[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003106264A1 - Cooling device for space craft - Google Patents

Cooling device for space craft Download PDF

Info

Publication number
WO2003106264A1
WO2003106264A1 PCT/FR2003/001794 FR0301794W WO03106264A1 WO 2003106264 A1 WO2003106264 A1 WO 2003106264A1 FR 0301794 W FR0301794 W FR 0301794W WO 03106264 A1 WO03106264 A1 WO 03106264A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
loop
fluid loop
fluid
hot
Prior art date
Application number
PCT/FR2003/001794
Other languages
French (fr)
Inventor
Bertrand Poulain
Original Assignee
Astrium Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium Sas filed Critical Astrium Sas
Priority to AU2003255674A priority Critical patent/AU2003255674A1/en
Publication of WO2003106264A1 publication Critical patent/WO2003106264A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/46Arrangements or adaptations of devices for control of environment or living conditions
    • B64G1/50Arrangements or adaptations of devices for control of environment or living conditions for temperature control
    • B64G1/503Radiator panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/46Arrangements or adaptations of devices for control of environment or living conditions
    • B64G1/50Arrangements or adaptations of devices for control of environment or living conditions for temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • H01J23/033Collector cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps

Definitions

  • the present invention relates to cooling devices intended to dissipate the heat generated by charges placed on a space vehicle, in particular a geostationary satellite, and in particular the heat released by traveling wave tubes, in particular at high power at radio frequency (exceeding typically 100 watts), used to equip loads placed on telecommunications satellites.
  • Traveling wave tubes, or TOP now used on telecommunication satellites, have a collector which can withstand a high temperature, exceeding 90 ° C and up to 240 ° C in some cases.
  • a mounting of the traveling waves tubes such as a radiator prolonging the collector is placed outside the body of the satellite and radiates towards the black space. This solution has many drawbacks.
  • the TOPs are placed against walls of the body remote from those which carry the transmitting antennas, which imposes waveguides of appreciable length, generating a significant loss of power of the radio frequency signals. Furthermore, the coating of the connections connecting the collector to the barrel of the tube being at the end of the collector, it is subjected to extreme thermal environments and to stresses which weaken it, in particular during temperature changes.
  • the present invention aims to provide a cooling device for a space vehicle, in particular for a geostationary telecommunication satellite, which meets the requirements of practice better than those previously known, in particular in that it makes it possible to place TOPs at a significant distance d '' at least one heat dissipation radiator, and therefore to leave a wide latitude for setting up the TOP in the satellite.
  • the invention uses the capacity of the materials composing the standard TOP collector (without integrated liquid heat exchanger) and / or specific current to withstand temperatures exceeding 90 ° C in operation.
  • the invention therefore proposes, in particular, a device for cooling at least one traveling wave tube having an emitter and a collector, the latter preferably operating at high temperature and being thermally isolated from the rest of the tube, for equipment of a load placed on a spacecraft, such as a satellite, the device comprising at least one radiator thermally decoupled from the body of the vehicle and placed in an orientation such that it dissipates heat by radiation towards space and at least a fluid heat exchange loop between at least one hot heat exchanger in thermal connection with said tube and at least one cold heat exchanger belonging to the radiator, and which is characterized in that said fluid loop is single-phase and constituted so in series cooling the emitter and then the collector of said traveling wave tube.
  • the implementation of the invention makes it possible to place the TOPs anywhere in the satellite, because each fluid loop allows significant distances between a hot exchanger (thermally coupled to a TOP) and a cold exchanger (belonging to a radiator) .
  • a hot exchanger thermalally coupled to a TOP
  • a cold exchanger cold exchanger
  • the invention finds a particularly interesting application on satellites comprising a payload module, which can change significantly from satellite to satellite, and a service module capable of being produced in series. It is this service module which generally carries the radiators, deployable after putting into orbit, which dissipate the heat.
  • the TOPs are instead placed in the payload module.
  • the invention makes it possible to ensure, with reduced thermal losses, the evacuation of the heat generated by the TOPs even if they are placed at a distance from the radiators which can reach several meters.
  • TOP concerned by the invention requiring a hot exchanger at a temperature exceeding 90 ° C, the fluid used in the loop must be chosen accordingly.
  • ammonia cannot be used, although it is frequently used at a lower temperature.
  • water, light hydrocarbons, fluorocarbons or other liquids compatible with high temperatures will often be used. Circulation will then be ensured by a pump.
  • the fluid loop is formed so that the fluid coming from at least one cold exchanger of a radiator passes successively in hot heat exchangers cooling the emitters of several traveling wave tubes, then in hot exchangers cooling the collectors of said traveling wave tubes.
  • the fluid loop, in which the fluid is set in motion by a pump can be regulated in various ways, for example by controlling the pump or, better, by controlling a connection between the inlet and the outlet of the minus a cold heat exchanger.
  • the device according to the invention is particularly usable when at least one cold exchanger is integrated into a radiator which can pivot by at least one hinge, from a position where the radiator is pressed against the body of the satellite (during launch) to a deployed position (after coming into orbit), at least one fluid loop comprising at least one flexible section making it possible to tolerate the passage of the radiator from one position to another.
  • at least one flexible helical pipe section or "pigtail" will be used, which can be wrapped around at least one hinge hinge of the radiator.
  • An additional advantage of the deformable nature of at least one section of a fluid loop is the fact that the operation can be verified under conditions simulating those encountered in space, by using a vacuum chamber whose volume does not allow not place the satellite there with the radiators deployed; by providing one or more removable hinges, the satellite can be placed in the vacuum chamber with the radiator (s) at a distance from the body of the satellite, but still connected to the loads to be cooled, and in particular to the TOP, by the loop (s) whose operation can therefore be tested.
  • FIG. 1 is a diagram showing the general configuration of a geostationary telecommunications satellite provided with deployable radiators.
  • FIG. 2 shows a possible constitution of a single-phase fluid loop allowing several TOPs to be cooled in series
  • FIG. 3 shows schematically a possible constitution of heat exchangers between TOP and fluid loop.
  • Satellite S the general constitution of which is shown in FIG. 1, is intended to be placed on a geostationary equatorial orbit 10. It is intended to be stabilized along three axes: X, Y and Z.
  • a service module 14 which carries solar panels 16 provided with motors enabling them to rotate around the pitch axis Y to keep them oriented towards the sun.
  • the walls conventionally called “north” and “south” of the structure of the module 14 are generally provided so as to have a high emissivity, but at the same time to have limited absorption of solar radiation.
  • Most of the heat dissipation is provided by one or, preferably, by several deployable radiators 15, four for example, as shown in Figure 1, which, in operation, are deployed and oriented to the north and south.
  • the service module 14 is fixed to a payload module 17 which contains loads which must be cooled, in particular traveling waves or TOP tubes connected to antennas 20 for transmitting to earth 12.
  • the cooling device shown in FIG. 2 includes a single-phase fluid loop 25, which is a closed loop through which a heat-transfer liquid passes, and this device is intended to cool several TOP 26s, the collector 28 of each of which is designed to operate at a temperature above 90 ° C and not to exceed a value of the order of 240 ° C.
  • the collector 28 of each TOP 26 dissipates approximately 90% of the heat generated by this TOP 26.
  • the part of each TOP 26 containing the barrel of the emitter 30 of this TOP 26 must be kept at a lower temperature, typically not exceeding not about 75 ° C.
  • the fluid loop 25 comprises a so-called “cold” heat exchanger 32, incorporated into a radiator 15, and two series of so-called “hot” heat exchangers 33 and 34.
  • a pump 36 circulates the liquid which fills the loop 25. This liquid thus circulates successively in series in the first “hot” heat exchangers 33 each associated with the barrel of the emitter 30 of one of the TOP 26 respectively, then in series in the second “hot” heat exchangers 34 each ensuring the cooling of the manifold 28 of one of the TOP 26 respectively, then in the cold exchanger 32
  • the temperature regulation can be ensured in various ways.
  • One can in particular use a three-way valve 38 which, in one position, allows circulation in the fluid loop 25 as it has just been defined and, in at least one other position, more or less completely opens a bypass 40 at least partially short-circuits the heat exchanger 32.
  • Each of the TOP 26s can be mounted on the body of the satellite S as shown in FIG. 3.
  • Each TOP 26 is carried by the skin 41 of the satellite by means of a thermally insulating layer 42 and the exchangers 33 and 34 heat dissipation associated with this TOP 26, and one of which 33, from the first series of hot exchangers, is in heat exchange relation with the barrel of the corresponding transmitter 30, while the other 34 , of the second series of hot exchangers, is in heat exchange relationship with the corresponding collector 28.
  • the bundle 43 of wires connecting the collector 28 to the barrel can constitute one. ply passing through the cover of the terminal connector.
  • the collector 28 and the barrel of the emitter 30 are attached to the associated exchanger 34 or 33 can be carried out using a thermal seal capable of withstanding the temperature in operation, making it possible to minimize the temperature gradient.
  • the same satellite S can carry several cooling loops such as 25, either to provide redundancy, or to have several groups of TOP 26 provided with independent cooling circuits.
  • Additional loads to be cooled 44 can be interposed on at least one loop 25.
  • the additional load (s) to be cooled 44 is or are in heat exchange relation with the fluid loop 25 in one or more point (s) located between the series of first hot exchangers 33 and the series of second hot exchangers 34.
  • Each radiator 15 containing a cold exchanger 32 is mounted on the service module 15 of the satellite S by one or more hinges 52 making it possible to deploy the radiator 15 from a storage position, where it is pressed against the body of the satellite, for example against a so-called “east” or “west” face of the module 15, in the deployed position in which the radiator 15 is shown in FIG. 1.
  • the connection (or connections) between the cold exchanger 32 and the rest of the loop corresponding fluid must tolerate this displacement.
  • each connection is constituted by a flexible section 50 in a helix shape of the pipe of the fluid loop 25.
  • the use of a fluid loop with mechanical pumping 36 makes it possible to accept strong curvatures of the pipes of the loop fluid 25.
  • the constitution and the surface condition of the radiator 15 will be adapted to the operating temperature chosen so as to obtain a high emissivity.
  • the coatings used to obtain high emissivities at high temperatures are for example: white paints up to 160 ° C, aluminum oxidized on the surface up to 240 ° C. At lower temperatures, up to approximately 120 ° C, a bonded coating of solar optical reflector can be used.
  • the cooling device with at least one single-phase fluid loop with at least one cold exchanger integrated in at least one deployable radiator according to the invention makes it possible to cool a set of standard TOPs, that is to say without an integrated liquid heat exchanger, or specific, which can be placed as required in any location in the satellite, and more specifically in its payload module, without proximity constraint vis-à-vis the deployable radiators, which can be folded down, or even removed using removable hinges, but without breaking the fluid loop (s), for testing the satellite on the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerials With Secondary Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The invention concerns a device for cooling travelling-wave tubes (26) having a collector (28) preferably operating at high temperature and thermally insulated from the rest of the tube, the device comprising a radiator (15) thermally uncoupled from the satellite body and placed in an orientation such that it disperses heat by radiation into space and a heat exchanging fluid loop (25) between hot exchangers (34, 33) thermally connected to the collectors (28) and the emitting units (30) of the tubes (26) borne by the satellite and a cold exchanger (32) belonging to the radiator (15).

Description

DISPOSITIF DE REFROIDISSEMENT POUR VEHICULE SPATIAL COOLING DEVICE FOR A SPACE VEHICLE
La présente invention concerne des dispositifs de refroidissement destinés à évacuer la chaleur générée par des charges placées sur un véhicule spatial, en particulier un satellite géostationnaire, et notamment la chaleur dégagée par des tubes à ondes progressives, notamment à grande puissance à radio fréquence (dépassant généralement 100 watts), utilisés pour l'équipement de charges placées sur les satellites de télécommunication. Des tubes à ondes progressives, ou TOP, maintenant utilisés sur les satellites de télécommunication, ont un collecteur qui peut supporter une température élevée, dépassant 90°C et pouvant atteindre 240°C dans certains cas. Pour évacuer la chaleur générée au collecteur, on utilise surtout à l'heure actuelle un montage des tubes à ondes progressives tel qu'un radiateur prolongeant le collecteur soit placé à l'extérieur du corps du satellite et rayonne vers l'espace noir. Cette solution présente de nombreux inconvénients. Les TOP sont placés contre des parois du corps éloignées de celles qui portent les antennes d'émission, ce qui impose des guides d'ondes de longueur appréciable, générant une perte de puissance importante des signaux radio fréquence. Par ailleurs, l'enrobage des connections reliant le collecteur au canon du tube étant au bout du collecteur, il est soumis à des environnements thermiques extrêmes et à des contraintes qui le fragilisent, en particulier lors des changements de température.The present invention relates to cooling devices intended to dissipate the heat generated by charges placed on a space vehicle, in particular a geostationary satellite, and in particular the heat released by traveling wave tubes, in particular at high power at radio frequency (exceeding typically 100 watts), used to equip loads placed on telecommunications satellites. Traveling wave tubes, or TOP, now used on telecommunication satellites, have a collector which can withstand a high temperature, exceeding 90 ° C and up to 240 ° C in some cases. To dissipate the heat generated at the collector, one especially uses at present a mounting of the traveling waves tubes such as a radiator prolonging the collector is placed outside the body of the satellite and radiates towards the black space. This solution has many drawbacks. The TOPs are placed against walls of the body remote from those which carry the transmitting antennas, which imposes waveguides of appreciable length, generating a significant loss of power of the radio frequency signals. Furthermore, the coating of the connections connecting the collector to the barrel of the tube being at the end of the collector, it is subjected to extreme thermal environments and to stresses which weaken it, in particular during temperature changes.
Les brevets FR 93 00 729 et US-5,494,241 décrivent un montage plus avantageux, consistant à placer les TOP à l'intérieur du corps du satellite et à relier par un chemin thermique leur collecteur à un radiateur placé hors d'une paroi du corps du satellite. Mais cette solution laisse encore subsister la nécessité de placer le TOP à proximité d'une face nord ou sud du satellite.The patents FR 93 00 729 and US Pat. satellite. However, this solution still leaves the need to place the TOP near a north or south face of the satellite.
On a enfin proposé de relier le TOP ou chaque TOP à un radiateur porté par une face nord ou sud d'un satellite par un caloduc. Mais un tel caloduc, constitué par un tube rigide dont la surface interne est munie de rainures de retour capillaire du fluide condensé, est forcément de faible longueur et rigide. Il impose encore de placer le TOP à proximité du radiateur.Finally, it has been proposed to connect the TOP or each TOP to a radiator carried by a north or south face of a satellite by a heat pipe. But such a heat pipe, consisting of a rigid tube whose internal surface is provided with capillary return grooves of the condensed fluid, is necessarily short and rigid. It also requires placing the TOP near the radiator.
La présente invention vise à fournir un dispositif de refroidissement pour véhicule spatial, notamment pour un satellite géostationnaire de télécommunication, répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en ce qu'il permet de placer des TOP à une distance importante d'au moins un radiateur d'évacuation de chaleur, et donc de laisser une large latitude de mise en place des TOP dans le satellite. Pour cela, l'invention utilise la capacité des matériaux composant le collecteur des TOP standards (sans échangeur thermique liquide intégré) et/ou spécifiques actuels à supporter des températures dépassant 90°C en fonctionnement.The present invention aims to provide a cooling device for a space vehicle, in particular for a geostationary telecommunication satellite, which meets the requirements of practice better than those previously known, in particular in that it makes it possible to place TOPs at a significant distance d '' at least one heat dissipation radiator, and therefore to leave a wide latitude for setting up the TOP in the satellite. For this, the invention uses the capacity of the materials composing the standard TOP collector (without integrated liquid heat exchanger) and / or specific current to withstand temperatures exceeding 90 ° C in operation.
L'invention propose en conséquence, notamment, un dispositif de refroidissement d'au moins un tube à ondes progressives ayant un émetteur et un collecteur, ce dernier fonctionnant de préférence à haute température et étant isolé thermiquement du reste du tube, pour l'équipement d'une charge placée sur un véhicule spatial, tel qu'un satellite, le dispositif comportant au moins un radiateur découplé thermiquement du corps du véhicule et placé dans une orientation telle qu'il dissipe la chaleur par radiation vers l'espace et au moins une boucle fluide d'échange de chaleur entre au moins un échangeur de chaleur chaud en liaison thermique avec ledit tube et au moins un échangeur de chaleur froid appartenant au radiateur, et qui se caractérise en ce que ladite boucle fluide est monophase et constituée de façon à refroidir en série l'émetteur puis le collecteur dudit tube à ondes progressives. La mise en œuvre de l'invention permet de placer les TOP n'importe où dans le satellite, car chaque boucle fluide autorise des distances importantes entre un échangeur chaud (couplé thermiquement à un TOP) et un échangeur froid (appartenant à un radiateur). En particulier, il est possible de placer les TOP à proximité des antennes d'émission de façon à écarter le besoin de guide d'ondes de grande longueur. L'invention trouve une application particulièrement intéressante sur les satellites comportant un module de charge utile, qui peut changer notablement de satellite à satellite, et un module de service susceptible d'être fabriqué en série. C'est ce module de service qui porte en général les radiateurs, déployables après mise sur orbite, qui évacuent la chaleur.The invention therefore proposes, in particular, a device for cooling at least one traveling wave tube having an emitter and a collector, the latter preferably operating at high temperature and being thermally isolated from the rest of the tube, for equipment of a load placed on a spacecraft, such as a satellite, the device comprising at least one radiator thermally decoupled from the body of the vehicle and placed in an orientation such that it dissipates heat by radiation towards space and at least a fluid heat exchange loop between at least one hot heat exchanger in thermal connection with said tube and at least one cold heat exchanger belonging to the radiator, and which is characterized in that said fluid loop is single-phase and constituted so in series cooling the emitter and then the collector of said traveling wave tube. The implementation of the invention makes it possible to place the TOPs anywhere in the satellite, because each fluid loop allows significant distances between a hot exchanger (thermally coupled to a TOP) and a cold exchanger (belonging to a radiator) . In particular, it is possible to place the TOPs near the transmitting antennas so as to eliminate the need for very long waveguides. The invention finds a particularly interesting application on satellites comprising a payload module, which can change significantly from satellite to satellite, and a service module capable of being produced in series. It is this service module which generally carries the radiators, deployable after putting into orbit, which dissipate the heat.
Les TOP sont au contraire placés dans le module de charge utile. L'invention permet d'assurer, avec des pertes thermiques réduites, l'évacuation de la chaleur générée par les TOP même s'ils sont placés à une distance des radiateurs qui peut atteindre plusieurs mètres. Des TOP concernés par l'invention exigeant un échangeur chaud à une température dépassant 90°C, le fluide utilisé dans la boucle doit être choisi en conséquence. On ne pourra généralement pas employer l'ammoniac, alors qu'il est fréquemment utilisé à plus basse température. Dans une boucle monophase à pompage mécanique, on utilisera souvent l'eau, des hydrocarbures légers, des fluorocarbones ou autres liquides compatibles des hautes températures. La circulation sera alors assurée par une pompe.The TOPs are instead placed in the payload module. The invention makes it possible to ensure, with reduced thermal losses, the evacuation of the heat generated by the TOPs even if they are placed at a distance from the radiators which can reach several meters. TOP concerned by the invention requiring a hot exchanger at a temperature exceeding 90 ° C, the fluid used in the loop must be chosen accordingly. Generally, ammonia cannot be used, although it is frequently used at a lower temperature. In a single-phase loop with mechanical pumping, water, light hydrocarbons, fluorocarbons or other liquids compatible with high temperatures will often be used. Circulation will then be ensured by a pump.
Dans un mode avantageux de réalisation, utilisant une boucle monophase pour refroidir plusieurs TOP, il est proposé de refroidir en série les émetteurs, puis les collecteurs desdits TOP. Dans ce cas, la boucle fluide est constituée de sorte que le fluide provenant d'au moins un échangeur froid d'un radiateur passe successivement dans des échangeurs de chaleur chauds refroidissant les émetteurs de plusieurs tubes à ondes progressives, puis dans des échangeurs chauds refroidissant les collecteurs desdits tubes à ondes progressives. La boucle fluide, dans laquelle le fluide est mis en mouvement par une pompe, peut être régulée de diverses façons, par exemple par commande de la pompe ou, mieux, par commande d'une liaison entre l'entrée et la sortie d'au moins un échangeur de chaleur froid.In an advantageous embodiment, using a single-phase loop to cool several TOPs, it is proposed to cool the transmitters in series, then the collectors of said TOPs. In this case, the fluid loop is formed so that the fluid coming from at least one cold exchanger of a radiator passes successively in hot heat exchangers cooling the emitters of several traveling wave tubes, then in hot exchangers cooling the collectors of said traveling wave tubes. The fluid loop, in which the fluid is set in motion by a pump, can be regulated in various ways, for example by controlling the pump or, better, by controlling a connection between the inlet and the outlet of the minus a cold heat exchanger.
Du fait que les boucles fluides mono-phase permettent d'accepter des distances importantes et des trajets tortueux entre échangeur(s) froid(s) et échangeur(s) chaud(s), le dispositif suivant l'invention est notamment utilisable lorsqu'au moins un échangeur froid est intégré à un radiateur pouvant pivoter par au moins une charnière, d'une position où le radiateur est plaqué contre le corps du satellite (au cours du lancement) à une position déployée (après venue sur orbite), au moins une boucle fluide comportant au moins un tronçon souple permettant de tolérer le passage du radiateur d'une position à l'autre. On utilisera généralement au moins un tronçon de conduite souple en hélice ou "queue de cochon", qui peut être enroulé autour d'au moins une charnière d'articulation du radiateur.Because the single-phase fluid loops make it possible to accept large distances and tortuous paths between cold exchanger (s) and hot exchanger (s), the device according to the invention is particularly usable when at least one cold exchanger is integrated into a radiator which can pivot by at least one hinge, from a position where the radiator is pressed against the body of the satellite (during launch) to a deployed position (after coming into orbit), at least one fluid loop comprising at least one flexible section making it possible to tolerate the passage of the radiator from one position to another. Generally, at least one flexible helical pipe section or "pigtail" will be used, which can be wrapped around at least one hinge hinge of the radiator.
Un intérêt supplémentaire du caractère déformable d'au moins un tronçon d'une boucle fluide est le fait que le fonctionnement peut être vérifié dans des conditions simulant celles qui sont rencontrées dans l'espace, en utilisant une chambre à vide dont le volume ne permet pas d'y placer le satellite avec les radiateurs déployés; en prévoyant une ou des charnières démontables, le satellite peut être placé dans la chambre à vide avec le ou les radiateur(s) à distance du corps du satellite, mais encore relié(s) aux charges à refroidir, et notamment aux TOP, par la ou les boucle(s) dont le fonctionnement pourra donc être testé.An additional advantage of the deformable nature of at least one section of a fluid loop is the fact that the operation can be verified under conditions simulating those encountered in space, by using a vacuum chamber whose volume does not allow not place the satellite there with the radiators deployed; by providing one or more removable hinges, the satellite can be placed in the vacuum chamber with the radiator (s) at a distance from the body of the satellite, but still connected to the loads to be cooled, and in particular to the TOP, by the loop (s) whose operation can therefore be tested.
Les caractéristiques ci-dessus ainsi que d'autres apparaîtront mieux à la lecture de la description qui suit de modes particuliers de réalisation donnés à titre d'exemples non limitatifs . La description se réfère aux dessins qui l'accompagnent dans lesquels :The above characteristics as well as others will appear better on reading the following description of particular embodiments given by way of nonlimiting examples. The description refers to the accompanying drawings in which:
- la figure 1 est un schéma montrant la configuration générale d'un satellite de télécommunication géostationnaire muni de radiateurs déployables.- Figure 1 is a diagram showing the general configuration of a geostationary telecommunications satellite provided with deployable radiators.
- La figure 2 montre une constitution possible de boucle fluide mono- phase permettant de refroidir en série plusieurs TOP- Figure 2 shows a possible constitution of a single-phase fluid loop allowing several TOPs to be cooled in series
- La figure 3 montre schématiquement une constitution possible d'échangeurs de chaleur entre TOP et boucle fluide.- Figure 3 shows schematically a possible constitution of heat exchangers between TOP and fluid loop.
- La figure 4 montre un mode de liaison possible entre un radiateur et la paroi du module de service d'un satellite, permettant de déployer le radiateur une fois le satellite en orbite. Le satellite S dont la constitution générale est montrée en figure 1, est destiné à être placé sur une orbite équatoriale géostationnaire 10. Il est prévu pour être stabilisé suivant trois axes : X, Y et Z.- Figure 4 shows a possible connection mode between a radiator and the wall of the service module of a satellite, allowing to deploy the radiator once the satellite in orbit. Satellite S, the general constitution of which is shown in FIG. 1, is intended to be placed on a geostationary equatorial orbit 10. It is intended to be stabilized along three axes: X, Y and Z.
Il comporte un module de service 14, qui porte des panneaux solaires 16 munis de moteurs permettant de les faire tourner autour de l'axe de tangage Y pour les maintenir orientés vers le soleil. Les parois conventionnellement dénommées « nord » et « sud » de la structure du module 14 (selon un axe parallèle à l'axe polaire NS de la terre 12) sont généralement prévues de façon à présenter une émissivité élevée, mais en même temps à avoir une absorption limitée du rayonnement solaire. La majeure partie de la dissipation de chaleur est assurée par un ou, de préférence, par plusieurs radiateurs déployables 15, quatre par exemple, comme représenté sur la figure 1 , qui, en fonctionnement, sont déployés et orientés vers le nord et le sud. Le module de service 14 est fixé à un module de charge utile 17 qui contient des charges qui doivent être refroidies, notamment des tubes à ondes progressives ou TOP reliés à des antennes 20 d'émission vers la terre 12.It comprises a service module 14, which carries solar panels 16 provided with motors enabling them to rotate around the pitch axis Y to keep them oriented towards the sun. The walls conventionally called “north” and “south” of the structure of the module 14 (along an axis parallel to the polar axis NS of the earth 12) are generally provided so as to have a high emissivity, but at the same time to have limited absorption of solar radiation. Most of the heat dissipation is provided by one or, preferably, by several deployable radiators 15, four for example, as shown in Figure 1, which, in operation, are deployed and oriented to the north and south. The service module 14 is fixed to a payload module 17 which contains loads which must be cooled, in particular traveling waves or TOP tubes connected to antennas 20 for transmitting to earth 12.
Le dispositif de refroidissement montré en figure 2 comporte une boucle fluide monophase 25, qui est une boucle fermée parcourue par un liquide caloporteur, et ce dispositif est prévu pour assurer le refroidissement de plusieurs TOP 26 dont le collecteur 28 de chacun est prévu pour fonctionner à une température supérieure à 90°C et ne devant pas dépasser une valeur de l'ordre de 240°C. Le collecteur 28 de chaque TOP 26 dissipe environ 90% de la chaleur générée par ce TOP 26. La partie de chaque TOP 26 contenant le canon de l'émetteur 30 de ce TOP 26 doit être maintenue à une température plus basse, typiquement ne dépassant pas environ 75°C.The cooling device shown in FIG. 2 includes a single-phase fluid loop 25, which is a closed loop through which a heat-transfer liquid passes, and this device is intended to cool several TOP 26s, the collector 28 of each of which is designed to operate at a temperature above 90 ° C and not to exceed a value of the order of 240 ° C. The collector 28 of each TOP 26 dissipates approximately 90% of the heat generated by this TOP 26. The part of each TOP 26 containing the barrel of the emitter 30 of this TOP 26 must be kept at a lower temperature, typically not exceeding not about 75 ° C.
Sur la figure 2, la boucle fluide 25 comporte un échangeur de chaleur dit « froid » 32, incorporé à un radiateur 15, et deux séries d'échangeurs de chaleur dits « chauds » 33 et 34. Une pompe 36 met en circulation le liquide qui remplit la boucle 25. Ce liquide circule ainsi successivement en série dans les premiers échangeurs de chaleur « chauds » 33 associés chacun au canon de l'émetteur 30 de l'un respectivement des TOP 26, puis en série dans les seconds échangeurs de chaleur « chauds » 34 assurant chacun le refroidissement du collecteur 28 de l'un respectivement des TOP 26, puis dans l'échangeur froid 32. La régulation de température peut être assurée de diverses façons. On peut notamment utiliser une vanne à trois voies 38 qui, dans une position, permet la circulation dans la boucle fluide 25 telle qu'elle vient d'être définie et, dans au moins une autre position, ouvre plus ou moins complètement une conduite de by-pass 40 court-circuitant au moins partiellement l'échangeur de chaleur 32.In FIG. 2, the fluid loop 25 comprises a so-called “cold” heat exchanger 32, incorporated into a radiator 15, and two series of so-called “hot” heat exchangers 33 and 34. A pump 36 circulates the liquid which fills the loop 25. This liquid thus circulates successively in series in the first “hot” heat exchangers 33 each associated with the barrel of the emitter 30 of one of the TOP 26 respectively, then in series in the second “hot” heat exchangers 34 each ensuring the cooling of the manifold 28 of one of the TOP 26 respectively, then in the cold exchanger 32 The temperature regulation can be ensured in various ways. One can in particular use a three-way valve 38 which, in one position, allows circulation in the fluid loop 25 as it has just been defined and, in at least one other position, more or less completely opens a bypass 40 at least partially short-circuits the heat exchanger 32.
Chacun des TOP 26 peut être monté sur le corps du satellite S de la façon indiquée sur la figure 3. Chaque TOP 26 est porté par la peau 41 du satellite par l'intermédiaire d'une couche thermiquement isolante 42 et des échangeurs 33 et 34 d'évacuation de chaleur associés à ce TOP 26, et dont l'un 33, de la première série d'échangeurs chauds, est en relation d'échange thermique avec le canon de l'émetteur 30 correspondant, tandis que l'autre 34, de la seconde série d'échangeurs chauds, est en relation d'échange thermique avec le collecteur 28 correspondant. Le faisceau 43 de fils reliant le collecteur 28 au canon peut constituer une. nappe traversant l'enrobage du connecteur terminal. La fixation du collecteur 28 et du canon de l'émetteur 30 sur l'échangeur associé 34 ou 33 peut s'effectuer à l'aide d'un joint thermique capable de supporter la température en fonctionnement, permettant de minimiser le gradient de température.Each of the TOP 26s can be mounted on the body of the satellite S as shown in FIG. 3. Each TOP 26 is carried by the skin 41 of the satellite by means of a thermally insulating layer 42 and the exchangers 33 and 34 heat dissipation associated with this TOP 26, and one of which 33, from the first series of hot exchangers, is in heat exchange relation with the barrel of the corresponding transmitter 30, while the other 34 , of the second series of hot exchangers, is in heat exchange relationship with the corresponding collector 28. The bundle 43 of wires connecting the collector 28 to the barrel can constitute one. ply passing through the cover of the terminal connector. The collector 28 and the barrel of the emitter 30 are attached to the associated exchanger 34 or 33 can be carried out using a thermal seal capable of withstanding the temperature in operation, making it possible to minimize the temperature gradient.
Un même satellite S peut porter plusieurs boucles de refroidissement telles que 25, soit pour assurer une redondance, soit pour disposer de plusieurs groupes de TOP 26 munis de circuits de refroidissement indépendants. Des charges supplémentaires à refroidir 44 peuvent être interposées sur au moins une boucle 25. Dans ce cas, comme représenté sur la figure 2, la ou les charges supplémentaires à refroidir 44 est ou sont en relation d'échange thermique avec la boucle fluide 25 en un ou des point(s) situé(s) entre la série des premiers échangeurs chauds 33 et la série des seconds échangeurs chauds 34.The same satellite S can carry several cooling loops such as 25, either to provide redundancy, or to have several groups of TOP 26 provided with independent cooling circuits. Additional loads to be cooled 44 can be interposed on at least one loop 25. In this case, as shown in FIG. 2, the additional load (s) to be cooled 44 is or are in heat exchange relation with the fluid loop 25 in one or more point (s) located between the series of first hot exchangers 33 and the series of second hot exchangers 34.
Chaque radiateur 15 contenant un échangeur froid 32 est monté sur le module de service 15 du satellite S par une ou des charnières 52 permettant de déployer le radiateur 15 d'une position de stockage, où il est plaqué contre le corps du satellite, par exemple contre une face dite « est » ou « ouest » du module 15, à la position déployée dans laquelle le radiateur 15 est montré sur la figure 1. La liaison (ou les liaisons) entre l'échangeur froid 32 et le reste de la boucle fluide 25 correspondante doit tolérer ce déplacement. Comme montré en figure 4, chaque liaison est constituée par un tronçon souple 50 en hélice de la conduite de la boucle fluide 25. L'utilisation d'une boucle fluide à pompage mécanique 36 permet d'accepter de fortes courbures des conduites de la boucle fluide 25.Each radiator 15 containing a cold exchanger 32 is mounted on the service module 15 of the satellite S by one or more hinges 52 making it possible to deploy the radiator 15 from a storage position, where it is pressed against the body of the satellite, for example against a so-called “east” or “west” face of the module 15, in the deployed position in which the radiator 15 is shown in FIG. 1. The connection (or connections) between the cold exchanger 32 and the rest of the loop corresponding fluid must tolerate this displacement. As shown in FIG. 4, each connection is constituted by a flexible section 50 in a helix shape of the pipe of the fluid loop 25. The use of a fluid loop with mechanical pumping 36 makes it possible to accept strong curvatures of the pipes of the loop fluid 25.
La constitution et l'état de surface du radiateur 15 seront adaptés à la température de fonctionnement choisie de façon à obtenir une émissivité élevée. Les revêtements utilisés permettant d'obtenir de fortes émissivités à hautes températures sont par exemple : les peintures blanches jusqu'à 160°C, l'aluminium oxydé en surface jusqu'à 240°C. A des températures plus basses, jusqu'à 120°C environ, on peut utiliser un revêtement collé de réflecteur optique solaire.The constitution and the surface condition of the radiator 15 will be adapted to the operating temperature chosen so as to obtain a high emissivity. The coatings used to obtain high emissivities at high temperatures are for example: white paints up to 160 ° C, aluminum oxidized on the surface up to 240 ° C. At lower temperatures, up to approximately 120 ° C, a bonded coating of solar optical reflector can be used.
Le dispositif de refroidissement à au moins une boucle fluide monophasique avec au moins un échangeur froid intégré dans au moins un radiateur déployable selon l'invention permet de refroidir un ensemble de TOP standards, c'est-à-dire sans échangeur thermique liquide intégré, ou spécifiques, qui peuvent être placés selon les besoins dans n'importe quel emplacement dans le satellite, et plus spécifiquement dans son module de charge utile, sans contrainte de proximité vis-à-vis du ou des radiateurs déployables, pouvant être rabattus, voire déposés grâce à des charnières démontables, mais sans rupture de la ou des boucle(s) fluide(s), pour des essais du satellite au sol. The cooling device with at least one single-phase fluid loop with at least one cold exchanger integrated in at least one deployable radiator according to the invention makes it possible to cool a set of standard TOPs, that is to say without an integrated liquid heat exchanger, or specific, which can be placed as required in any location in the satellite, and more specifically in its payload module, without proximity constraint vis-à-vis the deployable radiators, which can be folded down, or even removed using removable hinges, but without breaking the fluid loop (s), for testing the satellite on the ground.

Claims

REVENDICATIONS
1. Dispositif de refroidissement d'au moins un tube à ondes progressives (26) ayant un émetteur (30) et un collecteur (28), ce dernier fonctionnant de préférence à haute température en étant isolé thermiquement du reste du tube (26) pour l'équipement d'une charge placée sur un véhicule spatial, tel qu'un satellite, le dispositif comportant au moins un radiateur (15) découplé thermiquement du corps du véhicule et placé dans une orientation telle qu'il dissipe la chaleur par radiation vers l'espace et au moins une boucle fluide d'échange de chaleur entre au moins un échangeur de chaleur chaud en liaison thermique avec ledit tube (26) et au moins un échangeur de chaleur froid (32) appartenant au radiateur (15), caractérisé en ce que ladite boucle fluide est monophase et constituée de façon à refroidir en série1. Device for cooling at least one traveling wave tube (26) having an emitter (30) and a collector (28), the latter preferably operating at high temperature by being thermally isolated from the rest of the tube (26) for equipping a load placed on a spacecraft, such as a satellite, the device comprising at least one radiator (15) thermally decoupled from the body of the vehicle and placed in an orientation such that it dissipates heat by radiation towards the space and at least one fluid heat exchange loop between at least one hot heat exchanger in thermal connection with said tube (26) and at least one cold heat exchanger (32) belonging to the radiator (15), characterized in that said fluid loop is single-phase and constituted so as to cool in series
(33, 34) l'émetteur (30) puis le collecteur (28) dudit tube à ondes progressives (26).(33, 34) the transmitter (30) then the collector (28) of said traveling wave tube (26).
2. Dispositif selon la revendication 1 , caractérisé en ce que la boucle est constituée de façon que le fluide provenant d'au moins un échangeur froid (32) d'un radiateur (15) passe successivement dans des échangeurs de chaleur chauds (33) refroidissant les émetteurs (30) de plusieurs tubes à ondes progressives (26), puis dans des échangeurs chauds (34) refroidissant les collecteurs (28) desdits tubes à ondes progressives (26). 2. Device according to claim 1, characterized in that the loop is constituted so that the fluid coming from at least one cold exchanger (32) of a radiator (15) passes successively through hot heat exchangers (33) cooling the transmitters (30) of several traveling wave tubes (26), then in hot exchangers (34) cooling the collectors (28) of said traveling wave tubes (26).
3. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que le fluide est mis en mouvement dans la boucle fluide par une pompe (36). 3. Device according to one of claims 1 and 2, characterized in that the fluid is set in motion in the fluid loop by a pump (36).
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que la boucle fluide est régulée par commande d'une liaison (38, 40) entre l'entrée et la sortie d'au moins un échangeur de chaleur froid (32). 4. Device according to one of claims 1 to 3, characterized in that the fluid loop is regulated by controlling a connection (38, 40) between the inlet and the outlet of at least one cold heat exchanger ( 32).
5. Dispositif selon l'une quelconque des revendications 1 à 4 précédentes, caractérisé en ce que la boucle fluide comporte au moins un tronçon souple (50).5. Device according to any one of the preceding claims 1 to 4, characterized in that the fluid loop comprises at least one flexible section (50).
6. Véhicule spatial comportant au moins une boucle fluide suivant l'une quelconque des revendications 1 à 5 précédentes, dont ledit échangeur froid (32) est intégré à un radiateur (15) pouvant pivoter par au moins une charnière (52) d'une position où ledit radiateur (15) est plaqué contre le corps du satellite à une position déployée, ladite boucle fluide comportant au moins un tronçon souple (50) tolérant le passage dudit radiateur (15) d'une position à l'autre.6. Space vehicle comprising at least one fluid loop according to any one of the preceding claims 1 to 5, of which said cold exchanger (32) is integrated into a radiator (15) which can pivot by at least one hinge (52) of a position where said radiator (15) is pressed against the body of the satellite in a deployed position, said fluid loop comprising at least one flexible section (50) tolerating the passage of said radiator (15) from one position to another.
7. Véhicule spatial selon la revendication 6, caractérisé en ce qu'il comprend un module de charge utile (17), qui contient des tubes à ondes progressives (26) devant être refroidis et reliés à des antennes (20) portées par ledit module de charge utile (17) fixé à un module de service (14) portant des panneaux solaires (16) orientables et sur lequel est monté déployable au moins un radiateur (15) intégrant au moins un échangeur froid (32) d'au moins une boucle fluide (25) dont les échangeurs chauds (33, 34) sont dans ledit module de charge utile (17).7. Space vehicle according to claim 6, characterized in that it comprises a payload module (17), which contains traveling wave tubes (26) to be cooled and connected to antennas (20) carried by said module payload (17) attached to a service module (14) carrying orientable solar panels (16) and on which is deployable at least one radiator (15) incorporating at least one cold exchanger (32) of at least one fluid loop (25) whose hot exchangers (33, 34) are in said payload module (17).
8. Véhicule spatial selon la revendication 7, caractérisé en ce que le module de charge utile (17) contient au moins une charge (44) supplémentaire à refroidir, en relation d'échange thermique avec au moins une boucle fluide (25) en un point situé entre les premiers échangeurs chauds (33) refroidissant les émetteurs (30) et les seconds échangeurs chauds (34) refroidissant les collecteurs (28) de ladite boucle fluide (25).8. Space vehicle according to claim 7, characterized in that the payload module (17) contains at least one additional load (44) to be cooled, in heat exchange relationship with at least one fluid loop (25) in one point located between the first hot exchangers (33) cooling the emitters (30) and the second hot exchangers (34) cooling the collectors (28) of said fluid loop (25).
9. Véhicule spatial selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'au moins une charnière (52) d'articulation d'au moins un radiateur (15) déployable est démontable sans rupture de la boucle fluide (25) reliant au moins un échangeur froid (32) dudit radiateur (15) à des échangeurs chauds (33, 34) de ladite boucle (25). 9. Space vehicle according to any one of claims 6 to 8, characterized in that at least one hinge (52) of articulation of at least one deployable radiator (15) is removable without breaking the fluid loop (25 ) connecting at least one cold exchanger (32) of said radiator (15) to hot exchangers (33, 34) of said loop (25).
PCT/FR2003/001794 2002-06-13 2003-06-13 Cooling device for space craft WO2003106264A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003255674A AU2003255674A1 (en) 2002-06-13 2003-06-13 Cooling device for space craft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/07265 2002-06-13
FR0207265A FR2840881B1 (en) 2002-06-13 2002-06-13 COOLING DEVICE FOR A SPA VEHICLE

Publications (1)

Publication Number Publication Date
WO2003106264A1 true WO2003106264A1 (en) 2003-12-24

Family

ID=29595194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001794 WO2003106264A1 (en) 2002-06-13 2003-06-13 Cooling device for space craft

Country Status (3)

Country Link
AU (1) AU2003255674A1 (en)
FR (1) FR2840881B1 (en)
WO (1) WO2003106264A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583940B2 (en) 2015-03-03 2020-03-10 York Space Systems LLC Pressurized payload compartment and mission agnostic space vehicle including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958448A1 (en) * 2010-03-30 2011-10-07 Astrium Sas THERMAL CONTROL DEVICE OF A RADIANT COLLECTOR TUBE HAVING A SCREEN, A FLUID LOOP AND A HIGH TEMPERATURE RADIATOR
US10780998B1 (en) 2017-03-22 2020-09-22 Space Systems/Loral, Llc Spacecraft design with multiple thermal zones
CN108321069B (en) * 2017-12-15 2019-12-03 南京三乐集团有限公司 A kind of highly dense oil sealing cooling type travelling-wave tubes and preparation method thereof
DE102018121133A1 (en) * 2018-08-29 2020-03-05 Thales Deutschland GmbH Electron Devices Arrangement of conduction-cooled traveling wave tubes and method for producing an arrangement
DE102018121130A1 (en) * 2018-08-29 2020-03-05 Thales Deutschland GmbH Electron Devices Cooling arrangement for traveling wave tubes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876901A (en) * 1973-12-03 1975-04-08 Varian Associates Microwave beam tube having an improved fluid cooled main body
US5494241A (en) 1993-01-26 1996-02-27 Matra Marconi Space France S.A. Device for cooling a satellite-mounted travelling-wave tube
EP0780303A1 (en) * 1995-12-22 1997-06-25 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Shielded radiator
EP0870677A1 (en) * 1997-04-07 1998-10-14 AEROSPATIALE Société Nationale Industrielle Heat transfer and rejection system, especially for spacecraft
US6003817A (en) * 1996-11-12 1999-12-21 Motorola, Inc. Actively controlled thermal panel and method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402761A (en) * 1967-02-17 1968-09-24 Navy Usa Controllable heat pipe apparatus
US3561229A (en) * 1969-06-16 1971-02-09 Varian Associates Composite in-line weir and separator for vaporization cooled power tubes
US5496241A (en) 1994-07-25 1996-03-05 Sellers; Tyrone D. Exercise machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876901A (en) * 1973-12-03 1975-04-08 Varian Associates Microwave beam tube having an improved fluid cooled main body
US5494241A (en) 1993-01-26 1996-02-27 Matra Marconi Space France S.A. Device for cooling a satellite-mounted travelling-wave tube
EP0780303A1 (en) * 1995-12-22 1997-06-25 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Shielded radiator
US6003817A (en) * 1996-11-12 1999-12-21 Motorola, Inc. Actively controlled thermal panel and method therefor
EP0870677A1 (en) * 1997-04-07 1998-10-14 AEROSPATIALE Société Nationale Industrielle Heat transfer and rejection system, especially for spacecraft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583940B2 (en) 2015-03-03 2020-03-10 York Space Systems LLC Pressurized payload compartment and mission agnostic space vehicle including the same

Also Published As

Publication number Publication date
FR2840881B1 (en) 2005-01-28
FR2840881A1 (en) 2003-12-19
AU2003255674A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
EP2069201B1 (en) Device for controlling thermal flux in a spacecraft and spacecraft equipped with such a device
EP1961659B1 (en) Thermal control device on board of a spacecraft
EP2226248B1 (en) Thermal control device for a spacecraft
CA2380665C (en) Deployable radiator for a spacecraft
EP1468911B1 (en) Satellite comprising heat transport means from a shelf supporting equipment to radiator panels
EP3003860B1 (en) Space craft comprising at least one pair of supporting arms, said arm pair being equipped with a hollow mounting module, and method for employing such a craft
EP3212503B1 (en) Artificial satellite and method for filling a tank of propellent gas of said artificial satellite
EP2716549B1 (en) Satellite with deployable payload modules
EP3212504B1 (en) Spacecraft
EP0647559B1 (en) Geostationary satellite with electrical storage cells
EP1405790A1 (en) Modular architecture for the thermal control of a spacecraft
EP0891926A1 (en) Spacecraft thermal management system
FR2972714A1 (en) STRUCTURAL SATELLITE PANEL WITH INTEGRATED THERMAL EXCHANGERS
CA2969037A1 (en) Radiator deployable for a satellite stabilized on three axes
WO2003106264A1 (en) Cooling device for space craft
FR2811963A1 (en) Heat dissipator for space motor has matrix for tubes containing toluene as heat exchange medium
EP3445658B1 (en) Space vehicle
FR2759345A1 (en) STABILIZED GEOSTATIONARY SATELLITE THREE AXES WITH IMPROVED THERMAL CONTROL
EP2861928A1 (en) Temperature control device
Naes et al. WISE solid hydrogen cryostat design overview
EP1766301A1 (en) Compact water/water heat pump core, and heat pump comprising same
Okuda From IRTS to IRIS and beyond
FR2989762A1 (en) Thermal control device for e.g. removing heat generated by dissipation equipments of telecommunication satellite, has integrated heat pipe placed in front of condensers to discharge removed heat to structural panels of spacecraft

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP