[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004059000A2 - High-throughput screening method for identifying active substances by means of co-cultivation - Google Patents

High-throughput screening method for identifying active substances by means of co-cultivation Download PDF

Info

Publication number
WO2004059000A2
WO2004059000A2 PCT/EP2003/013564 EP0313564W WO2004059000A2 WO 2004059000 A2 WO2004059000 A2 WO 2004059000A2 EP 0313564 W EP0313564 W EP 0313564W WO 2004059000 A2 WO2004059000 A2 WO 2004059000A2
Authority
WO
WIPO (PCT)
Prior art keywords
target
test
gene
organism
strains
Prior art date
Application number
PCT/EP2003/013564
Other languages
German (de)
French (fr)
Other versions
WO2004059000A3 (en
Inventor
Dietmar Eschrich
Juergen Recktenwald
Karl-Dieter Entian
Original Assignee
Phenion Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phenion Gmbh & Co. Kg filed Critical Phenion Gmbh & Co. Kg
Priority to AU2003298160A priority Critical patent/AU2003298160A1/en
Publication of WO2004059000A2 publication Critical patent/WO2004059000A2/en
Publication of WO2004059000A3 publication Critical patent/WO2004059000A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5085Supracellular entities, e.g. tissue, organisms of invertebrates

Definitions

  • the present invention relates to a high-throughput suitable screening method for identifying active substances.
  • target-oriented technology in the past few years, in which targeted disruption or growth inhibition of the microorganism is achieved by disrupting essential metabolic pathways or structures (“targets”, “targets”).
  • target-oriented approaches substances are searched that specifically inhibit a biochemical reaction or intermolecular interaction.
  • the advantage of such target-oriented approaches is that completely new targets for antibiotics can be determined that have not yet been attacked by antimicrobial substances.
  • the raw material for in silico drug target identification represents the sequence information of the genomes in connection with the functional analysis of the discovered genes. As of the filing date of the present invention, more than 60 microbial genomes are completely sequenced and generally accessible.
  • target site target protein
  • the harmful organisms e.g. under bacteria and / or fungi
  • protein sequences of the target organisms are very similar.
  • fungi like humans, are eukaryotes in which a great number of cellular processes are preserved.
  • the essential genes of the fungi largely code for basic proteins that are important for cellular processes, to which there are homologous proteins in all eukaryotes and thus also in humans. It could be shown through the work of the applicant that about 80% of all essential S. cerevisiae Proteins have a human homologue and are therefore not suitable as targets according to the above criteria.
  • a disadvantage of cell-free / biochemical test systems for the identification of new inhibiting substances is that often a very large amount of possible hits ("hits") are detected, which have to be verified in subsequent tests, many of which prove to be false positive. At this point in time, no information is available for the substances found as to whether the enzyme inhibitor found also has an effect on microorganisms in vivo.
  • the cell wall and the cytoplasmic membrane represent selective barriers that not all substances can penetrate in sufficient quantities.
  • Whole cells are used in in vivo test systems.
  • the acquisition of the measurement signal is often a problem here, unless the growth of the cells can be used as a particularly inexpensive and simple parameter.
  • the main problem with screening systems that use growth as measurement parameters is to distinguish the protein-specific toxic effects from a general cytotoxic effects. This is very difficult with essential proteins as targets, since both the protein-specific effect and the cytotoxic effect lead to the same result, cell death.
  • US6228588B1 describes a method for the identification of essential genes of S. aureus by means of conditionally lethal mutants, sequences of essential S. aureus genes (and their homologues in other bacteria) and the establishment of screening methods by means of conditionally lethal mutants.
  • conditionally lethal mutants known mutations in essential genes
  • yeast cell-based method reverse two-hybrid
  • search for substances that specifically interfere with the interaction between two proteins It is possible to search for small molecules that specifically disrupt the interaction between two proteins (of any origin, e.g. human, plant, bacterium, fungus).
  • small molecules that specifically disrupt the interaction between two proteins of any origin, e.g. human, plant, bacterium, fungus.
  • the disorder of the interaction is read out by induction of the expression of a reporter gene caused thereby.
  • this method cannot be used to search for growth inhibitors.
  • WO9957536C2 describes the CAK1 (cdk-activating kinase) gene / protein from C. albicans (among others). Methods of a target-directed protein differential screening ("differential screening format" p.53) for CAK1 are explained, in which the action of substances against a fungal CAK1 is compared with the action against human CAK1.
  • the object of the invention is to provide a new screening method which combines as many of the advantages of a target-oriented test method as possible with those of an in vivo method.
  • a screening method for identifying active substances which is suitable for high throughput, characterized in that a) a target organism (target organism) is selected which the active substances to be identified are to inhibit or kill, b) a target gene (target) is selected , which or its gene product is to be deactivated by the active substances to be identified, c) selects an organism to be protected which is to be protected from damage by the target organism, d) selects a test organism which carries a test gene which is functionally homologous to the target gene, e) two test strains constructed a test organism that differ genotypically in exactly two characteristics, namely i.
  • test strains in that one of the test strains tolerates a higher dose of an active ingredient which deactivates the target gene or its gene product than the other test strain and ii. in a gene that codes for a well-detectable property (phenotypic brand), but is not essential for the vitality and proliferation ability of the test organism, f) mixes both test strains and incubates them together, g) adds a potential active ingredient and h) based on this, if necessary, differently strong growth of the two test strains identified an active ingredient
  • the method according to the invention has considerable advantages over the known prior art: A large number of new targets (target genes) can be tapped without the exact function of the target being known (for example essential ones
  • the screening process is HTS-compatible (96 well and 384 well plates) and enables the results to be read very easily.
  • Target and control strains are mixed and incubated together. When used in the HTS, this leads to a 50% reduction in the total number of wells and thus to significant cost savings.
  • the sensitivity of the screening process can vary
  • Inoculation amounts and inoculation ratios of the test strains are modulated and thus shows a very high to very weak as required
  • microorganisms e.g. yeast
  • yeast e.g. yeast
  • Extracts are examined without affecting the assay.
  • Target organisms are in particular plant pathogens and human or animal pathogens (viruses, pro and eukaryotes), microorganisms and plants (algae) which disrupt industrial production (biofilms, deposits in cooling circuits, etc.) or humans, e.g. for the detection of cytostatics for the treatment of cancer or the search for enzyme inhibitors (HMG-CoA reductase inhibitors for the treatment of arteriosclerosis).
  • Particularly suitable human or animal pathogenic target organisms are organisms of the genera Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Nocardia, Enterobacter, Yersinia, Francisella, Pasturella, Moraxella, Acinetobacter, Erysillelusus, Actobacus, Actinobacella Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Klebsiella, Vibrio, Proteus, Borrelia, Leptospira, Spirillum, Campylobacter, Shigella, Legionella, Pseudomonas, Aeromonas, Rickettsia, Chlamydia, Borrelia, Mycoplasma, Aspergillio, Blidoms, Aspergillio Exophalia, Histoplasma, Pneumocystis
  • Suitable phytopathogenic target organisms are organisms of the genera Alternaria, Gaeumannomyces, Cercospora, Botrytis, Claviceps, Corticium, Colletotrichum, Didymella, Endothia, Exobasidium, Sclerotinia, Erysiphe, Fusarium, Magnaporthe, Plasmopara, Penicillporium, Pythonpora, Pythonoporum, Pythonoporum , Trametes, Ophiostoma, Rhizoctonia, Sphacelotheca, Septoria, Sclerospora, Venturia, Verticillium, Puccinia, Phoma, Tilletia, Ustilago, and Urocystis.
  • target genes or target proteins refer to genes / proteins which are essential for the vegetative growth of the target organism.
  • the disruption, inhibition or inactivation of the genes or the associated gene products (proteins) leads to the target organism being killed or inhibited from growth.
  • the following genes are essential genes of the yeast S. cerevisiae:
  • Genes or proteins of target organisms are of particular interest if the similarity of the derived amino acid sequences is at least 30% to the derived amino acid sequences of the S. cerevisae essential genes or if complementation has shown that the gene / protein of the target organism is the corresponding gene / protein from S. cerevisiae.
  • Particularly suitable targets are those for which there are no homologous representatives in higher eukaryotes (eg humans). These are, in particular, homologous genes / proteins to the following essential S. cerevisiae genes or their gene products:
  • control protein eukaryotes
  • target protein eukaryotes
  • the control gene or protein can in particular come from a mammal (e.g. human) or a plant.
  • target genes / proteins of the human pathogenic target organism Candida albicans are homologous genes / proteins to the essential S. cerevisiae genes / proteins YDR236c (FMN1), YBR26 ⁇ w (TSC10), YPR113W (PIS1), YOR122c (PFY1) and YMR197c (VTI1).
  • Test organisms, test strains or cultures that can be used here are basically all organisms or cell cultures that are easy to cultivate (e.g. bacteria in a test tube / microtiter plate or cell cultures in cell culture bottles / microtiter plates).
  • Organisms that are genetically accessible and in which genes can be heterologously expressed are preferably used here.
  • test organisms from the prokaryote kingdom are, for example, species of the genera Bacillus (B. subtilis), Escherichia (E. coli), Klebsiella [K. planticola), Lactobacillus (L. delbruckii, L. lactis), Pseudomonas (P. aeroginosa, P. fluorescens) Salmonella (S. typhimurium) Serratia (S. marcescens) Streptococcus (S. lactis, S. mutans, S. pyogenes) , Staphylococcus (S. aureus, S. epidermidis) Vibrio (V. cholerae) Yersinia (Y. ruckeri).
  • Test organisms for which a range of molecular biological tools are available, such as Escherichia coli and Bacillus subtilis, are particularly suitable.
  • Eukaryotic unicellular organisms protozoa, slime molds, fungi, etc.
  • eukaryotic cell cultures are suitable for the eukaryotic test organisms.
  • Yeasts are particularly suitable among the eukaryotic unicellular organisms.
  • Species from the genera Saccharomyces, Schizosaccharomyces, Candida, Kluyveromyces, Yarrowia, Ashbya, Hansenula, Pichia are particularly suitable among the yeasts.
  • Saccharomyces cerevisae, Schizosaccharomyces pombe and Candida albicans are particularly suitable.
  • Saccharomyces cerevisiae strains are particularly suitable, preferably the strains CEN.PK2, BY4743, BMA46 (W303), FY1679 and their haploid derivatives.
  • the method according to the invention is particularly suitable for high-throughput screening, preferably by parallelization, particularly preferably by performing it in a plurality of parallel batches, very particularly preferably in microtiter plates or other devices known to the person skilled in the art, which allow batches to be parallelized.
  • different genotypic characteristics represent the differential expression of the target gene in the test strains (different "gene dose”), e.g. caused by the deletion of a target gene allele (for test organisms with ploidy> 1), introduction of additional target gene copies into one of the test strains or differently regulated expression of the target genes in the test strains.
  • Another distinguishing feature is a genetic change in the target gene in one of the test strains. This can be caused by conditional mutations (point mutations, deletions or truncation).
  • test strains can also differ due to the substitution of essential genes by functionally homologous proteins from other organisms (eubacteria, archaea, eukaryotic viruses). Depending on the goal, tests can be created with a wide variety of test master combinations.
  • the strains differ in another characteristic, since one of the two test strains is given a phenotypic brand.
  • Phenotypic brands refer to phenotypic characteristics that have little or no influence on the growth of the test strain. This can be, for example, a deletion in a further gene locus, which has the consequence that the cells accumulate a colored pigment or thereby special biochemical properties are given that are easy to read.
  • the deletion of the ADE2 gene locus in yeasts e.g.
  • Saccharomyces cerevisiae, Schizosaccharomyces pombe or Candida albicans leads to the accumulation of phosphoribosylaminoimidazole in the vacuole, which is converted into a red pigment by oxygen.
  • the Zeil sediment of such a culture is red and can easily be seen with the eye.
  • the> ADE2 deletion basically offers itself as a phenotypic brand, but unfortunately the accumulation of the red pigment leads to a deterioration in the growth of the deletion strain compared to the wild-type strain (Ugolini and Bruschi, 1996), which is very disadvantageous for use in the below described method is.
  • the accumulation of the growth-inhibiting pigment is only induced after the cells have been grown, so that the ADE2 deletion can still be used and even represents a particularly suitable phenotypic brand.
  • Other phenotypic brands are the expression of the green fluorescent protein (GFP) in one of the strains or the expression of other reporter genes such as, for example, the ⁇ -galactosidase, the luciferase or the like.
  • test strains target and control strains which differ only in the target gene / protein and the phenotypic brand are grown and mixed. Fresh medium is inoculated with a low cell count of this stock mixture. After application of test substances, the cultures are grown until the stationary growth phase. The final composition of the resulting mixed cultures can now be determined very easily by quantifying the characteristic phenotypic brand. If, for example, one of the two strains is specifically or more strongly inhibited by a substance in growth, this leads to an intensification or weakening of the corresponding phenotypic brand, which in turn is read out through stronger / weaker fluorescence or more intense / weaker coloring or stronger / weaker biochemical reaction can be.
  • Another object of the present invention is a test kit for identifying active substances, which comprises means for performing the method according to the invention.
  • Another object of the present invention is the use of the method according to the invention for finding active substances.
  • Targets for the PDS substitution procedure for the identification of antibiotic substances are essential for the vegetative growth of the pathogen under full medium conditions and are preserved under pathogens.
  • a functionally homologous gene / protein must exist in the test organism, which is also an essential gene / protein for the test organism.
  • the raw material for the target selection represents the sequence information of the genomes in connection with the functional analysis of the discovered genes.
  • proteins that perform the same function in humans (or animals) and in the infection germ (functionally homologous proteins) differ in molecular structural areas (protein domains). It can be assumed that the disruption of these specific protein domains through the binding of active substances can also lead to the functional failure of the entire protein. Such active substances would thus be specific for the protein of the infection germ in their inhibitory function, without the function of the isofunctional control protein (the human or plant cell) being affected. Accordingly, ideal targets for the method described here only show slight sequence matches with their control proteins with simultaneous functional identity.
  • the target selected in the example is bacterial dihydrofolate reductase.
  • dihydrofolate reductase catalyzes the reduction of folic acid by NADPH to tetrahydrofolic acid, an important coenzyme for the transfer of C1 units.
  • This enzyme is essential for the vegetative growth of the infection germ.
  • homologous enzymes exist both in the test organism S. cerevisiae and in humans.
  • the human protein used as a control protein in the method has a 47% sequence similarity and a 27% sequence identity to the dihydrofolate reductase (FolA) of E. coli.
  • Examples of further targets of this target category ie bacterial targets with homologous proteins in fungi (S. cerevisiae) and in humans are functionally homologous proteins to the following essential proteins of the yeast S. cerevisiae:
  • Acs2p (Acetyl-Coenzyme A Synthetase), Alalp (Alanyl-tRNA Synthetase), Hsp60p (heat shock protein; 60kD), Gualp (GMP synthetase), Kar2p (nuclear fusion protein), Ilv2p (Acetolactate Synthase), Gnd1 (6-phosphogluconate Dehydrogenase), Thsl p (Threonyl tRNA Synthetase), Nfslp (NifS-like protein), Gln4p (Glutaminyl-tRNA Synthetase), Prp22p (Helicase-like protein), Prp43p (involved in spliceosome disassembly), Eno2p (Enolase), Ssdp ( mitochondrial heat shock protein 70-related protein), Vaslp (Valyl-tRNA Synthetase), Sgvlp (ser
  • bacterial targets for which there are no sequence-homologous proteins in humans but certainly in fungi (e.g. the yeast S. cerevisiae).
  • the bacterial homolog can serve as the target protein and the protein of the fungus as the control protein. Hits achieved in such an approach are either interesting fungicides and / or antibiotics.
  • this target category are homologs of the S. cerevisae proteins Fba1 p (fructose-bisphosphate aldolase), Ilv3p (dihydroxyacid dehydratase), Tpslp (alpha, alpha-trehalose-phosphate synthase), Ssyl p (regulator of transporters), Rib3p (3,4-Dihydroxy-2-butanone 4-phosphate synthase), Hom ⁇ p (homoserine dehydrogenase) Erg ⁇ p (phosphomevalonate kinase), Ilv5p (ketol-acid reductoisomerase), Fohp (dihydroneopterin aldolase) and Rib ⁇ p (riboflavin synthase).
  • Fba1 p fructtose-bisphosphate aldolase
  • Ilv3p dihydroxyacid dehydratase
  • Tpslp alpha, alpha-trehalose-phosphate synthase
  • Homologs to the following essential proteins of the yeast S. cerevisiae are therefore of particular interest for the identification of fungicidal substances: Thi ⁇ Op (thiamine pyrophosphokinase), Pfylp (profilin), Prolp (glutamate 5-kinase), Vtilp (v-SNARE: involved in Golgi retrograde protein traffic), Ero1 p (required for protein disulfide bond formation in the ER), Pro3p (delta 1-pyrroline-5-carboxylate reductase), Cdslp (CDP-diacylglycerol synthase), Olelp (delta-9-fatty acid desaturase), Erg ⁇ p (phosphomevalonate kinase), Fbal p (fructose bisphosphate aldolase), TsdOp (3-ketosphinganine reductase), Gnalp (glucosamine-phosphate N-acetyltransferase
  • the selected target is an essential gene / protein of the infection germ, this has to be confirmed.
  • putative targets are selected on the basis of the known essential function of a homologous protein in a related organism. For example, one knows all the essential genes of the baker's yeast S. cerevisiae (approx. 1100) and can therefore conjecture that the homologous proteins in related pathogenic fungi are also essential proteins and thus represent interesting drug targets. However, this still has to be proven, for example by gene deletion of the putative target gene in the infection germ with subsequent phenotype analysis.
  • dihydrofolate reductase it is known that it is an essential enzyme of E. coli.
  • the target gene, the bacterial dihydrofolate reductase (E. coli folA) and the control gene (human DHFR) had to be cloned into expression vectors suitable for the test organism.
  • the baker's yeast S. cerevisea which is known to be dihydrofolate reductase (encoded by DFR1), is selected as the test organism and is an essential protein in the organism.
  • This test organism is furthermore well suited for such analyzes, since a large selection of molecular biological tools such as expression vectors and controllable promoters for Available.
  • the expression vector used is pDE95, a centromer-based vector which carries the HIS3 gene as a selection marker and which cloned genes are expressed by means of the yeast MET2 ⁇ promoter.
  • E. coli folA the gene from genomic E. coli DNA was amplified and cloned into pDE95 using the primer combination ecfolA_5 'GGA AAT CGA TAT GAT CAG TCT GAT TGC GG and ecfolA_3' TTC TCT CGA GAA TTA CCG CCG CTC CAG AAT C. (using molecular biological methods that reflect the state of the art).
  • the resulting vector is named pDE95-ecfolA.
  • a cDNA of the human DHFR was amplified from the cDNA gene bank using the primer combination HDFR_5 'CGC TAT CGA TAT GGT TGG TTC GCT AAA CTG and HDFR_3' ACA CCT CGA GAT TAA TCA TTC TA TCAT AC and was also cloned into pDE95 as described above.
  • This vector has the name pDE95-HDFR.
  • S. cerevisiae was chosen as the test organism. Per test, i.e. Two S. cerevisiae strains must be produced for each target to be examined, one target strain which lacks its own dihydrofolate reductase (due to a deletion of the endogenous DFR1 gene), but which contains the gene for the bacterial dihydrofolate reductase and a control strain which also contains the own dihydrofolate reductase is missing, but it expresses the gene for human dihydrofolate reductase.
  • One of the two test strains is additionally provided with a phenotypic brand, for which the ⁇ DE2 deletion was selected.
  • Deletion of this gene locus in S. cerevisiae leads to the accumulation of a red intermediate (Dorfman, 1969) in the vacuole.
  • This pigment has fluorescent properties and can be excited with light of the wavelength 488 nm (blue). The emission maximum of the pigment is in the red light range at 569 nm (Brushi and Chuba, 1988).
  • the starting point for the production of the test strains was a diploid S. cerevisiae laboratory strain (BY4743).
  • One of the two alleles of the DFR1- Genes deleted This is done by means of a PCR-mediated gene deletion with short homologous flanks, as described, for example, in patent no. WO 99/55907 is described and represents the prior art.
  • the plasmid pDE95-ecfolA and the plasmid pDE95-HDFR were introduced into this diploid strain, which was now heterozygous for the DFR gene locus.
  • Both resulting strains were subjected to a tetrad analysis, in which a reduction division is induced with 4 haploid spores as a result.
  • Two of the spores contained the DFR1 deletion and could only grow because they expressed the functionally homologous protein / gene from E. coli (folA) or human (HDFR), which now took over the function of Dfrlp
  • an allele of the ADE2 gene was deleted in the S. cerevisiae laboratory strain (BY4743) using the method described above. Sporulation was induced in the resulting strain. Two of the spores now bore the ADE2 deletion. One of the> 4DE2 mutants was crossed with the test strains produced and sporulation was induced again in the resulting strains. In the haploid strains generated in this way, searches were carried out for those which carried both the DFR1 and 4DE2 deletion.
  • test strains described here had been prepared, the following test strain combinations were available for further screening:
  • Target strain BY4743 Adfrl + pDE95-ecfolA
  • Target strain BY4743 Adfrl Aade2 + pDE95-ecfolA
  • diamino-benzylpyrimidines specifically inhibit bacterial dihydrofolate reductase and have an affinity for dihydrofolate reductases of mammals that is several orders of magnitude lower.
  • An active ingredient in this class of substances is trimethoprim, which has long been used in medicine to treat bacterial infections. This substance offered the possibility of analyzing the PDS in terms of its functionality and sensitivity in the substitution process.
  • strains from Example 4 were grown overnight and in each case cavities of a 96-well microtiter plate which contained 100 ⁇ l fresh medium with strain combination A or strain combination B in a 1: 2000 dilution inoculated. Then 1.5 ⁇ l trimethoprim solution of different concentrations (500 mM, 250 mM 100 mM, 50 mM, 25 mM, 10 mM, 5 mM, 2.5 mM, 1 mM, 0.5 mM, 0.25 mM, 0.1 mM, 0.05 mM - all dissolved in DMSO) pipetted into the cavities.
  • trimethoprim solution 500 mM, 250 mM 100 mM, 50 mM, 25 mM, 10 mM, 5 mM, 2.5 mM, 1 mM, 0.5 mM, 0.25 mM, 0.1 mM, 0.05 mM - all dissolved in DMSO
  • the microtiter plate was then incubated standing at 30 ° C. (ie not shaking). The cells settle quickly and the growth takes place exclusively at the bottom of the individual cavities. Almost anaerobic conditions exist here, which prevents the formation of the toxic red pigment in the ADE2 deletion strain. After 2 days of incubation, the cell mixtures were in the stationary growth phase and the conversion of the non-toxic phosphoribosylaminoimidazole to a red pigment could be induced. For this purpose, the medium in each cavity was drawn down to a few ⁇ l, then the Zeil sediment was resuspended in the residual medium by shaking and this suspension was incubated for 1 h at room temperature.
  • the sediments of strain combination A showed a gradually weakening red color towards pink, which was, however, even more intense and therefore clearly distinguishable from the pink color of the controls (final concentrations 4.2 ⁇ g / ml - 0.42 ⁇ g / ml).
  • the sediment from strain combination A showed no discernible difference to the sediments of the untreated cultures or the DMSO applied cultures (controls).
  • the cavities of strain combination B showed uniform white sediments (final concentrations 2.1 mg / ml - 2.1 ⁇ g / ml).
  • the sediments of strain combination B showed no discernible difference to the sediments of the untreated cultures or the cultures applied to DMSO (controls).
  • a highly sensitive assay is thus available, with the aid of which substances are identified which are directed against targets from selected organisms without excessively inhibiting a control protein from other organisms (e.g. humans).
  • the assay works over a wide range of concentrations so that both very specific and less specific substances can be identified.
  • the sensitivity of the test can also be modified by selecting different starting dilutions of the parent combinations. The more diluted the two test strains are inoculated, the more strongly a differential inhibition of the target / control strains becomes noticeable (readable by the phenotypic marker).
  • Example 5 The test used in Example 5 (strain combination A) was transferred to 384 well format microtiter plates. These microtiter plates are a common format for searching for interesting active substances in substance libraries using the high-throughput method. With the help of the new assay, it is possible to search for active substances which specifically inhibit the bacterial target protein without unduly interfering with the function of the human control protein.
  • test strains were grown in full medium overnight and the cell density of the cultures was adjusted to identical values. The cultures were then diluted approximately 5000 times in fresh medium and combined. The cell suspension obtained in this way was mixed well and the cavities of 384 well microtiter plates (100 ⁇ l) were filled with it. After adding 0.8 ⁇ l of trimethoprim solution of different concentrations (5 mM, 1 mM 0.25 mM, 0.1 mM), the plates were incubated for 2 days at 30 ° C. and then treated as described in Example 5. The color evaluation showed that in the concentration range from 5 mM to 0.25 mM the sediments of the mixed cultures were clearly colored red and clearly differed from the untreated cultures.
  • all substances that have generated a signal are checked to see whether they also generate a signal with a parent combination B.
  • the strains of this strain combination are grown overnight in full medium and the cell density of the cultures is adjusted to identical values.
  • the cultures are then diluted approximately 5,000 times in fresh medium and combined in a ratio of 80% target strain (BY4743 Adfrl Aade2 + pDE95-ecfolA) to 20% control strain (BY4743 Adfrl + pDE95-HDFR).
  • the cell suspension obtained in this way is mixed well and the cavities of 384 well microtiter plates (50 ⁇ l) are filled again. Now the hit substances of the first screening run (screening with strain combination A) are added.
  • the plates are incubated for 2 days at 30 ° C and then evaluated.
  • the sediments from the controls ie cavity cultures to which nothing or only DMSO was added, show a clear red color.
  • Substances that specifically inhibit bacterial dihydrofolate reductase lead to a decrease in red color intensity (compared to the control) to white sediments.
  • a bacterial test organism e.g. Escherichia coli
  • Escherichia coli can also be used to search for growth site-specific growth inhibitors.
  • the gene coding for human dihydrofolate reductase is cloned into an E. coli expression vector.
  • Both adjustable (lac, tac, trp, 17, araB, phoA) and constitutive promoters can be used as promoters.
  • This plasmid is introduced into the E. coli control strain by transformation (e.g. electroporation).
  • the target strain contains no plasmid or only an empty vector.
  • the control and target strains differ only in one genetic trait, namely in the additional expression of the human dihydrofolate reductase in the control strain. If a substance specifically inhibits bacterial dihydrofolate reductase (folA), this leads to a specific growth inhibition of the target strain.
  • control strain (alternatively the target strain) also contains a plasmid which ensures the constitutive expression of the green fluorescent protein (GFP).
  • GFP green fluorescent protein
  • the control and target strains are grown, mixed and the wells of a microtiter plate (filled with fresh medium) are inoculated thinly. Now substances (or whole substance libraries) are added and then incubated at 37 ° C. After reaching the stationary growth phase (overnight incubation), the composition of the cavity cultures with control and target strain is determined by means of the GFP fluorescence of each individual cavity using a fluorimeter. Cavities that show increased fluorescence contain more cells from the control strain, which indicates a selective inhibition of the Taget strain (and thus the bacterial dihydrofolate reductase).
  • a copy of a gene is usually sufficient for the normal growth of the organism under optimal conditions (e.g. full media for microorganisms).
  • Haploinsufficiency ie the occurrence of phenotypes when an alley of approximately 1100 essential genes fails, is very rarely observed, particularly in the test organism S. cerevisiae.
  • haplo insufficiency can be induced very simply by adding growth site-specific growth inhibitors. This fact has already been used to characterize the sites of action of various substances in S. cerevisae (Giaever et al., 1999). For this purpose, numerous 2n heterozygous strains, in which one allele of an essential gene has been deleted, are mixed. The culture was divided, half was made with an active ingredient which has a toxic effect on the yeast in higher concentrations, while the other half remained untreated. If the substance now acts in a site-specific manner on one of the essential genes / proteins, the strain which is haploid for this gene is more strongly inhibited than the other strains of the mixture.
  • each deletion cassette with which an allele in S. cerevisiae was deleted contains a gene-specific 20 bp long sequence.
  • each gene deletion strain can be identified using molecular biological methods (PCR).
  • PCR molecular biological methods
  • Chromosomal DNA is now isolated from both total cultures, the specific sequences of all strains are amplified by means of PCR and the representation of the individual strains in the cultures is finally determined using the PCR products obtained in this way via DNA array analyzes.
  • Information about which strains are selectively inhibited in the culture with the active ingredient can ultimately be used to make statements about the mechanism of action, and ideally the target can be identified.
  • Ketoconazole is an antifungal substance that specifically inhibits the activity of Lanosterol Demethylase (Erg11p). Accordingly, PDS haploinsufficiency screening showed a clear red signal in the cavity with the parent combination Aade2 / Aade2 + Aerg11 / ERG11, to which ketoconazole was added, compared to the control with DMSO. This different staining behavior is specific for this strain combination, all other strain combinations showed no different staining between the active ingredient and the control cavity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention relates to a high-throughput screening method for identifying active substances.

Description

Hochdurchsatz-geeignetes Screening-Verfahren zur Identifikation von WirkstoffenHigh-throughput suitable screening process for the identification of active substances

Die vorliegende Erfindung betrifft ein Hochdurchsatz-geeignetes Screening- Verfahren zur Identifikation von Wirkstoffen.The present invention relates to a high-throughput suitable screening method for identifying active substances.

Nahezu alle klassischen Antibiotika wurden durch Optimierung von Substanzen erhalten, die eine antimikrobielle Wirkung im Ganzzellen-Screening zeigten. Die Verfahren haben jedoch den Nachteil, dass sie unempfindlich sind und gefundene Wachstumsinhibitoren häufig auch für den Menschen zytotoxisch wirken.Almost all classic antibiotics were obtained by optimizing substances that showed an antimicrobial effect in whole-cell screening. However, the methods have the disadvantage that they are insensitive and growth inhibitors found often have a cytotoxic effect on humans.

Des weiteren ist der Wirkort gefundener Substanzen meist unbekannt, was eine rationale Optimierung der antimikrobiellen Substanzen erschwert. Somit ist nicht verwunderlich, dass diese Strategie der Wirkstofffindung in den vergangenen Jahren nur zu wenigen neuen Wirkstoffen geführt hat.Furthermore, the place of action of found substances is mostly unknown, which makes rational optimization of the antimicrobial substances difficult. It is therefore not surprising that this drug discovery strategy has led to only a few new drugs in recent years.

Deshalb hat sich die pharmazeutische Forschung im Laufe der vergangenen Jahre auf eine Zielort-gerichtete Technologie konzentriert, bei der gezielt durch die Störung essentieller Stoffwechselwege bzw. Strukturen ("Ziele", "Targets") ein Abtöten bzw. eine Wachstumshemmung des Mikroorganismus erzielt wird.For this reason, pharmaceutical research has focused on target-oriented technology in the past few years, in which targeted disruption or growth inhibition of the microorganism is achieved by disrupting essential metabolic pathways or structures (“targets”, “targets”).

In Zielort-gerichteten Ansätzen werden Substanzen gesucht, die spezifisch eine biochemische Reaktion oder intermolekulare Wechselwirkung inhibieren. Der Vorteil solcher Zielort-gerichteter Ansätze ist, dass völlig neue Zielorte für Antibiotika bestimmt werden können, die bisher noch nicht durch antimikrobielle Substanzen angegriffen werden.In target-oriented approaches, substances are searched that specifically inhibit a biochemical reaction or intermolecular interaction. The advantage of such target-oriented approaches is that completely new targets for antibiotics can be determined that have not yet been attacked by antimicrobial substances.

Neue Zielorte bzw. Wirkmechanismen für Wirkstoffe sind insbesondere deshalb notwendig, da hierfür noch keine Resistenzen entwickelt werden konnten. Dies ist für nahezu alle gängigen antimikrobiellen Substanzen bereits geschehen und sie haben so an Wirksamkeit eingebüßt. Zum Beispiel sind Candida albicans Stämme, die durch Veränderung oder Überexpression des Wirkortes bzw. Überexpression von Efflux-Pumpen resistent gegen die Stoffklasse der Azole sind, keine Seltenheit mehr.New destinations and mechanisms of action for active substances are particularly necessary because no resistances have yet been developed for them. This has already happened for almost all common antimicrobial substances and they have lost their effectiveness. For example, Candida albicans strains that are caused by changes or overexpression of the site of action or Overexpression of Efflux pumps are resistant to the azole substance class, which is not uncommon.

Das Rohmaterial für in silico Wirkstoffzielort- (Drug-Target) Identifizierung stellt die Sequenzinformation der Genome in Verbindung mit der Funktionsanalyse der entdeckten Gene dar. Zum Anmeldetag der vorliegenden Erfindung sind mehr als 60 mikrobielle Genome komplett sequenziert und allgemein zugänglich.The raw material for in silico drug target identification represents the sequence information of the genomes in connection with the functional analysis of the discovered genes. As of the filing date of the present invention, more than 60 microbial genomes are completely sequenced and generally accessible.

Auswahlverfahren von Drug-Targets stellen mindestens zwei Anforderungen an einen geeigneten Zielort. Zum einen sollte die Genfunktion essentiell für den Organismus sein, woraus geschlossen werden kann, dass auch die Inhibition des dazugehörigen Genproduktes (Protein) durch Wirkstoffe einen toxischen Effekt auf den Mikroorganismus zeigt.Selection procedures for drug targets place at least two requirements on a suitable destination. On the one hand, the gene function should be essential for the organism, from which it can be concluded that the inhibition of the associated gene product (protein) by active substances also has a toxic effect on the microorganism.

Damit Substanzen mit breitem Wirkspektrum gegen Schadorganismen gefunden werden können ist es zum anderen wichtig, dass der Zielort (Zielprotein) möglichst unter den Schadorganismen konserviert ist (z.B. unter Bakterien und/oder Pilzen), d.h. dass die Proteinsequenzen der Zielorganismen hohe Übereinstimmung aufweist.On the other hand, in order that substances with a broad spectrum of activity against harmful organisms can be found, it is important that the target site (target protein) is as conserved as possible among the harmful organisms (e.g. under bacteria and / or fungi), i.e. that the protein sequences of the target organisms are very similar.

Bisherige Auswahlverfahren berücksichtigen nur solche Targets, zu denen es beim Menschen kein homologes Gen bzw. Protein gibt. Dies erhöht die Wahrscheinlichkeit, dass ein gefundener Wirkstoff keine negativen Auswirkungen auf menschliche Zellen hat und somit nebenwirkungsarm ist. Gleichzeitig schränkt diese Bedingung aber die Auswahl der zur Verfügung stehenden Targets drastisch ein, insbesondere bei der Suche nach neuen antimykotisch wirksamen Substanzen.Previous selection procedures only take into account targets for which there is no homologous gene or protein in humans. This increases the probability that an active ingredient found has no negative effects on human cells and is therefore low in side effects. At the same time, this condition drastically restricts the selection of the available targets, especially when looking for new antifungal substances.

Dies beruht darauf, dass Pilze, genauso wie der Mensch, Eukaryonten sind bei denen sehr viele zelluläre Prozesse konserviert sind. Insbesondere die essentiellen Gene der Pilze kodieren zu einem Großteil für grundlegende, für zelluläre Prozesse wichtige Proteine, zu denen es homologe Proteine bei allen Eukaryonten und somit auch beim Menschen gibt. Es konnte durch Arbeiten der Anmelderin gezeigt werden, das zu etwa 80% aller essentiellen S. cerevisiae Proteine ein menschliches Homologes existiert und diese somit nach obigen Kriterien nicht als Targets in Frage kommen.This is due to the fact that fungi, like humans, are eukaryotes in which a great number of cellular processes are preserved. In particular, the essential genes of the fungi largely code for basic proteins that are important for cellular processes, to which there are homologous proteins in all eukaryotes and thus also in humans. It could be shown through the work of the applicant that about 80% of all essential S. cerevisiae Proteins have a human homologue and are therefore not suitable as targets according to the above criteria.

Die Effizienz von Screening-Systemen hängt im Wesentlichen von deren Spezifität ab, d.h. es müssen geeignete Parameter gefunden werden, die die Zahl der falsch positiven Ergebnisse minimieren.The efficiency of screening systems essentially depends on their specificity, i.e. Suitable parameters must be found that minimize the number of false positive results.

Bei Screening-Systemen im in vitro Verfahren (zellfreie Zielort-gerichtete Ansätze) wird meist die Bindung von Effektoren an aufgereinigte Proteine gemessen. Hierbei wird in großen Substanzbibliotheken im Hochdurchsatzverfahren (HTS) nach interessanten Leitstrukturen gesucht. Als Messsignal dient dabei der Funktionsausfall des Targets, was in der Regel eine katalytische Aktivität voraussetzt. Dies schränkt zum einen die Zahl der geeigneten Targetproteine stark ein und zum anderen muss die physiologische Funktion des Targetproteins bereits bekannt sein.In the case of screening systems using the in vitro method (cell-free targeting approaches), the binding of effectors to purified proteins is usually measured. Large substance libraries are used to find interesting lead structures using the high-throughput process (HTS). The functional failure of the target serves as the measurement signal, which usually requires catalytic activity. On the one hand, this severely limits the number of suitable target proteins and, on the other hand, the physiological function of the target protein must already be known.

Der Vorteil Zielort-basierender in vitro Ansätze ist, dass völlig neue Zielorte für Antibiotika bestimmt werden können, die bisher noch nicht durch antimikrobielle Substanzen angegriffen werden. Sie sind empfindlicher als Ganzzell-Screenings und auch schwach inhibierende Substanzen werden damit gefunden, die dann rational optimiert werden können, da der Wirkort bekannt ist.The advantage of destination-based in vitro approaches is that completely new destinations for antibiotics can be determined that have not yet been attacked by antimicrobial substances. They are more sensitive than whole-cell screenings and weakly inhibiting substances are also found, which can then be rationally optimized since the site of action is known.

Ein Nachteil zellfreier/biochemischer Testsysteme zur Identifizierung neuer inhibierender Substanzen ist, dass oftmals eine sehr große Menge möglicher Treffer ("Hits") detektiert wird, die in anschließenden Tests aufwändig verifiziert werden müssen, wobei sich viele falsch-positiv erweisen. Für die gefundenen Substanzen steht zu diesem Zeitpunkt noch keine Information zur Verfügung, ob der gefundene Inhibitor des Enzyms auch eine Beeinflussung von Mikroorganismen in vivo bewirkt.A disadvantage of cell-free / biochemical test systems for the identification of new inhibiting substances is that often a very large amount of possible hits ("hits") are detected, which have to be verified in subsequent tests, many of which prove to be false positive. At this point in time, no information is available for the substances found as to whether the enzyme inhibitor found also has an effect on microorganisms in vivo.

So müssen die Substanzen zunächst an ihre Wirkorte gelangen, d.h. in aller Regel in das Zellinnere. Die Zellwand sowie die Zytoplasmamembran stellen selektive Barrieren dar, die nicht alle Substanzen in ausreichender Menge penetrieren können. Bei in vivo Testsystemen werden ganze Zellen eingesetzt. Hier ist die Erfassung des Messsignals oft ein Problem, es sei denn, dass das Wachstum der Zellen als besonders kostengünstiger und einfacher Parameter herangezogen werden kann. Bei Screening-Systemen, die Wachstum als Messparameter ausnutzen, besteht das Hauptproblem darin, die proteinspezifisch toxische Wirkung von einer allgemein zytotoxischen Wirkung zu unterscheiden. Dies ist bei essentiellen Proteinen als Targets sehr schwierig, da sowohl die proteinspezifische Wirkung als auch die zytotoxische Wirkung zum gleichen Ergebnis, dem Zelltod führen.So the substances first have to get to their places of action, that is, as a rule, into the cell interior. The cell wall and the cytoplasmic membrane represent selective barriers that not all substances can penetrate in sufficient quantities. Whole cells are used in in vivo test systems. The acquisition of the measurement signal is often a problem here, unless the growth of the cells can be used as a particularly inexpensive and simple parameter. The main problem with screening systems that use growth as measurement parameters is to distinguish the protein-specific toxic effects from a general cytotoxic effects. This is very difficult with essential proteins as targets, since both the protein-specific effect and the cytotoxic effect lead to the same result, cell death.

Die US6228588B1 beschreibt ein Verfahren zur Identifizierung essentieller Gene von S. aureus mittels konditional letaler Mutanten, Sequenzen essentieller S. aureus Gene (und derenen Homologe in anderen Baktereien) und den Aufbau von Screening-Verfahren mittels konditional letaler Mutanten.US6228588B1 describes a method for the identification of essential genes of S. aureus by means of conditionally lethal mutants, sequences of essential S. aureus genes (and their homologues in other bacteria) and the establishment of screening methods by means of conditionally lethal mutants.

Beschrieben wird u.a. die Nutzung einer Kollektion konditional letaler Mutanten (bekannte Mutationen in essentiellen Genen) zur Identifizierung der Targets bekannter Wachstumsinhibitoren. Dies ist möglich, da bei konditional letalen Mutanten das Genprodukt oftmals nur partiell funktionell ist und eine weitere Beeinflussung genau dieses Genproduktes schneller zur Wachstumshemmung führt als bei dem Wildtyp.It is described among others the use of a collection of conditionally lethal mutants (known mutations in essential genes) to identify the targets of known growth inhibitors. This is possible because in the case of conditionally lethal mutants the gene product is often only partially functional and further influencing this gene product leads to growth inhibition faster than in the wild type.

Aus der WO9526400A1 ist eine Hefezell-basierte Methode (Reverse Two-hybrid) bekannt, mit der nach Substanzen gesucht werden kann, die spezifisch die Wechselwirkung zwischen zwei Proteinen stören. Es kann nach kleinen Molekülen gesucht werden, die ganz spezifisch die Wechselwirkung zwischen zwei Proteinen (jedweder Herkunft, z.B. Mensch, Pflanze, Bakterium, Pilz) stören. Ausgelesen wird die Störung der Wechselwirkung durch eine dadurch bedingte Induktion der Expression eines Reportergenes. Allerdings kann mit diesem Verfahren nicht nach Wachstumsinhibitoren gesucht werden.From WO9526400A1 a yeast cell-based method (reverse two-hybrid) is known, with which it is possible to search for substances that specifically interfere with the interaction between two proteins. It is possible to search for small molecules that specifically disrupt the interaction between two proteins (of any origin, e.g. human, plant, bacterium, fungus). The disorder of the interaction is read out by induction of the expression of a reporter gene caused thereby. However, this method cannot be used to search for growth inhibitors.

Die WO9957536C2 beschreibt das CAK1 (cdk-activating kinase) Gen/Protein von C. albicans (u.a.). Es werden Methoden eines Zielort-gerichteten Protein- Differenz-Screenings ("Differential Screening Formats" S.53) für CAK1 erläutert, bei der die Wirkung von Substanzen gegen ein pilzliches CAK1 mit der Wirkung gegen humanes CAK1 verglichen wird.WO9957536C2 describes the CAK1 (cdk-activating kinase) gene / protein from C. albicans (among others). Methods of a target-directed protein differential screening ("differential screening format" p.53) for CAK1 are explained, in which the action of substances against a fungal CAK1 is compared with the action against human CAK1.

Der Erfindung liegt die Aufgabe zugrunde, ein neues Screening-Verfahren bereitzustellen, das möglichst viele der Vorteile eines Zielort-gerichteten Testverfahrens mit denen eines in vivo Verfahrens kombiniert.The object of the invention is to provide a new screening method which combines as many of the advantages of a target-oriented test method as possible with those of an in vivo method.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Hochdurchsatz-geeignetes Screening-Verfahren zur Identifikation von Wirkstoffen, dadurch gekennzeichnet, daß man a) einen Zielorganismus (Targetorganismus) auswählt, den die zu identifizierenden Wirkstoffe inhibieren oder abtöten sollen, b) ein Zielgen (Target) auswählt, das oder dessen Genprodukt durch die zu identifizierenden Wirkstoffe deaktiviert werden soll, c) einen zu schützenden Organismus auswählt, der vor Schädigung durch den Zielorganismus bewahrt werden soll, d) einen Testorganismus auswählt, der ein dem Zielgen funktionshomologes Testgen trägt, e) zwei Teststämme eines Testorganismus konstruiert, die sich genotypisch in genau zwei Merkmalen unterscheiden, nämlich i. in dem Zielgen, dadurch, daß einer der Teststämme eine höhere Dosis eines das Zielgen oder dessen Genprodukt deaktivierenden Wirkstoffes toleriert als der andere Teststamm und ii. in einem Gen, das für eine gut detektierbare Eigenschaft kodiert (phänotypische Marke), für die Vitalität und Proliferationsfähigkeit des Testorganismus aber nicht essentiell ist, f) beide Teststämme mischt und gemeinsam inkubiert, g) einen potentiellen Wirkstoff zugibt und h) anhand des gegebenenfalls unterschiedlich starken Wachstums der beiden Teststämme einen Wirkstoff identifiziertThis object is achieved according to the invention by a screening method for identifying active substances which is suitable for high throughput, characterized in that a) a target organism (target organism) is selected which the active substances to be identified are to inhibit or kill, b) a target gene (target) is selected , which or its gene product is to be deactivated by the active substances to be identified, c) selects an organism to be protected which is to be protected from damage by the target organism, d) selects a test organism which carries a test gene which is functionally homologous to the target gene, e) two test strains constructed a test organism that differ genotypically in exactly two characteristics, namely i. in the target gene, in that one of the test strains tolerates a higher dose of an active ingredient which deactivates the target gene or its gene product than the other test strain and ii. in a gene that codes for a well-detectable property (phenotypic brand), but is not essential for the vitality and proliferation ability of the test organism, f) mixes both test strains and incubates them together, g) adds a potential active ingredient and h) based on this, if necessary, differently strong growth of the two test strains identified an active ingredient

Gegenüber dem bekannten Stand der Technik weist das erfindungsgemäße Verfahren beträchtliche Vorteile auf: Eine Vielzahl neuer Targets (Zielgene) kann erschlossen werden, ohne dass die genaue Funktion des Targets bekannt ist (beispielsweise essentielleThe method according to the invention has considerable advantages over the known prior art: A large number of new targets (target genes) can be tapped without the exact function of the target being known (for example essential ones

Gene/Proteine von humanpathogenen Organismen).Genes / proteins of human pathogenic organisms).

Das Screeningverfahren ist HTS-tauglich (96 well als auch 384 well Platten) und ermöglicht ein sehr einfaches Auslesen der Ergebnisse.The screening process is HTS-compatible (96 well and 384 well plates) and enables the results to be read very easily.

Ziel- und Kontrollstämme werden gemischt und gemeinsam inkubiert. Dies führt beim Einsatz im HTS zu einer 50%igen Reduktion der Gesamt-Well-Zahl und damit zu einer deutlichen Kostenersparnis.Target and control strains are mixed and incubated together. When used in the HTS, this leads to a 50% reduction in the total number of wells and thus to significant cost savings.

Die Empfindlichkeit des Screeningverfahrens kann durch unterschiedlicheThe sensitivity of the screening process can vary

Animpfungsmengen und Animpfungsverhältnisse der Teststämme moduliert werden und zeigt somit je nach Bedarf eine sehr hohe bis sehr schwacheInoculation amounts and inoculation ratios of the test strains are modulated and thus shows a very high to very weak as required

Empfindlichkeit.Sensitivity.

Selbst minimal inhibierende Wirkstoffkonzentrationen sind messbar bzw. detektierbar, da die daraus resultierenden längeren Verdopplungszeiten bis in die stationäre Phase zu einer Akkumulation des nicht-gehemmten Stammes und damit des phänotypischen Markers führt. So führt eine selektiv wirkortspezifische Hemmung, die lediglich in einem 10% langsamer wachsenden Stamm resultiert nach ca. 10 Verdopplungen des nicht gehemmten Stammes zu doppelt so vielen Zellen dieses Stammes wie des gehemmten Stammes in der Kultur.Even minimally inhibiting drug concentrations can be measured or detected, since the resulting longer doubling times up to the stationary phase lead to an accumulation of the uninhibited strain and thus the phenotypic marker. Thus, a selectively site-specific inhibition, which only results in a 10% slower growing strain, after about 10 doubling of the uninhibited strain leads to twice as many cells of this strain as the inhibited strain in the culture.

Durch den Einsatz von Mikroorganismen (z.B. Hefe) können komplexeThe use of microorganisms (e.g. yeast) can make complex

Extrakte untersucht werden ohne dass dies den Assay beeinträchtigt.Extracts are examined without affecting the assay.

Nach Erstellung der Tests ist das Verfahren schnell und kostengünstig, da sich das Testmaterial selbst vervielfältigt.After the tests have been created, the procedure is quick and inexpensive, since the test material reproduces itself.

Nur relevante Substanzen generieren ein auslesbares Signal ("Hits"). Dadurch werden tatsächlich nur wirkortspezifische Substanzen identifiziert und übermäßig viele falsch-positiver Treffer vermieden. Dies erspart eine weitere zeit- und kostenaufwendige Verifikation/Analyse der Hits.Only relevant substances generate a readable signal ("hits"). As a result, only site-specific substances are actually identified and an excessive number of false-positive hits are avoided. This saves a further time-consuming and costly verification / analysis of the hits.

"Hits" besitzen mit hoher Wahrscheinlichkeit "Leadpotential", da die Substanz den Wirkort erreicht (die Zelle penetrieren kann) und ein starker Einfluss auf das Target in vivo gezeigt ist. Vorzugsweise ist der Zielorganismus ausgewählt unter Menschen und Mikroorganismen, insbesondere pathogenen Organismen, vorzugsweise unter pflanzen-, tier- und/oder humanpathogenen Organismen, bevorzugt unter humanpathogenen Pilzen oder Bakterien."Hits" are very likely to have "lead potential" because the substance reaches the site of action (can penetrate the cell) and a strong influence on the target is shown in vivo. The target organism is preferably selected from humans and microorganisms, in particular pathogenic organisms, preferably from plant, animal and / or human pathogenic organisms, preferably from human pathogenic fungi or bacteria.

Targetorganismen sind insbesondere Pflanzenpathogene und Human- bzw. Tierpathogene (Viren, Pro- und Eukaryonten), Mikroorganismen und Pflanzen (Algen), die die industrielle Produktion stören (Biofilme, Ablagerungen in Kühlkreisläufen usw.) oder der Mensch z.B. zur Auffindung von Cytostatika zur Behandlung gegen Krebs oder der Suche nach Enzyminhibitoren (HMG-CoA Reduktase Inhibitoren zur Behandlung von Arteriosklerose).Target organisms are in particular plant pathogens and human or animal pathogens (viruses, pro and eukaryotes), microorganisms and plants (algae) which disrupt industrial production (biofilms, deposits in cooling circuits, etc.) or humans, e.g. for the detection of cytostatics for the treatment of cancer or the search for enzyme inhibitors (HMG-CoA reductase inhibitors for the treatment of arteriosclerosis).

Besonders geeignete human- bzw. tierpathogene Targetorganismen sind Organismen der Gattungen Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Nocardia, Enterobacter, Yersinia, Francisella, Pasturella, Moraxella, Acinetobacter, Erysipelothrix, Branhamella, Actinobacillus, Streptobacillus, Listeria, Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Klebsiella, Vibrio, Proteus, Borrelia, Leptospira, Spirillum, Campylobacter, Shigella, Legionella, Pseudomonas, Aeromonas, Rickettsia, Chlamydia, Borrelia, Mycoplasma, Aspergillus, Blastomyces, Candida, Coccidioides, Exophalia, Histoplasma, Pneumocystis, Cryptococcus, Trichosporon, Absidia, Mucor, Rhizomucor, Rhizopus, Mitglieder der Spezies oder Gruppe Gruppe A Streptococcus, Gruppe B Streptococcus, Gruppe C Streptococcus, Gruppe D Streptococcus, Gruppe G Streptococcus, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus faecalis, Streptococcus faecium, Streptococcus durans, Neisseria gonorrhoeae, Neisseria meningitidis, Staphylococcus aureus, Staphylococcus epidermidis, Corynebacterium diphteriae, Gardnerella vaginalis, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium ulcerans, Mycobacterium leprae, Actinomyces israelii, Listeria monocytogenes, Bordetella pertussis, Bordetella parapertussis, Bordetella bronchiseptica, Escherichia coli, Shigella dysenteriae, Haemophilus influenzae, Haemophilus parainfluenzae, Salmonella typhi, Citrobacter freundii, Proteus mirabilis, Proteus vulgaris, Yersinia pestis, Klebsiella pneumoniae, Serratia marcescens, Serratia liquefaciens, Vibrio cholerae, Shigella dysenterii, Pseudomonas aeruginosa, Francisella tularensis, Brucella abortis, Bacillus anthracis, Bacillus cereus, Clostridium perfringens, Clostridium tetani, Clostridium botulinum, Treponema pallidum, Rickettsia rickettsii, Chlamydia trachomitis, Aspergillus fumigatus, Blastomyces dermatidis, Candida dublinensis, Candida glabrata, Candida krusei, Candida albicans, Candida tropicalis, Candida parapsilopsis, Histoplasma capsulatum, Pneumocystis carinii, Cryptococcus neoformans.Particularly suitable human or animal pathogenic target organisms are organisms of the genera Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Nocardia, Enterobacter, Yersinia, Francisella, Pasturella, Moraxella, Acinetobacter, Erysillelusus, Actobacus, Actinobacella Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Klebsiella, Vibrio, Proteus, Borrelia, Leptospira, Spirillum, Campylobacter, Shigella, Legionella, Pseudomonas, Aeromonas, Rickettsia, Chlamydia, Borrelia, Mycoplasma, Aspergillio, Blidoms, Aspergillio Exophalia, Histoplasma, Pneumocystis, Cryptococcus, Trichosporon, Absidia, Mucor, Rhizomucor, Rhizopus, Members of the species or group Group A Streptococcus, Group B Streptococcus, Group C Streptococcus, Group D Streptococcus, Group G Streptococptoconcus, Streptocogenpt agalactiae, Streptococcus faecalis, Strept ococcus faecium, Streptococcus durans, Neisseria gonorrhoeae, Neisseria meningitidis, Staphylococcus aureus, Staphylococcus epidermidis, Corynebacterium diphtheriae, Gardnerella vaginalis, Mycobacterium tuberculosis, bovis Mycobacterium, Mycobacterium ulcerans, Mycobacterium leprae, Actinomyces israelii, Listeria monocytogenes, Bordetella pertussis, Bordetella parapertussis, Bordetella bronchiseptica , Escherichia coli, Shigella dysenteriae, Haemophilus influenzae, Haemophilus parainfluenzae, Salmonella typhi, Citrobacter freundii, Proteus mirabilis, Proteus vulgaris, Yersinia pestis, Klebsiella pneumoniae, Serratia marcescens, Serratia liquefaciens, Vibrio cholerae, Shigella dysenterii, Pseudomonas aeruginosa, Francisella tularensis, Brucella abortis, Bacillus anthracis, Bacillus cereus, Clostridium perfringens, Clostridium tetani, botulinum Clostridium, Treponema pallidum, Rickettsia rickettsii, Chlamydia trachomitis, Aspergillus fumigatus, Blastomyces dermatitidis, Candida dublinensis, Candida glabrata, Candida krusei, Candida albicans, Candida tropicalis, Candida parapsilopsis, Histoplasma capsulatum, Pneumocystis carinii, Cryptococcus neoformans.

Geeignete pflanzenpathogene Targetorganismen sind Organismen der Gattungen Alternaria, Gaeumannomyces, Cercospora, Botrytis, Claviceps, Corticium, Colletotrichum, Didymella, Endothia, Exobasidium, Sclerotinia, Erysiphe, Fusarium, Magnaporthe, Plasmopara, Penicillium, Peronospora, Pseudoperonospora, Phytophthora, Pythium, Monilia, Mucor, Trametes, Ophiostoma, Rhizoctonia, Sphacelotheca, Septoria, Sclerospora, Venturia, Verticillium, Puccinia, Phoma, Tilletia, Ustilago, und Urocystis.Suitable phytopathogenic target organisms are organisms of the genera Alternaria, Gaeumannomyces, Cercospora, Botrytis, Claviceps, Corticium, Colletotrichum, Didymella, Endothia, Exobasidium, Sclerotinia, Erysiphe, Fusarium, Magnaporthe, Plasmopara, Penicillporium, Pythonpora, Pythonoporum, Pythonoporum , Trametes, Ophiostoma, Rhizoctonia, Sphacelotheca, Septoria, Sclerospora, Venturia, Verticillium, Puccinia, Phoma, Tilletia, Ustilago, and Urocystis.

Mit Targetgenen (Zielgenen) bzw. Targetproteinen sind erfindungsgemäß Gene/Proteine bezeichnet, die essentiell für das vegetative Wachstum des Targetorganismus sind. Die Störung, Hemmung oder Inaktivierung der Gene bzw. der zugehörigen Genprodukte (Proteine) führt zu einer Abtötung bzw. Wachstumshemmung des Targetorganismus. Hierunter fallen insbesondere alle Proteine/Gene eines Targetorganismus die Funktionshomologe zu essentiellen Genen/Proteinen von S. cerevisiae darstellen. Um essentielle Gene der Hefe S. cerevisiae handelt es sich bei folgendenden Genen:According to the invention, target genes (target genes) or target proteins refer to genes / proteins which are essential for the vegetative growth of the target organism. The disruption, inhibition or inactivation of the genes or the associated gene products (proteins) leads to the target organism being killed or inhibited from growth. This includes in particular all proteins / genes of a target organism which are functional homologs to essential genes / proteins of S. cerevisiae. The following genes are essential genes of the yeast S. cerevisiae:

YER022w, YBR211C, YDR118w, YOR249c, YKL004w, YHR101c, YDL220c,YER022w, YBR211C, YDR118w, YOR249c, YKL004w, YHR101c, YDL220c,

YLR459w, YMR168c, YER026c, YMR094w, YDR016c, YGR113w, YOL149w,YLR459w, YMR168c, YER026c, YMR094w, YDR016c, YGR113w, YOL149w,

YJL090c, YMR220w, YBR102c, YKLOβOc, YNL256w, YPR136c, YNL038w,YJL090c, YMR220w, YBR102c, YKLOβOc, YNL256w, YPR136c, YNL038w,

YJR016c, YER038C, YLR317w, YDR499w, YBR193c, YEL019c, YKL186c, YGR158C, YGR147C, YML031w, YPL124W, YJL039c, YPR168W, YLL004w,YJR016c, YER038C, YLR317w, YDR499w, YBR193c, YEL019c, YKL186c, YGR158C, YGR147C, YML031w, YPL124W, YJL039c, YPR168W, YLL004w,

YCL052C, YNL282w, YGR03ÖC, YBR167c, YBL018c, YGR075c, YFR029w,YCL052C, YNL282w, YGR03ÖC, YBR167c, YBL018c, YGR075c, YFR029w,

YJL173c, YBR256c, YOR095c, YMR200w, YBL093C, YML091c, YML043c,YJL173c, YBR256c, YOR095c, YMR200w, YBL093C, YML091c, YML043c,

YLR141W, YBLO c, YJL025w, YMR270c, YCR035c, YDR303c, YLR033w, YDR041W, YER147C, YNR026c, YDR498c, YMR059w, YPL083C, YLL003w, YGL113W, YIL147C, YDR478w, YDL098C, YDR240c, YDR201W, YBR253W, YHR178W, YDR082W, YIROHc, YJL035c, YPL128c, YGR099W, YLR010C, YAL001C, YDR362C, YPL007c, YJL054w, YNL131w, YBR126c, YJL087c, YDR407C, YDR472W, YEL035c, YAL035C-A, YBL073W, YBL077W, YBR168W, YBR190W, YCL041C, YCR013C, YDL016C, YDL163W, YDL196W, YDL221W, YDR053W, YDR187C, YDR327W, YDR355c, YDR367w, YDR396w, YDR413C, YDR526C, YFR042W, YGL069C, YGL074C, YGL102C, YGL239C, YGL247W, YGR046W, YGR073C, YGR114C, YGR128c, YGR190C, YGR251W, YGR265W, YGR277C, YHR083W, YHR196w, YJL009W, YJL010C, YJL015C, YJL018W, YJL032W, YJL086C, YJL091C, YJL195C, YJL202C, YJR012C, YJR023c, YJR041C, YJR046W, YJR136c, YKLO c, YKL036c, YKL083W, YKL111C, YKL153W, YKR081C, YKR083C, YLL037w, YLR007w, YLR076c, YLR101c, YLR112W, YLR132C, YLRUOw, YLRUδw, YLR198c, YLR230W, YLR339C, YLR379W, YLR440C, YLR458W, YML023C, YML127W, YMR134W, YMR290w-a, YMR298w, YNL114C, YNL149C, YNL150W, YNL158W, YNL194C, YNL260c, YNL306W, YNL310C, YOL026C, YOL134C, YOR060C, YOR102W, YOR146W, YOR169C, YOR203W, YOR218C, YOR282W, YDL235c, YPL044C, YPL142C, YPL233W, YPL238C, YPL251W, YPR085C, YPR142C, YPR177C, YHR148w, YFL039C, YER133W, YFL037w, YDR064w, YGL048c, YLR229c, YLR293c, YLR167W, YER148W, YEL026W, YPRO c, YML085c, YER025w, YOR117w, YDL007W, YPL235W, YDR190c, YMR043w, YLR029c, YBR109C, YDL126c, YER070W, YOR259C, YBR143c, YER043c, YKL145w, YDR021w, YKL049c, YOR210W, YHL015W, YDR091c, YKL013c, YOR063w, YDR394w, YDL143w, YOR145C, YJL026W, YPL204w, YJL034w, YPR082c, YIL142w, YDL047w, YBL026w, YGL030W, YJR045c, YJR064W, YPR043W, YDR212w, YOL094c, YFR004W, YOR257W, YCL059c, YBR160w, YPR103w, YDL029W, YGL120c, YLR075W, YLR359W, YJR123w, YPR165w, YMR29ÖC, YJL111w, YHR174w, YNL244C, YDL084W, YHR183w, YOL127w, YJLOUw, YDR331w, YOL038w, YLR147C, YHR165C, YOL133w, YPL266w, YCR012W, YLR175W, YER136w, YNL178w, YDLOδδc, YGR267c, YDLOUw, YOR074C, YMR26ÖC, YIL003W, YKR068c, YJLOOlw, YDR339C, YOL077c, YPL211W, YGL103W, YDR373w, YLR340W, YOL040C, YER094c, YGL091c, YLR008c, YLR275w, YDL064w, YDR188W, YHR065C, YKL035w, YHR005c-a, YGR253c, YER146W, YHR074w, YLR378C, YGR185C, YLR259c, YFL017w-a, YHR143w-a, YHR068W, YCL017c, YOR151C, YFLOOδw, YOL097c, YBL092w, YJR007w, YIL143c, YDR037w, YDL208W, YKR038C, YGL011c, YGL123w, YBL076c, YER171w, YNR053C, YOR157c, YNL189W, YKL210w, YOL120C, YOL066c, YOR159c, YKL024c, YBR196C, YBR135W, YPR094W, YIL078w, YBL105c, YPR176c, YNL132w, YPL218W, YNL290W, YPL151c, YER159c, YBR011c, YDR454c, YHR072w-a, YLR009W, YBL04OC, YDR172w, YHR02ÖW, YLL018c, YJR058c, YBR252w, YJLOδOw, YGL022W, YOR244w, YMR314w, YMR301c, YJROβδc, YOR046c, YDR047W, YDR510W, YJR068w, YKL180W, YDLUOc, YOR362C, YNL075w, YIL126W, YHR019C, YOR261C, YPR182w, YHR122w, YFL022c, YAL025c, YGR180C, YGR024C, YKL152c, YGR264c, YBR202w, YOLOOδc, YER013w, YOL100W, YLR197W, YIL048w, YER048W-A, YDROδOc, YLR243W, YLR186w, YAL038W, YOR103C, YPL131w, YOR262W, YML092c, YHROOδc, YDR062w, Y0R116C, YGL137W, YPR11ÖC, YOL123w, YOR310c, YDL108w, YMR288w, YLR298C , YKR002W, YGR029w, YGR094w, YER036c, YDR044w, YGR218w, YPR088c, YOR33δc, YLR208w, YPR181c, YPL117c, YPL028w, YIL106w, YKL196C, YPR019W, YJR0δ7w, YDL102w, YLL034c, YNL113w, YPL2δ2c, YBR080C, YDR002W, YJL143w, YHR17ÖW, YDR086c, YML126C, YIR022w, YPL093W, YER012W, YJR072c, YDR397c, YPR033c, YDL097c, YKR086w, YNL267w, YLR336C, YDL147w, YMLOIδc, YJL008c, YPL17δw, YMR213w, YBR1δ4c, YER165W, YLR163c, YNL232w, YPR107c, YFROδOc, YCR072c, YMR146C, YGL201C, YEL032w, YNL222w, YDL166C, YJL167W, YBL041w, YNLOOβw, YLR022C, YHR089c, YFL009w, YLR274w, YGL24ÖW, YOR204w, YHR190W, YDR378C, YPROlOc, YKL193c, YPL143w, YBR087w, YDR238c, YER172C, YDL031W, YDR328c, YOR020c, YLL011w, YPL160w, YNL061w, YLR314c, YIL021w, YNR011c, YBR121c, YER029c, YLR438c-a, YGL106w, YPR187W, YGL171W, YHR088w, YDLUδc, YDR341c, YBR088c, YNR016c, YNR043W, YLR397C, YLR276c, YBR247c, YKL0δ8w, YDL028c, YLROβOw, YDR4δ7w, YBR091C, YDR460w, YDR404c, YPLOlOw, YLR1δ3c, YCR0δ7c, YAR019C, YOL010W, YBL023c, YLR066w, YDR023W, YGR211w, YLR212c, YPL209C, YNL247W, YLL031c, YAL003w, YER082C, YKL088W, YNL088w, YHR102W, YER009W, YJL09δw, YKL203c, YEL020w-a, YOR048c, YDR0δ4c, YDR04δc, YJR017c, YLR19δc, YDRUδw, YGR172C, YDR412w, YNL262w, YEL0δ8w, YAL03δw, YKL078w, YGR103W, YDL20δc, YOR323c, YDL164c, YHR169W, YNL048W, YGL068W, YOR326w, YMR128w, YDR267C, YLR277c, YLR117C, YPL063W, YLLOδOc, YLR268W, YGLOδδw, YFR031c, YIL07δc, YOL021C, YNL317W, YJL104w, YNL207W, YDR28ÖW, YHR107c, YJL167w, YHR024c, YKR026C, YOR232w, YML098W, YPR108W, YPL237w, YBR192w, YOR319W, YBR243C, YER003c, YOL139C, YLR086w, YBR029c, YOR224c, YDL103c, YGL238W, YER021w, YHR027c, YGR19δw, YGLOβδc, YKL16δc, YNL110C, YDR0δ2c, YOR294w, YLL008W, YLROOδw, YHR069c, YHR072w, YBLOδOw, YOR207c, YBR123c, YJL033w, YJR022w, YJL12δc, YJL074c, YLR21δC, Y0R119C, YFL038c, YML12δC, YPL094c, YPR113W, YLR129w, YKL04δw, YDL087C, YMR236w, YGL029w, YBR234c, YNL007c, YGLOOlc, YDRδ27W, YNL163C, YGL003c, YNL221c, YIL083C, YKL189w, YOR287C, YNL287W, YGR048W, YBR017c, YNL263c, YPL122c, YHR007c, YBR17ÜC, YIL004C, YGL018C, YPR041w, YKL022c, YPR180w, YDR449C, YGR145W, YDL207W, YML064C, YDR189w, YDL008w, YKL172w, YPR086w, YNL280c, YGR091W, YGR17δc, YOR077w, YAR007c, YLR321c, YPL217c, YGROβOw, YDR292C, YPL082C, YOR168w, YGL207w, YKL099C, YNR0δ4C, YIR008c, YPR161C, YPL242C, YJR013W, YDL017w, YML077w, YER023w, YGL112c, YFL008w, YDR196C, YGL116w, YDR243c, YBR070c, YMR208w, YOL142w, YBR1δ9w, YCL031C, YGR24δc, YDR36δc, YFR0δ2w, YBR142w, YNL2δ8c, YFR028C, YLR347C, YOL102c, YBR110w, YLR323C, YPR178w, YLR291c, YDR167W, YDR013W, YMR131c, YOR361c, YDL1Ö2W, YIROIδw, YIL109c, YKL012w, YHR070W, YBR237w, YIL061c, YML069w, YER12δw, YKL173w, YDR429C, YIL046W, YGR083c, YDRδ31W, YDR390c, YDR208w, YMR277w, Y0L13δc, YBR2δ4c, YFL002c, YGR216c, YKL09δw, YMR23δc, YML130c, YGR278W, YNR003C, YGROOδc, YDL111c, YMROOlc, YKL082C, YER008c, YPR183W, YBR198C, YHR164c, YOR341w, YHR042w, YNL102w, YLROδlc, YOR281C, YOR0δ7w, YNL002c, YDR170c, YDR437W, YOR206W, YOR148c, YNL245C, YDR236C, YBR236c, YJL097W, YFROδlc, YDLOβOw, YNR038w, YDL132W, YCL004W, YNL039w, YKR063c, YMR093W, YKL006c-a, YKL019w, YHR062C, YDLOIδc, YDR376w, YOR004W, YLR222C, YKR008w, YLR166c, YPR048W, YDR398W, YBR079C, YMR308c, YNL0δ9c, YNL026w, YGL073w, YLR116W, YOR174W, YPL190c, YPR143W, YGR2δδc, YDR211w, YMR112C, YMR239C, YJL072C, YFL017c, YMR079w, YPL020C, YPROδβw, YPL1δ3c, YGR246c, YIL022w, YPR162c, YIL129C, YOR3δ3c, YLR196w, YOR217w, YOL0δ2c, YIL091C, YCL043c, YJL031c, YGR167w, YPR112C, YMR296c, YLR002C, YPR144C, YDR141c, YGR074w, YGR09δc, YLR43ÖW, YMR197c, YMR061W, YDL04δc, YER006W, YJROOβw, YPR190c, YOL034W, YAL034w-a, YNL1δ1c, YDR087C, YHR166c, YMR24ÖC, YNR017w, YBR2δ7w, YLR026c, YBL020W, YMLOWw, YDR416w, YJR002W, YNR046W, YGL111W, YJR112w, YDR300C, YDL141W, YIL019W, YBRIδδw, YOR194c, YLR4δ7c, YER112w, YLR310C, YGL047W, YMR281w, YLRIOδc, YDR361c, YJR067c, YNL126W, YJL002C, YELOδδc, YDR302w, YHR08δw, YJL109C, YHR188c, YPL228w, YGL008C, YDR3δ3w, YDL217c, YJL069C, YGL098W, YMLOβδw, YDR473c, YML093W, YGR047C, YLR409C, YGR002C, YDR228c, YDR168w, YGR274c, YFR037C, YMROOδw, YJLOOδw, YGL044c, YJL061w, YLR383w, YMR013c, YDL139C, YDR468c, YHR197w, YGR098c, YNL181W, YHR099w, YOR2δ0c, YIL171W, YMR309C, YNL240c, YIL104C, YPR137w, YDR060W, YOR340c, YMR028W, YDR301W, YCL0δ4w, YDL0δ8w, YGR1δ6w, YOR37ÖC, YMR091c, YJL081C, YKL018W, YDR308c, YBL084c, YPR186c, YDL088c, YOR122c, YHR0δ2w, YNL308c, YDL148c, YLR103c, YFR002w, YMR049c, YKL19δW, YDR164C, YHR0δ8c, YDL193W, YAL043c, YLR088w, YLR272c , YMR211w, YBROδδc, YLR30δc, YIROlOw, YER168c, YKR02δw, YLR106c, YHR186c, YJL011C, YOROδβC, YOL022C, YFROOδc, YGL097w, YMR203w, YOR143c, YCR093W, YLL03δw, YAL033w, YER018c, YLR249w, YBL034c, YKL021c, YDR283C, YBR136W, YDR489W, YPR17δw, YOR149c, YOR2δ4c, YBL03δc, YGR280C, YOR260w, YGL142c, YBR049c, YPL012w, YAL032c, YEL002c, YKL108W, YKR079C, YLRWOw, YNL172w, YAL047C, YDR081c, YMR117c, YIL026C, YJL194W, YGR Ow, YGR116w, YDR246W, YFR003C, YNL312w, YDL043C, YCR042C, YBROβOc, YGL07δc, YDL03ÖW, YML049c, YLR316c, YNL313C, YGL108C, YKL0δ9c, YKL028w, YJL203W, YGR009c, YKL1δ4w, YDR3δ6w, YPL231W, YMR227c, YPL043w, YGR179C, YKR037c, YKL182w, YDR324C, YLL036C, YGL13ÖW, YHR090C , YKR062w, YGR119c, YFL029c, YDR23δw, YAR008w, YAL041w, YPR02δc, YPL2δδw, YNL062c, YOR110w, YNL2δ1c, YFR027W, YER127W, YJL012c, YGLIδδw, YIL144W, YHR040w, YNL216W, YBL004W, YKL144c, YPL076w, YDR32δW, YLR04δc, YDR288W, YILIδOc, YOL069W, YKL12δw, YHR036w, YML02δC, YMR268c, YKR071C, YPL210C, YBR26δw, YDR381w, YMR229c, YGL233W, YMR149w, YOL146W, YGL061C, YKL112W, YPL243w, YLR11δw, YLR071c, YOR336w, YPL146C, YNL124W, YIL068C, YJR141w, YDL19δw, YLR078c, YGL172W, YPL011c, YLR127c, YKL042W, YIR012w, YNL261w, YGR013w, YGR090W, YDR299w, YNL188W, YIL11δc, YDL1δ3c, YGR11δC, YJL019W, YOR2δ6C, YBL097W, YDL003W, YMR218C, YDLWδw, YGR191w, YGL092W, YMR076C, YOR07δw, YPROδδw, YJR093C, YNL272c, YDR180w, YDR432w, YNL182C, YML104c, YPRIOδC, YKL0δ2c, YFL024c, YML046w, YGL093W, YGL22δw, YKR022C, YDR434W, YDLIδOw, YDR311w, YPL08δw, YPL169c, YPR034w, YOR372c, YOR373W, YML114C, YPR169W, YHR118c, YGLUδw, YGR186w, YDR088c, YDL209C, YOL078W, YLR424W, YNL1Ö2W, YJL041w, YGR198W, YPL126w, YNL118C, YKL033W, YMR033w, YOL13ÖW, YDR420w, YJL08δw, YDR207c, YKL089W, YDR166C, YDR182w, YHR172w, YDR464w, YOL144W, YJR089W, YIROOβc, YCR0δ2w, YLR223c, YOR329c, YBR1δ6c, YJL042W, YDR113c, YGL122C, YMR113W, YPR03δW, YHR026W, YJR139C, YBR1δ3W, YHR066W , YOR272W, YJL1δ3C, YDR120C, YDR329C, YFL04ÖC, YGL033W, YLR18ÖW, YHR20δW, YPR133C, YDR066C, YLR136C, YLR064w, YLR143w, YCR0δ4C, YBL074C, YBL030C, YBR002c, YBR004c, YBR089w, YBR118w, YBR124w, YBR14ÖC, YCR064C, YDL212w, YDLWδw, YDL092w, YDL004w, YDR160w, YDR177W, YDR224C, YDR232w, YDR427w, YDR487c, YEL034w, YER093c, YER104W, YER107c, YER126c, YER1δ7w, YGL169w, YGLIδOc, YGL040c, YGROβδc, YGR082W, YGR120c, YHR023w, YHR084w, YIL118w, YIL063c, YIL062C, YIL033C, YIL031W, YJL174w, YJLIδβc, YJR042w, YJR076c, YKL209c, YKL192C, YKL181W, YKL141w, YKL122c, YKL104c, YLR3δδc, YMLIOδc, YMR047C, YMR108W, YMR16δc, YMR217w, YNL161w, YNL137c, YNL112w, YNR03δc, YOR098c, YOR160w, YOR176w, YOR181w, YOR236w, YOR278w, YPL07δw, YPL016W, YCL0δ3c, YFL03δc, YFLOβOc, YILOδlc, YLR084c, YNL018C, YNL103W, YOL166c, YPR104cYLR141W, YBLO c, YJL025w, YMR270c, YCR035c, YDR303c, YLR033w, YDR041W, YER147C, YNR026c, YDR498c, YMR059w, YPL083C, YLL003w, YGL113W, YIL147C, YDR478w, YDL098C, YDR240c, YDR201W, YBR253W, YHR178W, YDR082W, YIROHc, YJL035c, YPL128c, YGR099W, YLR010C, YAL001C, YDR362C, YPL007c, YJL054w, YNL131w, YBR126c, YJL087c, YDR407C, YDR472W, YEL035c, YAL035C-A, YBL073W, YBL077W, YBR168W, YBR190W, YCL041C, YCR013C, YDL016C, YDL163W, YDL196W, YDL221W, YDR053W, YDR187C, YDR327W, YDR355c, YDR367w, YDR396w, YDR413C, YDR526C, Yfr042w, YGL069C, YGL074C, YGL102C, YGL239C, YGL247W, YGR046W, YGR073C, YGR114C, YGR128c, YGR190C, YGR251W, YGR265W, YGR277C, YHR083W, YHR196w, YJL009W, YJL010C, YJL015C, YJL018W, YJL032W, YJL086C, YJL091C, YJL195C, YJL202C, YJR012C, YJR023c, YJR041C, YJR046W, YJR136c, YKLO c, YKL036c, YKL083W, YKL111C, YKL153W, YKR081C, YKR083C, YLL037w, YLR007w, YLR076c, YLR101c, YLR112W, YLR132C, YLRUOw, YLRUδw, YLR198c, YLR230W, YLR339C, YLR379W , YLR440C, YLR458W, YML023C, YML127W, YMR134W, YMR290w-a, YMR298w, YNL114C, YNL149C, YNL150W, YNL158W, YNL194C, YNL260c, YNL306W, YNL310C, YOL026C, YOL134C, YOR060C, YOR102W, YOR146W, YOR169C, YOR203W, YOR218C, YOR282W, YDL235c, YPL044C, YPL142C, YPL233W, YPL238C, YPL251W, YPR085C, YPR142C, YPR177C, YHR148w, YFL039C, YER133W, YFL037w, YDR064w, YGL048c, YLR229c, YLR293c, YLR167W, YER148W, YEL026W, YPRO c, YML085c, YER025w, YOR117w, YDL007W, YPL235W, YDR190c, YMR043w, YLR029c, YBR109C, YDL126c, YER070W, YOR259C, YBR143c, YER043c, YKL145w, YDR021w, YKL049c , YOR210W, YHL015W, YDR091c, YKL013c, YOR063w, YDR394w, YDL143w, YOR145C, YJL026W, YPL204w, YJL034w, YPR082c, YIL142w, YDL047w, YBL026w, YGL030W, YJR045c, YJR064W, YPR043W, YDR212w, YOL094c, YFR004W, YOR257W, YCL059c, YBR160w , YPR103w, YDL029W, YGL120c, YLR075W, YLR359W, YJR123w, YPR165w, YMR29ÖC, YJL111w, YHR174w, YNL244C, YDL084W, YHR183w, YOL127w, YJLOUw, YDR331w, YOL038w, YLR147C, YHR165C, YOL133w, YPL266w, YCR012W, YLR175W, YER136w, YNL178w , YDLOδδc, YGR267c, YDLOUw, YOR074C, YMR26ÖC, YIL003W, YKR068c, YJLOOlw, YDR339C, YOL077c, YPL211W, YGL103W, YDR373w, YLR340W, YOL040C, YER094c, YGL091c, YLR008c, YLR275w, YDL064w, YDR188W, YHR065C, YKL035w, YHR005c-a, YGR253c, YHR1474W, YLR378C, YGR185C, YLR259c, YFL017w-a, YHR143w-a, YHR068W, YCL017c, YOR151C, YFLOOδw, YOL097c, YBL092w, YJR007w, YIL143c, YDR037w, YDL208W, YKR038C, YGL011c, YGL123w, YBL076c, YER171w, YNR053C, YOR157c, YNL189W, YKL210w, YOL120C, YOL066c, YOR159c, YKL024c, YBR196C, YBR135W, YPR094W, YIL078w, YBL105c, YPR176c, YNL132w, YPL218W, YNL290W, YPL151c, YER159c, YBR011c, YDR454c, YHR072w-a, YLR009W, YBL04OC, YDR172w, YHR02ÖW, YLL018c, YJR058c, YBR252w, YJLOδOw, YGL022W, YOR244w, YMR314w, YMR301c, YJROβδc, YOR046c, YDR047W, YDR510W, YJR068w, YKL180W, YDLUOc, YOR362C, YNL075w, YIL126W, YHR019C, YOR261C, YPR182w, YHR122w, YFL022c, YAL025c, YGR180C, YGR024C, YKL152c, YGR264c, YBR202w, YOLOOδc, YER013w, YOL100W, YLR197W, YIL048w, YER048W-A, YDROδOc, YLR243W, YLR186w, YAL038W, YOR103C, YPL131w, YOR262W, YML092c, YHROOδc, YDR062w, Y0R116C, YGL137W, YPR11ÖC, YOL123w, YOR310c, YDL108w, YMR288w, YLR298C, YKR002W, YGR029w, YGR094w, YER036c, YDR044w, YGR218w, YPR088c, YOR33δc, YLR208w, YPR181c, Y PL117c, YPL028w, YIL106w, YKL196C, YPR019W, YJR0δ7w, YDL102w, YLL034c, YNL113w, YPL2δ2c, YBR080C, YDR002W, YJL143w, YHR17ÖW, YDR086c, YML126C, YIR022w, YPL093W, YER012W, YJR072c, YDR397c, YPR033c, YDL097c, YKR086w, YNL267w, YLR336C, YDL147w, YMLOIδc, YJL008c, YPL17δw, YMR213w, YBR1δ4c, YER165W, YLR163c, YNL232w, YPR107c, YFROδOc, YCR072c, YMR146C, YGL201C, YEL032w, YNL222w, YDL166C, YJL167W, YBL041w, YNLOOβw, YLR022C, YHR089c, YFL009w, YLR274w, YGL24ÖW, YOR204w, YHR190W, YDR378C, YPROlOc, YKL193c, YPL143w, YBR087w, YDR238c, YER172C, YDL031W, YDR328c, YOR020c, YLL011w, YPL160w, YNL061w, YLR314c, YIL021w, YNR011c, YBR121c, YER029c, YLR438c-a, YGL106w, YPR187W, YGL171W, YHR088w, YDLUδc, YDR341c, YBR088c, YNR016c, YNR043W, YLR397C, YLR276c, YBR247c, YKL0δ8w, YDL028c, YLROβOw, YDR4δ7w, YBR091C, YDR460w, YDR404c, YPLOlOw, YLR1δ3c, YCR0δ7c, YAR019C, YOL010W, YBL023c, YLR066w, YDR023W, YGR211w, YLR212c, YPL209C, YNL247W, YLL031c, YAL003w, YER082C, YKL088W, YNL088w, YHR102W, YER0 09W, YJL09δw, YKL203c, YEL020w-a, YOR048c, YDR0δ4c, YDR04δc, YJR017c, YLR19δc, YDRUδw, YGR172C, YDR412w, YNL262w, YEL0δ8w, YALKLL33dc, YALKL03D3dc YHR169W, YNL048W, YGL068W, YOR326w, YMR128w, YDR267C, YLR277c, YLR117C, YPL063W, YLLOδOc, YLR268W, YGLOδδw, YFR031c, YIL07δc, YOL021C, YNL317W, YJL104w, YNL207W, YDR28ÖW, YHR107c, YJL167w, YHR024c, YKR026C, YOR232w, YML098W, YPR108W, YPL237w, YBR192w, YOR319W, YBR243C, YER003c, YOL139C, YLR086w, YBR029c, YOR224c, YDL103c, YGL238W, YER021w, YHR027c, YGR19δw, YGLOβδc, YKL16δc, YNL110C, YDR0δ2c, YOR294w, YLL008W, YLROOδw, YHR069c, YHR072w, YBLOδOw, YOR207c, YBR123c, YJL033w, YJR022w, YJL12δc, YJL074c, YLR21δC, Y0R119C, YFL038c, YML12δC, YPL094c, YPR113W, YLR129w, YKL04δw, YDL087C, YMR236w, YGL029w, YBR234c, YNL007c, YGLOOlc, YDRδ27W, YNL163C, YGL003c, YNL221c, YIL083C, YKL189w, YOR287C, YNL287W, YGR048W, YBR017c, YNL263c, YPL122c, YHR007c, YBR17ÜC, YIL004C, YGL018C, YPR041w, YKL022c, YPR180w, YDR449C, YGR145W, YDL207W, YML064C, YDR189w, YDL008w, YKL172w, YPR086w, YNL280c, YGR091W, YGR17δc, YOR077w, YAR007c, YLR321c, YPL217c, YGROβOw, YDR292C, YPL082C, YOR168w, YGL207w, YKL099C, YNR0δ4C, YIR008c, YPR161C, YPL242C, YJR013W, YDL017w, YML077w, YER023w, YGL112c, YFL008w, YDR196C, YGL116w, YDR243c, YBR070c, YMR208w, YOL142w, YBR1δ9w, YCL031C, YGR24δc, YDR36δc, YFR0δ2w, YBR142w, YNL2δ8c, YFR028C, YLR347C, YOL102c, YBR110w, YLR323C, YPR178w, YLR291c, YDR167W, YDR013W, YMR131c, YOR361c, YDL1Ö2W, YIROIδw, YIL109c, YKL012w, YHR070W, YBR237w, YIL061c, YML069w, YER12δw, YKL173w, YDR429C, YIL046W, YGR083c, YDRδ31W, YDR390c, YDR208w, YMR277w, Y0L13δc, YBR2δ4c, YFL002c, YGR216c, YKL09δw, YMR23δc, YML130c, YGR278W, YNR003C, YGROOδc, YDL111c, YMROOlc, YKL082C, YER008c, YPR183W, YBR198C, YHR164c, YOR341w, YHR042w, YNL102w, YLROδlc, YOR281C, YOR0δ7w, YNL002c, YDR170c, YDR437W, YOR206W, YOR148c, YNL245C, YDR236C, YBR236c, YJL097W, YFROδlc, YDLOβOw, YNR038w, YDL132W, YCL004W, YNL039w, YKR063c, YMR093W, YKL006c-a, YKL019w, YHR062C, YDLOIδc, YDR376w, YOR004W, YLR222C, YKR008w, YLR166c, YPR048W, YDR398W, YBR079C, YMR308c, YNL0δ9c, YNL026w, YGL073w, YLR1 16W, YOR174W, YPL190c, YPR143W, YGR2δδc, YDR211w, YMR112C, YMR239C, YJL072C, YFL017c, YMR079w, YPL020C, YPROδβw, YPL1δ3c, YGR246c, YIL1622, YIL1622 YOL0δ2c, YIL091C, YCL043c, YJL031c, YGR167w, YPR112C, YMR296c, YLR002C, YPR144C, YDR141c, YGR074w, YGR09δc, YLR43ÖW, YMR197c, YMR061W, YDL04δc, YER006W, YJROOβw, YPR190c, YOL034W, YAL034w-a, YNL1δ1c, YDR087C, YHR166c, YMR24ÖC, YNR017w, YBR2δ7w, YLR026c, YBL020W, YMLOWw, YDR416w, YJR002W, YNR046W, YGL111W, YJR112w, YDR300C, YDL141W, YIL019W, YBRIδδw, YOR194c, YLR4δ7c, YER112w, YLR310C, YGL047W, YMR281w, YLRIOδc, YDR361c, YJR067c, YNL126W, YJL002C, YELOδδc, YDR302w, YHR08δw, YJL109C, YHR188c, YPL228w, YGL008C, YDR3δ3w, YDL217c, YJL069C, YGL098W, YMLOβδw, YDR473c, YML093W, YGR047C, YLR409C, YGR002C, YDR228c, YDR168w, YGR274c, YFR037C, YMROOδw, YJLOOδw, YGL044c, YJL061w, YLR383w, YMR013c, YDL139C, YDR468c, YHR197w, YGR098c, YNL181W, YHR099w, YOR2δ0c, YIL171W, YMR309C, YNL240c, YIL104C, YPR137w, YDR060W, YOR340c, YMR028W, YDR301W, YCL0δ4w, YDL0δ8w, YGR1δ6w, YOR37ÖC, YMR091c, YJL081C, YKL018W, YDR308c, YBL084c, YPR186c, YDL088c, YOR122c, YHR0δ2w, YNL308c, YDL148c, Y LR103c, YFR002w, YMR049c, YKL19δW, YDR164C, YHR0δ8c, YDL193W, YAL043c, YLR088w, YLR272c, YMR211w, YBROδδc, YLR30δc, YIROlOw, YER168c, YKR02δw, YLR106c, YHR186c, YJL011C, YOROδβC, YOL022C, YFROOδc, YGL097w, YMR203w, YOR143c, YCR093W, YLL03δw, YAL033w, YER018c, YLR249w, YBL034c, YKL021c, YDR283C, YBR136W, YDR489W, YPR17δw, YOR149c, YOR2δ4c, YBL03δc, YGR280C, YOR260w, YGL142c, YBR049c, YPL012w, YAL032c, YEL002c, YKL108W, YKR079C, YLRWOw, YNL172w, YAL047C, YDR081c, YMR117c, YIL026C, YJL194W, YGR Ow, YGR116w, YDR246W, YFR003C, YNL312w, YDL043C, YCR042C, YBROβOc, YGL07δc, YDL03ÖW, YML049c, YLR316c, YNL313C, YGL108C, YKL0δ9c, YKL028w, YJL203W, YGR009c, YKL1δ4w, YDR3δ6w , YPL231W, YMR227c, YPL043w, YGR179C, YKR037c, YKL182w, YDR324C, YLL036C, YGL13ÖW, YHR090C, YKR062w, YGR119c, YFL029c, YDR23δw, YAR008w, YAL041w, YPR02δc, YPL2δδw, YNL062c, YOR110w, YNL2δ1c, YFR027W, YER127W, YJL012c, YGLIδδw , YIL144W, YHR040w, YNL216W, YBL004W, YKL144c, YPL076w, YDR32δW, YLR04δc, YDR288W, YILIδOc, YOL069W, YKL12δw, YHR036w, YML02δC, YMR268c, YKR071C, YPL210C, YBR26δw, YDR381w, YMR229c, YGL233W, YMR149w, YOL146W11, YOL146WLL, YOL146WL, YOL146WL, YOL146WL YNL124W, YIL068C, YJR141w, YDL19δw, YLR078c, YGL172W, YPL011c, YLR127c, YKL042W, YIR012w, YNL261w, YGR013w, YGR090W, YDR299w, YNL188W, YIL11δc, YDL1δ3c, YGR11δC, YJL019W, YOR2δ6C, YBL097W, YDL003W, YMR218C, YDLWδw, YGR191w, YGL092W, YMR076C, YOR07δw, YPROδδw, YJR093C, YNL272c, YDR180w, YDR432w, YNL182C, YML104c, YPRIOδC, YKL0δ2c, YFL024c, YML046w, YGL093W, YGL22δw, YKR022C, YDR434W, YDLIδOw, YDR311w, YPL08δw, YPL169c, YPR034w, YOR372c, YOR373W, YML114C, YPR169W, YHR118c, YGLUδw, YGR186w, YDR088c, YDL209C, YOL078W, YLR424W, YNL1Ö2W, YJL041w, YGR198W, YPL126w, YNL118C, YKL033W, YMR033w, YOL13ÖW, YDR420w, YJL08δw, YDR207c, YKL089W, YDR166C, YDR182w, YHR172w, YDR464w, YOL144W, YJR089W, YIROOβc, YCR0δ2w, YLR223c, YOR329c, YBR1δ6c, YJL042W, YDR113c, YGL122C, YMR113W, YPR03δW, YHR026W, YJR139C, YBR1δ3W, YHR066W, YOR272W, YJL1δ3C, YDR120C, YDR329C, YFL04ÖC, YGL033W, YLR18ÖW, YHR20δW, YPR133C, YDR066C, YLR136C, YLR064w, YLR143w, YCR0δ4C, YBL074C, YBL030C, YBR002c, Y BR004c, YBR089w, YBR118w, YBR124w, YBR14ÖC, YCR064C, YDL212w, YDLWδw, YDL092w, YDL004w, YDR160w, YDR177W, YDR224C, YDR232w, YDR427w, YDR487c, YEL034w, YER093c, YER104W, YER107c, YER126c, YER1δ7w, YGL169w, YGLIδOc, YGL040c, YGROβδc, YGR082W, YGR120c, YHR023w, YHR084w, YIL118w, YIL063c, YIL062C, YIL033C, YIL031W, YJL174w, YJLIδβc, YJR042w, YJR076c, YKL209c, YKL192C, YKL181W, YKL141w, YKL122c, YKL104c, YLR3δδc, YMLIOδc, YMR047C, YMR108W, YMR16δc, YMR217w, YNL161w, YNL137c, YNL112w, YNR03δc, YOR098c, YOR160w, YOR176w, YOR181w, YOR236w, YOR278w, YPL07δw, YPL016W, YCL0δ3c, YFL0N04L, YFL0L04L, YFL0N04C0

Interessant sind Gene bzw. Proteine von Targetorganismen insbesondere dann, wenn die Ähnlichkeit der abgeleiteten Aminosäuresequenzen mindestens 30% zu den abgeleiteten Aminosäuresequenzen der S. cerevisae essentiellen Gene beträgt oder durch Komplementation gezeigt werden konnte, dass das Gen/Protein des Targetorganismus das entsprechende Gen/Protein aus S. cerevisiae ersetzen kann. Besonders geeignete Targets sind solche, zu denen keine homologen Vertreter bei höheren Eukaryonten (z.B. Mensch) existieren. Dies sind insbesondere homologe Gene/Proteine zu den folgenden essentiellen S. cerevisiae Genen bzw. deren Genprodukten:Genes or proteins of target organisms are of particular interest if the similarity of the derived amino acid sequences is at least 30% to the derived amino acid sequences of the S. cerevisae essential genes or if complementation has shown that the gene / protein of the target organism is the corresponding gene / protein from S. cerevisiae. Particularly suitable targets are those for which there are no homologous representatives in higher eukaryotes (eg humans). These are, in particular, homologous genes / proteins to the following essential S. cerevisiae genes or their gene products:

YER022W, YBR211c, YDR118w, YOR249c, YKL004w, YHR101c, YDL220c, YLR4δ9w, YMR168c, YER026c, YMR094w, YDR016c, YGR113W, YOL149w, YJL090C, YMR220w, YBR102c, YKLOβOc, YNL2δ6w, YPR136C, YNL038w, YJR016C, YER038C, YLR317w, YDR499w, YBR193c, YEL019C, YKL186c, YGR1δ8c, YGR147C, YML031w, YPL124w, YJL039c, YPR168W, YLL004w, YCL0δ2c, YNL282W, YGR030c, YBR167c, YBL018c, YGR07δc, YFR029w, YJL173C, YBR2δ6c, YMR20ÖW, YML091c, YML043c, YLR141w, YBLOUc, YJL02δw, YMR270c, YCR03δc, YDR303c, YLR033w, YDR041W, YER147c, YNR026C, YDR498C, YMR0δ9w, YPL083c, YLL003w, YGL113W, YIL147c, YDR478W, YDL098c, YDR24ÖC, YDR201w, YBR2δ3w, YHR178W, YDR082w, YIR011C, YJL03δc, YPL128c, YGR099w, YLR010C, YAL001c, YDR362c, YPL007C, YJL0δ4w, YNL131w, YBR126c, YJL087c, YDR407C, YDR472w, YEL03δc, YAL03δC-A, YBL073W, YBL077W, YBR168w, YBR190w, YCL041C, YCR013C, YDL016C, YDL163W, YDL196W, YDL221W, YDR0δ3w, YDR187C, YDR327W, YDR3δδc, YDR367w, YDR396w, YDR413C, YDRÖ26C, YFR042W, YGL069C, YGL074C, YGL102C, YGL239C, YGL247W, YGR046W, YGR073C, YGR114C, YGR128C, YGR190C, YGR2δ1W, YGR26δW, YGR277C, YHR083w, YHR196W, YJL009W, YJL010C, YJLOIδC, YJL032W, YJL086C, YJL091C, YJL19δC, YJL202C, YJR012C, YJR023c, YJR041c, YJR046w, YJR136c, YKLOUc, YKL036C, YKL083W, YKL111C, YKL1δ3W, YKR081C, YKR083C, YLL037W, YLR007W, YLR076c, YLR101c, YLR112w, YLR132c, YLRUOw, YLRUδw, YLR198C, YLR230W, YLR339C, YLR379W, YLR440C, YLR4Ö8W, YML023C, YML127W, YMR134W, YMR290w-a, YMR298w, YNL114C, YNL149C, YNLIδOW, YNL1Ö8W, YNL260c, YOL026C, YOL134C, YOR060C, YOR102W, YOR146W, YOR169C, YOR203W, YOR218C, YOR282W, YDL23δc, YPL044C, YPL142C, YPL233W, YPL238C, YPL2Ö1W, YPR08δC, YPR142C, YPR177C, YLR336C, YMLOIδc, YNL232W, YER029c, YLR438c-a, YBR091c, YCR0δ4C, YDR412W, YDR0δ2c, YBR123c, YJR022w, YDRδ27W, YNL221c, YIL004c, YDL207W, YPL242C, YCL031c, YNL2δ8c, YIROIδw, YKL012w, YGROOδc, YER008c, YOR148C, YNL039w, YKR063c, YKR008w, YLR166c, YDR398w, YOR174w, YPL190C, YMR112C, YMR239c, YOR3δ3c, YER104w, YPR19ÖC, YAL034w-a, YNL1δ1c, YJR112w, YIL019W, YOR194c, YLR4δ7c, YLRWδc, YJR067C, YELOδδc, YJL109C, YDR3δ3w, YGL098W, YGR047c, YLR409C, YDR228c, YDR168W, YMROOδw, YJL061w, YDL139c, YDR468c, YHR197w, YOR340c, YGR1δ6w, YDR308c, YOR122c, YHR0δ2w, YMR049c, YKL19δW, YAL043C, YMR211w, YIROWw, YER168c, YKR02δw, YLL03δw, YAL033w, YER018c, YBL034C, YKL108W, YDR081c, YMR117c, YGRUOw, YFR003C, YGL07δc, YLR316C, YKL0δ9c, YGR009c, YPL231w, YGR179C, YKL182w, YKR062W, YDR23δw, YPL2δδw, YOR110W, YNL2δ1c, YER127w, YHR040w, YNL216w, YKL144C, YPL076w, YLR04δc, YDR288W, YHR036w, YML02δC, YMR149w, YOL146W, YGL061c, YLR071c, YJRUIw, YLR078c, YPL011c, YKL042W, YGR013W, YGR090W, YNL188w, YGR11δC, YDL003W, YMR218c, YOR07δw, YNL272C, YPRIOδC, YKL0δ2c, YFL024c, YML046W, YGL093w, YGL22δw, YKR022C, YPL08δw, YOR372c, YML114c, YPR169W, YHR118c, YGLUδw, YGR186W, YDL209C, YNL1Ö2W, YGR198W, YPL126w, YMR033w, YOL130w, YKL089W, YDR166c, YDR182W, YDR464w, YOL144W, YJR089W, YDR113C, YGL122cYER022W, YBR211c, YDR118w, YOR249c, YKL004w, YHR101c, YDL220c, YLR4δ9w, YMR168c, YER026c, YMR094w, YDR016c, YGR113W, YOL149w, YJL090C, YMR220w, YBR102c, YKLOβOc, YNL2δ6w, YPR136C, YNL038w, YJR016C, YER038C, YLR317w, YDR499w, YBR193c, YEL019C, YKL186c, YGR1δ8c, YGR147C, YML031w, YPL124w, YJL039c, YPR168W, YLL004w, YCL0δ2c, YNL282W, YGR030c, YBR167c, YBL018c, YGR07δc, YFR029w, YJL173C, YBR2δ6c, YMR20ÖW, YML091c, YML043c, YLR141w, YBLOUc, YJL02δw, YMR270c, YCR03δc, YDR303c, YLR033w, YDR041W, YER147c, YNR026C, YDR498C, YMR0δ9w, YPL083c, YLL003w, YGL113W, YIL147c, YDR478W, YDL098c, YDR24ÖC, YDR201w, YBR2δ3w, YHR178W, YDR082w, YIR011C, YJL03δc, YPL128c, YGR099w, YLR010C, YAL001c, YDR362c, YPL007C, YJL0δ4w, YNL131w, YBR126c, YJL087c, YDR407C, YDR472w, YEL03δc, YAL03δC-A, YBL073W, YBL077W, YBR168w, YBR190w, YCL041C, YCR013C, YDL016C, YDL163W, YDL196W, YDL221W, YDR0δ3w, YDR187C, YDR327W, YDR3δδc, YDR367w, YDR396w, YDR413C, YDRÖ26C, YFR042W, YGL069C, YGL074C, YGL102C, YGL239 C, YGL247W, YGR046W, YGR073C, YGR114C, YGR128C, YGR190C, YGR2δ1W, YGR26δW, YGR277C, YHR083w, YHR196W, YJL009W, YJL010C, YJLOIδC, YJL032W, YJL086C, YJL091C, YJL19δC, YJL202C, YJR012C, YJR023c, YJR041c, YJR046w, YJR136c, YKLOUc, YKL036C, YKL083W, YKL111C, YKL1δ3W, YKR081C, YKR083C, YLL037W, YLR007W, YLR076c, YLR101c, YLR112w, YLR132c, YLRUOw, YLRUδw, YLR198C, YLR230W, YLR339C, YLR379W, YLR440C, YLR4Ö8W, YML023C, YML127W, YMR134W, YMR290w- a, YMR298w, YNL114C, YNL149C, YNLIδOW, YNL1Ö8W, YNL260c, YOL026C, YOL134C, YOR060C, YOR102W, YOR146W, YOR169C, YOR203W, YOR218C, YOR282W, YDL23δc, YPL044C, YPL142C, YPL233W, YPL238C, YPL2Ö1W, YPR08δC, YPR142C, YPR177C, YLR336C, YMLOIδc, YNL232W, YER029c, YLR438c-a, YBR091c, YCR0δ4C, YDR412W, YDR0δ2c, YBR123c, YJR022w, YDRδ27W, YNL221c, YIL004c, YCLL22CYYLL22C, YCL24 YER008c, YOR148C, YNL039w, YKR063c, YKR008w, YLR166c, YDR398w, YOR174w, YPL190C, YMR112C, YMR239c, YOR3δ3c, YER104w, YPR19ÖC, YAL034w-a, YNL1δ1c, YJR112w, YIL019W, YOR194c, YLR4δ7c, YLRWδc, YJR067C, YELOδδc, YJL109C, YDR3δ3w, YGL098W, YGR047c, YLR409C, YDR228c, YDR168W, YMROOδw, YJL061w, YDL139c, YDR468c, YHR197w, YOR340c, YGR1δ6w, YDR308c, YOR122c, YHR0δ2w, YMR049c, YKL19δW, YAL043C, YMR211w, YIROWw, YER168c, YKR02δw, YLL03δw, YAL033w, YER018c, YBL034C, YKL108W, YDR081c, YMR117c, YGRUOw, YFR003C, YGL07δc, YLR316C, YKL0δ9c, YGR009c, YPL231w, YGR179C, YKL182w, YKR062W, YDR23δw, YPL2δδw, YOR110W, YNL2δ1c, YER127w, YHR040w, YNL216w, YKL144C, YPL076w, YLR04δc, YDR288W, YHR036w, YML02δC, YMR149w, YOL146W, YGL061c, YLR071c, YJRUIw, YLR078c, YPL011c, YKL042W, YGR013W, YGR090W, YNL188w, YGR11δC, YDL003W, YMR218c, YOR07δw, YNL272C, YPRIOδC, YKL0δ2c, YFL024c, YML046W, YGL093w, YGL22δw, YKR022C, YPL08δw, YOR372c, YML114c, YPR169W, YHR118c, YGLUδw, YGR186W, YDL209C, YN L1Ö2W, YGR198W, YPL126w, YMR033w, YOL130w, YKL089W, YDR166c, YDR182W, YDR464w, YOL144W, YJR089W, YDR113C, YGL122c

Weiterhin besonders geeignete essentielle Gene eines Targetorganismus sind solche Gene bzw. Proteine, die zwar Funktionshomologe in höheren Eukaryonten besitzen, bei denen aber Unterschiede (idealerweise maximal) in der Proteinstruktur zwischen dem Protein aus höheren Eukaryonten (Kontrollprotein) und dem Targetprotein bestehen (in Primär-, und/oder Sekundär-, und/oder Tertiär-, und/oder Quartärstruktur). Das Kontrollgen bzw. Protein kann hierbei insbesondere von einem Säuger (z.B. Mensch) oder einer Pflanze stammen. Besonders geeignete Targetgene/Proteine des humanpathogenen Targetorganismus Candida albicans sind homologe Gene/Proteine zu den essentiellen S. cerevisiae Genen/Proteinen YDR236c (FMN1), YBR26δw (TSC10), YPR113W (PIS1), YOR122c (PFY1) und YMR197c (VTI1).Other particularly suitable essential genes of a target organism are those genes or proteins which have functional homologues in higher eukaryotes, but in which differences (ideally maximum) in the protein structure between the protein consist of higher eukaryotes (control protein) and the target protein (in primary , and / or secondary, and / or tertiary, and / or quaternary structure). The control gene or protein can in particular come from a mammal (e.g. human) or a plant. Particularly suitable target genes / proteins of the human pathogenic target organism Candida albicans are homologous genes / proteins to the essential S. cerevisiae genes / proteins YDR236c (FMN1), YBR26δw (TSC10), YPR113W (PIS1), YOR122c (PFY1) and YMR197c (VTI1).

Vorzugsweise ist der zu schützende Organismus ausgewählt unter Pflanzen, Tieren und Menschen, insbesondere Menschen. Testorganismen, Teststämme bzw. Kulturen, die hierbei zum Einsatz kommen können sind grundsätzlich alle Organismen bzw. Zellkulturen, die einfach (z.B. Bakterien im Reagenzglas/Mikrotiterplatte oder Zellkulturen in Zellkulturflaschen/Mikrotiterplatte) zu kultivieren sind.The organism to be protected is preferably selected from plants, animals and humans, in particular humans. Test organisms, test strains or cultures that can be used here are basically all organisms or cell cultures that are easy to cultivate (e.g. bacteria in a test tube / microtiter plate or cell cultures in cell culture bottles / microtiter plates).

Diese können sowohl prokaryontischen als auch eukaryontischen Ursprungs sein. Bevorzugt finden hierbei Organismen Verwendung, die genetisch zugänglich sind und in denen Gene heterolog exprimiert werden können.These can be of prokaryotic as well as eukaryotic origin. Organisms that are genetically accessible and in which genes can be heterologously expressed are preferably used here.

Unter den prokaryontischen Testorganismen eignen sich sowohl Gram-positive als auch Gram-negative Bakterien. Exemplarische, jedoch nicht ausschließliche, Testorganismen aus dem Reich der Prokaryonten sind beispielsweise Spezies der Gattungen Bacillus (B. subtilis), Escherichia (E. coli), Klebsiella [K. planticola), Lactobacillus (L. delbruckii, L. lactis), Pseudomonas (P. aeroginosa, P. fluorescens) Salmonella (S. typhimurium) Serratia (S. marcescens) Streptococcus (S. lactis, S. mutans, S. pyogenes), Staphylococcus (S. aureus, S. epidermidis) Vibrio (V. cholerae) Yersinia (Y. ruckeri).Both gram-positive and gram-negative bacteria are suitable among the prokaryotic test organisms. Exemplary, but not exclusive, test organisms from the prokaryote kingdom are, for example, species of the genera Bacillus (B. subtilis), Escherichia (E. coli), Klebsiella [K. planticola), Lactobacillus (L. delbruckii, L. lactis), Pseudomonas (P. aeroginosa, P. fluorescens) Salmonella (S. typhimurium) Serratia (S. marcescens) Streptococcus (S. lactis, S. mutans, S. pyogenes) , Staphylococcus (S. aureus, S. epidermidis) Vibrio (V. cholerae) Yersinia (Y. ruckeri).

Besonders geeignet sind hierbei Testorganismen für die eine Reihe molekularbiologischer Werkzeuge (z.B. Vektoren) zur Verfügung steht wie etwa Escherichia coli und Bacillus subtilis.Test organisms for which a range of molecular biological tools (e.g. vectors) are available, such as Escherichia coli and Bacillus subtilis, are particularly suitable.

Bei den eukaryotischen Testorganismen eignen sich sowohl eukaryotische Einzeller (Protozoen, Schleimpilze, Pilze usw.) als auch eukaryotische Zellkulturen. Unter den eukaryotischen Einzellern eignen sich insbesondere Hefen. Unter den Hefen wiederum sind besonders Spezies aus den Gattungen Saccharomyces, Schizosaccharomyces, Candida, Kluyveromyces, Yarrowia, Ashbya, Hansenula, Pichia, geeignet. Hierunter sind insbesondere Saccharomyces cerevisae, Schizosaccharomyces pombe und Candida albicans besonders geeignet.Eukaryotic unicellular organisms (protozoa, slime molds, fungi, etc.) and eukaryotic cell cultures are suitable for the eukaryotic test organisms. Yeasts are particularly suitable among the eukaryotic unicellular organisms. Species from the genera Saccharomyces, Schizosaccharomyces, Candida, Kluyveromyces, Yarrowia, Ashbya, Hansenula, Pichia are particularly suitable among the yeasts. Among these, Saccharomyces cerevisae, Schizosaccharomyces pombe and Candida albicans are particularly suitable.

Ganz besonders geeignet sind Saccharomyces cerevisiae Stämme, bevorzugt die Stämme CEN.PK2, BY4743, BMA46 (W303), FY1679 sowie deren haploide Derivate. Das erfindungsgemäße Verfahren eignet sich insbesondere zum Hochdurchsatzscreening, vorzugsweise durch Parallelisierung, besonders bevorzugt, indem es in einer Mehrzahl paralleler Ansätze, ganz besonders bevorzugt in Mikrotiter-Platten oder anderen dem Fachmann bekannten Vorrichtungen durchgeführt wird, die die Paralellisierung von Ansätzen erlauben.Saccharomyces cerevisiae strains are particularly suitable, preferably the strains CEN.PK2, BY4743, BMA46 (W303), FY1679 and their haploid derivatives. The method according to the invention is particularly suitable for high-throughput screening, preferably by parallelization, particularly preferably by performing it in a plurality of parallel batches, very particularly preferably in microtiter plates or other devices known to the person skilled in the art, which allow batches to be parallelized.

Unterschiedliche genotypische Merkmale stellen erfindungsgemäß die differentielle Expression des Targetgens in den Teststämmen dar (unterschiedliche "Gendosis"), z.B. hervorgerufen durch die Deletion eines Targetgen-Allels (für Testorganismen mit Ploidie >1), Einbringen zusätzlicher Targetgenkopien in einen der Teststämme oder unterschiedlich regulierte Expression der Targetgene in den Teststämmen.According to the invention, different genotypic characteristics represent the differential expression of the target gene in the test strains (different "gene dose"), e.g. caused by the deletion of a target gene allele (for test organisms with ploidy> 1), introduction of additional target gene copies into one of the test strains or differently regulated expression of the target genes in the test strains.

Zellen, die ein Targetgen stärker exprimieren und somit mehr Targetprotein bilden, tolerieren eine viel höhere Wirkstoffkonzentration, die gegen genau dieses Tagetprotein gerichtet sind. Ein weiteres Unterscheidungsmerkmal stellt eine genetische Veränderung des Targetgenes in einem der Teststämme dar. Dies kann hervorgerufen werden durch konditionale Mutationen (Punktmutationen, Deletionen oderTrunkierung).Cells that express a target gene more strongly and thus produce more target protein tolerate a much higher concentration of active substance that are directed against exactly this taget protein. Another distinguishing feature is a genetic change in the target gene in one of the test strains. This can be caused by conditional mutations (point mutations, deletions or truncation).

Solche genetische Veränderungen führen häufig zu partiell funktionellen Proteinen die leichter durch Wirkstoffe inhibiert werden können als Wildtyp-Proteine. Auch können sich die Teststämme durch die Substitution essentieller Gene durch funktionshomologe Proteine aus anderen Organismen (Eubakterien, Archaea, Eukaryonten Viren) unterscheiden. Hierbei können je nach Ziel Tests mit unterschiedlichsten Teststamm-Kombinationen gebildet werden.Such genetic changes often lead to partially functional proteins that can be more easily inhibited by active substances than wild-type proteins. The test strains can also differ due to the substitution of essential genes by functionally homologous proteins from other organisms (eubacteria, archaea, eukaryotic viruses). Depending on the goal, tests can be created with a wide variety of test master combinations.

Neben diesem genotypischen Merkmal unterscheiden sich die Stämme in einem weiteren Merkmal, da einer der beiden Teststämme eine phänotypische Marke erhält. Phänotypische Marken bezeichnen hierbei phänotypische Merkmale, die keinen oder nur geringen Einfluss auf das Wachstum des Teststammes haben. Dies kann z.B. eine Deletion in einem weiteren Genlokus sein, was zur Folge hat, dass die Zellen ein farbiges Pigment akkumulieren oder dadurch besondere biochemische Eigenschaften verliehen werden, die gut auszulesen sind. So führt beispielsweise die Deletion des ADE2 Genlokus bei Hefen (z.B. Saccharomyces cerevisiae, Schizosaccharomyces pombe oder Candida albicans) zur Akkumulation von Phosphoribosylaminoimidazol in der Vakuole, das durch Sauerstoff in ein rotes Pigment überführt wird. Das Zeil-Sediment einer solchen Kultur ist rot und kann mit dem Auge einfach erfasst werden. Damit böte sich die >ADE2 Deletion grundsätzlich als eine phänotypische Marke an, unglücklicherweise führt die Akkumulation des roten Pigmentes jedoch zu einer Wachstumsverschlechterung des Deletionsstammes im Vergleich zum Wildtyp- Stamm (Ugolini und Bruschi, 1996), was sehr nachteilig für einen Einsatz im weiter unten beschriebenen Verfahren ist. Durch eine geschickte Anordnung des Versuchs- bzw. Verfahrensablaufs, wird die Akkumulation des wachstumshemmenden Pigmentes jedoch erst nach Anzucht der Zellen induziert, so dass die ADE2 Deletion doch genutzt werden kann und sogar eine besonders geeignete phänotypische Marke darstellt. Weitere phänotypische Marken sind die Expression des Grün-Fluoreszierenden-Proteins (GFP) in einem der Stämme oder die Expression von anderen Reportergenen wie etwa der ß-Galactosidase, der Luziferase oder ähnliches.In addition to this genotypic characteristic, the strains differ in another characteristic, since one of the two test strains is given a phenotypic brand. Phenotypic brands refer to phenotypic characteristics that have little or no influence on the growth of the test strain. This can be, for example, a deletion in a further gene locus, which has the consequence that the cells accumulate a colored pigment or thereby special biochemical properties are given that are easy to read. For example, the deletion of the ADE2 gene locus in yeasts (e.g. Saccharomyces cerevisiae, Schizosaccharomyces pombe or Candida albicans) leads to the accumulation of phosphoribosylaminoimidazole in the vacuole, which is converted into a red pigment by oxygen. The Zeil sediment of such a culture is red and can easily be seen with the eye. Thus, the> ADE2 deletion basically offers itself as a phenotypic brand, but unfortunately the accumulation of the red pigment leads to a deterioration in the growth of the deletion strain compared to the wild-type strain (Ugolini and Bruschi, 1996), which is very disadvantageous for use in the below described method is. By cleverly arranging the test or process sequence, the accumulation of the growth-inhibiting pigment is only induced after the cells have been grown, so that the ADE2 deletion can still be used and even represents a particularly suitable phenotypic brand. Other phenotypic brands are the expression of the green fluorescent protein (GFP) in one of the strains or the expression of other reporter genes such as, for example, the β-galactosidase, the luciferase or the like.

Die beiden Teststämme (Target- und Kontrollstamm), die sich nur durch das Zielgen/protein und die phänotypische Marke unterscheiden werden angezogen und gemischt. Mit einer geringen Zellzahl dieses Stammgemisches wird frisches Medium beimpft. Nach Applikation von Testsubstanzen werden die Kulturen bis in die stationäre Wachstumsphase angezogen. Die End-Zusammensetzung der resultierenden Mischkulturen, kann nun durch eine Quantifizierung der charakteristischen phänotypischen Marke sehr leicht ermittelt werden. Wird beispielsweise einer der beiden Stämme spezifisch bzw. stärker durch eine Substanz im Wachstum inhibiert, so führt dies zu einer Verstärkung bzw. Abschwächung der entsprechenden phänotypischen Marke, was wiederum durch stärkere/schwächere Fluoreszenz oder intensivere/schwächere Färbung oder stärkerer/schwächerer biochemischer Reaktion ausgelesen werden kann. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Test-Kit zur Identifikation von Wirkstoffen, das Mittel zur Durchführung des erfindungsgemäßen Verfahrens umfaßt.The two test strains (target and control strains) which differ only in the target gene / protein and the phenotypic brand are grown and mixed. Fresh medium is inoculated with a low cell count of this stock mixture. After application of test substances, the cultures are grown until the stationary growth phase. The final composition of the resulting mixed cultures can now be determined very easily by quantifying the characteristic phenotypic brand. If, for example, one of the two strains is specifically or more strongly inhibited by a substance in growth, this leads to an intensification or weakening of the corresponding phenotypic brand, which in turn is read out through stronger / weaker fluorescence or more intense / weaker coloring or stronger / weaker biochemical reaction can be. Another object of the present invention is a test kit for identifying active substances, which comprises means for performing the method according to the invention.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer kosmetischen oder pharmazeutischen Zubereitung, dadurch gekennzeichnet, daß man a) das erfindungsgemäße Verfahren durchführt und so einen Wirkstoff ermittelt und b) als wirksam befundene Wirkstoffe mit kosmetisch und/oder pharmakologisch geeigneten und verträglichen Trägern vermischt.Another object of the present invention is a method for producing a cosmetic or pharmaceutical preparation, characterized in that a) the method according to the invention is carried out and an active ingredient is thus determined and b) active ingredients found to be effective with cosmetically and / or pharmacologically suitable and compatible carriers mixed.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen Verfahrens zum Auffinden von Wirkstoffen.Another object of the present invention is the use of the method according to the invention for finding active substances.

Die folgenden Beispiele erläutern die Erfindung, ohne sie jedoch darauf einzuschränken: The following examples illustrate the invention without, however, restricting it thereto:

Beispiel 1 :Example 1 :

Target-Auswahl zur Identifizierung antibiotischer Substanzen im Substitutionsverfahren des Protein-Differenz-ScreeningsTarget selection for the identification of antibiotic substances in the substitution process of the protein difference screening

Targets für das PDS-Substitutionsverfahren zur Identifizierung antibiotischer Substanzen sind essentiell für das vegetative Wachstum des Krankheitserregers unter Vollmedium-Bedingungen und sind konserviert unter Pathogenen. Für die Targets muss im Testorganismus ein funktionshomologes Gen/Protein existieren, das auch für den Testorganismus ein essentielles Gen/Protein darstellt. Das Rohmaterial für die Targetauswahl stellt die Sequenzinformation der Genome in Verbindung mit der Funktionsanalyse der entdeckten Gene dar.Targets for the PDS substitution procedure for the identification of antibiotic substances are essential for the vegetative growth of the pathogen under full medium conditions and are preserved under pathogens. For the targets, a functionally homologous gene / protein must exist in the test organism, which is also an essential gene / protein for the test organism. The raw material for the target selection represents the sequence information of the genomes in connection with the functional analysis of the discovered genes.

In vielen Fällen unterscheiden sich Proteine, die die gleiche Funktion (in der Regel ist hier die enzymkatalytische Funktion gemeint) im Mensch (bzw. Tier) und im Infektionskeim ausüben (funktionshomologe Proteine), in molekularen Strukturbereichen (Proteindomänen). Es ist davon auszugehen, dass die Störung dieser spezifischen Proteindomänen durch die Bindung von Wirkstoffen, auch zum Funktionsausfall des Gesamtproteins führen kann. Derartige Wirkstoffe wären somit in ihrer hemmenden Funktion spezifisch für das Protein des Infektionskeims, ohne dass die Funktion des isofunktionellen Kontrollproteins (der menschlichen bzw. pflanzlichen Zelle) betroffen ist. Ideale Targets für das hier beschriebene Verfahren zeigen dementsprechend lediglich geringe Sequenzübereinstimmungen mit deren Kontrollproteinen bei gleichzeitiger Funktionsidentität.In many cases, proteins that perform the same function (usually the enzyme-catalytic function is meant) in humans (or animals) and in the infection germ (functionally homologous proteins) differ in molecular structural areas (protein domains). It can be assumed that the disruption of these specific protein domains through the binding of active substances can also lead to the functional failure of the entire protein. Such active substances would thus be specific for the protein of the infection germ in their inhibitory function, without the function of the isofunctional control protein (the human or plant cell) being affected. Accordingly, ideal targets for the method described here only show slight sequence matches with their control proteins with simultaneous functional identity.

Das im Beispiel ausgewählte Target ist die bakterielle Dihydrofolatreduktase. Die Dihydrofolatreduktase katalysiert in einer zweistufigen Reaktion die Reduktion von Folsäure durch NADPH zu Tetrahydrofolsäure, einem wichtigen Coenzym für die Übertragung von C1 -Einheiten. Dieses Enzym ist essentiell für das vegetative Wachstum des Infektionskeimes. Des weiteren existieren sowohl im Testorganismus S. cerevisiae als auch im Menschen funktionshomologe Enzyme. Das menschliche Protein, das in dem Verfahren als Kontrollprotein eingesetzt wird, weist eine 47%ige Sequenzähnlichkeit und eine 27% Sequenzidentität zur Dihydrofolatreduktase (FolA) von E. coli auf. Beispiele für weitere Targets dieser Target-Katergorie, d.h. bakterielle Targets mit homologen Proteinen in Pilzen (S. cerevisiae) und im Menschen sind funktionshomologe Proteine zu folgenden essentiellen Proteinen der Hefe S. cerevisiae:The target selected in the example is bacterial dihydrofolate reductase. In a two-step reaction, dihydrofolate reductase catalyzes the reduction of folic acid by NADPH to tetrahydrofolic acid, an important coenzyme for the transfer of C1 units. This enzyme is essential for the vegetative growth of the infection germ. Furthermore, homologous enzymes exist both in the test organism S. cerevisiae and in humans. The human protein used as a control protein in the method has a 47% sequence similarity and a 27% sequence identity to the dihydrofolate reductase (FolA) of E. coli. Examples of further targets of this target category, ie bacterial targets with homologous proteins in fungi (S. cerevisiae) and in humans are functionally homologous proteins to the following essential proteins of the yeast S. cerevisiae:

Acs2p (Acetyl-Coenzyme A Synthetase), Alalp (Alanyl-tRNA Synthetase), Hsp60p (heat shock protein; 60kD), Gualp (GMP synthetase), Kar2p (nuclear fusion protein), Ilv2p (Acetolactate Synthase), Gnd1 (6-Phosphogluconate Dehydrogenase), Thsl p (Threonyl tRNA Synthetase), Nfslp (NifS-like protein), Gln4p (Glutaminyl-tRNA Synthetase), Prp22p (Helicase-like protein), Prp43p (involved in spliceosome disassembly), Eno2p (Enolase), Ssdp (mitochondrial heat shock protein 70-related protein), Vaslp (Valyl-tRNA Synthetase), Sgvlp (ser/thr protein kinase), Rrp46p (involved in rRNA processing), Krslp (lysyl-tRNA synthetase), Prp16p (RNA-dependent ATPase), Cdc19p (pyruvate kinase), Kre30p (strong similarity to members of the ABC transporter family), Dhr2p (RNA helicase, involved in ribosomal RNA maturation), llslp (cytoplasmic isoleucyl- tRNA synthetase), Prp2p (RNA splicing factor RNA-dependent NTPase with DEAD-box motif), Ygl245wp (Glutamyl-tRNA synthetase), Pro2p (gamma-glutamyl phosphate reductase), Tn p (Thioredoxin reductase), Erg10 (Acetyl-CoA C- acetyltransferase), Gfalp (Glutamine-fructose-6-phosphate aminotransferase), Hem13p (Coproporphyrinogen III oxidase), Rrp3p (required for maturation of the 35S primary transcript), Ydr341cp (arginyl-tRNA synthetase), Hem12p (uroporphyrinogen decarboxylase), Gpmlp (phosphoglycerate mutase), Pgklp (3- phosphoglycerate kinase), Hiplp (histidine permease), Meslp (methionyl tRNA synthetase), Pmalp (H+-transporting P-type ATPase), Dedlp (ATP-dependent RNA helicase), FaMp (involved in maturation of 18S rRNA), Rnrl p (ribonucleoside-diphosphate reductase), Dbp2p (ATP-dependent RNA helicase of the DEAD-box family), Drslp (RNA helicase of the DEAD box family), Atmlp (ATP-binding cassette transporter protein), Acdp (acetyl-CoA carboxylase), Sub2p (RNA helicase), Prp28 (pre-mRNA splicing factor RNA helicase of DEAD box family), Heml p (5-aminolevulinate synthase), Prolp (glutamate 5-kinase), Tpil p (Triosephosphate isomerase), Hem2p (Porphobilinogen synthase), Ynl247wp (cysteinyl-tRNA synthetase), Hem3p (phorphobilinogen deaminase), Ded81p (asparaginyl-tRNA-synthetase), Seslp (seryl-tRNA synthetase), Pmi40p (mannose-6-phosphate isomerase), Lcb2p (serine C-palmitoyltransferase), Guk1 p (guanylate kinase), Prslp (Phosphoribosylpyrophosphate synthetase), Fol3p (Dihydrofolate synthetase), Rer2p (cis-prenyltransferase), Fol2p (GTP cyclohydrolase I), Dpslp (aspartyl-tRNA synthetase), Frs2p (Phenylalanyl-tRNA synthetase), Lcblp (serine C-palmitoyltransferase), Pro3p (delta 1-pyrroline-5- carboxylate reductase), Ura6p (uridine-monophosphate kinase), Hem15p (Ferrochelatase), Rib2p (DRAP deaminase), Htslp (histidine-tRNA ligase), Rkilp (Ribose-5-phosphate ketol-isomerase), Glnlp (glutamine synthetase).Acs2p (Acetyl-Coenzyme A Synthetase), Alalp (Alanyl-tRNA Synthetase), Hsp60p (heat shock protein; 60kD), Gualp (GMP synthetase), Kar2p (nuclear fusion protein), Ilv2p (Acetolactate Synthase), Gnd1 (6-phosphogluconate Dehydrogenase), Thsl p (Threonyl tRNA Synthetase), Nfslp (NifS-like protein), Gln4p (Glutaminyl-tRNA Synthetase), Prp22p (Helicase-like protein), Prp43p (involved in spliceosome disassembly), Eno2p (Enolase), Ssdp ( mitochondrial heat shock protein 70-related protein), Vaslp (Valyl-tRNA Synthetase), Sgvlp (ser / thr protein kinase), Rrp46p (involved in rRNA processing), Krslp (lysyl-tRNA synthetase), Prp16p (RNA-dependent ATPase) , Cdc19p (pyruvate kinase), Kre30p (strong similarity to members of the ABC transporter family), Dhr2p (RNA helicase, involved in ribosomal RNA maturation), llslp (cytoplasmic isoleucyl-tRNA synthetase), Prp2p (RNA splicing factor RNA-dependent NTPase with DEAD-box motif), Ygl245wp (glutamyl-tRNA synthetase), Pro2p (gamma-glutamyl phosphate reductase ), Tn p (thioredoxin reductase), Erg10 (acetyl-CoA C-acetyltransferase), Gfalp (glutamine-fructose-6-phosphate aminotransferase), Hem13p (coproporphyrinogen III oxidase), Rrp3p (required for maturation of the 35S primary transcript), Ydr341cp (arginyl-tRNA synthetase), Hem12p (uroporphyrinogen decarboxylase), Gpmlp (phosphoglycerate mutase), Pgklp (3-phosphoglycerate kinase), Hiplp (histidine permease), Meslp (methionyl tRNA synthetase), Pmalp (H + ATPase transporting ), Dedlp (ATP-dependent RNA helicase), FaMp (involved in maturation of 18S rRNA), Rnrl p (ribonucleoside-diphosphate reductase), Dbp2p (ATP-dependent RNA helicase of the DEAD-box family), Drslp (RNA helicase of the DEAD box family), Atmlp (ATP-binding cassette transporter protein), Acdp (acetyl-CoA carboxylase), Sub2p (RNA helicase), Prp28 (pre-mRNA splicing factor RNA helicase of DEAD box family), Heml p (5- aminolevulinate synthase), Prolp (glutamate 5-kinase), Tpil p (triosephosphate isomerase), Hem2p (Porphobili nogen synthase), Ynl247wp (cysteinyl-tRNA synthetase), Hem3p (phorphobilinogen deaminase), Ded81p (asparaginyl-tRNA synthetase), Seslp (seryl-tRNA synthetase), Pmi40p (mannose-6-phosphate isomerase), Lcb2p (serine C-palmitoyltransferase), Guk1 p (guanylate kinase), Prslp (phosphoribosylpyrophosphate synthetase), Fol3p (dihydrofolate synthetase), Rer2p (cis-prenyltransferase), Fol2 Dpslp (aspartyl-tRNA synthetase), Frs2p (phenylalanyl-tRNA synthetase), Lcblp (serine C-palmitoyltransferase), Pro3p (delta 1-pyrroline-5-carboxylate reductase), Ura6p (uridine-monophosphate kinase), Hem15p (Ferrochelat Rib2p (DRAP deaminase), Htslp (histidine-tRNA ligase), Rkilp (Ribose-5-phosphate ketol isomerase), Glnlp (glutamine synthetase).

Weiterhin sind bakterielle Targets interessant, für die keine sequenzhomologen Proteine im Menschen existieren, wohl aber in Pilzen (z.B. der Hefe S. cerevisiae). Als Targetprotein kann hierbei das bakterielle Homologe dienen, als Kontrollprotein das Protein des Pilzes. Treffer die in einem solchen Ansatz erzielt werden sind entweder interessante Fungizide und/oder Antibiotika.Also of interest are bacterial targets for which there are no sequence-homologous proteins in humans, but certainly in fungi (e.g. the yeast S. cerevisiae). The bacterial homolog can serve as the target protein and the protein of the fungus as the control protein. Hits achieved in such an approach are either interesting fungicides and / or antibiotics.

Besonders interessante Beispiele dieser Target-Kategorie sind Homologe der S. cerevisae Proteine Fba1 p (Fructose-bisphosphate Aldolase), Ilv3p (Dihydroxyacid Dehydratase), Tpslp (alpha,alpha-Trehalose- phosphate Synthase), Ssyl p (regulator of transporters), Rib3p (3,4-Dihydroxy-2-butanone 4-phosphate Synthase), Homδp (Homoserine dehydrogenase) Ergδp (Phophomevalonat Kinase), Ilv5p (Ketol-acid Reduktoisomerase), Fohp (Dihydroneopterin Aldolase) und Ribδp (Riboflavin Synthase).Particularly interesting examples of this target category are homologs of the S. cerevisae proteins Fba1 p (fructose-bisphosphate aldolase), Ilv3p (dihydroxyacid dehydratase), Tpslp (alpha, alpha-trehalose-phosphate synthase), Ssyl p (regulator of transporters), Rib3p (3,4-Dihydroxy-2-butanone 4-phosphate synthase), Homδp (homoserine dehydrogenase) Ergδp (phosphomevalonate kinase), Ilv5p (ketol-acid reductoisomerase), Fohp (dihydroneopterin aldolase) and Ribδp (riboflavin synthase).

Ideale Targets für das Protein-Differenz-Screening im Substitutionsverfahren weisen bei Funktionshomologie eine maximale Differenz in der Struktur der beiden homologen Proteine (Target- und Kontrollprotein) auf.With functional homology, ideal targets for protein difference screening in the substitution process show a maximum difference in the structure of the two homologous proteins (target and control protein).

Für die Identifizierung fungizider Substanzen sind daher insbesondere Homologe zu folgenden essentiellen Proteinen der Hefe S. cerevisiae interessant: ThiδOp (thiamin pyrophosphokinase), Pfylp (profilin), Prolp (glutamate 5-kinase), Vtilp (v-SNARE: involved in Golgi retrograde protein traffic), Ero1 p (required for protein disulfide bond formation in the ER), Pro3p (delta 1-pyrroline-5-carboxylate reductase), Cdslp (CDP-diacylglycerol synthase), Olelp (delta-9-fatty acid desaturase), Ergδp (phosphomevalonate kinase), Fbal p (fructose-bisphosphate aldolase), TsdOp (3-ketosphinganine reductase), Gnalp (glucosamine-phosphate N-acetyltransferase), Fmnlp (Riboflavin kinase), Fadlp (flavin adenine dinucleotide synthetase), Pgs1 p (phosphatidylglycerolphosphate synthase), Fol3p (Dihydrofolate synthetase), Pislp (CDP diacylglycerol-inositol 3- phosphatidyltransferase), Lcblp (serine C-palmitoyltransferase).Homologs to the following essential proteins of the yeast S. cerevisiae are therefore of particular interest for the identification of fungicidal substances: ThiδOp (thiamine pyrophosphokinase), Pfylp (profilin), Prolp (glutamate 5-kinase), Vtilp (v-SNARE: involved in Golgi retrograde protein traffic), Ero1 p (required for protein disulfide bond formation in the ER), Pro3p (delta 1-pyrroline-5-carboxylate reductase), Cdslp (CDP-diacylglycerol synthase), Olelp (delta-9-fatty acid desaturase), Ergδp (phosphomevalonate kinase), Fbal p (fructose bisphosphate aldolase), TsdOp (3-ketosphinganine reductase), Gnalp (glucosamine-phosphate N-acetyltransferase), Fmnlp (Riboflavin kinase), Fadlp (flavin adenine dinucleotide synthetase), Pgs1 p (phosphatidylglycerol phosphate synthase), Fol3 CDP diacylglycerol-inositol 3-phosphatidyl transferase), Lcblp (serine C-palmitoyl transferase).

Beispiel 2:Example 2:

Target-ValidierungTarget validation

Ist noch nicht bekannt, ob das ausgewählte Target ein essentielles Gen/Protein des Infektionskeimes darstellt, muss dies noch bestätigt werden. Dies ist auch dann der Fall, wenn putative Targets aufgrund der bekannten essentiellen Funktion eines homologen Proteins in einem verwandtschaftlich nahestehenden Organismus ausgewählt werden. So kennt man beispielsweise alle essentiellen Gene der Bäckerhefe S. cerevisiae ( ca. 1100) und kann dementsprechend mutmaßen, dass die funktionshomologen Proteine in verwandten pathogenen Pilzen auch essentielle Proteine sind und somit interessante Wirkstoffzielorte darstellen. Dies muss jedoch noch nachgewiesen werden beispielsweise durch eine Gendeletion des putativen Targetgens in dem Infektionskeim mit anschließender Phänotypanalyse.If it is not yet known whether the selected target is an essential gene / protein of the infection germ, this has to be confirmed. This is also the case when putative targets are selected on the basis of the known essential function of a homologous protein in a related organism. For example, one knows all the essential genes of the baker's yeast S. cerevisiae (approx. 1100) and can therefore conjecture that the homologous proteins in related pathogenic fungi are also essential proteins and thus represent interesting drug targets. However, this still has to be proven, for example by gene deletion of the putative target gene in the infection germ with subsequent phenotype analysis.

Im Fall der Dihydrofolatreduktase ist bekannt, dass es sich um ein essentielles Enzym von E. coli handelt.In the case of dihydrofolate reductase, it is known that it is an essential enzyme of E. coli.

Beispiel 3:Example 3:

Klonierung der Target- und Kontrollgene in Testorganismus-Expressionsvektoren.Cloning of target and control genes in test organism expression vectors.

Zur Konstruktion der Teststämme mussten zunächst das Targetgen, die bakterielle Dihydrofolatreduktase (E. coli folA) als auch das Kontrollgen (humane DHFR) in für den Testorganismus geeignete Expressionsvektoren kloniert werden. Als Testorganismus wurde die Bäckerhefe S. cerevisea ausgewählt, von der bekannt ist, dass die Dihydrofolatreduktase (codiert durch DFR1) ein essentielles Protein in dem Organismus darstellt. Dieser Testorganismus ist des weiteren gut geeignet für solche Analysen, da eine große Auswahl molekularbiologischer Werkzeuge wie etwa Expressionsvektoren und regulierbare Promotoren zur Verfügung steht. Als Expressionsvektor dient pDE95, ein Centromer-basierender Vektor, der als Selektionsmarke das HIS3 Gen trägt und einklonierte Gene mittels des Hefe MET2δ Promotors exprimiert werden. Zur Klonierung von E. coli folA wurde mittels der Primerkombination ecfolA_5' GGA AAT CGA TAT GAT CAG TCT GAT TGC GG und ecfolA_3' TTC TCT CGA GAA TTA CCG CCG CTC CAG AAT C das Gen aus genomischer E. coli DNS amplifiziert und in pDE95 kloniert (mit molekularbiologischer Methoden, die dem Stand der Technik widerspiegeln). Der resultierende Vektor hat den Namen pDE95-ecfolA. Eine cDNS der humanen DHFR wurde mittels der Primerkombination HDFR_5' CGC TAT CGA TAT GGT TGG TTC GCT AAA CTG und HDFR_3' ACA CCT CGA GAT TAA TCA TTC TTC TCA TAT AC aus einer cDNS Genbank amplifiziert und wie oben beschrieben ebenfalls in pDE95 kloniert. Dieser Vektor besitzt den Namen pDE95-HDFR.To construct the test strains, the target gene, the bacterial dihydrofolate reductase (E. coli folA) and the control gene (human DHFR) had to be cloned into expression vectors suitable for the test organism. The baker's yeast S. cerevisea, which is known to be dihydrofolate reductase (encoded by DFR1), is selected as the test organism and is an essential protein in the organism. This test organism is furthermore well suited for such analyzes, since a large selection of molecular biological tools such as expression vectors and controllable promoters for Available. The expression vector used is pDE95, a centromer-based vector which carries the HIS3 gene as a selection marker and which cloned genes are expressed by means of the yeast MET2δ promoter. For the cloning of E. coli folA, the gene from genomic E. coli DNA was amplified and cloned into pDE95 using the primer combination ecfolA_5 'GGA AAT CGA TAT GAT CAG TCT GAT TGC GG and ecfolA_3' TTC TCT CGA GAA TTA CCG CCG CTC CAG AAT C. (using molecular biological methods that reflect the state of the art). The resulting vector is named pDE95-ecfolA. A cDNA of the human DHFR was amplified from the cDNA gene bank using the primer combination HDFR_5 'CGC TAT CGA TAT GGT TGG TTC GCT AAA CTG and HDFR_3' ACA CCT CGA GAT TAA TCA TTC TA TCAT AC and was also cloned into pDE95 as described above. This vector has the name pDE95-HDFR.

Beispiel 4:Example 4:

Herstellung der Teststämme für das PDS-Substitutionsverfahren.Production of the test strains for the PDS substitution procedure.

Als Testorganismus wurde S. cerevisiae gewählt. Pro Test, d.h. pro zu untersuchendem Target müssen zwei S. cerevisiae Stämme hergestellt werden, einen Targetstamm, dem die eigene Dihydrofolat-reduktase fehlt (durch eine Deletion des endogenen DFR1 -Gen), der dafür aber das Gen für die bakterielle Dihydrofolatreduktase enthält und ein Kontrollstamm dem ebenfalls die eigene Dihydrofolatreduktase fehlt, der dafür aber das Gen für die humane Dihydrofolatreduktase exprimiert.S. cerevisiae was chosen as the test organism. Per test, i.e. Two S. cerevisiae strains must be produced for each target to be examined, one target strain which lacks its own dihydrofolate reductase (due to a deletion of the endogenous DFR1 gene), but which contains the gene for the bacterial dihydrofolate reductase and a control strain which also contains the own dihydrofolate reductase is missing, but it expresses the gene for human dihydrofolate reductase.

Einer der beiden Teststämme wird zusätzlich mit einer phänotypischen Marke versehen, hierfür wurde die \DE2-Deletion ausgewählt. Eine Deletion dieses Genlokus führt bei S. cerevisiae zur Akkumulation eines roten Zwischenproduktes (Dorfman, 1969) in der Vakuole. Dieses Pigment besitzt fluoreszierende Eigenschaften und kann mit Licht der Wellenlänge 488 nm (blau) angeregt werden. Das Emmisionsmaximum des Pigmentes liegt im Rotlichtbereich bei 569 nm (Brushi und Chuba, 1988).One of the two test strains is additionally provided with a phenotypic brand, for which the \ DE2 deletion was selected. Deletion of this gene locus in S. cerevisiae leads to the accumulation of a red intermediate (Dorfman, 1969) in the vacuole. This pigment has fluorescent properties and can be excited with light of the wavelength 488 nm (blue). The emission maximum of the pigment is in the red light range at 569 nm (Brushi and Chuba, 1988).

Ausgangspunkt zur Herstellung der Teststämme war ein diploider S. cerevisiae Laborstamm (BY4743). Bei diesem wurde eines der beiden Allele des DFR1- Genes deletiert. Dies erfolgt über eine PCR-vermittelte Gendeletion mit kurzen homologen Flanken wie sie beispielsweise in Patent-Nr. WO 99/55907 beschrieben ist und den Stand der Technik darstellt. In diesem diploiden Stamm, der nun heterozygot für den Genlokus DFR war, wurde zum einen das Plasmid pDE95-ecfolA und zum anderen das Plasmid pDE95-HDFR eingebracht. Beide resultierende Stämme wurden einer Tetradenanalyse unterzogen, bei der eine Reduktionsteilung induziert wird mit 4 haploiden Sporen als Ergebnis. Zwei der Sporen enthielten die DFR1 Deletion und konnten nur wachsen, weil sie das funktionshomologe Protein/Gen aus E. coli (folA) bzw. des Menschen (HDFR) exprimierten, das nun die Funktion von Dfrlp übernahm.The starting point for the production of the test strains was a diploid S. cerevisiae laboratory strain (BY4743). One of the two alleles of the DFR1- Genes deleted. This is done by means of a PCR-mediated gene deletion with short homologous flanks, as described, for example, in patent no. WO 99/55907 is described and represents the prior art. The plasmid pDE95-ecfolA and the plasmid pDE95-HDFR were introduced into this diploid strain, which was now heterozygous for the DFR gene locus. Both resulting strains were subjected to a tetrad analysis, in which a reduction division is induced with 4 haploid spores as a result. Two of the spores contained the DFR1 deletion and could only grow because they expressed the functionally homologous protein / gene from E. coli (folA) or human (HDFR), which now took over the function of Dfrlp.

Um einen der beiden Stämme mit der phänotypischen Marke zu versehen, wurde ein Allel des ADE2-Genes mit dem oben beschriebenen Verfahren in dem S. cerevisiae Laborstamm (BY4743) deletiert. Bei dem resultierenden Stamm wurde die Sporulation induziert. Zwei der Sporen trugen nun die ADE2 Deletion. Eine der >4DE2 Mutanten wurde mit den hergestellten Teststämmen gekreuzt und bei den resultierenden Stämmen erneut die Sporulation induziert. In den so erzeugten haploiden Stämmen wurde nach solchen gesucht, die sowohl die DFR1 als auch 4DE2 Deletion trugen.In order to label one of the two strains with the phenotypic label, an allele of the ADE2 gene was deleted in the S. cerevisiae laboratory strain (BY4743) using the method described above. Sporulation was induced in the resulting strain. Two of the spores now bore the ADE2 deletion. One of the> 4DE2 mutants was crossed with the test strains produced and sporulation was induced again in the resulting strains. In the haploid strains generated in this way, searches were carried out for those which carried both the DFR1 and 4DE2 deletion.

Nach Herstellung der hier beschriebenen Testtämme standen folgende Teststamm-Kombinationen für das weitere Screening zur Verfügung:After the test strains described here had been prepared, the following test strain combinations were available for further screening:

Stamm-Kombination AStrain combination A

Targetstamm: BY4743 Adfrl + pDE95-ecfolATarget strain: BY4743 Adfrl + pDE95-ecfolA

Kontrollstamm: BY4743 Adfrl Aade2 + pDE95-HDFRControl strain: BY4743 Adfrl Aade2 + pDE95-HDFR

undand

Stamm-Kombination BStrain combination B

Targetstamm: BY4743 Adfrl Aade2 + pDE95-ecfolATarget strain: BY4743 Adfrl Aade2 + pDE95-ecfolA

Kontrollstamm: BY4743 Adfrl + pDE95-HDFR Beispiel 5:Control strain: BY4743 Adfrl + pDE95-HDFR Example 5:

Analyse Target-spezifischer Inhibitoren durch das PDS-Substitutionsverfahren (Testorganismus: S. cerevisiae).Analysis of target-specific inhibitors by the PDS substitution method (test organism: S. cerevisiae).

Es ist bekannt, das Diamino-Benzylpyrimidine spezifisch die bakterielle Dihydrofolatreduktase inhibieren und eine um mehrere Zehnerpotenzen geringere Affinität zu Dihydrofolatreduktasen von Säugern besitzen. Ein Wirkstoff dieser Substanzklasse ist Trimethoprim, das in der Medizin bereits seit langem zur Behandlung bakterieller Infektionen eingesetzt wird. Diese Substanz bot die Möglichkeit das PDS im Substitutionsverfahren bezüglich seiner Funktionalität und Empfindlichkeit genauer zu analysieren.It is known that diamino-benzylpyrimidines specifically inhibit bacterial dihydrofolate reductase and have an affinity for dihydrofolate reductases of mammals that is several orders of magnitude lower. An active ingredient in this class of substances is trimethoprim, which has long been used in medicine to treat bacterial infections. This substance offered the possibility of analyzing the PDS in terms of its functionality and sensitivity in the substitution process.

Hierzu wurden die Stämme aus Beispiel 4 (Stamm-Kombination A und Stamm- Kombination B) über Nacht angezogen und jeweils Kavitäten einer 96 well Mikrotiterplatte, die 100 μl frisches Medium enthielten mit Stamm-Kombination A bzw. Stammkombination B in einer 1 :2000 Verdünnung beimpft. Anschließend wurden 1,5 μl Trimethoprim-Lösung unterschiedlicher Konzentration (500 mM, 250 mM 100 mM, 50 mM, 25 mM, 10 mM, 5 mM, 2,5 mM, 1 mM, 0,5 mM, 0,25 mM, 0,1 mM, 0,05 mM - alle gelöst in DMSO) in die Kavitäten pipettiert.For this purpose, the strains from Example 4 (strain combination A and strain combination B) were grown overnight and in each case cavities of a 96-well microtiter plate which contained 100 μl fresh medium with strain combination A or strain combination B in a 1: 2000 dilution inoculated. Then 1.5 μl trimethoprim solution of different concentrations (500 mM, 250 mM 100 mM, 50 mM, 25 mM, 10 mM, 5 mM, 2.5 mM, 1 mM, 0.5 mM, 0.25 mM, 0.1 mM, 0.05 mM - all dissolved in DMSO) pipetted into the cavities.

Die Mikrotiterplatte wurde nun bei 30°C stehend (d.h. nicht schüttelnd) inkubiert. Die Zellen setzen sich dabei rasch ab und das Wachstum findet ausschließlich am Grund der einzelnen Kavitäten statt. Hier existieren nahezu anaerobe Bedingungen, was die Bildung des toxischen roten Pigmentes im ADE2 Deletionsstamm verhindert. Nach 2 Tagen Inkubation befanden sich die Zellgemische in der stationären Wachstumsphase und die Umsetzung des untoxischen Phosphoribosylaminoimidazol zu einem roten Pigment konnte induziert werden. Dazu wurde das Medium in jeder Kavität bis auf wenige μl abgezogen, anschließend das Zeil-Sediment in dem Restmedium durch schütteln resuspendiert und diese Suspension für 1h bei Zimmertemperatur inkubiert. Nun erfolgte eine durch den Luftsauerstoff vermittelte Oxidation des akkumulierten farblosen Zwischenproduktes Phosphoribosylaminoimidazol und es wurde in ein nicht näher charakterisiertes farbiges Endprodukt überführt. Die Auswertung konnte nun ohne weitere Auswertegeräte erfolgen, da der phänotypische Marker das Sediment der Kulturen rot färbte, was mit dem Auge deutlich zu erkennen war. Alle Kavitäten, denen nichts bzw. nur DMSO zugesetzt wurde zeigten einheitlich eine schwache Rosafärbung. In dem Konzentrationsbereich 500 mM - 2,5 mM zeigten die Sedimente der Mischkulturen bei Stamm-Kombination A eine deutliche Rotfärbung (Endkonzentrationen 2,1 mg/ml - 10,5 μg/ml). Im Konzentrationsbereich 1 mM - 0,1 mM zeigten die Sedimente der Stamm-Kombination A eine abgestuft schwächer werdende Rotfärbung hin zur Rosafärbung, die jedoch noch deutlich intensiver und damit gut unterscheidbar von der Rosafärbung der Kontrollen war (Endkonzentrationen 4,2 μg/ml - 0,42 μg/ml). Bei der Konzentration von 0,05 mM zeigte das Sediment der Stamm-Kombination A keinen erkennbaren Unterschied zu den Sedimenten der unbehandelten Kulturen bzw. den DMSO applizierten Kulturen (Kontrollen).The microtiter plate was then incubated standing at 30 ° C. (ie not shaking). The cells settle quickly and the growth takes place exclusively at the bottom of the individual cavities. Almost anaerobic conditions exist here, which prevents the formation of the toxic red pigment in the ADE2 deletion strain. After 2 days of incubation, the cell mixtures were in the stationary growth phase and the conversion of the non-toxic phosphoribosylaminoimidazole to a red pigment could be induced. For this purpose, the medium in each cavity was drawn down to a few μl, then the Zeil sediment was resuspended in the residual medium by shaking and this suspension was incubated for 1 h at room temperature. Now there was an oxidation of the accumulated colorless intermediate product phosphoribosylaminoimidazole, which was mediated by atmospheric oxygen, and it was converted into an unspecified colored end product. The evaluation could now be carried out without further evaluation devices, since the phenotypic marker colored the sediment of the cultures red, which was clearly visible to the eye. All cavities to which nothing or only DMSO was added consistently showed a weak pink color. In the concentration range 500 mM - 2.5 mM, the sediments of the mixed cultures with strain combination A showed a clear red color (final concentrations 2.1 mg / ml - 10.5 μg / ml). In the concentration range 1 mM - 0.1 mM, the sediments of strain combination A showed a gradually weakening red color towards pink, which was, however, even more intense and therefore clearly distinguishable from the pink color of the controls (final concentrations 4.2 μg / ml - 0.42 μg / ml). At the concentration of 0.05 mM, the sediment from strain combination A showed no discernible difference to the sediments of the untreated cultures or the DMSO applied cultures (controls).

Im Konzentrationsbereich 500 mM - 0,5 mM zeigten die Kavitäten der Stamm- Kombination B einheitlich weiße Sedimente (Endkonzentrationen 2,1 mg/ml - 2,1 μg/ml).In the concentration range 500 mM - 0.5 mM, the cavities of strain combination B showed uniform white sediments (final concentrations 2.1 mg / ml - 2.1 μg / ml).

Im Konzentrationsbereich 0,5 mM - 0,05 mM zeigten die Sedimente der Stamm- Kombination B keinen erkennbaren Unterschied zu den Sedimenten der unbehandelten Kulturen bzw. den DMSO applizierten Kulturen (Kontrollen).In the concentration range 0.5 mM - 0.05 mM, the sediments of strain combination B showed no discernible difference to the sediments of the untreated cultures or the cultures applied to DMSO (controls).

Somit steht ein hochempfindlicher Assay zur Verfügung, mit dessen Hilfe Substanzen identifiziert werden, die gegen Targets aus ausgewählten Organismen gerichtet sind ohne ein Kontrollproteine von anderen Organismen (z.B. des Menschen) übermäßig zu inhibieren. Der Assay arbeitet über weite Konzentrationsbereiche, so dass sowohl sehr spezifische als auch weniger spezifische Substanzen identifiziert werden können.A highly sensitive assay is thus available, with the aid of which substances are identified which are directed against targets from selected organisms without excessively inhibiting a control protein from other organisms (e.g. humans). The assay works over a wide range of concentrations so that both very specific and less specific substances can be identified.

Durch die Wahl unterschiedlicher Start-Verdünnungen der Stamm-Kombinationen kann zudem die Empfindlichkeit des Tests modifiziert werden. Je stärker verdünnt die beiden Teststämme angeimpft werden, umso stärker macht sich eine differentielle Hemmung der Target-/Kontrollstämme bemerkbar (auslesbar durch den phänotypischen Marker).The sensitivity of the test can also be modified by selecting different starting dilutions of the parent combinations. The more diluted the two test strains are inoculated, the more strongly a differential inhibition of the target / control strains becomes noticeable (readable by the phenotypic marker).

Beispiel 6:Example 6:

Übertragung der Assays in das 384 well Format für die Suche nach Targetspezifischen Inhibitoren im High-Throughput Screening (HTS)Transfer of the assays into the 384 well format for the search for target-specific inhibitors in high-throughput screening (HTS)

Der in Beispiel 5 verwendete Test (Stamm-Kombination A) wurde in Mikrotiterplatten des 384 well Formats übertragen. Diese Mikrotiterplatten stellen ein gängiges Format dar, um im Hochdurchsatzverfahren (High-Throughput Screening) in Substanzbibliotheken nach interessanten Wirkstoffen zu suchen. Hier kann mit Hilfe des neuen Assays nach Wirkstoffen gesucht werden, die spezifisch das bakterielle Targetprotein inhibieren ohne die Funktion des humanen Kontrollproteins übermäßig zu stören.The test used in Example 5 (strain combination A) was transferred to 384 well format microtiter plates. These microtiter plates are a common format for searching for interesting active substances in substance libraries using the high-throughput method. With the help of the new assay, it is possible to search for active substances which specifically inhibit the bacterial target protein without unduly interfering with the function of the human control protein.

Die Teststämme wurden über Nacht in Vollmedium angezogen und die Zelldichte der Kulturen auf identische Werte eingestellt. Anschließend wurden die Kulturen ca. 5000fach in frischem Medium verdünnt und vereinigt. Die so erhaltene Zellsuspension wurde gut gemischt und damit die Kavitäten von 384 well Mikrotiterplatten (100 μl) befüllt. Nach Zugabe von 0,8 μl Trimethoprim-Lösung unterschiedlicher Konzentration (5 mM, 1 mM 0,25 mM, 0,1 mM) wurden die Platten für 2 Tage bei 30°C inkubiert und anschließend wie in Beispiel 5 beschrieben behandelt. Die farbliche Auswertung zeigte, dass im Konzentrationsbereich von 5 mM bis 0,25 mM die Sedimente der Mischkulturen deutlich rot gefärbt waren und sich von den unbehandelten Kulturen deutlich unterschieden.The test strains were grown in full medium overnight and the cell density of the cultures was adjusted to identical values. The cultures were then diluted approximately 5000 times in fresh medium and combined. The cell suspension obtained in this way was mixed well and the cavities of 384 well microtiter plates (100 μl) were filled with it. After adding 0.8 μl of trimethoprim solution of different concentrations (5 mM, 1 mM 0.25 mM, 0.1 mM), the plates were incubated for 2 days at 30 ° C. and then treated as described in Example 5. The color evaluation showed that in the concentration range from 5 mM to 0.25 mM the sediments of the mixed cultures were clearly colored red and clearly differed from the untreated cultures.

Wird mit Substanzbibliotheken gearbeitet, so ist diese bereits in den Mikrotiterplatten vorgelegt oder wird mittels Pipettierroboter zugegeben. Neben Reinsubstanzen können auch komplexe Extrakte auf Wirksamkeit untersucht werden, da Hefezellen und damit das Screening-Verfahren sehr robust bezüglich Störungen durch Lösungsmittel oder andere Substanzen ist und keine falschpositiven Treffer oder unerwünschtes "Hintergrund-Rauschen" entsteht. Es werden nur Signale generiert, wenn das Target- und/oder das Kontrollprotein getroffen werden und damit der entsprechende Stamm inhibiert wird. Dies erspart ein zeit- und kostenaufwändiges Aufreinigen komplexer Extrakte. Die Platten werden nun für 2 Tage bei 30°C bebrütet und anschließend ausgewertet. Zur Auswertung eignen sich Fluorimeter (aufgrund der fluoreszierenden Eigenschaften des akkumulierten Pigmentes) oder Systeme die Farbintensitäten (CCD-Kameras) messen können.If substance libraries are used, this is already included in the microtiter plates or is added using a pipetting robot. In addition to pure substances, complex extracts can also be examined for effectiveness, since yeast cells and thus the screening process are very robust with regard to interference from solvents or other substances and there are no false positive hits or unwanted "background noise". Signals are only generated when the target and / or the control protein are hit and the corresponding strain is inhibited. This saves time-consuming and costly cleaning up of complex extracts. The plates are now incubated at 30 ° C for 2 days and then evaluated. Fluorimeters (due to the fluorescent properties of the accumulated pigment) or systems that can measure color intensities (CCD cameras) are suitable for evaluation.

Mit Hilfe eines FACS Gerätes kann sogar die zahlenmäßige Zusammensetzung der einzelnen Kavität-Kulturen bestimmt werden, was eine sehr genaue Aussage über das spezifisch hemmende Potential einer Substanz zulässt.With the help of a FACS device, the numerical composition of the individual cavity cultures can even be determined, which allows a very precise statement about the specific inhibitory potential of a substance.

Um falsch-positive auszuschließen, werden alle Substanzen, die ein Signal erzeugt haben ("Hits") überprüft, ob sie auch ein Signal mit Stamm-Kombination B erzeugen. Hierzu werden die Stämme dieser Stamm-Kombination über Nacht in Vollmedium angezogen und die Zelldichte der Kulturen auf identische Werte eingestellt. Anschließend werden die Kulturen ca. 5000fach in frischem Medium verdünnt und in einem Verhältnis 80% Targetstamm (BY4743 Adfrl Aade2 + pDE95-ecfolA) zu 20% Kontrollstamm (BY4743 Adfrl + pDE95-HDFR) vereinigt. Die so erhaltene Zellsuspension wird gut gemischt und damit erneut die Kavitäten von 384 well Mikrotiterplatten (50 μl) befüllt. Nun werden die Hit-Substanzen des ersten Screeningdurchlaufs (Screening mit Stamm-Kombination A) zugesetzt.In order to rule out false positives, all substances that have generated a signal ("hits") are checked to see whether they also generate a signal with a parent combination B. For this purpose, the strains of this strain combination are grown overnight in full medium and the cell density of the cultures is adjusted to identical values. The cultures are then diluted approximately 5,000 times in fresh medium and combined in a ratio of 80% target strain (BY4743 Adfrl Aade2 + pDE95-ecfolA) to 20% control strain (BY4743 Adfrl + pDE95-HDFR). The cell suspension obtained in this way is mixed well and the cavities of 384 well microtiter plates (50 μl) are filled again. Now the hit substances of the first screening run (screening with strain combination A) are added.

Die Platten werden für 2 Tage bei 30°C bebrütet und anschließend ausgewertet. Die Sedimente der Kontrollen, d.h. Kavität-Kulturen denen nichts bzw. nur DMSO zugesetzt wurde, zeigen eine deutliche Rotfärbung. Substanzen, die Targetspezifisch die bakterielle Dihydrofolatreduktase inhibieren, führen zu einer Abnahme der roten Farbintensität (im Vergleich zur Kontrolle) bis hin zu weißen Sedimenten. Substanzen die nicht wirkortspezifisch den Stamm mit der bakteriellen Dihydrofolatreduktase inhibieren sondern möglicherweise im ersten Screeningdurchlauf ein Signal erzeugt haben, weil sie dem Kontrollstamm (BY4743 Adfrl Aade2 + pDE95-HDFR) einen Selektionsvorteil aufgrund der /4DE2-Deletion verliehen haben, sind hier nicht in der Lage die Farbe des Sediments von rot nach weiß zu verschieben, sondern führen auch hier zu einer Farbintensivierung des roten Sediments.The plates are incubated for 2 days at 30 ° C and then evaluated. The sediments from the controls, ie cavity cultures to which nothing or only DMSO was added, show a clear red color. Substances that specifically inhibit bacterial dihydrofolate reductase lead to a decrease in red color intensity (compared to the control) to white sediments. Substances that do not specifically inhibit the strain with the bacterial dihydrofolate reductase but may have generated a signal in the first screening run because they give the control strain (BY4743 Adfrl Aade2 + pDE95-HDFR) a selection advantage due to the / 4DE2 deletion are not able to shift the color of the sediment from red to white, but also lead to a color intensification of the red sediment.

Somit sind nach diesen beiden Screeningdurchläufen Substanzen identifiziert, die spezifisch an dem Wirkort Dihydrofolatreduktase ansetzen und zugleich selektiv das bakterielle Enzym stärker inhibieren als das humane Kontrollenzym.Thus, after these two screening runs, substances are identified that specifically target dihydrofolate reductase at the site of action and at the same time selectively inhibit the bacterial enzyme more strongly than the human control enzyme.

Beispiel 7:Example 7:

Analyse Target-spezifischer Inhibitoren durch das PDS-Verfahren (Testorganismus: E. coli)Analysis of target-specific inhibitors by the PDS method (test organism: E. coli)

Für das gleiche Target (Dihydrofolatreduktase) kann auch mit Hilfe eines bakteriellen Testorganismus (z.B. Escherichia coli) nach Wirkort-spezifischen Wachstumsinhibitoren gesucht werden.For the same target (dihydrofolate reductase), a bacterial test organism (e.g. Escherichia coli) can also be used to search for growth site-specific growth inhibitors.

Hierzu wird das Gen, das für die humane Dihydrofolatreduktase kodiert, in einen E. coli Expressionsvektor kloniert. Als Promotoren können hierbei sowohl regulierbare (lac, tac, trp, 17, araB, phoA) als auch konstitutive Promotoren Einsatz finden. Dieses Plasmid wird durch eine Transformation (z.B. Elektroporation) in den E. coli Kontrollstamm eingebracht. Der Targetstamm enthält kein Plasmid, bzw. nur einen leeren Vektor. Somit unterscheiden sich Kontroll- und Targetstamm nur in einem genetischen Merkmal und zwar in der zusätzlichen Expression der humanen Dihydrofolatreduktase in dem Kontrollstamm. Hemmt nun eine Substanz spezifisch die bakterielle Dihydrofolatreduktase (folA), so führt dies zu einer spezifischen Wachstumshemmung des Targetstammes.For this purpose, the gene coding for human dihydrofolate reductase is cloned into an E. coli expression vector. Both adjustable (lac, tac, trp, 17, araB, phoA) and constitutive promoters can be used as promoters. This plasmid is introduced into the E. coli control strain by transformation (e.g. electroporation). The target strain contains no plasmid or only an empty vector. Thus, the control and target strains differ only in one genetic trait, namely in the additional expression of the human dihydrofolate reductase in the control strain. If a substance specifically inhibits bacterial dihydrofolate reductase (folA), this leads to a specific growth inhibition of the target strain.

Zusätzlich enthält der Kontrollstamm (alternativ der Targetstamm) noch ein Plasmid, das die konstitutive Expression des Grün-fluoreszierenden Proteins (GFP) gewährleistet. Der Kontroll- und der Targetstamm werden angezogen, gemischt und die Kavitäten einer Mikrotiterplatte (befüllt mit frischem Medium) dünn beimpft. Nun werden Substanzen (bzw. ganze Substanzbibliotheken) zugegeben und anschließend bei 37°C inkubiert. Nach Erreichen der stationären Wachstumsphase (über Nacht Inkubation) wird die Zusammensetzung der Kavität-Kulturen mit Kontroll- und Targetstamm durch die GFP-Fluoreszenz jeder einzelnen Kavität mittels Fluorimeter ermittelt. Kavitäten, die eine erhöhte Fluoreszenz zeigen enthalten mehr Zellen des Kontrollstammes, was auf eine selektive Hemmung des Tagetstammes (und damit der bakteriellen Dihydrofolatreduktase) hinweist.In addition, the control strain (alternatively the target strain) also contains a plasmid which ensures the constitutive expression of the green fluorescent protein (GFP). The control and target strains are grown, mixed and the wells of a microtiter plate (filled with fresh medium) are inoculated thinly. Now substances (or whole substance libraries) are added and then incubated at 37 ° C. After reaching the stationary growth phase (overnight incubation), the composition of the cavity cultures with control and target strain is determined by means of the GFP fluorescence of each individual cavity using a fluorimeter. Cavities that show increased fluorescence contain more cells from the control strain, which indicates a selective inhibition of the Taget strain (and thus the bacterial dihydrofolate reductase).

Beispiel 8:Example 8:

PDS-Haploinsuffizienz-ScreeningPDS haploinsufficiency screening

In diploiden Organismen ist unter optimalen Bedingungen (z.B. Vollmedien für Mikroorganismen) zumeist eine Kopie eines Genes ausreichend für das normale Wachstum des Organismus.In diploid organisms, a copy of a gene is usually sufficient for the normal growth of the organism under optimal conditions (e.g. full media for microorganisms).

Werden jedoch die Wachstumsbedingungen geändert, z.B. durch Zugabe von Wirkstoffen, die spezifisch gegen das Genprodukt (Protein/Enzym) des verbliebenen Alleis gerichtet sind, wird häufig eine Haplo-insuffizienz induziert, da der primäre Effekt des Wirkstoffes eine weitere Beinträchtigung der Funktion des verbliebenen Proteins bedingt. Nun ist die Menge und damit die Aktivität des Proteins (z.B. Enzym-katalytische Aktivität) bei Organismen, die nur ein Allel des entsprechenden Genes besitzen nicht mehr ausreichend, um ein normales Wachstum der Zelle zu gewährleisten. Es treten Wachstumsphänotypen auf, wohingegen Wildtypzellen (2 Allele des Genes) bei gleicher Wirkstoffkonzentration weniger oder noch gar nicht beeinflusst werden (Gendosiseffekt).However, if the growth conditions are changed, e.g. Haplo insufficiency is often induced by adding active substances that are specifically directed against the gene product (protein / enzyme) of the remaining alley, since the primary effect of the active substance causes a further impairment of the function of the remaining protein. Now the amount and thus the activity of the protein (e.g. enzyme-catalytic activity) in organisms that only have one allele of the corresponding gene is no longer sufficient to ensure normal cell growth. Growth phenotypes occur, whereas wild-type cells (2 alleles of the gene) are influenced less or not at all with the same concentration of active substance (gene dose effect).

Haploinsuffizienz, d.h. Auftreten von Phänotypen beim Ausfall eines Alleis der ca. 1100 essentiellen Gene wird insbesondere bei dem Testorganismus S. cerevisiae sehr selten beobachtet. Durch Zugabe Wirkort-spezifischer Wachstumsinhibitoren, kann jedoch sehr einfach eine Haploinsuffizienz induziert werden. Diese Tatsache wurde bereits genutzt, um in S. cerevisae die Wirkorte verschiedener Substanzen näher zu charakterisieren (Giaever et al., 1999). Hierzu werden zahlreiche 2n hetreozygote Stämme, bei denen je ein Allel eines essentiellen Genes deletiert wurde gemischt. Die Kultur wurde geteilt, eine Hälfte wurde mit einem Wirkstoff versetzt, der in höherer Konzentration toxisch auf die Hefe wirkt, währen die andere Hälfte unbehandelt blieb. Wirkt nun die Substanz ortspezifisch auf eines der essentiellen Gene/Proteine, dann wird der Stamm, der genau für dieses Gen haploid ist stärker gehemmt als die anderen Stämme des Gemisches.Haploinsufficiency, ie the occurrence of phenotypes when an alley of approximately 1100 essential genes fails, is very rarely observed, particularly in the test organism S. cerevisiae. However, haplo insufficiency can be induced very simply by adding growth site-specific growth inhibitors. This fact has already been used to characterize the sites of action of various substances in S. cerevisae (Giaever et al., 1999). For this purpose, numerous 2n heterozygous strains, in which one allele of an essential gene has been deleted, are mixed. The culture was divided, half was made with an active ingredient which has a toxic effect on the yeast in higher concentrations, while the other half remained untreated. If the substance now acts in a site-specific manner on one of the essential genes / proteins, the strain which is haploid for this gene is more strongly inhibited than the other strains of the mixture.

Bisherige Verfahren haben sich zunutze gemacht, dass jede Deletionskassette mit der ein Allel in S. cerevisiae deletiert wurde eine Gen-spezifische 20bp lange Sequenz enthält. Mit Hilfe dieser Sequenzen ist jeder Gendeletionsstamm mittels molekularbiologischer Methoden identifizierbar (PCR). Von beiden Gesamtkulturen wird nun chromosomale DNS isoliert, die spezifischen Sequenzen aller Stämme mittels PCR amplifiziert und mit den so erhaltenen PCR-Produkten letztendlich über DNA-Array-Analysen die Repräsentation der einzelnen Stämme in den Kulturen ermittelt. Durch die Information, welche Stämme in der Kultur mit Wirkstoff selektiv gehemmt werden, können letztendlich Aussagen über den Wirkmechanismus gemacht werden, idealer Weise kann das Target identifiziert werden.Previous methods have taken advantage of the fact that each deletion cassette with which an allele in S. cerevisiae was deleted contains a gene-specific 20 bp long sequence. With the help of these sequences, each gene deletion strain can be identified using molecular biological methods (PCR). Chromosomal DNA is now isolated from both total cultures, the specific sequences of all strains are amplified by means of PCR and the representation of the individual strains in the cultures is finally determined using the PCR products obtained in this way via DNA array analyzes. Information about which strains are selectively inhibited in the culture with the active ingredient can ultimately be used to make statements about the mechanism of action, and ideally the target can be identified.

Dieses Verfahren ist sehr interessant um Wirkorte und Wirkmechanismen zytotoxischer Extrakte zu identifizieren. Durch dieses Wissen kann in einer sehr frühen Phase das Potential z.B. antifungaler Wirkstoffe abgeschätzt werden. Jedoch ist dieses Verfahren bisher nur mit Hilfe aufwendiger und technisch anspruchsvollen DNA-Array-Analysen durchführbar und völlig ungeeignet um Substanzen im HTS zu untersuchen.This method is very interesting in order to identify places of action and mechanisms of action of cytotoxic extracts. This knowledge enables the potential to be e.g. antifungal agents can be estimated. However, this method has so far only been feasible with the help of complex and technically demanding DNA array analyzes and is completely unsuitable for investigating substances in HTS.

Mit Hilfe des PDS-Haploinsuffizienz-Screening wird das Verfahren massiv vereinfacht. Eine Sammlung 2n heterozygoter Stämme, bei denen je ein Allel eines essentiellen Genes deletiert wurde (Aess. gen/ESS.GEN), wurde stark verdünnt und in zwei Kavitäten einer Mikrotiterplatten vorgelegt. Ein diploider Stamm bei dem beide Allele des ADE2 Genes deletiert wurden (Aade2/Aade2), wurde mit frischem Medium verdünnt und je 100μl in die Kavitäten zu den vorgelegten Stämmen gegeben. Die beiden Stämme einer Kavität lagen in gleicher Verdünnung vor. Nun wurde die Hälfte der Kavitäten (jedes Stammgemisch einmal) mit einer subletalen Dosis Ketoconazol (1,5 μl einer 0,05 mg Ketokonazol /ml DMSO), die andere Hälfte mit DMSO versetzt.The procedure is massively simplified with the help of PDS haploinsufficiency screening. A collection of 2n heterozygous strains, in which one allele of an essential gene was deleted (Aess. Gen / ESS.GEN), was greatly diluted and placed in two cavities of a microtiter plate. A diploid strain in which both alleles of the ADE2 gene were deleted (Aade2 / Aade2) was diluted with fresh medium and 100 μl each was added to the cavities to the presented strains. The two strains of a cavity were present in the same dilution. Now half of the cavities (each Stock mixture once) with a sublethal dose of ketoconazole (1.5 μl of a 0.05 mg ketoconazole / ml DMSO), the other half with DMSO.

Die Platten wurden für zwei Tage bei 30°C inkubiert, die Bildung des roten Farbpigmentes induziert (wie in Bsp. 5 beschrieben) und anschließend ausgewertet. Ketokonazol ist eine antifungale Substanz, die spezifisch die Aktivität der Lanosterol Demethylase (Erg11p) hemmt. Im PDS-Haploinsuffizienz- Screening sah man dementsprechend ein deutliches rotes Signal in der Kavität mit der Stammkombination Aade2/Aade2 + Aerg11/ERG11, der Ketoconazol zugegeben wurde, im Vergleich zur Kontrolle mit DMSO. Dieses unterschiedliche Färbungsverhalten ist spezifisch für diese Stammkombination, alle anderen Stammkombinationen zeigten keine unterschiedliche Färbung zwischen der Wirkstoff- und der Kontroll-Kavität.The plates were incubated for two days at 30 ° C., the formation of the red color pigment was induced (as described in Example 5) and then evaluated. Ketoconazole is an antifungal substance that specifically inhibits the activity of Lanosterol Demethylase (Erg11p). Accordingly, PDS haploinsufficiency screening showed a clear red signal in the cavity with the parent combination Aade2 / Aade2 + Aerg11 / ERG11, to which ketoconazole was added, compared to the control with DMSO. This different staining behavior is specific for this strain combination, all other strain combinations showed no different staining between the active ingredient and the control cavity.

Mit Hilfe diese Verfahrens ist die weiter oben beschriebene DNA-Array-Analyse massiv vereinfacht worden und es kann nun mit einfachen Mitteln der Wirkmechanismus für eine Vielzahl antifungaler Substanzen näher charakterisiert werden, indem deren differenzielle Wirkung auf den Wildtyp im Vergleich zur Wirkung auf den 2n heterozygoten Deletionsstamm untersucht wird. With the help of this method, the DNA array analysis described above has been massively simplified and the mechanism of action for a large number of antifungal substances can now be characterized in more detail by simple means, by comparing their differential effect on the wild type with the effect on the 2n heterozygotes Deletion strain is examined.

Claims

Patentansprüche: claims: 1. Hochdurchsatz-geeignetes Screening-Verfahren zur Identifikation von Wirkstoffen, dadurch gekennzeichnet, daß man a) einen Zielorganismus auswählt, den die zu identifizierenden Wirkstoffe inhibieren oder abtöten sollen, b) ein Zielgen auswählt, das oder dessen Genprodukt durch die zu identifizierenden Wirkstoffe deaktiviert werden soll, c) einen zu schützenden Organismus auswählt, der vor Schädigung durch den Zielorganismus bewahrt werden soll, d) einen Testorganismus auswählt, der ein dem Zielgen funktionshomologes Testgen trägt, e) zwei Teststämme eines Testorganismus konstruiert, die sich genotypisch in genau zwei Merkmalen unterscheiden, nämlich i. in dem Zielgen, dadurch, daß einer der Teststämme eine höhere Dosis eines das Zielgen oder dessen Genprodukt deaktivierenden Wirkstoffes toleriert als der andere Teststamm und ii. in einem Gen, das für eine gut detektierbare Eigenschaft kodiert, für die Vitalität und Proliferationsfähigkeit des Testorganismus aber nicht essentiell ist, f) beide Teststämme mischt und gemeinsam inkubiert, g) einen potentiellen Wirkstoff zugibt und h) anhand des gegebenenfalls unterschiedlich starken Wachstums der beiden Teststämme einen Wirkstoff identifiziert1. High-throughput suitable screening method for identifying active substances, characterized in that a) a target organism is selected which the active substances to be identified are to inhibit or kill, b) a target gene is selected which, or the gene product thereof, is deactivated by the active substances to be identified c) selects an organism to be protected that is to be protected from damage by the target organism, d) selects a test organism that carries a test gene that is functionally homologous to the target gene, e) constructs two test strains of a test organism that genotypically have exactly two characteristics distinguish, namely i. in the target gene, in that one of the test strains tolerates a higher dose of an active ingredient which deactivates the target gene or its gene product than the other test strain and ii. in a gene that codes for a well-detectable property, but is not essential for the vitality and proliferation ability of the test organism, f) mixes and incubates both test strains, g) adds a potential active ingredient and h) based on the possibly differently strong growth of the two Test strains identified an active ingredient 2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der Zielorganismus ausgewählt ist unter Menschen und Mikroorganismen, insbesondere pathogenen Organismen, vorzugsweise unter pflanzen-, tier- und/oder humanpathogenen Organismen, bevorzugt unter humanpathogenen Pilzen oder Bakterien.2. The method according to claim 1, characterized in that the target organism is selected from humans and microorganisms, in particular pathogenic organisms, preferably from plant, animal and / or human pathogenic organisms, preferably from human pathogenic fungi or bacteria. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Zielgen ausgewählt ist unter Genen, die essentiell für das vegetative Wachstum des Zielorganismus sind, insbesondere alle Zielgene eines Zielorganismus, die Funktionshomologe zu essentiellen Genen von S. cerevisiae darstellen.3. The method according to claim 1 or 2, characterized in that the target gene is selected from genes which are essential for the vegetative growth of The target organism, in particular all target genes of a target organism, are the functional homologues to essential genes of S. cerevisiae. 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zu schützende Organismus ausgewählt ist unter Tieren, Pflanzen und Mensch.4. The method according to any one of the preceding claims, characterized in that the organism to be protected is selected from animals, plants and humans. 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Testorganismus ausgewählt ist unter Prokaryoten, wie Spezies der Gattungen Bacillus (B. subtilis), Escherichia (E. coli), Klebsiella [K. planticola), Lactobacillus (L. delbruckii, L. lactis), Pseudomonas (P. aeroginosa, P. fluorescens) Salmonella (S. typhimurium) Serratia (S. marcescens) Streptococcus (S. lactis, S. mutans, S. pyogenes), Staphylococcus (S. aureus, S. epidermidis) Vibrio (V. cholerae) Yersinia (Y. ruckeri), insbesondere Escherichia coli und Bacillus subtilis und Eukaryoten, wie Hefen, insbesondere Spezies aus den Gattungen Saccharomyces, Schizosaccharomyces, Candida, Kluyveromyces, Yarrowia, Ashbya, Hansenula, Pichia, besonders bevorzugt Saccharomyces cerevisae, Schizosaccharomyces pombe oder Candida albicans, ganz besonders bevorzugt Saccharomyces cerevisiae Stämme, bevorzugt die Stämme CEN.PK2, BY4743, BMA46 (W303), FY1679 sowie deren haploide Derivate.5. The method according to any one of the preceding claims, characterized in that the test organism is selected from prokaryotes, such as species of the genera Bacillus (B. subtilis), Escherichia (E. coli), Klebsiella [K. planticola), Lactobacillus (L. delbruckii, L. lactis), Pseudomonas (P. aeroginosa, P. fluorescens) Salmonella (S. typhimurium) Serratia (S. marcescens) Streptococcus (S. lactis, S. mutans, S. pyogenes) , Staphylococcus (S. aureus, S. epidermidis) Vibrio (V. cholerae) Yersinia (Y. ruckeri), in particular Escherichia coli and Bacillus subtilis and eukaryotes, such as yeasts, in particular species from the genera Saccharomyces, Schizosaccharomyces, Candida, Kluyveromyces, Yarrowia , Ashbya, Hansenula, Pichia, particularly preferably Saccharomyces cerevisae, Schizosaccharomyces pombe or Candida albicans, very particularly preferably Saccharomyces cerevisiae strains, preferably the strains CEN.PK2, BY4743, BMA46 (W303), FY1679 and their haploid derivatives. 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es in einer Mehrzahl paralleler Ansätze durchgeführt wird.6. The method according to any one of the preceding claims, characterized in that it is carried out in a plurality of parallel approaches. 7. Test-Kit zur Identifikation von Wirkstoffen, das Mittel zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche umfaßt.7. Test kit for identifying active substances, which comprises means for carrying out the method according to one of the preceding claims. 8. Verfahren zur Herstellung einer kosmetischen oder pharmazeutischen Zubereitung, dadurch gekennzeichnet, daß man c) das Verfahren nach einem der Ansprüche 1 bis 6 durchführt und so einen Wirkstoff ermittelt und d) als wirksam befundene Wirkstoffe mit kosmetisch und/oder pharmakologisch geeigneten und verträglichen Trägern vermischt.8. A method for producing a cosmetic or pharmaceutical preparation, characterized in that c) the method according to one of claims 1 to 6 is carried out and an active ingredient is thus determined and d) active ingredients found to be effective are mixed with cosmetically and / or pharmacologically suitable and compatible carriers. 9. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 6 oder des Test- Kits nach Anspruch 7 zum Auffinden von Wirkstoffen. 9. Use of the method according to one of claims 1 to 6 or the test kit according to claim 7 for finding active ingredients.
PCT/EP2003/013564 2002-12-20 2003-12-02 High-throughput screening method for identifying active substances by means of co-cultivation WO2004059000A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003298160A AU2003298160A1 (en) 2002-12-20 2003-12-02 High-throughput screening method for identifying active substances by means of co-cultivation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10261834.8 2002-12-20
DE2002161834 DE10261834A1 (en) 2002-12-20 2002-12-20 High-throughput suitable screening process for the identification of active substances

Publications (2)

Publication Number Publication Date
WO2004059000A2 true WO2004059000A2 (en) 2004-07-15
WO2004059000A3 WO2004059000A3 (en) 2004-09-30

Family

ID=32478134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013564 WO2004059000A2 (en) 2002-12-20 2003-12-02 High-throughput screening method for identifying active substances by means of co-cultivation

Country Status (3)

Country Link
AU (1) AU2003298160A1 (en)
DE (1) DE10261834A1 (en)
WO (1) WO2004059000A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536670B2 (en) 2014-12-19 2022-12-27 General Electric Company System and method for engine inspection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521427A (en) * 2004-12-01 2008-06-26 エフ2ジー リミテッド Fungal signaling and metabolic enzymes
BR122017010168B1 (en) 2005-10-20 2018-06-26 Transocean Sedco Forex Ventures Ltd. METHOD TO CONTROL PRESSURE AND / OR DENSITY OF A DRILLING FLUID

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006132A2 (en) * 1993-08-27 1995-03-02 Myco Pharmaceuticals, Incorporated Identifying biologically active agents through culture color change
US6150137A (en) * 1994-05-27 2000-11-21 Ariad Pharmaceuticals, Inc. Immunosuppressant target proteins
US20030104362A1 (en) * 1995-06-05 2003-06-05 Guillaume Cottarel Cell-cycle regulatory proteins from human pathogens, and uses related thereto
WO1997048822A1 (en) * 1996-06-17 1997-12-24 Microcide Pharmaceuticals, Inc. Screening methods using microbial strain pools
WO1998021355A1 (en) * 1996-11-15 1998-05-22 Life Technologies, Inc. Mutants of green fluorescent protein
US6518035B1 (en) * 1998-06-02 2003-02-11 Rosetta Inpharmatics, Inc. Targeted methods of drug screening using co-culture methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536670B2 (en) 2014-12-19 2022-12-27 General Electric Company System and method for engine inspection

Also Published As

Publication number Publication date
AU2003298160A1 (en) 2004-07-22
DE10261834A1 (en) 2004-07-08
WO2004059000A3 (en) 2004-09-30
AU2003298160A8 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
Dos Reis et al. Antifungal and antibacterial activity of extracts produced from Diaporthe schini
Kohli et al. Genetic mapping in Schizosaccharomyces pombe by mitotic and meiotic analysis and induced haploidization
Buckley et al. The structure of microbial communities in soil and the lasting impact of cultivation
Ouhdouch et al. Actinomycetes of Moroccan habitats: isolation and screening for antifungal activities
Barer et al. Bacterial viability and culturability
Andorra et al. Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR
Allaker et al. Mechanisms of adrenomedullin antimicrobial action
Walterson et al. Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product
DE60129028T2 (en) CELLULAR ARRAYS FOR THE IDENTIFICATION OF CHANGED GENE EXPRESSION
Diessl et al. Stable and destabilized GFP reporters to monitor calcineurin activity in Saccharomyces cerevisiae
Giacomodonato et al. A PCR-based method for the screening of bacterial strains with antifungal activity in suppressive soybean rhizosphere
Zara et al. The administration of L-cysteine and L-arginine inhibits biofilm formation in wild-type biofilm-forming yeast by modulating FLO11 gene expression
Deng et al. Novel metabolic activity indicator in Streptococcus mutans biofilms
WO2004059000A2 (en) High-throughput screening method for identifying active substances by means of co-cultivation
Holland et al. Chromate-induced sulfur starvation and mRNA mistranslation in yeast are linked in a common mechanism of Cr toxicity
Plante et al. Closely related budding yeast species respond to different ecological signals for spore activation
Shanin et al. Genetic activity of the antimicrobial food additives AF-2 and H-193 in Saccharomyces cerevisiae
Forar Laidi et al. A new actinomycete strain SK4-6 producing secondary metabolite effective against methicillin-resistant Staphylococcus aureus
Yang et al. The homeobox transcription factor MrHOX7 contributes to stress tolerance and virulence in the entomopathogenic fungus Metarhizium robertsii
DE19932908A1 (en) Bacillus genes for synthesis of anticapsin and bacilysine are useful as antagonists of glucosamine synthesis
Deering et al. Some repair-deficient mutants of Dictyostelium discoideum display enhanced susceptibilities to bleomycin
Melin Proteomics as a tool to study microbial interactions
EP1721974B1 (en) Competitive n-hybrid system
DE10232902A1 (en) Method for identifying inhibitors of the 20S and 26S proteasome
Tamagnini et al. Generation and comparison of bioluminescent and fluorescent Bacillus licheniformis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR BY CA CN DZ ID IL IN JP KR MX NO NZ PL RU SG UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP