WO2004055840A1 - Coil unit and compound coil unit - Google Patents
Coil unit and compound coil unit Download PDFInfo
- Publication number
- WO2004055840A1 WO2004055840A1 PCT/JP2003/015930 JP0315930W WO2004055840A1 WO 2004055840 A1 WO2004055840 A1 WO 2004055840A1 JP 0315930 W JP0315930 W JP 0315930W WO 2004055840 A1 WO2004055840 A1 WO 2004055840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil unit
- core
- unit according
- electric wires
- insulator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2847—Sheets; Strips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/324—Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
Definitions
- the present invention relates to a coil unit and a composite coil unit.
- Figures 57 and 58 show conventional toroidal choke coils.
- the toroidal choke coil refers to a core 100 or 101 having a closed magnetic path and a winding 102 wound around the core.
- the core shape may be a cylindrical shape, a letter or a rectangular parallelepiped shape, and the hole may be a round hole or a square hole.
- the pore radius a of the toroidal core can be obtained by the following equation (1) from the NI value in consideration of the saturation caused by the current I and the number of turns N.
- B magnetic flux density, ⁇ : magnetic permeability
- ⁇ I ( ⁇ ⁇ 27 ⁇ ⁇ a) / ⁇ ⁇ ⁇ ⁇ (1)
- DC-DC converters use a high-voltage battery used for in-vehicle applications such as electric vehicles and hybrid power sources to transform the high voltage of the high-voltage battery into a low voltage to charge the low-voltage battery and supply power to the load It does.
- large-capacity switching transformers with output capacities of several hundred W to several kW have been provided.
- a large core is used to cope with a large current, and the winding is made of a thick stranded wire or a flat wire.
- the electric power capacity was increased by forming.
- Patent Document 1 Japanese Patent Application Laid-Open No. 1-27204 (hereinafter referred to as Patent Document 1).
- Patent Document 1 Japanese Patent Application Laid-Open No. 1-27204
- This conventional technique has the advantage that a rectangular wire can be wound around a seamless (uncut) core without deformation.
- a seamless core is a state in which a winding is inserted in a divided state, and a core that has a seam formed by connecting divided pieces thereafter has no seam and is not split.
- Seamless cores have the advantage of significantly reducing the man-hours required to manufacture the cores themselves, as well as having no problem of deterioration in the magnetic properties of the cores themselves and further reducing core loss and copper loss. . Seamless cores also have the advantage of not causing the noise problems associated with seam vibration.
- this conventional technology requires that an insulating layer having a width larger than the width of the conductor plate be inserted between the windings in order to satisfy the insulation standard between the conductors. It is necessary to use a material with a sufficient thickness to prevent breakage due to the end of the rectangular conductor plate, and to use an insulating layer to secure between the conductor plate and the insulating layer. However, it is necessary to use a high-strength coil, which causes a decrease in the space factor of the winding, resulting in an increase in coil size and an increase in copper loss due to an increase in leakage inductance. Was.
- Patent Document 2 Japanese Patent Application Laid-Open Publication No. 2002-237374 discloses that an insulating tape is provided in advance as shown in FIG.
- a method of forming a coil by stacking layers one by one while inserting into a core is disclosed. Each time the conductive plates 350 are stacked, one end thereof is connected to one end of the connecting conductive plate 352. The other end of the conductor plate 352 is connected to the other end of the conductor plate 350 to be laminated next. By repeating this process, a coil is formed.
- This conventional technology has the advantage of being able to be wound around a seamless core without deforming a rectangular wire, and the fact that each conductor plate 350 is insulated in advance by an insulating tape 351 allows the coil to be wound. It has the advantage of realizing miniaturization and low loss.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coil unit and a composite coil unit which can simplify a manufacturing process, reduce a manufacturing cost, and are highly resistant to vibration. It is in.
- the coil unit of the present invention embeds and holds the plurality of electric wires so that the plurality of electric wires keep an interval from each other and at least the first and second ends of each of the plurality of electric wires are exposed. It has a structure in which an insulator is inserted into a through hole of a magnetic core.
- FIG. 1 is a perspective view showing a wiring portion of a coil unit according to Embodiment 1 of the present invention.
- FIG. 2 is a perspective view showing the single flat wire of FIG.
- FIG. 3 is a diagram illustrating a state in which the holding unit is inserted into the toroidal core in the coil unit of FIG.
- FIG. 4 is a perspective view illustrating the connecting plate of FIG.
- FIG. 5 shows the coil unit of Fig. 1 with a single rectangular wire connected to a connecting plate.
- FIG. 4 is a perspective view showing the inside of the wiring section of FIG.
- FIG. 6 is a perspective view showing a configuration example of a coil unit according to Embodiment 2 of the present invention.
- FIG. 7 is a perspective view showing another configuration example of the coil unit according to Embodiment 2 of the present invention.
- FIG. 8 is a perspective view showing still another configuration example of the coil unit according to Embodiment 2 of the present invention.
- FIG. 9 is a perspective view schematically showing an example of the coil unit according to Embodiment 2 of the present invention.
- FIG. 10 is a diagram showing a conventional toroidal choke coil compared with the coil unit of FIG.
- FIG. 11 is an explanatory diagram showing the specifications of the choke coil of FIG. 10 in a table format.
- FIG. 12 is an explanatory diagram showing the specifications of the choke coil in FIG. 9 in a table format.
- FIG. 13 is a graph showing the relationship between core thickness and volume for the coils of FIGS. 9 and 10.
- FIG. 14 is a perspective view schematically showing another example of the coil unit according to Embodiment 2 of the present invention.
- FIG. 15 is a perspective view showing a conventional square-hole toroidal choke coil.
- FIG. 16 is a perspective view showing a wiring portion of the coil unit according to Embodiment 3 of the present invention.
- FIG. 17 is a perspective view showing the inside of the wiring section of FIG.
- FIG. 18 is a perspective view showing a state in which a coil unit having a two-turn winding is configured using the wiring section of FIG.
- FIG. 19 is a perspective view showing the inside of the coil unit of FIG.
- FIG. 20 is a perspective view showing a state in which a coil unit having a three-turn winding is formed using the wiring section of FIG.
- FIG. 21 is a perspective view showing the inside of the coil unit of FIG.
- FIG. 22 is a perspective view showing a wiring section according to Embodiment 4 of the present invention.
- FIG. 23 is a perspective view showing a state where the wiring section of FIG. 22 is inserted into a toroidal core.
- FIG. 24 is a perspective view showing a coil unit according to Embodiment 5 of the present invention.
- FIG. 25 is a schematic configuration diagram showing a coil unit according to Embodiment 6 of the present invention.
- FIG. 26 is a schematic configuration diagram showing a wiring portion of the coil unit of FIG.
- FIG. 27 is an explanatory diagram showing the arrangement of electric wires in the wiring section of FIG.
- FIG. 28 is a perspective view showing an example of the shape of the core of the coil unit of FIG. 25.
- FIG. 29 is an explanatory diagram showing how to attach the core in the coil unit of FIG. 25.
- FIG. 30 is a schematic configuration diagram showing another example of the arrangement of the cores in the coil unit of FIG.
- FIG. 31 is a perspective view showing another example of the shape of the core in the coil unit of FIG. 25.
- FIG. 32 is a schematic configuration diagram showing another example of the coil unit according to Embodiment 6 of the present invention.
- FIG. 33 is a schematic configuration diagram showing how to attach a core in the coil unit of FIG.
- FIG. 34 is a perspective view showing a main part of still another example of the coil unit according to Embodiment 6 of the present invention, with a part thereof broken away.
- FIG. 35 is an explanatory view showing still another example of the coil unit according to Embodiment 6 of the present invention.
- FIG. 36 is an explanatory diagram illustrating a configuration example of a winding in the coil unit according to Embodiment 7 of the present invention.
- FIG. 37 is an explanatory diagram showing another configuration example of the winding in the coil unit according to Embodiment 7 of the present invention.
- FIG. 38 is a schematic configuration diagram of a coil unit having the windings of FIG.
- FIG. 39 is a schematic configuration diagram showing another example of the coil unit according to Embodiment 7 of the present invention.
- FIG. 40 is an explanatory diagram showing the arrangement of electric wires according to the eighth embodiment of the present invention.
- FIG. 41 is an explanatory diagram illustrating an example of the arrangement of the electric wires and the connection portions in FIG. 40.
- FIG. 42 is a circuit diagram illustrating a conversion using another example of the coil unit according to the eighth embodiment of the present invention.
- FIG. 43 is an explanatory view showing the coil unit of FIG.
- FIG. 44 is a perspective view showing a coil unit according to Embodiment 9 of the present invention.
- FIG. 45 is an exploded perspective view of the coil unit of FIG.
- FIG. 46 is a perspective view showing the coil unit according to the tenth embodiment.
- FIG. 47 is a perspective view showing a coil unit according to Embodiment 11.
- FIG. 47 is a perspective view showing a coil unit according to Embodiment 11.
- FIG. 48 is a manufacturing process diagram of the coil unit according to Embodiment 12.
- FIG. 49 is a manufacturing process diagram of the coil unit according to Embodiment 12.
- FIG. 50 is a diagram showing the manufacturing process of the coil unit according to Embodiment 12.
- FIG. 51 is a manufacturing process diagram of the coil unit according to Embodiment 12.
- FIG. 52 is a perspective view of the coil unit according to Embodiment 12.
- FIG. 52 is a perspective view of the coil unit according to Embodiment 12.
- FIG. 53 is a drawing illustrating the manufacturing process of the coil unit according to the thirteenth embodiment.
- FIG. 54 is a manufacturing process diagram of the coil unit according to Embodiment 13.
- FIG. 55 is a drawing showing the manufacturing process of the coil unit according to Embodiment 13.
- FIG. 56 is a perspective view of the coil unit according to Embodiment 13.
- FIG. 57 shows a conventional toroidal choke coil.
- FIG. 58 is a diagram showing another example of the conventional toroidal choke coil.
- FIG. 59 is a perspective view showing a single-layer winding of a conventional coil.
- FIG. 1 is a perspective view showing a wiring portion that is a main portion of the coil unit according to the first embodiment.
- the wiring portion 31 according to the present embodiment includes a holding portion 3 which is a resin insulator formed in a substantially U shape (in other words, a substantially U shape), and a flat rectangular wire 2 a which is an electric wire. , 2b, and an output rectangular single wire 5 which is also an electric wire.
- the rectangular single wires 2a and 2b are conductor plates, and are bent into a substantially U shape in plan view along the holding portion 3 and embedded in the holding portion 3 with both ends protruding outward. .
- the output rectangular single wire 5 is a conductor plate extending linearly, and has one end protruding from the tip of one leg 3 a of the holding portion 3 and the other end as shown in FIGS. 1 and 2.
- the holder 3 is embedded in the holder 3 so as to protrude from the central piece 3 c to the outside.
- the rectangular single wires 2a and 2b as the conductor plates and the rectangular single wire for output 5 are held by being embedded in the holding section 3 in a state where they are stacked at predetermined intervals.
- the wiring section 31 connects the rectangular single wires 2a and 2b and the output rectangular single wire 5 between each other. It can be easily formed by integrally molding the insulating material of the holding portion 3 so as to embed these single wires 5, 2a, and 2b while supporting them with a jig (not shown) so as to keep the gap. .
- the shape of the leg 3a of the holding part 3 is substantially the same as the shape of the through hole 1a of the toroidal core 1 which is a core of a magnetic material made of ferrite, for example.
- the distance between one leg piece 3a and the other leg piece 3b is substantially equal to the distance between the outer peripheral surface and the inner peripheral surface of the toroidal core 1.
- the toroidal core 1 is inserted into the through hole 1a and the other leg 3b.
- the toroidal core 1 used in the present embodiment is a core having a rectangular parallelepiped shape and having square holes.
- the shape of the core 1 of the coil unit of the present invention is not limited to the present embodiment.
- a substantially S-shaped connecting plate 6a as a connecting member is arranged so that the opening side of the holding portion 3 is closed.
- One end of the winding is formed by connecting the end of the single rectangular wire 2a protruding from the tip of the other leg 3b of the holding portion 3 to one end of the connecting plate 6a.
- the other end of the connecting plate 6a is connected to one end of a rectangular single wire 2b protruding from the tip of one leg 3a of the holding portion 3, and the other end of the rectangular single wire 2b is connected to another connecting plate. 6b is connected to one end, forming the next turn of the winding.
- the other end of the connecting plate 6b is connected to one end of a rectangular output single wire 5 protruding from the tip of one leg 3a of the holding portion 3. In this way, the coil unit is completed as a choke coil unit.
- the end to which the connecting plates 6a and 6b are not connected can be used as an end for connection to an external circuit (not shown).
- FIG. 5 shows the inside of the wiring portion 31 to which the connecting plates 6a and 6b are connected.
- the length of one leg is The length of the other leg is longer than the length of the other leg, and when comparing the two rectangular single lines 2a and 2b, the length of the shorter leg of the rectangular single line 2a and the length of the rectangular single line 2b are longer.
- the length of the leg pieces is made equal to facilitate connection of the connecting plates 6a and 6b.
- the connecting plates 6a and 6b can be attached to each other with a step. This also applies to the connection of the connecting plates 6a and 6b. Easy connection. Furthermore, since the main surfaces of the rectangular single wires 5, 2a and 2b are parallel to each other, the connecting plates 6a and 6b are connected to the fixed main surfaces of the rectangular single wires 5, 2a and 2b, that is, the example in FIG. Then, it may be connected to the upper main surface. This also facilitates connection of the connecting plates 6a and 6b.
- the flat rectangular solid wires 5, 2a, and 2b which are the electric wires, are embedded and held in the holding unit 3, so that the holding unit constituting the wiring unit 31 is held.
- a structure in which a plurality of electric wires penetrate the core 1 is completed.
- a winding configuration can be easily realized. That is, it is not necessary to wind the rectangular winding, and unlike the conventional technology disclosed in Patent Document 2, it is also necessary to insert the rectangular single wires 5, 2a and 2b into the core 1 while laminating them one by one. Absent.
- FIG. 6 or FIG. 7 In order to connect two toroidal choke coils according to the first embodiment in parallel, as shown in FIG. 6 or FIG. 7, one end of the side where the connecting plate 6 a of the rectangular single wire 2 a is not connected is connected to the input terminal.
- the ends of the flat rectangular output wires 5 protruding from the central piece 3 c of the holding portion 3 may be connected to each other by the output terminal plate 8 while being connected by the plate 7.
- the direction in which the winding thickness comes out can be arbitrarily selected as shown in FIG. 6 or FIG.
- FIG. 8 it is possible to configure a unit by connecting a number of toroidal choke coils in parallel.
- FIG. 9 schematically shows the choke coil unit A of the present embodiment.
- This choke coil unit A is provided with two toroidal-type yoke coils A1 in which a rectangular winding 2 as a wiring portion is wound around a toroidal core 1 made of a core material such as ferrite.
- One choke coil unit A is formed by connecting the toroidal choke coils A 1 and A 1 in parallel with each other.
- the hole diameter X of the toroidal core 1 determined from the NI value can be smaller than that of the conventional undivided toroidal choke coil.
- the inductance L required for each toroidal choke coil A1 is doubled.
- the hole diameter X determined by the NI value can be small, the choke coil unit A can be made smaller than the conventional toroidal chiyoke coil even if the inductance L is doubled. .
- the size of the conventional toroidal choke coil and the size of the yoke coil unit A of the present embodiment will be compared based on the volume occupied by the core, with numerical examples given below.
- FIG. 10 shows an example of a conventional toroidal choke coil X using a rectangular winding 201 and has the specifications as shown in FIG.
- the reason for determining this specification will be described.
- the design conditions are such that the height (outer diameter y) of the toroidal core 200 is 200 [mm] or less (as low as possible) and the thickness z is 100 [mm] at the maximum.
- N I (BX 2 ⁇ a) / n
- the outer diameter y of the toroidal core 200 can be obtained from the thickness z [m] of the toroidal core 200 and the inductance L [H] using the following equation (3).
- B core outer radius [m]
- a hole radius [m]
- L core L value [H]
- z core thickness [m]
- N Number of turns.
- V200 X b 2 X z
- V200 2184045. 8 [mm 3 ]
- Fig. 1 shows the specifications of the choke coil unit A of this embodiment when the overall current value I, the inductance L, the number of evenings N, the core thickness z, and the core material are the same as the conventional one. See Figure 2.
- Vl 593515. 5 [mm 3 ]
- the current flowing per toroidal core is reduced, so that the hole diameter X of the toroidal core can be reduced, and Even considering the large L value required for each toroidal core, the size can be reduced compared to conventional toroidal choke coils.
- Fig. 13 shows the conventional toroidal core when the thickness z of the toroidal core was changed.
- the volume V200 of 200 and the volume V2 of two toroidal cores 1 of choke coil unit A are shown. According to this graph, in order to make the core outer diameter y as small as possible, the larger the thickness z of the core, the more the effect of miniaturization of the choke coil unit A of the present embodiment as compared with the conventional toroidal core 200. You can see that there is.
- the cylindrical core 1 having a round hole is used.
- the choke coil unit A ' may be configured by using this.
- the L value of the coil is determined by the ratio of the inner diameter to the outer diameter, if the rectangular hole is used under the condition that the same rectangular winding 2 is used, the outer diameter will not be large because it will be larger than the round hole
- the L value is not the same as the above, the size can be reduced even when the rectangular hole choke coil unit A 'is used as compared with the conventional rectangular hole toroidal type choke coil unit. That is, in the conventional toroidal choke coil X ′ shown in FIG. 15, since the diagonal line of the square hole determines the outer diameter, the size X of the square hole is 226.3 [mm] X 226.
- the core volume V200 ' is
- FIG. 16 shows the holding section 3 of the present embodiment.
- the holding part 3 has an extension piece 3 d extending from the tip of one leg 3 a of the holding part 3 of the first embodiment so as to face one end of the rectangular single wire 2 a.
- An extension 3e is formed at the tip of d.
- an input switching piece 9 to which a current is input at one end and the other end is connected to the single rectangular wire 2a or 2b as described later is embedded with both ends exposed to the outside. .
- the input switching piece 9 has an end on the side connected to the single rectangular wire 2a or 2b, which is divided into two forks 9a and 9b and exposed to the outside. Further, the holding unit 3 holds the rectangular single wires 2a and 2b and the output rectangular single wire 5 in a stacked state at predetermined intervals, as in the second embodiment.
- the portion 9a on the side closer to the extension piece 3d and one end of the conductor piece 2a are Connect the other end of the conductor piece 2a and one end of the conductor piece 2b with a connecting plate 6a, and connect the other end of the conductor piece 2b and one end of When connected by the connecting plate 6b, a three-turn winding can be formed.
- the number of turns can be changed by the holding unit 3 holding the plurality of flat rectangular single wires 2a and 2b and connecting the connecting plates 6a and 6b by selecting the flat rectangular single wires 2a and 2b.
- a choke coil having a plurality of inductances L can be realized with one holding unit 3.
- the present embodiment is different from the first embodiment in that the holding portion 3 inserted into the through hole 1a of the toroidal core is provided on one leg 3a of the holding portion 3 as shown in FIG. It is characterized in that a locking claw 3f is provided as a retaining part for preventing the core from coming off, that is, a fixing means for fixing the holding part 3 to the toroidal core 1.
- the locking claw 3 has two slopes on the outer surface at the tip of one leg piece 3a, which are parallel to the single rectangular wires 2a, 2b, and an inclined surface that slopes outward as it approaches the center piece 3c of the holding portion 3. It is formed so that it may have. Further, the distance from the rear surface 3 g of the locking claw 3 f to the central piece 3 c of the holding portion 3 is formed to be substantially the same as the thickness of the toroidal core 1.
- one leg piece 3a is inserted into the through hole 1a of the toroidal core 1 while elastically deforming the locking claw 3f inside the holding portion 3. 2
- the back surface 3 g of the locking claw 3 f engages with the peripheral edge 1 b of the toroidal core 1 and the toroidal core 1 engages the back surface of the locking claw 3 f 3 It is fixed to the toroidal core 1 by being sandwiched between g and the central piece 3 c of the holding portion 3.
- the fixing strength between the toroidal core 1 and the holding section 3 after being inserted into the toroidal core 1 is increased, and for example, the seismic resistance, which is important when the Chiyo coil unit is mounted on a vehicle, is improved. Can be.
- This embodiment is different from the first embodiment in that the toroidal core 1 is divided into two (toroidal cores 1A and 1B) as shown in FIG. 24, and the holding portion 3 is made of a flexible resin. It is characterized in that the rectangular single wires 2a, 2b and the output rectangular single wire 5 are formed of a conductive material having flexibility. The rectangular single wires 2a and 2b and the output rectangular single wire 5 can have flexibility by, for example, setting the thickness to a certain value or less.
- the holding portion 3 can be freely bent even after assembly, and the degree of freedom of the shape can be increased. Therefore, it is possible to cope with a change in the terminal position and the like to some extent.
- the coil unit according to the present embodiment holds a plurality of (two in FIG. 25) electric wires 21 side by side so that the directions of both ends are aligned, and holds each electric wire 21. And a core 24 made of a magnetic material and having a through-hole 24 a through which the wiring portion 23 passes. Terminals 21a exposed from the insulator 22 are provided at both ends of each wire 21. It is.
- the wiring portion 23 has a structure in which an insulator 22 made of synthetic resin embeds and holds two electric wires 21, and has a U-shape (U-shape) as shown in FIG. 26. Is formed. As shown in FIG. 27, inside the wiring portion 23, the electric wires 21 are respectively U-shaped, held apart from each other, and insulated from each other.
- the wiring portion 23 supports the plurality of electric wires 21 with a jig (not shown) so as to keep a distance from each other, and uses an insulating material of an insulator 22 so as to embed these electric wires 21. It can be easily formed by integrally molding using the illustrated mold.
- the core 24 is a general one in which a wiring portion, which is a through-hole, is formed in a magnetic material such as ferrite and a through-hole 24 a is formed in a cylindrical shape as shown in FIG. As shown by arrow B1 in FIG. 29, both ends of the wiring portion 23 are attached to the wiring portion 23 by passing through the wiring portion insertion holes 24a.
- two cores 24 may be mounted side by side on one end of the wiring portion 23.
- the core 24 may have a rectangular tube shape as shown in FIG.
- the electric wire 21 is embedded and held in the insulator 22, the same effect as described in the first embodiment can be obtained. That is, there is no need to wind the electric wire 21, and unlike the prior art disclosed in Patent Document 2, there is no need to insert the electric wire 21 into the core 1 one by one. Since the manufacturing process is simplified, expensive equipment is not required and manufacturing costs can be reduced. In addition, since a general single wire can be used as the electric wire 21 instead of a rectangular wire, the cost can be further reduced by using a general single wire. Further, by appropriately selecting the number and size of the cores 24, the shape and the specifications of the core capacity can be easily changed.
- a retaining portion 41 for retaining the core 24 may be protruded from the insulator 22 as shown in FIG.
- the retaining portion 41 is provided at an end of the insulator 22 in a direction along the electric wire 21, for example.
- the shape of the retaining portion 41 is, for example, that the inclined surface 41 a inclined in a direction away from the electric wire 21 toward the direction approaching the center of the wiring portion 23 along the electric wire 21 is formed from the electric wire 21.
- the pull-out stopper 44 11 is formed as described above, it is arranged as shown by the arrow BB 22 in FIG. 33 33. Both ends of the wiring section 22 33 are pushed and pushed into the cocoa area 22 44's wiring section insertion hole 2244 aa. After the stopper portion 44 11 is radiused and passes through the wiring line portion of the cocoa hole 22 44 ⁇ ⁇ through-hole hole 22 44 aa, after that as shown in FIG. As shown in the figure, it returns to its home position and is hooked on Cocoa 2244. . If this configuration is adopted, the cocoa core 2244 can be prevented from falling off, and the vibration and vibration resistance can be improved. It is suitable and suitable for use in vehicle mounting. . Also, the cocoa stove should be lowered as compared with the case where a separate component can be installed to prevent the cocoa door 22 44 from being pulled out. The place where you can lower it is complete. .
- the insulating insulator 22 22 and the electric wire 22 11 are connected as shown in FIG.
- Each of them may be formed of a material having flexible flexibility. . If this configuration is adopted and adopted, it is necessary to match the wiring and wiring section 2233 to the installation site and to deform and deform it. Can be completed. .
- the length in the direction along the power line 22 11 is used instead.
- a cocoa core 22 44 with a small length and a small dimension is used in the direction along the power line 22 11 as shown in Fig. 33 55.
- the wiring and wiring portion 2233 deform and deform more and more flexibly and flexibly.
- the diameter of the electric power line 2211 can be suppressed to a certain degree or less, so that sufficient flexible bending can be achieved.
- the winding wire is composed of 22 electric wires 22 11) and the connecting / connecting member 22 55. It is. .
- the winding wire is formed as described above, a pair of winding windings of 22 turns is formed, and FIG. 33 88
- the terminal portion 21 a to which the connection member 25 is not connected can be used as a terminal for connecting to an external circuit such as a circuit board (not shown).
- the winding can be easily formed without using special equipment.
- the plurality of wiring parts 23 are connected to one terminal part 21 a of each wiring part 23 to one terminal part 21 a of the other wiring part 23. If used together, more cores 24 can be added, so the core capacity can be increased over a wider range. You can choose.
- the coil unit according to the present embodiment embeds and holds a plurality of (six in FIGS. 40 and 41) electric wires 21 with an insulator 22.
- a U-shaped wiring portion 23 is formed, a core 24 is attached to the wiring portion 23, and one terminal portion 21a of the wiring portion 23 and the other terminal portion of the wiring portion 23 are formed.
- 21a which is formed by adding a connecting member 25 for electrically connecting the ends of the wires 21 different from each other.
- the number of windings of the winding can be freely set within a range that does not exceed the number of electric wires 21.
- one of the electric wires 21 forms a primary winding of one turn, and three of the electric wires 21 and two connecting members 5 and a force, etc. Constructs a secondary winding of three turns.
- the surplus terminal 21a may be cut off.
- FIG. 42 is a circuit diagram showing an example of a DC-DC converter using the coil unit according to the present embodiment.
- This DC-DC converter is a forward converter, and includes a DC power supply E, a switching transformer T having a primary winding connected between output terminals of the DC power supply E via a switching element SW, and a switching element SW. It includes a drive circuit P for controlling on / off and a smoothing circuit S for smoothing the output on the secondary side of the switching transformer T and supplying the output to the load W.
- a technique for preventing magnetic saturation by a reset circuit R S in which a series circuit of a diode 26 and an auxiliary winding I is provided in parallel with a primary winding of a switching transistor T is known.
- a diode 26 is previously connected in series to one of the electric wires 21, and a winding composed of the electric wire 21 and the connecting member 25 is provided.
- the auxiliary winding I is formed on the force source side of the diode 26, and these can be connected in parallel to the primary winding.
- the coil unit according to the present embodiment The two wiring portions 23 similar to the wiring portions 23 used in the above, and a core 24 having a plurality of (four in FIG. 44) wiring portions made of a magnetic material and having through holes 24 a formed therein. Is provided. Each end of each wiring portion 23 is passed through a wiring portion through hole 24a, which is one through hole.
- the core 24 as described above includes a pair of halves 6 attached to the wiring part 23 from both sides in the direction in which the wiring parts 23 are arranged, as indicated by an arrow B3. Consist of one.
- Each half body 61 has a plate-like shape in which a groove 61 a for accommodating a part of the wiring part 23 is provided on the bottom surface.
- the cores 24 attached to the plurality of locations of the plurality of wiring portions 23 can be manufactured at once, instead of manufacturing them one by one. Also, unlike the case where a plurality of cores 24 each having one wiring portion and a through hole 24a are provided, the cores 24 do not collide with each other when subjected to vibration and are not damaged.
- FIG. 46 is a perspective view showing the coil unit according to the tenth embodiment.
- the electric wire 21 is a rectangular wire that is a substantially U-shaped conductor plate in plan view, similarly to the coil unit according to the first embodiment, and a plurality of electric wires 21 are stacked on the main surface thereof. It is embedded in a substantially U-shaped insulator 22 in a layered state. Further, the core 24 is inserted into both of the pair of legs of the substantially U-shaped insulator 22, and the core 24 is divided into a plurality in each leg. By dividing the core 24 along the electric wire 21 in this way, a common core is prepared for coil units of various specifications, and the inductance is different only by changing the number of cores to be used. It is possible to form coil units of various specifications.
- FIG. 47 is a perspective view showing a coil unit according to Embodiment 11.
- FIG. The basic configuration of this coil unit is the same as that of the coil unit according to the sixth embodiment.
- the insulator 22 embeds only the legs of the plurality of substantially U-shaped electric wires 21. Even with such a configuration, it is possible to hold the plurality of electric wires 21 with sufficient strength. Further, an insulator 22 is fixed to the support plate 71, and Therefore, the strength is reinforced.
- the connection member 25 is substantially S-shaped in a side view, and is connected to the upper main surface of the end of one electric wire 21 and the lower main surface of the end of another electric wire 21. ing. Accordingly, when connecting the connection member 25 to the electric wire 21 by welding or the like, interference by another electric wire 21 can be eliminated, and the efficiency of the work of attaching the connection member 25 is improved.
- FIGS. 48 to 51 are process diagrams showing the steps of manufacturing the coil unit according to Embodiment 12, and FIG. 52 is a completed view thereof.
- wires 21 A and 21 B shown in FIG. 48 are prepared.
- Each of the electric wires 21A and 21B is a rectangular wire which is a substantially U-shaped conductor plate in side view.
- a pair of ends of each of the electric wires 21A and 21B is provided with a plate-like terminal portion 72 which is bent and protrudes from the main surface so as to stand upright on the main surface.
- the terminal portion 72 can be formed, for example, by bending.
- the electric wires 21A and 21B are stacked at an interval from each other such that the electric wire 21A is on the outside and the electric wire 21B is on the inside.
- the terminal portion 72 is provided for facilitating the connection between the end of the electric wire 21A and the end of the electric wire 21B with a flat connecting member 25.
- the connection members 25 are attached not in the process of FIG. 49 but in a later process.However, in order to show the positional relationship of the four terminal portions 72, the connection after the connection is performed for convenience.
- Member 25 is depicted in FIG.
- a pair of terminal portions 72 to which the connecting member 25 is to be connected are arranged on the same plane.
- the wiring portion 23 is completed by embedding the two electric wires 21 A and 21 B with the insulator 22.
- the insulating material is integrally molded using a mold (not shown) This is easily achieved by: In the example of FIG. 50, the insulator 22 embeds the wires 21 A and 2 IB so that the connecting portion 75 of the pair of legs of the substantially U-shaped wire 21 is selectively exposed. .
- the insulator 22 is inserted into the through hole 24 a of the wiring portion which is a through hole selectively formed in the core 24.
- a pair of legs of the substantially U-shaped electric wires 21 A and 21 B penetrate the core 24.
- the wiring portion 23 can be firmly grasped and easily inserted into the core 24 without damaging or deforming the insulator 22.
- the exposed joint portion 75 is easily buried with the insulator 22 while holding the wires 21 A and 2 IB by holding the wires 21 A and 2 IB by a jig (not shown). be able to.
- a coil unit is completed as a choke coil unit having one double-turned winding.
- the conductor plates are used for the electric wires 21A and 21B, and they are laminated with an interval therebetween, so that a coil unit having a large current capacity is compactly realized.
- the outline of the electric wires 21A and 21B in a side view is substantially U-shaped, similarly to the coil unit according to Embodiments 1 to 11, the direction of the end of the electric wire to which the connecting member 25 is to be connected.
- the connection members 25 are easy to install.
- FIGS. 53 to 55 are process diagrams showing the steps of manufacturing the coil unit according to Embodiment 13, and FIG. 56 is a completed view thereof.
- the coil unit according to the present embodiment shown in FIG. 56 is different from the coil unit according to the embodiment 12 (FIG. 52) in that two coil windings of two turns are provided. That is, the coil unit according to the present embodiment is a switch unit.
- each of the electric wires 21C and 21D is a flat wire that is a substantially U-shaped conductor plate in a side view, and has a terminal portion 72.
- the wires 21A and 21B are for forming the primary winding of the switching transformer, and the wires 21C and 21D are for forming the secondary winding.
- FIG. 54 shows a part constituting a primary winding
- FIG. 55 shows a part constituting a secondary winding.
- the four electric wires 21A to 21D are embedded with the insulator 22.
- the same steps as in Fig. 51 were performed.
- the core 24 is attached.
- the two plate-shaped connecting members 25 are connected to the terminal portions 72 by welding or the like, thereby completing a coil unit having two twice-wound windings.
- the same advantages as those in the embodiment 12 can be obtained.
- the coil unit has a plurality of electric wires each having a first end and a second end, and the first ends of the plurality of electric wires are aligned with each other.
- the direction of the second end is at least partly aligned with the first end, at least the first and second ends of each of the plurality of electric wires are exposed, and the plurality of electric wires are spaced from each other.
- a magnetic core in which the insulator is inserted into a through hole formed selectively in the insulator to hold the plurality of electric wires.
- the coil unit having the above-described configuration since a plurality of electric wires are embedded in the insulator so as to keep an interval from each other, an easy-to-handle component (referred to as a wiring portion) is formed in which the plurality of electric wires are integrated with each other while maintaining insulation. I do. Then, a structure in which a plurality of electric wires penetrate the core is completed by inserting an insulator constituting the wiring portion into the through hole of the magnetic core.
- the coil unit having the above configuration can be easily assembled without requiring expensive equipment. Also, the first ends of the plurality of electric wires are aligned, and the direction of the second end of at least a part of the plurality of electric wires is also aligned with the first end.
- a winding of one or more turns can be easily formed. Furthermore, when the second end that is aligned with the first end is two or more, various specifications with different inductances or number of windings can be easily realized by changing the connection method using the connection member. be able to. Also, since a plurality of electric wires are embedded in the insulator, vibration resistance is high and reliability is improved.
- the insulator is formed by integrally molding an insulating material.
- wiring part in which a plurality of electric wires are integrated with each other while maintaining insulation.
- at least a part of the plurality of electric wires is all of the plurality of electric wires.
- At least a part of the plurality of electric wires has a substantially U shape.
- the plurality of electric wires may include a substantially linearly extending electric wire.
- the first end of the substantially U-shaped electric wire and the second end of the substantially linearly extending electric wire are connected to an external circuit such as a circuit board, so that they are opposite to each other.
- an external circuit such as a circuit board
- the insulator embeds a pair of legs of a substantially U-shaped electric wire.
- holding strength the strength of holding the plurality of electric wires by the insulator.
- the insulator embeds the plurality of wires so that only the first and second ends of each of the plurality of wires are exposed.
- the holding strength is further increased.
- the plurality of electric wires may be embedded in the insulator so that a joint portion between a pair of legs of the substantially U-shaped electric wire is selectively exposed.
- one leg of the pair of legs is inserted into the through hole of the core.
- the wiring portion can be easily inserted into the core.
- the core may be divided into a plurality along the one leg.
- coil units of various specifications having different inductances simply by preparing a common core for coil units of various specifications and changing the number of cores used. That is, coil units of various specifications can be formed simply and inexpensively.
- the core may be divided into a plurality of parts, and both of the pair of legs may be inserted into the divided core.
- the core may be further divided into two or more along each of the pair of legs.
- the plurality of electric wires are a plurality of conductor plates laminated with an interval therebetween, and the substantially U-shaped electric wire is a conductor plate having a substantially U-shaped contour in plan view.
- the plurality of electric wires are a plurality of conductor plates laminated with an interval therebetween, and the substantially U-shaped electric wire is a conductor plate bent in a substantially U-shape in side view. .
- Each of the plurality of electric wires is directly connected to a main surface at the first and second ends. It is desirable to have a plate-shaped terminal portion that is bent and protrudes from the main surface so as to stand upright. With this configuration, the plate-shaped terminal portions are parallel to each other, so that the first end and the second end, which are aligned in the same direction, can be easily connected by the connecting member to form the winding.
- Each of the plurality of electric wires and the insulator may be formed of a flexible material.
- the insulator has a retaining portion for preventing the insulator from coming off the core.
- the core can be prevented from falling off from the wiring portion, and the vibration resistance of the coil unit can be improved.
- the coil unit further includes at least one other structure configured identically to the structure having the plurality of electric wires and the insulator, wherein the through-hole is formed in the core.
- the insulator which is divided into a plurality of rows arranged side by side and belongs to each of the structure and the at least one other structure, may be inserted into the divided through holes.
- a coil unit having a plurality of wiring sections is realized, and since a plurality of wiring sections are inserted into a common core, there is no possibility that the plurality of cores may collide with each other due to vibration and may be damaged. A more excellent coil unit is realized. Further, since a common core is used, a core into which a plurality of wiring portions are inserted can be manufactured at a time.
- the coil unit may be configured such that the orientation of the plurality of wires is uniform among the first and second ends of the plurality of wires so that the plurality of wires form N (N ⁇ l) windings.
- a conductive connecting member for electrically connecting the connecting members.
- the N may be 1.
- a coil unit having one winding for example, a coil unit as a choke coil is realized.
- N may be 2 or more.
- a coil unit having two or more windings for example, a coil unit as a transformer is realized.
- the plurality of electric wires may include an electric wire in which a diode is inserted in series.
- the coil unit since the coil unit includes the reset circuit, the coil unit can be applied to the converter without separately providing a reset circuit.
- the composite coil unit is configured to electrically connect the coil unit, at least one other coil unit configured identically to the coil unit, and the coil unit and the at least one other coil unit in parallel. And a conductive connector that performs the following.
- the coil unit and the composite coil unit according to the present invention facilitate the manufacturing process, reduce the manufacturing cost, increase the vibration resistance, and increase the reliability, and are industrially useful.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
A coil unit and a compound coil unit, the production process of which can be simplified for reduced production costs and which are resistant to vibration and highly reliable. In the coil unit, electric wires (21) with a substantially letter-U shape are embedded in an insulating body (22) such that they are spaced from each other and that an end portion of each wire is exposed as a terminal portion (21a). A leg portion of the insulating body (22) with a substantially letter-U shape is inserted in a core (24) of a magnetic body. Winding wires can be formed by connecting the terminal portions (21a) with connection members.
Description
コイルュニット及び複合コイルュニット 技術分野 Technical field of coil units and composite coil units
本発明は、 コイルュニット及び複合コイルュニットに関する。 背景技術 明 The present invention relates to a coil unit and a composite coil unit. Background art
従来のトロイダル形チョークコイルを図 5 7及び図 5 8に示す。 ここで、 トロイ ダル形チョークコイルとは、 磁路が閉じているコア 1 0 0または 1 0 1に巻線 1 0 2を巻いたものを指す。 コア形状は円柱形状で書も直方体形状でもよく、 孔も丸穴で も角孔でもよい。 Figures 57 and 58 show conventional toroidal choke coils. Here, the toroidal choke coil refers to a core 100 or 101 having a closed magnetic path and a winding 102 wound around the core. The core shape may be a cylindrical shape, a letter or a rectangular parallelepiped shape, and the hole may be a round hole or a square hole.
トロイダルコアの孔半径 aは、 電流 Iと卷数 Nによる飽和を考慮した N I値より 以下の式 (1 ) で求めることができる。 (B:磁束密度、 ίΐ:透磁率とする。 ) Ν I = (Β Χ 2 7Τ Χ a ) / ιι · · · ( 1 ) The pore radius a of the toroidal core can be obtained by the following equation (1) from the NI value in consideration of the saturation caused by the current I and the number of turns N. (B: magnetic flux density, ίΐ: magnetic permeability) Ν I = (Β Χ 27Τ Χ a) / ιι · · · (1)
N I値とは、 例えば N I = 4 0であれば電流 Iが 2 O Aなら巻数 Nが 2ターンま で可能であることを示し、 その時の孔半径 aは、 式 (1 ) より N I > 4 0以上とな るように求めればよい。 The NI value indicates that, for example, if NI = 40, if the current I is 2 OA, the number of turns N can be up to 2 turns, and the hole radius a at that time is NI> 40 or more according to equation (1). It is sufficient to ask for
近年、 車載電気システムなどでは、 大電流化に伴いコアの飽和を防ぐため N I値 で決定される孔径をかなり大きくしなければならず、 チョークコイル全体の大型化 につながるという問題があつた。 In recent years, in-vehicle electrical systems and the like have had a problem that the hole diameter determined by the NI value must be considerably increased in order to prevent core saturation with the increase in current, leading to an increase in the size of the entire choke coil.
また、 従来から、 絶縁型の D C— D Cコンバータなどにスイッチングトランスが 用いられている。 D C— D Cコンバータは、 例えば電気自動車やハイブリッド力一 などの車載用途に用いられる高圧バッテリーを電源とし、 高圧バッテリーの高電圧 を低電圧に変圧して低圧バッテリーに充電したり、 負荷に電力を供給するものであ る。 近年は、 出力容量が数百 W〜数 k Wの大容量のスイッチングトランスも提供さ れている。 Conventionally, switching transformers have been used in isolated DC-DC converters. DC-DC converters use a high-voltage battery used for in-vehicle applications such as electric vehicles and hybrid power sources to transform the high voltage of the high-voltage battery into a low voltage to charge the low-voltage battery and supply power to the load It does. In recent years, large-capacity switching transformers with output capacities of several hundred W to several kW have been provided.
このような大容量のチョークコイル或いはスイッチングトランスにおいては、 大 電流に対応するために、 大型のコアを用い、 また、 卷線を太い撚り線や平角線から
形成することによつて電力容量を大きくしていた。 In such a large-capacity choke coil or switching transformer, a large core is used to cope with a large current, and the winding is made of a thick stranded wire or a flat wire. The electric power capacity was increased by forming.
しかし、 太い撚り線を用いると、 線間絶縁のためにどうしても巻線の外径が太く なり、 従って大型化した特殊なコアが必要であるためにコストが増大していた。 ま た、 平角線を巻回するには、 平角線の断線に繫がる曲がり ·折れ ·食い込みなどが 巻回時に発生することを防ぐために、 高価な設備が必要であった。 また、 平角巻線 は、 大きな電流値になるほど巻線にするのに高価な設備を必要とし、 線同士を密着 させて正確に卷くのが難しいので巻厚も増え、 更なる大型化につながる場合が多か つた。 However, the use of thick stranded wires inevitably increased the outer diameter of the windings for insulation between the wires, and thus required a specially enlarged core to increase the cost. In addition, to wind a rectangular wire, expensive equipment was required to prevent bending, bending, biting, etc., occurring when the rectangular wire was broken. In addition, rectangular windings require expensive equipment to make windings as the current value increases, and it is difficult to bring the wires into close contact with each other and to wind them accurately, so the winding thickness increases, leading to a further increase in size. There were many cases.
これに対し、 平角線を用いて巻線を形成する方法として、 平角線を巻回して巻線 を形成する方法に代えて、 絶縁層を介挿しながら、 巻線を構成する平角型の導体板 を一層ずつ積層する方法が、 例えば特開平 1— 2 7 2 1 0 4号公報 (以下、 特許文 献 1と称する) に開示されている。 この従来技術は、 継ぎ目なし (ノーカット) の コアに平角線を変形することなく巻回できるという利点を有している。 ここで、 継 ぎ目なしのコアとは、 分割した状態で巻線が挿入され、 その後に分割片を接続する ことによって形成される継ぎ目を有するコアとは異なり、 継ぎ目がなく、 分割され ない状態で、 卷線を構成する導体が挿入されるタイプのコアをいう。 継ぎ目なしの コアは、 コア自身の製作工数を大幅に低減し得るという利点に加えて、 コア自身の 磁気特性に劣化の問題がなく、 更にコァ損失及び銅損を低減し得るという利点があ る。 また、 継ぎ目なしのコアは、 継ぎ目の振動に伴う騒音の問題を引き起こすこと がないという利点も有している。 On the other hand, as a method of forming a winding using a rectangular wire, instead of forming a winding by winding a rectangular wire, a rectangular conductor plate forming a winding while interposing an insulating layer is used. A method of laminating the layers one by one is disclosed, for example, in Japanese Patent Application Laid-Open No. 1-27204 (hereinafter referred to as Patent Document 1). This conventional technique has the advantage that a rectangular wire can be wound around a seamless (uncut) core without deformation. Here, a seamless core is a state in which a winding is inserted in a divided state, and a core that has a seam formed by connecting divided pieces thereafter has no seam and is not split. And refers to a core of a type into which the conductor constituting the winding is inserted. Seamless cores have the advantage of significantly reducing the man-hours required to manufacture the cores themselves, as well as having no problem of deterioration in the magnetic properties of the cores themselves and further reducing core loss and copper loss. . Seamless cores also have the advantage of not causing the noise problems associated with seam vibration.
しかしながら、 この従来技術は、 各導体間の絶縁規格を満足させるために、 導体 板の幅よりも大きな幅の絶縁層を各巻線間に介挿する必要があり、 介揷すべき絶縁 層には平角型の導体板の端部による破れを防止するために、 余裕を持った厚みのも のを使用する必要があり、 また、 導体板と絶縁層との間を固定するためには、 絶縁 層に強度の高いものを使用する必要があるため、 巻線の占積率の低下の原因となり、 コイルの大型化、 及び漏れインダク夕ンスの増大による銅損の増加がもたらされる という問題点があった。 However, this conventional technology requires that an insulating layer having a width larger than the width of the conductor plate be inserted between the windings in order to satisfy the insulation standard between the conductors. It is necessary to use a material with a sufficient thickness to prevent breakage due to the end of the rectangular conductor plate, and to use an insulating layer to secure between the conductor plate and the insulating layer. However, it is necessary to use a high-strength coil, which causes a decrease in the space factor of the winding, resulting in an increase in coil size and an increase in copper loss due to an increase in leakage inductance. Was.
この問題点を解消するものとして、 特開 2 0 0 2— 2 3 7 4 1 7号公報 (以下、 特許文献 2と称する) には、 図 5 9に示すように、 必要箇所が予め絶縁テープ 3 5 1により絶縁された平角型で略 U字形 (言い換えると略コ字形) の導体板 3 5 0を、
コアに揷入しつつ一層ずつ積層することによってコイルを形成する方法が開示され ている。 導体板 3 5 0が積層される毎に、 その一端部と接続用の導体板 3 5 2の一 端部とが接続される。 導体板 3 5 2の他端は、 次に積層される導体板 3 5 0の他端 部に接続される。 この工程を反復することにより、 コイルが形成される。 この従来 技術は、 継ぎ目なしのコアに平角線を変形することなく巻回できるという利点に加 えて、 各導体板 3 5 0が予め絶縁テープ 3 5 1により絶縁されているために、 コィ ルの小型化、 低損失を実現し得るという利点を有している。 As a solution to this problem, Japanese Patent Application Laid-Open Publication No. 2002-237374 (hereinafter referred to as Patent Document 2) discloses that an insulating tape is provided in advance as shown in FIG. A rectangular, substantially U-shaped (in other words, substantially U-shaped) conductive plate 350, insulated by 3501, A method of forming a coil by stacking layers one by one while inserting into a core is disclosed. Each time the conductive plates 350 are stacked, one end thereof is connected to one end of the connecting conductive plate 352. The other end of the conductor plate 352 is connected to the other end of the conductor plate 350 to be laminated next. By repeating this process, a coil is formed. This conventional technology has the advantage of being able to be wound around a seamless core without deforming a rectangular wire, and the fact that each conductor plate 350 is insulated in advance by an insulating tape 351 allows the coil to be wound. It has the advantage of realizing miniaturization and low loss.
しかしながら、 特許文献 2に開示される従来技術においても、 導体板 3 5 0を一 層ずつ積層することによりコイルが組み立てられるものであるために、 製造工程が なお複雑であり、 高い製造コストを要するという問題点があり、 更に、 振動によつ て巻線の各層を構成する導体板 3 5 0の間隔が変動する恐れがあった。 発明の開示 However, even in the prior art disclosed in Patent Document 2, since the coil is assembled by laminating the conductor plates 350 one by one, the manufacturing process is still complicated, and high manufacturing costs are required. Further, there is a possibility that the interval between the conductor plates 350 constituting each layer of the winding may fluctuate due to vibration. Disclosure of the invention
本発明は上記事由に鑑みてなされたものであり、 その目的は、 製造工程を容易化 し、 製造コストを下げることができ、 且つ振動に強く信頼性の高いコイルユニット 及び複合コイルュニットを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coil unit and a composite coil unit which can simplify a manufacturing process, reduce a manufacturing cost, and are highly resistant to vibration. It is in.
本発明のコイルユニットは、 複数の電線が互いに間隔を保つように、 且つ前記複 数の電線の各々の少なくとも第 1及び第 2端部が露出するように、 前記複数の電線 を埋め込んで保持する絶縁体が磁性体のコアの貫通孔に揷入された構造を有してい る。 The coil unit of the present invention embeds and holds the plurality of electric wires so that the plurality of electric wires keep an interval from each other and at least the first and second ends of each of the plurality of electric wires are exposed. It has a structure in which an insulator is inserted into a through hole of a magnetic core.
本発明の目的、 特徴、 局面、 及び利点は、 以下の詳細な説明と添付図面とによつ て、 より明白となる。 図面の簡単な説明 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態 1によるコイルュニッ卜の配線部を示す斜視図である。 図 2は、 図 1の平角単線を示す斜視図である。 FIG. 1 is a perspective view showing a wiring portion of a coil unit according to Embodiment 1 of the present invention. FIG. 2 is a perspective view showing the single flat wire of FIG.
図 3は、 図 1のコイルュニットについて保持部をトロイダルコアに挿入する様子 を説明する図である。 FIG. 3 is a diagram illustrating a state in which the holding unit is inserted into the toroidal core in the coil unit of FIG.
図 4は、 図 1のつなぎ板を説明する斜視図である。 FIG. 4 is a perspective view illustrating the connecting plate of FIG.
図 5は、 図 1のコイルュニットについて平角単線とつなぎ板とを接続した状態で
の配線部の内部を示す斜視図である。 Fig. 5 shows the coil unit of Fig. 1 with a single rectangular wire connected to a connecting plate. FIG. 4 is a perspective view showing the inside of the wiring section of FIG.
図 6は、 本発明の実施形態 2によるコイルュニッ卜の構成例を示す斜視図である。 図 7は、 本発明の実施形態 2によるコイルュニッ卜の別の構成例を示す斜視図で める。 FIG. 6 is a perspective view showing a configuration example of a coil unit according to Embodiment 2 of the present invention. FIG. 7 is a perspective view showing another configuration example of the coil unit according to Embodiment 2 of the present invention.
図 8は、 本発明の実施形態 2によるコイルュニッ卜の更に別の構成例を示す斜視 図である。 FIG. 8 is a perspective view showing still another configuration example of the coil unit according to Embodiment 2 of the present invention.
図 9は、 本発明の実施形態 2によるコイルュニットの一例を模式的に示す斜視図 である。 FIG. 9 is a perspective view schematically showing an example of the coil unit according to Embodiment 2 of the present invention.
図 1 0は、 図 9のコイルユニットと比較する従来のトロイダル形チョークコイル を示す図である。 FIG. 10 is a diagram showing a conventional toroidal choke coil compared with the coil unit of FIG.
図 1 1は、 図 1 0のチョークコイルの仕様を表形式で示す説明図である。 FIG. 11 is an explanatory diagram showing the specifications of the choke coil of FIG. 10 in a table format.
図 1 2は、 図 9のチョークコイルの仕様を表形式で示す説明図である。 FIG. 12 is an explanatory diagram showing the specifications of the choke coil in FIG. 9 in a table format.
図 1 3は、 図 9及び図 1 0のコイルについてコアの厚さと体積との関係を示すグ ラフである。 FIG. 13 is a graph showing the relationship between core thickness and volume for the coils of FIGS. 9 and 10.
図 1 4は、 本発明の実施形態 2によるコイルュニッ卜の別の一例を模式的に示す 斜視図である。 FIG. 14 is a perspective view schematically showing another example of the coil unit according to Embodiment 2 of the present invention.
図 1 5は、 従来の角孔のトロイダル形チョークコイルを示す斜視図である。 FIG. 15 is a perspective view showing a conventional square-hole toroidal choke coil.
図 1 6は、 本発明の実施形態 3によるコイルユニットの配線部を示す斜視図であ る。 FIG. 16 is a perspective view showing a wiring portion of the coil unit according to Embodiment 3 of the present invention.
図 1 7は、 図 1 6の配線部の内部を示す斜視図である。 FIG. 17 is a perspective view showing the inside of the wiring section of FIG.
図 1 8は、 図 1 6の配線部を用いて 2ターンの巻線を有するコイルュニットを構 成した状態を示す斜視図である。 FIG. 18 is a perspective view showing a state in which a coil unit having a two-turn winding is configured using the wiring section of FIG.
図 1 9は、 図 1 8のコイルュニットの内部を示す斜視図である。 FIG. 19 is a perspective view showing the inside of the coil unit of FIG.
図 2 0は、 図 1 6の配線部を用いて 3ターンの卷線を有するコイルュニット構成 した状態を示す斜視図である。 FIG. 20 is a perspective view showing a state in which a coil unit having a three-turn winding is formed using the wiring section of FIG.
図 2 1は、 図 2 0のコイルュニットの内部を示す斜視図である。 FIG. 21 is a perspective view showing the inside of the coil unit of FIG.
図 2 2は、 本発明の実施形態 4による配線部を示す斜視図である。 FIG. 22 is a perspective view showing a wiring section according to Embodiment 4 of the present invention.
図 2 3は、 図 2 2の配線部をトロイダルコアに挿入した状態を示す斜視図である。 図 2 4は、 本発明の実施形態 5によるコイルュニットを示す斜視図である。 FIG. 23 is a perspective view showing a state where the wiring section of FIG. 22 is inserted into a toroidal core. FIG. 24 is a perspective view showing a coil unit according to Embodiment 5 of the present invention.
図 2 5は、 本発明の実施形態 6によるコイルユニットを示す概略構成図である。
図 2 6は、 図 2 5のコイルュニットの配線部を示す概略構成図である。 FIG. 25 is a schematic configuration diagram showing a coil unit according to Embodiment 6 of the present invention. FIG. 26 is a schematic configuration diagram showing a wiring portion of the coil unit of FIG.
図 2 7は、 図 2 6の配線部における電線の配置を示す説明図である。 FIG. 27 is an explanatory diagram showing the arrangement of electric wires in the wiring section of FIG.
図 2 8は、 図 2 5のコイルュニッ卜のコアの形状の一例を示す斜視図である。 図 2 9は、 図 2 5のコイルユニットにおけるコアの取り付け方を示す説明図であ る。 FIG. 28 is a perspective view showing an example of the shape of the core of the coil unit of FIG. 25. FIG. 29 is an explanatory diagram showing how to attach the core in the coil unit of FIG. 25.
図 3 0は、 図 2 5のコイルユニットにおけるコアの配置の別の例を示す概略構成 図である。 FIG. 30 is a schematic configuration diagram showing another example of the arrangement of the cores in the coil unit of FIG.
図 3 1は、 図 2 5のコイルユニットにおけるコアの形状の別の例を示す斜視図で ある。 FIG. 31 is a perspective view showing another example of the shape of the core in the coil unit of FIG. 25.
図 3 2は、 本発明の実施形態 6によるコイルュニッ卜の別の例を示す概略構成図 である。 FIG. 32 is a schematic configuration diagram showing another example of the coil unit according to Embodiment 6 of the present invention.
図 3 3は、 図 3 2のコイルユニットにおけるコアの取り付け方を示す概略構成図 である。 FIG. 33 is a schematic configuration diagram showing how to attach a core in the coil unit of FIG.
図 3 4は、 本発明の実施形態 6によるコイルュニットのさらに別の例の要部を一 部破断して示す斜視図である。 FIG. 34 is a perspective view showing a main part of still another example of the coil unit according to Embodiment 6 of the present invention, with a part thereof broken away.
図 3 5は、 本発明の実施形態 6によるコイルュニットのさらに別の例を示す説明 図である。 FIG. 35 is an explanatory view showing still another example of the coil unit according to Embodiment 6 of the present invention.
図 3 6は、 本発明の実施形態 7によるコイルュニットにおける巻線の構成例を示 す説明図である。 FIG. 36 is an explanatory diagram illustrating a configuration example of a winding in the coil unit according to Embodiment 7 of the present invention.
図 3 7は、 本発明の実施形態 7によるコイルュニットにおける巻線の別の構成例 を示す説明図である。 FIG. 37 is an explanatory diagram showing another configuration example of the winding in the coil unit according to Embodiment 7 of the present invention.
図 3 8は、 図 3 7の巻線を有するコイルュニットの概略構成図である。 FIG. 38 is a schematic configuration diagram of a coil unit having the windings of FIG.
図 3 9は、 本発明の実施形態 7によるコイルユニットの別の例を示す概略構成図 である。 FIG. 39 is a schematic configuration diagram showing another example of the coil unit according to Embodiment 7 of the present invention.
図 4 0は、 本発明の実施形態 8における電線の配置を示す説明図である。 FIG. 40 is an explanatory diagram showing the arrangement of electric wires according to the eighth embodiment of the present invention.
図 4 1は、 図 4 0の電線と接続部との配置の一例を示す説明図である。 FIG. 41 is an explanatory diagram illustrating an example of the arrangement of the electric wires and the connection portions in FIG. 40.
図 4 2は、 本発明の実施形態 8によるコィルュニットの別の例を用いたコンバー 夕を例示する回路図である。 FIG. 42 is a circuit diagram illustrating a conversion using another example of the coil unit according to the eighth embodiment of the present invention.
図 4 3は、 図 4 2のコイルユニットを示す説明図である。 FIG. 43 is an explanatory view showing the coil unit of FIG.
図 4 4は、 本発明の実施形態 9よるコイルュニットを示す斜視図である。
図 4 5は、 図 4 4のコイルユニットの分解斜視図である。 FIG. 44 is a perspective view showing a coil unit according to Embodiment 9 of the present invention. FIG. 45 is an exploded perspective view of the coil unit of FIG.
図 4 6は、 実施形態 1 0によるコイルュニットを示す斜視図である。 FIG. 46 is a perspective view showing the coil unit according to the tenth embodiment.
図 4 7は、 実施形態 1 1によるコイルユニットを示す斜視図である。 FIG. 47 is a perspective view showing a coil unit according to Embodiment 11. FIG.
図 4 8は、 実施形態 1 2によるコイルュニッ卜の製造工程図である。 FIG. 48 is a manufacturing process diagram of the coil unit according to Embodiment 12.
図 4 9は、 実施形態 1 2によるコイルュニッ卜の製造工程図である。 FIG. 49 is a manufacturing process diagram of the coil unit according to Embodiment 12.
図 5 0は、 実施形態 1 2によるコイルュニットの製造工程図である。 FIG. 50 is a diagram showing the manufacturing process of the coil unit according to Embodiment 12.
図 5 1は、 実施形態 1 2によるコイルュニッ卜の製造工程図である。 FIG. 51 is a manufacturing process diagram of the coil unit according to Embodiment 12.
図 5 2は、 実施形態 1 2によるコイルュニッ卜の斜視図である。 FIG. 52 is a perspective view of the coil unit according to Embodiment 12. FIG.
図 5 3は、 実施形態 1 3によるコイルユニットの製造工程図である。 FIG. 53 is a drawing illustrating the manufacturing process of the coil unit according to the thirteenth embodiment.
図 5 4は、 実施形態 1 3によるコイルュニッ卜の製造工程図である。 FIG. 54 is a manufacturing process diagram of the coil unit according to Embodiment 13.
図 5 5は、 実施形態 1 3によるコイルユニットの製造工程図である。 FIG. 55 is a drawing showing the manufacturing process of the coil unit according to Embodiment 13.
図 5 6は、 実施形態 1 3によるコイルュニットの斜視図である。 FIG. 56 is a perspective view of the coil unit according to Embodiment 13.
図 5 7は、 従来のトロイダル形チョークコイルを示す図である。 FIG. 57 shows a conventional toroidal choke coil.
図 5 8は、 従来のトロイダル形チョークコイルの別の例を示す図である。 FIG. 58 is a diagram showing another example of the conventional toroidal choke coil.
図 5 9は、 従来のコイルの 1層分の巻線を示す斜視図である。 発明を実施するための最良の形態 FIG. 59 is a perspective view showing a single-layer winding of a conventional coil. BEST MODE FOR CARRYING OUT THE INVENTION
(実施形態 1 ) (Embodiment 1)
図 1は、 実施形態 1によるコイルュニットの主要部である配線部を示す斜視図で ある。 図 1に示すように、 本実施形態による配線部 3 1は、 略 U字形 (言い換える と略コ字形) に形成された樹脂製の絶縁体である保持部 3と、 電線である平角単線 2 a、 2 b、 及び同じく電線である出力用平角単線 5とを備える。 平角単線 2 a、 2 bは、 導体板であって、 保持部 3に沿って平面視略 U字形に折曲され両端部を外 部に突出させた状態で前記保持部 3に埋め込まれている。 FIG. 1 is a perspective view showing a wiring portion that is a main portion of the coil unit according to the first embodiment. As shown in FIG. 1, the wiring portion 31 according to the present embodiment includes a holding portion 3 which is a resin insulator formed in a substantially U shape (in other words, a substantially U shape), and a flat rectangular wire 2 a which is an electric wire. , 2b, and an output rectangular single wire 5 which is also an electric wire. The rectangular single wires 2a and 2b are conductor plates, and are bent into a substantially U shape in plan view along the holding portion 3 and embedded in the holding portion 3 with both ends protruding outward. .
出力用平角単線 5は、 直線状に延在する導体板であって、 図 1及び図 2に示すよ うに、 一端を保持部 3の一方の脚片 3 aの先端から突出させると共に他端を保持部 3の中央片 3 cから外部に突出させた状態で保持部 3に埋め込まれている。 このよ うに、 導体板としての平角単線 2 a、 2 bおよび出力用平角単線 5は、 それぞれ所 定の間隔をもつて積層された状態で、 保持部 3に埋め込まれることにより保持され ている。 配線部 3 1は、 平角単線 2 a、 2 bおよび出力用平角単線 5を、 互いの間
隔を保つように不図示の治具で支持しつつ、 これらの単線 5, 2 a、 2 bを埋め込 むように、 保持部 3の絶縁材料を一体成型することにより、 容易に形成することが できる。 The output rectangular single wire 5 is a conductor plate extending linearly, and has one end protruding from the tip of one leg 3 a of the holding portion 3 and the other end as shown in FIGS. 1 and 2. The holder 3 is embedded in the holder 3 so as to protrude from the central piece 3 c to the outside. In this way, the rectangular single wires 2a and 2b as the conductor plates and the rectangular single wire for output 5 are held by being embedded in the holding section 3 in a state where they are stacked at predetermined intervals. The wiring section 31 connects the rectangular single wires 2a and 2b and the output rectangular single wire 5 between each other. It can be easily formed by integrally molding the insulating material of the holding portion 3 so as to embed these single wires 5, 2a, and 2b while supporting them with a jig (not shown) so as to keep the gap. .
保持部 3は、 図 3に示すように一方の脚片 3 aの形状が、 例えばフエライトを材 料とする磁性体のコアであるトロイダルコア 1の貫通孔 1 aの形状と略同一である と共に、 一方の脚片 3 aと他方の脚片 3 bとの間隔がトロイダルコア 1の外周面と 内周面との間隔と略同一に形成されており、 一方の脚片 3 aをトロイダルコア 1の 貫通孔 1 aに揷入し他方の脚片 3 bとの間にトロイダルコァ 1を挟んで配置される。 このように、 本実施形態で用いる卜ロイダルコア 1は、 直方体形状で角孔を有する コアとするが、 本発明のコイルユニットは、 コア 1の形状に関して本実施形態に制 限されるものではない。 As shown in FIG. 3, the shape of the leg 3a of the holding part 3 is substantially the same as the shape of the through hole 1a of the toroidal core 1 which is a core of a magnetic material made of ferrite, for example. The distance between one leg piece 3a and the other leg piece 3b is substantially equal to the distance between the outer peripheral surface and the inner peripheral surface of the toroidal core 1. The toroidal core 1 is inserted into the through hole 1a and the other leg 3b. As described above, the toroidal core 1 used in the present embodiment is a core having a rectangular parallelepiped shape and having square holes. However, the shape of the core 1 of the coil unit of the present invention is not limited to the present embodiment.
さらに、 保持部 3をトロイダルコア 1に配置した後、 図 4に示すように、 接続部 材としての側面視略 S字形のつなぎ板 6 aを保持部 3の開口側を閉じるように配置 して、 保持部 3の他方の脚片 3 bの先端から突出した平角単線 2 aの端部とつなぎ 板 6 aの一端部とを接続して、 巻線の 1ターンが構成される。 さらに、 つなぎ板 6 aの他端と保持部 3の一方の脚片 3 aの先端から突出した平角単線 2 bの一端部と が接続され、 平角単線 2 bの他端部と別のつなぎ板 6 bの一端部とが接続され、 巻 線の次の 1ターンが構成される。 つなぎ板 6 bの他端は保持部 3の一方の脚片 3 a の先端から突出した出力用平角単線 5の一端部と接続される。 このようにして、 コ ィルユニットが、 チョークコイルユニットとして出来上がる。 平角単線 5及び 2 a の端部のうち、 つなぎ板 6 a、 6 bが接続されない側の端部は、 不図示の外部回路 に接続するための端部として用いることができる。 Further, after the holding portion 3 is arranged on the toroidal core 1, as shown in FIG. 4, a substantially S-shaped connecting plate 6a as a connecting member is arranged so that the opening side of the holding portion 3 is closed. One end of the winding is formed by connecting the end of the single rectangular wire 2a protruding from the tip of the other leg 3b of the holding portion 3 to one end of the connecting plate 6a. Further, the other end of the connecting plate 6a is connected to one end of a rectangular single wire 2b protruding from the tip of one leg 3a of the holding portion 3, and the other end of the rectangular single wire 2b is connected to another connecting plate. 6b is connected to one end, forming the next turn of the winding. The other end of the connecting plate 6b is connected to one end of a rectangular output single wire 5 protruding from the tip of one leg 3a of the holding portion 3. In this way, the coil unit is completed as a choke coil unit. Of the ends of the rectangular single wires 5 and 2a, the end to which the connecting plates 6a and 6b are not connected can be used as an end for connection to an external circuit (not shown).
つなぎ板 6 a、 6 bが接続された配線部 3 1の内部の様子を図 5に示す。 本実施 形態では、 保持部 3の両脚片の先端から突出する平角単線 2 a、 2 bの部位の長さ を、 1つの平角単線 2 aまたは 2 bで見たときは一方の脚片の長さを他方の脚片の 長さよりも長くし、 2つの平角単線 2 a、 2 bを比較して見たときは、 平角単線 2 aの短い方の脚片の長さと平角単線 2 bの長い方の脚片の長さとを等しくして、 つ なぎ板 6 a、 6 bを接続し易くしている。 また、 出力用平角単線 5、 平角単線 2 a 及び平角単線 2 bが互いに積層されているので、 つなぎ板 6 a、 6 bとは、 互いに 段差をもって取り付けることが可能である。 このことも、 つなぎ板 6 a、 6 bの接
続を容易にしている。 更に、 平角単線 5、 2 a及び 2 bの主面が互いに平行である ので、 つなぎ板 6 a、 6 bを各平角単線 5、 2 a、 2 bの定まった主面、 すなわち 図 5の例では上主面に接続すればよい。 このことも、 つなぎ板 6 a、 6 bの接続を 容易にしている。 FIG. 5 shows the inside of the wiring portion 31 to which the connecting plates 6a and 6b are connected. In the present embodiment, when the length of the portion of the flat rectangular solid lines 2a and 2b protruding from the tips of both legs of the holding portion 3 is viewed as one rectangular single line 2a or 2b, the length of one leg is The length of the other leg is longer than the length of the other leg, and when comparing the two rectangular single lines 2a and 2b, the length of the shorter leg of the rectangular single line 2a and the length of the rectangular single line 2b are longer. The length of the leg pieces is made equal to facilitate connection of the connecting plates 6a and 6b. In addition, since the output rectangular single wire 5, the rectangular single wire 2a, and the rectangular single wire 2b are stacked on each other, the connecting plates 6a and 6b can be attached to each other with a step. This also applies to the connection of the connecting plates 6a and 6b. Easy connection. Furthermore, since the main surfaces of the rectangular single wires 5, 2a and 2b are parallel to each other, the connecting plates 6a and 6b are connected to the fixed main surfaces of the rectangular single wires 5, 2a and 2b, that is, the example in FIG. Then, it may be connected to the upper main surface. This also facilitates connection of the connecting plates 6a and 6b.
以上のように、 本実施形態のコイルユニットによれば、 電線である平角単線 5、 2 a及び 2 bが保持部 3に埋め込まれて保持されているので、 配線部 3 1を構成す る保持部 3をコア 1の貫通孔 1 aに挿入することにより、 複数の電線がコア 1を貫 通する構造ができあがる。 そして、 つなぎ板 6 a、 6 bを平角単線 5、 2 a及び 2 bの端部に接続することにより、 容易に巻線構成を実現できる。 即ち、 平角巻線を 巻かなくてもよく、 また特許文献 2に開示される従来技術とは異なり、 平角単線 5、 2 a及び 2 bを一枚ずつ積層しつつコア 1へ挿入する必要もない。 それにより、 製 造工程が簡略化されるので、 製造のために高価な設備を必要とせず、 製造コストを 節減することができる。 また、 線同士を密着させて正確に巻く必要がないので巻厚 の問題も抑えられ、 小型化したコイルユニットを実現することができる。 更に、 平 角単線 5、 2 a及び 2 bが保持部 3に埋め込まれて保持されているので、 耐振動性 が高く信頼性の高いコイルュニッ卜が実現する。 As described above, according to the coil unit of the present embodiment, the flat rectangular solid wires 5, 2a, and 2b, which are the electric wires, are embedded and held in the holding unit 3, so that the holding unit constituting the wiring unit 31 is held. By inserting the part 3 into the through hole 1 a of the core 1, a structure in which a plurality of electric wires penetrate the core 1 is completed. Then, by connecting the connecting plates 6a and 6b to the ends of the rectangular single wires 5, 2a and 2b, a winding configuration can be easily realized. That is, it is not necessary to wind the rectangular winding, and unlike the conventional technology disclosed in Patent Document 2, it is also necessary to insert the rectangular single wires 5, 2a and 2b into the core 1 while laminating them one by one. Absent. This simplifies the manufacturing process, so that expensive equipment is not required for manufacturing, and manufacturing costs can be reduced. In addition, since it is not necessary to bring the wires into close contact with each other and accurately wind the wires, the problem of the winding thickness can be suppressed, and a compact coil unit can be realized. Further, since the rectangular single wires 5, 2a and 2b are embedded and held in the holding portion 3, a coil unit having high vibration resistance and high reliability is realized.
(実施形態 2 ) (Embodiment 2)
本実施形態における基本構成は実施形態 1と共通するために共通する部分につい ては同一の符号を付して説明を省略し、 本実施形態の特徴となる部分についてのみ 詳細に説明する。 Since the basic configuration of the present embodiment is common to that of the first embodiment, the same reference numerals are given to the common parts and the description thereof will be omitted, and only the characteristic parts of the present embodiment will be described in detail.
実施形態 1による 2つのトロイダル形チヨ一クコイルを並列に接続するには、 図 6または図 7に示すように平角単線 2 aのつなぎ板 6 aが接続されていない側の一 端どうしを入力端子板 7で接続すると共に、 保持部 3の中央片 3 cから突出した出 力用平角単線 5の端部どうしを出力端子板 8で接続すればよい。 この時、 巻厚の出 る方向は図 6または図 7のように任意に選ぶことができる。 また、 図 8に示すよう に、 多数のトロイダル形チョークコイルを並列に接続し 1つのュニットを構成する ことも可能である。 , 図 9に、 本実施形態のチョークコイルユニット Aを模式的に示す。 このチョーク コイルュニット Aは、 フェライトなどのコア材からなるトロイダルコア 1に配線部 としての平角巻線 2が巻装されたトロイダル形チヨークコイル A 1を 2個備え、 ト
ロイダル形チョークコイル A 1、 A 1を互いに並列に接続して 1つのチョークコィ ルュニット Aを構成している。 In order to connect two toroidal choke coils according to the first embodiment in parallel, as shown in FIG. 6 or FIG. 7, one end of the side where the connecting plate 6 a of the rectangular single wire 2 a is not connected is connected to the input terminal. The ends of the flat rectangular output wires 5 protruding from the central piece 3 c of the holding portion 3 may be connected to each other by the output terminal plate 8 while being connected by the plate 7. At this time, the direction in which the winding thickness comes out can be arbitrarily selected as shown in FIG. 6 or FIG. Also, as shown in FIG. 8, it is possible to configure a unit by connecting a number of toroidal choke coils in parallel. FIG. 9 schematically shows the choke coil unit A of the present embodiment. This choke coil unit A is provided with two toroidal-type yoke coils A1 in which a rectangular winding 2 as a wiring portion is wound around a toroidal core 1 made of a core material such as ferrite. One choke coil unit A is formed by connecting the toroidal choke coils A 1 and A 1 in parallel with each other.
チョークコイルユニット Aは、 入力電流がトロイダルコア 1、 1に分割されるの で、 従来の分割しないトロイダル形チョークコイルに比べて、 N I値より決定され るトロイダルコァ 1の孔径 Xを小さくできる。 In the choke coil unit A, since the input current is divided into the toroidal cores 1 and 1, the hole diameter X of the toroidal core 1 determined from the NI value can be smaller than that of the conventional undivided toroidal choke coil.
この時、 チョークコイルュニット A全体で従来のトロイダル形チョークコイルと 同等のインダク夕ンス Lを得るには、 トロイダル形チョークコイル A 1、 1個当た りに要求されるインダクタンス Lは 2倍必要となるが、 N I値より決定される孔径 Xが小さくて済むので、 インダク夕ンス Lが 2倍されることを考慮してもチョーク コイルユニット Aを従来のトロイダル形チヨークコイルより小さくすることができ る。 At this time, in order to obtain the same inductance L as that of the conventional toroidal choke coil in the entire choke coil unit A, the inductance L required for each toroidal choke coil A1 is doubled. However, since the hole diameter X determined by the NI value can be small, the choke coil unit A can be made smaller than the conventional toroidal chiyoke coil even if the inductance L is doubled. .
以下に数値例を挙げて、 従来のトロイダル形チョークコイルと、 本実施形態のチ ヨークコイルュニット Aの大きさとを、 コアの占める体積によって比較する。 The size of the conventional toroidal choke coil and the size of the yoke coil unit A of the present embodiment will be compared based on the volume occupied by the core, with numerical examples given below.
図 10は、 平角巻線 201を使用した従来のトロイダル形チョークコイル Xの一 例であり、 図 11に示す通りの仕様となっている。 FIG. 10 shows an example of a conventional toroidal choke coil X using a rectangular winding 201 and has the specifications as shown in FIG.
この仕様の決定理由を説明する。 なお、 仕様を決定する条件として、 トロイダル コア 200の高さ (外径 y) を 200 [mm] 以下 (なるべく低く) 、 厚さ zは最 大 100 [mm] という設計条件が与えられているものとする。 The reason for determining this specification will be described. The design conditions are such that the height (outer diameter y) of the toroidal core 200 is 200 [mm] or less (as low as possible) and the thickness z is 100 [mm] at the maximum. And
孔径 Xの仕様は電流値 Iと巻数 Nとによって飽和しない条件から決定される。 す なわち、 飽和を考慮した場合の孔径 Xの条件は、 NI値が 2 [ターン] X 20 [A] =40であるので、 前述した式 (1) より、 The specification of the hole diameter X is determined from the condition that the current value I and the number of turns N do not cause saturation. That is, the condition of the pore size X in consideration of the saturation is as follows: Since the NI value is 2 [turns] X 20 [A] = 40, the above equation (1) gives
N I = (BX 2 πΧ a) / n · · · (1) N I = (BX 2 πΧ a) / n
a=N I / (BX 27T) a = N I / (BX 27T)
となるので、 B=0. 3、 NI=40、 = 4TC X 10— 7X 3000を代入すると、 a=0. 08 [m] 、 つまり孔径 x=160 [mm] となる。 Since the, B = 0. 3, NI = 40, = Substituting 4TC X 10- 7 X 3000, a = 0. 08 [m], becomes i.e. pore size x = 160 [mm].
トロイダルコア 200の外径 yについては、 トロイダルコア 200の厚さ z [m] とインダク夕ンス L [H] とから以下の式 (3) を用いて求めることができ る。 (b :コアの外半径 [m] 、 a :孔半径 [m] 、 L:コアの L値 [H] 、 : 透磁率 [N/A2] 、 z :コア厚さ [m] 、 N:卷数とする。 ) The outer diameter y of the toroidal core 200 can be obtained from the thickness z [m] of the toroidal core 200 and the inductance L [H] using the following equation (3). (B: core outer radius [m], a: hole radius [m], L: core L value [H],: permeability [N / A 2 ], z: core thickness [m], N: Number of turns.)
y=2Xb = 2X aXe " ( (LX 2 ττ) / (^ ζ ΧΝ2) )
• · · (2) y = 2Xb = 2X aXe "((LX 2 ττ) / (^ ζ ΧΝ 2 )) • · · (2)
よって、 この条件でインダクタンス L= 10 [iiW を実現するためには、 式 (2) に L=10X 10— 6、 N=2、 a= 0. 08、 z = 0. 1を代入して、 トロ ィダルコアの外半径 b = 83. 4 [mm] 、 トロイダルコア外径 y = 166. 8 [mm] を得る。 Therefore, in order to realize an inductance L = 10 [iiW in this condition, by substituting L = 10X 10- 6, N = 2, a = 0. 08, z = 0. 1 in equation (2), Obtain the outer radius of the toroidal core b = 83.4 [mm] and the outer diameter of the toroidal core y = 166.8 [mm].
以上より、 このトロイダルコア 200の占める体積 V 200を求めると、 From the above, when the volume V 200 occupied by the toroidal core 200 is obtained,
V200= X b2X z V200 = X b 2 X z
より Than
V200 = 2184045. 8 [mm3] V200 = 2184045. 8 [mm 3 ]
となる。 It becomes.
次に、 本実施形態のチョークコイルユニット Aで、 全体の電流値 I、 インダクタ ンス L、 夕一ン数 N、 コアの厚さ z、 コア材は従来と同じとした時の、 仕様を図 1 2に示す。 Next, Fig. 1 shows the specifications of the choke coil unit A of this embodiment when the overall current value I, the inductance L, the number of evenings N, the core thickness z, and the core material are the same as the conventional one. See Figure 2.
この仕様の決定理由を説明する。 . The reason for determining this specification will be described. .
トロイダルコア 1、 1個当たりに流れる電流値は従来の半分となるので、 N I値 は従来の半分でよく、 飽和を考慮した場合の孔径 Xは、 式 (1) に B=0. 3、 N 1 = 20、 = 4πΧ 10— 7X 3000を代入すると、 a = 0. 04 [m] 、 つま り孔径 x=80 [mm] となる。 Since the current flowing per toroidal core 1 is half of the conventional value, the NI value may be half of the conventional value, and the pore size X when saturation is taken into account is given by B = 0.3, N 1 = 20, and substituting = 4πΧ 10- 7 X 3000, a = 0. 04 [m], the knob Riana径x = 80 [mm].
トロイダルコア 1、 1個当たりのインダク夕ンス Lは 2倍しなければいけないの で、 式 (2) に、 L=20X 10— 6、 N=2、 a = 0. 04、 z = 0. 1を代入す ると、 コアの外半径 b = 43. 5 [mm] 、 コア外径 y = 87. 0 [mm] となる。 以上より、 トロイダルコア 1、 1個当たりが占める体積 VIは、Inductor evening Nsu L of the toroidal core 1, 1 per than do I have twice, the formula (2), L = 20X 10- 6, N = 2, a = 0. 04, z = 0. 1 Then, the core outer radius b = 43.5 [mm] and the core outer diameter y = 87.0 [mm]. From the above, the volume VI occupied by one or one toroidal core is
より Than
Vl = 593515. 5 [mm3] Vl = 593515. 5 [mm 3 ]
となり、 トロイダルコァ 1を 2個合わせた時の体積 V 2は、 And the volume V 2 when two toroidal cores 1 are combined is
V2=V 1X2 = 1187030. 9 [mm3] V2 = V 1X2 = 1187030. 9 [mm 3 ]
となり、 従来のコア 200より小さくなる。 And becomes smaller than the conventional core 200.
以上のように、 本実施形態のチョークコイルユニット Aは、 トロイダルコア 1個 当たりに流れる電流が小さくなるので、 トロイダルコアの穴径 Xを小さくでき、 ト
ロイダルコア 1個当たりに要求される L値が大きくなることを考慮しても従来のト ロイダル形チョークコイルより小型化することができる。 As described above, in the choke coil unit A of the present embodiment, the current flowing per toroidal core is reduced, so that the hole diameter X of the toroidal core can be reduced, and Even considering the large L value required for each toroidal core, the size can be reduced compared to conventional toroidal choke coils.
また、 電流が小さいので、 配線部も大きくならず、 巻きやすくなる。 In addition, since the current is small, the wiring portion does not become large, and it becomes easy to wind.
なお、 図 13にトロイダルコアの厚さ zを変えた時の、 従来のトロイダル形コア Fig. 13 shows the conventional toroidal core when the thickness z of the toroidal core was changed.
200の体積 V200とチョークコイルュニット Aのトロイダルコア 1 (2個分) の体積 V2とを示す。 このグラフより、 コア外径 yをできるだけ小さくするために、 コアの厚さ zを大きく取るほど、 従来のトロイダル形コア 200と比較して本実施 形態のチョークコイルュニット Aの小型化の効果があることがわかる。 The volume V200 of 200 and the volume V2 of two toroidal cores 1 of choke coil unit A are shown. According to this graph, in order to make the core outer diameter y as small as possible, the larger the thickness z of the core, the more the effect of miniaturization of the choke coil unit A of the present embodiment as compared with the conventional toroidal core 200. You can see that there is.
なお、 本実施形態では円柱状で丸孔のコア 1を用いたが、 コアの加工条件や、 平角巻線の固定を考慮して、 図 14に示すように直方体で角孔のコア 1' を用いて チョークコイルユニット A' を構成してもよい。 In this embodiment, the cylindrical core 1 having a round hole is used. However, in consideration of the processing conditions of the core and fixing of the rectangular winding, the rectangular core 1 ′ having a rectangular parallelepiped as shown in FIG. The choke coil unit A 'may be configured by using this.
この場合、 コイルの L値は内径と外径との比で決定されるため、 同じ平角巻線 2 を使う条件で角孔にした場合は、 丸孔より大きくなるので、 外径も大きく取らない と同じ L値にはならないが、 角孔のチョークコイルユニット A' を用いた場合でも、 従来の角孔のトロイダル形チョークコイルユニットと比較すると、 小型化できる。 すなわち、 図 15に示す従来のトロイダル形チョークコイル X' は、 角孔の対角 線が外径決定条件になるため、 角穴の大きさ Xは、 226. 3 [mm] X 226. In this case, since the L value of the coil is determined by the ratio of the inner diameter to the outer diameter, if the rectangular hole is used under the condition that the same rectangular winding 2 is used, the outer diameter will not be large because it will be larger than the round hole Although the L value is not the same as the above, the size can be reduced even when the rectangular hole choke coil unit A 'is used as compared with the conventional rectangular hole toroidal type choke coil unit. That is, in the conventional toroidal choke coil X ′ shown in FIG. 15, since the diagonal line of the square hole determines the outer diameter, the size X of the square hole is 226.3 [mm] X 226.
3 [mm] 、 コアの幅 y (=高さ y) は 235. 9 [mm] となり、 コア体積 V2 00' は、 3 [mm], the core width y (= height y) is 235.9 [mm], and the core volume V200 'is
V200 ' =235. 9 X 235. 9X 100 = 5564881 [mm3] V200 '= 235.9 X 235.9X 100 = 5564881 [mm 3 ]
となるが、 一方、 図 14に示したチョークコイルユニット A' の角孔の大きさ Xは、 113. 1 [mm] X 113. 1 [mm] 、 コアの幅 y (=高さ y) は 122. 9 [mm] となり、 コア体積 V 2' は、 On the other hand, the size X of the square hole of the choke coil unit A 'shown in Fig. 14 is 113.1 [mm] X 113.1 [mm], and the width y (= height y) of the core is 122.9 [mm], and the core volume V 2 'is
V2' = 122. 9 X 122. 9X 100X2 = 3020882 [mm3] となり、 従来のコア体積 V200' より小さくなつている。 V2 '= 122.9 × 122.9 × 100X2 = 3020882 [mm 3 ], which is smaller than the conventional core volume V200'.
(実施形態 3) (Embodiment 3)
本実施形態における基本構成は実施形態 1と共通するために共通する部分につい ては同一の符号を付して説明を省略し、 本実施形態の特徴となる部分についてのみ 詳細に説明する。 則ち本実施形態は、 実施形態 1に対して、 保持部 3の構成が異な る点に特徴がある。
本実施形態の保持部 3を図 1 6に示す。 この保持部 3は、 実施形態 1の保持部 3 の一方の脚片 3 aの先端から、 平角単線 2 aの一端と対向するように延設片 3 dが 延設され、 さらに延設片 3 dの先端に延設部 3 eが形成されている。 延設部 3 eに は、 一端に電流が入力され他端が後述するように平角単線 2 aまたは 2 bと接続さ れる入力切替片 9が、 両端部を外部に露出させて埋設されている。 Since the basic configuration of the present embodiment is common to that of the first embodiment, the same reference numerals are given to the common parts and the description thereof will be omitted, and only the characteristic parts of the present embodiment will be described in detail. That is, the present embodiment is characterized in that the configuration of the holding unit 3 is different from that of the first embodiment. FIG. 16 shows the holding section 3 of the present embodiment. The holding part 3 has an extension piece 3 d extending from the tip of one leg 3 a of the holding part 3 of the first embodiment so as to face one end of the rectangular single wire 2 a. An extension 3e is formed at the tip of d. In the extension 3e, an input switching piece 9 to which a current is input at one end and the other end is connected to the single rectangular wire 2a or 2b as described later is embedded with both ends exposed to the outside. .
入力切替片 9は、 図 1 7に示すように平角単線 2 aまたは 2 bと接続される側の 端部が二股片 9 a、 9 bに分かれて外部に露出している。 また保持部 3は、 実施形 態 2と同様に平角単線 2 a、 2 bおよび出力用平角単線 5を所定の間隔をもって積 層した状態に保持している。 As shown in FIG. 17, the input switching piece 9 has an end on the side connected to the single rectangular wire 2a or 2b, which is divided into two forks 9a and 9b and exposed to the outside. Further, the holding unit 3 holds the rectangular single wires 2a and 2b and the output rectangular single wire 5 in a stacked state at predetermined intervals, as in the second embodiment.
以上のように構成された保持部 3は、 その一方の脚片 3 aがトロイダルコア 1の 貫通孔 1 aに挿入された後、 図 1 8及び図 1 9に示すように入力切替片 9の二股片 9 a、 9 bのうち、 延設片 3 d (図 1 8 ) から遠い方の部位 9 bと導体片 2 bの一 端とを金属板 1 0で接続すると共に、 導体片 2 bの他端と出力用平角単線 5の一端 とをつなぎ板 6 bで接続すると、 2ターンの巻線を構成できる。 After the one leg 3a is inserted into the through hole 1a of the toroidal core 1, the holding portion 3 configured as described above, as shown in FIG. 18 and FIG. Of the bifurcated pieces 9a and 9b, the part 9b farthest from the extension piece 3d (Fig. 18) and one end of the conductor piece 2b are connected with the metal plate 10 and the conductor piece 2b When the other end of the wire and the one end of the output rectangular single wire 5 are connected by the connecting plate 6b, a two-turn winding can be formed.
また、 図 2 0及び図 2 1に示すように入力切替片 9の二股片 9 a、 9 bのうち、 延設片 3 dに近い側の部位 9 aと導体片 2 aの一端とを金属板 1 0で接続すると共 に、 導体片 2 aの他端と導体片 2 bの一端とをつなぎ板 6 aで接続し、 導体片 2 b の他端と出力用平角単線 5の一端とをつなぎ板 6 bで接続すると、 3ターンの巻線 を構成できる。 Also, as shown in FIGS. 20 and 21, of the forked pieces 9a and 9b of the input switching piece 9, the portion 9a on the side closer to the extension piece 3d and one end of the conductor piece 2a are Connect the other end of the conductor piece 2a and one end of the conductor piece 2b with a connecting plate 6a, and connect the other end of the conductor piece 2b and one end of When connected by the connecting plate 6b, a three-turn winding can be formed.
このように、 保持部 3が複数の平角単線 2 a、 2 bを保持し、 つなぎ板 6 a、 6 bを、 平角単線 2 a、 2 bを選択して接続することで巻数を変更することが可能と なり、 一個の保持部 3で複数のィンダクタンス Lを有するチョークコイルを実現で きる。 In this manner, the number of turns can be changed by the holding unit 3 holding the plurality of flat rectangular single wires 2a and 2b and connecting the connecting plates 6a and 6b by selecting the flat rectangular single wires 2a and 2b. Thus, a choke coil having a plurality of inductances L can be realized with one holding unit 3.
(実施形態 4) (Embodiment 4)
本実施形態における基本構成は実施形態 1と共通するために共通する部分につい ては同一の符号を付して説明を省略し、 本実施形態の特徴となる部分についてのみ 詳細に説明する。 則ち本実施形態は、 実施形態 1に対して、 図 2 2に示すように保 持部 3の一方の脚片 3 aに、 トロイダルコアの貫通孔 1 aに挿入された保持部 3が トロイダルコァから抜けることを防止する抜け止め部、 即ち保持部 3をトロイダル コア 1に固定する固定手段として、 係止爪 3 fを設けた点に特徴がある。
係止爪 3 は、 一方の脚片 3 aの先端の外面のうち平角単線 2 a、 2 bと並行す る 2面に、 保持部 3の中央片 3 cに近づくにつれて外側に傾斜する傾斜面を有する ように形成されている。 また、 係止爪 3 fの裏面 3 gから保持部 3の中央片 3 cま での ί巨離は、 トロイダルコア 1の厚さと略同一に形成されている。 Since the basic configuration of the present embodiment is common to that of the first embodiment, the same reference numerals are given to the common parts and the description thereof will be omitted, and only the characteristic parts of the present embodiment will be described in detail. That is, the present embodiment is different from the first embodiment in that the holding portion 3 inserted into the through hole 1a of the toroidal core is provided on one leg 3a of the holding portion 3 as shown in FIG. It is characterized in that a locking claw 3f is provided as a retaining part for preventing the core from coming off, that is, a fixing means for fixing the holding part 3 to the toroidal core 1. The locking claw 3 has two slopes on the outer surface at the tip of one leg piece 3a, which are parallel to the single rectangular wires 2a, 2b, and an inclined surface that slopes outward as it approaches the center piece 3c of the holding portion 3. It is formed so that it may have. Further, the distance from the rear surface 3 g of the locking claw 3 f to the central piece 3 c of the holding portion 3 is formed to be substantially the same as the thickness of the toroidal core 1.
上記のように構成された保持部 3は、 係止爪 3 f を保持部 3の内側に弾性変形さ せながら一方の脚片 3 aが.トロイダルコア 1の貫通孔 1 aに挿入され、 図 2 3に示 すように保持部 3の挿入が完了すると係止爪 3 f の裏面 3 gとトロイダルコァ 1の 周縁 1 bとが係合すると共にトロイダルコア 1が係止爪 3 fの裏面 3 gと保持部 3 の中央片 3 cとの間に挟まれることにより、 トロイダルコア 1へ固定される。 In the holding portion 3 configured as described above, one leg piece 3a is inserted into the through hole 1a of the toroidal core 1 while elastically deforming the locking claw 3f inside the holding portion 3. 2 When the insertion of the holding part 3 is completed as shown in 3, the back surface 3 g of the locking claw 3 f engages with the peripheral edge 1 b of the toroidal core 1 and the toroidal core 1 engages the back surface of the locking claw 3 f 3 It is fixed to the toroidal core 1 by being sandwiched between g and the central piece 3 c of the holding portion 3.
かかる保持部 3においては、 トロイダルコア 1に揷入後のトロイダルコア 1と保 持部 3との固定強度が上がり、 例えばチヨークコィルュニットを車載する際に重要 となる耐震性を向上させることができる。 In the holding section 3, the fixing strength between the toroidal core 1 and the holding section 3 after being inserted into the toroidal core 1 is increased, and for example, the seismic resistance, which is important when the Chiyo coil unit is mounted on a vehicle, is improved. Can be.
(実施形態 5 ) (Embodiment 5)
本実施形態における基本構成は実施形態 1と共通するために共通する部分につい ては同一の符号を付して説明を省略し、 本実施形態の特徴となる部分についてのみ 詳細に説明する。 本実施形態は、 実施形態 1に対して、 図 2 4に示すようにトロイ ダルコア 1を 2つ (トロイダルコア 1 Aおよび 1 B ) に分割すると共に、 保持部 3 を可撓性を有する樹脂で形成し、 平角単線 2 a、 2 bおよび出力用平角単線 5を、 可撓性を有する導電材料で形成した点に特徴がある。 平角単線 2 a、 2 bおよび出 力用平角単線 5は、 例えば厚さをある程度以下に設定することにより可撓性を持つ ことができる。 Since the basic configuration of the present embodiment is common to that of the first embodiment, the same reference numerals are given to the common parts and the description thereof will be omitted, and only the characteristic parts of the present embodiment will be described in detail. This embodiment is different from the first embodiment in that the toroidal core 1 is divided into two (toroidal cores 1A and 1B) as shown in FIG. 24, and the holding portion 3 is made of a flexible resin. It is characterized in that the rectangular single wires 2a, 2b and the output rectangular single wire 5 are formed of a conductive material having flexibility. The rectangular single wires 2a and 2b and the output rectangular single wire 5 can have flexibility by, for example, setting the thickness to a certain value or less.
このように構成することで、 組み立て後にも保持部 3を自在に曲げることができ 形状の自由度ができるので、 端子位置の変更などにもある程度対応できるようにな る。 With this configuration, the holding portion 3 can be freely bent even after assembly, and the degree of freedom of the shape can be increased. Therefore, it is possible to cope with a change in the terminal position and the like to some extent.
(実施形態 6 ) (Embodiment 6)
本実施形態によるコイルユニットは、 図 2 5に示すように、 複数 (図 2 5におい ては 2本) の電線 2 1をそれぞれ両端部の向きが揃うように並べて保持するととも に各電線 2 1を互いに絶緣する絶縁体 2 2とからなる配線部 2 3と、 磁性材料から なり配線部 2 3が揷通される配線部揷通穴 2 4 aが貫設されたコア 2 4とを備え、 各電線 2 1の両端部にはそれぞれ絶縁体 2 2から露出する端子部 2 1 aを設けたも
のである。 As shown in FIG. 25, the coil unit according to the present embodiment holds a plurality of (two in FIG. 25) electric wires 21 side by side so that the directions of both ends are aligned, and holds each electric wire 21. And a core 24 made of a magnetic material and having a through-hole 24 a through which the wiring portion 23 passes. Terminals 21a exposed from the insulator 22 are provided at both ends of each wire 21. It is.
詳しく説明すると、 配線部 2 3は、 合成樹脂からなる絶縁体 2 2で 2本の電線 2 1を埋め込んで保持する構造を有するもので、 図 2 6に示すように U字形 (コ字 形) に形成されている。 図 2 7に示すように、 配線部 2 3の内部において、 各電線 2 1はそれぞれ U字状になって互いに離れた状態で保持され、 互いに絶縁されてい る。 配線部 2 3は、 複数の電線 2 1を、 互いの間隔を保つように不図示の治具で支 持しつつ、 これらの電線 2 1を埋め込むように絶縁体 2 2の絶緣材料を、 不図示の 型を用いて一体成型することにより、 容易に形成することができる。 More specifically, the wiring portion 23 has a structure in which an insulator 22 made of synthetic resin embeds and holds two electric wires 21, and has a U-shape (U-shape) as shown in FIG. 26. Is formed. As shown in FIG. 27, inside the wiring portion 23, the electric wires 21 are respectively U-shaped, held apart from each other, and insulated from each other. The wiring portion 23 supports the plurality of electric wires 21 with a jig (not shown) so as to keep a distance from each other, and uses an insulating material of an insulator 22 so as to embed these electric wires 21. It can be easily formed by integrally molding using the illustrated mold.
コア 2 4は、 例えばフェライトのような磁性体に貫通孔である配線部揷通穴 2 4 aが貫設されて図 2 8に示すような円筒形状に形成された一般的なものであって、 図 2 9の矢印 B 1で示すように配線部 2 3の両端部が配線部挿通穴 2 4 aを貫通す ることによって配線部 2 3に装着されている。 ここで、 図 3 0に示すように配線部 2 3の一方の端部に 2個のコア 2 4を並べて装着してもよい。 また、 コア 2 4は、 図 3 1に示すような角筒形状であってもよい。 The core 24 is a general one in which a wiring portion, which is a through-hole, is formed in a magnetic material such as ferrite and a through-hole 24 a is formed in a cylindrical shape as shown in FIG. As shown by arrow B1 in FIG. 29, both ends of the wiring portion 23 are attached to the wiring portion 23 by passing through the wiring portion insertion holes 24a. Here, as shown in FIG. 30, two cores 24 may be mounted side by side on one end of the wiring portion 23. Further, the core 24 may have a rectangular tube shape as shown in FIG.
上記構成によれば、 電線 2 1が絶縁体 2 2に埋め込まれて保持されているので、 実施形態 1について述べたと同様の効果が得られる。 即ち、 電線 2 1を巻回する必 要がなく、 また特許文献 2に開示される従来技術とは異なり、 電線 2 1を 1本ずつ コア 1へ挿入する必要もない。 製造工程が簡略化されるので、 高価な設備を必要と せず、 製造コストを節減することができる。 また、 電線 2 1として平角線ではなく 一般的な単線を用いることができるので、 一般的な単線を用いることにより、 更に コストを下げることができる。 更に、 コア 2 4の個数や寸法を適宜選択することに より形状やコア容量の仕様を容易に変更することができる。 また、 一般的な筒状の 安価なコア 2 4を用いることができるから、 特殊な形状の高価なコアを用いる場合 に比べてコストを下げることができる。 更に、 電線 2 1が絶縁体 2 2に埋め込まれ て保持されているので、 耐振動性が高く信頼性の高いコイルュニットが実現する。 ここで、 実施形態 4と同様に、 図 3 2に示すようにコア 2 4を抜け止めする抜け 止め部 4 1を絶縁体 2 2に突設してもよい。 抜け止め部 4 1は、 例えば電線 2 1に 沿った方向における絶縁体 2 2の端部に設ける。 また、 抜け止め部 4 1の形状は、 例えば電線 2 1に沿って配線部 2 3の中央に近付く方向に向かって電線 2 1から離 れる方向に傾斜した傾斜面 4 1 aを電線 2 1から離れた側に有し、 先端が電線 2 1
ととのの間間のの距距離離をを変変ええるるよよううにに撓撓みみ可可能能なな形形状状ととすするる。。 上上記記ののよよううにに抜抜けけ止止めめ部部 44 11 をを形形成成すすれればば、、 図図 33 33のの矢矢印印 BB 22でで示示すすよよううにに配配線線部部 22 33のの両両端端部部ををココアア 22 44のの配配 線線部部挿挿通通穴穴 22 44 aaにに押押しし込込むむだだけけでで、、 抜抜けけ止止めめ部部 44 11がが橈橈んんででココアア 22 44のの配配線線部部揷揷 通通穴穴 22 44 aaをを通通過過ししたた後後にに図図 33 22にに示示すすよよううにに復復帰帰ししててココアア 22 44にに引引っっ掛掛かかるる。。 ここ のの構構成成をを採採用用すすれればば、、 ココアア 22 44のの脱脱落落がが防防止止さされれるるかからら耐耐振振動動性性がが向向上上しし、、 車車載載用用 のの用用途途にに好好適適ででああるる。。 ままたた、、 ココアア 22 44のの抜抜けけ止止めめののたためめにに別別体体のの部部品品をを設設けけるる場場合合 にに比比べべててココスストトをを下下げげるるここととががででききるる。。 According to the above configuration, since the electric wire 21 is embedded and held in the insulator 22, the same effect as described in the first embodiment can be obtained. That is, there is no need to wind the electric wire 21, and unlike the prior art disclosed in Patent Document 2, there is no need to insert the electric wire 21 into the core 1 one by one. Since the manufacturing process is simplified, expensive equipment is not required and manufacturing costs can be reduced. In addition, since a general single wire can be used as the electric wire 21 instead of a rectangular wire, the cost can be further reduced by using a general single wire. Further, by appropriately selecting the number and size of the cores 24, the shape and the specifications of the core capacity can be easily changed. In addition, since an inexpensive general cylindrical core 24 can be used, the cost can be reduced as compared with a case where an expensive core having a special shape is used. Further, since the electric wire 21 is embedded and held in the insulator 22, a coil unit having high vibration resistance and high reliability is realized. Here, similarly to the fourth embodiment, a retaining portion 41 for retaining the core 24 may be protruded from the insulator 22 as shown in FIG. The retaining portion 41 is provided at an end of the insulator 22 in a direction along the electric wire 21, for example. In addition, the shape of the retaining portion 41 is, for example, that the inclined surface 41 a inclined in a direction away from the electric wire 21 toward the direction approaching the center of the wiring portion 23 along the electric wire 21 is formed from the electric wire 21. 2 1 And so as to be able to change the distance between them to be able to change. . If the pull-out stopper 44 11 is formed as described above, it is arranged as shown by the arrow BB 22 in FIG. 33 33. Both ends of the wiring section 22 33 are pushed and pushed into the cocoa area 22 44's wiring section insertion hole 2244 aa. After the stopper portion 44 11 is radiused and passes through the wiring line portion of the cocoa hole 22 44 揷 揷 through-hole hole 22 44 aa, after that as shown in FIG. As shown in the figure, it returns to its home position and is hooked on Cocoa 2244. . If this configuration is adopted, the cocoa core 2244 can be prevented from falling off, and the vibration and vibration resistance can be improved. It is suitable and suitable for use in vehicle mounting. . Also, the cocoa stove should be lowered as compared with the case where a separate component can be installed to prevent the cocoa door 22 44 from being pulled out. The place where you can lower it is complete. .
ままたた、、 実実施施形形態態 55とと同同様様にに、、 図図 33 44にに示示すすよよううにに絶絶縁縁体体 22 22及及びび電電線線 22 11ををそそれれ ぞぞれれ可可撓撓性性をを有有すするる材材料料でで形形成成ししててももよよいい。。 ここのの構構成成をを採採用用すすれればば、、 配配線線部部 22 33をを 設設置置場場所所にに合合わわせせてて変変形形ささせせるるここととががででききるる。。 ななおお、、 電電線線 22 11にに沿沿っったた方方向向のの長長ささ 寸寸法法がが大大ききななココアア 22 44をを少少数数用用いいるる代代わわりりにに、、 図図 33 55にに示示すすよよううにに電電線線 22 11にに沿沿つつ たた方方向向のの長長ささ寸寸法法がが小小ささいいココアア 22 44をを多多数数用用いいれればば、、 よよりり柔柔軟軟にに配配線線部部 22 33をを変変形形 ささせせるるここととががででききるる。。 ままたた、、 電電線線 22 11のの径径ををああるる程程度度以以下下にに抑抑ええるるここととにによよりり、、 十十 分分なな可可撓撓性性をを電電線線 22 11にに持持たたせせるるここととがが可可能能ででああるる。。 In the same manner as in the embodiment 55, the insulating insulator 22 22 and the electric wire 22 11 are connected as shown in FIG. Each of them may be formed of a material having flexible flexibility. . If this configuration is adopted and adopted, it is necessary to match the wiring and wiring section 2233 to the installation site and to deform and deform it. Can be completed. . In addition, instead of using a small number of cocoa cores 22 44 whose dimension is large, the length in the direction along the power line 22 11 is used instead. In addition, as shown in Fig. 33 55, a cocoa core 22 44 with a small length and a small dimension is used in the direction along the power line 22 11 as shown in Fig. 33 55. If a large number is used, it is possible to make the wiring and wiring portion 2233 deform and deform more and more flexibly and flexibly. . Further, the diameter of the electric power line 2211 can be suppressed to a certain degree or less, so that sufficient flexible bending can be achieved. Here, it is possible to make the power line 22 11 have the property. .
((実実施施形形態態 77 )) ((Embodiment mode 77))
本本実実施施形形態態にによよるるココイイルルュュニニッッ卜卜のの基基本本構構成成はは実実施施形形態態 66とと同同様様ででああるるののでで、、 同同 様様のの部部分分ににつついいててはは同同じじ符符号号をを付付ししてて説説明明をを省省略略しし、、 異異ななるる部部分分ににつついいてて詳詳細細にに説説 明明すするる。。 本本実実施施形形態態はは、、 図図 33 66にに示示すすよよううにに、、 配配線線部部 22 33のの一一方方のの端端子子部部 22 11 aaとと 配配線線部部 22 33のの他他方方のの端端子子部部 22 11 aaととででああっってて互互いいにに異異ななるる電電線線 22 11のの端端部部同同士士をを電電 気気的的にに接接続続すするる接接続続部部材材 22 55をを設設けけるるここととにによよっってて、、 複複数数 ((図図 33 66ににおおいいててはは 22 本本)) のの電電線線 22 11とと接接続続部部材材 22 55ととでで卷卷線線をを構構成成すするるももののででああるる。。 例例ええばば、、 図図 33 77にに 示示すすよよううにに配配線線部部 22 33にに電電線線 22 11をを 44本本設設けけ、、 22本本ずずつつかからら上上記記ののよよううにに卷卷線線をを構構 成成すすれればば、、 22回回巻巻ききのの巻巻線線がが一一対対形形成成さされれ、、 図図 33 88
Since the basic basic structure of the coconut luminous unit according to the present embodiment is the same as that of the embodiment 66, ,,,,,,,,,,,,,,,,,,,,,,,,,, And, omitting the description thereof will be omitted, and It will be explained in detail in detail. . In the present embodiment, as shown in FIG. 3366, one end terminal portion 22 11 aa of one of the distribution wiring portions 2 33 is provided as shown in FIG. And the other end of the distribution wiring part 22 33 and the other terminal part 22 11 aa which are mutually different from each other. Depending on the location of the connecting member 22 55 for electrically connecting the members electrically and electrically, the plural number (( In Fig. 33 66, the winding wire is composed of 22 electric wires 22 11) and the connecting / connecting member 22 55. It is. . For example, as shown in Fig. 33 77, forty-four electric wires 2211 are provided in the distribution wiring part 2233 as shown in Fig. 3377. If the winding wire is formed as described above, a pair of winding windings of 22 turns is formed, and FIG. 33 88
ンスとしてのコイルユニットを得ることができる。 なお、 図 3 6及び図 3 7におい て、 接続部材 2 5が接続されない端子部 2 1 aは、 不図示の回路基板等の外部回路 に接続するための端子として使用することができる。 As a result, a coil unit can be obtained. In FIGS. 36 and 37, the terminal portion 21 a to which the connection member 25 is not connected can be used as a terminal for connecting to an external circuit such as a circuit board (not shown).
上記構成によれば、 特殊な設備を用いることなく、 容易に巻線を形成することが できる。 ここで、 図 3 9に示すように、 複数の配線部 2 3を、 各配線部 2 3の一方 の端子部 2 1 aを他の配線部 2 3の一方の端子部 2 1 aに接続するように連結して 用いれば、 コア 2 4をさらに追加することができるから、 コア容量をより広範囲に
選ぶことができる。 According to the above configuration, the winding can be easily formed without using special equipment. Here, as shown in FIG. 39, the plurality of wiring parts 23 are connected to one terminal part 21 a of each wiring part 23 to one terminal part 21 a of the other wiring part 23. If used together, more cores 24 can be added, so the core capacity can be increased over a wider range. You can choose.
(実施形態 8 ) (Embodiment 8)
本実施形態によるコイルユニットは、 図 4 0及び図 4 1に示すように、 複数本 (図 4 0及び図 4 1においては 6本) の電線 2 1を絶縁体 2 2で埋め込んで保持す ることにより、 U字状の配線部 2 3を形成し、 配線部 2 3にコア 2 4を装着した後、 配線部 2 3の一方の端子部 2 1 aと配線部 2 3の他方の端子部 2 1 aとであって互 いに異なる電線 2 1の端部同士を電気的に接続する接続部材 2 5を追加することに よって形成されたものである。 As shown in FIGS. 40 and 41, the coil unit according to the present embodiment embeds and holds a plurality of (six in FIGS. 40 and 41) electric wires 21 with an insulator 22. Thus, a U-shaped wiring portion 23 is formed, a core 24 is attached to the wiring portion 23, and one terminal portion 21a of the wiring portion 23 and the other terminal portion of the wiring portion 23 are formed. 21a, which is formed by adding a connecting member 25 for electrically connecting the ends of the wires 21 different from each other.
上記構成によれば、 接続部材 2 5の本数と接続位置とを適宜選択することによつ て、 巻線の巻き数を、 合計が電線 2 1の本数を超えない範囲で自由に設定すること ができる。 例えば、 図 4 1に示すように、 電線 2 1のうちの 1本から 1回巻きの 1 次卷線を構成し、 電線 2 1のうちの 3本と 2本の接続部材 5と力、ら 3回巻きの 2次 卷線を構成する。 なお、 図 4 1に示すように、 余った端子部 2 1 aは切断してもよ い。 According to the above configuration, by appropriately selecting the number of connection members 25 and the connection position, the number of windings of the winding can be freely set within a range that does not exceed the number of electric wires 21. Can be. For example, as shown in FIG. 41, one of the electric wires 21 forms a primary winding of one turn, and three of the electric wires 21 and two connecting members 5 and a force, etc. Constructs a secondary winding of three turns. As shown in FIG. 41, the surplus terminal 21a may be cut off.
' 図 4 2は、 本実施形態によるコイルユニットが用いられる D C— D Cコンバータ の一例を示す回路図である。 この D C—D Cコンバータは、 フォワードコンバータ であって、 直流電源 Eと、 直流電源 Eの出力端子間にスイッチング素子 SWを介し て 1次巻線が接続されたスィツチングトランス Tと、 スィッチング素子 S Wのオン オフを制御する駆動回路 Pと、 スイッチングトランス Tの 2次側の出力を平滑し負 荷 Wに供給する平滑回路 Sとを備えている。 このフォワードコンバータにおいて、 ダイオード 2 6と補助巻線 Iとの直列回路をスイッチング卜ランス Tの 1次巻線に 並列に設けたリセット回路 R Sにより磁気飽和を防ぐ技術が知られている。 本実施 形態のコイルユニットにおいて、 図 4 3に示すように電線 2 1の 1本に予めダイォ —ド 2 6を直列に接続するとともに、 電線 2 1と接続部材 2 5とで構成された卷線 からなる補助巻線 Iをダイオード 2 6の力ソード側に形成し、 これらを 1次巻線に 並列に接続しておくことができる。 それにより、 別途リセット回路 R Sを設けるこ となく図 4 2のリセット回路 R Sの効果を得ることができ、 回路基板を増設する必 要がないから小型化が可能となる。 FIG. 42 is a circuit diagram showing an example of a DC-DC converter using the coil unit according to the present embodiment. This DC-DC converter is a forward converter, and includes a DC power supply E, a switching transformer T having a primary winding connected between output terminals of the DC power supply E via a switching element SW, and a switching element SW. It includes a drive circuit P for controlling on / off and a smoothing circuit S for smoothing the output on the secondary side of the switching transformer T and supplying the output to the load W. In this forward converter, a technique for preventing magnetic saturation by a reset circuit R S in which a series circuit of a diode 26 and an auxiliary winding I is provided in parallel with a primary winding of a switching transistor T is known. In the coil unit of the present embodiment, as shown in FIG. 43, a diode 26 is previously connected in series to one of the electric wires 21, and a winding composed of the electric wire 21 and the connecting member 25 is provided. The auxiliary winding I is formed on the force source side of the diode 26, and these can be connected in parallel to the primary winding. Thus, the effect of the reset circuit RS of FIG. 42 can be obtained without providing a separate reset circuit RS, and the size can be reduced because there is no need to add a circuit board.
(実施形態 9 ) (Embodiment 9)
本実施形態によるコイルユニットは、 図 4 4に示すように、 それぞれ実施形態 6
において用いた配線部 2 3と同様の 2個の配線部 2 3と、 磁性体からなり複数 (図 4 4においては 4個) の配線部揷通穴 2 4 aが形成されたコア 2 4とを備える。 各 配線部 2 3の各端部は、 それぞれ 1つの貫通孔である配線部揷通穴 2 4 aに揷通さ れている。 As shown in FIG. 44, the coil unit according to the present embodiment The two wiring portions 23 similar to the wiring portions 23 used in the above, and a core 24 having a plurality of (four in FIG. 44) wiring portions made of a magnetic material and having through holes 24 a formed therein. Is provided. Each end of each wiring portion 23 is passed through a wiring portion through hole 24a, which is one through hole.
上記のようなコア 2 4は、 例えば、 図 4 5に示すように、 配線部 2 3が並ぶ方向 の両側から矢印 B 3で示すように配線部 2 3に装着される一対の半割体 6 1から構 成する。 各半割体 6 1は、 それぞれ配線部 2 3の一部が収納される溝 6 1 aがー面 に設けられた板状である。 互いの溝 6 1 aの位置を合わせる形で 2個の半割体 6 1 を結合すると、 2個の半割体 6 1の溝 6 1 aから配線部揷通穴 4 aが構成される。 上記構成によれば、 複数の配線部 2 3の複数箇所に装着されるコア 2 4を 1つ 1 つ製造するのではなく一度に製造することができる。 また、 それぞれ 1つの配線部 揷通穴 2 4 aが設けられた複数のコア 2 4を用いる場合と異なり、 振動を受けたと きなどにコア 2 4同士が互いに衝突して破損することがない。 For example, as shown in FIG. 45, the core 24 as described above includes a pair of halves 6 attached to the wiring part 23 from both sides in the direction in which the wiring parts 23 are arranged, as indicated by an arrow B3. Consist of one. Each half body 61 has a plate-like shape in which a groove 61 a for accommodating a part of the wiring part 23 is provided on the bottom surface. When the two half-pieces 6 1 are connected in such a manner that the positions of the grooves 61 a are aligned with each other, the wiring part through hole 4 a is formed from the groove 61 a of the two half-pieces 61. According to the above configuration, the cores 24 attached to the plurality of locations of the plurality of wiring portions 23 can be manufactured at once, instead of manufacturing them one by one. Also, unlike the case where a plurality of cores 24 each having one wiring portion and a through hole 24a are provided, the cores 24 do not collide with each other when subjected to vibration and are not damaged.
(実施形態 1 0 ) (Embodiment 10)
図 4 6は、 実施形態 1 0によるコイルユニットを示す斜視図である。 このコイル ユニットの基本構成は、 実施形態 6によるコイルユニットと同等である。 本実施形 態のコイルュニットでは、 電線 2 1が実施形態 1によるコイルユニットと同様に、 平面視略 U字形の導体板である平角線であり、 複数の電線 2 1がその主面の上に積 層した状態で略 U字形の絶縁体 2 2に埋め込まれている。 更に、 コア 2 4が、 略 U 字形の絶縁体 2 2の一対の脚部の双方に挿入されるとともに、 各脚部においてコア 2 4が複数に分割されている。 このようにコア 2 4が電線 2 1に沿って分割される ことにより、 様々な仕様のコイルユニットのために共通のコアを準備し、 使用する コアの個数を変えるだけで、 インダク夕ンスの異なる様々な仕様のコイルュニット を形成することができる。 FIG. 46 is a perspective view showing the coil unit according to the tenth embodiment. The basic configuration of this coil unit is the same as that of the coil unit according to the sixth embodiment. In the coil unit of the present embodiment, the electric wire 21 is a rectangular wire that is a substantially U-shaped conductor plate in plan view, similarly to the coil unit according to the first embodiment, and a plurality of electric wires 21 are stacked on the main surface thereof. It is embedded in a substantially U-shaped insulator 22 in a layered state. Further, the core 24 is inserted into both of the pair of legs of the substantially U-shaped insulator 22, and the core 24 is divided into a plurality in each leg. By dividing the core 24 along the electric wire 21 in this way, a common core is prepared for coil units of various specifications, and the inductance is different only by changing the number of cores to be used. It is possible to form coil units of various specifications.
(実施形態 1 1 ) (Embodiment 11)
図 4 7は、 実施形態 1 1によるコイルユニットを示す斜視図である。 このコイル ユニットの基本構成は、 実施形態 6によるコイルユニットと同等である。 本実施形 態のコイルユニットでは、 絶縁体 2 2が、 略 U字形の複数の電線 2 1の脚部のみを 埋め込んでいる。 このような構成によっても、 複数の電線 2 1を十分な強度で保持 することが可能である。 また、 絶縁体 2 2が支持板 7 1に固定されており、 それに
よって強度が補強されている。 更に、 接続部材 2 5が、 側面視略 S字形であって、 1本の電線 2 1の端部の上主面と他の 1本の電線 2 1の端部の下主面とに接続され ている。 これにより、 接続部材 2 5を電線 2 1に溶接等により接続する際に、 他の 電線 2 1による干渉を解消することができ、 接続部材 2 5を取り付ける作業の能率 が向上する。 FIG. 47 is a perspective view showing a coil unit according to Embodiment 11. FIG. The basic configuration of this coil unit is the same as that of the coil unit according to the sixth embodiment. In the coil unit of the present embodiment, the insulator 22 embeds only the legs of the plurality of substantially U-shaped electric wires 21. Even with such a configuration, it is possible to hold the plurality of electric wires 21 with sufficient strength. Further, an insulator 22 is fixed to the support plate 71, and Therefore, the strength is reinforced. Further, the connection member 25 is substantially S-shaped in a side view, and is connected to the upper main surface of the end of one electric wire 21 and the lower main surface of the end of another electric wire 21. ing. Accordingly, when connecting the connection member 25 to the electric wire 21 by welding or the like, interference by another electric wire 21 can be eliminated, and the efficiency of the work of attaching the connection member 25 is improved.
(実施形態 1 2 ) (Embodiment 12)
図 4 8〜図 5 1は、 実施形態 1 2によるコイルュニッ卜の製造工程を示す工程図 であり、 図 5 2はその完成図である。 2回巻の 1個の巻線を有する図 5 2に示すコ ィルュニットを製造するには、 はじめに図 4 8に示す電線 2 1 A及び 2 1 Bを準備 する。 電線 2 1 A及び 2 1 Bは、 何れも側面視略 U字形の導体板である平角線であ る。 電線 2 1 A、 2 1 Bの各々の一対の端部には、 主面に直立するように主面から 屈曲して突出する板状の端子部 7 2が設けられている。 端子部 7 2は、 例えば折り 曲げ加工により形成することができる。 FIGS. 48 to 51 are process diagrams showing the steps of manufacturing the coil unit according to Embodiment 12, and FIG. 52 is a completed view thereof. In order to manufacture the coil unit shown in FIG. 52 having one winding of two turns, first, wires 21 A and 21 B shown in FIG. 48 are prepared. Each of the electric wires 21A and 21B is a rectangular wire which is a substantially U-shaped conductor plate in side view. A pair of ends of each of the electric wires 21A and 21B is provided with a plate-like terminal portion 72 which is bent and protrudes from the main surface so as to stand upright on the main surface. The terminal portion 72 can be formed, for example, by bending.
次に、 図 4 9に示すように、 電線 2 1 Aを外側とし、 電線 2 1 Bを内側とするよ うに、 電線 2 1 A、 2 1 Bが互いに間隔を保って積層される。 図 4 9に示すように、 端子部 7 2は平板状の接続部材 2 5で電線 2 1 Aの端部と電線 2 1 Bの端部とを接 続し易くするために設けられる。 なお、 接続部材 2 5の取り付けは、 図 4 9の工程 ではなく、 後の工程で行われるものであるが、 4個の端子部 7 2の位置関係を示す ために、 便宜上、 接続後の接続部材 2 5を図 4 9に描いている。 図 4 9に示すよう に、 接続部材 2 5が接続されるべき一対の端子部 7 2は、 互いに同一平面上に並ぶ。 次に、 図 5 0に示すように、 2本の電線 2 1 A、 2 1 Bが絶縁体 2 2により埋め 込まれることにより配線部 2 3ができ上がる。 埋込みは、 図 4 9に示した位置関係 を保つように 2本の電線 2 1 A、 2 1 Bを不図示の治具で保持しつつ、 不図示の型 を用いて絶縁材料を一体成型することにより容易に達成される。 図 5 0の例では、 絶縁体 2 2は、 略 U字形をなす電線 2 1の一対の脚部のつなぎ部分 7 5が選択的に 露出するように電線 2 1 A、 2 I Bを埋め込んでいる。 Next, as shown in FIG. 49, the electric wires 21A and 21B are stacked at an interval from each other such that the electric wire 21A is on the outside and the electric wire 21B is on the inside. As shown in FIG. 49, the terminal portion 72 is provided for facilitating the connection between the end of the electric wire 21A and the end of the electric wire 21B with a flat connecting member 25. The connection members 25 are attached not in the process of FIG. 49 but in a later process.However, in order to show the positional relationship of the four terminal portions 72, the connection after the connection is performed for convenience. Member 25 is depicted in FIG. As shown in FIG. 49, a pair of terminal portions 72 to which the connecting member 25 is to be connected are arranged on the same plane. Next, as shown in FIG. 50, the wiring portion 23 is completed by embedding the two electric wires 21 A and 21 B with the insulator 22. For embedding, while holding the two electric wires 21A and 21B with the jig (not shown) so as to maintain the positional relationship shown in Fig. 49, the insulating material is integrally molded using a mold (not shown) This is easily achieved by: In the example of FIG. 50, the insulator 22 embeds the wires 21 A and 2 IB so that the connecting portion 75 of the pair of legs of the substantially U-shaped wire 21 is selectively exposed. .
次に、 図 5 1に示すように、 コア 2 4に選択的に形成された貫通孔である配線部 揷通穴 2 4 aに絶縁体 2 2を挿入する。 それにより、 略 U字形の電線 2 1 A、 2 1 Bの一対の脚部がコア 2 4を貫通する。 この工程で、 不図示の把持用具を用いて、 露出するつなぎ部分 7 5を把持しつつ、 配線部 2 3をコア 2 4に挿入することがで
きる。 それにより、 絶縁体 2 2を損傷ないし変形させることなく、 配線部 2 3をし つかりと把持してコア 2 4に容易に揷入することができる。 また、 図 5 0に示した 工程においても、 露出するつなぎ部分 7 5を不図示の治具で把持することにより電 線 2 1 A、 2 I Bを保持しつつ、 絶縁体 2 2で容易に埋め込むことができる。 Next, as shown in FIG. 51, the insulator 22 is inserted into the through hole 24 a of the wiring portion which is a through hole selectively formed in the core 24. Thereby, a pair of legs of the substantially U-shaped electric wires 21 A and 21 B penetrate the core 24. In this step, it is possible to insert the wiring portion 23 into the core 24 while holding the exposed connecting portion 75 with a holding tool (not shown). Wear. Thus, the wiring portion 23 can be firmly grasped and easily inserted into the core 24 without damaging or deforming the insulator 22. Also, in the process shown in FIG. 50, the exposed joint portion 75 is easily buried with the insulator 22 while holding the wires 21 A and 2 IB by holding the wires 21 A and 2 IB by a jig (not shown). be able to.
次に、 図 5 2に示すように、 接続部材 2 5を端子部 7 2に溶接等により接続する ことにより、 2回捲きの卷線を 1個備えるチョークコイルユニットとして、 コイル ユニットが完成する。 本実施の形態によるコイルユニットでは、 導体板が電線 2 1 A及び 2 1 Bに用いられ、 それらが間隔をもって積層されるので、 電流容量の大き いコイルュニットがコンパクトに実現する。 また、 電線 2 1 A及び 2 1 Bの側面視 輪郭が略 U字形であるため、 実施の形態 1〜1 1によるコイルユニットと同様に、 接続部材 2 5を接続すべき電線の端部の向きが揃うので、 接続部材 2 5の取り付け が容易である。 Next, as shown in FIG. 52, by connecting the connecting member 25 to the terminal portion 72 by welding or the like, a coil unit is completed as a choke coil unit having one double-turned winding. In the coil unit according to the present embodiment, the conductor plates are used for the electric wires 21A and 21B, and they are laminated with an interval therebetween, so that a coil unit having a large current capacity is compactly realized. In addition, since the outline of the electric wires 21A and 21B in a side view is substantially U-shaped, similarly to the coil unit according to Embodiments 1 to 11, the direction of the end of the electric wire to which the connecting member 25 is to be connected. The connection members 25 are easy to install.
(実施形態 1 3 ) (Embodiment 13)
図 5 3〜図 5 5は、 実施形態 1 3によるコイルュニッ卜の製造工程を示す工程図 であり、 図 5 6はその完成図である。 図 5 6に示す本実施形態によるコイルュニッ トは、 2回巻の巻線 2個備える点において、 実施形態 1 2によるコイルユニット (図 5 2 ) とは異なっている。 すなわち、 本実施形態によるコイルユニットはスィ
FIGS. 53 to 55 are process diagrams showing the steps of manufacturing the coil unit according to Embodiment 13, and FIG. 56 is a completed view thereof. The coil unit according to the present embodiment shown in FIG. 56 is different from the coil unit according to the embodiment 12 (FIG. 52) in that two coil windings of two turns are provided. That is, the coil unit according to the present embodiment is a switch unit.
図 5 6に示すコイルュニットを製造するには、 はじめに図 4 8に示した電線 2 1 A及び 2 1 Bを準備するとともに、 図 5 3に示す電線 2 1 C及び 2 1 Dを準備する。 電線 2 1 C及び 2 1 Dは、 電線 2 1 A及び 2 1 Bと同様に、 何れも側面視略 U字形 の導体板である平角線であり、 端子部 7 2を有している。 電線 2 1 A及び 2 1 Bは、 スイッチングトランスの一次巻線を形成するためのものであり、 電線 2 1 C及び 2 1 Dは、 二次巻線を形成するためのものである。 In order to manufacture the coil unit shown in FIG. 56, first, wires 21 A and 21 B shown in FIG. 48 are prepared, and wires 21 C and 21 D shown in FIG. 53 are prepared. Like the electric wires 21A and 21B, each of the electric wires 21C and 21D is a flat wire that is a substantially U-shaped conductor plate in a side view, and has a terminal portion 72. The wires 21A and 21B are for forming the primary winding of the switching transformer, and the wires 21C and 21D are for forming the secondary winding.
次に、 電線 2 1 A、 2 1 B、 2 1 C、 2 1 Dの順に外側から内側へ位置するよう に、 4本の電線 2 1 A〜2 1 Dが互いに間隔を保って積層される。 積層された 4本 の電線 2 1 A〜2 1 Dのうち、 図 5 4には一次卷線を構成する部分を示し、 図 5 5 には二次巻線を構成する部分を示している。 Next, the four electric wires 21A to 21D are stacked at intervals from each other so that the electric wires 21A, 21B, 21C, 21D are located in order from the outside to the inside. . Of the four stacked electric wires 21A to 21D, FIG. 54 shows a part constituting a primary winding, and FIG. 55 shows a part constituting a secondary winding.
その後、 図 5 0と同様の工程を実行することにより、 4本の電線 2 1 A〜2 1 D が絶縁体 2 2によって埋め込まれる。 次に、 図 5 1と同様の工程を実行することに
より、 コア 2 4が取り付けられる。 その後、 図 5 6に示すように、 2枚の平板状の 接続部材 2 5を端子部 7 2に溶接等により接続することにより、 2回捲きの巻線を 2個備えるコイルュニットが完成する。 本実施の形態によるコイルュニッ卜におい ても、 実施の形態 1 2と同様の利点が得られる。 Thereafter, by performing the same process as in FIG. 50, the four electric wires 21A to 21D are embedded with the insulator 22. Next, the same steps as in Fig. 51 were performed. Thus, the core 24 is attached. Thereafter, as shown in FIG. 56, the two plate-shaped connecting members 25 are connected to the terminal portions 72 by welding or the like, thereby completing a coil unit having two twice-wound windings. In the coil unit according to the present embodiment, the same advantages as those in the embodiment 12 can be obtained.
(実施の形態のまとめ) (Summary of Embodiment)
以上に述べた本発明の様々な実施の形態は、 以下の通りにまとめることができる。 The various embodiments of the present invention described above can be summarized as follows.
( 1 ) すなわち、 コイルユニットは、 各々が第 1端部と第 2端部とを有する複 数の電線と、 前記複数の電線の前記第 1端部の向きが揃い、 前記複数の電線のうち の少なくとも一部については前記第 2端部の向きも前記第 1端部と揃い、 前記複数 の電線の各々の少なくとも前記第 1及び第 2端部が露出し、 且つ前記複数の電線が 互いに間隔を保つように、 前記複数の電線を埋め込んで保持する絶縁体と、 自身に 選択的に形成された貫通孔に前記絶縁体が挿入された磁性体のコアとを備えること を特徴とする。 (1) That is, the coil unit has a plurality of electric wires each having a first end and a second end, and the first ends of the plurality of electric wires are aligned with each other. The direction of the second end is at least partly aligned with the first end, at least the first and second ends of each of the plurality of electric wires are exposed, and the plurality of electric wires are spaced from each other. And a magnetic core in which the insulator is inserted into a through hole formed selectively in the insulator to hold the plurality of electric wires.
上記構成のコイルュニットでは、 複数の電線が互いに間隔を保つように絶縁体に 埋め込まれているので、 複数の電線が互いに絶縁性を保ちつつ一体をなす取り扱い 容易な部品 (配線部と称する) を形成する。 そして、 配線部を構成する絶縁体を磁 性体のコァの貫通孔に揷入することにより、 複数の電線がコァを貫通する構造がで きあがる。 このように、 上記構成のコイルユニットは、 高価な設備を要することな く容易に組み立ることができる。 また、 複数の電線の第 1端部の向きが揃い、 複数 の電線のうちの少なくとも一部については第 2端部の向きも第 1端部と揃つている ので、 向きが揃った第 1端部と第 2端部とを接続部材で接続することにより、 容易 に 1ターン以上の卷線を形成することができる。 更に、 第 1端部と向きが揃う第 2 端部が 2以上である場合には、 接続部材による接続の仕方を変更することにより、 インダクタンス或いは巻線数の異なる多様な仕様を容易に実現することができる。 また、 複数の電線が絶縁体に埋め込まれているので、 耐振動性が高く信頼性が向上 する。 In the coil unit having the above-described configuration, since a plurality of electric wires are embedded in the insulator so as to keep an interval from each other, an easy-to-handle component (referred to as a wiring portion) is formed in which the plurality of electric wires are integrated with each other while maintaining insulation. I do. Then, a structure in which a plurality of electric wires penetrate the core is completed by inserting an insulator constituting the wiring portion into the through hole of the magnetic core. Thus, the coil unit having the above configuration can be easily assembled without requiring expensive equipment. Also, the first ends of the plurality of electric wires are aligned, and the direction of the second end of at least a part of the plurality of electric wires is also aligned with the first end. By connecting the part and the second end with a connecting member, a winding of one or more turns can be easily formed. Furthermore, when the second end that is aligned with the first end is two or more, various specifications with different inductances or number of windings can be easily realized by changing the connection method using the connection member. be able to. Also, since a plurality of electric wires are embedded in the insulator, vibration resistance is high and reliability is improved.
( 2 ) 好ましくは、 前記絶縁体は、 絶縁材料を一体成型することにより形成さ れている。 (2) Preferably, the insulator is formed by integrally molding an insulating material.
この構成により、 複数の電線が互いに絶縁性を保ちつつ一体をなす取り扱い容易 な部品 (配線部) を容易に形成することができる。
( 3 ) 好ましくは、 前記複数の電線のうちの前記少なくとも一部が、 前記複数 の電線の全てである。 With this configuration, it is possible to easily form an easy-to-handle component (wiring part) in which a plurality of electric wires are integrated with each other while maintaining insulation. (3) Preferably, at least a part of the plurality of electric wires is all of the plurality of electric wires.
この構成により、 複数の電線の第 1及び第 2端部の全てについて、 向きが揃うの で、 卷線を形成するための接続部材の接続、 及び巻線と他の回路との接続が、 向き の揃った第 1及び第 2端部を通じて、 容易に且つコンパク卜に行い得る。 With this configuration, the orientations of all of the first and second ends of the plurality of electric wires are aligned, so that the connection of the connection member for forming the winding and the connection between the winding and the other circuit have the same orientation. It is easy and compact through the first and second end portions.
( 4 ) 好ましくは、 前記複数の電線のうちの前記少なくとも一部が、 略 U字形 をなしている。 (4) Preferably, at least a part of the plurality of electric wires has a substantially U shape.
この構成により、 複数の電線の少なくとも一部について、 その形状を簡素なもの にしつつ、 その第 2端部の向きを、 複数の電線の第 1端部の向きに揃えることがで さる。 With this configuration, it is possible to simplify the shape of at least a part of the plurality of electric wires and align the direction of the second end with the direction of the first end of the plurality of electric wires.
( 5 ) また、 前記複数の電線は、 実質的に直線状に延びた電線を含んでいても よい。 (5) Further, the plurality of electric wires may include a substantially linearly extending electric wire.
この構成により、 略 U字形をなす電線の第 1端部と実質的に直線状に延びた電線 の第 2端部とを回路基板等の外部回路への接続部とすることにより、 互いに反対側 に向いた部位を外部回路との接続部とすることができる。 With this configuration, the first end of the substantially U-shaped electric wire and the second end of the substantially linearly extending electric wire are connected to an external circuit such as a circuit board, so that they are opposite to each other. Can be used as a connection portion with an external circuit.
( 6 ) 好ましくは、 前記絶縁体は、 略 U字形をなす電線の一対の脚部を埋め込 んでいる。 (6) Preferably, the insulator embeds a pair of legs of a substantially U-shaped electric wire.
この構成により、 絶縁体により複数の電線を保持する強度 (保持強度と称する) が高められる。 それにより、 配線部の取り扱いが更に容易となるのに加えて、 信頼 性が更に向上する。 With this configuration, the strength of holding the plurality of electric wires by the insulator (referred to as holding strength) is increased. Thereby, the handling of the wiring portion is further facilitated and the reliability is further improved.
( 7 ) 好ましくは、 前記絶縁体は、 前記複数の電線の各々の前記第 1及び第 2 端部のみが露出するように前記複数の電線を埋め込んでいる。 (7) Preferably, the insulator embeds the plurality of wires so that only the first and second ends of each of the plurality of wires are exposed.
この構成では、 絶縁体が複数の電線の第 1及び第 2端部以外の部分を全て埋め込 んでいるので、 保持強度が更に高められる。 In this configuration, since the insulator embeds all of the plurality of electric wires except for the first and second ends, the holding strength is further increased.
( 8 ) 或いは、 前記絶縁体は、 略 U字形をなす電線の一対の脚部のつなぎ部分 が選択的に露出するように前記複数の電線を埋め込んでいてもよい。 (8) Alternatively, the plurality of electric wires may be embedded in the insulator so that a joint portion between a pair of legs of the substantially U-shaped electric wire is selectively exposed.
この構成により、 製造工程の中で、 選択的に露出した一対の脚部のつなぎ部分を、 巴持用具を用いて把持しつつ配線部をコアに挿入することができる。 それにより、 絶縁体を損傷ないし変形させることなく、 配線部をしつかりと把持してコアに挿入 することを容易に行うことができる。
( 9 ) 好ましくは、 前記コアの前記貫通孔には、 前記一対の脚部のうちの一方 の脚部が挿入されている。 With this configuration, it is possible to insert the wiring portion into the core while holding the joint portion of the pair of legs that is selectively exposed in the manufacturing process using the tom holder. Thereby, it is possible to easily hold and insert the wiring portion into the core without damaging or deforming the insulator. (9) Preferably, one leg of the pair of legs is inserted into the through hole of the core.
この構成により、 配線部をコアに容易に挿入することができる。 With this configuration, the wiring portion can be easily inserted into the core.
( 1 0 ) 前記コアは前記一方の脚部に沿って複数に分割されていてもよい。 (10) The core may be divided into a plurality along the one leg.
この構成により、 様々な仕様のコイルユニットのために共通のコアを準備し、 使 用するコアの個数を変えるだけで、 インダクタンスの異なる様々な仕様のコイルュ ニットを形成することができる。 すなわち、 様々な仕様のコイルユニットを簡素か つ安価に形成することができる。 With this configuration, it is possible to form coil units of various specifications having different inductances simply by preparing a common core for coil units of various specifications and changing the number of cores used. That is, coil units of various specifications can be formed simply and inexpensively.
( 1 1 ) 前記コアは複数に分割されており、 前記一対の脚部の双方が、 分割さ れたコアに揷入されていてもよい。 (11) The core may be divided into a plurality of parts, and both of the pair of legs may be inserted into the divided core.
この構成により、 一対の脚部の双方がコアに挿入されることとなるので、 配線部 をコアに容易に挿入することができると同時に、 インダクタンスの高いコイルュニ ットが得られる。 With this configuration, since both of the pair of legs are inserted into the core, the wiring unit can be easily inserted into the core, and a coil unit having a high inductance can be obtained.
( 1 2 ) 前記コアは前記一対の脚部の各々に沿って更に 2以上に分割されてい てもよい。 (12) The core may be further divided into two or more along each of the pair of legs.
この構成により、 様々な仕様のコイルユニットのために共通のコアを準備し、 使 用するコアの個数を変えるだけで、 インダクタンスの異なる様々な仕様のコィルュ ニットを形成することができる。 すなわち、 様々な仕様のコイルユニットを簡素か つ安価に形成することができる。 With this configuration, by simply preparing a common core for coil units of various specifications and changing the number of cores to be used, it is possible to form coils of various specifications having different inductances. That is, coil units of various specifications can be formed simply and inexpensively.
( 1 3 ) 好ましくは、 前記複数の電線が、 互いに間隔をもって積層された複数 の導体板であり、 略 U字形をなす前記電線が、 略 U字形の平面視輪郭を有する導体 板である。 (13) Preferably, the plurality of electric wires are a plurality of conductor plates laminated with an interval therebetween, and the substantially U-shaped electric wire is a conductor plate having a substantially U-shaped contour in plan view.
この構成により、 電流容量の大きい配線部を容易に形成することができる。 また、 複数の電線の主面が並行となるので、 巻線を形成するために、 向きが揃った第 1端 部と第 2端部とを接続部材で容易に接続することができる。 With this configuration, a wiring portion having a large current capacity can be easily formed. In addition, since the main surfaces of the plurality of electric wires are parallel to each other, the first and second ends having the same orientation can be easily connected to each other by a connecting member in order to form a winding.
( 1 4 ) 或いは、 前記複数の電線が、 互いに間隔をもって積層された複数の導 体板であり、 略 U字形をなす前記電線が、 側面視略 U字形に折れ曲がった導体板で あることが望ましい。 (14) Alternatively, it is preferable that the plurality of electric wires are a plurality of conductor plates laminated with an interval therebetween, and the substantially U-shaped electric wire is a conductor plate bent in a substantially U-shape in side view. .
この構成により、 電流容量の大きい配線部を容易に形成することができる。 With this configuration, a wiring portion having a large current capacity can be easily formed.
( 1 5 ) 前記複数の電線の各々は、 前記第 1及び第 2端部において、 主面に直
立するように前記主面から屈曲して突出する板状の端子部を有するのが望ましい。 この構成により、 板状の端子部が互いに平行となるので、 巻線を形成するために、 向きが揃つた第 1端部と第 2端部とを接続部材で容易に接続することができる。 (15) Each of the plurality of electric wires is directly connected to a main surface at the first and second ends. It is desirable to have a plate-shaped terminal portion that is bent and protrudes from the main surface so as to stand upright. With this configuration, the plate-shaped terminal portions are parallel to each other, so that the first end and the second end, which are aligned in the same direction, can be easily connected by the connecting member to form the winding.
( 1 6 ) 前記複数の電線及び前記絶縁体は、 それぞれ可撓性材料で形成されて いてもよい。 (16) Each of the plurality of electric wires and the insulator may be formed of a flexible material.
この構成により、 コイルユニットの設置場所等に応じて、 配線部の形状を変える ことが可能となる。 すなわち、 コイルユニットの形状に自由度が生まれる。 With this configuration, it is possible to change the shape of the wiring portion according to the installation location of the coil unit and the like. That is, a degree of freedom is created in the shape of the coil unit.
( 1 7 ) 好ましくは、 前記絶縁体は、 前記コアから自身が抜けることを防止す る抜け止め部を有する。 (17) Preferably, the insulator has a retaining portion for preventing the insulator from coming off the core.
この構成により、 配線部からのコアの脱落を防止することができ、 コイルュニッ トの耐振動性を高めることができる。 With this configuration, the core can be prevented from falling off from the wiring portion, and the vibration resistance of the coil unit can be improved.
( 1 8 ) 前記コイルュニットは、 前記複数の電線と前記絶縁体とを有する構造 体と同一に構成される少なくとも 1個の別の構造体を更に備え、 前記貫通孔が、 前 記コアの中で互いに横に並ぶ複数に分割されており、 前記構造体と前記少なくとも 1個の別の構造体との各々に属する前記絶縁体が、 分割された貫通孔に挿入されて いてもよい。 (18) The coil unit further includes at least one other structure configured identically to the structure having the plurality of electric wires and the insulator, wherein the through-hole is formed in the core. The insulator, which is divided into a plurality of rows arranged side by side and belongs to each of the structure and the at least one other structure, may be inserted into the divided through holes.
この構成により、 複数の配線部を有するコイルユニットが実現すると共に、 共通 のコアに複数の配線部が挿入されるので、 振動により複数のコア同士が衝突して破 損する恐れがなく、 耐震性に更に優れたコイルユニットが実現する。 更に、 共通の コァが用いられるので複数の配線部が挿入されるコァを一度に製造することができ る。 With this configuration, a coil unit having a plurality of wiring sections is realized, and since a plurality of wiring sections are inserted into a common core, there is no possibility that the plurality of cores may collide with each other due to vibration and may be damaged. A more excellent coil unit is realized. Further, since a common core is used, a core into which a plurality of wiring portions are inserted can be manufactured at a time.
( 1 9 ) 前記コイルユニットは、 前記複数の電線が N (N≥l ) 個の巻線を形 成するように、 前記複数の電線の前記第 1及び第 2端部のうち、 向きの揃ったもの の間を電気的に接続する導電性の接続部材を、 更に備えてもよい。 (19) The coil unit may be configured such that the orientation of the plurality of wires is uniform among the first and second ends of the plurality of wires so that the plurality of wires form N (N≥l) windings. And a conductive connecting member for electrically connecting the connecting members.
この構成により、 向きが揃つた第 1端部と第 2端部とを接続部材で接続するとい う簡単な工程を通じて、 容易に N個の巻線を形成することができる。 更に、 第 1端 部と向きが揃う第 2端部が 2以上である場合には、 接続部材による接続の仕方を変 更することにより、 ィンダクタンス或いは巻線数の異なる多様な仕様を容易に実現 することができる。 With this configuration, it is possible to easily form N windings through a simple process of connecting the first end and the second end having the same orientation with a connecting member. Further, when the number of the second ends that are aligned with the first ends is two or more, various specifications having different inductances or the number of windings can be easily changed by changing the connection method by the connection members. It can be achieved.
( 2 0 ) 前記 Nは、 1であってもよい。
この場合には、 1個の巻線を有するコイルユニット、 例えばチョークコイルとし てのコイルュニットが実現する。 (2 0) The N may be 1. In this case, a coil unit having one winding, for example, a coil unit as a choke coil is realized.
( 2 1 ) 或いは、 前記 Nは 2以上であってもよい。 (21) Alternatively, N may be 2 or more.
この場合には、 2個以上の巻線を有するコイルユニット、 例えばトランスとして のコイルュニッ卜が実現する。 In this case, a coil unit having two or more windings, for example, a coil unit as a transformer is realized.
( 2 2 ) 前記コイルユニットは、 前記複数の電線が、 ダイオードが直列に介挿 された電線を含んでいるものであってもよい。 (22) In the coil unit, the plurality of electric wires may include an electric wire in which a diode is inserted in series.
この構成により、 コイルユニットがリセット回路を備えるので、 リセット回路を 別途設けることなくコイルュニットをコンバータに応用することができる。 With this configuration, since the coil unit includes the reset circuit, the coil unit can be applied to the converter without separately providing a reset circuit.
( 2 3 ) 複合コイルュニットは、 前記コイルュニットと、 前記コイルュニット と同一に構成される少なくとも 1個の別のコイルユニットと、 前記コイルュニット と前記少なくとも 1個の別のコイルユニットとを電気的に並列に接続する導電性の 接続体とを備えることを特徵とする。 (23) The composite coil unit is configured to electrically connect the coil unit, at least one other coil unit configured identically to the coil unit, and the coil unit and the at least one other coil unit in parallel. And a conductive connector that performs the following.
上記複合コイルュニットでは、 複数のコイルュニットが電気的に並列に接続され るので、 各コイルユニットを流れる電流が分割されて小さくなる。 それにより、 コ ァの貫通孔の径を小さくすることができ、 単一のコイルユニットと同等のインダク タンスを得るためにコア 1個当たりに要求されるィンダク夕ンスが大きくなること を考慮しても、 なお小型化を図ることができる。 In the above-described composite coil unit, since a plurality of coil units are electrically connected in parallel, the current flowing through each coil unit is divided and reduced. As a result, the diameter of the core through-hole can be reduced, and taking into account the fact that the inductance required per core increases to obtain the same inductance as a single coil unit. However, miniaturization can be achieved.
本発明は詳細に説明されたが、 上記した説明は、 全ての局面において、 例示であ つて、 本発明がそれに限定されるものではない。 例示されていない無数の変形例が、 この発明の範囲から外れることなく想定され得るものと解される。 産業上の利用可能性 Although the present invention has been described in detail, the above description is illustrative in all aspects and the present invention is not limited thereto. It is understood that innumerable modifications that are not illustrated can be assumed without departing from the scope of the present invention. Industrial applicability
本発明によるコイルュニット及び複合コイルュニットは、 製造工程を容易化し、 製造コストを下げることができ、 且つ耐振動性を高め、 信頼性を高めることを可能 にするものであり、 産業上有用である。
INDUSTRIAL APPLICABILITY The coil unit and the composite coil unit according to the present invention facilitate the manufacturing process, reduce the manufacturing cost, increase the vibration resistance, and increase the reliability, and are industrially useful.
Claims
1 . 各々が第 1端部と第 2端部とを有する複数の電線と、 1. a plurality of wires each having a first end and a second end;
前記複数の電線の前記第 1端部の向きが揃い、 前記複数の電線のうちの少なくと も一部については前記第 2端部の向きも前記第 1端部と揃い、 前記複数の電線の 各々の少なくとも前記第 1及び第 2端部が露出し、 且つ前記複数の電線が互いに間 隔を保つように、 前記複数の電線を埋め込んで保持する絶縁体と、 The directions of the first ends of the plurality of electric wires are aligned, and the directions of the second ends of at least some of the plurality of electric wires are also aligned with the first end. An insulator that embeds and holds the plurality of wires so that at least the first and second ends of each are exposed and the plurality of wires keep a distance from each other;
自身に選択的に形成された貫通孔に前記絶縁体が挿入された磁性体のコアとを備 えることを特徴とするコイルュニット。 A coil unit, comprising: a magnetic core in which the insulator is inserted in a through hole selectively formed in the coil unit.
2 . 前記絶縁体は、 絶縁材料を一体成型することにより形成されている請求の 範囲 1記載のコイルュニット。 2. The coil unit according to claim 1, wherein the insulator is formed by integrally molding an insulating material.
3 . 前記複数の電線のうちの前記少なくとも一部が、 前記複数の電線の全てで あることを特徴とする請求の範囲 1又は 2に記載のコィルュニット。 3. The coil unit according to claim 1, wherein at least a part of the plurality of electric wires is all of the plurality of electric wires.
4. 前記複数の電線のうちの前記少なくとも一部が、 略 U字形をなしているこ とを特徴とする請求の範囲 1乃至 3の何れかに記載のコイルュニット。 4. The coil unit according to any one of claims 1 to 3, wherein at least a part of the plurality of electric wires is substantially U-shaped.
5 . 前記複数の電線が、 実質的に直線状に延びた電線を含んでいることを特徴 とする請求の範囲 4記載のコイルュニット。 5. The coil unit according to claim 4, wherein the plurality of electric wires include an electric wire extending substantially linearly.
6 . 前記絶縁体は、 略 U字形をなす電線の一対の脚部を埋め込んでいることを 特徴とする請求の範囲 4又は 5に記載のコイルュニット。 6. The coil unit according to claim 4, wherein the insulator embeds a pair of legs of a substantially U-shaped electric wire.
7 . 前記絶縁体は、 前記複数の電線の各々の前記第 1及び第 2端部のみが露出 するように前記複数の電線を埋め込んでいることを特徴とする請求の範囲 1乃至 6 の何れかに記載のコイルュニット。 7. The insulator according to any one of claims 1 to 6, wherein the insulator embeds the plurality of wires so that only the first and second ends of each of the plurality of wires are exposed. The coil unit according to the above.
8 . 前記絶縁体は、 略 U字形をなす電線の一対の脚部のつなぎ部分が選択的に 露出するように前記複数の電線を埋め込んでいることを特徴とする請求の範囲 6記 載のコイルュニット。 8. The coil unit according to claim 6, wherein the insulator embeds the plurality of electric wires so that a joint portion between a pair of legs of the substantially U-shaped electric wire is selectively exposed. .
9 . 前記コアの前記貫通孔には、 前記一対の脚部のうちの一方の脚部が揷入さ れていることを特徴とする請求の範囲 6又は 8記載のコイルュニット。 9. The coil unit according to claim 6, wherein one of the pair of legs is inserted into the through hole of the core.
1 0 . 前記コアが前記一方の脚部に沿って複数に分割されていることを特徴と する請求の範囲 9記載のコイルュニット。 10. The coil unit according to claim 9, wherein the core is divided into a plurality along the one leg.
1 1 . 前記コアが複数に分割されており、 前記一対の脚部の双方が、 分割され
たコアに挿入されていることを特徴とする請求の範囲 6又は 8記載のコイルュニッ 卜。 1 1. The core is divided into a plurality of parts, and both of the pair of legs are divided. 9. The coil unit according to claim 6, wherein the coil unit is inserted into a core.
1 2 . 前記コアが前記一対の脚部の各々に沿って更に 2以上に分割されている ことを特徴とする請求の範囲 1 1記載のコイルュニット。 12. The coil unit according to claim 11, wherein said core is further divided into two or more along each of said pair of legs.
1 3 . 前記複数の電線が、 互いに間隔をもって積層された複数の導体板であり、 略 U字形をなす前記電線が、 略 U字形の平面視輪郭を有する導体板である請求の範 囲 4乃至 6及び 8乃至 1 2の何れかに記載のコィルュニット。 13. The plurality of electric wires are a plurality of conductor plates laminated with an interval therebetween, and the substantially U-shaped electric wire is a conductor plate having a substantially U-shaped outline in plan view. The coil unit according to any one of 6 and 8 to 12.
1 4. 前記複数の電線が、 互いに間隔をもって積層された複数の導体板であり、 略 U字形をなす前記電線が、 側面視略 U字形に折れ曲がった導体板である請求の範 囲 4乃至 6及び 8乃至 1 2の何れかに記載のコィルュニット。 1 4. The plurality of electric wires are a plurality of conductor plates laminated at intervals from each other, and the substantially U-shaped electric wire is a conductor plate bent in a substantially U shape in side view. And the coil unit according to any one of 8 to 12.
1 5 . 前記複数の電線の各々が、 前記第 1及び第 2端部において、 主面に直立 するように前記主面から屈曲して突出する板状の端子部を有する請求の範囲 1 4記 載のコイルュニット。 15. The plurality of electric wires each having, at the first and second end portions, a plate-shaped terminal portion that bends and protrudes from the main surface so as to stand upright on the main surface. Coil unit.
1 6 . 前記複数の電線及び前記絶縁体が、 それぞれ可撓性材料で形成されてい ることを特徴とする請求の範囲 1乃至 1 5の何れかに記載のコイルュニット。 16. The coil unit according to any one of claims 1 to 15, wherein the plurality of electric wires and the insulator are each formed of a flexible material.
1 7 . 前記絶縁体が、 前記コアから自身が抜けることを防止する抜け止め部を 有することを特徴とする請求の範囲 1乃至 1 6の何れかに記載のコイルュニット。 17. The coil unit according to any one of claims 1 to 16, wherein the insulator has a retaining portion for preventing the insulator from coming off the core.
1 8 . 前記複数の電線と前記絶縁体とを有する構造体と同一に構成される少な くとも 1個の別の構造体を更に備え、 18. At least one other structure, which is the same as the structure having the plurality of electric wires and the insulator, is further provided.
前記貫通孔が、 前記コアの中で互いに横に並ぶ複数に分割されており、 The through-hole is divided into a plurality of pieces arranged side by side in the core,
前記構造体と前記少なくとも 1個の別の構造体との各々に属する前記絶縁体が、 分割された貫通孔に挿入されていることを特徴とする請求の範囲 1乃至 1 7の何れ かに記載のコイルュニット。 The insulator according to any one of claims 1 to 17, wherein the insulator belonging to each of the structure and the at least one other structure is inserted into a divided through hole. Coil unit.
1 9 . 前記複数の電線が N (N≥l ) 個の巻線を形成するように、 前記複数の 電線の前記第 1及び第 2端部のうち、 向きの揃ったものの間を電気的に接続する導 電性の接続部材を、 更に備えることを特徴とする請求の範囲 1乃至 1 8の何れかに 記載のコイルュニット。 1 9. Among the first and second end portions of the plurality of electric wires, the plurality of electric wires are electrically connected so as to form N (N ≥ l) windings. The coil unit according to any one of claims 1 to 18, further comprising a conductive connection member for connection.
2 0 . 前記 Nが 1であることを特徵とする請求の範囲 1 9記載のコイルュニッ 卜。 20. The coil unit according to claim 19, wherein said N is 1.
2 1 . 前記 Nが 2以上であることを特徴とする請求の範囲 1 9記載のコイルュ
ニット。 21. The coil according to claim 19, wherein N is 2 or more. knit.
2 2 . 前記複数の電線が、 ダイォードが直列に介挿された電線を含んでいるこ とを特徴とする請求の範囲 2 1記載のコイルュニット。 22. The coil unit according to claim 21, wherein the plurality of electric wires include an electric wire in which a diode is inserted in series.
2 3 . 請求の範囲 2 0記載のコイルユニットと、 2 3. The coil unit according to claim 20,
前記コイルュニットと同一に構成される少なくとも 1個の別のコイルュニッ卜と、 前記コイルユニットと前記少なくとも 1個の別のコイルユニットとを電気的に並 列に接続する導電性の接続体とを備える複合コィルュニット。
A composite comprising at least one other coil unit configured the same as the coil unit, and a conductive connector electrically connecting the coil unit and the at least one other coil unit in parallel. Coulnit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003289050A AU2003289050A1 (en) | 2002-12-13 | 2003-12-12 | Coil unit and compound coil unit |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002362829A JP2004193506A (en) | 2002-12-13 | 2002-12-13 | Switching transformer |
JP2002-362829 | 2002-12-13 | ||
JP2002365491A JP2004200309A (en) | 2002-12-17 | 2002-12-17 | Choke coil unit |
JP2002-365491 | 2002-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004055840A1 true WO2004055840A1 (en) | 2004-07-01 |
Family
ID=32599256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/015930 WO2004055840A1 (en) | 2002-12-13 | 2003-12-12 | Coil unit and compound coil unit |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2003289050A1 (en) |
WO (1) | WO2004055840A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006015589A1 (en) * | 2004-08-12 | 2006-02-16 | Epcos Ag | Inductive component for high currents and method for the production thereof |
US7990248B2 (en) | 2005-02-11 | 2011-08-02 | Epcos Ag | Insulation alement and toroidal core throttle |
EP2858203A1 (en) * | 2013-10-01 | 2015-04-08 | ABB Technology AG | Energy supply device for explosion-proof electronic functional units |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58212110A (en) * | 1982-06-03 | 1983-12-09 | Mitsubishi Electric Corp | Electromagnetic induction apparatus |
JPH06302437A (en) * | 1993-04-13 | 1994-10-28 | Mitsubishi Electric Corp | Power coil component |
JPH10208944A (en) * | 1996-11-21 | 1998-08-07 | Tokin Corp | Inductor |
JP2002165453A (en) * | 2000-11-27 | 2002-06-07 | Denso Corp | Step-down dc-dc converter device for vehicle having two batteries |
JP2002299124A (en) * | 2001-03-30 | 2002-10-11 | Nippon Chemicon Corp | Inductance element |
-
2003
- 2003-12-12 WO PCT/JP2003/015930 patent/WO2004055840A1/en active Application Filing
- 2003-12-12 AU AU2003289050A patent/AU2003289050A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58212110A (en) * | 1982-06-03 | 1983-12-09 | Mitsubishi Electric Corp | Electromagnetic induction apparatus |
JPH06302437A (en) * | 1993-04-13 | 1994-10-28 | Mitsubishi Electric Corp | Power coil component |
JPH10208944A (en) * | 1996-11-21 | 1998-08-07 | Tokin Corp | Inductor |
JP2002165453A (en) * | 2000-11-27 | 2002-06-07 | Denso Corp | Step-down dc-dc converter device for vehicle having two batteries |
JP2002299124A (en) * | 2001-03-30 | 2002-10-11 | Nippon Chemicon Corp | Inductance element |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006015589A1 (en) * | 2004-08-12 | 2006-02-16 | Epcos Ag | Inductive component for high currents and method for the production thereof |
US8063728B2 (en) | 2004-08-12 | 2011-11-22 | Epcos Ag | Inductive component for high currents and method for the production thereof |
US7990248B2 (en) | 2005-02-11 | 2011-08-02 | Epcos Ag | Insulation alement and toroidal core throttle |
EP2858203A1 (en) * | 2013-10-01 | 2015-04-08 | ABB Technology AG | Energy supply device for explosion-proof electronic functional units |
CN104518523A (en) * | 2013-10-01 | 2015-04-15 | Abb技术股份公司 | Energy supply device for explosion-proof electronic functional units |
CN104518523B (en) * | 2013-10-01 | 2018-08-17 | Abb瑞士股份有限公司 | Power supply for explosion-proof electronic functional unit |
Also Published As
Publication number | Publication date |
---|---|
AU2003289050A1 (en) | 2004-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7969045B2 (en) | Installation | |
JP5335143B2 (en) | Trance | |
US6900717B2 (en) | Bobbin for hybrid coils in planar magnetic components | |
US8933774B2 (en) | Reactor | |
US20100038988A1 (en) | Stator and Method of Making the Same | |
JP5813320B2 (en) | High frequency transformer for high voltage applications | |
US6927650B2 (en) | Common mode choke coil with vertically arranged edgewise windings of rectangular wire | |
US20080012675A1 (en) | Inductive Component For High Currents And Method For The Production Thereof | |
WO2015125527A1 (en) | Dc-dc converter | |
US6356182B1 (en) | Planar EMI inductor | |
EP3438996A1 (en) | A device for a wireless power transfer system for a vehicle | |
JP5257780B2 (en) | Reactor assembly and converter | |
CN111383832B (en) | Oppositely-buckled transformer framework, transformer and assembling method | |
WO2004055840A1 (en) | Coil unit and compound coil unit | |
JP2005236026A (en) | Coil unit and composite coil unit | |
JP2010245456A (en) | Reactor assembly | |
CN215955034U (en) | Magnetic element | |
JP5257847B2 (en) | Reactor assembly, method for adjusting leakage inductance of reactor assembly, and converter | |
JP5218772B2 (en) | Reactor, reactor coil, and converter | |
JP3972646B2 (en) | Switching transformer | |
JP2004193506A (en) | Switching transformer | |
JP2002075738A (en) | Coil and coil parts using the same | |
JP2010219254A (en) | Reactor aggregate | |
US20240203637A1 (en) | Winding arrangement for transformer | |
US20240048054A1 (en) | Transformer, dc-dc converter and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |