[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004068197A1 - Composite prism, light source unit, and display device - Google Patents

Composite prism, light source unit, and display device Download PDF

Info

Publication number
WO2004068197A1
WO2004068197A1 PCT/JP2004/000668 JP2004000668W WO2004068197A1 WO 2004068197 A1 WO2004068197 A1 WO 2004068197A1 JP 2004000668 W JP2004000668 W JP 2004000668W WO 2004068197 A1 WO2004068197 A1 WO 2004068197A1
Authority
WO
WIPO (PCT)
Prior art keywords
color light
light
light source
source unit
corner
Prior art date
Application number
PCT/JP2004/000668
Other languages
French (fr)
Japanese (ja)
Inventor
Kuninori Okuhara
Original Assignee
Hi-Mec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hi-Mec Co., Ltd. filed Critical Hi-Mec Co., Ltd.
Priority to JP2005504700A priority Critical patent/JP4520943B2/en
Publication of WO2004068197A1 publication Critical patent/WO2004068197A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the present invention relates to a compound prism, a light source unit, and a display device used for a projection display device or the like.
  • an optical device such as a projection display device (hereinafter, referred to as a projector)
  • a plurality of plate-shaped optical elements have been used for the purpose of combining or separating optical paths of a plurality of lights having different wavelengths. I have. For this reason, there is a problem that the optical device cannot be miniaturized. Therefore, a cubic dichroic prism in which four right-angled triangular prisms are joined in an X-shape may be used as a composite prism integrating such functions.
  • Such a dichroic prism is called an X cube because of the shape of the joint.
  • a selective reflection film capable of selectively reflecting red light and a selective reflection film capable of selectively reflecting blue light are arranged in a cross, and a liquid crystal projector is provided with an optical path combining element. It has been used. At that time, three of the four side surfaces of the dichroic prism are used as the incident end surface, and the other side surface is used as the output end surface (for example, see Japanese Patent Application Laid-Open No. No. 9509).
  • the four side surfaces are used as the input end surface and the output end surface, respectively, so there is no space in the side surfaces. Therefore, there is also a problem that the layout of the optical elements constituting the optical path toward the X-cube has a low degree of freedom.
  • the object of the present invention is to eliminate the need to align each ridge line of the four prisms in a straight line unlike the X-cube, thereby improving yield, reducing cost, and improving reliability. It is an object of the present invention to provide a new composite prism capable of improving the image quality, the image quality, and the degree of freedom in design, a light source unit and a display device using the composite prism. Disclosure of the invention
  • At least a plurality of bonding surfaces formed by bonding a plurality of translucent members have light having at least predetermined optical characteristics.
  • the first selective reflection surface and the second selective reflection surface that selectively transmit light and reflect the other light are formed in directions parallel to each other or crossing each other without crossing each other.
  • An optical path of at least three lights having different wavelengths can be combined or separated by the first selective reflection surface and the second selective reflection surface.
  • a first selective reflection surface and a second selective reflection surface are formed on the joining surface of the translucent member, and at least three light beams having different wavelengths are formed by these selective reflection surfaces.
  • each corner of the rectangular parallelepiped first rectangular plane including a first rectangular plane and a second rectangular plane facing each other is defined as a first corner, a second corner, and a third corner, respectively.
  • each of the corners corresponding to the first corner, the second corner, the third corner, and the fourth corner in the second rectangular plane is referred to as a fifth corner.
  • the first selective reflection surface is provided on the surface to be configured
  • the second selective reflection surface is provided on the surface configured by the third corner, the fourth corner, the fifth corner, and the sixth corner.
  • each of the first selective reflection surface and the second selective reflection surface is constituted by a polarization splitting surface. Therefore, both the first selective reflection surface and the second selective reflection surface transmit one of the P-polarized light and the S-polarized light within an arbitrary wavelength range, Reflects the other light.
  • Such a composite prism can be used to configure a display device including a plurality of electro-optical devices such as a liquid crystal light valve that modulates color light emitted from the composite prism.
  • a plurality of parallel light-transmitting members are joined to form an incident surface at an angle of 45 °, and a plurality of mutually parallel joining surfaces are provided.
  • the first selective reflection surface for selectively reflecting light in a predetermined wavelength band is provided on any of the other bonding surfaces, and the light in a wavelength band different from that of the first selective reflection surface is provided on any of the other joining surfaces.
  • the second selective reflection surface for selectively reflecting light is provided.
  • the integrating prism is, as the first selective reflection surface, a first color light dichroic light for selectively reflecting the first color light of the three primary color wavelength bands of red, green and blue.
  • a second color light dichroic mirror that selectively reflects the second color light toward the first color light dichroic mirror as the second selective reflection surface;
  • the dichroic mirror for the second color light is disposed on the opposite side to the dichroic mirror for the first color light, and reflects the third color light toward the dichroic mirror for the second color light.
  • a first color light source unit that emits the first color light toward the first color light dike opening mirror, and a second color light source unit that emits the first color light toward the first color light dike opening mirror.
  • the second color light that emits the second color light toward the color light dichroic mirror A third color light source unit that emits the third color light toward the reflection surface is disposed, the first color light source unit, the second color light source unit, and the third color light source unit. It is preferable that light emission from the color light source unit to the composite prism is switched at a predetermined timing.
  • the composite prism serves as the first selective reflection surface as a first color light of a wavelength band of three primary colors of red, green, and blue.
  • a first color light dichroic mirror that selectively reflects light, and selectively directs the second color light to the first color light dichroic mirror as the second selective reflection surface.
  • a first color light source unit that emits the first color light toward the first color light dichroic mirror.
  • a second color light source unit that emits the second color light toward the second color light dichroic mirror is disposed, and the second color light dichroic mirror is arranged to the second color light dichroic mirror.
  • the third color light from the opposite side to the dichroic mirror for color light 1 A third color light source unit for emitting light, wherein light is emitted from the first color light source unit, the second color light source unit, and the third color light source unit to the complex prism at a predetermined timing. Can be switched with preferable.
  • each of the first color light source unit, the second color light source unit, and the third color light source unit is a light emitting element that emits predetermined color light, The lighting of each of the color light source unit, the second color light source unit, and the third color light source unit is controlled at a predetermined timing.
  • each of the first color light source unit, the second color light source unit, and the third color light source unit emits light of each color obtained by color-dividing white light.
  • the first color light source unit, the second color light source unit, and the third color light source unit are disposed between the composite prism and the composite prism.
  • shutter means for controlling the shuttering may be employed.
  • a first compound prism is used as the first selective reflection surface, and red and green are used.
  • a first color light dichroic mirror that selectively reflects the first color light of the three primary wavelength bands of blue; and the second color light as the second selective reflection surface.
  • a second color light dichroic mirror that selectively reflects toward the first color light dichroic mirror; and the first color light dichroic mirror with respect to the second color light dichroic mirror.
  • a third color light reflecting surface disposed on the side opposite to the mirror and reflecting the third color light toward the second color light dichroic mirror; anda second composite prism,
  • the first color light for the first color light of the first compound prism A first color light reflecting surface that reflects toward the dichroic mirror; and a second color light dichroic of the first composite prism that is a second color light as the first selective reflecting surface.
  • a third dichroic mirror for color light that selectively reflects toward the reflective surface for light and further includes a second dichroic mirror for the second composite prism.
  • a white light source that emits white light toward a third color light dichroic mirror of the composite prism, and the second composite prism is provided between the first composite prism and the second composite prism. It is preferable that a shutter means for controlling the timing at which each color light is incident from the prism to the first composite prism is disposed.
  • the light source cutout to which the present invention is applied is used, for example, in a display device.
  • a display device is configured by arranging a plurality of the complex prisms in a matrix.
  • the display device may be configured using an electro-optical device that sequentially modulates the color light emitted from the light source unit and sequentially generates a color image corresponding to the color light.
  • the light source unit includes a polarization conversion unit that aligns the polarization directions of the color lights emitted toward the electro-optical device.
  • the light use efficiency can be increased, so that the brightness of the display image can be improved.
  • a projector or the like can be configured by using a projection optical system that projects images of each color sequentially formed by the electro-optical device.
  • FIG. 1 is an explanatory diagram of a compound prism according to Embodiment 1 of the present invention.
  • 2A and 2B are exploded perspective views of a compound prism according to Embodiment 1 of the present invention
  • FIG. 2C is an exploded perspective view of a conventional compound prism.
  • FIG. 3 is an explanatory diagram illustrating a method of manufacturing the composite prism according to Embodiment 1 of the present invention.
  • FIG. 4 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to Embodiment 1 of the present invention.
  • FIG. 5 is a front view, a left side view, and a plan view of the compound prism according to Embodiment 1 of the present invention.
  • FIG. 6 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to the modification of the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a liquid crystal projector using a compound prism according to a modification of the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of a dichroic mirror array used in the liquid crystal projector shown in FIG.
  • FIG. 9 is an explanatory diagram of another dichroic mirror array used in the liquid crystal projector shown in FIG.
  • FIG. 10 is an explanatory diagram of a complex prism according to Embodiment 2 of the present invention.
  • FIG. 11 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed in the composite prism according to Embodiment 2 of the present invention.
  • FIG. 12 is an explanatory diagram showing a usage example of the complex prism according to the second embodiment of the present invention.
  • FIG. 13 is an explanatory diagram illustrating a method of manufacturing a composite prism according to Embodiment 2 of the present invention.
  • FIG. 14 is an explanatory diagram of a tail lamp using the composite prism according to Embodiment 2 of the present invention.
  • FIG. 15 is an explanatory diagram of a composite prism according to a first modification of the second embodiment of the present invention.
  • FIG. 16 is an explanatory diagram of a composite prism according to a second modification of the second embodiment of the present invention.
  • FIG. 17 is an explanatory diagram showing the optical characteristics of the selective reflection surface used in the composite prism according to Modification 2 of Embodiment 2 of the present invention.
  • FIG. 18 is an explanatory diagram of a liquid crystal projector using a composite prism according to a first modification of the second embodiment of the present invention.
  • FIG. 19 is an explanatory diagram of another liquid crystal projector using the compound prism according to the first modification of the second embodiment of the present invention.
  • FIG. 20 is an explanatory diagram of a direct-view type liquid crystal display device using a compound prism according to a first modification of the second embodiment of the present invention.
  • FIG. 1 is an explanatory diagram of a compound prism according to Embodiment 1 of the present invention.
  • FIGS. 2A and 2B are exploded perspective views of a composite prism according to Embodiment 1 of the present invention, and
  • FIG. 2C is an exploded perspective view of a conventional composite prism.
  • FIG. 3 is an explanatory diagram illustrating a method of manufacturing the composite prism according to Embodiment 1 of the present invention.
  • FIG. 4 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to Embodiment 1 of the present invention.
  • FIG. 5 is a front view, a left side view, and a plan view of the compound prism according to Embodiment 1 of the present invention.
  • a composite prism 1 of the present embodiment is a cubic composite prism having a first rectangular plane 31 and a second rectangular plane 32 facing each other, and includes a plurality of translucent members.
  • the following selective reflection surfaces are formed on the plurality of bonding surfaces formed by bonding the two. That is, each corner of the first rectangular plane 31 is referred to as a first corner 101, a second corner 102, a third corner 103, and a fourth corner 104, respectively.
  • Each corner corresponding to the first corner 101, the second corner 102, the third corner 103, and the fourth corner 104 on the second rectangular plane 32 is referred to as a fifth corner.
  • the first corner portion 101, the third corner portion 103, the A first selective reflection surface 5 is provided on a surface constituted by the seven corners 107 and the fifth corner 105.
  • a second selective reflection surface 6 is provided on a surface constituted by the third corner 103, the fourth corner 104, the fifth corner 105, and the sixth corner 106. ing. Therefore, the first selective reflection surface 5 and the second selective reflection surface 6 are inclined by 45 ° with respect to the end face of the composite prism 1.
  • the first selective reflection surface 5 has a first corner I 0 1 (x 0, y 0, z 0) and a third corner 10 3 ( xl, yl, z0), the seventh corner 1 07 (xl, yl, zl), the fifth corner 1 105 (x0, y0, z1) formed on a rectangular joint surface
  • Second selectivity Reflecting surface 6 has third corner 103 (xl, yl, ⁇ ), fourth corner 104 (x0, yl, ⁇ ), fifth corner 105 (x0, y0, zl), the sixth corner 106 (xl, y0, zl), and is formed on a rectangular joining surface, and the first selective reflection surface 5 and the It is not orthogonal to the selective reflection surface 6 of 2.
  • a rod-shaped beam having a triangular cross-section in which a first selective reflection surface 5 made of a multilayer film is formed on an inclined surface is formed on an inclined surface.
  • the beam splitter bar 301 is cut at an angle of 45 ° and polished.
  • a second selective reflection surface 6 composed of a multilayer film is formed on the polished surface by low-temperature evaporation.
  • both the first selective reflection surface 5 and the second selective reflection surface 6 are configured by a multilayer film, and the first selective reflection surface 5 and the second selective reflection surface 6 are each provided with a selective reflection characteristic as described below.
  • the first selective reflection surface 5 is provided with the optical characteristics shown in FIG. 4 (A), and the three primary colors red light (light in a wavelength band centered on red) and green light (green light) A surface that transmits P-polarized light and reflects S-polarized light in the visible wavelength band of blue light (light in a wavelength band centered on blue) and blue light (light in a wavelength band centered on blue).
  • the second selective reflection surface 6 has the optical characteristics shown in FIG. 4B, and is a blue reflection surface that transmits red light and green light and reflects blue light.
  • the second selective reflection surface 6 is configured to transmit P-polarized light and reflect S-polarized light even for blue light.
  • this light LG (P) passes through the first selective reflection surface 5 and the second selective reflection surface 6 and travels straight toward the rectangular plane 22.
  • this light LR incident from the rectangular plane 11 is red light polarized in advance into an S wave
  • this light LR ′ (S) is converted to a first selective reflection surface with an incident angle of 45 °. After total reflection at 5, the light passes through the second selective reflection surface 6 and goes to the rectangular plane 22.
  • the light LB incident from the rectangular plane 32 is assumed to be blue light LB (S) polarized in advance into an S wave, this light LB is incident on the second selective reflection surface 6 at an incident angle of 45 °. After passing through the first selective reflection surface 5, the light is transmitted to the rectangular plane 22.
  • S blue light LB
  • the composite prism 1 of the present embodiment it is possible to combine optical paths of three color lights having different wavelengths.
  • FIGS. 6A and 6B show the optical characteristics of the first selective reflection surface 5 and the second selective reflection surface 6 used in the composite prism 1 according to the modification of the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing characteristics.
  • FIG. 7 is an explanatory diagram of a liquid crystal projector using the composite prism.
  • 8 and 9 are explanatory diagrams of a dichroic mirror array used in the liquid crystal projector shown in FIG.
  • the composite prism 1 of the present example is also a cube-shaped composite prism having a first rectangular plane 31 and a second rectangular plane 32 facing each other, The following selective reflection surfaces are formed on a plurality of bonding surfaces formed by bonding a plurality of translucent members.
  • each corner of the first rectangular plane 31 is referred to as a first corner 101, a second corner 102, a third corner 103, and a fourth corner 104, respectively.
  • each corner corresponding to the first corner 101, the second corner 102, the third corner 103, and the fourth corner 104 is defined.
  • the fifth corner 105, the sixth corner 106, the seventh corner 107, and the eighth corner 108 are respectively, the first corner 101, the third corner 1
  • a third selective reflection surface 5 is provided on a surface formed by the third corner portion 107, the seventh corner portion 107, and the fifth corner portion 105.
  • a second selective reflection surface 6 is provided on a surface formed by the third corner 103, the fourth corner 104, the fifth corner 105, and the sixth corner 106. Have. Therefore, the first selective reflection surface 5 and the second selective reflection surface 6 are inclined by 45 ° with respect to the end face of the composite prism 1. Further, the first selective reflection surface 5 and the second selective reflection surface 6 are not orthogonal.
  • the first selective reflection surface 5 is constituted by a polarization separation film having the optical characteristics shown in FIG. 6A
  • the second selective reflection surface 6 It is composed of a polarization separation film having the optical characteristics shown in FIG. 6 (B).
  • the liquid crystal projector using the composite prism 1 configured as described above includes a light source unit 110 having a white light source 111 and a reflector 112, and a light source unit 110 having the same.
  • PBS (polarization beam splitter) converter 120 to align white light emitted from 10 into P-polarized light, and light emitted from this PBS converter 120 is converted to blue light LB and red light LR.
  • a dichroic mirror 130 that separates the light into a mixture of green light and green light LG.
  • a total internal reflection mirror 140 that guides the light emitted from the dichroic mirror 130 to the rectangular plane 31 of the composite prism 1 (see FIG. 1) is arranged.
  • the blue light LB is incident on the composite prism 1 as P-polarized light.
  • the dichroic mirror array 150 in which the green light LG is selectively S-polarized light, and the total reflection mirror 160, Red light LR emitted from the dichroic mirror array 150 as P-polarized light, and green emitted from the dichroic mirror array 150 as S-polarized light.
  • the light LG enters the compound prism 1 through a common optical path.
  • the dichroic mirror array 150 the one shown in FIG. 8 or FIG. 9 can be used.
  • the one shown in Fig. 8 has a parallelogram or triangular columnar translucent member 155 having an acute angle of 45 ° in cross section, and is joined at the inclined end face.
  • a dichroic mirror 152 that reflects green light LG and transmits red light LR is formed at the first bonding interface 15 1, and a second bonding interface 15 3 that faces the dichroic mirror 15 2 Total reflection mirrors 15 4 are formed.
  • an integrated lens array 156 is arranged on the entrance end face of the dichroic mirror 150, and a 1/2 ⁇ plate 157 is arranged on the exit end face from the total reflection mirror 154. Have been.
  • the polarized red light LR and the P-polarized green light LG are guided to the dichroic mirror 152 by the integral lens array 156, and the red light LR passes through the dichroic mirror 152.
  • the light is emitted as P-polarized light.
  • the green light LG is reflected by the dichroic mirror -152, then reflected by the total reflection mirror 154 toward the ⁇ 2 ⁇ plate 157, and is reflected by the S-polarized light. And emitted.
  • the dichroic mirror array 150 has a dichroic mirror 15 which transmits the green light LG and reflects the red light LR at the first bonding interface 151, as shown in FIG. 8 may be formed, and a total reflection mirror 159 may be formed on the second bonding interface 15 3 facing the same.
  • a ⁇ plate 157 is arranged on the output end face from the dichroic mirror 158. Therefore, the ⁇ -polarized red light LR and ⁇ -polarized green light LG emitted from the dichroic mirror 130 shown in FIG. 7 are converted by the dichroic mirror (see FIG. 8) into the dichroic mirror.
  • the green light LG passes through the dichroic mirror 158, is converted into S-polarized light by the 1 / 2 ⁇ plate 157, and is emitted.
  • the red light LR is reflected by the dichroic mirror 158, then reflected by the total reflection mirror 159, and emitted as ⁇ -polarized light.
  • a reflective liquid crystal light bulb 17 1 (electro-optical device) for the red light LR and a reflective liquid crystal light ray for the green light LG are provided on a predetermined rectangular plane of the compound prism 1.
  • the blue light LB enters the composite prism 1, it passes through the second selective reflection surface 6, reaches the liquid crystal light valve 173 for blue light, and then passes through the liquid crystal light valve 173. Is reflected.
  • the light component modulated by the liquid crystal light valve 173 for each pixel and converted into S-polarized light In other words, the light is reflected by the second selective reflection surface 6 and guided to a projection optical system (not shown).
  • the green light LG is reflected by the first selective reflection surface 5, reaches the liquid crystal light valve 172 for green light, and is reflected by the liquid crystal light valve 172.
  • the light component which is light-modulated for each pixel by the liquid crystal light valve 172 and converted into P-polarized light is transmitted through the first selective reflection surface 5 and guided to the projection optical system.
  • a predetermined color image is displayed on the screen by each color light emitted from the projection optical system.
  • the optical path of the blue light LB and the optical path of the mixed light of the red light LR and the green light LG need only be secured around the polarizing prism 1.
  • the size of the liquid crystal projector can be reduced.
  • the ridge lines of each prism are not concentrated at one place, so that it is possible to avoid a situation in which the ridge line of the prism alone is reflected at the center of the projected image.
  • FIG. 10 is an explanatory diagram of a composite prism according to Embodiment 2 of the present invention.
  • FIG. 11 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to Embodiment 2 of the present invention.
  • FIG. 12 is an explanatory diagram showing an example of use of the compound prism according to the second embodiment of the present invention.
  • FIG. 13 is an explanatory diagram illustrating a method of manufacturing a composite prism according to Embodiment 2 of the present invention.
  • the composite prism 2 of the present embodiment is a dichroic mirror module, and has a columnar translucent member 22 1 having a right-angled isosceles triangle having a 45 ° acute angle in cross section.
  • the columnar transparent members 222, 223 each having a parallelogram-shaped section having an acute angle of 45 degrees are joined at the inclined end faces.
  • one end portion 226 is joined to a columnar dummy translucent member 224 having a right-angled isosceles triangle shape having an acute angle of 45 degrees in cross section, and three joining surfaces 23 are formed. 1, 2 3 2 and 2 3 3 are provided.
  • the first bonding interface 2 3 1 has a first dichroic mirror having the optical characteristics shown in FIG.
  • the first selective reflection surface 7 reflects the red light LR and transmits the green light LG and the blue light LB.
  • a second selective reflection surface 8 made of a dichroic mirror having the optical characteristics shown in FIG. 11 is formed at the second bonding interface 232, and this second selective reflection surface 8 , Red light LR and green light LG, while transmitting blue light LB.
  • a total reflection surface 9 having the optical characteristics shown in FIG. 11 is formed on the third bonding interface 233 as a mirror for blue light.
  • the other end 227 serves as an emission end face, and for example, a diffusion lens 241 is arranged as shown in FIG.
  • a condenser plate 229 is arranged on the side surface of the composite prism 2.
  • a red LED 51 is arranged toward the first selective reflection surface 7 by the light-collecting plate 2 9, and a green LED 252 is arranged toward the second selective reflection surface 8.
  • Blue LED 5 3 toward reflective surface 9 Are located.
  • the red light LR emitted from the red LED 51 is reflected by the first selective reflection surface 7 in the composite prism 2 and emitted through the diffusion lens 41.
  • the green light LG emitted from the green LED 52 is reflected by the second selective reflection surface 8 in the complex prism 2 and then transmitted through the first selective reflection surface 7, and then, the diffusion lens 4 Emitted through 1.
  • the blue light LB emitted from the blue LED 53 is reflected by the total reflection surface 9 in the composite prism 2 and then sequentially transmitted through the second selective reflection surface 8 and the first selective reflection surface 7 to be processed. After that, the light is emitted through the diffusion lens 41.
  • the composite prism 2 of the present embodiment it is possible to combine optical paths of three color lights having different wavelengths.
  • the LEDs 51, 52, and 53 with light, six colors of light can be emitted in addition to white.
  • each surface of a plurality of translucent substrates 160 having two parallel substrate surfaces is referred to FIG. 11.
  • these laminated substrates are removed.
  • Laminated with a light-transmitting substrate 16 1 via a photo-curable adhesive At this time, the overlapping position is shifted so that the edge of each substrate is 45 °.
  • cut along the cutting line indicated by the dotted line at an angle of 45 ° to the substrate surface of the light-transmitting substrates 16 0 and 16 1. Thereafter, the cut surface is polished, and the composite prism 2 shown in FIG. 10 is manufactured. Therefore, unlike X-Cube, the production efficiency is high and the cost is low.
  • FIG. 14 is an explanatory diagram of a tail lamp using the compound prism according to Embodiment 2 of the present invention.
  • a large number of composite prisms 2 ' can be arranged in a matrix, such as a fly array, to form a display device such as a tail lamp 200 of an automobile. it can.
  • 600,000 dots 100,000 dots X 600,000 dots
  • 100,000 dots (1,200,000 dots) X 830 dot outdoor display panel.
  • the three types of LEDs 51, 52, and 53 are lit at a predetermined timing, display can be performed in any color.
  • the resolution is high even at a short distance, and a resolution twice or more that of a conventional display device can be obtained.
  • 7 colors can be expressed, so that in addition to brake lights, hazard lights, back lights, key lock warning lights, anti-theft lamps, etc. It can be used as various kinds of pilot lamps, for example, it can be used as a kind of signal lamp.
  • a unique lamp can be constructed.
  • the complex prism 2 according to the second embodiment may be configured as, for example, a dichroic mirror array shown in FIG.
  • FIG. 15 is an explanatory diagram of a composite prism according to a first modification of the second embodiment of the present invention.
  • the cross-sectional shape is a right-angled isosceles triangle having an acute angle of 45 degrees
  • a columnar translucent member 221 and the cross-sectional shape is a parallelogram having an acute angle of 45 degrees.
  • the columnar translucent member 222 with a cross-sectional shape of an isosceles right triangle with an acute angle of 45 degrees are joined at the inclined end face.
  • Interfaces 2 3 1 and 2 3 2 are provided.
  • the first bonding interface 2 31 is formed with a first selective reflection surface 7 made of a dichroic mirror having the optical characteristics shown in FIG. 11.
  • the first selective reflection surface 7 reflects the red light LR. While transmitting the green light LG and the blue light LR.
  • a second selective reflection surface 8 made of a dichroic mirror having the optical characteristics shown in FIG. 11 is formed at the second bonding interface 2 32, and the second selective reflection surface 8 While reflecting the red light LR and the green light LG, it transmits the blue light LB.
  • the other end portion 227 serves as an emission end surface, and for example, a diffusion lens 41 is arranged.
  • a red LED 51 is arranged toward the first selective reflection surface 7
  • a green LED 52 is arranged toward the second selective reflection surface 8.
  • a blue LED 53 is disposed at the end on the side of the translucent member 25 toward the other end 227.
  • the red light L R emitted from the red LED 51 is reflected by the first selective reflection surface 7 in the composite prism 2 and emitted through the diffusion lens 41.
  • the green light LG emitted from the green ED 52 is reflected by the second selective reflection surface 8 in the complex prism 2, then passes through the first selective reflection surface 7, and then diffused by the diffusion lens 4. Emitted through 1.
  • the blue light LB emitted from the blue LED 53 sequentially passes through the second selective reflection surface 8 and the first selective reflection surface 7, and then is emitted through the diffusion lens 41.
  • Such a composite prism 2 also has a tail lamp 200 described with reference to FIG. It can be used as a display device.
  • the composite prism according to the second embodiment may be configured as, for example, a dichroic mirror array for spectrum used in the module shown in FIG.
  • FIG. 16 shows a composite prism according to Modification 2 of Embodiment 2 of the present invention.
  • FIG. 17 is an explanatory diagram showing the optical characteristics of the selective reflection surface used in the compound prism according to Modification 2 of Embodiment 2 of the present invention.
  • the quadrangular columnar translucent members 22 2 ′ and 22 3 ′ are joined at the inclined end faces.
  • one end 2 26 ′ is joined to a columnar dummy translucent member 2 24 ′ having a right-angled isosceles triangle having an acute angle of 45 degrees in cross section, and three joining surfaces 2. 3 1 ′, 2 3 2 ′, and 2 3 3 ′.
  • the first bonding interface 23 1 ′ has a total reflection surface 7 ′ having the optical characteristics shown in FIG. 17 as a mirror for red light.
  • a first selective reflection surface 8 ′ made of a dichroic mirror having the optical characteristics shown in FIG. 17 is formed at the second bonding interface 2 32 ′.
  • 8 ' reflects blue light LB and green light LG while transmitting red light LR.
  • a second selective reflection surface 9 ′ made of a dike opening mirror having the optical characteristics shown in FIG. 17 is formed at the third bonding interface 233 ′, and this second selective reflection surface is formed.
  • 9 ' reflects the blue light LR while transmitting the green light LG and the red light LR.
  • one end 27 ′ is used as an incident end face.
  • a shirt 63, a polarization conversion prism 69, a lens array 61, and a white light source 6 2 is arranged.
  • the composite prism 2 (first composite prism) described with reference to FIG. 10 is disposed on the side of the composite prism 2 ′ via three shirts 66, 67, and 68.
  • the light source unit is disposed on the side of the composite prism 2 ′ via three shirts 66, 67, and 68.
  • the light emitted from the white light source 62 is incident on the composite prism 2 ′ after the polarization direction is aligned by the polarization conversion prism 69.
  • the blue light component contained in the white light is While being reflected by the second selective reflection surface 9 ′ of the composite prism 2 ′ and entering the composite prism 2 as blue light LB, the red light component and the green light component are reflected by the second selective reflection surface 9 ′.
  • the blue light LB incident on the composite prism 2 is reflected by the total reflection surface 9 and then sequentially transmitted through the second selective reflection surface 8 and the first selective reflection surface 7.
  • the light is emitted through the diffusion lens 4 1.
  • the red light component and the green light component transmitted through the second selective reflection surface 9 ′ reach the first selective reflection surface 8 ′, and the green light component contained therein passes through the second selective reflection surface 8 ′ of the composite prism 2 ′.
  • the red light component is reflected by the first selective reflection surface 8 ′ and is incident on the compound prism 2 as green light LG as the green light LG, while being transmitted through the first selective reflection surface 8 ′.
  • the green light LG incident on the composite prism 2 is reflected by the second selective reflection surface 8, passes through the first selective reflection surface 7, and then emerges through the diffusion lens 41. Is done.
  • the red light component transmitted through the first selective reflection surface 8 ′ is reflected by the total reflection surface 7 ′ and enters the composite prism 2 as red light LR. Then, the red light LG that has entered the composite prism 2 is reflected by the first selective reflection surface 7, and then emitted through the diffusion lens 41.
  • the optical paths of three color lights having different wavelengths can be separated.
  • a high-pressure mercury lamp, a halogen lamp, or the like can be used as a light source.
  • the white light is converted by the polarization conversion prism 69 (polarization conversion means). Since the polarization direction is adjusted to P-polarized light or S-polarized light, a liquid crystal panel can be used as the shutter 66, 67, 68 (shutter means). If such a liquid crystal panel is used as the shutter 66, 67, 68, it is easy to achieve synchronization.
  • FIG. 18 is an explanatory diagram of a liquid crystal projector using a compound prism according to a first modification of the second embodiment of the present invention.
  • the liquid crystal projector shown in FIG. 18 uses the complex prism 2 according to the modification of the second embodiment as a light source, and a polarizing plate 71 is disposed on the emission side of the complex prism 2.
  • a polarization beam splitter 73 having a polarization separation surface 72 is provided.
  • a reflective liquid crystal light valve 74 is arranged to face the end face of the polarizing beam splitter 73, and a projection optical system 75 is arranged on the opposite end face.
  • red light LR, green light LG, and blue light LB are sequentially emitted from the composite prism 2, and only the P-polarized light is emitted by the polarizing plate 71, for example, into the polarizing beam splitter 7.
  • Light is incident on 3.
  • the light incident on the polarization beam splitter 73 is reflected by the polarization separation surface 72 toward the liquid crystal light valve 74, modulated by the liquid crystal light valve 74, and then again polarized light separation surface 72. Head for.
  • the S-polarized light passes through the polarization splitting surface 72 and is enlarged and projected from the projection optical system 75.
  • each pixel is driven by the liquid crystal light valve 74, and an image corresponding to the color light is sequentially formed. Therefore, a new type of field-sequential type liquid crystal projector can be constructed, and according to this liquid crystal projector, a color image can be enlarged and projected from the projection optical system 75. Can be.
  • FIG. 19 is an explanatory diagram of another liquid crystal projector using the compound prism according to the first modification of the second embodiment of the present invention.
  • the liquid crystal projector shown in FIG. 19 includes a composite prism 2 according to a modification of the second embodiment and a polarization conversion prism 8 3 (polarization conversion means) including two polarization separation prisms 8 1 and 8 2.
  • a plurality of light source units 80 are arranged.
  • a half-plate plate 88 is disposed between the polarization separation prisms 81 and 82.
  • a polarizing beam splitter 86 having a polarization splitting surface 85 is disposed adjacent to the plurality of light source units 80, and a reflective liquid crystal light valve 89 is disposed on the opposite side.
  • FIG. 19 shows a state where the red light LR is emitted.
  • the red light LR, the green light LG, and the blue light LB are sequentially emitted from the composite prism 2 to the first polarization separation prism 81 of the polarization conversion prism 83. Then, of the color light emitted from the complex prism 2, for example, the P-polarized light component passes through the polarization splitting surface of the first polarization splitting prism 81, and then becomes the polarization splitting surface of the polarization beam splitter 86. After passing through 85, it goes to the liquid crystal light valve 89. Then, after being modulated by the liquid crystal light valve 74, the light returns to the polarization splitting surface 72 again. At this time, the S-polarized light is reflected by the polarization splitting surface 85 and is enlarged and projected from a projection optical system (not shown).
  • the S-polarized light component of the color light emitted from the composite prism 2 is reflected by the polarization splitting surface of the first polarization splitting prism 81, and the P-polarized light is reflected by the 1Z2 plate 88. After being converted into the light, the light enters the second polarization splitting prism 82. Then, after being reflected by the polarization splitting surface of the second polarization splitting prism 82 and entering the polarization beam splitter 86, the light passes through the polarization splitting surface 85 and travels to the liquid crystal light valve 89. And liquid crystal light pulp After being modulated by 8 9, it goes to the polarization splitting surface 85 again. At this time, the S-polarized light is reflected by the polarization splitting surface 85 and is enlarged and projected from a projection optical system (not shown).
  • each pixel is driven by the liquid crystal light valve 89 in accordance with the timing at which the LEDs 51, 52, 53 of each color are sequentially turned on, and an image corresponding to the color light is sequentially formed. Therefore, a color image is enlarged and projected from the projection optical system.
  • This configuration has the advantage that the efficiency of use of the light emitted from the LEDs 51, 52, and 53 is higher than that of a conventional field-sequential liquid crystal projector using color filters. is there.
  • FIG. 20 is an explanatory diagram of a direct-view type liquid crystal display device using a compound prism according to a first modification of the second embodiment of the present invention.
  • the liquid crystal display device shown in FIG. 20 is a direct-view display device using a transmissive or transflective liquid crystal panel 91.
  • a transmissive or transflective liquid crystal panel 91 for example, an active matrix type liquid crystal panel using TFT as a pixel switching element can be used.
  • a polarizing plate 92 is disposed on the display surface side, and an optical sheet 96 such as a diffusion plate and a light guide plate 93 are disposed on the back surface side by side.
  • a plurality of light source units 80 described with reference to FIG. 19 are arranged at the side end of the light guide plate 93, and this light source unit 80 is a modification of the second embodiment. It has a compound prism 2 according to the example and a polarization conversion prism 83, and in the polarization conversion prism 83, a 2 ⁇ plate is arranged between two polarization separation prisms.
  • the red light LR, the green light LG, and the blue light LB are sequentially emitted from the composite prism 2 and passed through the polarization conversion prism 83.
  • the light incident on the light guide plate 93 is reflected inside the light guide plate 93.
  • the light is incident on the liquid crystal panel 91 repeatedly.
  • the light is emitted and a color image is displayed.
  • each pixel is driven according to the timing when the LED of each color is sequentially turned on, and an image corresponding to the color light is sequentially formed.
  • the display device configured in this way is that a color image is displayed without using a color filter. Therefore, there is no decrease in light use efficiency due to the color filter.
  • the light sources of the three primary colors emitted from the red LED 51, the green LED 52, and the blue LED 53 are converted into polarized light before entering the light guide plate 93.
  • the illuminance of the light source can be maintained as it is and emitted to the liquid crystal panel 91.
  • the composite prism according to the present invention may be used for a projector that uses.
  • the composite prism according to the present invention is used for the projector and the direct-view display device has been described.
  • the composite prism according to the present invention is used for other display devices or other optical devices. It is good. Industrial applicability
  • each ridge line of the four prisms does not have to be aligned, so that the yield, cost, and reliability can be improved.
  • a compound prism can be provided. Further, by using the composite prism according to the present invention, it is possible to improve image quality and design freedom in various display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

A composite prism (1) has a first selective reflection surface (5) on a surface defined by a first corner (101), a third corner (103), a seventh corner (107) and a fifth corner (105). Further, it has a second selective reflection surface (6) on a surface defined by the third corner (103), a fourth corner (104), the fifth corner (105), and a sixth corner (106). The first and second selective reflection surfaces (5, 6) are formed of polarizing separation films. Therefore, the composite prism, unlike an X cube, is capable of effecting composition and decomposition of a plurality of optical paths without arranging the edges of the four prism single bodies in a straight line.

Description

明 細 書 複合プリズム、 光源ユニッ ト、 および表示装置 技術分野  Description Composite prism, light source unit, and display device
本発明は、 投射型表示装置などに用いられる複合プリズム、 光源ュ ニッ ト、 および表示装置に関するものである。 背景技術  The present invention relates to a compound prism, a light source unit, and a display device used for a projection display device or the like. Background art
投射型表示装置(以下、 プロジェクタという)などの光学装置におい ては、 従来、 波長の異なる複数の光の光路を合成あるいは分離するこ とを目的に複数枚の板状の光学素子が用いられている。 このため、 光 学装置を小型化できないという問題点がある。 そこで、 このよ うな機 能を集積した複合プリ ズムと して、 直角三角柱状のプリズムを 4個、 X状に接合した立方体形状のダイク ロイ ックプリ ズムが用いられるこ とがある。 このよ うなダイクロイ ツクプリズムは、 接合部分の形状か ら Xキューブと称せられている。  2. Description of the Related Art In an optical device such as a projection display device (hereinafter, referred to as a projector), conventionally, a plurality of plate-shaped optical elements have been used for the purpose of combining or separating optical paths of a plurality of lights having different wavelengths. I have. For this reason, there is a problem that the optical device cannot be miniaturized. Therefore, a cubic dichroic prism in which four right-angled triangular prisms are joined in an X-shape may be used as a composite prism integrating such functions. Such a dichroic prism is called an X cube because of the shape of the joint.
このダイクロイ ツクブリズムでは、 赤色光を選択的に反射可能な選 択性反射膜、 および青色光を選択的に反射可能な選択性反射膜がク口 スして配置され、 液晶プロジヱクタでは光路合成素子と して用いられ ている。 その際、 ダイクロイ ツクプリ ズムの 4つの側面のうちの 3つ の側面が入射端面と して用いられ、 他の 1つの側面が出射端面と して 利用される(例えば、 特開 2 0 0 2— 9 0 5 0 9号公報)。  In this dichroic brake, a selective reflection film capable of selectively reflecting red light and a selective reflection film capable of selectively reflecting blue light are arranged in a cross, and a liquid crystal projector is provided with an optical path combining element. It has been used. At that time, three of the four side surfaces of the dichroic prism are used as the incident end surface, and the other side surface is used as the output end surface (for example, see Japanese Patent Application Laid-Open No. No. 9509).
しかしながら、 Xキューブでは、 4つのプリ ズム単体の各稜線を一 直線に揃える必要があるため、 生産性が低く 、 かつ、 歩留ま りが低い という問題点がある。 また、 プリズム単体の段階で角度公差に対する 要求も厳しい。 このため、 Xキューブは、 高価なものになってしま う という問題点がある。 さらに、 Xキューブの場合、 4つのプリズム単 体の各稜線が一直線に揃うため、 それを用いた液晶プロジェクタでは、 投射された画像の中心に稜線が映るという問題点がある。 従って、 プ リ ズム単体同士を接合する際、 接着剤の厚さを薄く しなければならな いが、 接着剤の厚さを薄くすると、 ヒー トショ ックに弱く なるなど、 信頼性が低下するという問題点がある。 さ らにまた、 Xキューブでは、 4つの側面が各々、 入射端面および出射端面と して用いられているた め、 側面に空きがない。 それ故、 Xキューブに向かう光路を構成する 光学素子のレイアウ トに自由度が低いという問題点もある。 However, in the X-cube, there is a problem that the productivity is low and the yield is low because each ridge line of the four prisms alone needs to be aligned. In addition, the requirements for angle tolerance are strict at the stage of the prism alone. Therefore, there is a problem that the X cube becomes expensive. In addition, in the case of the X cube, Since each ridge line of the body is aligned, there is a problem in the liquid crystal projector using it that the ridge line appears at the center of the projected image. Therefore, the adhesive must be thinner when joining the prisms to each other, but when the adhesive is thinner, the reliability decreases, such as weakening the heat shock. There is a problem. Furthermore, in the X-cube, the four side surfaces are used as the input end surface and the output end surface, respectively, so there is no space in the side surfaces. Therefore, there is also a problem that the layout of the optical elements constituting the optical path toward the X-cube has a low degree of freedom.
以上の問題点に鑑みて、 本発明の課題は、 Xキューブと違って 4つ のプリズム単体の各稜線を一直線に揃える必要がなく、 歩留ま りの向 上、 コス トの低減、 信頼性の向上、 画質の向上、 設計面での自由度の 向上を図ることのできる新たな複合プリ ズム、 この複合プリズムを用 いた光源ュニッ トおよび表示装置を提供することにある。 発明の開示  In view of the above problems, the object of the present invention is to eliminate the need to align each ridge line of the four prisms in a straight line unlike the X-cube, thereby improving yield, reducing cost, and improving reliability. It is an object of the present invention to provide a new composite prism capable of improving the image quality, the image quality, and the degree of freedom in design, a light source unit and a display device using the composite prism. Disclosure of the invention
上記課題を解決するために、 本発明の複合プリ ズムでは、 複数の透 光性部材を接合したこ とによ り形成される複数の接合面に、 少なく と も、 所定の光学特性を備える光を選択的に透過し、 それ以外の光を反 射する第 1 の選択性反射面と第 2 の選択性反射面が互いに平行、 ある いは直交せずに交差する向きに形成され、 前記第 1 の選択性反射面お よび前記第 2の選択性反射面によって、 波長の異なる少なく と も 3つ の光の光路を合成あるいは分離可能であることを特徴とする。  In order to solve the above problems, in the composite prism of the present invention, at least a plurality of bonding surfaces formed by bonding a plurality of translucent members have light having at least predetermined optical characteristics. The first selective reflection surface and the second selective reflection surface that selectively transmit light and reflect the other light are formed in directions parallel to each other or crossing each other without crossing each other. An optical path of at least three lights having different wavelengths can be combined or separated by the first selective reflection surface and the second selective reflection surface.
本発明では、 透光性部材の接合面に第 1 の選択性反射面と第 2の選 択性反射面とを形成し、 これらの選択性反射面によって、 波長の異な る少なく とも 3つの光の光路を合成あるいは分離する。 このため、 単 板の偏光分離素子などを用いて光路を合成あるいは分離を行う必要が ないので、 コス トの低減、 および設計面での自由度の向上を図るこ と ができる。 また、 Xキューブと違って 4つのプリ ズム単体の各稜線を 一直線に揃える必要がないので、 歩留まりが高く、 かつ、 信頼性が高 い。 また、 画質の向上を図ることもできる。 In the present invention, a first selective reflection surface and a second selective reflection surface are formed on the joining surface of the translucent member, and at least three light beams having different wavelengths are formed by these selective reflection surfaces. Are combined or separated. For this reason, since it is not necessary to combine or separate the optical paths using a single-plate polarization splitting element or the like, it is possible to reduce costs and improve the degree of freedom in design. Also, unlike the X-cube, each ridge of the four prims Since there is no need to align them in a straight line, high yield and high reliability are achieved. Also, the image quality can be improved.
本発明において、 対向する第 1 の矩形平面と第 2の矩形平面からな る直方体形状の前記第 1の矩形平面の各角部を各々、 第 1角部、 第 2 角部、 第 3角部および第 4角部と し、' 前記第 2の矩形平面で前記第 1 角部、 前記第 2角部、 前記第 3角部および前記第 4角部に対応する各 角部を各々、 第 5角部、 第 6角部、 第 7角部おょぴ第 8角部と したと き、 前記第 1角部、 前記第 3角部、 前記第 7角部および前記第 5角部 によつて構成される面に前記第 1 の選択性反射面を備え、 前記第 3角 部、 前記第 4角部、 前記第 5角部および前記第 6角部によって構成さ れる面に前記第 2の選択性反射面を備えていることを特徴とする。 本発明においては、 例えば、 前記第 1 の選択性反射面おょぴ前記第 2の選択性反射面は各々、偏光分離面により構成されている。従って、 前記第 1の選択性反射面および前記第 2の選択性反射面はいずれも、 任意の波長範囲内において、 P偏光の光および S偏光の光のうちの一 方の光を透過し、 他方の光を反射する。  In the present invention, each corner of the rectangular parallelepiped first rectangular plane including a first rectangular plane and a second rectangular plane facing each other is defined as a first corner, a second corner, and a third corner, respectively. And each of the corners corresponding to the first corner, the second corner, the third corner, and the fourth corner in the second rectangular plane is referred to as a fifth corner. When the corner, the sixth corner, the seventh corner, and the eighth corner, the first corner, the third corner, the seventh corner, and the fifth corner are used. The first selective reflection surface is provided on the surface to be configured, and the second selective reflection surface is provided on the surface configured by the third corner, the fourth corner, the fifth corner, and the sixth corner. A reflective surface. In the present invention, for example, each of the first selective reflection surface and the second selective reflection surface is constituted by a polarization splitting surface. Therefore, both the first selective reflection surface and the second selective reflection surface transmit one of the P-polarized light and the S-polarized light within an arbitrary wavelength range, Reflects the other light.
このよ うな複合プリズムについては、 この複合プリズムから出射さ れる色光を各々、 変調する液晶ライ トバルブなどといった電気光学装 置を複数、 備えた表示装置を構成するのに用いることができる。  Such a composite prism can be used to configure a display device including a plurality of electro-optical devices such as a liquid crystal light valve that modulates color light emitted from the composite prism.
本発明の別の形態では、 複数の柱状の前記透光性部材を接合して入 射面に 4 5 ° の角度をなす、 互いに平行な複数の接合面を備え、 当該 複数の接合面のうちのいずれかに所定の波長帯域の光を選択的に反射 する前記第 1の選択性反射面を備え、 他のいずれかの接合面に、 前記 第 1の選択性反射面と異なる波長帯域の光を選択的に反射する前記第 2の選択性反射面を備えていることを特徴とする。 また、 偏光分離面 を平行に接合し、 任意の偏光光をもった波長光を分離することも可能 とする。  In another aspect of the present invention, a plurality of parallel light-transmitting members are joined to form an incident surface at an angle of 45 °, and a plurality of mutually parallel joining surfaces are provided. Wherein the first selective reflection surface for selectively reflecting light in a predetermined wavelength band is provided on any of the other bonding surfaces, and the light in a wavelength band different from that of the first selective reflection surface is provided on any of the other joining surfaces. And the second selective reflection surface for selectively reflecting light. In addition, it is possible to join the polarization separation planes in parallel to separate light having a wavelength having any polarization.
本発明に係る複合プリズムを用いた光源ュニッ トにおいて、 前記複 合プリズムは、 前記第 1 の選択性反射面と して、 赤、 緑、 青の 3原色 の波長帯域のう ちの第 1 の色光を選択的に反射する第 1の色光用ダイ ク ロイ ツク ミ ラーと、 前記第 2の選択性反射面と して第 2の色光を前 記第 1の色光用ダイクロイ ツク ミ ラーに向けて選択的に反射する第 2 の色光用ダイクロイ ツク ミ ラーと、 該第 2の色光用ダイクロイ ツク ミ ラーに対して前記第 1 の色光用ダイクロイ ツク ミ ラーとは反対側に配 置されて第 3の色光を前記第 2の色光用ダイクロイ ツク ミ ラーに向け て反射する第 3の色光用反射面とを備え、 前記第 1 の色光用ダイク口 イ ツク ミ ラーに向けて前記第 1 の色光を出射する第 1 の色光源部が配 置され、 前記第 2の色光用ダイクロイ ツク ミ ラーに向けて前記第 2の 色光を出射する第 2の色光源部が配置され、 前記反射面に向けて前記 第 3の色光を出射する第 3の色光源部が配置され、 前記第 1 の色光源 部、 前記第 2の色光源部、 および前記第 3の色光源部から前記複合プ リズムへ光の出射が所定のタイ ミ ングで切り換えられることが好ま し い。 In the light source unit using the composite prism according to the present invention, The integrating prism is, as the first selective reflection surface, a first color light dichroic light for selectively reflecting the first color light of the three primary color wavelength bands of red, green and blue. A second color light dichroic mirror that selectively reflects the second color light toward the first color light dichroic mirror as the second selective reflection surface; The dichroic mirror for the second color light is disposed on the opposite side to the dichroic mirror for the first color light, and reflects the third color light toward the dichroic mirror for the second color light. A first color light source unit that emits the first color light toward the first color light dike opening mirror, and a second color light source unit that emits the first color light toward the first color light dike opening mirror. The second color light that emits the second color light toward the color light dichroic mirror A third color light source unit that emits the third color light toward the reflection surface is disposed, the first color light source unit, the second color light source unit, and the third color light source unit. It is preferable that light emission from the color light source unit to the composite prism is switched at a predetermined timing.
本発明に係る複合プリズムを用いた光源ュニッ トにおいて、 前記複 合プリズムは、 前記第 1 の選択性反射面と して、 赤、 緑、 青の 3原色 の波長帯域のう ちの第 1 の色光を選択的に反射する第 1 の色光用ダイ クロイ ツク ミ ラーと、 前記第 2の選択性反射面と して第 2の色光を前 記第 1 の色光用ダイクロイ ツク ミ ラーに向けて選択的に反射する第 2 の色光用ダイク ロイ ツク ミ ラーとを備え、 前記第 1 の色光用ダイク 口 イ ツク ミ ラーに向けて前記第 1 の色光を出射する第 1 の色光源部が配 置され、 前記第 2の色光用ダイク ロイ ツク ミ ラーに向けて前記第 2の 色光を出射する第 2の色光源部が配置され、 当該第 2の色光用ダイク 口イ ツク ミ ラーに対して前記第 1 の色光用ダイク ロイ ツク ミラーとは 反対側から第 3の色光を出射する第 3の色光源部を備え、 前記第 1 の 色光源部、 前記第 2の色光源部、 および前記第 3の色光源部から前記 複合プリ ズムへ光の出射が所定のタイ ミ ングで切り換えられることが 好ましい。 In the light source unit using the composite prism according to the present invention, the composite prism serves as the first selective reflection surface as a first color light of a wavelength band of three primary colors of red, green, and blue. A first color light dichroic mirror that selectively reflects light, and selectively directs the second color light to the first color light dichroic mirror as the second selective reflection surface. A first color light source unit that emits the first color light toward the first color light dichroic mirror. A second color light source unit that emits the second color light toward the second color light dichroic mirror is disposed, and the second color light dichroic mirror is arranged to the second color light dichroic mirror. The third color light from the opposite side to the dichroic mirror for color light 1 A third color light source unit for emitting light, wherein light is emitted from the first color light source unit, the second color light source unit, and the third color light source unit to the complex prism at a predetermined timing. Can be switched with preferable.
本発明において、 前記第 1 の色光源部、 前記第 2の色光源部、 およ び前記第 3の色光源部は、 各々、 所定の色光を出射する発光素子であ り、 前記第 1 の色光源部、 前記第 2の色光源部、 および前記第 3の色 光源部は、 各々、 所定のタイ ミングで点灯が制御される。  In the present invention, each of the first color light source unit, the second color light source unit, and the third color light source unit is a light emitting element that emits predetermined color light, The lighting of each of the color light source unit, the second color light source unit, and the third color light source unit is controlled at a predetermined timing.
本発明において、 前記第 1 の色光源部、 前記第 2の色光源部、 およ び前記第 3の色光源部は、 各々、 白色光を色分割して得られた各色の 光を出射し、 前記第 1 の色光源部、 前記第 2の色光源部、 および前記 第 3の色光源部と、 前記複合プリ ズムとの間には、 当該複合プリズム に対して各色光が入射するタイ ミ ングを制御するシャッタ手段が配置 されている構成を採用してもよい。  In the present invention, each of the first color light source unit, the second color light source unit, and the third color light source unit emits light of each color obtained by color-dividing white light. The first color light source unit, the second color light source unit, and the third color light source unit are disposed between the composite prism and the composite prism. A configuration in which shutter means for controlling the shuttering are arranged may be employed.
例えば、 本発明に係る複合プリズムを 2つ備えた光源ュニッ トでは、 前記 2つの複合プリ ズムのうち、 第 1の複合プリ ズムは、 前記第 1 の 選択性反射面と して、 赤、 緑、 青の 3原色の波長帯域のう ちの第 1 の 色光を選択的に反射する第 1 の色光用ダイクロイ ツク ミ ラーと、 前記 第 2の選択性反射面と して第 2の色光を前記第 1 の色光用ダイクロイ ック ミラーに向けて選択的に反射する第 2の色光用ダイク ロイ ツク ミ ラーと、 該第 2の色光用ダイクロイ ツク ミ ラーに対して前記第 1 の色 光用ダイクロイ ツク ミ ラーとは反対側に配置されて第 3の色光を前記 第 2の色光用ダイク ロイ ツク ミ ラーに向けて反射する第 3の色光用反 射面とを備え、 第 2の複合プリズムは、 前記第 1 の色光を前記第 1 の 複合プリズムの第 1 の色光用ダイク ロイ ツク ミ ラーに向けて反射する 第 1 の色光用反射面と、 前記第 1 の選択性反射面と して第 2の色光を 前記第 1 の複合プリ ズムの第 2の色光用ダイク ロイ ツク ミ ラーに向け て選択的に反射する第 2の色光用ダイク ロイ ツク ミ ラーと、 前記第 2 の選択性反射面と して第 3の色光を前記第 1 の複合プリズムの第 3の 色光用反射面に向けて選択的に反射する第 3の色光用ダイクロイ ツク ミラーとを備え、 さ らに、 前記第 2の複合プリ ズムに対して当該第 2 の複合プリズムの第 3の色光用ダイクロイツク ミラーに向けて白色光 を出射する白色光源を備え、 前記第 1の複合プリズムと前記第 2の複 合プリズムとの間には、 前記第 2の複合プリズムから前記第 1の複合 プリズムに対して各色光が入射するタイ ミングを制御するシャッタ手 段が配置されていることが好ましい。 For example, in a light source unit including two compound prisms according to the present invention, of the two compound prisms, a first compound prism is used as the first selective reflection surface, and red and green are used. A first color light dichroic mirror that selectively reflects the first color light of the three primary wavelength bands of blue; and the second color light as the second selective reflection surface. A second color light dichroic mirror that selectively reflects toward the first color light dichroic mirror; and the first color light dichroic mirror with respect to the second color light dichroic mirror. A third color light reflecting surface disposed on the side opposite to the mirror and reflecting the third color light toward the second color light dichroic mirror; anda second composite prism, The first color light for the first color light of the first compound prism A first color light reflecting surface that reflects toward the dichroic mirror; and a second color light dichroic of the first composite prism that is a second color light as the first selective reflecting surface. A second color light dichroic mirror that selectively reflects toward the tsuk mirror, and a third color light of the first compound prism that applies the third color light as the second selective reflection surface. A third dichroic mirror for color light that selectively reflects toward the reflective surface for light, and further includes a second dichroic mirror for the second composite prism. A white light source that emits white light toward a third color light dichroic mirror of the composite prism, and the second composite prism is provided between the first composite prism and the second composite prism. It is preferable that a shutter means for controlling the timing at which each color light is incident from the prism to the first composite prism is disposed.
本発明を適用した光源ュ-ッ トは、例えば、表示装置に用いられる。 例えば、 前記複合プリズムを複数、 マ ト リ クス状に配置して表示装 置が構成される。  The light source cutout to which the present invention is applied is used, for example, in a display device. For example, a display device is configured by arranging a plurality of the complex prisms in a matrix.
また、 前記光源ユニッ トから順次、 出射される色光を順次、 変調し て当該色光に対応する色画像を順次、 生成する電気光学装置を用いて 表示装置を構成してもよい。  Further, the display device may be configured using an electro-optical device that sequentially modulates the color light emitted from the light source unit and sequentially generates a color image corresponding to the color light.
本発明において、 前記光源ユニッ トは、 前記電気光学装置に向けて 出射する色光の偏光方向を揃える偏光変換手段を備えていることが好 ましい。 このよ うに構成すると、 光の利用効率を高めることができる ので、 表示画像の輝度を向上することができる。  In the present invention, it is preferable that the light source unit includes a polarization conversion unit that aligns the polarization directions of the color lights emitted toward the electro-optical device. With such a configuration, the light use efficiency can be increased, so that the brightness of the display image can be improved.
この場合、 前記電気光学装置で順次形成された各色の画像を投射す る投射光学系を用いれば、 プロジェクタなどを構成することができる。 図面の簡単な説明  In this case, a projector or the like can be configured by using a projection optical system that projects images of each color sequentially formed by the electro-optical device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1に係る複合プリズムの説明図である。 図 2 ( A;)、 (B )は、 本発明の実施の形態 1に係る複合プリズムの分 解斜視図、 (C )は従来の複合プリズムの分解斜視図である。  FIG. 1 is an explanatory diagram of a compound prism according to Embodiment 1 of the present invention. 2A and 2B are exploded perspective views of a compound prism according to Embodiment 1 of the present invention, and FIG. 2C is an exploded perspective view of a conventional compound prism.
図 3は、 本発明の実施の形態 1 に係る複合プリズムの製造方法を示 す説明図である。  FIG. 3 is an explanatory diagram illustrating a method of manufacturing the composite prism according to Embodiment 1 of the present invention.
図 4は、 本発明の実施の形態 1に係る複合プリズムに形成した選択 性反射面の光学特性を示す説明図である。  FIG. 4 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to Embodiment 1 of the present invention.
図 5は、 本発明の実施の形態 1 に係る複合プリズムの正面図、 左側 面図、 および平面図である。 図 6は、 本発明の実施の形態 1 の変形例に係る複合プリズムに形成 した選択性反射面の光学特性を示す説明図である。 FIG. 5 is a front view, a left side view, and a plan view of the compound prism according to Embodiment 1 of the present invention. FIG. 6 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to the modification of the first embodiment of the present invention.
図 7は、 本発明の実施の形態 1 の変形例に係る複合プリズムを用い た液晶プロジェクタの説明図である。  FIG. 7 is an explanatory diagram of a liquid crystal projector using a compound prism according to a modification of the first embodiment of the present invention.
図 8は、 図 7に示す液晶プロジェクタに用いたダイクロイ ツク ミ ラ 一アレイの説明図である。  FIG. 8 is an explanatory diagram of a dichroic mirror array used in the liquid crystal projector shown in FIG.
図 9は、 図 7に示す液晶プロジェクタに用いた別のダイクロイ ツク ミラーアレイの説明図である。  FIG. 9 is an explanatory diagram of another dichroic mirror array used in the liquid crystal projector shown in FIG.
図 1 0は、 本発明の実施の形態 2に係る複合プリ ズムの説明図であ る。  FIG. 10 is an explanatory diagram of a complex prism according to Embodiment 2 of the present invention.
図 1 1 は、 本発明の実施の形態 2に係る複合プリ ズムに形成した選 択性反射面の光学特性を示す説明図である。  FIG. 11 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed in the composite prism according to Embodiment 2 of the present invention.
図 1 2は、 本発明の実施の形態 2に係る複合プリ ズムの使用例を示 す説明図である。  FIG. 12 is an explanatory diagram showing a usage example of the complex prism according to the second embodiment of the present invention.
図 1 3 は、 本発明の実施の形態 2に係る複合プリ ズムの製造方法を 示す説明図である。  FIG. 13 is an explanatory diagram illustrating a method of manufacturing a composite prism according to Embodiment 2 of the present invention.
図 1 4は、 本発明の実施の形態 2に係る複合プリ ズムを用いたテー ルランプの説明図である。  FIG. 14 is an explanatory diagram of a tail lamp using the composite prism according to Embodiment 2 of the present invention.
図 1 5は、 本発明の実施の形態 2の変形例 1 に係る複合プリズムの 説明図である。  FIG. 15 is an explanatory diagram of a composite prism according to a first modification of the second embodiment of the present invention.
図 1 6 は、 本発明の実施の形態 2の変形例 2に係る複合プリ ズムの 説明図である。  FIG. 16 is an explanatory diagram of a composite prism according to a second modification of the second embodiment of the present invention.
図 1 7は、 本発明の実施の形態 2の変形例 2に係る複合プリズムに 用いた選択性反射面の光学特性を示す説明図である。  FIG. 17 is an explanatory diagram showing the optical characteristics of the selective reflection surface used in the composite prism according to Modification 2 of Embodiment 2 of the present invention.
図 1 8は、 本発明の実施の形態 2の変形例 1 に係る複合プリ ズムを 用いた液晶プロジェクタの説明図である。  FIG. 18 is an explanatory diagram of a liquid crystal projector using a composite prism according to a first modification of the second embodiment of the present invention.
図 1 9 は、 本発明の実施の形態 2の変形例 1 に係る複合プリズムを 用いた別の液晶プロジヱクタの説明図である。 図 2 0は、 本発明の実施の形態 2の変形例 1に係る複合プリズムを 用いた直視型の液晶表示装置の説明図である。 FIG. 19 is an explanatory diagram of another liquid crystal projector using the compound prism according to the first modification of the second embodiment of the present invention. FIG. 20 is an explanatory diagram of a direct-view type liquid crystal display device using a compound prism according to a first modification of the second embodiment of the present invention.
(符号の説明)  (Explanation of code)
1、 2、 複合プリズム 1, 2, compound prism
5、 7 第 1の選択性反射面 5, 7 First selective reflective surface
6、 8 第 2の選択性反射面 6, 8 Second selective reflective surface
9 全反射面 9 Total reflection surface
3 1 第 1の矩形平面 3 1 First rectangular plane
3 2 第 2の矩形平面 3 2 Second rectangular plane
5 1 赤色 L E D 5 1 Red L E D
5 2 緑色 L E D 5 2 Green L E D
5 3 青色 L E D  5 3 Blue L E D
6 6、 6 7、 6 8 シャ ツタ(シャ ツタ手段)  6 6, 6 7, 6 8 Shutter (Shutter means)
7 3 偏光ビームスプリ ッタ  7 3 Polarizing beam splitter
7 4、 8 9、 1 7 1〜 1 7 3 液晶ライ トバルブ(電気光学装置) 7 5 投射光学系 7 4, 89, 17 1 to 17 3 Liquid crystal light valve (electro-optical device) 7 5 Projection optical system
8 0 光源ュニッ ト  8 0 Light source unit
8 1 , 8 2 偏光分離プリズム  8 1, 8 2 Polarization separation prism
8 3 偏光変換プリズム(偏光変換手段)  8 3 Polarization conversion prism (polarization conversion means)
8 5 偏光分離面 8 5 Polarization separation surface
8 6 偏光ビームスプリ ツタ  8 6 Polarizing beam splitter
9 1 液晶パネル  9 1 LCD panel
1 1 1 白色光源  1 1 1 White light source
1 1 0 光源部  1 1 0 Light source
1 5 0 ダイクロイツク ミラーアレイ 1 5 0 Dichroic mirror array
2 2 1、 2 2 2、 2 2 3、 2 2 3、 2 2 4、 2 2 5 透光性部材 2 2 1, 2 2 2, 2 2 3, 2 2 3, 2 2 4, 2 2 5 Translucent member
L G 緑色光 L G Green light
L R 赤色光 L B 青色光 発明を実施するための最良の形態 LR red light BEST MODE FOR CARRYING OUT THE INVENTION
[実施の形態 1 ]  [Embodiment 1]
図 1は、 本発明の実施の形態 1 に係る複合プリズムの説明図である。 図 2 (A)、 (B)は、 本発明の実施の形態 1に係る複合プリズムの分解 斜視図、 (C)は従来の複合プリ ズムの分解斜視図である。 図 3は、 本 発明の実施の形態 1に係る複合プリズムの製造方法を示す説明図であ る。 図 4は、 本発明の実施の形態 1に係る複合プリズムに形成した選 択性反射面の光学特性を示す説明図である。 図 5は、 本発明の実施の 形態 1に係る複合プリズムの正面図、左側面図、および平面図である。  FIG. 1 is an explanatory diagram of a compound prism according to Embodiment 1 of the present invention. FIGS. 2A and 2B are exploded perspective views of a composite prism according to Embodiment 1 of the present invention, and FIG. 2C is an exploded perspective view of a conventional composite prism. FIG. 3 is an explanatory diagram illustrating a method of manufacturing the composite prism according to Embodiment 1 of the present invention. FIG. 4 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to Embodiment 1 of the present invention. FIG. 5 is a front view, a left side view, and a plan view of the compound prism according to Embodiment 1 of the present invention.
図 1において、 本形態の複合プリズム 1は、 互いに対向する第 1の 矩形平面 3 1 と第 2の矩形平面 3 2 とを備えた立方体形状の複合プリ ズムであって、 複数の透光性部材を接合したことにより形成される複 数の接合面に以下の選択性反射面が形成されている。 すなわち、 第 1 の矩形平面 3 1 の各角部を各々、 第 1角部 1 0 1、 第 2角部 1 0 2、 第 3角部 1 0 3および第 4角部 1 0 4 と し、 第 2の矩形平面 3 2で第 1角部 1 0 1、 第 2角部 1 0 2、 第 3角部 1 0 3および第 4角部 1 0 4に対応する各角部を各々、 第 5角部 1 0 5、 第 6角部 1 0 6、 第 7 角部 1 0 7および第 8角部 1 0 8 と したとき、 第 1角部 1 0 1、 第 3 角部 1 0 3、 第 7角部 1 0 7およぴ第 5角部 1 0 5によって構成され る面に第 1の選択性反射面 5を備えている。 また、 第 3角部 1 0 3、 第 4角部 1 0 4、 第 5角部 1 0 5および第 6角部 1 0 6によつて構成 される面に第 2の選択性反射面 6備えている。 従って、 第 1の選択性 反射面 5およぴ第 2の選択性反射面 6は、 複合プリズム 1の端面に 4 5° 、 傾いている。  In FIG. 1, a composite prism 1 of the present embodiment is a cubic composite prism having a first rectangular plane 31 and a second rectangular plane 32 facing each other, and includes a plurality of translucent members. The following selective reflection surfaces are formed on the plurality of bonding surfaces formed by bonding the two. That is, each corner of the first rectangular plane 31 is referred to as a first corner 101, a second corner 102, a third corner 103, and a fourth corner 104, respectively. Each corner corresponding to the first corner 101, the second corner 102, the third corner 103, and the fourth corner 104 on the second rectangular plane 32 is referred to as a fifth corner. When the corner portion 105, the sixth corner portion 106, the seventh corner portion 107, and the eighth corner portion 108 are set, the first corner portion 101, the third corner portion 103, the A first selective reflection surface 5 is provided on a surface constituted by the seven corners 107 and the fifth corner 105. In addition, a second selective reflection surface 6 is provided on a surface constituted by the third corner 103, the fourth corner 104, the fifth corner 105, and the sixth corner 106. ing. Therefore, the first selective reflection surface 5 and the second selective reflection surface 6 are inclined by 45 ° with respect to the end face of the composite prism 1.
このような構成を XY Z座標軸を用いて表すと、 第 1の選択性反射 面 5は、 第 1角部 I 0 1 (x 0、 y 0、 z 0 )、 第 3角部 1 0 3 (x l、 y l、 z 0 )、 第 7角部 1 0 7 (x l、 y l、 z l )、 第 5角部 1 0 5 (x 0、 y 0、 z 1 )で構成される矩形の接合面に形成され、 第 2の選択性 反射面 6は、 第 3角部 1 0 3 (x l、 y l、 ζ θ )、 第 4角部 1 0 4 (x 0、 y l、 ζ θ )、 第 5角部 1 0 5 (x 0、 y 0、 z l )、 第 6角部 1 0 6 (x l、 y 0、 z l )、 で構成される矩形の接合面に形成されており、 第 1の選択性反射面 5 と第 2の選択性反射面 6 とは直交していない。 Expressing such a configuration using the XY-Z coordinate axes, the first selective reflection surface 5 has a first corner I 0 1 (x 0, y 0, z 0) and a third corner 10 3 ( xl, yl, z0), the seventh corner 1 07 (xl, yl, zl), the fifth corner 1 105 (x0, y0, z1) formed on a rectangular joint surface, Second selectivity Reflecting surface 6 has third corner 103 (xl, yl, ζθ), fourth corner 104 (x0, yl, ζθ), fifth corner 105 (x0, y0, zl), the sixth corner 106 (xl, y0, zl), and is formed on a rectangular joining surface, and the first selective reflection surface 5 and the It is not orthogonal to the selective reflection surface 6 of 2.
このよ うな構成の複合プリズム 1 を製造するには、 図 2 (A)に示す ように、 まず、 多層膜からなる第 1 の選択性反射面 5を斜面に形成し た断面三角形の棒状のビームスプリ ッタバー 3 0 1を製作する。  In order to manufacture the composite prism 1 having such a configuration, as shown in FIG. 2A, first, a rod-shaped beam having a triangular cross-section in which a first selective reflection surface 5 made of a multilayer film is formed on an inclined surface. Fabricate the plotter bar 301.
次に、 このビームスプリ ッタバー 3 0 1を第 1 の選択性反射面 5を 介して接合した後、 図 2 (B)に示すよ うに、 4 5 ° の角度で切断し、 研磨加工を行う。  Next, after joining the beam splitter bar 301 via the first selective reflection surface 5, as shown in FIG. 2B, the beam splitter bar 301 is cut at an angle of 45 ° and polished.
次に、 研磨加工を施した面に対して、 図 2 (B)、 図 3 (A)に示すよ うに、 低温蒸着により多層膜からなる第 2の選択性反射面 6を形成す る。  Next, as shown in FIG. 2 (B) and FIG. 3 (A), a second selective reflection surface 6 composed of a multilayer film is formed on the polished surface by low-temperature evaporation.
次に、 図 3 (B)に示すように、 再びパー状に接合した後、 切断面を 研磨する。 その結果、 複合プリズム 1が完成する。  Next, as shown in FIG. 3 (B), after joining again in a par shape, the cut surface is polished. As a result, the composite prism 1 is completed.
このよ うな複合プリズム 1では、 それを製作する際、 第 1 の選択性 反射面 5、 および第 2の選択性反射面 6の平面度を損なうことがない。 また、 第 1 の選択性反射面 5および第 2の選択性反射面 6はそれぞれ、 同一の平面内に形成されるので、 高い平面度を得ることができる。 さ らに、 図 3 (C)に示す Xキュープと違って 4つのプリズムを各直角稜 で合わせて接合する必要がない。 それ故、 接着剤の厚さを極端に薄く する必要がないので、 ヒー トショ ック試験においても良好な結果を示 し、 高い信頼性を備えている。  In such a composite prism 1, when it is manufactured, the flatness of the first selective reflection surface 5 and the second selective reflection surface 6 is not impaired. In addition, since the first selective reflection surface 5 and the second selective reflection surface 6 are each formed in the same plane, high flatness can be obtained. Furthermore, unlike the X-cup shown in Fig. 3 (C), there is no need to join and join four prisms at each right-angled edge. Therefore, it is not necessary to make the thickness of the adhesive extremely thin, so it shows good results in heat shock tests and has high reliability.
本形態の複合プリズム 1を基本にして各種光学素子を構成した例を 以下に説明する。 まず、 本例では、 第 1 の選択性反射面 5、 および第 2の選択性反射面 6をいずれも多層膜で構成し、 第 1の選択性反射面 5、 および第 2の選択性反射面 6の各々に対して、 以下に説明するよ うな選択的反射特性を付与する。 Examples in which various optical elements are configured based on the composite prism 1 of the present embodiment will be described below. First, in this example, both the first selective reflection surface 5 and the second selective reflection surface 6 are configured by a multilayer film, and the first selective reflection surface 5 and the second selective reflection surface 6 are each provided with a selective reflection characteristic as described below.
すなわち、 第 1 の選択性反射面 5については、 図 4 (A)に示す光学 特性を付与し、 3原色を構成する赤色光(赤を中心とする波長帯域の 光)、 緑色光(緑を中心とする波長帯域の光)、 青色光(青を中心とする 波長帯域の光)の可視波長帯域で P偏光の光を透過し、 S偏光の光を反 射する面とする。 また、 第 2の選択性反射面 6については、 図 4 (B) に示す光学特性を付与し、 赤色光および緑色光を透過し青色光を反射 する青反射面とする。 また、 第 2の選択性反射面 6については、 青色 光であっても、 P偏光の光を透過し、 S偏光の光を反射するように構 成する。  That is, the first selective reflection surface 5 is provided with the optical characteristics shown in FIG. 4 (A), and the three primary colors red light (light in a wavelength band centered on red) and green light (green light) A surface that transmits P-polarized light and reflects S-polarized light in the visible wavelength band of blue light (light in a wavelength band centered on blue) and blue light (light in a wavelength band centered on blue). The second selective reflection surface 6 has the optical characteristics shown in FIG. 4B, and is a blue reflection surface that transmits red light and green light and reflects blue light. In addition, the second selective reflection surface 6 is configured to transmit P-polarized light and reflect S-polarized light even for blue light.
このように構成した複合プリズム 1において、 図 1およぴ図 5に示 すように、 矩形平面 2 1から入射する光 L Gを、 予め P波に偏光され た緑色光と したとき、 この光 L G (P)は、 第 1 の選択性反射面 5およ び第 2の選択性反射面 6を透過して矩形平面 2 2に向かって直進する。 また、 矩形平面 1 1から入射する光 L Rを、 予め S波に偏光された 赤色光としたとき、 この光 L R'(S)は、 4 5 ° の入射角をもって第 1 の選択性反射面 5で全反射した後、 第 2の選択性反射面 6を透過して 矩形平面 2 2に向かう。  In the composite prism 1 configured as described above, as shown in FIGS. 1 and 5, when the light LG incident from the rectangular plane 21 is converted into green light polarized in advance into a P wave, this light LG (P) passes through the first selective reflection surface 5 and the second selective reflection surface 6 and travels straight toward the rectangular plane 22. When the light LR incident from the rectangular plane 11 is red light polarized in advance into an S wave, this light LR ′ (S) is converted to a first selective reflection surface with an incident angle of 45 °. After total reflection at 5, the light passes through the second selective reflection surface 6 and goes to the rectangular plane 22.
また、 矩形平面 3 2から入射する光 L Bを、 予め S波に偏光された 青色光 L B (S )と したとき、 この光 L Bは、 4 5 ° の入射角をもって 第 2の選択性反射面 6で全反射した後、 第 1の選択性反射面 5を透過 して矩形平面 2 2に向かう。  When the light LB incident from the rectangular plane 32 is assumed to be blue light LB (S) polarized in advance into an S wave, this light LB is incident on the second selective reflection surface 6 at an incident angle of 45 °. After passing through the first selective reflection surface 5, the light is transmitted to the rectangular plane 22.
従って、 本形態の複合プリズム 1によれば、 波長の異なる 3つの色 光の光路を合成することができる。  Therefore, according to the composite prism 1 of the present embodiment, it is possible to combine optical paths of three color lights having different wavelengths.
逆に言えば、 偏光方向を調整した白色光を矩形平面 2 2から入射し たとき、 矩形平面 1 1からは赤色光 L Rが出射され、 矩形平面 3 2か らは青色光 L Bが出射され、 矩形面 2 1からは緑光 L Bとが出射され る。 従って、 波長の異なる 3つ以上の色光の光路を分離することがで きるともいえる。 その際、 偏光方向を調整しておけば、 矩形平面 1 2 から赤色光 L Rと緑色光 L Gの合成光が出射し、 矩形平面 3 1から青 色光 L Bと緑色光 L Gの合成光を出射することもできる。 Conversely, when white light whose polarization direction is adjusted enters from the rectangular plane 22, red light LR is emitted from the rectangular plane 11, and blue light LB is emitted from the rectangular plane 32, Green light LB is emitted from the rectangular surface 21 You. Therefore, it can be said that the optical paths of three or more colored lights having different wavelengths can be separated. At this time, if the polarization direction is adjusted, the combined light of the red light LR and the green light LG is emitted from the rectangular plane 12 and the combined light of the blue light LB and the green light LG is emitted from the rectangular plane 31. You can also.
[実施の形態 1の変形例]  [Modification of First Embodiment]
図 6 (A)、 (B)は、 本発明の実施の形態 1の変形例に係る複合プリ ズム 1に用いた第 1の選択性反射面 5、 および第 2の選択性反射面 6 の光学特性を示す説明図である。 図 7は、 この複合プリズムを用いた 液晶プロジェクタの説明図である。 図 8および図 9は、 図 7に示す液 晶プロジェクタに用いたダイクロイ ツクミラーアレイの説明図である。 本例の複合プリズム 1 も、 図 1 を参照して説明したように、 互いに 対向する第 1の矩形平面 3 1 と第 2の矩形平面 3 2 とを備えた立方体 形状の複合プリズムであって、 複数の透光性部材を接合したことによ り形成される複数の接合面に以下の選択性反射面が形成されている。 すなわち、 第 1 の矩形平面 3 1 の各角部を各々、 第 1角部 1 0 1、 第 2角部 1 0 2、 第 3角部 1 0 3および第 4角部 1 0 4 と し、 第 2の矩 形平面 3 2で第 1角部 1 0 1、 第 2角部 1 0 2、 第 3角部 1 0 3およ び第.4角部 1 0 4に対応する各角部を各々、 第 5角部 1 0 5、 第 6角 部 1 0 6、 第 7角部 1 0 7および第 8角部 1 0 8 と したとき、 第 1角 部 1 0 1、 第 3角部 1 0 3、 第 7角部 1 0 7および第 5角部 1 0 5に よって構成される面に第 1 の選択性反射面 5を備えている。 また、 第 3角部 1 0 3、 第 4角部 1 0 4、 第 5角部 1 0 5およぴ第 6角部 1 0 6によって構成される面に第 2の選択性反射面 6を備えている。 従つ て、 第 1の選択性反射面 5および第 2の選択性反射面 6は、 複合プリ ズム 1の端面に 4 5 ° 、 傾いている。 また、 第 1 の選択性反射面 5 と 第 2の選択性反射面 6 とは直交していない。  FIGS. 6A and 6B show the optical characteristics of the first selective reflection surface 5 and the second selective reflection surface 6 used in the composite prism 1 according to the modification of the first embodiment of the present invention. FIG. 4 is an explanatory diagram showing characteristics. FIG. 7 is an explanatory diagram of a liquid crystal projector using the composite prism. 8 and 9 are explanatory diagrams of a dichroic mirror array used in the liquid crystal projector shown in FIG. As described with reference to FIG. 1, the composite prism 1 of the present example is also a cube-shaped composite prism having a first rectangular plane 31 and a second rectangular plane 32 facing each other, The following selective reflection surfaces are formed on a plurality of bonding surfaces formed by bonding a plurality of translucent members. That is, each corner of the first rectangular plane 31 is referred to as a first corner 101, a second corner 102, a third corner 103, and a fourth corner 104, respectively. In the second rectangular plane 32, each corner corresponding to the first corner 101, the second corner 102, the third corner 103, and the fourth corner 104 is defined. When the fifth corner 105, the sixth corner 106, the seventh corner 107, and the eighth corner 108 are respectively, the first corner 101, the third corner 1 A third selective reflection surface 5 is provided on a surface formed by the third corner portion 107, the seventh corner portion 107, and the fifth corner portion 105. Further, a second selective reflection surface 6 is provided on a surface formed by the third corner 103, the fourth corner 104, the fifth corner 105, and the sixth corner 106. Have. Therefore, the first selective reflection surface 5 and the second selective reflection surface 6 are inclined by 45 ° with respect to the end face of the composite prism 1. Further, the first selective reflection surface 5 and the second selective reflection surface 6 are not orthogonal.
ここで、 第 1 の選択性反射面 5は、 図 6 (A)に示す光学特性を備え た偏光分離膜によつて構成され、 第 2の選択性反射面 6については、 図 6 (B)に示す光学特性を備えた偏光分離膜によって構成されている。 このよ うに構成した複合プリ ズム 1 を用いた液晶プロジェクタは、 図 7に示すよ う に、 白色光源 1 1 1およびリ フ レクタ 1 1 2を備えた 光源部 1 1 0 と、 この光源部 1 1 0から出射された白色光を P偏光に 揃えるための P B S (偏光ビームスプリ ッタ)コンバータ 1 2 0 と、 こ の P B S コンバータ 1 2 0から出射された光を青色光 L B と、 赤色光 L Rと緑色光 L Gとの混合光とに色分離するダイク ロイ ツク ミ ラー 1 3 0 とを有している。 青色光 L Bに対しては、 ダイクロイ ツク ミ ラー 1 3 0から出射された光を複合プリ ズム 1 の矩形平面 3 1 (図 1 を参 照)に導く全反射ミ ラー 1 4 0が配置されており、 青色光 L Bは、 P偏 光の光と して複合プリ ズム 1 に入射する。 Here, the first selective reflection surface 5 is constituted by a polarization separation film having the optical characteristics shown in FIG. 6A, and the second selective reflection surface 6 It is composed of a polarization separation film having the optical characteristics shown in FIG. 6 (B). As shown in FIG. 7, the liquid crystal projector using the composite prism 1 configured as described above includes a light source unit 110 having a white light source 111 and a reflector 112, and a light source unit 110 having the same. PBS (polarization beam splitter) converter 120 to align white light emitted from 10 into P-polarized light, and light emitted from this PBS converter 120 is converted to blue light LB and red light LR. And a dichroic mirror 130 that separates the light into a mixture of green light and green light LG. For the blue light LB, a total internal reflection mirror 140 that guides the light emitted from the dichroic mirror 130 to the rectangular plane 31 of the composite prism 1 (see FIG. 1) is arranged. The blue light LB is incident on the composite prism 1 as P-polarized light.
一方、 赤色光 L Rと緑色光 L Gとの混合光に対しては、 緑色光 L G を選択的に S偏光の光とするダイク ロイ ツク ミ ラーア レイ 1 5 0 と、 全反射ミ ラー 1 6 0 とが配置されており、 ダイクロイ ツク ミラーァレ ィ 1 5 0から P偏光の光と して出射された赤色光 L R、 およびダイク 口イ ツク ミラーアレイ 1 5 0から S偏光の光と して出射された緑色光 L Gは、 共通の光路を迪つて複合プリズム 1 に入射する。  On the other hand, for the mixed light of the red light LR and the green light LG, the dichroic mirror array 150, in which the green light LG is selectively S-polarized light, and the total reflection mirror 160, Red light LR emitted from the dichroic mirror array 150 as P-polarized light, and green emitted from the dichroic mirror array 150 as S-polarized light. The light LG enters the compound prism 1 through a common optical path.
ここで、 ダイク ロイ ツク ミ ラーア レイ 1 5 0 と しては、 図 8あるい は図 9に示すものを用いることができる。 これらのダイク ロイ ツク ミ ラーアレイのう ち、 図 8に示すものは、 断面形状が 4 5度の鋭角を有 する平行四辺形や三角形の柱状の透光性部材 1 5 5が傾斜端面で接合 されている。 第 1 の接合界面 1 5 1 には、 緑色光 L Gを反射して赤色 光 L Rを透過するダイクロイツク ミ ラー 1 5 2が形成され、 それに対 向する第 2の接合界面 1 5 3には、 全反射ミ ラー 1 5 4が形成されて いる。 また、 ダイクロイ ツク ミ ラーァレイ 1 5 0の入射端面にはィン テグレー ト レンズアレイ 1 5 6が配置され、 全反射ミ ラー 1 5 4から の出射端面には 1 / 2 λ板 1 5 7が配置されている。  Here, as the dichroic mirror array 150, the one shown in FIG. 8 or FIG. 9 can be used. Of these dichroic mirror arrays, the one shown in Fig. 8 has a parallelogram or triangular columnar translucent member 155 having an acute angle of 45 ° in cross section, and is joined at the inclined end face. ing. A dichroic mirror 152 that reflects green light LG and transmits red light LR is formed at the first bonding interface 15 1, and a second bonding interface 15 3 that faces the dichroic mirror 15 2 Total reflection mirrors 15 4 are formed. In addition, an integrated lens array 156 is arranged on the entrance end face of the dichroic mirror 150, and a 1/2 λ plate 157 is arranged on the exit end face from the total reflection mirror 154. Have been.
従って、 図 7に示すダイクロイ ツク ミ ラー 1 3 0から出射された Ρ 偏光の赤色光 L Rおよび P偏光の緑色光 L Gは、 イ ンテグレー ト レン ズア レイ 1 5 6 によってダイクロイ ツク ミラー 1 5 2に導かれると、 赤色光 L Rは、 ダイクロイ ツク ミ ラー 1 5 2 を透過して P偏光の光の まま出射される。 これに対して、 緑色光 L Gは、 ダイクロイ ツク ミ ラ - 1 5 2で反射した後、 全反射ミ ラー 1 5 4で ΐ Ζ2 λ板 1 5 7に向 けて反射され、 S偏光の光と して出射される。 Therefore, the light emitted from the dichroic mirror 130 shown in FIG. The polarized red light LR and the P-polarized green light LG are guided to the dichroic mirror 152 by the integral lens array 156, and the red light LR passes through the dichroic mirror 152. The light is emitted as P-polarized light. On the other hand, the green light LG is reflected by the dichroic mirror -152, then reflected by the total reflection mirror 154 toward the Ζ2λ plate 157, and is reflected by the S-polarized light. And emitted.
なお、 ダイク ロイ ツク ミ ラーア レイ 1 5 0については、 図 9に示す よ うに、 第 1の接合界面 1 5 1 に、 緑色光 L Gを透過して赤色光 L R を反射するダイクロイ ツク ミ ラー 1 5 8が形成され、 それに対向する 第 2の接合界面 1 5 3には、 全反射ミ ラー 1 5 9が形成されている構 成であってもよい。 このダイク ロイ ツク ミラーア レイ 1 5 0には、 ダ ィクロイ ツク ミ ラー 1 5 8からの出射端面に 1 / 2 λ板 1 5 7が配置 されている。 従って、 図 7に示すダイク ロイ ツク ミ ラー 1 3 0から出 射された Ρ偏光の赤色光 L Rおよび Ρ偏光の緑色光 L Gは、 ィンテグ レー ト レンズァレイ (図 8参照)によってダイク ロイ ック ミ ラー 1 5 8 に導かれると、 緑色光 L Gは、 ダイクロイ ツク ミ ラー 1 5 8を透過し た後、 1 / 2 λ板 1 5 7で S偏光に変換された後、 出射される。 これ に対して、赤色光 L Rは、ダイク ロイ ツク ミ ラー 1 5 8で反射した後、 全反射ミ ラー 1 5 9で反射され、 Ρ偏光の光と して出射される。  As shown in FIG. 9, the dichroic mirror array 150 has a dichroic mirror 15 which transmits the green light LG and reflects the red light LR at the first bonding interface 151, as shown in FIG. 8 may be formed, and a total reflection mirror 159 may be formed on the second bonding interface 15 3 facing the same. In the dichroic mirror array 150, a λ plate 157 is arranged on the output end face from the dichroic mirror 158. Therefore, the Ρ-polarized red light LR and Ρ-polarized green light LG emitted from the dichroic mirror 130 shown in FIG. 7 are converted by the dichroic mirror (see FIG. 8) into the dichroic mirror. When guided to 158, the green light LG passes through the dichroic mirror 158, is converted into S-polarized light by the 1 / 2λ plate 157, and is emitted. On the other hand, the red light LR is reflected by the dichroic mirror 158, then reflected by the total reflection mirror 159, and emitted as Ρ-polarized light.
このよ うに構成した液晶プロジェクタにおいて、 複合プリズム 1 の 所定の矩形平面に対して、 赤色光 L Rに対する反射型の液晶ライ トバ ルプ 1 7 1 (電気光学装置)、 緑色光 L Gに対する反射型の液晶ライ ト パルプ 1 7 2、 および青色光 L Βに対する反射型の液晶ライ トバルブ 1 7 3が配置される。  In the liquid crystal projector thus configured, a reflective liquid crystal light bulb 17 1 (electro-optical device) for the red light LR and a reflective liquid crystal light ray for the green light LG are provided on a predetermined rectangular plane of the compound prism 1. And a reflective liquid crystal light valve 173 for blue light L Β.
従って、 青色光 L Bは、 複合プリズム 1 に入射する と、 第 2の選択 性反射面 6を透過して青色光用の液晶ライ トバルブ 1 7 3に到達した 後、 この液晶ライ トバルブ 1 7 3で反射される。 その間に、 液晶ライ トバルブ 1 7 3で画素毎に光変調され、 S偏光と された光成分につい ては、 第 2の選択性反射面 6で反射され、 投射光学系(図示せず)に導 力れる。 Therefore, when the blue light LB enters the composite prism 1, it passes through the second selective reflection surface 6, reaches the liquid crystal light valve 173 for blue light, and then passes through the liquid crystal light valve 173. Is reflected. In the meantime, the light component modulated by the liquid crystal light valve 173 for each pixel and converted into S-polarized light In other words, the light is reflected by the second selective reflection surface 6 and guided to a projection optical system (not shown).
また、 赤色光 L Rと緑色光 L Gは、 混合光と して複合プリズム 1に 入射すると、 赤色光 L Rのみが第 1の選択性反射面 5を透過して赤色 光用の液晶ライ トバルブ 1 7 1 に到達した後、 この液晶ライ トバルブ 1 7 1で反射される。 その間に、 液晶ライ トバルブ 1 7 1で画素毎に 光変調され、 S偏光とされた光成分については、 第 1 の選択性反射面 5で反射され、 投射光学系に導かれる。  When the red light LR and the green light LG enter the compound prism 1 as mixed light, only the red light LR passes through the first selective reflection surface 5 and the liquid crystal light valve for red light 17 1 After reaching, it is reflected by this liquid crystal light valve 17 1. In the meantime, the light component which is light-modulated by the liquid crystal light valve 17 1 for each pixel and converted into S-polarized light is reflected by the first selective reflection surface 5 and guided to the projection optical system.
これに対して、 緑色光 L Gは第 1の選択性反射面 5で反射して緑色 光用の液晶ライ トバルブ 1 7 2に到達した後、 この液晶ライ トバルブ 1 7 2で反射される。 その間に、 液晶ライ トバルブ 1 7 2で画素毎に 光変調され、 P偏光と された光成分については、 第 1 の選択性反射面 5を透過して投射光学系に導かれる。  On the other hand, the green light LG is reflected by the first selective reflection surface 5, reaches the liquid crystal light valve 172 for green light, and is reflected by the liquid crystal light valve 172. In the meantime, the light component which is light-modulated for each pixel by the liquid crystal light valve 172 and converted into P-polarized light is transmitted through the first selective reflection surface 5 and guided to the projection optical system.
そして、 投射光学系から出射された各色光によりスク リーン上には 所定のカラー画像が表示されることになる。  Then, a predetermined color image is displayed on the screen by each color light emitted from the projection optical system.
このように本形態の複合プリズム 1 を用いた液晶プロジェクタでは 偏光プリズム 1の周囲には、 青色光 L Bの光路と、 赤色光 L Rと緑色 光 L Gとの混合光の光路を確保すればよいので、 液晶プロジェクタの 小型化を図ることができる。 また、 本形態の複合プリズム 1を用いた 液晶プロジェクタでは、 偏光プリズム 1からみたとき、 青色光 L Bの 光路と、 赤色光 L Rと緑色光 L Gとの混合光の光路と、 偏光プリズム 1からの出射光路を 3次元的に配置できるので、 液晶プロジヱクタに おいて光学系を配置するときの設計の自由度が高い。  Thus, in the liquid crystal projector using the composite prism 1 of the present embodiment, the optical path of the blue light LB and the optical path of the mixed light of the red light LR and the green light LG need only be secured around the polarizing prism 1. The size of the liquid crystal projector can be reduced. In the liquid crystal projector using the composite prism 1 of the present embodiment, when viewed from the polarizing prism 1, the optical path of the blue light LB, the optical path of the mixed light of the red light LR and the green light LG, and the light exiting from the polarizing prism 1. Since the emission paths can be arranged three-dimensionally, the degree of freedom in designing the optical system in the liquid crystal projector is high.
さらに、 本形態の複合プリズム 1は、 Xキュープと違って、 各プリ ズム単体の各稜線が一箇所に集中しないので、 投射された画像の中心 にプリズム単体の稜線が映るという事態を回避できる。  Further, in the composite prism 1 of the present embodiment, unlike the X cup, the ridge lines of each prism are not concentrated at one place, so that it is possible to avoid a situation in which the ridge line of the prism alone is reflected at the center of the projected image.
[実施の形態 2 ]  [Embodiment 2]
図 1 0は、 本発明の実施の形態 2に係る複合プリズムの説明図であ る。 図 1 1は、 本発明の実施の形態 2に係る複合プリズムに形成した 選択性反射面の光学特性を示す説明図である。 図 1 2は、 本発明の実 施の形態 2に係る複合プリズムの使用例を示す説明図である。 図 1 3 は、 本発明の実施の形態 2に係る複合プリズムの製造方法を示す説明 図である。 FIG. 10 is an explanatory diagram of a composite prism according to Embodiment 2 of the present invention. You. FIG. 11 is an explanatory diagram showing the optical characteristics of the selective reflection surface formed on the composite prism according to Embodiment 2 of the present invention. FIG. 12 is an explanatory diagram showing an example of use of the compound prism according to the second embodiment of the present invention. FIG. 13 is an explanatory diagram illustrating a method of manufacturing a composite prism according to Embodiment 2 of the present invention.
図 1 0において、 本形態の複合プリズム 2は、 ダイクロイツクミ ラ 一モジュールであり、 断面形状が 4 5度の鋭角を有する直角二等辺三 角形をした柱状の透光性部材 2 2 1 と、 断面形状が 4 5度の鋭角を有 する平行四辺形をした柱状の透光性部材 2 2 2、 2 2 3 とが傾斜端面 で接合されている。 また、 一方の端部 2 2 6には、 断面形状が 4 5度 の鋭角を有する直角二等辺三角形をした柱状のダミ一の透光性部材 2 2 4が接合され、 3つの接合面 2 3 1、 2 3 2、 2 3 3を備えている。 これら 3つの接合界面 2 3 1、 2 3 2、 2 3 3のうち、 第 1 の接合 界面 2 3 1には、 図 1 1に示す光学特性を備えたダイクロイツクミラ 一からなる第 1 の選択性反射面 7が形成され、 この第 1 の選択性反射 面 7は、 赤色光 L Rを反射する一方、 緑色光 L Gおよび青色光 L Bを 透過する。 また、 第 2の接合界面 2 3 2には、 図 1 1に示す光学特性 を備えたダイクロイツクミラーからなる第 2の選択性反射面 8が形成 され、 この第 2の選択性反射面 8は、 赤色光 L Rおよび緑色光 L Gを 反射する一方、 青色光 L Bを透過する。 なお、 第 3の接合界面 2 3 3 には、 青色光に対するミラーと して、 図 1 1に示す光学特性を備える 全反射面 9が形成されている。  In FIG. 10, the composite prism 2 of the present embodiment is a dichroic mirror module, and has a columnar translucent member 22 1 having a right-angled isosceles triangle having a 45 ° acute angle in cross section. The columnar transparent members 222, 223 each having a parallelogram-shaped section having an acute angle of 45 degrees are joined at the inclined end faces. In addition, one end portion 226 is joined to a columnar dummy translucent member 224 having a right-angled isosceles triangle shape having an acute angle of 45 degrees in cross section, and three joining surfaces 23 are formed. 1, 2 3 2 and 2 3 3 are provided. Among these three bonding interfaces 2 3 1, 2 3 2, and 2 3 3, the first bonding interface 2 3 1 has a first dichroic mirror having the optical characteristics shown in FIG. The first selective reflection surface 7 reflects the red light LR and transmits the green light LG and the blue light LB. In addition, a second selective reflection surface 8 made of a dichroic mirror having the optical characteristics shown in FIG. 11 is formed at the second bonding interface 232, and this second selective reflection surface 8 , Red light LR and green light LG, while transmitting blue light LB. Note that a total reflection surface 9 having the optical characteristics shown in FIG. 11 is formed on the third bonding interface 233 as a mirror for blue light.
このよ うに構成した複合プリズム 2は、 他方の端部 2 2 7が出射端 面と して、 例えば、 図 1 2に示すように、 拡散レンズ 2 4 1が配置さ れる。 また、 複合プリズム 2の側面には、 集光プレート 2 2 9が配置 される。 また、 集光プレート 2 2 9によって、 第 1 の選択性反射面 7 に向けて赤色 L E D 5 1が配置され、 第 2の選択性反射面 8に向けて 緑色 L E D 2 5 2が配置され、 全反射面 9に向けて青色 L E D 5 3が 配置されている。 In the composite prism 2 configured as described above, the other end 227 serves as an emission end face, and for example, a diffusion lens 241 is arranged as shown in FIG. On the side surface of the composite prism 2, a condenser plate 229 is arranged. In addition, a red LED 51 is arranged toward the first selective reflection surface 7 by the light-collecting plate 2 9, and a green LED 252 is arranged toward the second selective reflection surface 8. Blue LED 5 3 toward reflective surface 9 Are located.
このよ うに構成したモジュールでは、 赤色 L E D 5 1から出射され た赤色光 L Rは、 複合プリズム 2において、 第 1の選択性反射面 7で 反射され、 拡散レンズ 4 1 を介して出射される。 緑色 L E D 5 2から 出射された緑色光 L Gは、 複合プリズム 2において、 第 2 の選択性反 射面 8で反射した後、 第 1 の選択性反射面 7を透過し、 しかる後に、 拡散レンズ 4 1 を介して出射される。 青色 L E D 5 3から出射された 青色光 L Bは、 複合プリズム 2において、 全反射面 9で反射した後、 第 2 の選択性反射面 8および第 1 の選択性反射面 7を順次透過し、 し かる後に、 拡散レンズ 4 1を介して出射される。  In the module configured as described above, the red light LR emitted from the red LED 51 is reflected by the first selective reflection surface 7 in the composite prism 2 and emitted through the diffusion lens 41. The green light LG emitted from the green LED 52 is reflected by the second selective reflection surface 8 in the complex prism 2 and then transmitted through the first selective reflection surface 7, and then, the diffusion lens 4 Emitted through 1. The blue light LB emitted from the blue LED 53 is reflected by the total reflection surface 9 in the composite prism 2 and then sequentially transmitted through the second selective reflection surface 8 and the first selective reflection surface 7 to be processed. After that, the light is emitted through the diffusion lens 41.
従って、 本形態の複合プリズム 2によれば、 波長の異なる 3つの色 光の光路を合成することができる。 また、 各 L E D 5 1、 5 2、 5 3 を点灯させる組み合わせにより、 白色に加えて、 6色の色光を出射す ることができる。  Therefore, according to the composite prism 2 of the present embodiment, it is possible to combine optical paths of three color lights having different wavelengths. In addition, by combining the LEDs 51, 52, and 53 with light, six colors of light can be emitted in addition to white.
このような構成の複合プリズム 2を製造するにあたっては、 図 1 3 に示すように、 平行な 2つの基板面を有する複数の透光性基板 1 6 0 の各々の面に、 図 1 1 を参照して説明した第 1の選択性反射面 7、 第 2 の選択性反射面 8、 および全反射面 9を形成した後、 これらのラミ ネート基板(透光性基板 1 6 0 )をダミ一の透光性基板 1 6 1 と ともに 光硬化性接着剤を介して重ねる。 その際、 各基板の端部が 4 5 ° とな るように重ね合わせ位置をずらす。 次に、 光硬化性接着剤を硬化させ た後、 点線で示す切断線に沿って、 透光性基板 1 6 0、 1 6 1 の基板 面に対して 4 5 ° の角度をなすように切断し、 しかる後に切断面を研 磨して、 図 1 0に示す複合プリズム 2を製造する。 従って、 Xキュー ブと違って、 生産効率が高いので、 安価である。  When manufacturing the composite prism 2 having such a configuration, as shown in FIG. 13, as shown in FIG. 13, each surface of a plurality of translucent substrates 160 having two parallel substrate surfaces is referred to FIG. 11. After the formation of the first selective reflection surface 7, the second selective reflection surface 8, and the total reflection surface 9 described above, these laminated substrates (light-transmitting substrate 160) are removed. Laminated with a light-transmitting substrate 16 1 via a photo-curable adhesive. At this time, the overlapping position is shifted so that the edge of each substrate is 45 °. Next, after curing the photo-curable adhesive, cut along the cutting line indicated by the dotted line at an angle of 45 ° to the substrate surface of the light-transmitting substrates 16 0 and 16 1. Thereafter, the cut surface is polished, and the composite prism 2 shown in FIG. 10 is manufactured. Therefore, unlike X-Cube, the production efficiency is high and the cost is low.
(複合プリズム 2の使用例)  (Example of using composite prism 2)
図 1 4は、 本発明の実施の形態 2に係る複合プリズムを用いたテー ルランプの説明図である。 複合プリズム 2'については、 例えば、 図 1 4に示すよ うに、 フライ アレイのよ うに、 多数、 マ ト リ クス状に配置して自動車のテールラン プ 2 0 0などの表示装置を構成することができる。 また、 本形態の複 合プリ ズム 2を用いれば、 6 0万ドッ ト( 1 0 0 0 ドッ ト X 6 0 0 ドッ ト)、 さ らには 1 0 0万ドッ ト( 1 2 0 0 ドッ ト X 8 3 0 ドッ ト)の屋外 表示パネルを構成することができる。 これらいずれの表示装置でも、 3種類の L E D 5 1、 5 2、 5 3 を所定のタイ ミングで点灯すれば、 任意の色で表示を行う ことができる。 また、 近距離においても解像度 が高く 、 従来の表示装置と比較して 2倍以上の解像度を得ることがで きる。 さ らに、 1 ドッ トで黒表示に加えて、 7色の表現を行う ことが できるので、 ブレーキランプの他、 ハザー ドランプ、 バックランプ、 キーロ ック警告ランプ、 盗難防止用ランプなど、 計 7種のシグナルラ ンプと して用いることができるなど、 各種のパイロッ トランプと して 用いることができる。 しかも、 画像デザインもオプショ ンで選択でき るので、 個性的なランプを構成できる。 FIG. 14 is an explanatory diagram of a tail lamp using the compound prism according to Embodiment 2 of the present invention. For example, as shown in FIG. 14, a large number of composite prisms 2 'can be arranged in a matrix, such as a fly array, to form a display device such as a tail lamp 200 of an automobile. it can. Also, if the composite prism 2 of the present embodiment is used, 600,000 dots (100,000 dots X 600,000 dots), and 100,000 dots (1,200,000 dots) X 830 dot) outdoor display panel. In any of these display devices, if the three types of LEDs 51, 52, and 53 are lit at a predetermined timing, display can be performed in any color. In addition, the resolution is high even at a short distance, and a resolution twice or more that of a conventional display device can be obtained. Furthermore, in addition to black display in one dot, 7 colors can be expressed, so that in addition to brake lights, hazard lights, back lights, key lock warning lights, anti-theft lamps, etc. It can be used as various kinds of pilot lamps, for example, it can be used as a kind of signal lamp. Moreover, since the image design can be selected as an option, a unique lamp can be constructed.
[実施の形態 2の変形例 1 ]  [Modification 1 of Embodiment 2]
実施の形態 2に係る複合プリ ズム 2については、 例えば、 図 1 5に 示すダイクロイツク ミラーアレイ と して構成してもよい。  The complex prism 2 according to the second embodiment may be configured as, for example, a dichroic mirror array shown in FIG.
図 1 5は、 本発明の実施の形態 2の変形例 1 に係る複合プリ ズムの 説明図である。 ここに示す複合プリ ズム 2では、 断面形状が 4 5度の 鋭角を有する直角二等辺三角形をした柱状の透光性部材 2 2 1 と、 断 面形状が 4 5度の鋭角を有する平行四辺形をした柱状の透光性部材 2 2 2 と、 断面形状が 4 5度の鋭角を有する直角二等辺三角形をした柱 状の透光性部材 2 2 5 とが傾斜端面で接合され、 2つの接合界面 2 3 1 , 2 3 2を備えている。  FIG. 15 is an explanatory diagram of a composite prism according to a first modification of the second embodiment of the present invention. In the composite prism 2 shown here, the cross-sectional shape is a right-angled isosceles triangle having an acute angle of 45 degrees, and a columnar translucent member 221, and the cross-sectional shape is a parallelogram having an acute angle of 45 degrees. And the columnar translucent member 222 with a cross-sectional shape of an isosceles right triangle with an acute angle of 45 degrees are joined at the inclined end face. Interfaces 2 3 1 and 2 3 2 are provided.
これら 2つの接合界面のう ち、 第 1 の接合界面 2 3 1 には、 図 1 1 に示す光学特性を備えたダイク ロイ ツク ミ ラーからなる第 1の選択性 反射面 7が形成され、 この第 1 の選択性反射面 7は、 赤色光 L Rを反 射する一方、 緑色光 L Gおよび青色光 L Rを透過する。 また、 第 2の 接合界面 2 3 2には、 図 1 1に示す光学特性を備えたダイクロイツク ミラーからなる第 2 の選択性反射面 8が形成され、 この第 2の選択性 反射面 8は、 赤色光 L Rおよび緑色光 L Gを反射する一方、 青色光 L Bを透過する。 Of these two bonding interfaces, the first bonding interface 2 31 is formed with a first selective reflection surface 7 made of a dichroic mirror having the optical characteristics shown in FIG. 11. The first selective reflection surface 7 reflects the red light LR. While transmitting the green light LG and the blue light LR. Further, a second selective reflection surface 8 made of a dichroic mirror having the optical characteristics shown in FIG. 11 is formed at the second bonding interface 2 32, and the second selective reflection surface 8 While reflecting the red light LR and the green light LG, it transmits the blue light LB.
このよ うに構成した複合プリズム 2は、 他方の端部 2 2 7が出射端 面と して、 例えば、 拡散レンズ 4 1が配置される。 また、 複合プリズ ム 2 の側面には、 第 1 の選択性反射面 7に向けて赤色 L E D 5 1が配 置され、 第 2の選択性反射面 8に向けて緑色 L E D 5 2が配置される。 また、 透光性部材 2 5の側の端部には、 他方の端部 2 2 7に向けて青 色 L E D 5 3が配置されている。  In the composite prism 2 configured as described above, the other end portion 227 serves as an emission end surface, and for example, a diffusion lens 41 is arranged. On the side of the composite prism 2, a red LED 51 is arranged toward the first selective reflection surface 7, and a green LED 52 is arranged toward the second selective reflection surface 8. . In addition, a blue LED 53 is disposed at the end on the side of the translucent member 25 toward the other end 227.
このよ う に構成したモジュールでは、 赤色 L E D 5 1から出射され た赤色光 L Rは、 複合プリズム 2において、 第 1 の選択性反射面 7で 反射され、 拡散レンズ 4 1を介して出射される。 緑色 E D 5 2から 出射された緑色光 L Gは、 複合プリズム 2において、 第 2の選択性反 射面 8で反射した後、 第 1 の選択性反射面 7を透過し、 しかる後に、 拡散レンズ 4 1 を介して出射される。 青色 L E D 5 3から出射された 青色光 L Bは、 第 2 の選択性反射面 8および第 1 の選択性反射面 7を 順次透過し、 しかる後に、 拡散レンズ 4 1を介して出射される。  In the module configured as described above, the red light L R emitted from the red LED 51 is reflected by the first selective reflection surface 7 in the composite prism 2 and emitted through the diffusion lens 41. The green light LG emitted from the green ED 52 is reflected by the second selective reflection surface 8 in the complex prism 2, then passes through the first selective reflection surface 7, and then diffused by the diffusion lens 4. Emitted through 1. The blue light LB emitted from the blue LED 53 sequentially passes through the second selective reflection surface 8 and the first selective reflection surface 7, and then is emitted through the diffusion lens 41.
従って、 本形態の複合プリズム 2によれば、 波長の異なる 3つの色 光の光路を合成することができ、 このような複合プリズム 2も、 図 1 4を参照して説明したテールランプ 2 0 0などの表示装置と して利用 できる。  Therefore, according to the composite prism 2 of the present embodiment, it is possible to combine the optical paths of three color lights having different wavelengths. Such a composite prism 2 also has a tail lamp 200 described with reference to FIG. It can be used as a display device.
[実施の形態 2の変形例 2 ]  [Modification 2 of Embodiment 2]
実施の形態 2に係る複合プリズムについては、 例えば、 図 1 6に示 すモジュールに用いる分光用のダイクロイックミラーアレイと して構 成してもよい。  The composite prism according to the second embodiment may be configured as, for example, a dichroic mirror array for spectrum used in the module shown in FIG.
図 1 6は、 本発明の実施の形態 2の変形例 2に係る複合プリズムの 説明図である。 図 1 7は、 本発明の実施の形態 2の変形例 2に係る複 合プリズムに用いた選択性反射面の光学特性を示す説明図である。 FIG. 16 shows a composite prism according to Modification 2 of Embodiment 2 of the present invention. FIG. FIG. 17 is an explanatory diagram showing the optical characteristics of the selective reflection surface used in the compound prism according to Modification 2 of Embodiment 2 of the present invention.
ここに示す複合プリズム 2 ' では、 断面形状が 4 5度の鋭角を有す る直角二等辺三角形をした柱状の透光性部材 2 2 1 ' と、 断面形状が 4 5度の鋭角を有する平行四辺形をした柱状の透光性部材 2 2 2 ' 、 2 2 3 ' とが傾斜端面で接合されている。 また、 一方の端部 2 2 6 ' には、 断面形状が 4 5度の鋭角を有する直角二等辺三角形をした柱状 のダミーの透光性部材 2 2 4 ' が接合され、 3つの接合面 2 3 1 ' 、 2 3 2 ' 、 2 3 3 ' を備えている。  In the composite prism 2 ′ shown here, a columnar translucent member 2 21 ′ having a right-angled isosceles triangle having a cross-sectional shape of 45 ° acute angle and a parallel light-transmitting member having a cross-sectional shape of 45 ° acute angle The quadrangular columnar translucent members 22 2 ′ and 22 3 ′ are joined at the inclined end faces. In addition, one end 2 26 ′ is joined to a columnar dummy translucent member 2 24 ′ having a right-angled isosceles triangle having an acute angle of 45 degrees in cross section, and three joining surfaces 2. 3 1 ′, 2 3 2 ′, and 2 3 3 ′.
これら 3つの接合界面のうち、 第 1の接合界面 2 3 1 ' には、 赤色 光に対するミラーと して、 図 1 7に示す光学特性を備えた全反射面 7 ' が形成されている。 また、 第 2の接合界面 2 3 2 ' には、 図 1 7 に示す光学特性を備えたダイクロイツク ミラーからなる第 1の選択性 反射面 8 ' が形成され、 この第 1 の選択性反射面 8 ' は、 青色光 L B および緑色光 L Gを反射する一方、 赤色光 L Rを透過する。 また、 第 3の接合界面 2 3 3 ' には、 図 1 7に示す光学特性を備えたダイク口 イツクミラーからなる第 2の選択性反射面 9 ' が形成され、 この第 2 の選択性反射面 9 ' は、 青色光 L Rを反射する一方、 緑色光 L Gおよ ぴ赤色光 L Rを透過する。  Of these three bonding interfaces, the first bonding interface 23 1 ′ has a total reflection surface 7 ′ having the optical characteristics shown in FIG. 17 as a mirror for red light. Further, a first selective reflection surface 8 ′ made of a dichroic mirror having the optical characteristics shown in FIG. 17 is formed at the second bonding interface 2 32 ′. 8 'reflects blue light LB and green light LG while transmitting red light LR. In addition, a second selective reflection surface 9 ′ made of a dike opening mirror having the optical characteristics shown in FIG. 17 is formed at the third bonding interface 233 ′, and this second selective reflection surface is formed. 9 'reflects the blue light LR while transmitting the green light LG and the red light LR.
このように構成した複合プリズム 2 ' (第 '2の複合プリズム)は、 一 方の端部 2 7 ' が入射端面として、 例えば、 シャツタ 6 3、 偏光変換 プリズム 6 9、 レンズァレイ 6 1および白色光源 6 2が配置される。 また、 複合プリズム 2 ' の側面には、 3台のシャツタ 6 6、 6 7、 6 8を介して、 図 1 0を参照して説明した複合プリズム 2 (第 1の複合プ リズム)が配置されて光源ユニッ トを構成する。  In the composite prism 2 ′ (the second composite prism) configured in this manner, one end 27 ′ is used as an incident end face. For example, a shirt 63, a polarization conversion prism 69, a lens array 61, and a white light source 6 2 is arranged. The composite prism 2 (first composite prism) described with reference to FIG. 10 is disposed on the side of the composite prism 2 ′ via three shirts 66, 67, and 68. The light source unit.
このよ うに構成した光源ュニッ トにおいて、 白色光源 6 2から出射 された光は、 偏光変換プリ ズム 6 9で偏光方向が揃えられた後、 複合 プリズム 2 ' に入射する。 そして、 白色光に含まれる青色光成分は、 複合プリズム 2 ' の第 2の選択性反射面 9 ' で反射して青色光 L Bと して複合プリズム 2に入射する一方、 赤色光成分と緑色光成分は、 第 2 の選択性反射面 9 ' を透過する。 次に、 複合プリズム 2に入射した 青色光 L Bは、 全反射面 9で反射した後、 第 2 の選択性反射面 8およ び第 1 の選択性反射面 7を順次透過し、 しかる後に、 拡散レンズ 4 1 を介して出射される。 In the light source unit configured as described above, the light emitted from the white light source 62 is incident on the composite prism 2 ′ after the polarization direction is aligned by the polarization conversion prism 69. And the blue light component contained in the white light is While being reflected by the second selective reflection surface 9 ′ of the composite prism 2 ′ and entering the composite prism 2 as blue light LB, the red light component and the green light component are reflected by the second selective reflection surface 9 ′. Through. Next, the blue light LB incident on the composite prism 2 is reflected by the total reflection surface 9 and then sequentially transmitted through the second selective reflection surface 8 and the first selective reflection surface 7. The light is emitted through the diffusion lens 4 1.
また、 第 2 の選択性反射面 9 ' を透過した赤色光成分と緑色光成分 は、第 1 の選択性反射面 8 ' に到達し、それに含まれる緑色光成分は、 複合プリズム 2 ' の第 1の選択性反射面 8 ' で反射して緑色光 L Gと して複合プリズム 2に入射する一方、 赤色光成分は、 第 1の選択性反 射面 8 ' を透過する。 そして、 複合プリズム 2に入射した緑色光 L G は、 第 2 の選択性反射面 8 で反射した後、 第 1 の選択性反射面 7を透 過し、 しかる後に、 拡散レンズ 4 1を介して出射される。  Further, the red light component and the green light component transmitted through the second selective reflection surface 9 ′ reach the first selective reflection surface 8 ′, and the green light component contained therein passes through the second selective reflection surface 8 ′ of the composite prism 2 ′. The red light component is reflected by the first selective reflection surface 8 ′ and is incident on the compound prism 2 as green light LG as the green light LG, while being transmitted through the first selective reflection surface 8 ′. Then, the green light LG incident on the composite prism 2 is reflected by the second selective reflection surface 8, passes through the first selective reflection surface 7, and then emerges through the diffusion lens 41. Is done.
また、 第 1 の選択性反射面 8 ' を透過した赤色光成分は、 全反射面 7 ' で反射して赤色光 L Rと して複合プリズム 2に入射する。 そして、 複合プリズム 2に入射した赤色光 L Gは、 第 1 の選択性反射面 7で反 射した後、 拡散レンズ 4 1を介して出射される。  The red light component transmitted through the first selective reflection surface 8 ′ is reflected by the total reflection surface 7 ′ and enters the composite prism 2 as red light LR. Then, the red light LG that has entered the composite prism 2 is reflected by the first selective reflection surface 7, and then emitted through the diffusion lens 41.
このように、 本形態の複合プリズム 2 ' によれば、 波長の異なる 3 つの色光の光路を分離することができる。  As described above, according to the composite prism 2 ′ of the present embodiment, the optical paths of three color lights having different wavelengths can be separated.
また、 3台のシャ ツタ 6 6、 6 7、 6 8を所定のタイ ミングで開閉 すれば、 複合プリズム 2から任意の色を出射できる。 従って、 カラー ホイールを用いなくても、 フィールドシーケンシャル方式の液晶プロ ジ工クタの光源ュニッ トなどと して用いることができ、 このよ うな光 源ユニッ トによれば、 光路での光吸収が少ないので、 高輝度のカラー 画像を表示することができる。  By opening and closing the three shutters 66, 67, 68 at a predetermined timing, an arbitrary color can be emitted from the composite prism 2. Therefore, even if a color wheel is not used, it can be used as a light source unit of a field sequential type liquid crystal projector, and such a light source unit has little light absorption in an optical path. Therefore, a high-luminance color image can be displayed.
また、 高輝度を必要とする屋外表示パネルを構成する際、 光源と し て高圧水銀ランプやハロゲンランプなどを用いることができる。  Further, when constructing an outdoor display panel requiring high luminance, a high-pressure mercury lamp, a halogen lamp, or the like can be used as a light source.
さらに、 本例では、 白色光が偏光変換プリズム 6 9 (偏光変換手段) によって偏光方向が P偏光あるいは S偏光に揃えられているので、 シ ャッタ 6 6、 6 7、 6 8 (シャ ツタ手段)と して、 液晶パネルを用いる ことができる。 このよ うな液晶パネルをシャ ツタ 6 6、 6 7、 6 8 と して用いれば、 同期をとるのが容易である。 Further, in this example, the white light is converted by the polarization conversion prism 69 (polarization conversion means). Since the polarization direction is adjusted to P-polarized light or S-polarized light, a liquid crystal panel can be used as the shutter 66, 67, 68 (shutter means). If such a liquid crystal panel is used as the shutter 66, 67, 68, it is easy to achieve synchronization.
[実施の形態 2の液晶プロジェクタへの利用例 1 ]  [Usage Example 1 of Liquid Crystal Projector of Second Embodiment]
上記の実施の形態 2、およびその変形例に係る複合プリズム 2、 2 ' は、 以下に説明するように、 液晶プロジェクタに搭載可能である。 図 1 8は、 本発明の実施の形態 2の変形例 1 に係る複合プリズムを 用いた液晶プロジェクタの説明図である。 図 1 8に示す液晶プロジェ クタは、 実施の形態 2の変形例に係る複合プリ ズム 2を光源と したも のであり、 複合プリズム 2の出射側には偏光板 7 1 が配置され、 さ ら に偏光分離面 7 2 を備えた偏光ビームスプリ ツタ 7 3が配置されてい る。 また、 偏光ビームスプリ ッタ 7 3 の端面に対向するよ うに反射型 の液晶ライ トバルブ 7 4が配置され、 その反対側の端面側には投射光 学系 7 5が配置されている。  The compound prisms 2 and 2 ′ according to the second embodiment and the modifications thereof can be mounted on a liquid crystal projector as described below. FIG. 18 is an explanatory diagram of a liquid crystal projector using a compound prism according to a first modification of the second embodiment of the present invention. The liquid crystal projector shown in FIG. 18 uses the complex prism 2 according to the modification of the second embodiment as a light source, and a polarizing plate 71 is disposed on the emission side of the complex prism 2. A polarization beam splitter 73 having a polarization separation surface 72 is provided. Further, a reflective liquid crystal light valve 74 is arranged to face the end face of the polarizing beam splitter 73, and a projection optical system 75 is arranged on the opposite end face.
このよ うに構成した液晶プロジェクタでは、 複合プリズム 2から赤 色光 L R、 緑色光 L G、 および青色光 L Bが順次出射され、 偏光板 7 1 によつて例えば P偏光の光のみが偏光ビームスプリ ッタ 7 3に入射 する。 そして、 偏光ビームスプリ ッタ 7 3に入射した光は、 偏光分離 面 7 2によって液晶ライ トバルブ 7 4に向けて反射され、 液晶ライ ト バルブ 7 4で変調された後、 再び偏光分離面 7 2に向かう。 その際、 S偏光と された光は、 偏光分離面 7 2を透過して投射光学系 7 5力 ら 拡大投射される。  In the liquid crystal projector configured in this manner, red light LR, green light LG, and blue light LB are sequentially emitted from the composite prism 2, and only the P-polarized light is emitted by the polarizing plate 71, for example, into the polarizing beam splitter 7. Light is incident on 3. Then, the light incident on the polarization beam splitter 73 is reflected by the polarization separation surface 72 toward the liquid crystal light valve 74, modulated by the liquid crystal light valve 74, and then again polarized light separation surface 72. Head for. At this time, the S-polarized light passes through the polarization splitting surface 72 and is enlarged and projected from the projection optical system 75.
その間、 各色の L E D 5 1、 5 2、 5 3が順次点灯するタイ ミ ング に合わせて、 液晶ライ トバルブ 7 4では、 各画素が駆動され、 色光に 合わせた画像が順次、 形成される。 それ故、 新たなタイプのフィール ドシーケンシャル方式の液晶プロジェクタを構成でき、 この液晶プロ ジェクタによれば、 投射光学系 7 5からカラー画像が拡大投射するこ とができる。 In the meantime, in accordance with the timing at which the LEDs 51, 52, and 53 of each color are sequentially turned on, each pixel is driven by the liquid crystal light valve 74, and an image corresponding to the color light is sequentially formed. Therefore, a new type of field-sequential type liquid crystal projector can be constructed, and according to this liquid crystal projector, a color image can be enlarged and projected from the projection optical system 75. Can be.
[実施の形態 2の液晶プロジ クタへの利用例 2 ]  [Example 2 of application to liquid crystal projector of Embodiment 2]
図 1 9は、 本発明の実施の形態 2の変形例 1に係る複合プリズムを 用いた別の液晶プロジェクタの説明図である。  FIG. 19 is an explanatory diagram of another liquid crystal projector using the compound prism according to the first modification of the second embodiment of the present invention.
図 1 9に示す液晶プロジェクタは、 実施の形態 2の変形例に係る複 合プリズム 2 と、 2つの偏光分離プリズム 8 1、 8 2を備えた偏光変 換プリズム 8 3 (偏光変換手段)とからなる光源ュニッ ト 8 0を複数、 配置したものである。 ここで、 偏光変換プリズム 8 3では、 偏光分離 プリズム 8 1、 8 2の間に 1 / 2 え板 8 8が配置されてレ、る。 また、 複数の光源ユニッ ト 8 0に隣接して、 偏光分離面 8 5を備えた偏光ビ 一ムスプリ ッタ 8 6が配置され、 その反対側には、 反射型の液晶ライ トバルブ 8 9が配置されている。 なお、 図 1 9には、 赤色光 L Rが出 射されている様子を示してある。  The liquid crystal projector shown in FIG. 19 includes a composite prism 2 according to a modification of the second embodiment and a polarization conversion prism 8 3 (polarization conversion means) including two polarization separation prisms 8 1 and 8 2. A plurality of light source units 80 are arranged. Here, in the polarization conversion prism 83, a half-plate plate 88 is disposed between the polarization separation prisms 81 and 82. In addition, a polarizing beam splitter 86 having a polarization splitting surface 85 is disposed adjacent to the plurality of light source units 80, and a reflective liquid crystal light valve 89 is disposed on the opposite side. Have been. FIG. 19 shows a state where the red light LR is emitted.
このように構成した液晶プロジェクタでは、 複合プリズム 2から赤 色光 L R、 緑色光 L G、 および青色光 L Bが順次、 偏光変換プリズム 8 3 の第 1 の偏光分離プリズム 8 1に出射される。 そして、 複合プリ ズム 2から出射された色光のうち、 例えば P偏光の光成分は、 第 1の 偏光分離プリズム 8 1 の偏光分離面を透過した後、 偏光ビームスプリ ッタ 8 6の偏光分離面 8 5を透過し、 液晶ライ トバルブ 8 9に向かう。 そして、 液晶ライ トバルブ 7 4で変調された後、 再び偏光分離面 7 2 に向かう。 その際、 S偏光とされた光は、 偏光分離面 8 5で反射して 投射光学系(図示せず)から拡大投射される。  In the liquid crystal projector configured as described above, the red light LR, the green light LG, and the blue light LB are sequentially emitted from the composite prism 2 to the first polarization separation prism 81 of the polarization conversion prism 83. Then, of the color light emitted from the complex prism 2, for example, the P-polarized light component passes through the polarization splitting surface of the first polarization splitting prism 81, and then becomes the polarization splitting surface of the polarization beam splitter 86. After passing through 85, it goes to the liquid crystal light valve 89. Then, after being modulated by the liquid crystal light valve 74, the light returns to the polarization splitting surface 72 again. At this time, the S-polarized light is reflected by the polarization splitting surface 85 and is enlarged and projected from a projection optical system (not shown).
また、 複合プリズム 2から出射された色光のうち、 S偏光の光成分 は、 第 1 の偏光分離プリ ズム 8 1 の偏光分離面で反射して、 1 Z 2 え 板 8 8により P偏光の光に変換された後、 第 2の偏光分離プリズム 8 2に入射する。 そして、 第 2の偏光分離プリズム 8 2の偏光分離面で 反射して偏光ビームスプリ ッタ 8 6に入射した後、 偏光分離面 8 5を 透過し、 液晶ライ トバルブ 8 9に向かう。 そして、 液晶ライ トパルプ 8 9で変調された後、 再び偏光分離面 8 5に向かう。 その際、 S偏光 とされた光は、 偏光分離面 8 5で反射して投射光学系(図示せず)から 拡大投射される。 The S-polarized light component of the color light emitted from the composite prism 2 is reflected by the polarization splitting surface of the first polarization splitting prism 81, and the P-polarized light is reflected by the 1Z2 plate 88. After being converted into the light, the light enters the second polarization splitting prism 82. Then, after being reflected by the polarization splitting surface of the second polarization splitting prism 82 and entering the polarization beam splitter 86, the light passes through the polarization splitting surface 85 and travels to the liquid crystal light valve 89. And liquid crystal light pulp After being modulated by 8 9, it goes to the polarization splitting surface 85 again. At this time, the S-polarized light is reflected by the polarization splitting surface 85 and is enlarged and projected from a projection optical system (not shown).
その間、 各色の L E D 5 1、 5 2、 5 3が順次点灯するタイ ミング に合わせて、 液晶ライ トバルブ 8 9では、 各画素が駆動され、 色光に 合わせた画像が順次、 形成される。 それ故、 投射光学系からカラー画 像が拡大投射される。  During that time, each pixel is driven by the liquid crystal light valve 89 in accordance with the timing at which the LEDs 51, 52, 53 of each color are sequentially turned on, and an image corresponding to the color light is sequentially formed. Therefore, a color image is enlarged and projected from the projection optical system.
このように構成した場合には、 従来の色フィルタを用いたフィール ドシーケンシャル方式の液晶プロジェクタと比較して、 L E D 5 1 、 5 2、 5 3から出射された光の利用効率が高いという利点がある。  This configuration has the advantage that the efficiency of use of the light emitted from the LEDs 51, 52, and 53 is higher than that of a conventional field-sequential liquid crystal projector using color filters. is there.
[実施の形態 2の直視型表示装置への利用例]  [Example of application to direct-view display device of Embodiment 2]
図 2 0は、 本発明の実施の形態 2の変形例 1に係る複合プリズムを 用いた直視型の液晶表示装置の説明図である。  FIG. 20 is an explanatory diagram of a direct-view type liquid crystal display device using a compound prism according to a first modification of the second embodiment of the present invention.
図 2 0に示す液晶表示装置は、 透過型あるいは半透過反射型の液晶 パネル 9 1 を用いた直視型表示装置である。 液晶パネル 9 1 と しては、 例えば、 画素スィ ツチング素子と して T F Tを用いたアクティブマ ト リクス型の液晶パネルを用いることができる。  The liquid crystal display device shown in FIG. 20 is a direct-view display device using a transmissive or transflective liquid crystal panel 91. As the liquid crystal panel 91, for example, an active matrix type liquid crystal panel using TFT as a pixel switching element can be used.
このよ うな表示装置では、 表示面側に偏光板 9 2が配置され、 背面 側には、 拡散板などの光学シート 9 6、 およぴ導光板 9 3が重ねて配 置されている。 また、 導光板 9 3の側端部には、 図 1 9を参照して説 明した光源ュニッ ト 8 0が複数、配置され、この光源ュ-ッ ト 8 0は、 実施の形態 2の変形例に係る複合プリズム 2 と、 偏光変換プリズム 8 3 とを有し、 偏光変換プリズム 8 3では、 2つの偏光分離プリズムの 間に 1 / 2 λ板が配置されている。  In such a display device, a polarizing plate 92 is disposed on the display surface side, and an optical sheet 96 such as a diffusion plate and a light guide plate 93 are disposed on the back surface side by side. Further, a plurality of light source units 80 described with reference to FIG. 19 are arranged at the side end of the light guide plate 93, and this light source unit 80 is a modification of the second embodiment. It has a compound prism 2 according to the example and a polarization conversion prism 83, and in the polarization conversion prism 83, a 2λ plate is arranged between two polarization separation prisms.
このよ う に構成した表示装置でも、 図 1 9に示す液晶プロジェクタ と同様、 複合プリズム 2から赤色光 L R、 緑色光 L G、 および青色光 L Bが順次、 出射され、 偏光変換プリズム 8 3を介して導光板 9 3に 入射する。 そして、 導光板 9 3に入射した光は、 導光板 9 3内で反射 を繰り返しながら、 液晶パネル 9 1 に入射することになる。 そして、 液晶パネル 9 1 で変調された後、 出射され、 カラー画像を表示する。 その間、 各色の L E Dが順次点灯するタイ ミ ングに合わせて、 液晶パ ネル 9 1では、 各画素が駆動され、 色光に合わせた画像が順次、 形成 される。それ故、 これらの画像が合成されてカラー画像が表示される。 このよ うに構成した表示装置の最大の特徴は、 カラーフィルタを介 さないでカラー画像を表示することである。 従って、 カラーフィルタ に起因する光の利用効率の低下がない。 また、 本例の表示装置では、 赤の L E D 5 1 、 緑の L E D 5 2、 青の L E D 5 3力 ら出射される 3 原色の光源を導光板 9 3に入射する前、 偏光光に変換しておく ので、 光源の照度をそのまま維持して液晶パネル 9 1 に出.射できる。 それ故、 現行の約 3倍の輝度を得ることができるので、 モパイルコンピュータ や携帯電話機のよ うに、 屋外で画像を見る必要がある場合でも、 利用 者は明瞭な画像を見ることができる。 In the display device configured in this way, similarly to the liquid crystal projector shown in FIG. 19, the red light LR, the green light LG, and the blue light LB are sequentially emitted from the composite prism 2 and passed through the polarization conversion prism 83. Light enters the light guide plate 93. Then, the light incident on the light guide plate 93 is reflected inside the light guide plate 93. The light is incident on the liquid crystal panel 91 repeatedly. Then, after being modulated by the liquid crystal panel 91, the light is emitted and a color image is displayed. Meanwhile, in the liquid crystal panel 91, each pixel is driven according to the timing when the LED of each color is sequentially turned on, and an image corresponding to the color light is sequentially formed. Therefore, these images are combined and a color image is displayed. The greatest feature of the display device configured in this way is that a color image is displayed without using a color filter. Therefore, there is no decrease in light use efficiency due to the color filter. In addition, in the display device of this example, the light sources of the three primary colors emitted from the red LED 51, the green LED 52, and the blue LED 53 are converted into polarized light before entering the light guide plate 93. As a result, the illuminance of the light source can be maintained as it is and emitted to the liquid crystal panel 91. As a result, it is possible to obtain about three times the brightness of the current level, so that users can see clear images even when they need to view images outdoors, such as with mobile phones and mobile phones.
[その他の実施の形態]  [Other embodiments]
なお、 上記形態では、 プロジェクタのライ トバルブと して液晶ラィ トバルブを用いた例で説明したが、 ライ トバルブと して、 マイクロ ミ ラー · テノ ィス (DMD: D i gi tal Mi cromirror Devi ce)を使つたプロシェ クタに対して、 本発明に係る複合プリズムを用いてもよい。  In the above embodiment, an example in which a liquid crystal light valve is used as a light valve of the projector has been described. The composite prism according to the present invention may be used for a projector that uses.
また、 上記形態では、 プロジェクタおよび直視型の表示装置に、 本 発明に係る複合プリズムを用いた例を説明したが、 その他の表示装置 あるいはその他の光学機器に本発明に係る複合プリ ズムを用いてもよ い。 産業上の利用可能性  Further, in the above embodiment, the example in which the composite prism according to the present invention is used for the projector and the direct-view display device has been described. However, the composite prism according to the present invention is used for other display devices or other optical devices. It is good. Industrial applicability
本発明によれば、 Xキューブと違って 4つのプリ ズム単体の各稜線 を一直線に揃えなくてもよいので、 歩留ま りの向上、 コス トの低減、 信頼性の向上を図るこ とのできる光路合成用あるいは光路分離用の複 合プリズムを提供することができる。 また、 本発明に係る複合プリ ズ ムを用いれば、 各種の表示装置において、 画質の向上、 設計面での自 由度の向上を図ることができる。 According to the present invention, unlike the X-cube, each ridge line of the four prisms does not have to be aligned, so that the yield, cost, and reliability can be improved. For optical path synthesis or optical path separation A compound prism can be provided. Further, by using the composite prism according to the present invention, it is possible to improve image quality and design freedom in various display devices.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数の透光性部材を接合したことにより形成される複数の接 合面に、 少なく とも、 所定の光学特性を備える光を選択的に透過し、 それ以外の光を反射する第 1の選択性反射面と第 2の選択性反射面が 互いに平行、 あるいは直交せずに交差する向きに形成され、 1. At least a plurality of joining surfaces formed by joining a plurality of translucent members selectively transmit light having at least predetermined optical characteristics and reflect other light. The selective reflection surface and the second selective reflection surface are formed so as to be parallel or non-perpendicular to each other,
前記第 1 の選択性反射面および前記第 2 の選択性反射面によって、 波長の異なる少なく とも 3つの光の光路を合成あるいは分離可能であ ることを特徴とする複合プリズム。  A composite prism, wherein at least three light paths having different wavelengths can be combined or separated by the first selective reflection surface and the second selective reflection surface.
2 . 請求の範囲第 1項において、 対向する第 1の矩形平面と第 2 の矩形平面からなる直方体形状の前記第 1の矩形平面の各角部を各々、 第 1角部、 第 2角部、 第 3角部および第 4角部と し、 前記第 2の矩形 平面で前記第 1角部、 前記第 2角部、 前記第 3角部および前記第 4角 部に対応する各角部を各々、 第 5角部、 第 6角部、 第 7角部および第 8角部としたとき、 2. In Claim 1, the corners of the first rectangular plane having a rectangular parallelepiped shape composed of a first rectangular plane and a second rectangular plane opposed to each other are referred to as a first corner and a second corner, respectively. A third corner and a fourth corner, and each corner corresponding to the first corner, the second corner, the third corner and the fourth corner on the second rectangular plane. When they are the fifth corner, the sixth corner, the seventh corner, and the eighth corner, respectively,
前記第 1角部、 前記第 3角部、 前記第 7角部および前記第 5角部に よって構成される面に前記第 1の選択性反射面を備え、  The first selective reflection surface is provided on a surface formed by the first corner, the third corner, the seventh corner, and the fifth corner,
前記第 3角部、 前記第 4角部、 前記第 5角部および前記第 6角部に よって構成される面に前記第 2の選択性反射面を備えていることを特 徴とする複合プリズム。  A composite prism comprising the second selective reflection surface on a surface formed by the third corner, the fourth corner, the fifth corner, and the sixth corner. .
3 . 請求の範囲第 2項において、 前記第 1の選択性反射面および 前記第 2 の選択性反射面は各々、 偏光分離面により構成されているこ とを特徴とする複合プリズム。 3. The composite prism according to claim 2, wherein each of the first selective reflection surface and the second selective reflection surface is constituted by a polarization splitting surface.
4 . 請求の範囲第 2項または第 3項において、 前記複合プリズム から出射される色光を各々、 変調する複数の電気光学装置を備えるこ とを特徴とする表示装置。 4. The device according to claim 2 or 3, further comprising a plurality of electro-optical devices for modulating the color light emitted from the compound prism. A display device characterized by the following.
5 . 請求の範囲第 1項において、 複数の柱状の前記透光性部材を 接合して入射面に 4 5 ° の角度をなす、 互いに平行な複数の接合面を 備え、 5. The method according to claim 1, further comprising: a plurality of parallel joining surfaces, wherein the plurality of columnar light-transmitting members are joined to form an angle of 45 ° on an incident surface,
当該複数の接合面のう ちのいずれかに所定の波長帯域の光を選択的 に反射する前記第 1の選択性反射面を備え、  The first selective reflection surface selectively reflecting light in a predetermined wavelength band on any of the plurality of bonding surfaces;
他のいずれかの接合面に、 前記第 1 の選択性反射面と異なる波長帯 域の光を選択的に反射する前記第 2の選択性反射面を備えることを特 徴とする複合プリズム。  A composite prism comprising, on any one of the other joining surfaces, the second selective reflection surface that selectively reflects light in a wavelength band different from that of the first selective reflection surface.
6 . 請求の範囲第 5項に規定する複合プリズムを備えた光源ュニ ッ トであって、 6. A light source unit provided with a compound prism as defined in claim 5, wherein
前記複合プリ ズムは、 前記第 1 の選択性反射面と して、 赤、 緑、 青 の 3原色の波長帯域のう ちの第 1 の色光を選択的に反射する第 1 の色 光用ダイクロイ ツク ミ ラーと、 前記第 2の選択性反射面と して第 2の 色光を前記第 1 の色光用ダイクロイ ツク ミ ラーに向けて選択的に反射 する第 2の色光用ダイクロイ ツク ミ ラーと、 該第 2の色光用ダイク口 イ ツク ミ ラーに対して前記第 1 の色光用ダイクロイ ツク ミ ラーとは反 対側に配置されて第 3の色光を前記第 2の色光用ダイク ロイ ツク ミラ 一に向けて反射する第 3の色光用反射面とを備え、  The composite prism is a first dichroic light for the first color light that selectively reflects the first color light of the three primary color wavelength bands of red, green and blue as the first selective reflection surface. A second color light dichroic mirror that selectively reflects the second color light toward the first color light dichroic mirror as the second selective reflection surface; The third color light dichroic mirror is disposed on the opposite side of the second color light dichroic mirror with respect to the second color light dichroic mirror, and the third color light is transmitted to the second color light dichroic mirror. A third color light reflecting surface that reflects toward
前記第 1 の色光用ダイクロイ ツク ミ ラーに向けて前記第 1の色光を 出射する第 1の色光源部が配置され、  A first color light source unit that emits the first color light toward the first color light dichroic mirror is arranged;
前記第 2の色光用ダイクロイ ツク ミ ラーに向けて前記第 2の色光を 出射する第 2の色光源部が配置され、  A second color light source unit that emits the second color light toward the second color light dichroic mirror;
前記反射面に向けて前記第 3の色光を出射する第 3の色光源部が配 置され、  A third color light source unit that emits the third color light toward the reflection surface is disposed;
前記第 1の色光源部、 前記第 2の色光源部、 および前記第 3の色光 源部から前記複合プリズムへ光の出射が所定のタイ ミ ングで切り換え られることを特徴とする光源ュニッ ト。 The first color light source unit, the second color light source unit, and the third color light A light source unit, wherein light emission from a source to the compound prism is switched at a predetermined timing.
7 . 請求の範囲第 5項に規定する複合プリ ズムを備えた光源ュニ ッ トであって、 7. A light source unit having a composite prism as defined in claim 5, wherein
前記複合プリズムは、 前記第 1 の選択性反射面と して、 赤、 緑、 青 の 3原色の波長帯域のうちの第 1 の色光を選択的に反射する第 1 の色 光用ダイクロイ ツク ミ ラーと、 前記第 2の選択性反射面と して第 2の 色光を前記第 1 の色光用ダイクロイ ツク ミ ラーに向けて選択的に反射 する第 2の色光用ダイクロイツク ミラーとを備え、  The compound prism is a first dichroic light for a first color light, which selectively reflects a first color light of a wavelength band of three primary colors of red, green, and blue as the first selective reflection surface. And a second color light dichroic mirror that selectively reflects the second color light toward the first color light dichroic mirror as the second selective reflection surface,
前記第 1 の色光用ダイクロイ ツク ミ ラーに向けて前記第 1の色光を 出射する第 1の色光源部が配置され、  A first color light source unit that emits the first color light toward the first color light dichroic mirror is arranged;
前記第 2の色光用ダイクロイ ツク ミ ラーに向けて前記第 2の色光を 出射する第 2の色光源部が配置され、  A second color light source unit that emits the second color light toward the second color light dichroic mirror;
当該第 2の色光用ダイク ロイ ツク ミ ラーに対して前記第 1の色光用 ダイクロイ ツク ミ ラーとは反対側から第 3の色光を出射する第 3の色 光源部を備え、  A third color light source unit that emits third color light from a side opposite to the first color light dichroic mirror with respect to the second color light dichroic mirror;
前記第 1 の色光源部、 前記第 2の色光源部、 および前記第 3の色光 源部から前記複合プリズムへ光の出射が所定のタイ ミ ングで切り換え られることを特徴とする光源ユニッ ト。  A light source unit, wherein light emission from the first color light source unit, the second color light source unit, and the third color light source unit to the composite prism is switched at a predetermined timing.
8 . 請求の範囲第 6項または第 7項において、 前記第 1 の色光源 部、 前記第 2の色光源部、 および前記第 3の色光源部は、 各々、 所定 の色光を出射する発光素子であり、 8. The light-emitting element according to claim 6, wherein the first color light source, the second color light source, and the third color light source each emit a predetermined color light. And
前記第 1 の色光源部、 前記第 2の色光源部、 および前記第 3の色光 源部は、 各々、 所定のタイ ミ ングで点灯が制御されることを特徴とす る光源ュニッ ト。 The light source unit, wherein lighting of the first color light source unit, the second color light source unit, and the third color light source unit is controlled at a predetermined timing.
9 . 請求の範囲第 6項または第 7項において、 前記第 1の色光源 部、 前記第 2の色光源部、 および前記第 3の色光源部は、 各々、 白色 光を色分割して得られた各色の光を出射し、 9. The method according to claim 6, wherein the first color light source, the second color light source, and the third color light source are each obtained by color-dividing white light. Emitted light of each color,
前記第 1 の色光源部、 前記第 2の色光源部、 および前記第 3の色光 源部と、 前記複合プリ ズムとの間には、 当該複合プリ ズムに対して各 色光が入射するタイ ミ ングを制御するシャッタ手段が配置されている ことを特徴とする光源ュニッ ト。  Between the first color light source unit, the second color light source unit, the third color light source unit, and the composite prism, the timing at which each color light is incident on the composite prism A light source unit, comprising shutter means for controlling the lighting.
1 0 . 請求の範囲第 5項に規定する複合プリ ズムを 2つ備えた光源 ユニッ トであって、 10. A light source unit comprising two composite prisms as defined in claim 5, wherein
前記 2つの複合プリ ズムのう ち、 第 1 の複合プリズムは、 前記第 1 の選択性反射面と して、 赤、 緑、 青の 3原色の波長帯域のうちの第 1 の色光を選択的に反射する第 1 の色光用ダイクロイ ツク ミ ラーと、 前 記第 2の選択性反射面と して第 2の色光を前記第 1 の色光用ダイク 口 イ ツク ミ ラーに向けて選択的に反射する第 2の色光用ダイクロイ ツク ミ ラーと、 該第 2の色光用ダイクロイ ツク ミ ラーに対して前記第 1 の 色光用ダイク ロイ ツク ミ ラーとは反対側に配置されて第 3の色光を前 記第 2の色光用ダイク ロイ ツク ミ ラーに向けて反射する第 3の色光用 反射面とを備え、  Of the two composite prisms, the first composite prism selectively serves as the first selective reflection surface, the first color light of the three primary color wavelength bands of red, green, and blue. A first color light dichroic mirror that reflects light to the first color light dichroic mirror as the second selective reflection surface, and selectively reflects the second color light toward the first color light dichroic mirror. A second dichroic mirror for color light, and a dichroic mirror for second color light, the dichroic mirror for first color light being disposed on a side opposite to the dichroic mirror for first color light, and receiving a third color light. A third color light reflecting surface that reflects toward the second color light dichroic mirror;
第 2の複合プリ ズムは、 前記第 1 の色光を前記第 1 の複合プリ ズム の第 1 の色光用ダイクロイ ツク ミ ラーに向けて反射する第 1の色光用 反射面と、 前記第 1 の選択性反射面と して第 2の色光を前記第 1 の複 合プリ ズムの第 2の色光用ダイクロイ ツク ミ ラーに向けて選択的に反 射する第 2の色光用ダイクロイ ツク ミ ラーと、 前記第 2の選択性反射 面と して第 3の色光を前記第 1 の複合プリズムの第 3の色光用反射面 に向けて選択的に反射する第 3の色光用ダイクロイ ツク ミ ラーとを備 X.、  The second composite prism includes a first color light reflecting surface that reflects the first color light toward the first color light dichroic mirror of the first composite prism, and the first selection. A second color light dichroic mirror for selectively reflecting the second color light as a reflective surface toward the second color light dichroic mirror of the first composite prism; A third color light dichroic mirror for selectively reflecting the third color light toward the third color light reflection surface of the first compound prism as a second selective reflection surface; .,
さ らに、 前記第 2の複合プリズムに対して当該第 2の複合プリズム の第 3の色光用ダイクロイツクミラーに向けて白色光を出射する白色 光源を備え、 Further, the second composite prism is provided with respect to the second composite prism. A white light source that emits white light toward the third color light dichroic mirror of
前記第 1 の複合プリ ズムと前記第 2の複合プリ ズムとの間には、 前 記第 2の複合プリズムから前記第 1の複合プリズムに対して各色光が 入射するタイ ミングを制御するシャッタ手段が配置されていることを 特徴とする光源ュニッ ト。  A shutter means for controlling a timing at which each color light is incident from the second compound prism to the first compound prism, between the first compound prism and the second compound prism. The light source unit, wherein the light source unit is disposed.
1 1 . 請求の範囲第 9項または第 1 0項において、 前記白色光の偏 光方向を揃える偏光変換手段を備え、 11. The method according to claim 9 or 10, further comprising: a polarization conversion unit that aligns a polarization direction of the white light,
前記シャツタ手段と して、 液晶パネルが用いられていることを特徴 とする光源ュニッ ト。  A light source unit, wherein a liquid crystal panel is used as the shirt unit.
1 2 . 請求の範囲第 5項ないし第 1 1項のいずれかの項に規定する 光源ュニッ トを備えたことを特徴とする表示装置。 12. A display device comprising the light source unit defined in any one of claims 5 to 11.
1 3 . 請求の範囲第 1 2項において、 前記複合プリズムが複数、 マ トリタス状に配置されていることを特徴とする表示装置。 13. The display device according to claim 12, wherein a plurality of the compound prisms are arranged in a matrix form.
1 4 . 請求の範囲第 1 2項において、 前記光源ユニッ トから順次、 出射される色光を順次、 変調して当該色光に対応する色画像を順次、 生成する電気光学装置を備えていることを特徴とする表示装置。 14. An electro-optical device according to claim 12, further comprising: an electro-optical device that sequentially modulates the color light emitted from the light source unit and sequentially generates a color image corresponding to the color light. Characteristic display device.
1 5 . 請求の範囲第 1 4項において、 前記光源ユニッ トは、 前記電 気光学装置に向けて出射する色光の偏光方向を揃える偏光変換手段を 備えていることを特徴とする表示装置。 15. The display device according to claim 14, wherein the light source unit includes a polarization conversion unit that aligns a polarization direction of color light emitted toward the electro-optical device.
1 6 . 請求の範囲第 1 4項または第 1 5項において、 前記電気光学 装置で順次形成された各色の画像を投射する投射光学系を備えている ことを特徴とする投射型表示装置。 16. The projection optical system according to claim 14 or 15, further comprising a projection optical system configured to project images of respective colors sequentially formed by the electro-optical device. A projection type display device characterized by the above-mentioned.
PCT/JP2004/000668 2003-01-27 2004-01-26 Composite prism, light source unit, and display device WO2004068197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504700A JP4520943B2 (en) 2003-01-27 2004-01-26 Compound prism and light source unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003056414 2003-01-27
JP2003-56414 2003-01-27
JP2003-68887 2003-02-06
JP2003068887 2003-02-06

Publications (1)

Publication Number Publication Date
WO2004068197A1 true WO2004068197A1 (en) 2004-08-12

Family

ID=32828973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000668 WO2004068197A1 (en) 2003-01-27 2004-01-26 Composite prism, light source unit, and display device

Country Status (2)

Country Link
JP (1) JP4520943B2 (en)
WO (1) WO2004068197A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046654A1 (en) * 2004-10-29 2006-05-04 Sharp Kabushiki Kaisha Optical integrator, illuminator, and projection image display
JP2006195454A (en) * 2005-01-10 2006-07-27 Internatl Business Mach Corp <Ibm> Method and apparatus for miniaturizing digital light processing displays using high refractive index crystals
JP2007101820A (en) * 2005-10-04 2007-04-19 Hitachi Ltd Projection image display apparatus
US7216986B2 (en) 2003-03-27 2007-05-15 Sanyo Electric Co., Ltd. Color separating and mixing element, video light producing device, and projection type video display
JP2008112114A (en) * 2006-10-31 2008-05-15 Victor Co Of Japan Ltd Optical element, light source device, image display apparatus, and method of manufacturing optical element
JP2008256832A (en) * 2007-04-03 2008-10-23 Seiko Epson Corp Optical system
WO2015090950A1 (en) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Optical system with beam separator cube for measuring vehicles
KR20200111370A (en) * 2019-03-19 2020-09-29 한국광기술원 Beam Splitter for Realizing Augmented Reality and Optical System for Realizing Augmented Reality Including the Same
CN114822390A (en) * 2021-01-29 2022-07-29 精工爱普生株式会社 Optical module, electro-optical device, and image display device
US11550145B2 (en) 2019-01-16 2023-01-10 Korea Photonics Technology Institute Optical system for implementing augmented reality and device including the same
JP7551814B2 (en) 2022-03-28 2024-09-17 ▲うぇい▼盛国際科技有限公司 Holographic projection manipulation device, holographic projection device and holographic optical module thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602916A (en) * 1983-06-21 1985-01-09 Seiko Epson Corp Projection type liquid-crystal display device
EP0325361A2 (en) * 1988-01-19 1989-07-26 Hewlett-Packard Company Color projection system
JP2000111839A (en) * 1998-10-01 2000-04-21 Nikon Corp Polarizer and projector
JP2001027703A (en) * 1999-07-14 2001-01-30 Onkyo Corp Spectral prism device
JP2002131515A (en) * 2000-10-30 2002-05-09 Nec Viewtechnology Ltd Dichroic prism with spectral separation into three colors, method for manufacturing the same and image display device
JP2002196118A (en) * 2000-12-26 2002-07-10 Seiko Epson Corp Optical element and projector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602916A (en) * 1983-06-21 1985-01-09 Seiko Epson Corp Projection type liquid-crystal display device
EP0325361A2 (en) * 1988-01-19 1989-07-26 Hewlett-Packard Company Color projection system
JP2000111839A (en) * 1998-10-01 2000-04-21 Nikon Corp Polarizer and projector
JP2001027703A (en) * 1999-07-14 2001-01-30 Onkyo Corp Spectral prism device
JP2002131515A (en) * 2000-10-30 2002-05-09 Nec Viewtechnology Ltd Dichroic prism with spectral separation into three colors, method for manufacturing the same and image display device
JP2002196118A (en) * 2000-12-26 2002-07-10 Seiko Epson Corp Optical element and projector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216986B2 (en) 2003-03-27 2007-05-15 Sanyo Electric Co., Ltd. Color separating and mixing element, video light producing device, and projection type video display
KR100893717B1 (en) 2004-10-29 2009-04-17 샤프 가부시키가이샤 Optical Integrator, Illuminator and Projection Type Image Display
WO2006046654A1 (en) * 2004-10-29 2006-05-04 Sharp Kabushiki Kaisha Optical integrator, illuminator, and projection image display
JP2006195454A (en) * 2005-01-10 2006-07-27 Internatl Business Mach Corp <Ibm> Method and apparatus for miniaturizing digital light processing displays using high refractive index crystals
JP4678856B2 (en) * 2005-01-10 2011-04-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Method and apparatus for miniaturizing digital light processing displays using high refractive index crystals
JP2007101820A (en) * 2005-10-04 2007-04-19 Hitachi Ltd Projection image display apparatus
JP2008112114A (en) * 2006-10-31 2008-05-15 Victor Co Of Japan Ltd Optical element, light source device, image display apparatus, and method of manufacturing optical element
JP2008256832A (en) * 2007-04-03 2008-10-23 Seiko Epson Corp Optical system
WO2015090950A1 (en) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Optical system with beam separator cube for measuring vehicles
US11550145B2 (en) 2019-01-16 2023-01-10 Korea Photonics Technology Institute Optical system for implementing augmented reality and device including the same
KR20200111370A (en) * 2019-03-19 2020-09-29 한국광기술원 Beam Splitter for Realizing Augmented Reality and Optical System for Realizing Augmented Reality Including the Same
KR102321416B1 (en) * 2019-03-19 2021-11-03 한국광기술원 Beam Splitter for Realizing Augmented Reality and Optical System for Realizing Augmented Reality Including the Same
CN114822390A (en) * 2021-01-29 2022-07-29 精工爱普生株式会社 Optical module, electro-optical device, and image display device
CN114822390B (en) * 2021-01-29 2024-02-27 精工爱普生株式会社 Optical module, electro-optical device, and image display device
JP7551814B2 (en) 2022-03-28 2024-09-17 ▲うぇい▼盛国際科技有限公司 Holographic projection manipulation device, holographic projection device and holographic optical module thereof

Also Published As

Publication number Publication date
JP4520943B2 (en) 2010-08-11
JPWO2004068197A1 (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP3309845B2 (en) Polarization separation device, polarization conversion device, and projection display device
EP1363460A2 (en) Lighting system and projector
US8425043B2 (en) Projector having a plurality of optical devices with a purality of optical modulators
US9016865B2 (en) Illumination device and projection type display device using the same
US20060232750A1 (en) Optical member and illuminating device
JP4520943B2 (en) Compound prism and light source unit
CN112987470B (en) Light source device and projector
JP2003075777A (en) Projection device
WO2002042807A1 (en) Color separating/synthesizing element and liquid crystal projector using it
WO2022037196A1 (en) Three-color light source device and projection display device
US8708499B2 (en) Illuminating device and projection display device using the same
US20140204459A1 (en) High efficiency light combination module of projection system
CN111435215A (en) Compact miniature projection light engine
JP4382503B2 (en) Light source device for projection display device and projection display device
JP4909703B2 (en) projector
JP2007065412A (en) Illuminating device and projection type video display device
WO2020199670A1 (en) Light source system and projection apparatus
US11543743B2 (en) Light source apparatus and projector
JP2003140257A (en) Illumination optical system and color image projecting device
JP2020008779A (en) Lighting unit and projector
JPH10319349A (en) Polarized light converting element and projecting device using the same
CN111427227B (en) Light source device, projector, and phosphor rod
JPH1039136A (en) Optical element and projection type display device
JP2000284229A (en) Optical element and projection type display device
JPH0815525A (en) Polarization beam splitter and liquid crystal projector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504700

Country of ref document: JP

122 Ep: pct application non-entry in european phase