウジング内の圧力が上昇した場合であっても、 変形す ることがない。 また、 他端部 2がこのように閉塞しているため、 端部 3のみを封 止すればよく、 部品点数を減少することができるとともに、 封止部分を端部 3の 一箇所のみとすることができるため、 ガス発生器 1の安全性を高めるとともに、 小型化することが可能となる。 なお、 ハウジング 4は、 例えば鉄等の金属で形成 されている。  The other end 2 of the housing 4 may have any shape such as a rounded shape, a square shape, etc., but a powl shape (FIG. 1) or a flat bottom shape (FIGS. 2 and 3) as shown in the drawings described later. Is preferred. Therefore, even if the pressure in the housing increases, it does not deform. In addition, since the other end 2 is closed in this way, only the end 3 needs to be sealed, so that the number of parts can be reduced, and the sealing portion is only one at the end 3 Therefore, the safety of the gas generator 1 can be improved and the size can be reduced. The housing 4 is formed of a metal such as iron, for example.
また、 ハウジング 4の他端部 2の外周にはガス放出孔 1 1が設けられている。 ガス放出孔 1 1は、 ガス放出時にインフレ一夕に推進力を生じない位置、 例えば フィルタ一室 8の円筒部 2 0に設けることが好ましく、 また、 複数個設けられて いても良く、 好ましくは、 4個設けられ、 同一外周上に 9 0度毎に 4個設けられ るのがより好ましい。 ガス放出孔 1 1は、 軸方向に 1列のみならず、 2列以上の 複数列に設けられていても良い。 この場合、 ガス放出孔 1 1は、 ジグザグ状に設 けられていても良い。 これらガス放出孔 1 1から、 燃焼室 6内でガス発生剤 5の 燃焼により発生した高温、 高圧のガスが、 フィル夕一室 8に装着されているフィ ルター材 7を通過して、 冷却、 濾過されて放出される。  Further, a gas discharge hole 11 is provided on the outer periphery of the other end 2 of the housing 4. The gas discharge hole 11 is preferably provided in a position where no propulsive force is generated during inflation during gas release, for example, in the cylindrical portion 20 of the filter chamber 8, and a plurality of gas discharge holes may be provided, preferably It is more preferable that four are provided, and four are provided every 90 degrees on the same outer periphery. The gas discharge holes 11 may be provided not only in one row in the axial direction but also in two or more rows. In this case, the gas discharge holes 11 may be provided in a zigzag shape. From these gas discharge holes 11, high-temperature, high-pressure gas generated by the combustion of the gas generating agent 5 in the combustion chamber 6 passes through the filter material 7 attached to the filter chamber 8, and cools down. Released after filtration.
仕切り部材 9は、 好ましくは、 平たい円筒状又は円柱状の形状をし、 孔 1 8を 有し、 フィル夕一室とガス発生剤室 (燃焼室) を分けて 2室構造にし、 ガス発生 剤の燃焼熱によるフィルターの損傷 (溶融) を防止している。 仕切り部材 9は、 例えば、 ステンレス、 鉄等でできている。  The partition member 9 preferably has a flat cylindrical or columnar shape, has a hole 18, and is divided into a fill chamber and a gas generating chamber (combustion chamber) to form a two-chamber structure. This prevents the filter from being damaged (melted) by the heat of combustion. The partition member 9 is made of, for example, stainless steel, iron, or the like.
ガス放出孔 1 1のハウジング 4の内周側、 仕切り部材 9のどちらか一方又は双 方には、 例えばアルミニウムテープ等のシール部材 1 6が貼付される。 これによ りハウジング 4内をシールしている。 シール部材 1 6は、 仕切り部材 9の上面に 貼付され、 ガス放出孔側には貼付されていないことが好ましい。 シール部材 1 6 が平たい円筒状又は円柱状の形状の場合、 その径は、 孔 1 8の径よりも 4 mm以 上大きいものであっても良い。仕切り部材 9への貼付は、簡便であり、該貼付は、 ガス発生器の製造コストの低減になりうる。 Gas discharge hole 1 1 Inner side of housing 4 or partition member 9 or both On one side, a sealing member 16 such as an aluminum tape is attached. This seals the inside of the housing 4. It is preferable that the seal member 16 is attached to the upper surface of the partition member 9 and not attached to the gas discharge hole side. When the sealing member 16 has a flat cylindrical or columnar shape, its diameter may be at least 4 mm larger than the diameter of the hole 18. Attachment to the partition member 9 is simple, and this attachment can reduce the manufacturing cost of the gas generator.
ハウジング 4の端部 3には、 点火器 1 0を保持するホルダ 1 2が装着されて、 ハウジング 4の端部 3を閉鎖している。 点火器 1 0としては、 塞栓がプラスチッ ク、 樹脂で形成されているものが好ましい。 これによつて、 低コスト化が可能と なるからである。 もちろん、 従来から用いられている、 塞栓がガラスで形成され ているものを使用することもできる。  A holder 12 for holding an igniter 10 is attached to an end 3 of the housing 4 to close the end 3 of the housing 4. The igniter 10 is preferably one in which the embolus is formed of plastic or resin. This is because the cost can be reduced. Of course, it is also possible to use a conventionally used embolus made of glass.
点火器 1 0の中には、 着火薬が含まれており、 着火薬は、 好ましくは、 ジルコ ニゥム (Z r )、 タングステン (W)、 過塩素酸カリウム (K C 1〇4 ) を成分に 持ち、 バインダとしてフッ素ゴムや二トロセルロース等を用いたものを使用する ことが好ましい。 また、 ジルコニウム、 タングステン、 過塩素酸カリウムの組成 比 (重量比) は、 Z r : W: K C 1〇4 = 3 : 3 . 0〜4. 0 : 3 . 0〜4. 0 が好ましく、 Z r : W: K C 1〇4 = 3 : 3 . 5 : 3 . 5がより好ましい。 また、 ホルダ 1 2は、 ハゥジング 4の端部 3に嵌揷され、 ハウジング 4の軸端 部 1 3とともにかしめることによって、 保持されて、 ハウジング 4の端部 3を閉 鎖している。 Some igniter 1 0 includes a igniting agent, the ignition agent is preferably zirconyl Niumu (Z r), tungsten (W), potassium perchlorate (KC 1_Rei 4) has a component It is preferable to use a binder using fluororubber or nitrocellulose as the binder. Also, zirconium, tungsten, the composition ratio of potassium perchlorate (weight ratio), Z r: W: KC 1_Rei 4 = 3:.. 3 0-4 0:.. 3 0-4 0 are preferred, Z r: W: KC 1_Rei 4 = 3:. 3 5:. 3 5 is more preferable. The holder 12 is fitted to the end 3 of the housing 4, and is held by caulking with the shaft end 13 of the housing 4 to close the end 3 of the housing 4.
ハウジング 4内には、 その他端部 2より、 フィルター材 7、 ガス発生剤 5、 X ンハンサ剤 1 4、 クッション材 1 5の順に充填され、 点火器 1 0が力シメ固定さ れているホルダ 1 2が嵌挿されている。 フィル夕一材 7とガス発生剤 5の間に、 必要により、 仕切り部材 9を設けることができる。  In the housing 4, the filter material 7, the gas generating agent 5, the X enhancer agent 14 and the cushion material 15 are filled in this order from the other end 2, and the holder 1 to which the igniter 10 is fixed by force shrinkage. 2 is inserted. If necessary, a partition member 9 can be provided between the fill material 7 and the gas generating agent 5.
フィルター材 7は、 例えば、 メリヤス編み金網、 平織り金網やクリンプ織り金 属線材の集合体によって、 例えば円柱状又は円筒状の形状のもの、 好ましくは円 筒状のものが用いられる。 ハウジング 4の他端部 2が丸みを帯びた形状を有する ガス発生器 (例えば後述する本発明のガス発生器 1 ) では、 フィルタ一材 7は、 他端部 2に丸みを帯びた形状、 好ましくは他端部 2に丸みを帯びた円柱状又は円 筒状の形状を有するものが使用される。 第 1図では、 他端部 2に丸みを帯びた円 柱状の形状を有するものが例示される。 また、 ハウジング 4の他端部 2が平底形 状を有するガス発生器では、 フィルター材 7は、 円筒状又は円柱状の形状を有す るものが好ましく、 第 2図及び第 3図では、 円筒状の形状を有するものが例示さ れている。 このフィルタ一材 7は、 ハウジング 4の他端部 2の先端部分に当接し て装着されている。 そして、 ハウジング 4内を区画する金属等によって形成され ている仕切り部材 9によってハウジング 4の他端部 2に押えられて固定されてい る。 この仕切り部材 9は、 この仕切り部材 9の他端部 2及び端部 3の両側のハウ ジング 4の外周部分からかしめられる (2箇所のかしめ) ことで、 ハウジング 4 内で固定され、 ハウジング 4内をフィル夕一室 8と燃焼室 6とに仕切っている。 具体的には、 ハウジング 4の壁に仕切り部材 9を、 その外周端面から 0 . l m m以上くい込むように、 八ウンジング 4と仕切り部材 9とを、 ハウジング 4の外 周面の、 仕切り部材 9を跨いだ 2箇所で (例えば 8 0 k N以上のかしめ力で) か しめることにより、 密着させる。 <い込ませる長さは.. 該当部を切断して露出さ せた後、 キ一エンス社製の拡大顕微鏡で測定することができる。 仕切り部材 9の 外周端面の肉厚は 0 . 5〜2 . 5 mmが好ましい。 また、 仕切り部材 9の本体部 の肉厚は 2〜5 mmが好ましい。 かしめの間隔は 5〜 1 0 mmの範囲が好まし い。 ハウジング 4の肉厚は、 好ましくは 1 . 5〜2 . 3 mmである。 ハウジング 4では、 好ましくは、 引張強さ 5 8 5〜7 1 5 N/mm2、 降伏点 5 4 0〜 6 7 O N/mm2, 伸び 1 8〜 2 6 %の冷間仕上継目無鋼管が、 仕切り部材 9では、 好ましくは S U S 3 0 4が使用される。 As the filter material 7, for example, a cylindrical or cylindrical shape, preferably a cylindrical shape is used, depending on an assembly of a knitted wire mesh, a plain woven wire mesh, and a crimp woven metal wire. In a gas generator in which the other end 2 of the housing 4 has a rounded shape (for example, a gas generator 1 of the present invention described later), the filter member 7 has a shape in which the other end 2 has a rounded shape. Is cylindrical or circular with the other end 2 rounded Those having a cylindrical shape are used. FIG. 1 illustrates an example in which the other end 2 has a rounded cylindrical shape. In a gas generator in which the other end 2 of the housing 4 has a flat bottom shape, the filter material 7 preferably has a cylindrical or columnar shape, and in FIGS. An example having a shape like a letter is shown. The filter member 7 is mounted in contact with the tip of the other end 2 of the housing 4. The housing 4 is pressed and fixed to the other end 2 of the housing 4 by a partition member 9 formed of metal or the like that partitions the inside of the housing 4. The partition member 9 is fixed in the housing 4 by being caulked (two caulking) from the outer peripheral portion of the housing 4 on both sides of the other end 2 and the end 3 of the partition member 9. Is divided into a filling chamber 8 and a combustion chamber 6. Specifically, the partitioning member 9 and the partitioning member 9 on the outer peripheral surface of the housing 4 are joined together so that the partitioning member 9 is inserted into the wall of the housing 4 by 0.1 mm or more from the outer peripheral end surface. The two parts are straddled (for example, with a caulking force of 80 kN or more) to make them adhere to each other. <Length to be penetrated .. After cutting and exposing the relevant part, it can be measured with a magnifying microscope manufactured by Keyence Corporation. The thickness of the outer peripheral end face of the partition member 9 is preferably 0.5 to 2.5 mm. The wall thickness of the main body of the partition member 9 is preferably 2 to 5 mm. The crimping interval is preferably in the range of 5 to 10 mm. The thickness of the housing 4 is preferably 1.5 to 2.3 mm. In the housing 4, preferably, the tensile strength of 5 8 5~7 1 5 N / mm 2, yield point 5 4 0~ 6 7 ON / mm 2, elongation 1 8-2 6% cold finishing seamless steel pipe The partition member 9 is preferably made of SUS304.
上記のようにかしめられることで、 従来の仕切り部材の外周端面を切り欠いて 〇—リング等のシール材を装着するという工程を必要としないため低コス卜で、 かつ、 仕切り部材とハゥジングが確実に固定されるためにアルミニウムシートの ようなシール部材と相俟って気密性の高いガス発生器を得ることが可能となる。 円筒状の形状を有するフィルタ一材 7の場合、 フィルター材 7には、 空間 1 9 がフィルタ一材 7を芯をくり抜くように形成されている。 サイド用エアバッグ等 を膨張させるのに好適に使用される本発明のガス発生器 1では、 ガス発生剤 5等 の薬剤を比較的多く使用するので、 好ましくは仕切り部材 9を用いることによつ て、 フィル夕一室 8と燃焼室 6とを仕切り、 ガス発生剤 5の燃焼熱によるフィル ターの損傷を防止することが可能となる。 By caulking as described above, there is no need to cut out the outer peripheral end surface of the conventional partition member and mount a seal material such as a ring, so that the cost is low, and the partition member and the housing are reliably formed. Therefore, a highly airtight gas generator can be obtained in combination with a sealing member such as an aluminum sheet. In the case of the filter material 7 having a cylindrical shape, a space 19 is formed in the filter material 7 so as to hollow out the filter material 7. The gas generator 1 of the present invention, which is preferably used for inflating the side airbag and the like, uses a relatively large amount of chemicals such as the gas generating agent 5, so that the partition member 9 is preferably used. Thus, the filter chamber 8 and the combustion chamber 6 are partitioned to prevent damage to the filter due to the heat of combustion of the gas generating agent 5.
燃焼室 6内には、 好ましくは、 ガス発生剤 5及びェンハンサ剤 1 4が、 直接接 触しつつ、 ガス発生剤 5の層とェンハンサ剤 1 4の層の 2層にわけられて充填さ れている。  Preferably, the gas generating agent 5 and the enhancer agent 14 are filled in the combustion chamber 6 while being in direct contact with each other while being divided into two layers, a layer of the gas generator 5 and a layer of the enhancer agent 14. ing.
ェンハンサ剤 1 4は、 クッション材 1 5によって、 振動により粉状化しないよ うに保護されている。 また、 このクッション材 1 5には、 点火器 1 0からの火炎 の威力を遅延なく、 確実にェンハンサ剤 1 4に伝達するための十字状の切欠きが 形成されている。クッション材 1 5としては、例えば、セラミックスファイバ一、 発泡シリコン等で形成シリコンゴムゃシリコン発泡体等の弹性材を用いて形成す ることが好ましい。  The enhancer agent 14 is protected by the cushioning material 15 from being powdered by vibration. In addition, a cross-shaped notch is formed in the cushion material 15 so as to reliably transmit the power of the flame from the igniter 10 to the enhancer agent 14 without delay. As the cushion material 15, for example, it is preferable to form a ceramic fiber, a foamed silicon or the like, and to use an elastic material such as a silicon rubber or a silicone foam.
ガス発生剤 5は、 非アジド系組成物であって、 例えば燃料と、 酸化剤と、 添加 剤 (バインダ、 スラグ形成剤、 燃焼調整剤) とで構成されるものを使用すること ができる。  The gas generating agent 5 may be a non-azide-based composition, for example, a material composed of a fuel, an oxidizing agent, and additives (binder, slag forming agent, combustion regulator).
燃料としては、 例えば含窒素化合物が挙げられる。 含窒素化合物としては、 例 えばトリァゾール誘導体、 テトラゾ一ル誘導体、 グァニジン誘導体、 ァゾジカル ボンアミド誘導体、 ヒドラジン誘導体、 ゥレア誘導体 アンミン錯体から選ばれ る 1種又は 2種以上の混合物を挙げることができる。  Examples of the fuel include a nitrogen-containing compound. Examples of the nitrogen-containing compound include one or a mixture of two or more selected from a triazole derivative, a tetrazole derivative, a guanidine derivative, an azodicarbonamide derivative, a hydrazine derivative, and a urea derivative ammine complex.
トリァゾ一ル誘導体の具体例としては、 例えば 5—ォキソ一 1, 2 , 4—トリ ァゾール、 ァミノ卜リアゾール等を挙げることができる。 テトラゾール誘導体の 具体例としては、 例えばテトラゾール、 5—アミノテトラゾール、 硝酸アミノテ トラゾール、 ニトロアミノテトラゾール、 5, 5, —ビ— 1 H—テトラゾ一ル、 5 , 5, 一ビー 1 H—テトラゾールジアンモニゥム塩、 5 , 5, 一ァゾテトラゾ 一ルジグァニジゥム塩等が挙げられる。 グァニジン誘導体の具体例としては、 例 えばグァニジン、 ニトログァニジン、 シァノグァニジン、 トリアミノグァ二ジン 硝酸塩、 硝酸グァニジン、 硝酸アミノグァ二ジン、 炭酸グァニジン等が挙げられ る。 ァゾジカルボンアミド誘導体の具体例としては、 例えばァゾジカルボンアミ ド等が挙げられる。 ヒドラジン誘導体の具体例としては、 例えば力ルポヒドラジ ド、 力ルポヒドラジド硝酸塩錯体、 蓚酸ジヒドラジド、 ヒドラジン硝酸塩錯体等 が挙げられる。 ゥレア誘導体としては、 例えばビウレットが挙げられる。 アンミ ン錯体としては、 例えばへキサアンミン銅錯体、 へキサアンミンコバルト錯体、 テトラアンミン銅錯体、 テトラアンミン亜鉛錯体等が挙げられる。 Specific examples of the triazole derivative include, for example, 5-oxo-1,2,4-triazole, aminotriazole and the like. Specific examples of tetrazole derivatives include, for example, tetrazole, 5-aminotetrazole, aminotetrazol nitrate, nitroaminotetrazole, 5,5, -bi-1H-tetrazole, 5,5,1B-1H-tetrazole diammonium Pum salt, 5,5,1-azotetrazo-l-diguanidium salt and the like. Specific examples of the guanidine derivative include, for example, guanidine, nitroguanidine, cyanoguanidine, triaminoguanidine nitrate, guanidine nitrate, aminoguanidine nitrate, guanidine carbonate and the like. Specific examples of the azodicarbonamide derivative include, for example, azodicarbonamide. Specific examples of the hydrazine derivative include, for example, lipohydrazide, lipohydrazide nitrate complex, oxalic acid dihydrazide, hydrazine nitrate complex, and the like. Is mentioned. Examples of the rare derivatives include biuret. Examples of the ammine complex include hexammine copper complex, hexammine cobalt complex, tetraammine copper complex, and tetraammine zinc complex.
これらの含窒素化合物の中でもテトラゾール誘導体及びグァニジン誘導体から 選ばれる 1種又は 2種以上が好ましく、 特に、 ニトログァニジン、 硝酸グァニジ ン、 シァノグァニジン、 5—アミノテトラゾール、 硝酸アミノグァ二ジン、 炭酸 グァニジンが好ましい。  Among these nitrogen-containing compounds, one or two or more selected from tetrazole derivatives and guanidine derivatives are preferable, and nitroguanidine, guanidine nitrate, cyanoguanidine, 5-aminotetrazole, aminoguanidine nitrate, and guanidine carbonate are particularly preferable.
ガス発生剤 5中におけるこれら含窒素化合物の配合割合は、 分子式中の炭素原 子、 水素原子及びその他の酸化される原子の数によって異なるが、 通常 2 0〜7 0重量%の範囲が好ましく、 3 0〜6 0重量%の範囲が特に好ましい。 また、 ガ ス発生剤に添加される酸化剤の種類により、 含窒素化合物の配合割合の絶対数値 は異なる。 しかしながら、 含窒素化合物の配合割合の絶対数値が、 完全酸化理論 量より多いと発生ガス中の微量 C O濃度が増大する、 一方、 含窒素化合物の配合 割合の絶対数値が、 完全酸化理論量及びそれ以下になると発生ガス中の微量 N O X濃度が増大する。 従って両者の最適バランスが保たれる範囲が最も好ましい。 酸化剤としては、 アルカリ金属、 アルカリ土類金属、 遷移金属、 アンモニゥム から選ばれたカチオンを含む硝酸塩- 亜硝酸塩 過塩素酸塩の少なくとも 1種か ら選ばれた酸化剤が好ましい。 硝酸塩以外の酸化剤、 即ち亜硝酸塩、 過塩素酸塩 等のエアバッグインフレー夕分野で多用されている酸化剤も用いることができる が、 硝酸塩に比べて亜硝酸塩分子中の酸素数が減少すること又はバッグ外へ放出 されやすい微粉状ミス卜の生成を減少させる等の観点から硝酸塩が好ましい。 硝 酸塩としては、 例えば硝酸ナトリウム、 硝酸カリウム、 硝酸マグネシウム、 硝酸 ストロンチウム、 相安定化硝酸アンモニゥム、 塩基性硝酸銅等を挙げることがで き、 硝酸ストロンチウム、 相安定化硝酸アンモニゥム、 塩基性硝酸銅がより好ま しい。  The mixing ratio of these nitrogen-containing compounds in the gas generating agent 5 varies depending on the number of carbon atoms, hydrogen atoms and other oxidized atoms in the molecular formula, but is usually preferably in the range of 20 to 70% by weight. A range of 30 to 60% by weight is particularly preferred. The absolute value of the mixing ratio of the nitrogen-containing compound varies depending on the type of the oxidizing agent added to the gas generating agent. However, if the absolute value of the compounding ratio of the nitrogen-containing compound is larger than the theoretical amount of complete oxidation, the concentration of trace CO in the generated gas increases, while the absolute value of the compounding ratio of the nitrogen-containing compound is Below this, the concentration of trace NOX in the generated gas increases. Therefore, a range in which the optimum balance between the two is maintained is most preferable. The oxidizing agent is preferably an oxidizing agent selected from at least one of a nitrate-nitrite perchlorate containing a cation selected from an alkali metal, an alkaline earth metal, a transition metal, and ammonium. Oxidants other than nitrates, that is, oxidants widely used in the field of airbag inflation, such as nitrite and perchlorate, can also be used, but the number of oxygen in nitrite molecules decreases as compared to nitrate. Nitrate is preferred from the viewpoint of reducing the production of fine mist that is easily released to the outside of the bag. Examples of the nitrate include sodium nitrate, potassium nitrate, magnesium nitrate, strontium nitrate, phase-stabilized ammonium nitrate, and basic copper nitrate.Strontium nitrate, phase-stabilized ammonium nitrate, and basic copper nitrate are exemplified. More preferred.
ガス発生剤 5中の酸化剤の配合割合は、 用いられる含窒素化合物の種類と量に より絶対数値は異なるが、 3 0〜8 0重量%の範囲が好ましく、 特に上記の C O 及び N〇x濃度に関連して 4 0〜7 5重量%の範囲が好ましい。 The mixing ratio of the oxidizing agent in the gas generating agent 5 is more definitely numeric type and amount of the nitrogen-containing compound used different 3 0-8 0 wt% range are preferred, particularly above CO and N_〇 x A range from 40 to 75% by weight in relation to the concentration is preferred.
添加剤であるバインダは、 ガス発生剤の燃焼挙動に大幅な悪影響を与えないも のであれば何れでも使用可能である。 バインダとしては、 例えば、 力ルポキシメ チルセルロースの金属塩、 メチルセルロース、 ヒドロキシェチルセルロース、 酢 酸セルロース、 プロピオン酸セルロース、 酢酸酪酸セルロース、 ニトロセルロー ス、 微結晶性セルロース、 グァガム、 ポリビニルアルコール、 ポリアクリルアミ ド、澱粉等の多糖誘導体、ステアリン酸塩等の有機パインダ、二硫化モリブデン、 合成ヒドロキシタルサイト、 酸性白土、 タルク、 ベントナイト、 ケイソゥ土、 力 ォリン、 シリカ、 アルミナ等の無機パインダを挙げることができる。 The binder, an additive, does not significantly affect the combustion behavior of the gas generant, Any of these can be used. Examples of the binder include metal salts of propyloxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, nitrocellulose, microcrystalline cellulose, guar gum, polyvinyl alcohol, and polyacrylamide. , Starch and other polysaccharide derivatives, stearic acid and other organic pinners, molybdenum disulfide, synthetic hydroxytalcite, acid clay, talc, bentonite, diatomaceous earth, silica, alumina and other inorganic pinners. .
バインダの配合割合はプレス成形の場合 0〜1 0重量%の範囲が好ましく、 押 出成形においては 2〜1 5重量%の範囲であることが好ましい。 添加量が多くな るに従い成形体の破壊強度が強くなる。 ところが、 組成物中の炭素原子及び水素 原子の数が増大し、 炭素原子の不完全燃焼生成物である微量 C 0ガスの濃度が高 くなり、 発生ガスの品質が低下する。 また、 ガス発生剤の燃焼を阻害することか ら、 最低量での使用が好ましい。 特に 1 5重量%を超える量では酸化剤の相対的 存在割合の増大を必要とし、 ガス発生化合物の相対的割合が低下し、 実用できる ガス発生器システムの成立が困難となる。  The mixing ratio of the binder is preferably in the range of 0 to 10% by weight in the case of press molding, and is preferably in the range of 2 to 15% by weight in extrusion molding. As the amount of addition increases, the breaking strength of the molded body increases. However, the number of carbon atoms and hydrogen atoms in the composition increases, the concentration of trace CO gas, which is the product of incomplete combustion of carbon atoms, increases, and the quality of generated gas deteriorates. In addition, the use of a minimum amount is preferable because it inhibits the combustion of the gas generating agent. In particular, if the amount exceeds 15% by weight, the relative proportion of the oxidizing agent must be increased, and the relative proportion of the gas generating compound decreases, making it difficult to establish a practical gas generator system.
また、 添加剤として、 バインダ以外の成分としては、 スラグ形成剤を配合する ことができる。 スラグ形成剤は、 ガス発生剤中の特に酸化剤成分から発生する金 属酸化物との相互作用により、 ガス発生器 1内のフィルタ一材 7でのろ過を容易 にするために添加される。  As an additive, a slag forming agent can be blended as a component other than the binder. The slag forming agent is added in order to facilitate the filtration through the filter material 7 in the gas generator 1 due to the interaction with the metal oxide generated from the oxidizing agent component in the gas generating agent.
スラグ形成剤としては、 例えば、 窒化珪素、 炭化珪素、 酸性白土、 シリカ、 ベ ントナイト系、 力オリン系等のアルミノケィ酸塩を主成分とする天然に産する粘 土、 合成マイ力、 合成力オリナイ卜、 合成スメクタイト等の人工的粘土、 含水マ グネシゥムゲイ酸塩鉱物の一種であるタルク等から選ばれるものを挙げることが でき、これらの中でも酸性白土又はシリカが好ましぐ特に酸性白土が好ましい。 スラグ形成剤の配合割合は 0〜 2 0重量%の範囲が好ましく、 2〜1 0重量%の 範囲が特に好ましい。 多すぎると線燃焼速度の低下及びガス発生効率の低下をも たらし、 少なすぎるとスラグ形成能を十分発揮することができない。  Examples of the slag forming agent include, for example, naturally occurring clay, mainly composed of aluminosilicates such as silicon nitride, silicon carbide, acid clay, silica, bentonite, and violin, synthetic viscous power, and synthetic viability. And clay selected from artificial clay such as synthetic smectite and talc which is a kind of hydrous magnesium maleate mineral. Among them, acidic clay or silica is preferred, and acidic clay is particularly preferred. The mixing ratio of the slag forming agent is preferably in the range of 0 to 20% by weight, and particularly preferably in the range of 2 to 10% by weight. If the amount is too large, the linear burning speed and the gas generation efficiency decrease, and if the amount is too small, the slag forming ability cannot be sufficiently exhibited.
ガス発生剤 5の好ましい組合せとしては、 5—アミノテトラゾール、 硝酸スト ロンチウム、 合成ヒドロタルサイト、 及び窒化珪素を含むガス発生剤、 または、 硝酸グァニジン、 硝酸ストロンチウム、 塩基性硝酸銅、 酸性白土を含むガス発生 剤が挙げられる。 Preferred combinations of the gas generating agent 5 include 5-aminotetrazole, strontium nitrate, synthetic hydrotalcite, and a gas generating agent containing silicon nitride, or Gas generators containing guanidine nitrate, strontium nitrate, basic copper nitrate, and acid clay are listed.
また、 必要に応じて燃焼調節剤を添加してもよい。 燃焼調整剤としては金属酸 化物、 フエ口シリコン、 活性炭、 グラフアイト、 或いはへキソ—ゲン、 ォクトー ゲン、 5—ォキソ—3—ニトロ— 1, 2, 4ートリアゾールといった化合火薬が 使用可能である。 燃焼調整剤の配合割合は 0〜 2 0重量%の範囲が好ましく、 2 〜1 0重量%の範囲が特に好ましい。多すぎるとガス発生効率の低下をもたらし、 また、 少なすぎると十分な燃焼速度を得ることができない。  Further, a combustion regulator may be added as needed. As a combustion regulator, metal oxides, silicon oxide in the mouth, activated carbon, graphite, or a combination explosive such as hexogen, octogen, 5-oxo-3-nitro-1,2,4-triazole can be used. The mixing ratio of the combustion regulator is preferably in the range of 0 to 20% by weight, and particularly preferably in the range of 2 to 10% by weight. If the amount is too large, the gas generation efficiency is reduced, and if the amount is too small, a sufficient combustion rate cannot be obtained.
以上のような構成によるガス発生剤 5は、 プレス成形或いは押出成形による成 形体が好ましく、 より好ましくは押出成形体で、 その形状としては、 例えば、 ぺ レット状 (一般に、 医薬品の 1つの形状である錠剤の形にあたるもの)、 円柱状、 筒状、 ディスク状又は両端が閉鎖された中空体形状等が挙げられる。 筒状には、 円筒状が挙げられ、 円筒状には単孔円筒状、 多孔円筒状が挙げられる。 両端が閉 鎖された中空体形状には、 両端が閉鎖された円筒状が含まれる。 なお、 ガス発生 剤 5の成形体の両端が閉鎖された状態とは、 両端に開いた孔が外から内への力 2 つによって閉鎖された状態のことをいう。 孔は、 完全に塞がった状態でも、 塞ぎ きれていない状態でもいずれでも良い。  The gas generating agent 5 having the above-described configuration is preferably formed by press molding or extrusion, more preferably an extruded product, and has a shape such as a pellet shape (generally, a shape of a drug. Tablet), columnar, cylindrical, disk-shaped or hollow with both ends closed. The cylindrical shape includes a cylindrical shape, and the cylindrical shape includes a single-hole cylindrical shape and a porous cylindrical shape. The hollow body shape with both ends closed includes a cylindrical shape with both ends closed. The state in which both ends of the molded body of the gas generating agent 5 are closed means a state in which the holes opened at both ends are closed by two forces from outside to inside. The holes can be completely closed or not closed.
この、 両端が閉鎖された中空体形状のガス発生剤 5の製造方法の一例を説明す る。 前記した含窒素化合物、 酸化剤、 スラグ形成剤及びバインダで構成される非 アジド系組成物は、まず、 V型混合機、またはポールミル等によって混合される。 更に水、 又は溶媒 (例えば、 エタノール) を添加しながら混合し、 湿った状態の 薬塊を得ることができる。 ここで、 湿った状態とは、 ある程度の可塑性を有する 状態であり、 水又は溶媒を好ましくは 1 0〜 2 5重量%、 より好ましくは 1 3〜 1 8重量%含有している状態にあるものをいう。 この後、 この湿った状態の薬塊 をそのまま押出成形機 (例えば、 ダイス及び内孔用ピンを出口に備えたもの) に より、 外径が、 好ましくは 1 . 4 mm〜4 mmで、 より好ましくは 1 . 5 mn!〜 3 . 5 mmであり、 内径が、 好ましくは 0 . 3 mm〜l . 2 mmであり、 より好 ましくは 0 . 5 mm〜l . 2 mmの中空筒状成形体に押出成形する。 その後、 押 出成形機で押出された中空筒状成形体を一定間隔で押圧して両端が閉鎖された筒 状成形体が得られる。 通常は、 該中空筒状成形体を一定間隔で押圧した後、 それ ぞれ閉鎖された窪み部分で折るようにして切断した後、 通常、 5 0〜6 0 °Cの範 囲で 4〜1 0時間乾燥し、 次いで、 通常、 1 0 5〜1 2 0 °Cの範囲で 6〜1 0時 間乾燥という 2段階による乾燥を行うことにより、 端部が閉鎖された状態で、 内 部に空間を有した筒状のガス発生剤を得ることができる。 このように得られたガ ス発生剤の長さは、 通常、 1 . 5〜 8 mmの範囲にあり、 好ましくは 1 . 5〜7 mmの範囲にあり、 より好ましくは 2〜6 . 5 mmの範囲にある。 An example of a method for producing the gas generating agent 5 having a hollow body shape whose both ends are closed will be described. The non-azide composition composed of the nitrogen-containing compound, the oxidizing agent, the slag forming agent and the binder is first mixed by a V-type mixer, a pole mill or the like. Further, mixing is performed while adding water or a solvent (eg, ethanol) to obtain a wet drug mass. Here, the wet state is a state having a certain degree of plasticity, and preferably contains water or a solvent in a content of preferably 10 to 25% by weight, more preferably 13 to 18% by weight. Say. Thereafter, the wet drug mass is directly used by an extruder (for example, a device provided with a die and a pin for an inner hole at an outlet), and the outer diameter is preferably 1.4 mm to 4 mm. Preferably 1.5 mn! It is extruded into a hollow cylindrical molded body having an inner diameter of preferably 0.3 mm to 1.2 mm, more preferably 0.5 mm to 1.2 mm. After that, the hollow cylindrical molded body extruded by the extruder is pressed at regular intervals, A shaped body is obtained. Usually, the hollow cylindrical molded body is pressed at regular intervals, and then cut in such a manner that each of the hollow cylindrical molded bodies is folded at a closed dent portion, and then usually cut at a temperature of 50 to 60 ° C for 4 to 1 ° C. After drying for two hours, usually in a temperature range of 105 ° C to 120 ° C for 6 to 10 hours, the inner part is dried with the end closed. A cylindrical gas generating agent having a space can be obtained. The length of the gas generating agent thus obtained is usually in the range of 1.5 to 8 mm, preferably in the range of 1.5 to 7 mm, more preferably in the range of 2 to 6.5 mm. In the range.
また、 ガス発生剤の線燃焼速度は定圧条件下で測定され、 経験的に以下の V i e 1 1 eの式に従う。 ここで、 rは線燃焼速度、 aは定数、 Pは圧力、 nは圧力指数を示す。 この圧 力指数 nは、 Y軸の燃焼速度の対数に対する X軸の圧力の対数プロットによる勾 配を示すものである。  In addition, the linear burning velocity of the gas generating agent is measured under a constant pressure condition, and empirically follows the equation of Vie11e. Here, r is the linear burning rate, a is a constant, P is the pressure, and n is the pressure index. This pressure index n indicates the slope of the logarithmic plot of the pressure on the X-axis against the logarithm of the combustion velocity on the Y-axis.
本実施形態例に係るガス発生器に用いられるガス発生剤の好ましい線燃焼速度 の範囲は、 7 0 k g f / c m2下で 3〜 6 0 mmZ秒であり、 より好ましくは 5 〜3 5 mm/秒であり、 また、 好ましい圧力指数の範囲は n = 0 . 9 0以下、 よ り好ましくは n = 0 . 7 5以下、 特に好ましくは n = 0 . 6 0以下である。 また-. 線燃焼速度を測定する方法としては-. ストランドバーナ法、 小型モータ 法、 密閉圧力容器法が一般に挙げられる。 具体的には所定の大きさにプレス成形 した後、 表面にリストリク夕一を塗布することにより得られた試験片を用いて、 ヒューズ切断法等により、 高圧容器中で燃焼速度を測定する。 この時、 高圧容器 内の圧力を変数に線燃焼速度測定し、 上記 V i e 1 1 eの式から圧力指数を求め ることができる。  The preferred range of the linear burning rate of the gas generating agent used in the gas generator according to the present embodiment is 3 to 60 mmZ seconds under 70 kgf / cm2, more preferably 5 to 35 mm / sec. The pressure index is in seconds, and the preferable range of the pressure index is n = 0.90 or less, more preferably n = 0.75 or less, and particularly preferably n = 0.60 or less. The methods for measuring the linear burning rate include the strand burner method, small motor method, and closed pressure vessel method. Specifically, after press-molding to a predetermined size, the burning rate is measured in a high-pressure vessel by a method such as a fuse cutting method using a test piece obtained by applying a restrictive liquid to the surface. At this time, the linear combustion rate is measured using the pressure in the high-pressure vessel as a variable, and the pressure index can be obtained from the above equation Vie11e.
ガス発生剤が、 非アジド系ガス発生剤形成されているため、 使用される原料は 人体有害性の小さいものである。 また、 燃料成分、 酸化剤成分を選択することに より、 発生ガスモル当たりの発熱量を抑えることができ、 ガス発生器の小型、 軽 量化が可能となる。  Since the gas generating agent is formed as a non-azide gas generating agent, the raw materials used are those that are less harmful to humans. In addition, by selecting a fuel component and an oxidizer component, the amount of heat generated per mole of generated gas can be suppressed, and the size and weight of the gas generator can be reduced.
以上のように構成されるガス発生剤 5と接して、 燃焼室 6内に充填されるェン ハンサ剤 1 4は、 ェンハンサ剤として、 一般に用いられている次のような組成物 を含むものが用いられる。 B /KN〇3に代表される金属粉、 酸化剤を含む組成 物、 含窒素化合物 酸化剤 Z金属粉を含む組成物、 或いは、 前述のガス発生剤 5 と同様の組成物等が挙げられる。 含窒素化合物としては、 ガス発生剤の燃料成分 (アミノテトラゾール、硝酸グァニジン等)として使用可能なものが挙げられる。 酸化剤としては、 例えば硝酸カリウム、 硝酸ナトリウム、 硝酸ストロンチウム等 の硝酸塩が挙げられる。 金属粉としては、 例えばホウ素、 マグネシウム、 アルミ 二ゥム、 マダナリウム (マグネシウム一アルミニウム合金)、 チタン、 ジルコニゥ ム、 タングステン等が挙げられる。 好ましい組合せとしては、 5—アミノテトラ ゾール、 硝酸カリウム、 ホウ素を含むもの、 硝酸グァニジン、 硝酸カリウム、 ホ ゥ素等を挙げることができる。 そして、 必要に応じて、 成形用バインダを 0〜1 0 %重量含んでもよい。 The enhancer agent 14 that is filled in the combustion chamber 6 in contact with the gas generating agent 5 configured as described above is a composition generally used as an enhancer agent as follows. Are used. Metal powder represented by B / KN_〇 3, the oxidizing agent containing composition, the composition comprising a nitrogen-containing compound oxidizing agent Z metal powder, or the like can be given the same composition as the gas generating agent 5 above. Examples of the nitrogen-containing compound include those usable as a fuel component of a gas generating agent (aminotetrazole, guanidine nitrate, etc.). Examples of the oxidizing agent include nitrates such as potassium nitrate, sodium nitrate, and strontium nitrate. Examples of the metal powder include boron, magnesium, aluminum, madanarium (magnesium-aluminum alloy), titanium, zirconium, and tungsten. Preferred combinations include those containing 5-aminotetrazole, potassium nitrate, and boron, guanidine nitrate, potassium nitrate, boron, and the like. And, if necessary, a molding binder may be contained in an amount of 0 to 10% by weight.
また、 ェンハンサ剤 1 4の形状は、 プレス成形或いは押出成形による成形体が 好ましく、 より好ましくは押出成形体で、 その形状は、 ペレット状 (一般に、 医 薬品の錠剤の形にあたるもの)、 円柱状、筒状、 ディスク状又は両端が閉鎖された 中空体形状等が挙げられる。 筒状には、 例えば円筒状が挙げられ、 円筒状には、 例えば単孔円筒状、 多孔円筒状等が挙げられる。 両端が閉鎖された中空体形状に は、 両端が閉鎖された円筒状が含まれる。 ェンハンサ剤 1 4の外径は、 1 mm以 上であり、 好ましくは l mm〜5 mm、 より好ましくは 1〜 3 mmである。 ェン 八ンサ剤 1 4の高さは、 1 mm〜 5 mmが好ましい。  The shape of the enhancer agent 14 is preferably a molded product obtained by press molding or extrusion molding, more preferably an extruded molded product, the shape of which is a pellet (generally corresponding to the shape of a pharmaceutical tablet) or a column. , A cylinder, a disk, or a hollow body with both ends closed. The cylindrical shape includes, for example, a cylindrical shape, and the cylindrical shape includes, for example, a single-hole cylindrical shape, a porous cylindrical shape, and the like. The hollow body shape with both ends closed includes a cylindrical shape with both ends closed. The outer diameter of the enhancer agent 14 is 1 mm or more, preferably 1 mm to 5 mm, and more preferably 1 to 3 mm. The height of the agent 14 is preferably 1 mm to 5 mm.
そして、 これらガス発生剤 5及びェンハンサ剤 1 4は、 好ましくは、 燃焼室 6 内に互いに接触させて充填されている。 このため、 ガス発生剤 5の充填状況の違 いによるェンハンサ剤 1 4とガス発生剤 5との距離の差が生じないため、 ガス発 生器 1の性能を安定させることができる。 また、 ェンハンサ剤 1 4を好ましくは 円柱状とすることで、粉状や顆粒状に比べ、ェンハンサ剤 1 4が充填される時に、 ガス発生剤 5の隙間に入って行きにくいために運搬中や、 自動車等に取り付けた 後であっても、 燃焼室 6内で、 これらが混合することを抑制できる。 また、 ェン ハンサ剤 1 4の成形体とガス発生剤成形体とを同程度の大きさとすることにより、 両者の混合をより抑制できる。 このため、 ガス発生器の性能をより確実に安定な ものとすることができる。 次に、 ガス発生器 1の作動を説明する。 衝突センサが自動車の衝突を検出する と、 ガス発生器 1は、 点火器 1 0に信号を送り、 発火させる。 点火器 1 0の火炎 は、 クッション材 1 5を破裂、 開口した後、 燃焼室 6内に噴出して、 ェンハンサ 剤 1 4に着火し、 ガス発生剤 5を強制的に着火燃焼させることで、 高温ガスを発 生させる。 このガス発生剤 5の着火燃焼は、 ハウジング 4の端部 3からフィルタ ー材 7側へ順次移行される。 The gas generating agent 5 and the enhancer agent 14 are preferably filled in the combustion chamber 6 in contact with each other. Therefore, there is no difference in the distance between the enhancer agent 14 and the gas generating agent 5 due to the difference in the filling state of the gas generating agent 5, so that the performance of the gas generator 1 can be stabilized. In addition, by making the enhancer agent 14 preferably in a columnar shape, it is difficult to enter the gap of the gas generating agent 5 when the enhancer agent 14 is filled, so that the enhancer agent 14 is harder to enter into the gap than the powder or granular form. Even after being attached to a car or the like, it is possible to suppress mixing of these in the combustion chamber 6. In addition, by making the molded body of the enhancer agent 14 and the molded body of the gas generating agent approximately the same size, the mixing of both can be further suppressed. Therefore, the performance of the gas generator can be more reliably stabilized. Next, the operation of the gas generator 1 will be described. When the collision sensor detects the collision of the car, the gas generator 1 sends a signal to the igniter 10 to ignite. The flame of the igniter 10 ruptures and opens the cushion material 15 and then squirts into the combustion chamber 6 to ignite the enhancer agent 14 and forcibly ignite and burn the gas generating agent 5. Generates hot gas. The ignition combustion of the gas generating agent 5 is sequentially transferred from the end 3 of the housing 4 to the filter material 7 side.
燃焼室 6内での燃焼が進んで、 燃焼室 6が所定内圧まで上昇すると、 燃焼室 6 内で発生した高温ガスは、 孔 1 8を通り、 フィルター材 7内へ入り、 ハウジング 4に流入し、 ここでスラグ捕集と冷却を経て、 清浄なガスとなる。 この清浄なガ スは、 ガス放出孔 1 1から放出される。  When combustion in the combustion chamber 6 progresses and the combustion chamber 6 rises to a predetermined internal pressure, the high-temperature gas generated in the combustion chamber 6 passes through the hole 18, enters the filter material 7, and flows into the housing 4. Here, through slag collection and cooling, it becomes a clean gas. This clean gas is discharged from the gas discharge holes 11.
これによつて、ガス放出孔 1 1から放出される十分に冷却された清浄なガスは、 エアベルトやエアバッグ等の内部に直接導入され、 瞬時に、 膨張する。  As a result, the sufficiently cooled and clean gas discharged from the gas discharge holes 11 is directly introduced into the inside of an air belt, an airbag, or the like, and instantly expands.
次に、 本発明に係る第 2の実施形態であるガス発生器 1 7を第 2図を用いて説 明する。 本発明に係るガス発生器 1 7が、 第 1図に示す第 1の実施形態に係るガ ス発生器 1と異なる点は、 ハウジングの他端部 2が平底形状になっている点及び フィルター材 7が円筒状になっている点である。 このようにしても、 本発明のガ ス発生器 1と同じように、 他端部 2が閉塞しているため 端部 3のみを封止すれ ばよく、 部品点数を減少することができるとともに、 封止部分を端部 3の一箇所 のみとすることができるため、 ガス発生器の安全性を高めるとともに、 小型化す ることが可能となる。  Next, a gas generator 17 according to a second embodiment of the present invention will be described with reference to FIG. The gas generator 17 according to the present invention differs from the gas generator 1 according to the first embodiment shown in FIG. 1 in that the other end 2 of the housing has a flat bottom shape and a filter material. 7 is a cylindrical point. Even in this case, just like the gas generator 1 of the present invention, since the other end 2 is closed, only the end 3 needs to be sealed, and the number of parts can be reduced, and Since the sealing portion can be formed at only one portion of the end portion 3, the safety of the gas generator can be improved and the size can be reduced.
また、 本発明のガス発生器 1 7では、 燃焼室 6内で発生した高温ガスが、 孔 1 8を通り、 フィルタ一材 7の空間 1 9へ入り、 フィルター材 7を通過して、 スラ グ捕集と冷却を経て、 清浄なガスとなり、 ガス放出孔 1 1から放出される。 ガス 発生器 1 7では、 フィルター材 7が円筒状になっているため、 ガスの通過路表面 積が増大することによりフィルター材 7の冷却効率が高くなる。 この結果フィル ター材 7の重量を低減することができ、 よりガス発生器の軽量化が可能となると いう効果が期待できる。 なお、 本実施形態例において、 前述の第 1の実施形態例 におけるガス発生器 1と共通する部位については、 同じ符号を用いて、 詳細な説 明は省略する。 次に、 本発明に係る第 3の実施形態であるガス発生器 4 5を図 3を用いて説明 する。 なお、 本発明に係る第 3の実施形態において、 前述の第 1の実施形態例に おけるガス発生器 1、 第 2の実施形態例におけるガス発生器 1 7と共通する部位 については、 同じ符号を用いて、 詳細な説明を省略する。 In the gas generator 17 of the present invention, the high-temperature gas generated in the combustion chamber 6 passes through the hole 18, enters the space 19 of the filter member 7, passes through the filter member 7, and passes through the slag. After being collected and cooled, it becomes a clean gas and is released from the gas discharge holes 11. In the gas generator 17, since the filter material 7 is cylindrical, the cooling efficiency of the filter material 7 is increased by increasing the surface area of the gas passage. As a result, the weight of the filter material 7 can be reduced, and the effect that the weight of the gas generator can be further reduced can be expected. Note that, in this embodiment, the same reference numerals are used for parts common to the gas generator 1 in the above-described first embodiment, and detailed description is omitted. Next, a gas generator 45 according to a third embodiment of the present invention will be described with reference to FIG. In the third embodiment according to the present invention, the same reference numerals are used for parts common to the gas generator 1 in the first embodiment and the gas generator 17 in the second embodiment. The detailed description is omitted.
本発明に係るガス発生器 4 5が、 第 1図に示す第 1の実施形態に係るガス発生 器 1と異なる点は、 ハウジングの他端部 2が平底形状になっている点、 フィルタ ー材 7が円筒状になつている点及びガス放出孔 1 1が軸方向に 2列に設置されて いる点である。 また、 第 2図に示す第 2の実施形態に係るガス発生器 1 7と異な る点は、 ガス放出孔 1 1が軸方向に 2列に設置されている点である。  A gas generator 45 according to the present invention differs from the gas generator 1 according to the first embodiment shown in FIG. 1 in that the other end 2 of the housing has a flat bottom shape, and a filter material. 7 is a cylindrical point and the gas discharge holes 11 are arranged in two rows in the axial direction. The difference from the gas generator 17 according to the second embodiment shown in FIG. 2 is that the gas discharge holes 11 are arranged in two rows in the axial direction.
このようにしても、 本発明のガス発生器 1、 1 7と同じように、 他端部 2が閉 塞しているため、 端部 3のみを封止す lばよく、 部品点数を減少することができ るとともに、 封止部分を端部 3の一箇所のみとすることができるため、 ガス発生 器の安全性を高めるとともに、 小型化することが可能となる。  Even in this case, as with the gas generators 1 and 17 of the present invention, since the other end 2 is closed, only the end 3 needs to be sealed, and the number of parts is reduced. In addition, since the sealing portion can be limited to only one portion of the end portion 3, the safety and the size of the gas generator can be increased.
また、 本発明のガス発生器 4 5では、 ガス放出孔 1 1力 方向に 2列に設置さ れていることにより、 ハウジング 4内で発生したガスが、 集中することなく放出 されるため、 フィルタ材 7の損傷を抑制する。 また、 フィルタ材 7を広い範囲で 使用することができ、 フィル夕材 7を効率良く利用することができる。  Further, in the gas generator 45 of the present invention, the gas generated in the housing 4 is released without being concentrated by being arranged in two rows in the direction of the force of the gas discharge holes 11. Suppress damage to material 7. Also, the filter material 7 can be used in a wide range, and the filter material 7 can be used efficiently.
本発明のガス発生器 1、 1 7 4 5は、 サイド (側面衝突) 用ガス発生器とし て好適に用いられる。  The gas generators 1, 1 745 of the present invention are suitably used as side (side collision) gas generators.
ガス発生器に使用する両端が閉鎖された中空体形状のガス発生剤の製造例 硝酸グァニジン 4 3 . 5重量%、 硝酸ストロンチウム 2 5重量%、 塩基性硝酸 銅 2 5重量%、 酸性白土 2 . 5重量%、 ポリアクリルアミド 4重量%の組成で混 合した組成物に、 エタノール 3重量%と、 水 1 3重量%を加えて混合、 混練し、 混練塊にして、 出口に内径 2 mmのダイスと外径 0 . 5 mmの内孔用ピンを備え た押出機にて、 押出圧 8 MP aで押出して、 押出棒状の成形体を引取りベルトで 引取りながら、 成形用歯車間に送り出し、 成形用歯車の凸歯によって 4. 4mm の間隔で窪み部分を形成するようにし、 その窪み部分で折るようにして切断した 後、 5 5 °Cで 8時間乾燥し、次いで 1 1 0 °Cで 8時間乾燥し、ガス発生剤とした。 産業上の利用可能性 Example of manufacturing a gas generating agent in the form of a hollow body with both ends closed for use in a gas generator: 43.5% by weight of guanidine nitrate, 25% by weight of strontium nitrate, 25% by weight of basic copper nitrate, 2% by weight of acid clay 5% by weight and 4% by weight of polyacrylamide were mixed with 3% by weight of ethanol and 13% by weight of water. The mixture was mixed and kneaded to form a kneaded mass. And an extruder equipped with an inner hole pin with an outer diameter of 0.5 mm, extruded at an extrusion pressure of 8 MPa, and sent out between molding gears while taking out an extruded rod-like molded product with a take-off belt. Depressions were formed at intervals of 4.4 mm by the convex teeth of the molding gear, and cut off at the depressions. Thereafter, drying was performed at 55 ° C. for 8 hours, and then at 110 ° C. for 8 hours to obtain a gas generating agent. Industrial applicability
本発明のガス発生器によれば、 ガス発生器が小型化、 軽量化した場合であって も、 安全に、 ガス発生剤の燃焼によって生ずる高温ガスを十分に冷却して放出す ることが可能となる。 また、 燃焼室内に、 ェンハンサ剤とガス発生剤を充填する ことにより、 ェンハンサ剤とガス発生剤とが密着し、 ガス発生剤の充填状況の違 いによってェンハンサ剤とガス発生剤との距離の差が生じないため、 ガス発生器 の性能を安定させることができる。  ADVANTAGE OF THE INVENTION According to the gas generator of this invention, even if the gas generator is reduced in size and weight, it is possible to safely cool and discharge the high-temperature gas generated by the combustion of the gas generating agent. It becomes. Also, by filling the combustion chamber with the enhancer agent and the gas generating agent, the enhancer agent and the gas generating agent adhere to each other, and the difference in the distance between the enhancer agent and the gas generating agent due to the difference in the filling state of the gas generating agent. Since no gas is generated, the performance of the gas generator can be stabilized.

Claims

請 求 の 範 囲 The scope of the claims
1.筒状ハウジング(4)内に、燃焼により高温ガスを発生するガス発生剤(5) が充填される燃焼室 (6) と、 フィルター材 (7) が装着されるフィル夕 一室 (8) と、 前記ハウジング (4) の端部 (3) に装着され、 前記 燃焼室 (6) 内のガス発生剤 (5) を着火燃焼させる点火器 (10) と、 を有してなるガス発生器 (1) であって、 前記燃焼室 (6) と前記フィル ター材 (7) が装着される前記フィルタ一室 (8) とを区画する仕切り部 材 (9) を有し、 前記燃焼室 (6) 内に、 ェンハンサ剤 (14) が充填さ れていることを特徴とするガス発生器。  1. A combustion chamber (6) filled with a gas generating agent (5) that generates high-temperature gas by combustion in a cylindrical housing (4), and a filter chamber (8) fitted with a filter material (7) ) And an igniter (10) attached to an end (3) of the housing (4) and igniting and burning a gas generating agent (5) in the combustion chamber (6). A vessel (1), comprising a partition member (9) for partitioning the combustion chamber (6) and the filter chamber (8) in which the filter material (7) is mounted; A gas generator characterized in that (6) is filled with an enhancer agent (14).
2. 前記ェンハンサ剤 (14) が前記点火器 (10) 側に充填されていること を特徴とする請求の範囲第 1項に記載のガス発生器。 2. The gas generator according to claim 1, wherein the enhancer agent (14) is filled in the igniter (10) side.
3. 前記ェンハンサ剤 (14) が、 成形体であることを特徴とする請求の範囲 第 1項又は第 2項に記載のガス発生器。  3. The gas generator according to claim 1, wherein the enhancer agent (14) is a molded body.
4. 前記燃焼室 (6) 内に、 ガス発生剤 (5) とェンハンサ剤 (14) とが直 接接触するように充填されていることを特徴とする請求の範囲第 1項〜第 4. The combustion chamber (6) is filled with a gas generating agent (5) and an enhancer agent (14) so as to be in direct contact with each other.
3項のいずれか一項に記載のガス発生器。 4. The gas generator according to claim 3.
5. 前記ガス発生剤 (5) が 両端が閉鎖された中空体形状又は円柱状である ことを特徴とする請求の範囲第 1項〜第 4項のいずれか一項に記載のガス 発生器。  5. The gas generator according to any one of claims 1 to 4, wherein the gas generating agent (5) has a hollow body shape or a column shape having both ends closed.
6. 前記仕切り部材 (9) は、 孔 (18) を有し、 該孔 (18) は、 シール部 材 (16) で封鎖されていることを特徴とする請求の範囲第 1項〜第 5項 のいずれか一項に記載のガス発生器。 6. The partition member (9) has a hole (18), and the hole (18) is closed by a sealing member (16). A gas generator according to any one of the preceding claims.
7. ガス放出孔 (11) が、 前記フィルタ一室 (8) の円筒部 (20) に設け られていることを特徴とする請求の範囲第 1項〜第 6項のいずれか一項に 記載のガス発生器。  7. The gas discharge hole (11) is provided in a cylindrical portion (20) of the filter chamber (8), according to any one of claims 1 to 6, characterized in that: Gas generator.
8. 前記仕切り部材 (9) が、 ハウジング (4) の外周部分からかしめられる ことを特徴とする請求の範囲第 1項〜第 7項のいずれか一項に記載のガス  8. The gas according to any one of claims 1 to 7, wherein the partition member (9) is swaged from an outer peripheral portion of the housing (4).
PCT/JP2004/003183 2003-03-12 2004-03-11 Gas generator WO2004080767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-66515 2003-03-12
JP2003066515 2003-03-12

Publications (1)

Publication Number Publication Date
WO2004080767A1 true WO2004080767A1 (en) 2004-09-23

Family

ID=32984537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003183 WO2004080767A1 (en) 2003-03-12 2004-03-11 Gas generator

Country Status (2)

Country Link
TW (1) TW200500245A (en)
WO (1) WO2004080767A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433850B2 (en) * 2016-07-26 2022-09-06 Trw Airbag Systems Gmbh Gas generator having a pyrotechnic propelling charge and method for producing the propelling charge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835315B2 (en) * 2017-05-18 2021-02-24 株式会社ダイセル Gas generator and storage container

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195999A (en) * 1993-12-29 1995-08-01 Nippon Kayaku Co Ltd Inflator for air bag
JP3016432U (en) * 1995-03-31 1995-10-03 日本化薬株式会社 Small gas generator
JPH0912302A (en) * 1995-04-07 1997-01-14 Daicel Chem Ind Ltd Oxygen generator
JP2756356B2 (en) * 1990-10-08 1998-05-25 日本工機株式会社 Gas generator for airbag deployment
JP2921776B2 (en) * 1991-11-14 1999-07-19 日本工機株式会社 Gas generator pack for gas generator for airbag deployment
JP2000086375A (en) * 1998-09-09 2000-03-28 Daicel Chem Ind Ltd Gas generator composition
WO2001074633A1 (en) * 2000-04-03 2001-10-11 Nippon Kayaku Kabushiki-Kaisha Gas generator
JP2002362299A (en) * 2001-06-05 2002-12-18 Nippon Kayaku Co Ltd Gas generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756356B2 (en) * 1990-10-08 1998-05-25 日本工機株式会社 Gas generator for airbag deployment
JP2921776B2 (en) * 1991-11-14 1999-07-19 日本工機株式会社 Gas generator pack for gas generator for airbag deployment
JPH07195999A (en) * 1993-12-29 1995-08-01 Nippon Kayaku Co Ltd Inflator for air bag
JP3016432U (en) * 1995-03-31 1995-10-03 日本化薬株式会社 Small gas generator
JPH0912302A (en) * 1995-04-07 1997-01-14 Daicel Chem Ind Ltd Oxygen generator
JP2000086375A (en) * 1998-09-09 2000-03-28 Daicel Chem Ind Ltd Gas generator composition
WO2001074633A1 (en) * 2000-04-03 2001-10-11 Nippon Kayaku Kabushiki-Kaisha Gas generator
JP2002362299A (en) * 2001-06-05 2002-12-18 Nippon Kayaku Co Ltd Gas generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433850B2 (en) * 2016-07-26 2022-09-06 Trw Airbag Systems Gmbh Gas generator having a pyrotechnic propelling charge and method for producing the propelling charge

Also Published As

Publication number Publication date
TW200500245A (en) 2005-01-01

Similar Documents

Publication Publication Date Title
JP4490919B2 (en) Gas generator
JP4136944B2 (en) Gas generator
JP4257740B2 (en) Gas generator
US7721652B2 (en) Gas generator
JP4180993B2 (en) Gas generator
WO2010103811A1 (en) Gas generant composition, molded object thereof, and gas generator using same
EP1118512A1 (en) Molded body of composition of gas generating agent for air bags
JP4490920B2 (en) Gas generator mounting structure and airbag module
JP4593944B2 (en) Gas generator for airbag
US20100109304A1 (en) Firing agent for gas generating device
KR100780894B1 (en) Gas generator with automatic firing function
JP4514024B2 (en) Gunpowder molded body and gas generator having the same
WO2000014032A1 (en) Gas-evolving composition
JP5391440B2 (en) Pyro-type gas generator and molded article of gas generating agent composition
WO2004080767A1 (en) Gas generator
JP4318238B2 (en) Gas generant composition
JP2005313752A (en) Gas producer
JP4891942B2 (en) Gas generator
JP2000026189A (en) Formed body of gas generating agent composition for air bag

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP