[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004075322A1 - 燃料電池用電極、燃料電池、およびこれらの製造方法 - Google Patents

燃料電池用電極、燃料電池、およびこれらの製造方法 Download PDF

Info

Publication number
WO2004075322A1
WO2004075322A1 PCT/JP2004/001795 JP2004001795W WO2004075322A1 WO 2004075322 A1 WO2004075322 A1 WO 2004075322A1 JP 2004001795 W JP2004001795 W JP 2004001795W WO 2004075322 A1 WO2004075322 A1 WO 2004075322A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrode
metal sheet
porous metal
catalyst
Prior art date
Application number
PCT/JP2004/001795
Other languages
English (en)
French (fr)
Inventor
Takashi Manako
Tsutomu Yoshitake
Hidekazu Kimura
Ryota Yuge
Yoshimi Kubo
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005502734A priority Critical patent/JP4626514B2/ja
Publication of WO2004075322A1 publication Critical patent/WO2004075322A1/ja
Priority to US11/192,316 priority patent/US20050282062A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell electrode, a fuel cell, and a method for producing the same.
  • a fuel cell is composed of a fuel electrode and an oxidant electrode (hereinafter, also referred to as a “catalyst electrode”) and an electrolyte provided between the fuel electrode and the oxidant electrode.
  • An oxidant is supplied to generate power by an electrochemical reaction.
  • Hydrogen is generally used as a fuel, but in recent years, methanol has been reformed using methanol, which is inexpensive and easy to handle, as a raw material, and methanol has been reformed to produce hydrogen.
  • the development of direct fuel cells for use is also being actively pursued.
  • hydrogen ions can be obtained from an aqueous methanol solution, which eliminates the need for a reformer and the like, and has a great advantage in application to portable electronic devices.
  • a liquid methanol aqueous solution as fuel, it has the characteristic of having an extremely high energy density.
  • the catalyst electrode of a conventional fuel cell has a configuration in which a catalyst layer is provided on the surface of a gas diffusion layer made of a carbon material as a base material.
  • a current collector such as an end plate is provided on both surfaces of the catalyst electrode-solid electrolyte membrane composite in which a solid electrolyte membrane is disposed between the catalyst electrodes.
  • the current collecting member needs to have a certain thickness. It was difficult to reduce the size and weight.
  • Patent Document 1 a technique has been proposed in which a foam metal made of nickel is used as the material of the gas diffusion layer instead of the carbon porous body.
  • Patent Document 2 describes an electrochemical device using a metal fiber such as SUS, and specific examples thereof include a gas sensor, a purification device, an electrolytic layer, and a fuel cell.
  • Patent Document 1 JP-A-6-52889
  • Patent Document 2 Japanese Patent Application Laid-Open No. 6-2667555 Disclosure of the Invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for reducing the size and weight of a fuel cell. Another object of the present invention is to provide a technique for improving the output characteristics of a fuel cell. Another object of the present invention is to provide a technique for simplifying a fuel cell manufacturing process. You.
  • an electrode for a fuel cell comprising: a porous metal sheet; a catalyst supported on the porous metal sheet; and a proton conductor provided in contact with the catalyst.
  • an electrode for a fuel cell comprising a step of supporting a catalyst on a porous metal sheet.
  • the catalyst was connected to the carbon material as the base material through carbon particles.
  • the catalyst is directly supported on the surface of the metal constituting the porous metal sheet.
  • the porous metal sheet does not need to have a uniform configuration.
  • the composition of the metal constituting the metal fiber sheet may be different between the surface and the inside, and may have a conductive surface layer or the like.
  • the catalyst is directly supported on the portion constituting the sheet.
  • the catalyst is directly supported on the surface of the metal constituting the porous metal sheet; for example, when used as a fuel electrode, the catalyst and the electrolyte
  • the electrons generated by the electrochemical reaction at the interface with the metal sheet are reliably and promptly moved to the porous metal sheet.
  • electrons guided from the external circuit to the porous metal sheet are reliably and promptly guided to the bonded catalyst.
  • the proton conductor is provided in contact with the catalyst, a movement path of protons generated on the catalyst surface is also ensured.
  • the fuel cell electrode according to the present invention can efficiently use the electrons and protons generated by the electrochemical reaction, so that the output characteristics of the fuel cell can be improved.
  • the porous metal sheet used in the fuel cell electrode according to the present invention has a higher conductivity than carbon materials used conventionally and has excellent current collecting characteristics, so that an end plate or the like is provided outside the electrode. Even if no current collecting member is provided, it is possible to reliably collect current. Therefore, the fuel cell can be made smaller, lighter, and thinner.
  • the surface of a carbon material such as carbon paper that constitutes a conventional battery is hydrophobic. It was difficult to make the surface hydrophilic.
  • the surface of the porous metal sheet used for the fuel cell electrode according to the present invention is more hydrophilic than the carbon material. Therefore, when a liquid fuel containing, for example, methanol is supplied to the fuel electrode, penetration of the liquid fuel into the fuel electrode is promoted more than the conventional electrode. For this reason, fuel supply efficiency can be improved.
  • a hydrophilic region and a hydrophobic region can be easily provided in the electrode by performing a predetermined hydrophobic treatment on the porous metal sheet constituting the oxidant electrode. In this way, a water discharge path is secured at the oxidizer electrode, and flooding is suppressed. For this reason, it is possible to stably exhibit a clean output.
  • a hydrophobic substance may be arranged in the voids of the porous metal sheet. By doing so, the discharge of moisture from the electrode is further promoted, and a gas passage is suitably secured. Therefore, for example, when the fuel cell electrode is used as the oxidizer electrode, water generated at the oxidizer electrode can be preferably discharged to the outside of the electrode.
  • the hydrophobic substance may include a water-repellent resin.
  • the method for producing an electrode for a fuel cell of the present invention may include a step of attaching a water-repellent resin to the voids of the porous metal sheet.
  • a porous metal sheet and a catalyst supported on the porous metal sheet are provided, and the catalyst is supported on a roughened surface of a metal constituting the porous metal sheet.
  • An electrode for a fuel cell is provided.
  • the surface of the porous metal may be roughened by etching the porous metal sheet. This makes it possible to easily adjust the degree of surface roughening.
  • the step of performing the etching may be a step of performing a chemical etching by dipping in an etching solution. Further, the step of performing the etching may be a step of performing electrolytic etching by dipping in an electrolytic solution.
  • a method for supporting a catalyst is provided. Before the process, a step of roughening the surface of the metal constituting the porous metal sheet may be included.
  • the surface of the metal constituting the porous metal sheet is roughened, the surface area capable of supporting the catalyst can be increased. For this reason, a sufficient amount of the catalyst can be directly supported on the porous metal sheet without using a member for securing the surface area such as carbon particles. Thus, electrode characteristics can be improved.
  • an electrode for a fuel cell comprising: a porous metal sheet; and a catalyst supported on the porous metal sheet, wherein the porous metal sheet is a metal fiber sheet. Is done.
  • the metal fiber sheet refers to a sheet in which one or more metal fibers are formed into a sheet. It may be composed of one kind of metal fiber, or may contain two or more kinds of metal fibers.
  • the catalyst can be supported on the surface of each single fiber constituting the metal fiber sheet. For this reason, a sufficiently large amount of supported catalyst can be ensured. Also, the conductivity of the electrode substrate and the movement path of hydrogen ions are suitably secured. In addition, since the metal fiber sheet has a relatively high porosity, the weight of the electrode can be reduced. Note that the catalyst may be fixed to the metal fibers by a proton conductor. Further, the surface of the metal fiber may be plated.
  • the fuel cell electrode of the present invention may further include a proton conductor provided in contact with the catalyst.
  • the method for producing a fuel cell electrode of the present invention may include a step of attaching a proton conductor to the surface of the catalyst. By doing so, a so-called three-phase interface between the catalyst, the fuel, and the electrolyte can be reliably and sufficiently formed. In addition, a migration path of protons generated on the catalyst surface is suitably secured. Therefore, the electrode has excellent electrode characteristics as an electrode for a fuel cell, and the output characteristics of the fuel cell can be improved.
  • the catalyst is a metal constituting a porous metal sheet. It may be formed in a layer on the surface of a genus. If the porous metal sheet is formed in a layer, the contact between the porous metal sheet and the catalyst occurs because the porous metal sheet and the catalyst come into surface contact with each other, for example, compared to the point contact mode when a particulate catalyst is supported. The area increases. For this reason, the movement path of the electrons can be more reliably ensured.
  • a plating layer of a catalyst may be formed on the surface of the metal constituting the porous metal sheet.
  • the step of supporting the catalyst may include a step of plating the porous metal sheet.
  • the desired catalyst can be easily and reliably supported on the surface of the porous metal sheet.
  • the catalyst may substantially cover the porous metal sheet.
  • the step of roughening the surface of the metal may include a step of etching the porous metal sheet. This makes it possible to easily adjust the degree of surface roughening.
  • the step of performing the etching may include a step of chemically immersing the porous metal sheet in an etchant to perform the etching.
  • the above-described step of performing the etching may include a step of immersing the porous metal sheet in an electrolytic solution and performing the electrolytic etching.
  • the catalyst comprises Pt, Ti, Cr, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Pd, Ag , In, Sn, Sb, W, Au, Pb, and Bi may be a metal, an alloy, or an oxide thereof including at least one of them.
  • the notation process consists of Pt, Ti, Cr, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Pd, Ag, In, Sn, S
  • the method may include a step of supporting a metal, an alloy, or an oxide thereof containing at least one of b, W, Au, Pb, and Bi.
  • a flattening layer having proton conductivity may be provided on at least one surface of the porous metal sheet.
  • the method for producing an electrode for a fuel cell according to the present invention may include a step of forming a flattening layer on at least one surface of the porous metal sheet.
  • a fuel electrode an oxidizer electrode, and a solid electrolyte membrane sandwiched between the fuel electrode and the oxidizer electrode, wherein the fuel electrode or the oxidizer electrode is a fuel cell electrode.
  • a fuel cell is provided.
  • a step of obtaining a fuel cell electrode by the above-described method for producing a fuel cell electrode and a step of contacting the solid electrolyte membrane and the fuel cell electrode with the solid electrolyte membrane and the fuel cell electrode And a step of bonding the solid electrolyte membrane and the fuel cell electrode by pressure bonding the electrode and the fuel cell electrode.
  • the fuel cell of the present invention uses the fuel cell electrode, it has excellent catalyst use efficiency and current collection efficiency, and can stably exhibit high output.
  • an electrode having a catalyst directly bonded to the surface of the porous metal sheet is used, efficient current collection is possible without providing a current collecting member such as an end plate outside the electrode.
  • the configuration and the manufacturing process can be simplified, and the fuel cell can be made thinner, smaller and lighter. Further, since a step of supporting a catalyst on carbon particles is not required, a fuel cell can be manufactured more easily.
  • the fuel cell of the present invention is made of a material such as a packaging material which does not hinder miniaturization. If so, it can be used as appropriate.
  • the fuel cell electrode may constitute a fuel electrode, and the fuel may be supplied directly to the surface of the fuel cell electrode.
  • a specific configuration in which fuel is directly supplied is, for example, a configuration in which a fuel container or a fuel supply unit is provided in contact with a porous metal sheet of the fuel electrode. It means that fuel is supplied without passing through the electric member.
  • the porous metal sheet has a plate shape, a through hole, a stripe-shaped introduction path, or the like may be appropriately provided on the surface. By doing so, the fuel can be more efficiently supplied from the surface of the porous metal sheet to the entire electrode.
  • the fuel cell electrode may constitute an oxidant electrode, and the oxidant may be supplied directly to the surface of the fuel cell electrode.
  • the term "direct supply of the oxidizing agent” means that the oxidizing agent such as air or oxygen is directly supplied to the surface of the oxidizing electrode without passing through an end plate or the like.
  • a plurality of fuel cells of the present invention may be combined in series or in parallel to form an assembled battery or a stack structure. This makes it possible to reduce the size and weight of the assembled battery and the stack structure, and to stably exhibit high output.
  • a fuel cell can be reduced in size and weight by supporting a catalyst on a porous metal and providing a proton conductor in contact with a catalyst. Further, according to the present invention, the output characteristics of the fuel cell can be improved. Further, according to the present invention, the fuel cell manufacturing process can be simplified.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the fuel cell according to the present embodiment. You.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the fuel electrode and the solid electrolyte membrane of the fuel cell of FIG.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of a fuel electrode and a solid electrolyte membrane of a conventional fuel cell.
  • FIG. 4 is a cross-sectional view schematically showing a fuel electrode and a solid electrolyte membrane of the fuel cell according to the embodiment.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the fuel cell 100 in the present embodiment.
  • the single cell structure 101 includes a fuel electrode 102, an oxidant electrode 108, and a solid electrolyte membrane 114.
  • the fuel electrode 102 and the oxidant electrode 108 are also referred to as a catalyst electrode.
  • Fuel 124 is supplied to the fuel electrode 102 via the fuel container 425.
  • the oxidizer electrode 108 the exposed portion of the single cell structure 101 is covered with a seal 429, but a hole is provided to supply the oxidizer 126.
  • the oxygen in the air is supplied as oxidant 126.
  • One end of the fuel electrode 102 and the oxidant electrode 108 project from the solid electrolyte membrane 114 to form a current collector 487, and the power generated by the fuel cell 100 is collected. It is taken out of the electrical part 487.
  • FIG. 2 is a cross-sectional view schematically showing the fuel electrode 102 and the solid electrolyte membrane 114 of the fuel cell shown in FIG.
  • the anode 102 has a structure in which the metal constituting the porous metal sheet 489 as the base material has an uneven surface, and the surface is covered with the catalyst 491 .
  • the solid electrolyte membrane 114 is heated by a layer of the catalyst 491, which is supported by plating or the like on the surface of the porous metal sheet 489 roughened by etching or the like. Joined by crimping. As a result, the solid polymer electrolyte particles 150 Attached to medium 49 1 layer.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of a fuel electrode of a conventional fuel cell.
  • a sheet made of a carbon material is used as a substrate 104, and a catalyst layer composed of solid polymer electrolyte particles 150 and catalyst-supporting carbon particles 140 is formed on the surface of the sheet.
  • a porous metal sheet 489 is used as a base material of the fuel electrode 102. Since the porous metal sheet 489 has excellent conductivity, it is not necessary to provide a current collecting member such as a metal plate outside the electrodes in the fuel cell 100. On the other hand, in FIG. 3, since a carbon material is used for the substrate 104, a current collecting member is required.
  • a current collecting member is required.
  • the porous metal sheet 489 is used as the base material of the fuel electrode 102 or the oxidizer electrode 108, the current is directly collected without providing a current collecting member outside the porous metal sheet 489. It is possible to do. For this reason, it becomes possible to make the unit cell structure 101 lightweight and thin.
  • the direct contact medium 491 is carried on the surface of the metal constituting the porous metal sheet 489. Since the surface of the metal constituting the porous metal sheet 489 has a fine uneven structure, a surface area for supporting a sufficient amount of the catalyst 491 is secured. Therefore, it is possible to support the catalyst 491 in the same degree as when the catalyst-supporting carbon particles 140 are used as shown in FIG. Note that the porous metal sheet 489 may be subjected to a water-repellent treatment.
  • the electrochemical reaction at the fuel electrode 102 occurs at the interface between the catalyst 491 and the solid polymer electrolyte particles] : 50 and the porous metal sheet 489, so-called three-phase interface, It is important to secure a three-phase interface.
  • the porous metal sheet 4 In Figure 2, the porous metal sheet 4
  • the contact resistance between the catalyst-supporting carbon particles 140 and the substrate 104 was larger than the contact resistance between the catalyst 491 and the porous metal sheet 489. It can be said that the configuration described above more suitably secures the electron movement path.
  • the fuel 124 is directly supplied from the entire surface of the fuel electrode 102, so that the supply efficiency of the fuel 124 is excellent and the efficiency of the catalytic reaction can be improved. . Further, since no contact resistance occurs at the interface between the electrode base material and the current collecting member, an increase in internal resistance can be suppressed, and excellent output characteristics can be exhibited.
  • FIG. 4 is a cross-sectional view schematically showing another configuration of the fuel electrode 102 and the solid electrolyte membrane 114.
  • FIG. 4 shows a configuration in which a flattening layer 493 is provided on the surface of the porous metal sheet 489 in the configuration of FIG. By providing the flattening layer 493, the adhesion between the solid electrolyte membrane 114 and the porous metal sheet 489 is improved.
  • the porous metal sheet 489 is not particularly limited as long as it is a metal sheet having holes formed on both sides for allowing the passage of fuel, oxidant, or hydrogen ions. It is possible to use sheets of various shapes and thicknesses. For example, a porous metal sheet can be used. Further, a metal fiber sheet may be used. A metal fiber sheet is a sheet of one or more metal fibers There is no particular limitation as long as it is formed into a non-woven sheet, and a non-woven sheet or woven fabric of metal fibers can be used.
  • the metal fiber sheet may be composed of one type of metal fiber, or may include two or more types of metal fibers.
  • the diameter of the metal fiber can be, for example, 10 m or more and 100 im or less.
  • the surface of the metal constituting the porous metal sheet 489 has an uneven structure, for example, by a roughening treatment. By doing so, the surface area supporting the catalyst can be increased.
  • the void width of the porous metal sheet 4889 can be, for example, 10 ⁇ 1! 1 or more and 5 111111 or less. In this way, good diffusion of good fuel liquid and good fuel gas can be maintained.
  • the porosity of the porous metal sheet 489 can be, for example, not less than 10% and not more than 70%. By setting the content to 10% or more, it is possible to maintain good diffusion of the fuel liquid and the fuel gas. Further, by setting the content to 70% or less, a good current collecting action can be maintained. Further, the porosity can be, for example, 30% or more and 60% or less. In this case, it is possible to maintain a better diffusion of the fuel liquid and the fuel gas, and to maintain a good current collecting action.
  • the porosity is the ratio of the porosity to the total volume.
  • the porosity of the porous metal sheet 489 can be calculated, for example, from the weight, the volume, and the specific gravity of the metal constituting the porous metal sheet 489. Also, it can be determined by the mercury intrusion method.
  • the thickness of the porous metal sheet 489 can be, for example, 1 mm or less. When the thickness is 1 mm or less, the single cell structure 101 can be suitably reduced in thickness and weight. Further, when the thickness is 0.5 mm or less, the size and weight can be further reduced, and the device can be more suitably used for portable devices. For example, the thickness can be set to 0.1 mm or less.
  • Materials for the porous metal sheet 489 include, for example, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Al, Au, Ag , Cu, or? It can include one or more elements selected from the group consisting of t. All of these elements have good conductivity. Among them, it is preferable to include an element selected from Au, Ag, and Cu, because the specific electric resistance of the porous metal sheet 489 can be reduced. Further, when the current collector contains an element selected from Au, Ag, and Pt, the metal constituting the porous metal sheet 489 can be a metal having a higher oxidation-reduction potential. By doing so, even if a part of the porous metal sheet 489 is exposed without being covered with the catalyst 491, the corrosion resistance of the porous metal sheet 489 can be improved.
  • the porous metal sheet 489 has the above-described characteristics, the above-mentioned sheet can serve both as a gas diffusion electrode and a current collecting electrode.
  • the porous metal sheet 489 used for the fuel electrode 102 and the oxidizer electrode 108 may be made of the same material or different materials.
  • the catalyst 49 1 of the anode 102 is, for example, Pt, Ti, Cr, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Pd, Ag, In, Sn , Sb, W, Au, Pb, and Bi containing at least one of metals, alloys, and oxides thereof.
  • Pt is particularly preferably used.
  • the catalyst (not shown) for the oxidizer electrode 108 the same catalyst as the catalyst 491 can be used, and the above-mentioned exemplified substances can be used. Among them, a Pt-Ru alloy is particularly preferably used.
  • the catalyst 491 may be supported on the porous metal sheet 489.
  • the current collector 487 may be entirely or partially covered. Porous as shown in Figure 2 It is preferable that the entire surface of the metal sheet 489 is covered because the corrosion of the porous metal sheet 489 is suppressed.
  • the thickness of the catalyst 491 is not particularly limited, but is, for example, 1 nm or more and 500 nm or less. Can be.
  • the solid polymer electrolyte which is a material of the solid polymer electrolyte particles 150, electrically connects the catalyst-supporting carbon particles to the solid electrolyte membrane 114 on the catalyst electrode surface, and forms an organic material on the catalyst surface. It has the role of allowing liquid fuel to reach, proton conductivity is required, and the fuel electrode 102 is required to be permeable to organic liquid fuel such as methanol, and the oxidant electrode 108 is required to Oxygen permeability is required. In order to satisfy such requirements, a material having excellent proton conductivity and organic liquid fuel permeability such as methanol is preferably used as the solid polymer electrolyte.
  • an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphoric acid group or a weak acid group such as a sulfoxyl group is preferably used.
  • a fluorine-containing polymer having a fluororesin skeleton and a protonic acid group can be used. It is also possible to use polyether ketone, polyether ether ketone, polyether sulfone, polyether ether sulfone, polysulfone, polysulfide, polyphenylene, polyphenylene oxide, polystyrene, polyimide, polybenzoimidazole, polyamide, or the like. it can. From the viewpoint of reducing the crossover of liquid fuel such as methanol, a hydrocarbon-based material containing no fluorine can be used as the polymer. Further, a polymer containing an aromatic compound may be used as the base polymer.
  • Amine-substituted polystyrene such as polybenzoimidazole derivative, polybenzoxazole derivative, cross-linked polyethyleneimine, polysilamine derivative, polydimethylaminoethyl styrene, nitrogen-substituted polyacrylate such as polydimethylaminoethyl methyl acrylate, etc.
  • Resins having a nitrogen or hydroxyl group silanol-containing polysiloxane, polyhydroxyethyl methacrylate Representative hydroxyl group-containing polyacrylic resin;
  • Hydroxyl-containing polystyrene resin represented by poly (P-hydroxystyrene);
  • Etc. can also be used.
  • a crosslinkable substituent for example, a vinyl group, an epoxy group, an acrylic group, a methyl acryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinone diazide group may be appropriately introduced into the polymer exemplified above. You can also use the one that was done. Further, those in which these substituents are crosslinked can also be used. Specifically, as the first solid polymer electrolyte 150 or the second solid polymer electrolyte 151, for example,
  • Aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole;
  • Sulfonic acid group-containing perfluorocarbon Naphion (registered trademark, manufactured by DuPont), Aciplex (manufactured by Asahi Kasei Corporation), etc.);
  • Copolymers such as polystyrene sulfonic acid copolymers, polyvinyl sulfonic acid copolymers, cross-linked alkyl sulfonic acid derivatives, fluorine-containing polymers composed of a fluororesin skeleton and sulfonic acid;
  • Acrylamide A copolymer obtained by copolymerizing acrylamides such as 2-methylpropanesulfonic acid and acrylates such as n-butyl methacrylate;
  • Etc. can be used. Also, aromatic polyetheretherketone or aromatic polyetherketone can be used.
  • perfluorocarbon containing sulfone groups Naphion (registered trademark, manufactured by DuPont), Aciplex (manufactured by Asahi Kasei Corporation), etc.), perfluorocarbon containing carboxyl groups (Flemion, etc.) (Registered trademark) S film (manufactured by Asahi Glass Co., Ltd.) or the like is preferably used.
  • the above-mentioned solid polymer electrolytes in the fuel electrode 102 and the oxidizer electrode 108 may be the same or different.
  • the solid electrolyte membrane 114 has a role of separating the fuel electrode 102 and the oxidant electrode 108 and of transferring hydrogen ions between the two. Therefore, the solid electrolyte membrane 114 is preferably a membrane having high proton conductivity. Further, it is preferable that it is chemically stable and has high mechanical strength.
  • a material constituting the solid electrolyte membrane 114 for example, a material containing a protonic acid group such as a sulfonic acid group, a sulfoalkyl group, a phosphoric acid group, a phosphon group, a phosphine group, a lipoxyl group, and a sulfonimide group is used.
  • a material containing a protonic acid group such as a sulfonic acid group, a sulfoalkyl group, a phosphoric acid group, a phosphon group, a phosphine group, a lipoxyl group, and a sulfonimide group is used.
  • the polymer of the substrate to which such a proton acid group is bonded include polyether ketone, polyether ether ketone, polyether sulfone, polyether ether sulfone, polysulfone, polysulfide, polyphenylene, polyphenylene oxide
  • Polybenzimidazole, polyamide and the like can be used.
  • fluorine is used as the polymer. It is possible to use a hydrocarbon-based film that does not contain any hydrocarbon.
  • a polymer containing an aromatic compound can be used as the polymer of the base.
  • Nitrogen such as nitrogen-substituted polyacrylates such as amine-substituted polystyrene such as polybenzoimidazole derivative, polybenzoxazole derivative, cross-linked polyethylenimine, polysilamine derivative, polydiethylaminoethyl styrene, and polydiethylaminoethyl methacrylate Or a hydroxyl-containing resin; a hydroxyl-containing polyacrylic resin represented by silanol-containing polysiloxane and polyhydroxyethyl methacrylate;
  • Hydroxyl-containing polystyrene resin represented by poly (P-hydroxystyrene);
  • Etc. can also be used.
  • a crosslinkable substituent such as a vinyl group, an epoxy group, an acrylic group, a methyl acryl group, a cinnamoyl group, a methylol group, an azide group, or a naphthoquinone diazide group is appropriately introduced into the above-described polymer. You can also use one that has been done. Further, those in which these substituents are crosslinked can also be used. Specifically, as the solid electrolyte membrane 114, for example,
  • Aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl 1,4-phenylene) and alkylsulfonated polybenzoimidazole;
  • Sulfonic acid group-containing perfluorocarbon Naphion (registered trademark, manufactured by DuPont), Aciplex (manufactured by Asahi Kasei Corporation), etc.);
  • Carboxyl group-containing perfluorocarbon (Flemion (registered trademark) S film (made by Asahi Glass Co., Ltd.), etc.);
  • Copolymers such as polystyrene sulfonic acid copolymers, polyvinyl sulfonic acid copolymers, cross-linked alkyl sulfonic acid derivatives, fluorine-containing polymers composed of a fluororesin skeleton and sulfonic acid;
  • Etc. can be used. Also, aromatic polyetheretherketone or aromatic polyetherketone can be used.
  • the solid electrolyte membrane 114 and the first solid polymer electrolyte 150 or the second solid polymer electrolyte it is preferable to use a material having low permeability for organic liquid fuel.
  • a material having low permeability for organic liquid fuel it is preferable to use an aromatic condensed polymer such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole.
  • the solid electrolyte membrane 114 and the second solid polymer electrolyte 151 have, for example, a swelling property of 50% or less, more preferably 20% or less (70 vol% Me ⁇ H (Swelling property to aqueous solution). By doing so, particularly good interfacial adhesion and proton conductivity can be obtained.
  • the flattening layer 493 When the flattening layer 493 is formed on the surface of the porous metal sheet 489, the flattening layer 493 can be a proton conductor. By doing so, a hydrogen ion transfer path is suitably formed between the solid electrolyte membrane 114 and the catalyst electrode. It is.
  • the material of the flattening layer 493 is selected, for example, from the materials used for the solid electrolyte or the solid electrolyte membrane 114.
  • the fuel 124 used in the present embodiment for example, hydrogen can be used.
  • reformed hydrogen using natural gas, naphtha, or the like as a fuel source can be used.
  • a liquid fuel such as methanol can be supplied directly.
  • the oxidizing agent 126 for example, oxygen, air, or the like can be used.
  • the fuel can be supplied from a fuel container 425 bonded to the fuel electrode 102 as shown in FIG. 1, for example.
  • Fuel 124 is supplied from a hole provided on the surface of the fuel container 425 in contact with the porous metal sheet 489.
  • a fuel supply port (not shown) may be provided in the fuel container 4 25 to inject the fuel 124 as needed.
  • the fuel 124 may be stored in the fuel container 425, or may be transported to the fuel container 425 as needed. That is, the method of supplying the fuel 124 is not limited to the method using the fuel container 425, and may be appropriately selected such as a method of providing a fuel supply channel. For example, a configuration in which the fuel is transported from the fuel cartridge to the fuel container 425 may be adopted.
  • the method for producing the fuel cell electrode and the fuel cell of the present embodiment is not particularly limited, but can be produced, for example, as follows.
  • the metal fiber sheet When a metal fiber sheet is used as the porous metal sheet 489, the metal fiber sheet can be obtained by compression molding metal fibers and, if necessary, by compression sintering.
  • etching such as electrochemical etching or chemical etching can be used.
  • Electrochemical etching using anodic polarization or the like can be performed as the electrochemical etching.
  • the porous metal sheet 489 is immersed in the electrolytic solution, and a DC voltage of, for example, about 1 V to 10 V is applied.
  • Electrolyte includes, for example, salt
  • An acidic solution such as an acid, sulfuric acid, supersaturated oxalic acid, or a mixed solution of chromic phosphoric acid can be used.
  • a porous metal sheet 4889 is immersed in a corrosive solution containing an oxidizing agent.
  • a corrosive liquid for example, nitric acid, alcoholic nitrate solution (nital), alcoholic picrate (picryl), ferric chloride solution, and the like are used.
  • the metal that becomes the catalyst 491 is supported on the porous metal sheet 489 having the metal fibers with the uneven structure formed on the surface.
  • a method for supporting the catalyst 49 for example, a plating method such as electroplating and electroless plating, and a vapor deposition method such as vacuum vapor deposition and chemical vapor deposition (CVD) can be used.
  • the porous metal sheet 489 When performing electroplating, the porous metal sheet 489 is immersed in an aqueous solution containing the target catalyst metal ion, and a DC voltage of, for example, about 1 V to 10 V is applied.
  • a DC voltage of, for example, about 1 V to 10 V is applied.
  • the plating can be performed at a current density of 0.5 to 2 AZ dm 2 .
  • plating can be performed at a desired ratio by adjusting the voltage in a concentration region in which one of the metals is diffusion-controlled.
  • a reducing agent such as sodium hypophosphite sodium borohydride is added as a reducing agent to an aqueous solution containing ions of the target catalytic metal, for example, Ni, Co, and Cu ions. Then, a porous metal sheet 489 is immersed therein and heated to about 90 ° C. to about 100 ° C.
  • the fuel electrode 102 and the oxidizer electrode 108 are obtained.
  • a hydrophobic substance may be attached to the voids of the porous metal sheet 489 to form a hydrophobic region.
  • a water-repellent treatment may be performed.
  • the surface of the hydrophilic catalyst 491 or the porous metal sheet 489 coexists with the surface of the water-repellent, and a discharge path of water in the catalyst electrode is appropriately secured. Therefore, for example, water generated at the oxidizing agent electrode 108 can be preferably discharged to the outside of the electrode.
  • the water repellent treatment is performed, for example, on the fuel cell 100 at the oxidant electrode 108. It can be applied to the outside surface.
  • Examples of the method of water-repellent treatment of the porous metal sheet 489 include polyethylene, paraffin, polydimethylsiloxane, PTFE, tetrafluoroethylene, perfluoroalkyl vinyl ether copolymer (PFA), and fluorinated polyethylene propylene (FEP).
  • the substrate is immersed or contacted with a solution or suspension of a hydrophobic substance such as poly (perfluorooctylethyl acrylate) (FMA) or polyphosphazene, and the water-repellent resin adheres to the pores Can be used.
  • a hydrophobic substance such as poly (perfluorooctylethyl acrylate) (FMA) or polyphosphazene
  • PTFE tetrafluoroethylene perfluoroalkylvinyl ether copolymer
  • FEP fluorinated ethylene propylene
  • FMA poly (perfluorooctylethyl acrylate)
  • polyphospha By using a highly water-repellent substance such as zen, a hydrophobic region can be suitably formed.
  • hydrophobic substances such as PTFE, PFA, FEP, pitch fluoride, and polyphosphazene can be pulverized and suspended in a solvent and applied.
  • the coating liquid may be a mixed suspension of a hydrophobic substance and a conductive substance such as metal or carbon.
  • the coating liquid may be prepared by pulverizing a conductive fiber having water repellency, for example, Dollymaron (registered trademark of Nissen Corporation) and suspending the same in a solvent. As described above, by using a conductive and water-repellent substance, the battery output can be further increased.
  • a conductive substance such as metal or carbon may be pulverized, and the substance coated with the above-mentioned hydrophobic substance may be suspended and applied.
  • the application method is not particularly limited, and for example, methods such as brush coating, spray application, and screen printing can be used.
  • a hydrophobic region can be formed in a part of the porous metal sheet 489. Further, if the coating is performed only on one surface of the porous metal sheet 489, a porous metal sheet 489 having a hydrophilic surface and a hydrophobic surface can be obtained.
  • a hydrophobic group may be introduced into the surface of the porous metal sheet 489 or the catalyst 491 by a plasma method.
  • the thickness of the hydrophobic part can be adjusted to the desired value.
  • the thickness can be adjusted.
  • CF 4 plasma treatment can be performed on the surface of the porous metal sheet 489 or the catalyst 491.
  • the solid electrolyte membrane 114 can be manufactured by employing an appropriate method according to a material to be used.
  • a material to be used For example, when the solid electrolyte membrane 114 is composed of an organic polymer material, it is obtained by casting a liquid obtained by dissolving or dispersing the organic polymer material in a solvent on a peelable sheet such as polytetrafluoroethylene and drying. be able to.
  • the solid polymer electrolyte is attached to the surface of the catalyst 49 1 by, for example, immersing the obtained solid electrolyte membrane 114 in a solid polymer electrolyte solution, the fuel electrode 102 and the oxidizer electrode 1 Then, hot pressing is performed to obtain a catalyst electrode-solid electrolyte membrane assembly. At this time, the surface of the fuel electrode 102 and the surface of the oxidizer electrode 108 were secured in order to secure the adhesion between both electrodes and the solid electrolyte membrane 114 and to secure the hydrogen ion transfer path at the catalyst electrode. It is preferable to provide a solid polymer electrolyte layer on the surface to flatten the surface.
  • the conditions for hot pressing are selected according to the material.
  • the solid electrolyte membrane 114 or the solid polymer electrolyte on the catalyst electrode surface is composed of an organic polymer having a softening point or a glass transition, these polymers are used. Temperature higher than the softening temperature or the glass transition temperature. Specifically, for example, temperature 1 0 0 ° C over 2 5 0 ° C or less, the pressure 1 kg / cm 2 or more 1 0 0 kg Z cm 2 or less, and 3 0 0 seconds or more time 1 00 seconds.
  • the obtained catalyst electrode-solid electrolyte membrane assembly has a single cell structure 101 of FIG.
  • the single-cell structure 101 uses the porous metal sheet 489, the internal resistance of the fuel cell is reduced and excellent output characteristics can be exhibited.
  • a fuel container 425 is joined to the fuel electrode 102 of the obtained single cell structure 101, and a seal 429 is provided on an exposed portion of the single cell structure 101.
  • the fuel electrode 102 and the fuel container 425 may be bonded to each other using an adhesive having resistance to the fuel 124.
  • Porous metal sheet as base material for fuel electrode 102 By using 4 89, a current collecting member such as an end plate is not required, and the fuel electrode 102 can be brought into direct contact with the fuel flow path or the fuel container to supply the fuel 124. Thus, a thinner, smaller and lighter fuel cell 100 can be obtained.
  • the manufacturing process can be simplified.
  • the oxidant electrode 108 can be supplied with the oxidant 126 by directly contacting with the oxidant or air.
  • the oxidizing agent 126 can be appropriately supplied to the oxidizing electrode 108 via a material such as a packaging member that does not hinder miniaturization.
  • the fuel cell 100 thus obtained is lightweight and small, and has high output, it can be suitably used as a fuel cell for portable equipment such as a mobile phone.
  • the fuel cell according to the present embodiment may be provided with an electrode terminal mounting portion, and a plurality of the battery terminals may be combined with each other to form an assembled battery.
  • a battery pack having a desired voltage and capacity can be obtained.
  • a plurality of fuel cells may be arranged side by side and connected to form a battery pack, or a single cell structure 101 may be stacked via a separator to form a stack. Even in the case of a stack, excellent output characteristics can be stably exhibited.
  • the fuel cell of the present embodiment uses a porous metal sheet having excellent electrical conductivity, electrons generated by the catalytic reaction can be efficiently used not only in a flat plate type but also in a cylindrical type or the like. Can be taken out of the battery well.
  • a SUS 316 porous metal fiber sheet with a thickness of 0.3 mm was used as a base material for the fuel electrode and the oxidizer electrode (gas diffusion electrode). This metal fiber sheet was immersed in an electrolytic solution and subjected to anodic polarization to perform electrolytic etching. At this time, a 1 V HC1 aqueous solution was used as an electrolyte, and a DC voltage of 3 V was applied.
  • platinum was applied to a thickness of about 10 to 50 nm on the surface of the electrolytically etched metal fiber sheet by electroplating.
  • Pt (NH 3 ) 2 (N ⁇ 2 ) 2 was used as a platinum salt, and this was dissolved in a sulfuric acid aqueous solution having a pH of not more than pH.
  • P t of (NH 3) 2 (N0 2 ) 2 concentration was 10 g / 1.
  • the two metal fiber sheets with the platinum plating were immersed in a solid polymer electrolyte solution (Aldrich, 5 wt% Naphion alcohol solution manufactured by Chemical Co., Ltd.). By hot pressing at 10 ° C. and a pressure of 10 kgZcm 2 , a catalyst electrode-solid electrolyte membrane assembly was produced. At this time, the end of the metal fiber sheet was projected from the end of the solid electrolyte membrane to form a current collector. In addition, Nafion 112 (registered trademark, manufactured by DuPont) was used as the solid electrolyte membrane. The obtained catalyst electrode-solid electrolyte membrane assembly was used as a unit cell of a fuel cell and mounted on an evaluation package. And 10 v / v% meta from fuel container to fuel electrode An aqueous solution of noll was supplied, and air was supplied to the oxidant electrode.
  • a solid polymer electrolyte solution Aldrich, 5 wt% Naphion alcohol solution manufactured by Chemical Co., Ltd.
  • the fuel and oxidant flow rates were 5 m1 / in and 50 mlZmin, respectively.
  • an output of 0.45 V was obtained with a current of 10 OmAZcm 2 .
  • a fuel cell was produced and evaluated in the same manner as in Example 1 without subjecting the porous metal sheet to electrolytic etching. Then, the output was about 0.4V.
  • Platinum particles were carried as a catalyst on the surface of the metal fiber sheet roughened in the same manner as in Example 1.
  • a colloidal dispersion of a solid polymer electrolyte was prepared.
  • a platinum-ruthenium alloy catalyst having a particle diameter of 3 to 5 nm was added to the colloidal dispersion of the solid polymer electrolyte, and the mixture was made into a paste using an ultrasonic disperser. At this time, mixing was performed so that the weight ratio between the solid polymer electrolyte and the catalyst was 1: 1.
  • This paste was coated on a metal fiber sheet by screen printing at 2 mg / cm 2 , and then heated and dried to produce a fuel cell electrode.
  • This electrode was hot-pressed on both surfaces of a solid electrolyte membrane Naphion 112 manufactured by DuPont at a temperature of 130 ° C. and a pressure of 10 kg / cm 2 to prepare a catalyst electrode-solid electrolyte membrane assembly.
  • Carbon paper manufactured by Toray Industries, Inc. having a thickness of 0.19 mm was used as a base material for the fuel electrode and the oxidizer electrode (gas diffusion electrode).
  • a 5 mm thick SUS plate was used as a metal plate for current collection.
  • a catalyst layer was formed on the surface of carbon paper as follows. 5wt% Naphion Al manufactured by Aldrich Chemical Co. as solid polymer electrolyte A coal solution was selected, and mixed with n-butyl acetate and stirred so that the mass of the solid polymer electrolyte was 0.1 to 0.4 mgZcm 3 , to prepare a colloidal dispersion of the solid polymer electrolyte.
  • the catalyst for the fuel electrode is a catalyst-supporting carbon fine particle in which 50% by weight of a platinum-ruthenium alloy catalyst having a particle diameter of 3 to 5 nm is supported on carbon fine particles (Denka Black; manufactured by Denki Kagaku).
  • the catalyst used was a catalyst-supporting carbon fine particle in which 50% by weight of a platinum catalyst having a particle diameter of 3 to 5 nm was supported on carbon fine particles (Denka Black; manufactured by Denki Kagaku).
  • the catalyst-supporting carbon fine particles were added to a colloidal dispersion of a solid polymer electrolyte, and made into a paste using an ultrasonic disperser. At this time, the mixing was performed so that the weight ratio of the solid polymer electrolyte and the catalyst was 1: 1. After 2 mg and Z cm 2 applied by screen printing the paste on a carbon paper to produce a dried by heating the fuel cell electrode. This electrode was hot-pressed on both sides of a solid electrolyte membrane Naphion 112 manufactured by DuPont at a temperature of 130 ° C. and a pressure of 10 kgZcm 2 to prepare a catalyst electrode-solid electrolyte membrane assembly.
  • a metal plate for current collection was fastened to the outside of the catalyst electrode of the obtained catalyst electrode-solid electrolyte membrane assembly, and the output was measured in the same manner as in Example 1 using this as a unit cell. It was about V.
  • Example 2 The same material as in Example 1 was used as the metal fiber sheet, and this was immersed in a ferric chloride solution of 0.1 lmo 1 Z1 for 20 minutes. Of the surface of the obtained metal fiber sheet
  • a catalyst prepared in the same manner as in Example 3 The paste was applied to form a catalyst layer.
  • the other surface was immersed in a suspension of PTFE and treated for water repellency.
  • This electrode was hot-pressed on both sides of a solid electrolyte membrane Nafion 112 manufactured by DuPont at a temperature of 130 ° C. and a pressure of 10 kg Zcm 2 to produce a catalyst electrode-solid electrolyte membrane assembly.
  • a catalyst electrode-solid electrolyte membrane assembly was prepared in the same manner as in Example 4 except that the surface treatment of the metal fiber sheet was not performed, and the output characteristics were evaluated. Then, the initial output was 0.4 V, but after one month passed, it dropped to 0.25 V.
  • the use of the metal fiber sheet as the electrode base material did not require a separate current collector plate in the fuel cell, and made it possible to reduce the weight. It was also found that the use of a metal fiber sheet increased the initial output of the battery. In addition, it was clarified that by etching metal fibers, output reduction during long-term use was also suppressed, and high output was stably exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

電極基材として多孔質金属シート(489)を用い、エッチングにより多孔質金属を構成する金属の表面を粗面化する。凹凸の形成された金属の表面に触媒(491)のめっき層を形成し、これを燃料極(102)または酸化剤極として用い、固体電解質膜(114)と接合する。

Description

明細書 燃料電池用電極、 燃料電池、 およびこれらの製造方法 技術分野
本発明は、燃料電池用電極、燃料電池、 およびこれらの製造方法に関する。 背景技術
近年の情報化社会の到来とともに、 パーソナルコンピュータ等の電子機器 で扱う情報量が飛躍的に増大し、 それに伴い、 電子機器の消費電力も著しく 増加してきた。 特に、 携帯型の電子機器では、 処理能力の増加に伴って消費 電力の増加が問題となっている。 現在、 このような携帯型の電子機器では、 一般的にリチウムイオン電池が電源として用いられているが、 リチウムィォ ン電池のエネルギー密度は理論的な限界に近づいている。 そのため、 携帯型 の電子機器の連続使用期間を延ばすために、 C P Uの駆動周波数を抑えて消 費電力を低減しなければならないという制限があった。
このような状況の中で、 リチウムイオン電池に変えて、 エネルギー密度が 大きく、 熱交換率の高い燃料電池を電子機器の電源として用いることにより、 携帯型の電子機器の連続使用期間が大幅に向上することが期待されている。 燃料電池は、 燃料極および酸化剤極 (以下、 これらを 「触媒電極」 とも呼 ぶ。) と、 これらの間に設けられた電解質から構成され、 燃料極には燃料が、 酸化剤極には酸化剤が供給されて電気化学反応により発電する。 燃料として は、 一般的には水素が用いられるが、 近年、 安価で取り扱いの容易なメタノ ールを原料として、 メタノールを改質して水素を生成させるメタノール改質 型や、 メタノールを燃料として直接利用する直接型の燃料電池の開発も盛ん に行われている。
燃料として水素を用いた場合、 燃料極での反応は以下の式 (1 ) のように なる。 3 H2 → 6 H+ + 6 e - (1)
燃料としてメタノールを用いた場合、 燃料極での反応は以下の式 (2) の ようになる。
CH3OH + H20 → 6H+ + C〇2 + 6 e_ (2) また、 いずれの場合も、 酸化剤極での反応は以下の式(3) のようになる。 3/202 + 6H+ + 6 e - → 3H2〇 (3)
特に、 直接型の燃料電池では、 メタノール水溶液から水素イオンを得るこ とができるので、 改質器等が不要になり、 携帯型の電子機器へ適用すること の利点が大きい。 また、 液体のメタノール水溶液を燃料とするため、 ェネル ギー密度が非常に高いという特徴がある。
従来の燃料電池の触媒電極は、 炭素材料を基材とするガス拡散層の表面に 触媒層が設けられた構成であった。 このような構成では、 触媒電極で生じた 電子の集電効率を高めるために、 触媒電極の間に固体電解質膜を配した触媒 電極一固体電解質膜複合体の両面にエンドプレート等の集電部材を設けてい た。 このとき、 炭素製のガス拡散層と金属製の集電部材との間の電気的コン タクトを良好にするために、 集電部材に一定の厚さが必要であり、 燃料電池 の薄型化、 小型軽量化が困難であった。
そこで、 ガス拡散層の材料として、 カーボン多孔体にかわりニッケル製の 発泡金属を用いる技術が提案されている (特許文献 1)。 多孔質金属シートを 用いることにより、 集電部材との間の電気的コンタクトが良好となり、 発電 効率が向上される。
ところが、 特許文献 1に記載の燃料電池の構成は、 ガス拡散層の材料を置 換したものの、 電極の外側に集電部材となるバルクの金属電極を設けていた ため、 充分な小型軽量化、 薄型化が実現されていなかった。 燃料電池を携帯 機器に用いる場合、 薄型化、 小型軽量化が求められる。 たとえば携帯電話は 端末重量が 1 00 g程度と軽量であるため、 燃料電池の重量もグラム単位で 軽く、 また、 ミリ単位で薄くする必要がある。
また、 従来の燃料電池では、 電極における触媒の担持量を増すために炭素 粒子に触媒を担持させていた。 以下、 触媒を担持させた粒子を、 触媒担持炭 素粒子とも呼ぶ。 この場合、 たとえば燃料極においては触媒表面で生じた電 子が炭素粒子を経由してガス拡散層へと移動する。 このため、 触媒反応によ り生じた電子の利用効率を十分確保するためには、 すべての炭素粒子がガス 拡散層に接していることが理想である。
ところが、 固体電解質型燃料電池においては、 通常水素イオンの移動経路 となる電解質として固体高分子電解質を用いているため、 触媒担持炭素粒子 の表面が固体高分子電解質に被覆されることがあった。 このような触媒担持 炭素粒子はガス拡散層との接点を有しないため、 電子の移動経路が確保され ず、 触媒反応によって生じた電子を電力として取り出すことができなかった。 また、 特許文献 2には、 S U S等の金属繊維を用いた電気化学デバイスが 記載されており、 その具体的な例として、 ガスセンサ、 精製装置、 電解層、 および燃料電池が示されている。 しかし、 同文献の実施例には、 電気分解に より水素を発生させる例については開示されているものの、 実際に電池とし て動作する燃料電池の構成は記載されていない。 特に、 触媒で発生したプロ トンを固体電解質膜へ移動させる手段が記載されておらず、 実際に動作する 燃料電池の具体的開示はない。
特許文献 1 特開平 6 - 5 2 8 9号公報
特許文献 2 特開平 6— 2 6 7 5 5 5号公報 発明の開示
上述のように、 従来の燃料電池では、 燃料電池を薄型化、 軽量化すること が困難であった。 また、 触媒の利用効率ゃ集電特性についても、 向上させる 余地があった。
本発明は上記事情に鑑みてなされたものであり、 その目的は、 燃料電池を 小型軽量化する技術を提供することにある。 また、 本発明の別の目的は、 燃 料電池の出力特性を向上させる技術を提供することにある。 また、 本発明の 別の目的は、 燃料電池の製造プロセスを簡素化する技術を提供することにあ る。
本発明によれば、 多孔質金属シートと、 該多孔質金属シートに担持された 触媒と、 触媒に接して設けられたプロトン導電体と、 を有することを特徴と する燃料電池用電極が提供される。
また、 多孔質金属シートに触媒を担持させる工程を含むことを特徴とする 燃料電池用電極の製造方法が提供される。
従来の燃料電池用電極では、 触媒は炭素粒子を介して基材となる炭素材料 に接続していた。 これに対し本発明では、 触媒は多孔質金属シートを構成す る金属の表面に直接担持されている。 ここで、 多孔質金属シートは均一な構 成でなくてもよい。 たとえば、 金属繊維シートを構成する金属の組成が、 表 面と内部とで異なっていてもよく、 導電性の表面層等を有していてもよい。 この場合も、 触媒はシートを構成する部分に直接担持されている。
このように、 本発明に係る燃料電池用電極は、 多孔質金属シートを構成す る金属の表面に直接触媒が担持された; 成であるため、 たとえば燃料極とし て用いた場合、 触媒と電解質との界面における電気化学反応により生じた電 子が確実かつ速やかに多孔質金属シートへと移動するようになる。 また、 酸 化剤極として用いた場合、 外部回路から多孔質金属シートに導かれた電子が、 接合された触媒に確実かつ速やかに導かれる。 また、 プロトン導電体が触媒 に接して設けられているため、 触媒表面で生成したプロトンの移動経路も確 保されている。 このように、 本発明に係る燃料電池用電極は、 電気化学反応 により生じる電子およびプロトンを効率よく利用することができるため、 燃 料電池の出力特性を向上させることができる。
本発明に係る燃料電池用電極で用いられている多孔質金属シートは、 従来 用いられている炭素材料に比べて導電率が高く、 集電特性にすぐれるため、 電極の外側にエンドプレート等の集電部材を設けなくても、 確実に集電を行 うことができる。 このため、 燃料電池を小型軽量化、 薄型化することができ る。
また、 従来の電池を構成するカーボンペーパー等の炭素材料の表面は疎水 性であったため、 表面の親水化が困難であった。 これに対し、 本発明に係る 燃料電池用電極に用いられる多孔質金属シートの表面は、 炭素材料に比べて 親水性である。 このため、 たとえばメタノール等を含む液体燃料を燃料極に 供給する場合、 燃料極への液体燃料の浸透が従来の電極より促進される。 こ のため、 燃料の供給効率を向上させることができる。
また、 電極内に生じた水の排出が促進される。 たとえば、 酸化剤極を構成 する多孔質金属シートに所定の疎水性処理を施すことにより、 電極内に親水 性の領域と疎水性の領域を容易に設けることができる。 こうすれば、 酸化剤 極に水の排出経路が確保され、 フラッデイングが抑制される。 このため、 す ぐれた出力を安定的に発揮させることが可能となる。
このとき、 必要に応じて多孔質金属シートの空隙中に疎水性物質を配置し てもよい。 こうすることにより、電極中の水分の排出が一層促進され、 また、 気体の通過経路が好適に確保される。 よって、 たとえば燃料電池用電極を酸 化剤極に用いた場合、 酸化剤極で生成する水を好適に電極外部に排出するこ とが可能となる。
本発明の燃料電池用電極において、 疎水性物質は撥水性樹脂を含むことが できる。 また、 本発明の燃料電池用電極の製造方法において、 多孔質金属シ ートの空隙中に撥水性樹脂を付着させる工程を含んでいてもよい。
本発明によれば、 多孔質金属シ一卜と、 該多孔質金属シートに担持された 触媒と、 を有し、 前記多孔質金属シートを構成する金属の粗面化された表面 に触媒が担持されていることを特徴とする燃料電池用電極が提供される。 このとき、 多孔質金属表面の粗面化は多孔質金属シートにエッチングを施 す工程によりなされてもよい。 こうすることにより、 簡便に粗面化の程度を 調節することができる。 ここで、 上記エッチングを施す工程はエッチング液 に浸漬することにより化学的にエッチングを施す工程であってもよい。 また、 上記エッチングを施す工程は電解液に浸漬することにより電解エッチングを 施す工程であってもよい。
また、 本発明の燃料電池用電極の製造方法において、 触媒を担持させるェ 程の前に、 多孔質金属シートを構成する金属の表面を粗面化する工程を含ん でいてもよい。
本発明に係る燃料電池用電極によれば、 多孔質金属シートを構成する金属 の表面が粗面化されているため、 触媒の担持が可能な表面積を増大させるこ とができる。 このため、 炭素粒子等の表面積を確保する部材を用いることな く、 多孔質金属シートに充分量の触媒を直接担持させることができる。 よつ て、 電極特性を向上させることができる。
本発明によれば、 多孔質金属シートと、 該多孔質金属シートに担持された 触媒と、 を有し、 多孔質金属シートが金属繊維シートであることを特徴とす る燃料電池用電極が提供される。
本発明において、 金属繊維シートとは、 一本以上の金属繊維がシート状に 成形されたものをいう。 一種類の金属繊維から構成されていてもよいし、 二 種類以上の金属繊維を含んでいてもよい。
本発明に係る燃料電池用電極においては、 金属繊維シートを構成する単繊 維一本一本の表面に触媒を担持させることができる。 このため、 触媒の担持 量を充分多く確保することができる。 また電極基材としての導電性や水素ィ オンの移動経路が好適に確保される。 また、 金属繊維シートは空隙率が比較 的大きいため、 電極の軽量化も可能となる。 なお、 触媒はプロトン導電体に より金属繊維に固着されていてもよい。 また、 金属繊維の表面にめっきされ ていてもよい。
本発明の燃料電池用電極において、 触媒に接して設けられたプロトン導電 体をさらに有していてもよい。 また、 本発明の燃料電池用電極の製造方法に おいて、 触媒の表面にプロトン導電体を付着させる工程を含んでいてもよい。 こうすることにより、 触媒、 燃料、 および電解質のいわゆる三相界面を確実 かつ充分に形成することができる。 また、 触媒表面で生成するプロトンの移 動経路が好適に確保される。 このため、 燃料電池用の電極としてすぐれた電 極特性を有し、 燃料電池の出力特性を向上させることができる。
本発明の燃料電池用電極において、 触媒が多孔質金属シートを構成する金 属の表面に層状に形成されていてもよい。 層状に形成されていれば、 多孔質 金属シートと触媒とが面接触するため、 たとえば粒子状の触媒が担持された 場合の点接触の態様と比較して、 多孔質金属シートと触媒との接触面積が増 大する。 このため、電子の移動経路をより一層確実に確保することができる。 たとえば、 本発明の燃料電池用電極において、 多孔質金属シートを構成す る金属の表面に触媒のめっき層が形成されていてもよい。 また、 本発明の燃 料電池用電極の製造方法において、 触媒を担持させる工程は、 多孔質金属シ ートにめつきを施す工程を含んでいてもよい。 こうすることにより、 簡便か つ確実に所望の触媒を多孔質金属シート表面に担持させることができる。 本発明の燃料電池用電極において、 触媒が実質的に多孔質金属シートを被 覆している構成とすることができる。 こうすることにより、 多孔質金属シー トとして用いる材料に求められる耐食性等の機能に対する要求を低下するこ とができる。 このため、 材料の選択の自由度が増し、 より安価な材料を用い ることが可能となる。
本発明の燃料電池用電極の製造方法において、 金属の表面を粗面化する上 記工程は、 多孔質金属シートにエッチングを施す工程を含んでいてもよい。 こうすることにより、 簡便に粗面化の程度を調節することができる。
本発明の燃料電池用電極の製造方法において、 エッチングを施す上記工程 は、 多孔質金属シートをエッチング液に浸漬することにより化学的にエッチ ングを行う工程を含んでいてもよい。
また、 本発明の燃料電池用電極の製造方法において、 エッチングを施す上 記工程は、 多孔質金属シートを電解液に浸漬し、 電解エッチングを行う工程 を含んでいてもよい。
本発明の燃料電池用電極において、 触媒が、 P t、 T i 、 C r、 F e、 C o、 N i 、 C u、 Z n、 N b、 M o、 R u、 P d、 A g、 I n、 S n、 S b、 W、 A u、 P b、 B iのうちの少なくとも一種を含む金属、 合金、 またはそ れらの酸化物であってもよい。
また、 本発明の燃料電池用電極の製造方法において、 触媒を担持させる上 記工程は、 P t、 T i 、 C r、 F e、 C o、 N i 、 C u、 Z n、 N b、 M o、 R u、 P d、 A g、 I n、 S n、 S b、 W、 A u、 P b、 B iのうちの少な くとも一種を含む金属、 合金、 またはそれらの酸化物を担持させる工程を含 んでいてもよい。
こうすることにより、 電極表面における電気化学反応を確実に効率よく行 うことができる。
本発明の燃料電池用電極において、 多孔質金属シートの少なくとも一方の 面に、 プロトン導電性を有する平坦化層を有していてもよい。 また、 本発明 の燃料電池用電極の製造方法において、 多孔質金属シートの少なくとも一方 の面に平坦化層を形成する工程を含んでいてもよい。 こうすることにより、 固体電解質膜との接着性が向上する。 このため、 水素イオンの移動経路を確 実に確保することができる。
本発明によれば、 燃料極、 酸化剤極、 および燃料極と酸化剤極とで挟持さ れた固体電解質膜を含み、 燃料極または酸化剤極が燃料電池用電極であるこ とを特徴とする燃料電池が提供される。
また、 本発明によれば、 燃料電池用電極の上記製造方法によって燃料電池 用電極を得る工程と、 固体電解質膜と燃料電池用電極とを当接させた状態で、 固体電解質膜と燃料電池用電極とを圧着し、 固体電解質膜と燃料電池用電極 とを接合する工程と、 を含むことを特徴とする燃料電池の製造方法が提供さ れる。
本発明の燃料電池は燃料電池用電極を用いているため、 触媒の利用効率や 集電効率にすぐれ、 高い出力が安定的に発揮される。 また、 多孔質金属シー トの表面に直接触媒が接合された電極を用いているため、 エンドプレート等 の集電部材を電極の外側に設けなくても、効率よい集電が可能である。また、 構成および製造プロセスを簡素化することができ、 燃料電池をより薄型化、 小型軽量化することができる。 また、 触媒を炭素粒子に担持させる工程を必 須としないため、 より簡便に燃料電池を製造することができる。
なお、 本発明の燃料電池には、 包装部材など、 小型化を阻害しない部材で あれば適宜用いることができる。
本発明の燃料電池において、 燃料電池用電極が燃料極を構成し、 燃料が燃 料電池用電極の表面に直接供給されてもよい。 燃料が直接供給される具体的 構成としては、 たとえば、 燃料極の多孔質金属シートに接して燃料容器や燃 料供給部が設けられていたりする構成をいい、 燃料極に、 エンドプレート等 の集電部材を介さずに燃料が供給されることをいう。 なお、 多孔質金属シー トが板状である場合、 表面に適宜貫通孔ゃ、 ストライプ状の導入路などを設 けてもよい。 こうすることにより、 燃料を多孔質金属シート表面から電極全 体により一層効率よく供給することができる。
また、 本発明の燃料電池において、 燃料電池用電極が酸化剤極を構成し、 酸化剤が燃料電池用電極の表面に直接供給されてもよい。 ここで、 酸化剤が 直接供給されるとは、 酸化剤極の表面に、 エンドプレート等を介さずに空気 や酸素などの酸化剤が直接供給されることをいう。
なお、 本発明の燃料電池を複数個直列または並列に組み合わせて組電池や スタック構造を形成してもよい。 こうすることにより、 組電池やスタック構 造においても小型軽量化が実現し、 また高い出力を安定的に発揮させること ができる。
以上説明したように、 本発明によれば、 多孔質金属に触媒を担持させ、 触 媒に接してプロトン導電体を設けることにより、 燃料電池を小型軽量化する ことができる。 また、 本発明によれば、 燃料電池の出力特性を向上させるこ とができる。 また、 本発明によれば、 燃料電池の製造プロセスを簡素化する ことができる。 図面の簡単な説明
上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好 適な実施の形態、 およびそれに付随する以下の図面によってさらに明らかに なる。
図 1は、 本実施形態における燃料電池の構造を模式的に示した断面図であ る。
図 2は、 図 1の燃料電池の燃料極および固体電解質膜の構成を模式的に示 す断面図である。
図 3は、 従来の燃料電池の燃料極および固体電解質膜の構成を模式的に示 す断面図である。
図 4は、 実施形態における燃料電池の燃料極および固体電解質膜を模式的 に示す断面図である。 発明を実施するための最良の形態
以下に本発明の燃料電池用電極およびそれを用いた燃料電池について詳細 に説明する。
図 1は本実施形態における燃料電池 1 0 0の構造を模式的に示した断面図 である。 単セル構造 1 0 1は、 燃料極 1 0 2、 酸化剤極 1 0 8および固体電 解質膜 1 1 4から構成される。 燃料極 1 0 2と酸化剤極 1 0 8とをあわせて 触媒電極とも呼ぶ。 燃料極 1 0 2には、 燃料容器 4 2 5を介して燃料 1 2 4 が供給される。 また、 酸化剤極 1 0 8には、 単セル構造 1 0 1の露出部はシ ール 4 2 9により被覆されているが、 酸化剤 1 2 6が供給されるように孔が 設けられており、 空気中の酸素が酸化剤 1 2 6として供給される。 燃料極 1 0 2および酸化剤極 1 0 8の一端は、 固体電解質膜 1 1 4より突出して集電 部 4 8 7を形成しており、 燃料電池 1 0 0で発電された電力は、 集電部 4 8 7から取り出される。
また、 図 2は、 図 1の燃料電池の燃料極 1 0 2および固体電解質膜 1 1 4 を模式的に示す断面図である。 図示したように、 燃料極 1 0 2は基材である 多孔質金属シート 4 8 9を構成する金属が凹凸のある表面を有し、 その表面 を触媒 4 9 1が被覆した構成となっている。 また、 後述するように、 エッチ ングなどにより粗面化された多孔質金属シート 4 8 9の表面にめっき等によ り担持された触媒 4 9 1の層に、 固体電解質膜 1 1 4が熱圧着などで接合さ れる。 このことにより、 図示したように、 固体高分子電解質粒子 1 5 0は触 媒 4 9 1層に付着される。
一方、 図 3は、 従来の燃料電池の燃料極の構成を模式的に示す断面図であ る。 図 3では、 炭素材料からなるシートを基体 1 0 4として用い、 シートの 表面に、 固体高分子電解質粒子 1 5 0と、 触媒担持炭素粒子 1 4 0からなる 触媒層が形成されている。
以下、 図 2と図 3とを比較して図 1の燃料電池の特長を説明する。 まず、 図 2においては、 燃料極 1 0 2の基材に多孔質金属シート 4 8 9が用いられ ている。 多孔質金属シート 4 8 9は導電性にすぐれるため、 燃料電池 1 0 0 では、 電極の外側に金属板等の集電部材を設ける必要がない。 一方、 図 3で は、 基体 1 0 4として炭素材料を用いているため、 集電部材が必要となる。 燃料電池を携帯機器へ応用する場合、 エネルギー密度や出力密度が大きい という基本的な性能に加えて、 燃料電池が小型で薄く、 かつ、 軽量であると いうことが必要とされる。 燃料電池 1 0 0では、 燃料極 1 0 2または酸化剤 極 1 0 8の基材として多孔質金属シート 4 8 9を用いているため、 その外側 に集電部材を設けることなく、 直接集電することが可能となる。 このため、 単セル構造 1 0 1を軽量で薄型とすることが可能となる。
また、 図 2では、 多孔質金属シート 4 8 9を構成する金属の表面に直接触 媒 4 9 1が担持されている。 多孔質金属シート 4 8 9を構成する金属の表面 は微細な凹凸構造となっているため、 充分量の触媒 4 9 1を担持させる表面 積が確保されている。 したがって、 図 3のように触媒担持炭素粒子 1 4 0を 用いた場合と同程度の触媒 4 9 1を担持することが可能である。 なお、 多孔 質金属シート 4 8 9は撥水処理されていてもよい。
また、 燃料極 1 0 2における電気化学反応は、 触媒 4 9 1と固体高分子電 解質粒子] : 5 0と多孔質金属シート 4 8 9との界面、 いわゆる三相界面にて 起こるため、 三相界面の確保が重要である。 図 2では、 多孔質金属シート 4
8 9と触媒 4 9 1とが直接接しているため、 触媒 4 9 1と固体高分子電解質 粒子 1 5 0との接触部はすべて三相界面となり、 集電部 4 8 7と触媒 4 9 1 との間に電子の移動経路が確保されている。 一方、 図 3では、 触媒担持炭素粒子 1 4 0のうち、 固体高分子電解質粒子 1 5 0と基体 1 0 4のいずれにも接触しているもののみが有効である。 した がって、 たとえば触媒担持炭素粒子 Aに担持された触媒 (不図示) 表面で生 じた電子は、 触媒担持炭素粒子 Aから基体 1 0 4を経由して電池外部へと取 り出されるが、 触媒担持炭素粒子 Bのように、 基体 1 0 4との接点をもたな い粒子の場合、 炭素粒子表面に担持された触媒 (不図示) 表面で電子が生成 しても、 電池外部へと取り出すことができない。 また、 触媒担持炭素粒子 A についても、 触媒担持炭素粒子 1 4 0と基体 1 0 4との接触抵抗は触媒 4 9 1と多孔質金属シート 4 8 9との接触抵抗に比べて大きく、 図 2の構成の方 がより好適に電子の移動経路が確保されているといえる。
このように、 図 2と図 3とを比較すると、 図 2の構成とすることにより触 媒 4 9 1の利用効率、 集電効率が向上する。 このため、 燃料電池 1 0 0の出 力特性を向上させることができる。
また、 燃料電池 1 0 0では、 燃料 1 2 4が燃料極 1 0 2の全面から直接供 給されるため、 燃料 1 2 4の供給効率にすぐれ、 触媒反応の効率を向上させ ることができる。 また、 電極の基材と集電部材との界面の接触抵抗が生じな いため、 内部抵抗の上昇を抑制することができ、 すぐれた出力特性を発揮さ せることができる。
図 4は、 燃料極 1 0 2および固体電解質膜 1 1 4の別の構成を模式的に示 す断面図である。 図 4は、 図 2の構成において多孔質金属シート 4 8 9の表 面に平坦化層 4 9 3が設けられた構成である。 平坦化層 4 9 3を設けること により、 固体電解質膜 1 1 4と多孔質金属シート 4 8 9との密着性が向上す る。
燃料電池 1 0 0において、 多孔質金属シート 4 8 9は、 燃料、 酸化剤、 ま たは水素イオンを通過させるために両面を貫通する孔が形成された金属シー トであれば特に制限されず、 様々な形態、 厚みのシートを用いることが可能 である。 たとえば多孔質の金属薄板を用いることができる。 また、 金属繊維 シートを用いてもよい。 金属繊維シートは、 一本以上の金属繊維がシート状 に成形されたものであれば特に制限はなく、 金属繊維の不織シートまたは織 布を用いることができる。 金属繊維の不織シートまたは織布等を用いること により、 多孔質金属シート 4 8 9に好適な導電性や水素イオンの移動経路が 形成され、 電極特性を確実に向上させることができる。 また、 これらの金属 繊維シートは空隙率が比較的大きいため、電極の軽量化も可能となる。なお、 金属繊維シートは、 一種類の金属繊維から構成されていてもよいし、 二種類 以上の金属繊維を含んでいてもよい。 また、 金属繊維の直径は、 たとえば 1 0 m以上 1 0 0 i m以下とすることができる。
また、 図 2に示したように、 多孔質金属シート 4 8 9を構成する金属の表 面には、 たとえば粗面化処理によって、 凹凸構造が形成されているとさらに 好ましい。 こうすることにより、 触媒を担持する表面積を増加させることが できる。
多孔質金属シート 4 8 9の空隙幅は、 たとえば 1 0 ^ 1!1以上5 111111以下と することができる。 こうすることにより、 良好な燃料液体および燃料気体の 良好な拡散を維持することができる。 また、 多孔質金属シート 4 8 9の空隙 率は、 たとえば 1 0 %以上 7 0 %以下とすることができる。 1 0 %以上とす ることにより、 良好な燃料液体および燃料気体の良好な拡散を維持すること ができる。 また、 7 0 %以下とすることにより、 良好な集電作用を維持する ことができる。 さらに、 空隙率は、 たとえば 3 0 %以上 6 0 %以下とするこ とができる。 こうすると、 さらに良好な燃料液体および燃料気体の良好な拡 散を維持し、 かつ良好な集電作用を維持することができる。 なお、 空隙率と は、 全容積に占める空隙の割合である。 多孔質金属シート 4 8 9の空隙率は たとえば重量、 体積、 および多孔質金属シート 4 8 9を構成する金属の比重 から算出することができる。また、水銀圧入法によって求めることができる。 多孔質金属シ一卜 4 8 9の厚さは、 たとえば l mm以下とすることができ る。 l mm以下とすることによって、 単セル構造 1 0 1を好適に薄型軽量化 することができる。 また、 厚さ 0 . 5 mm以下とすることによりさらに小型 軽量化することができ、 携帯機器に対してさらに好適に用いることができる。 たとえば、 厚さ 0. 1mm以下とすることもできる。
多孔質金属シート 489の材料として、 たとえば T i、 Z r、 H f 、 V、 Nb、 T a、 C r、 Mo、 W、 Mn、 F e、 C o、 N i、 A l、 Au、 Ag、 Cu、 または? tからなる群から選択される一または二以上の元素を含むこ とができる。 これらの元素はいずれも良好な導電性を有する。 このうち、 A u、 Ag、 Cuから選択される元素を含むことにより、 多孔質金属シート 4 89の比電気抵抗を低下させることができるため、 好ましい。 また、 集電体 が Au、 Ag、 P tから選択される元素を含むことにより、 多孔質金属シー ト 489を構成する金属を、 より酸化還元電位の貴な金属とすることができ る。 こうすることにより、 多孔質金属シート 489の一部が触媒 49 1に被 覆されずに露出した構成であっても、 多孔質金属シート 489の耐食性を向 上させることができる。
ここで、 多孔質金属シート 489は上記したような特性を有するので、 上 記シートはガス拡散電極と集電電極を兼ねることができる。
なお、 燃料極 102および酸化剤極 1 08に用いる多孔質金属シート 48 9は、 同じ材料としてもよいし、 異なる材料としてもよい。
燃料極 1 02の触媒 49 1は、 たとえば P t、 T i、 C r、 F e、 C o、 N i、 Cu、 Z n、 Nb、 Mo、 Ru、 P d、 Ag、 I n、 S n、 S b、 W、 Au、 P b、 B iのうちの少なくとも一種を含む金属、 合金、 またはそれら の酸化物などが例示される。 触媒作用が安定的に得られる、 P t、 Ru、 V、 C r、 F e、 C o、 N iのうちの少なくとも一種を含む金属、 合金、 または それらの酸化物が好ましく用いられ、 なかでも P tが特に好ましく用いられ る。 一方、 酸化剤極 1 08の触媒 (不図示) としては、 触媒 49 1と同様の ものが用いることができ、 上記例示物質を使用することができ、 なかでも P t一 Ru合金が特に好ましく用いられる。 なお、 燃料極 1 02および酸化剤 極 108の触媒は同じものを用いても異なるものを用いてもよい。
触媒 49 1は、 多孔質金属シ一ト 48 9に担持されていればよい。 集電部 487の全部または一部を被覆していてもよい。 図 2に示したように多孔質 金属シート 4 8 9の全面を被覆している場合、 多孔質金属シート 4 8 9の腐 蝕が抑制され好ましい。 触媒 4 9 1が多孔質金属シート 4 8 9を構成する金 属の表面を被覆する場合、 触媒 4 9 1の厚さに特に制限はないが、 たとえば 1 n m以上 5 0 0 n m以下とすることができる。
また、 固体高分子電解質粒子 1 5 0の材料である固体高分子電解質は、 触 媒電極表面において、 触媒を担持した炭素粒子と固体電解質膜 1 1 4を電気 的に接続するとともに触媒表面に有機液体燃料を到達させる役割を有してお り、 プロトン導電性が要求され、 さらに、 燃料極 1 0 2においてはメタノー ル等の有機液体燃料透過性が求められ、 酸化剤極 1 0 8においては酸素透過 性が求められる。 固体高分子電解質としてはこうした要求を満たすために、 プロトン導電性や、 メタノール等の有機液体燃料透過性にすぐれる材料が好 ましく用いられる。 具体的には、 スルホン基、 リン酸基などの強酸基や、 力 ルポキシル基などの弱酸基などの極性基を有する有機高分子が好ましく用い られる。 こうした有機高分子として、 具体的には、 フッ素樹脂骨格およびプ 口トン酸基を有するフッ素含有高分子などを用いることができる。 また、 ポ リエーテルケトン、 ポリエーテルエーテルケトン、 ポリエーテルスルホン、 ポリエーテルエーテルスルホン、 ポリスルホン、 ポリスルフイ ド、 ポリフエ 二レン、 ポリフエ二レンォキシド、 ポリスチレン、 ポリイミド、 ポリべンゾ イミダゾール、 ポリアミド等を用いることができる。 また、 メタノール等の 液体燃料のクロスオーバーを低減する観点からは、 ポリマーとして、 フッ素 を含まない炭化水素系の材料を用いることができる。 さらに、 基体のポリマ 一として、 芳香族を含むポリマーを用いることもできる。
また、 プロトン酸基が結合する対象の基体のポリマーとしては、
ポリべンゾイミダゾール誘導体、 ポリべンゾォキサゾール誘導体、 ポリエ チレンィミン架橋体、 ポリサイラミン誘導体、 ポリジェチルアミノエチルス チレン等のアミン置換ポリスチレン、 ポリジェチルアミノエチルメ夕クリレ 一ト等の窒素置換ポリアクリレート等の窒素または水酸基を有する樹脂; シラノール含有ポリシロキサン、 ポリヒドロキシェチルメタクリレートに 代表される水酸基含有ポリアクリル樹脂;
ポリ (P—ヒドロキシスチレン) に代表される水酸基含有ポリスチレン樹 脂;
等を用いることもできる。
また、 上に例示したポリマーに対して、 適宜、 架橋性の置換基、 たとえば、 ビニル基、 エポキシ基、 アクリル基、 メ夕クリル基、 シンナモイル基、 メチ ロール基、 アジド基、 ナフトキノンジアジド基を導入したものを用いること もできる。 また、 これらの置換基が架橋されたものを用いることもできる。 具体的には、 第一の固体高分子電解質 1 5 0または第二の固体高分子電解 質 1 5 1として、 たとえば、
スルホン化ポリエーテルケトン;
スルホン化ポリエーテルエーテルケトン;
スルホン化ポリエーテルスルホン;
スルホン化ポリエーテルエーテルスルホン;
スルホン化ポリスルホン;
スルホン化ポリスルフィ ド ;
スルホン化ポリフエ二レン;
スルホン化ポリ (4一フエノキシベンゾィルー 1, 4一フエ二レン)、 アルキ ルスルホン化ポリべンゾイミダゾール等の芳香族含有高分子;
スルホアルキル化ポリエーテルエーテルケトン;
スルホアルキル化ポリエーテルスルホン;
スルホアルキル化ポリエーテルエーテルスルホン;
スルホアルキル化ポリスルホン;
スルホアルキル化ポリスルフィド ;
スルホアルキル化ポリフエ二レン;
スルホン酸基含有パーフルォロカーボン (ナフイオン (登録商標、 デュポン 社製)、 ァシプレックス (旭化成社製) 等) ;
力ルポキシル基含有パーフルォロカーボン (フレミオン (登録商標) S膜(旭 硝子社製) 等) ;
ポリスチレンスルホン酸共重合体、 ポリビニルスルホン酸共重合体、 架橋ァ ルキルスルホン酸誘導体、 フッ素樹脂骨格およびスルホン酸からなるフッ素 含有高分子等の共重合体;
アクリルアミド— 2—メチルプロパンスルホン酸のようなアクリルアミド類 と n —ブチルメタクリレートのようなァクリレート類とを共重合させて得ら れる共重合体;
等を用いることができる。 また、 芳香族ポリエーテルエーテルケトンや芳香 族ポリエーテルケトンを用いることもできる。
これらのうち、 イオン伝導性等の観点からは、 スルホン基含有パーフルォ ロカ一ボン (ナフイオン (登録商標、 デュポン社製)、 ァシプレックス (旭化 成社製) など)、 カルボキシル基含有パーフルォロカ一ボン (フレミオン (登 録商標) S膜 (旭硝子社製) など) などが好ましく用いられる。
燃料極 1 0 2および酸化剤極 1 0 8における上記の固体高分子電解質は、 同一のものであっても異なるものであってもよい。
固体電解質膜 1 1 4は、 燃料極 1 0 2と酸化剤極 1 0 8を隔てるとともに、 両者の間で水素イオンを移動させる役割を有する。 このため、 固体電解質膜 1 1 4は、 プロトン導電性が高い膜であることが好ましい。 また、 化学的に 安定であって機械的強度が高いことが好ましい。
固体電解質膜 1 1 4を構成する材料としては、 たとえば、 スルホン酸基、 スルホアルキル基、 リン酸基、 ホスホン基、 ホスフィン基、 力ルポキシル基、 スルホンイミド基等のプロトン酸基を含むものを用いることができる。 この ようなプロトン酸基が結合する対象の基体のポリマーとしては、 ポリエーテ ルケトン、 ポリエーテルエーテルケトン、 ポリエーテルスルホン、 ポリエー テルエーテルスルホン、 ポリスルホン、 ポリスルフイ ド、 ポリフエ二レン、 ポリフエ二レンォキシド、 ポリスチレン、 ポリイミド、 ポリべンゾイミダゾ —ル、 ポリアミド等の膜を用いることができる。 また、 メタノール等の液体 燃料のクロスオーバーを低減する観点からは、 ポリマーとしては、 フッ素を 含まない炭化水素系の膜を用いることができる。 さらに、 基体のポリマーと して、 芳香族を含むポリマーを用いることもできる。
また、 プロトン酸基が結合する対象の基体のポリマーとしては、
ポリべンゾイミダゾール誘導体、 ポリべンゾォキサゾール誘導体、 ポリエ チレンィミン架橋体、 ポリサイラミン誘導体、 ポリジェチルアミノエチルス チレン等のアミン置換ポリスチレン、 ポリジェチルアミノエチルメタクリレ 一ト等の窒素置換ポリァクリレート等の窒素または水酸基を有する樹脂; シラノール含有ポリシロキサン、 ポリヒドロキシェチルメ夕クリレートに 代表される水酸基含有ポリアクリル樹脂;
ポリ (P—ヒドロキシスチレン) に代表される水酸基含有ポリスチレン樹 脂;
等を用いることもできる。
また、 上記したポリマーに対して、 適宜、 架橋性の置換基、 たとえば、 ビ ニル基、 エポキシ基、 アクリル基、 メ夕クリル基、 シンナモイル基、 メチロ —ル基、 アジド基、 ナフトキノンジアジド基を導入したものを用いることも できる。 また、 これらの置換基が架橋されたものを用いることもできる。 具体的には、 固体電解質膜 1 1 4として、 たとえば、
スルホン化ポリエーテルエーテルケトン;
スルホン化ポリエーテルスルホン;
スルホン化ポリエーテルエーテルスルホン;
Figure imgf000020_0001
F ;
スルホン化ポリフエ二レン;
スルホン化ポリ (4一フエノキシベンゾィルー 1 , 4一フエ二レン)、 アルキ ルスルホン化ポリべンゾイミダゾール等の芳香族含有高分子;
スルホアルキル化ポリエーテルエーテルケトン;
スルホアルキル化ポリエーテルスルホン;
スルホアルキル化ポリエ一テルエーテルスルホン; スルホアルキル化ポリスルホン;
スルホアルキル化ポリスルフィド ;
スルホアルキル化ポリフエ二レン;
スルホン酸基含有パーフルォロカーボン (ナフイオン (登録商標、 デュポン 社製)、 ァシプレックス (旭化成社製) 等) ;
カルボキシル基含有パーフルォロカーボン (フレミオン (登録商標) S膜(旭 硝子社製) 等) ;
ポリスチレンスルホン酸共重合体、 ポリビニルスルホン酸共重合体、 架橋ァ ルキルスルホン酸誘導体、 フッ素樹脂骨格およびスルホン酸からなるフッ素 含有高分子等の共重合体;
ァクリルアミドー 2—メチルプロパンスルホン酸のようなァクリルアミド類 と n—ブチルメタクリレートのようなァクリレート類とを共重合させて得ら れる共重合体;
等を用いることができる。 また、 芳香族ポリエーテルエーテルケトンまたは 芳香族ポリエーテルケトンを用いることもできる。
なお、 本実施形態において、 クロスオーバー抑制の観点からは、 固体電解 質膜 1 1 4および第一の固体高分子電解質 1 5 0または第二の固体高分子電 解質 1 5 1を、 いずれも、 有機液体燃料の透過性の低い材料を用いることが 好ましい。 たとえば、 スルホン化ポリ (4一フエノキシベンゾィル— 1, 4 一フエ二レン)、 アルキルスルホン化ポリべンゾイミダゾールなどの芳香族縮 合系高分子により構成することが好ましい。 また、 固体電解質膜 1 1 4およ び第二の固体高分子電解質 1 5 1は、 たとえばメタノールによる膨潤性が 5 0 %以下、 より望ましくは 2 0 %以下 (7 0 v o l % M e〇H水溶液に対す る膨潤性) とするのがよい。 こうすることにより、 特に良好な界面密着性お よびプロトン伝導性が得られる。
多孔質金属シ一ト 4 8 9の表面に平坦化層 4 9 3を形成する場合、 平坦化 層 4 9 3は、 プロトン導電体とすることができる。 こうすることにより、 固 体電解質膜 1 1 4と触媒電極との間に水素イオンの移動経路が好適に形成さ れる。 平坦化層 4 9 3の材料は、 たとえば固体電解質または固体電解質膜 1 1 4に用いる材料の中から選択される。
また、 本実施形態で用いる燃料 1 2 4として、 たとえば水素を用いること ができる。 また、 天然ガス、 ナフサなどを燃料源とする改質水素を用いるこ ともできる。 あるいは、 たとえばメタノールなどの液体燃料を直接供給する こともできる。 また、 酸化剤 1 2 6としては、 たとえば酸素、 空気などを用 いることができる。
燃料電池に液体燃料を直接供給する場合、 燃料供給方法は、 たとえば図 1 に示したように、 燃料極 1 0 2に接着された燃料容器 4 2 5から供給するこ とができる。 燃料容器 4 2 5の多孔質金属シート 4 8 9と接する面に設けら れた孔から燃料 1 2 4が供給される。 燃料容器 4 2 5に燃料供給口 (不図示) を設け必要に応じて燃料 1 2 4を注入する構成とすることもできる。 燃料 1 2 4は燃料容器 4 2 5に蓄えてもよいし、 または、 随時燃料容器 4 2 5に輸 送される構成としてもよい。 すなわち、 燃料 1 2 4の供給方法は、 燃料容器 4 2 5を用いる方法に限らず、 燃料供給流路を設ける方法など、 適宜選択す ることができる。 たとえば、 燃料カートリッジから燃料容器 4 2 5に輸送さ れる構成とすることもできる。
次に、 本実施形態の燃料電池用電極および燃料電池の作製方法に特に制限 はないが、 たとえば以下のようにして作製することができる。
多孔質金属シート 4 8 9として金属繊維シートを用いる場合、 金属繊維シ ートは、 金属繊維を圧縮成形し、 また必要に応じて圧縮焼結することにより 得ることができる。
多孔質金属シート 4 8 9を構成する金属の表面に微細な凹凸構造を形成す る方法として、 たとえば電気化学的エッチングや化学的エッチング等のエツ チングを用いることができる。
電気化学的エッチングとして、 アノード分極等を用いた電解エッチングを 行うことができる。 このとき、多孔質金属シート 4 8 9を電解液中に浸漬し、 たとえば 1 V〜 l 0 V程度の直流電圧を印加する。 電解液には、 たとえば塩 酸、 硫酸、 過飽和シユウ酸、 燐酸クロム酸混液等の酸性溶液を用いることが できる。
また、 化学的エッチングを行う場合、 酸化剤を含む腐食液の中に多孔質金 属シ一ト 4 8 9を浸漬する。 腐食液としては、 たとえば硝酸、 硝酸アルコー ル溶液 (ナイタル)、 ピクリン酸アルコール (ピクリル)、 塩化第二鉄溶液等 を用いる。
こうして表面に凹凸構造が形成された金属繊維を有する多孔質金属シート 4 8 9に、 触媒 4 9 1となる金属を担持させる。 触媒 4 9 1の担持方法とし て、 たとえば、 電気めつき、 無電解めつき等のめっき法、 真空蒸着、 化学蒸 着 (C V D ) 等の蒸着法などを用いることができる。
電気めつきを行う場合、 目的の触媒金属のイオンを含む水溶液中に多孔質 金属シート 4 8 9を浸漬し、 たとえば 1 V〜 l 0 V程度の直流電圧を印加す る。 たとえば、 P tをめつきする場合、 P t (N H3) 2 (N 02) 2、 (N H4) 2 P t C l 6等を硫酸、 スフアミン酸、 リン酸アンモニゥムの酸性溶液に加え、 0 . 5〜2 AZ d m2の電流密度にてめつきを行うことができる。 また、 複数 の金属をめつきする場合、 一方の金属が拡散律速となる濃度域において電圧 を調節することにより、 所望の割合でめっきすることができる。
また、 無電解めつきを行う場合、 目的の触媒金属のイオン、 たとえば N i、 C o、 C uイオンを含む水溶液に還元剤として次亜リン酸ナトリゥムゃホウ 水素化ナトリウム等の還元剤を加え、 この中に多孔質金属シート 4 8 9を浸 漬し、 9 0 °C〜 1 0 0 程度に加熱する。
以上のようにして、燃料極 1 0 2および酸化剤極 1 0 8が得られる。なお、 多孔質金属シ一ト 4 8 9の空隙中に疎水性物質を付着させ、 疎水性領域を形 成してもよい。たとえば、撥水処理してもよい。撥水処理を行うことにより、 親水性の触媒 4 9 1または多孔質金属シート 4 8 9表面と撥水表面とが併存 し、 触媒電極中の水の排出経路が好適に確保される。 このため、 たとえば酸 化剤極 1 0 8にて生成した水を好適に電極外部に排出することが可能となる。 このとき、 撥水処理は、 たとえば酸化剤極 1 0 8において燃料電池 1 0 0の 外側となる面に施すことができる。
多孔質金属シート 48 9を撥水処理する方法として、 たとえば、 ポリェチ レン、 パラフィン、 ポリジメチルシロキサン、 PTFE、 テトラフルォロェ チレンパーフルォロアルキルビニルエーテル共重合体 (PFA)、 フッ化工チ レンプロピレン (FEP)、 ポリ (パーフルォロォクチルェチルァクリレ一ト) (FMA), ポリフォスファゼンなどの疎水性物質の溶液または懸濁液に基材 を浸漬あるいは接触させ、 孔に撥水性樹脂を付着させる方法を用いることが できる。 特に、 PTFE、 テトラフルォロエチレンパーフルォロアルキルビ ニルエーテル共重合体 (PFA)、 フッ化工チレンプロピレン (FEP)、 ポ リ (パーフルォロォクチルェチルァクリレート) (FMA)、 ポリフォスファ ゼンなどの撥水性の高い物質を用いることにより、 疎水性領域を好適に形成 することができる。
また、 PTFE、 PFA、 FEP、 フッ化ピッチ、 ポリフォスファゼンな どの疎水性物質を粉砕し、 溶媒に懸濁させたものを塗布することもできる。 塗布液は、 疎水性物質と、 金属あるいは炭素などの導電性物質の混合懸濁液 とすることもできる。 また、 塗布液は、 撥水性を有する導電繊維、 たとえば ドリーマロン (ニッセン社製:登録商標) など、 を粉砕し、 溶媒に懸濁させ たものとすることもできる。 このように、 導電性かつ撥水性の物質を用いる ことにより、 電池出力をさらに高めることができる。
また、 金属あるいは炭素などの導電性物質を粉碎し、 これに上記の疎水性 物質をコーティングしたものを懸濁し、 塗布することもできる。 塗布方法に は特に制限はないが、 たとえば、 刷毛塗り、 スプレー塗布、 およびスクリー ン印刷等の方法を用いることができる。 塗布量を調節すれば、 多孔質金属シ ート 48 9の一部に疎水性領域を形成することができる。 また多孔質金属シ ート 48 9の一方の面にのみ塗布を行えば、 親水面と疎水面とを有する多孔 質金属シート 489が得られる。
また、 多孔質金属シート 489または触媒 49 1の表面に、 プラズマ法に より疎水基を導入してもよい。 こうすることにより、 疎水部の厚みを所望の 厚みに調節することができる。 たとえば、 多孔質金属シート 4 8 9または触 媒 4 9 1の表面に、 C F 4プラズマ処理を行うことができる。
固体電解質膜 1 1 4は、 用いる材料に応じて適宜な方法を採用して作製す ることができる。 たとえば固体電解質膜 1 1 4を有機高分子材料で構成する 場合、 有機高分子材料を溶媒に溶解ないし分散した液体を、 ポリテトラフル ォロエチレン等の剥離性シート等の上にキャストして乾燥させることにより 得ることができる。
得られた固体電解質膜 1 1 4を固体高分子電解質溶液に浸漬する方法等に より、 触媒 4 9 1表面に固体高分子電解質を付着させた後、 燃料極 1 0 2お よび酸化剤極 1 0 8で挟み、 ホットプレスし、 触媒電極一固体電解質膜接合 体を得る。 このとき、 両電極と固体電解質膜 1 1 4との密着性を確保し、 ま た、 触媒電極における水素イオンの移動経路を確保するため、 燃料極 1 0 2 および酸化剤極 1 0 8の表面に固体高分子電解質層を設けて表面を平坦化す ることが好ましい。
ホットプレスの条件は、 材料に応じて選択されるが、 固体電解質膜 1 1 4 や触媒電極表面の固体高分子電解質を軟化点やガラス転移のある有機高分子 で構成する場合、 これらの高分子の軟化温度やガラス転移位温度を超える温 度とすることができる。 具体的には、 たとえば、 温度 1 0 0 °C以上 2 5 0 °C 以下、 圧力 1 k g / c m 2以上 1 0 0 k g Z c m 2以下、 時間 1 0秒以上 3 0 0秒以下とする。 得られた触媒電極一固体電解質膜接合体が、 図 1の単セル 構造 1 0 1となる。
以上により、 単セル構造 1 0 1が得られる。 単セル構造 1 0 1では多孔質 金属シート 4 8 9を用いているため燃料電池の内部抵抗が小さくなり、 すぐ れた出力特性を発揮することができる。
得られた単セル構造 1 0 1の燃料極 1 0 2に、 燃料容器 4 2 5を接合し、 単セル構造 1 0 1の露出部にシール 4 2 9を設ける。 このとき、 たとえば燃 料極 1 0 2と燃料容器 4 2 5とを、 燃料 1 2 4に対する耐性を有する接着剤 などを使って接着してもよい。 燃料極 1 0 2の基材として多孔質金属シート 4 8 9を用いることにより、 エンドプレート等の集電部材が不要となり、 燃 料極 1 0 2と燃料流路あるいは燃料容器とを直接接触させ、 燃料 1 2 4を供 給することができるので、 より薄型、 小型軽量な燃料電池 1 0 0を得ること ができる。 また、 このような構成とすることにより、 製造プロセスを簡素化 することができる。
また、 酸化剤極 1 0 8についても、 直接酸化剤や空気と接触させ、 酸化剤 1 2 6を供給することができる。 なお、 包装部材など小型化を阻害しない部 材であれば、 適宜これを介して酸化剤極 1 0 8に酸化剤 1 2 6を供給するこ とができる。
こうして得られた燃料電池 1 0 0は、 軽量小型であり、 また高出力である ため、 携帯電話等の携帯機器用の燃料電池としても好適に用いることができ る。
以上、 本発明を実施形態に基づいて説明した。 これらの実施形態は例示で あり、 それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形 例が可能なこと、 またそうした変形例も本発明の範囲にあることは当業者に 理解されるところである。
たとえば、 本実施形態に係る燃料電池に電極端子取付部を設け、 これを介 して複数個組み合わせることにより組電池としてもよい。 並列、 直列あるい はこれらの組み合わせなどの構成を採用することにより、 所望の電圧、 容量 の組電池を得ることができる。 また、 複数の燃料電池を平面状に並べて接続 して組電池としてもよいし、 セパレー夕を介して単セル構造 1 0 1を積層し、 スタックを形成してもよい。 スタックとした場合にも、 すぐれた出力特性を 安定的に発揮させることができる。
また、 本実施形態の燃料電池は、 導電率にすぐれた多孔質金属シートを用 いているため、 平板型に限らず、 円筒型等の構成とした場合にも、 触媒反応 により生じた電子を効率よく電池外部に取り出すことができる。
(実施例)
以下に本実施形態の燃料電池用電極および燃料電池について実施例によつ て具体的に説明するが、 本発明はこれらに限定されない。
(実施例 1 )
燃料極および酸化剤極 (ガス拡散電極) 用の基材として、 厚さ 0. 3mm の SUS 316系多孔質金属繊維シートを用いた。 この金属繊維シートを電 解液中に浸漬し、 アノード分極することにより電解エッチングを施した。 こ のとき、 電解液として 1 Nの HC 1水溶液を用い、 3Vの直流電圧を印加し た。
電解エッチングを施した金属繊維シートの表面の S EM (走査型電子顕微 鏡) 観察を行い、 未処理の金属膜と比較したところ、 電解エッチングを施し た金属繊維シートの表面には数 nm〜数 10 nm程度の深さを有する微細孔 が金属繊維シートを構成する金属繊維の表面全体に均質に形成されていた。 一方、 未処理の金属繊維シートを構成する金属繊維の表面は平坦であつて、 微細孔は観察されなかった。 このため、 電解メツキにより好適な凹凸構造が 形成されることが確かめられた。
次に、 電解エッチングを施した金属繊維シートの表面に、 電気めつきによ り白金を厚さ 10〜50 nm程度めつきした。 白金塩として P t (NH3) 2 (N〇2) 2を用い、 これを p HI以下の硫酸水溶液に溶解させた。 P t (NH 3) 2 (N02) 2の濃度は 10 g/ 1とした。 この溶液に金属繊維シートを浸漬 して陽極とし、 70°C、 2 AZdm2の条件でアノード分極によるめつきを行 つ 7こ。
白金めつきを施された 2枚の金属繊維シートを固体高分子電解質溶液 (ァ ルドリッチ .ケミカル社製の 5 w t %ナフイオンアルコール溶液) に浸漬し た後、 固体電解質膜を挟持し、 温度 130°C、 圧力 10 k gZcm2でホット プレスして触媒電極一固体電解質膜接合体を作製した。 このとき、 金属繊維 シートの端部を固体電解質膜の端部から突出させ、集電部を構成した。また、 固体電解質膜としてナフイオン 112 (デュポン社製、 登録商標) を用いた。 得られた触媒電極一固体電解質膜接合体を燃料電池の単位セルとし、 評価 用パッケージに実装した。 そして、 燃料容器から燃料極に 10 v/v%メタ ノ一ル水溶液を供給し、 酸化剤極に空気を供給した。
燃料および酸化剤のそれぞれの流速は、 5m 1 / i nおよび 50m l Z m i nとした。 この燃料電池の出力を 1気圧、 25 の室温で測定したとこ ろ、 10 OmAZcm2の電流で 0. 45 Vの出力が得られた。
(実施例 2 )
多孔質金属シートに電解エッチングを施さずに、 実施例 1と同様にして燃 料電池を作製し、 評価した。 すると、 出力は 0. 4V程度であった。
(実施例 3 )
実施例 1と同様にして粗面化された金属繊維シートの表面に白金粒子を触 媒として担持させた。 固体高分子電解質としてアルドリッチ ·ケミカル社製 の 5 w t %ナフイオンアルコール溶液を選択し、 固体高分子電解質量が 0. 1〜0. 4mgZ cm3となるように n—酢酸ブチルと混合攪拌して固体高分 子電解質のコロイド状分散液を調製した。 粒子径 3〜5 nmの白金一ルテニ ゥム合金触媒を固体高分子電解質のコロイド状分散液に添加し、 超音波分散 器を用いてペースト状にした。 このとき、 固体高分子電解質と触媒の重量比 が 1 : 1になるように混合した。
このペーストを金属繊維シート上にスクリーン印刷法で 2mgノ cm2塗 布した後、 加熱乾燥して燃料電池用電極を作製した。 この電極を、 デュポン 社製固体電解質膜ナフイオン 1 1 2の両面に温度 1 30°C、 圧力 1 0 k g/ cm2でホットプレスして触媒電極一固体電解質膜接合体を作製した。
得られた触媒電極一固体電解質膜接合体を燃料電池の単位セルとし、 実施 例 1と同様にして評価したところ、 出力は 0. 4 I V程度であった。
(比較例 1 )
燃料極および酸化剤極 (ガス拡散電極) 用の基材として、 厚さ 0. 1 9m mのカーボンペーパー (東レ社製) を用いた。 また、 集電用の金属板として、 厚さ 5mmの SUS板を用いた。
まず、 カーボンペーパー表面に、 次のようにして触媒層を形成した。 固体 高分子電解質としてアルドリッチ ·ケミカル社製の 5w t %ナフイオンアル コール溶液を選択し、 固体高分子電解質量が 0. 1〜0. 4mgZcm3とな るように n—酢酸ブチルと混合攪拌して固体高分子電解質のコロイド状分散 液を調製した。 燃料極の触媒には炭素微粒子 (デンカブラック ;電気化学社 製) に粒子径 3〜 5 nmの白金一ルテニウム合金触媒を重量比で 50 %担持 させた触媒担持炭素微粒子を使用し、 酸化剤極の触媒には、 炭素微粒子 (デ ンカブラック ;電気化学社製) に粒子径 3〜 5 nmの白金触媒を重量比で 5 0 %担持させた触媒担持炭素微粒子を使用した。
触媒担持炭素微粒子を固体高分子電解質のコロイド状分散液に添加し、 超 音波分散器を用いてペースト状にした。 このとき、 固体高分子電解質と触媒 の重量比が 1 : 1になるように混合した。 このペーストをカーボンペーパー 上にスクリーン印刷法で 2 m g Z c m2塗布した後、加熱乾燥して燃料電池用 電極を作製した。 この電極を、 デュポン社製固体電解質膜ナフイオン 1 1 2 の両面に温度 130°C、圧力 1 0 k gZcm2でホットプレスして触媒電極一 固体電解質膜接合体を作製した。
得られた触媒電極一固体電解質膜接合体の触媒電極の外側に集電用の金属 板を締着し、 これを単位セルとして実施例 1と同様にして出力を測定したと ころ、 0. 37 V程度であった。
以上の実施例および比較例より、 金属繊維シートを構成する金属繊維の表 面に凹凸を形成し、 白金めつきを施すことにより、 すぐれた触媒電極が得ら れ、 これを用いた燃料電池は出力特性にすぐれることが明らかになった。 ま た、 実施例 1に記載の燃料電池は集電用の金属板を用いていないため、 比較 例 1に記載の燃料電池に比べて小型軽量化および薄型化された。
(実施例 4)
金属繊維シートとして実施例 1と同様の材料を用い、 これを 0. lmo 1 Z 1の塩化第二鉄溶液に 20分浸漬した。 得られた金属繊維シートの表面の
S EM観察を行ったところ、 実施例 1と同程度の大きさの凹凸構造が金属繊 維の表面に形成されていた。
得られた金属繊維シートの片面に、 実施例 3と同様にして調製された触媒 ペーストを塗布し、 触媒層を形成した。 また、 他方の面を P T F Eの懸濁液 に浸漬し、 撥水処理をした。 この電極を、 デュポン社製固体電解質膜ナフィ オン 1 1 2の両面に温度 1 3 0 °C、 圧力 1 0 k g Z c m2でホットプレスして 触媒電極一固体電解質膜接合体を作製した。
得られた触媒電極一固体電解質膜接合体について、 実施例 1と同様にして 出力測定を行ったところ、 初期の出力は 0 . 4 5 Vであり、 この値は 1ヶ月 経過後もほとんど変化しなかった。
(実施例 5 )
金属繊維シートの表面処理を施さないこと以外は実施例 4と同様にして、 触媒電極一固体電解質膜接合体を作製し、 出力特性を評価した。 すると、 初 期の出力は 0 . 4 Vであったが、 1ヶ月経過後には 0 . 2 5 Vに低下してい た。
実施例 4および 5より、 金属繊維の表面を粗面化することにより、 出力安 定性が向上することが明らかになった。 これは、 金属繊維の表面を粗面化す ることにより、 好適な水の排出経路が形成され、 フラッデイングがより一層 抑制されたためであると考えられる。
以上、 実施例 1〜 5より、 電極基材として金属繊維シートを用いることに より、 燃料電池に集電板を別途設ける必要がなく、 軽量化が可能となった。 また、 金属繊維シートを用いることにより、 電池の初期出力が増加すること がわかった。 さらに、 金属繊維にエッチングを施すことにより、 長期使用時 の出力低下も抑制され、 高い出力が安定的に発揮されることが明らかになつ た。

Claims

請 求 の 範 囲
1 . 多孔質金属シートと、 該多孔質金属シートに担持された触媒と、 前記触 媒に接して設けられたプロトン導電体と、 を有することを特徴とする燃料電 池用電極。 '
2 . 多孔質金属シートと、該多孔質金属シートに担持された触媒と、を有し、 前記多孔質金属シートを構成する金属の粗面化された表面に触媒が担持され ていることを特徴とする燃料電池用電極。
3 . 請求の範囲第 2項に記載の燃料電池用電極において、
前記多孔質金属シートにエッチングを施す工程により前記金属の表面が粗 面化されたことを特徴とする燃料電池用電極。
4 . 請求の範囲第 3項に記載の燃料電池用電極において、
前記エッチングを施す工程は、 前記多孔質金属シートをエッチング液に浸 漬することにより化学的にエッチングを行う工程であることを特徴とする燃 料電池用電極。
5 . 請求の範囲第 3項に記載の燃料電池用電極において、
前記エッチングを施す工程は、 前記多孔質金属シートを電解液に浸漬し、 電解エッチングを行う工程であることを特徴とする燃料電池用電極。
6 . 多孔質金属シートと、該多孔質金属シートに担持された触媒と、 を有し、 前記多孔質金属シートが金属繊維シートであることを特徴とする燃料電池用
7 . 請求の範囲第 2項乃至第 6項いずれかに記載の燃料電池用電極におい て、
前記触媒に接して設けられたプロトン導電体をさらに有することを特徴と する燃料電池用電極。
8 . 請求の範囲第 1項乃至第 7項いずれかに記載の燃料電池用電極におい て、
前記触媒が前記多孔質金属シートを構成する金属の表面に層状に形成され ていることを特徴とする燃料電池用電極。
9. 請求の範囲第 8項に記載の燃料電池用電極において、
前記多孔質金属シートを構成する金属の表面に前記触媒のめっき層が形成 されていることを特徴とする燃料電池用電極。
1 0. 請求の範囲第 1項乃至第 9項いずれかに記載の燃料電池用電極にお いて、
前記触媒が実質的に前記多孔質金属シートを被覆していることを特徴とす る燃料電池用電極。
1 1. 請求の範囲第 1項乃至第 1 0項いずれかに記載の燃料電池用電極に おいて、
前記触媒が、 P t、 T i、 C r、 F e、 C o、 N i、 Cu、 Z n、 Nb、 Mo、 Ru、 P d、 Ag、 I n、 S n、 S b、 W、 Au、 P b、 B iのうち の少なくとも一種を含む金属、 合金、 またはそれらの酸化物であることを特 徵とする燃料電池用電極。
1 2. 請求の範囲第 1項乃至第 1 1項いずれかに記載の燃料電池用電極に おいて、
前記多孔質金属シートの空隙中に疎水性物質が配置されていることを特徴 とする燃料電池用電極。
1 3. 請求の範囲第 12項に記載の燃料電池用電極において、
前記疎水性物質は撥水性樹脂を含むことを特徴とする燃料電池用電極。
14. 請求の範囲第 1項乃至第 1 3項いずれかに記載の燃料電池用電極に おいて、
前記多孔質金属シートの少なくとも一方の面に、 プロトン導電性を有する 平坦化層を有することを特徴とする燃料電池用電極。
1 5. 燃料極、 酸化剤極、 および前記燃料極と前記酸化剤極とで挟持された 固体電解質膜を含み、 前記燃料極または前記酸化剤極が請求の範囲第 1項乃 至第 14項いずれかに記載の燃料電池用電極であることを特徴とする燃料電 池。
16. 請求の範囲第 15項に記載の燃料電池において、
前記燃料電池用電極が燃料極を構成し、 燃料が前記燃料電池用電極の表面 に直接供給されることを特徴とする燃料電池。
17. 請求の範囲第 15項または第 16項に記載の燃料電池において、 前記燃料電池用電極が前記酸化剤極を構成し、 酸化剤が前記燃料電池用電 極の表面に直接供給されることを特徴とする燃料電池。
18. 多孔質金属シートに触媒を担持させる工程を含むことを特徴とする 燃料電池用電極の製造方法。
19. 請求の範囲第 18項に記載の燃料電池用電極の製造方法において、 触媒を担持させる前記工程の前に、 前記多孔質金属シートを構成する金属 の表面を粗面化する工程を含むことを特徴とする燃料電池用電極の製造方法。
20. 請求の範囲第 19項に記載の燃料電池用電極の製造方法において、 金属の表面を粗面化する前記工程は、 前記多孔質金属シートにエッチング を施す工程を含むことを特徴とする燃料電池用電極の製造方法。
21. 請求の範囲第 20項に記載の燃料電池用電極の製造方法において、 エッチングを施す前記工程は、 前記多孔質金属シートをエッチング液に浸 漬することにより化学的にエッチングを行う工程を含むことを特徴とする燃 料電池用電極の製造方法。
22. 請求の範囲第 20項に記載の燃料電池用電極の製造方法において、 エッチングを施す前記工程は、 前記多孔質金属シートを電解液に浸漬し、 電解エッチングを行う工程を含むことを特徴とする燃料電池用電極の製造方 法。
23. 請求の範囲第 18項乃至第 22項いずれかに記載の燃料電池用電極 の製造方法において、
触媒を担持させる前記工程は、 P t、 T i、 C r、 Fe、 Co、 N i、 C u、 Zn、 Nb、 Mo、 Ru、 Pd、 Ag、 I n、 Sn、 S b、 W、 Au、 Pb、 B iのうちの少なくとも一種を含む金属、 合金、 またはそれらの酸化 物を担持させる工程を含むことを特徴とする燃料電池用電極の製造方法。
2 4 . 請求の範囲第 1 8項乃至第 2 3項いずれかに記載の燃料電池用電極 の製造方法において、
触媒を担持させる前記工程は、 前記多孔質金属シートにめっきを施す工程 を含むことを特徴とする燃料電池用電極の製造方法。
2 5 . 請求の範囲第 1 8項乃至第 2 4項いずれかに記載の燃料電池用電極 の製造方法において、
前記触媒の表面にプロトン導電体を付着させる工程を含むことを特徴とす る燃料電池用電極の製造方法。
2 6 . 請求の範囲第 1 8項乃至第 2 5項いずれかに記載の燃料電池用電極 の製造方法において、
前記多孔質金属シートの空隙中に撥水性樹脂を付着させる工程を含むこと を特徴とする燃料電池用電極の製造方法。
2 7 . 請求の範囲第 1 8項乃至第 2 6項に記載の燃料電池用電極の製造方 法において、
前記多孔質金属シートの少なくとも一方の面に平坦化層を形成する工程を 含むことを特徴とする燃料電池用電極の製造方法。
2 8 . 請求の範囲第 1 8項乃至第 2 7項いずれかに記載の燃料電池用電極 の製造方法によって燃料電池用電極を得る工程と、
固体電解質膜と前記燃料電池用電極とを当接させた状態で、 前記固体電解 質膜と前記燃料電池用電極とを圧着し、 前記固体電解質膜と前記燃料電池用 電極とを接合する工程と、
を含むことを特徴とする燃料電池の製造方法。
PCT/JP2004/001795 2003-02-18 2004-02-18 燃料電池用電極、燃料電池、およびこれらの製造方法 WO2004075322A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005502734A JP4626514B2 (ja) 2003-02-18 2004-02-18 燃料電池用電極、燃料電池、およびこれらの製造方法
US11/192,316 US20050282062A1 (en) 2003-02-18 2005-07-28 Fuel cell electrode, fuel cell and their production processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-040074 2003-02-18
JP2003040074 2003-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/192,316 Continuation US20050282062A1 (en) 2003-02-18 2005-07-28 Fuel cell electrode, fuel cell and their production processes

Publications (1)

Publication Number Publication Date
WO2004075322A1 true WO2004075322A1 (ja) 2004-09-02

Family

ID=32905196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001795 WO2004075322A1 (ja) 2003-02-18 2004-02-18 燃料電池用電極、燃料電池、およびこれらの製造方法

Country Status (5)

Country Link
US (1) US20050282062A1 (ja)
JP (1) JP4626514B2 (ja)
CN (1) CN1781203A (ja)
TW (1) TW200427126A (ja)
WO (1) WO2004075322A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643580A2 (de) * 2004-09-23 2006-04-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vefahren zur Herstellung eines elektrolytischen Katalysatorträgers, elektrolytischer Katalysatorträger und elektrochemische Elektrode
JP2006092957A (ja) * 2004-09-24 2006-04-06 Shinshu Univ 固体高分子形燃料電池用カソード触媒、該触媒を備えてなるカソード電極、該電極を有する固体高分子形燃料電池、ならびに該触媒の製造方法
WO2007052605A1 (ja) * 2005-11-01 2007-05-10 Jsr Corporation 電極触媒層
JP2007173109A (ja) * 2005-12-22 2007-07-05 Canon Inc 燃料電池用膜電極接合体、その製造方法および燃料電池
JP2007242447A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 触媒層−電解質膜積層体及びその製造方法
JP2011512626A (ja) * 2008-02-15 2011-04-21 パナソニック株式会社 直接酸化型燃料電池用低空孔度アノード拡散媒体
KR101100693B1 (ko) * 2009-05-18 2012-01-03 재단법인대구경북과학기술원 금속 담지 탄소 나노섬유 및 그 제조 방법과, 이를 이용한 연료전지 및 필터
JP2012234791A (ja) * 2011-04-29 2012-11-29 Hyundai Motor Co Ltd 疎水性が改善された気孔体及びその製造方法
JP2014517494A (ja) * 2011-06-22 2014-07-17 アカル エネルギー リミテッド カソード電極材料
WO2018061058A1 (ja) * 2016-09-29 2018-04-05 パナソニック株式会社 微生物燃料電池及び廃液処理装置
JP2018156798A (ja) * 2017-03-16 2018-10-04 国立大学法人九州大学 電極構造体、及び電極触媒層/ガス拡散層一体シート、並びにこれらを含む膜電極接合体

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897205B1 (fr) * 2006-02-03 2009-06-05 Commissariat Energie Atomique Cathode pour reacteur electrochimique, reacteur electrochimique integrant de telles cathodes et procede de fabrication d'une telle cathode
CA2669223A1 (en) 2006-11-15 2008-05-22 Energ2, Llc Electric double layer capacitance device
JP2008270181A (ja) * 2007-03-28 2008-11-06 Univ Nagoya 電極、電極触媒組成物および燃料電池
CN101981636B (zh) * 2008-04-08 2013-09-11 株式会社村田制作所 电容器及其制造方法
WO2010124196A2 (en) * 2009-04-23 2010-10-28 3M Innovative Properties Company Catalyst property control with intermixed inorganics
WO2010138138A1 (en) * 2009-05-28 2010-12-02 The Johns Hopkins University Porous metal catalysts for oxygen reduction
WO2011112992A1 (en) * 2010-03-12 2011-09-15 Energ2, Inc. Mesoporous carbon materials comprising bifunctional catalysts
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
KR101438890B1 (ko) * 2012-06-28 2014-09-15 현대자동차주식회사 소수성을 향상한 고분자 전해질 막-전극 접합체 및 그 제조방법
WO2014143213A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
DE102013109260A1 (de) * 2013-08-27 2015-03-05 R.Stahl Schaltgeräte GmbH Gehäuseteil für ein explosionsgeschütztes Gehäuse mit einem porösen Körper
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
JP6665121B2 (ja) 2014-03-14 2020-03-13 グループ14・テクノロジーズ・インコーポレイテッドGroup14 Technologies, Inc. 無溶媒中におけるゾル−ゲル重合のための新規方法、及びゾル−ゲル重合由来の可変炭素構造の作製
WO2017031006A1 (en) 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
JP7115976B2 (ja) 2015-08-28 2022-08-09 グループ14・テクノロジーズ・インコーポレイテッド リチウムの非常に耐久性のある挿入を有する新規な材料およびその製造方法
DE102016226234A1 (de) * 2016-12-27 2018-06-28 Robert Bosch Gmbh Verfahren zur Herstellung einer Strömungsplatte für eine Brennstoffzelle und/oder einen Elektrolyseur
WO2018165610A1 (en) 2017-03-09 2018-09-13 Group 14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11248303B2 (en) * 2018-06-06 2022-02-15 Molecule Works Inc. Electrochemical device comprising thin porous metal sheet
CN110444780B (zh) * 2019-08-12 2020-09-08 天津工业大学 Cu-Mn-C类催化剂/聚合物复合膜电极组件及其制作方法和应用
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
JP2023544717A (ja) 2020-09-30 2023-10-25 グループ14・テクノロジーズ・インコーポレイテッド シリコン-カーボン複合材料の酸素含有量及び反応性制御のための不動態化の方法
CN112877663B (zh) * 2021-01-13 2022-12-23 苏州涂冠镀膜科技有限公司 一种应用于燃料电池的柔性正极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196389A (ja) * 1985-12-09 1987-08-29 ザ ダウ ケミカル カンパニ− 改良された固体重合体電解質構造物およびその製造方法
JPH05325983A (ja) * 1992-05-20 1993-12-10 Mitsubishi Electric Corp 固体高分子電解質膜を用いた電気化学デバイスの製造方法
JPH0757742A (ja) * 1993-08-12 1995-03-03 Tanaka Kikinzoku Kogyo Kk ガス拡散電極
JPH07326363A (ja) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd イオン導電性付与電極並びにそのような電極を用いた電極・電解質接合体及びセル
JPH09157783A (ja) * 1995-09-25 1997-06-17 Sintokogio Ltd 耐熱金属繊維焼結体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242736B2 (ja) * 1993-03-10 2001-12-25 三菱電機株式会社 電気化学デバイス
WO2002009214A1 (en) * 2000-07-25 2002-01-31 Apollo Energy Systems, Incorporated Electrodes for alkaline fuel cells with circulating electrolyte
JP2003297380A (ja) * 2002-04-03 2003-10-17 Nisshin Steel Co Ltd 燃料電池用ステンレス鋼製セパレータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196389A (ja) * 1985-12-09 1987-08-29 ザ ダウ ケミカル カンパニ− 改良された固体重合体電解質構造物およびその製造方法
JPH05325983A (ja) * 1992-05-20 1993-12-10 Mitsubishi Electric Corp 固体高分子電解質膜を用いた電気化学デバイスの製造方法
JPH0757742A (ja) * 1993-08-12 1995-03-03 Tanaka Kikinzoku Kogyo Kk ガス拡散電極
JPH07326363A (ja) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd イオン導電性付与電極並びにそのような電極を用いた電極・電解質接合体及びセル
JPH09157783A (ja) * 1995-09-25 1997-06-17 Sintokogio Ltd 耐熱金属繊維焼結体

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643580A3 (de) * 2004-09-23 2007-01-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vefahren zur Herstellung eines elektrolytischen Katalysatorträgers, elektrolytischer Katalysatorträger und elektrochemische Elektrode
EP1643580A2 (de) * 2004-09-23 2006-04-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vefahren zur Herstellung eines elektrolytischen Katalysatorträgers, elektrolytischer Katalysatorträger und elektrochemische Elektrode
JP2006092957A (ja) * 2004-09-24 2006-04-06 Shinshu Univ 固体高分子形燃料電池用カソード触媒、該触媒を備えてなるカソード電極、該電極を有する固体高分子形燃料電池、ならびに該触媒の製造方法
US8236206B2 (en) 2005-11-01 2012-08-07 Jsr Corporation Electrode catalyst layer
WO2007052605A1 (ja) * 2005-11-01 2007-05-10 Jsr Corporation 電極触媒層
KR101011566B1 (ko) * 2005-11-01 2011-01-27 제이에스알 가부시끼가이샤 전극 촉매층
JP2007173109A (ja) * 2005-12-22 2007-07-05 Canon Inc 燃料電池用膜電極接合体、その製造方法および燃料電池
JP2007242447A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 触媒層−電解質膜積層体及びその製造方法
JP2011512626A (ja) * 2008-02-15 2011-04-21 パナソニック株式会社 直接酸化型燃料電池用低空孔度アノード拡散媒体
KR101100693B1 (ko) * 2009-05-18 2012-01-03 재단법인대구경북과학기술원 금속 담지 탄소 나노섬유 및 그 제조 방법과, 이를 이용한 연료전지 및 필터
JP2012234791A (ja) * 2011-04-29 2012-11-29 Hyundai Motor Co Ltd 疎水性が改善された気孔体及びその製造方法
US10333155B2 (en) 2011-04-29 2019-06-25 Hyundai Motor Company Porous medium with increased hydrophobicity and method of manufacturing the same
JP2014517494A (ja) * 2011-06-22 2014-07-17 アカル エネルギー リミテッド カソード電極材料
WO2018061058A1 (ja) * 2016-09-29 2018-04-05 パナソニック株式会社 微生物燃料電池及び廃液処理装置
JP2018156798A (ja) * 2017-03-16 2018-10-04 国立大学法人九州大学 電極構造体、及び電極触媒層/ガス拡散層一体シート、並びにこれらを含む膜電極接合体
JP2021103690A (ja) * 2017-03-16 2021-07-15 国立大学法人九州大学 電極構造体及びその製造方法、並びに電極構造体を含む膜電極接合体
JP7228921B2 (ja) 2017-03-16 2023-02-27 国立大学法人九州大学 電極構造体の製造方法

Also Published As

Publication number Publication date
TW200427126A (en) 2004-12-01
CN1781203A (zh) 2006-05-31
JPWO2004075322A1 (ja) 2006-06-01
JP4626514B2 (ja) 2011-02-09
US20050282062A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP4626514B2 (ja) 燃料電池用電極、燃料電池、およびこれらの製造方法
US20090305096A1 (en) Liquid fuel supply type fuel cell, fuel cell electrode, and methods for manufacturing same
CN102318112B (zh) 三元铂合金催化剂
JP5587797B2 (ja) 選択透過性膜のない直接燃料電池及びその構成要素
WO2005088749A1 (ja) 膜電極接合体及び膜電極接合体の製造方法並びに固体高分子形燃料電池
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
WO2003100884A2 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
JP3747888B2 (ja) 燃料電池、燃料電池用電極およびそれらの製造方法
EP1509929A2 (en) Conducting polymer-grafted carbon material for fuel cell applications
US7410720B2 (en) Fuel cell and method for manufacturing the same
JP4642656B2 (ja) 燃料電池用電極およびこれを用いた燃料電池
JP2007188768A (ja) 固体高分子型燃料電池
WO2003088396A1 (fr) Batterie de piles a combustible a electrolyte polymere solide a performance amelioree et son procede de fabrication
JP4428774B2 (ja) 燃料電池電極の製造方法
JP4147321B2 (ja) 固体高分子型燃料電池用電極
US20050147868A1 (en) Fuel cell
JP2006085984A (ja) 燃料電池用mea、および、これを用いた燃料電池
WO2004107359A1 (en) Metallized conducting polymer-grafted carbon material and method for making
JP2006079840A (ja) 燃料電池用電極触媒、および、これを用いた燃料電池用mea
KR20140088884A (ko) 수동 직접 메탄올 연료전지의 제조방법 및 수동 직접 메탄올 연료전지
KR20090039423A (ko) 연료전지용 막-전극 어셈블리 및 이를 포함하는 연료전지시스템
KR101093708B1 (ko) 연료전지용 전극 및 이를 포함하는 연료전지
JP2006252910A (ja) 燃料電池
JP2007141776A (ja) 燃料直接形燃料電池用電極の製造方法、該製造方法により得られる燃料直接形燃料電池用電極、燃料直接形燃料電池および電子機器
JP2001243969A (ja) 固体高分子型燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11192316

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005502734

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048045153

Country of ref document: CN

122 Ep: pct application non-entry in european phase
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006278309

Country of ref document: US

Ref document number: 10565558

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10565558

Country of ref document: US