明 細 書 Specification
ガス滅菌の方法及び装置 . Gas sterilization method and apparatus.
技術分野 Technical field
本発明は、 主と して医療機器向けのガス滅菌処理技術に関するが、 製 薬 · 食品 · 化粧品関係等の機器の滅菌処理にも広く利用できる。 背景技術 The present invention mainly relates to gas sterilization technology for medical devices, but can be widely used for sterilization of devices such as pharmaceuticals, foods, and cosmetics. Background art
医療や食品等の分野では、 従来よ り、 高圧蒸気滅菌法や過酸化水素ガ スプラズマ滅菌法あるいは酸化ェチレンガス滅菌法などが知られている, この う ち高圧蒸気滅菌法は、短時間で滅菌でき環境にも無害であるが、 耐熱性や耐湿性に乏しいものを処理できないという欠点がある。 In the medical and food fields, high-pressure steam sterilization, hydrogen peroxide gas-plasma sterilization, and ethylene oxide gas sterilization have been known in the past. It is also harmless to the environment, but has the drawback of not being able to treat poor heat and moisture resistance.
過酸化水素ガスプラズマ滅菌法は、 低温 · 低湿度で高速滅菌処理がで き有害なガスの残留も無いが、 過酸化水素を吸収あるいは吸着する繊維 製品、 スポンジおよびセルロース類などを処理できない。 また、 過酸化 水素ガスは透過性が低いので長い狭腔構造の滅菌には不適である。 The hydrogen peroxide gas plasma sterilization method can perform high-speed sterilization at low temperature and low humidity and has no harmful gas residue, but cannot process textiles, sponges, and celluloses that absorb or adsorb hydrogen peroxide. Hydrogen peroxide gas has low permeability and is not suitable for sterilization of long narrow cavity structures.
酸化ェチレンガス滅菌法は、 酸化ェチレンガスが過酸化水素ガス'に比 ベ透過性が良く 、 また、 低い温度 · 湿度においても滅菌処理ができるた め、 長い狭腔構造の滅菌や、 蒸気滅菌処理が難しいプラスチッ クやゴム 製品などの滅菌に広く利用されてきたが、 発癌性などの毒性がある。 In the ethylene oxide gas sterilization method, since ethylene oxide gas has better permeability than hydrogen peroxide gas' and can be sterilized even at low temperature and humidity, it is difficult to sterilize a long narrow cavity structure or steam sterilization. It has been widely used for sterilization of plastic and rubber products, but has toxicity such as carcinogenicity.
従来の酸化エチ レンガス滅菌法によ り医療機器を滅菌処理する場合、 濃度 450〜 l OOOmg/リ ッ トノレ、湿度 50〜 60%及び温度 40〜 60。Cの条件下で、 滅菌処理自体に 4〜6時間を費やした後、 有害な吸着'残留酸化エチレン のエアレーショ ンによる除去処理に 8〜 12時間を費やしていた。 このた め全工程に長時間を要する という問題があった。 When sterilizing medical equipment using the conventional ethylene oxide gas sterilization method, the concentration is 450 to l OOOmg / litre, humidity is 50 to 60%, and temperature is 40 to 60. Under the conditions of C, the sterilization treatment itself took 4 to 6 hours, and then the removal of harmful adsorbed residual ethylene oxide by aeration took 8 to 12 hours. For this reason, there was a problem that a long time was required for the entire process.
また、 爆発性及び毒性の強い酸化エチレンガスを大量に使用しなけれ ばならず、 その取り扱いに格別.の注意が必要で、 且つ、 使用後の酸化工
チレンガスの回収に特別の装置が必要であった。 In addition, a large amount of highly explosive and toxic ethylene oxide gas must be used, and special care must be taken when handling it. Special equipment was required to recover the titanium gas.
一方、本発明の発明者は、 特開平 8- 330079号公報に開示された低コス トで大容量の放電 (弱電離低温プラズマ) を安定して発生できる低周波 交流電源と して、 位相が配列 (制御 · 調整) された複数個の交流出力か らなる位相制御多出力型交流電源装置を先に出願し、 さ らに、 この電源 を用いて、 特開平 10 - 130836号公報に開示された放電を効率的に発生さ せるための電極と、 特開平 10- 1 34994号公報に開示された磁場の構成方 法を出願した。 On the other hand, the inventor of the present invention has proposed a low-frequency AC power supply capable of stably generating a low-cost, large-capacity discharge (weakly ionized low-temperature plasma) disclosed in Japanese Patent Application Laid-Open No. 8-330079, A phase-controlled multi-output type AC power supply composed of a plurality of arranged (controlled / adjusted) AC outputs was filed first and further disclosed in Japanese Patent Application Laid-Open No. 10-130836 using this power supply. And a method for constructing a magnetic field disclosed in Japanese Patent Application Laid-Open No. 10-134994.
これらの電源と電極によ り、 位相が調整された複数の電極に電力が時 間分割的に分散給電され、 広範囲な領域に低周波にも拘らず放電休止の ない時間平均的に均一な多相交流放電によるプラズマが電源周波数で回 転しながら生成される。 With these power sources and electrodes, power is distributed and supplied in a time-sharing manner to a plurality of electrodes whose phases have been adjusted. Plasma generated by the phase alternating current is generated while rotating at the power supply frequency.
そこで本発明は、 従来の酸化ェチレンガスなどの滅菌ガスを用いるガ ス滅菌法に、 この多相交流放電プラズマを応用して低濃度の滅菌ガスに よる高速 · 無残留滅菌を実現することを目的になされたものである。 発明の開示 Therefore, the present invention aims at realizing high-speed, residue-free sterilization using a low-concentration sterilizing gas by applying this multi-phase AC discharge plasma to a conventional gas sterilizing method using a sterilizing gas such as ethylene oxide gas. It was done. Disclosure of the invention
かかる目的を達成するために、本発明の滅菌法は以下の構成から成る。 . 先ず、 被滅菌物表面を化学的に活性な状態にある酸素によ り清浄化し 被滅菌物表面の化学的反応性を著しく 高め、 これによ り次工程における 低濃度(ガス分圧が 1 / 760気圧〜 1 / 76気圧)酸化ェチレンガスなどの滅菌 ガスによる高速な滅菌を可能とする。 In order to achieve such an object, the sterilization method of the present invention has the following constitution. First, the surface of the object to be sterilized is cleaned with chemically active oxygen to significantly enhance the chemical reactivity of the surface of the object to be sterilized. (760 atm-1/76 atm) Enables high-speed sterilization with a sterilizing gas such as ethylene oxide gas.
次に、 滅菌装置内から空気などのガスを排気し、 減圧下の拡散し易い 状態で低濃度の酸化エチレンガスなどの滅菌ガスを滅菌装置内に封入し 酸化エチレンガスな どの滅菌ガスのみを被滅菌物近傍に容易に到達させ ガスによる滅菌を行う。
さらにその次に、 残留した酸化エチレンガスなどの滅菌ガスを、 化学 的に活性な状態にある酸素によ り 、 無害な二酸化炭素と水に分解 · ガス ィ匕した後、 機外に排気し、 これによ り使用するガス濃度を下げて残留性 を低く抑え、 滅菌ガスの無残留性を実現する。 Next, a gas such as air is exhausted from the sterilizer, a sterile gas such as a low-concentration ethylene oxide gas is sealed in the sterilizer in a state where the gas is easily diffused under reduced pressure, and only the sterile gas such as the ethylene oxide gas is covered. Easily reach near the sterile material and sterilize with gas. Then, the remaining sterilized gas such as ethylene oxide gas is decomposed into harmless carbon dioxide and water by chemically active oxygen, and then exhausted outside the machine. As a result, the concentration of the gas used is reduced and the persistence is kept low, and the sterilization gas is made non-residual.
【 0 0 0 7】 [0 0 0 7]
ここで、 減圧下 ( 1 /7600気圧〜 1 /760気圧) の酸素元素を含むガス雰 囲気におけるプラズマ中において、 化学的に活性な酸素を容易に発生さ せるこ とができる。 Here, chemically active oxygen can be easily generated in plasma in a gas atmosphere containing an oxygen element under reduced pressure (1/7600 to 1/760 atm).
従って、 次のよ うな工程によって、 有害な残留物の無い高速なガス滅 菌が可能である。 Therefore, high-speed gas sterilization without harmful residues is possible by the following steps.
すなわち、 減圧下 ( 1 /7600気圧〜 1 /760気圧) の酸素元素を含むガス 雰囲気におけるプラズマ中に (滅菌パックの中に格納された) 被滅菌物 (微生物) をある時間放置する工程を設けることによ り 、 被滅菌物 (微 生物) 表面の化学的反応性を著しく 高め、 低濃度の酸化エチレンガスな どの滅菌ガスによる高速滅菌処理が可能になる。 In other words, a process is provided in which the object to be sterilized (microorganisms) (stored in a sterilization pack) is left for a certain period of time in a plasma in a gas atmosphere containing oxygen element under reduced pressure (1/7600 atm / 1/760 atm). This significantly enhances the chemical reactivity of the surface of the object (microorganism) to be sterilized, and enables high-speed sterilization with a low-concentration sterilizing gas such as ethylene oxide gas.
減圧下の酸素元素を含むガス雰囲気におけるプラズマ中において生成 される化学的に活性な状態にある酸素は、 滅菌パックの細孔 (〜; 10 μ m) を通過し被滅菌物 (微生物) の表面に到達 · 作用し、 微生物表面を覆う 水や油脂層などをガス化して取り除き (表面の清浄化)、 微生物表面の酸 化工チレンガスなどの滅菌ガスとの化学的反応性を著しく高める。 Chemically oxygen in an active state, which is generated in plasma in a gas atmosphere containing oxygen element under reduced pressure, the pores of the sterile pack; surface of the object to be sterilized (microorganisms) passes through (~ 10 mu m) And acts to gasify and remove water and oily layers covering the surface of microorganisms (cleaning of the surface), significantly increasing the chemical reactivity of microorganism surfaces with sterilizing gas such as oxidized titanium gas.
滅菌パックの細孔の大きさ,は、 通常の弱電離低温プラズマにおけるプ ラズマの最小の大きさ (デバイ長) よ り小さい。 したがって、 プラズマ は滅菌パックの孔を透過できず、 被滅菌物に接して作用を直接及ぼすこ とはできない。 このことは、 プラズマを滅菌に応用する上で予め理解し ておくべき重要な点である。 The pore size of the sterilization pack is smaller than the minimum plasma size (Debye length) in ordinary weakly ionized low-temperature plasma. Therefore, the plasma cannot penetrate the pores of the sterilization pack and cannot act directly on the material to be sterilized. This is an important point to understand before applying plasma to sterilization.
【 0 0 0 8】
また、 本発明のガス滅菌法は、 低濃度の酸化エチレンガスなどの滅菌 ガスを短時間で拡散 · 吸着させて滅菌処理する工程を設け吸着 · 残留す る滅菌ガス量を大き く減ら し、 且つ引き続き、 減圧下の酸素元素を含む ガス雰囲気におけるプラズマにおいて吸着 · 残留滅菌ガスを分解および 脱離する工程を設け、 吸着 · 残留する滅菌ガスを化学的に活性な状態に ある酸素によ り 高速に二酸化炭素や水蒸気にガス化する。 これら二つの 工程によ り 短時間の滅菌処理と高速な無害化 ·無残留処理が可能と なる。 吸着 ' 残留する酸化エチレンガスやホルムアルデヒ ドなどの滅菌ガス は、 以下に示すよ う な反応を経て、 化学的に活性な状態にある酸素によ り二酸化炭素や水蒸気にガス化される。 [0 0 0 8] Further, the gas sterilization method of the present invention provides a step of dispersing and adsorbing a sterilizing gas such as a low-concentration ethylene oxide gas in a short time to perform a sterilization treatment, thereby greatly reducing the amount of the adsorbed and remaining sterilizing gas, and Continuously, a process is provided to decompose and desorb the adsorbed and residual sterilizing gas in plasma in a gas atmosphere containing oxygen element under reduced pressure, and the adsorbed and remaining sterilizing gas is accelerated by chemically active oxygen. Gasifies into carbon dioxide and water vapor. These two processes enable short-time sterilization and high-speed detoxification and residue-free treatment. Adsorption '' Residual sterilizing gas such as ethylene oxide gas and formaldehyde is gasified to carbon dioxide and water vapor by chemically active oxygen through the following reactions.
酸化エチレンの場合 : For ethylene oxide:
2 ( CH2 ) 20 + 502→4C02 + 4H20 (励起酸素分子による反応) 2 (CH 2) 2 0 + 50 2 → 4C0 2 + 4H 2 0 ( reaction with excited oxygen molecules)
( CH2 ) 20 + 50→2 C02+2H20 (酸素原子ラ ジカルによる反応) (CH 2) 2 0 + 50 → 2 C0 2 + 2H 2 0 ( reaction with oxygen atoms la radical)
ホルムァルデヒ ドの場合 : For Holmaldehyde:
HCH0 + O2→C 02+H2O (励起酸素分子による反応) HCH0 + O 2 → C 0 2 + H 2 O ( reaction with excited oxygen molecules)
HCH0+20→C 02+H20 (酸素原子ラジカルによる反応) HCH0 + 20 → C 0 2 + H 2 0 ( reaction with oxygen radicals)
但し、 二酸化炭素や水蒸気は、 プラズマ中において、 一酸化炭素、 酸 素および水素に容易に解離され得る。 However, carbon dioxide and water vapor can be easily dissociated into carbon monoxide, oxygen and hydrogen in the plasma.
ここで、 全工程の処理時間 (酸素元素を含むガス雰囲気におけるブラ ズマ前処理工程 20分程度、酸化エチレンガスなどの滅菌ガスによる滅菌 処理工程 20分程度、 及び、 酸素元素を含むガス雰囲気におけるプラズマ 後処理工程 5分程度) は、 1 時間程度で足り 、 大幅な時間短縮を可能に した。 Here, the processing time of all the steps (about 20 minutes for the plasma pretreatment step in a gas atmosphere containing an oxygen element, about 20 minutes for the sterilization treatment step using a sterilizing gas such as ethylene oxide gas, and plasma in a gas atmosphere containing an oxygen element) About one hour is enough for the post-processing step (about 5 minutes), and the time can be greatly reduced.
【 0 0 0 9 】 [0 0 0 9]
差替え用鈹(規則^
また、 低濃度の酸化エチレンガスなどの滅菌ガスを使用するこ とによ り、 酸化ェチレンガスなどの滅菌ガスが装置外へ漏洩した場合における 爆発の危険性や漏洩ガスの毒性の低減化を可能にした。 For replacement 規則 (rule ^ In addition, the use of low-concentration sterilizing gas such as ethylene oxide gas can reduce the danger of explosion and the toxicity of leaked gas when sterilizing gas such as ethylene oxide gas leaks out of the equipment. did.
また、 滅菌工程で使用済みの低濃度の酸化エチレンガスなどの滅菌ガ スを真空ポンプによ り排気する過程で、 滅菌ガスを水の中に通すことに よ り、 水と酸化ェチレンガスなどの滅菌ガスを反応させ水溶性のェチレ ングルコールやホルマリ ンにし、 水の中へ滅菌ガスを吸収 · 回収するこ とを可能と した。 従って大気中 (環境) へ有害な滅菌ガスは放出されな いため環境を汚染しない。 In addition, sterilizing gas such as water and ethylene oxide gas is passed by passing sterilizing gas through water during the process of evacuating sterilized gas such as low-concentration ethylene oxide gas used in the sterilization process using a vacuum pump. The gas was reacted to form water-soluble ethylene glycol or formalin, which made it possible to absorb and recover sterilized gas into water. Therefore, no harmful sterilizing gas is released into the atmosphere (environment), so it does not pollute the environment.
酸化エチレンやホルムアルデヒ ドと水との反応式を以下に示す。 The reaction formula of ethylene oxide or formaldehyde with water is shown below.
(CH2 ) 20 + H20 - H0CH2CH20H (ェチレングリコール) HCH0 + ¾0 -> HCH0水溶液 (ホルマリン) になる。 滅菌ガスの処理方法と しては、 上記のよ うに水に通す方法のほカ に、 空気 (酸素) と反応させて、 二酸化炭素と水に分解する方法もある。 こ の分解は、 大気圧力下でのグロ一放電空気プラズマによる方法や、 自動 車用排ガス浄化装置に使用する白金触媒を用いて大気圧力下で空気と低 温燃焼させる方法によ り行う。 図面の簡単な説明 (CH 2 ) 20 + H 20- H0CH2CH20H (Ethylene glycol) HCH0 + ¾0-> HCH0 aqueous solution (formalin). As a method of treating sterilizing gas, in addition to the method of passing through water as described above, there is also a method of reacting with air (oxygen) to decompose into carbon dioxide and water. This decomposition is performed by a method using glow discharge air plasma under atmospheric pressure or a method in which air and low-temperature combustion are performed under atmospheric pressure using a platinum catalyst used in an exhaust gas purification system for vehicles. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明を実施したプラズマ滅菌装置の部分横断面図である。 図 2は、 本発明を実施したプラズマ滅菌装置の部分縦断面図である。 図 3は、 本発明を実施した対称 12相交流電源の模式図である。 図 4は、 本 発明を実施したガス供給装置の構成図である。 図 5は、 本発明を実施し たガス滅菌法の工程曲線図である。 図 6は、 D 値を利用した滅菌グラフ である。 図 7は、 酸化エチレンガスによ りアルキル化される滅菌反応の
化学式である。 図 8は、細菌数と培養時間の関係グラフである。 図 9は、 空気プラズマの殺菌効果を確認する N到達時間の棒グラフである。 図 10 は、 生物学的インジケータの温度と空気プラズマ放電時間の関係ダラフ である。 図 1 1 は、加熱による殺菌効果を確認する N到達時間の棒ダラフ である。 図 12は、 混合ガスプラズマの殺菌効果を確認する N到達時間の 棒グラフである。 図 1 3は、 生物学的イ ンジケータの温度と混合ガス 'ブラ ズマ放電時間の関係グラ フである。 図 14は、酸化エチ レンガス圧力の時 間変化特性を示すグラフである。 図 15は、 酸化エチレンガスの吸着量を 示す表である。 図 16は、 酸化エチレンガス拡散による殺菌効果を調べる 実験の工程曲線図である。 図 17は、 図 16の殺菌効果を確認する N到達 時間の棒グラフである。 図 18は、 図 17の放電電流を 60 [mA]にした場合 の N到達時間の棒グラフである。 図 19は、 空気プラズマ後処理工程の殺 菌効果を調べる実験の工程曲線図である。 図 20は、 図 19の殺菌効果を 確認する N到達時間の棒グラフである。 図 21は、 全処理工程における殺 菌効果を調べる実験の工程曲線図である。 図 22は、 図 21の殺菌効果を 確認する N到達時間の棒グラフである。 図 23は、 放電電流を大きく した 場合の殺菌効果を確認する N到達時間の棒グラフである。 図 24は、 空気 プラズマ前処理工程におけるガス質量分析スぺク トルである。 図 25は、 空気を構成するガス質量分析スペク トルデータである。 図 26 は、 図 24 の生物学的イ ンジケータ無挿入時のガス質量分析スぺク トルである。 図 27は、 混合ガスプラズマにおけるガス質量分析スぺク トルである。 図 28 は、 酸化エチ レンガス、 二酸化炭素、 一酸化炭素の質量分析スぺク トル データである。 図 29は、 空気プラズマ後処理工程におけるガス質量分析 スぺク トルである。 発明を実施するための最良の形態
以下に、 図面を参照して本発明の実施の形態について説明する。 FIG. 1 is a partial cross-sectional view of a plasma sterilization apparatus embodying the present invention. FIG. 2 is a partial longitudinal sectional view of a plasma sterilizer embodying the present invention. FIG. 3 is a schematic diagram of a symmetrical 12-phase AC power supply embodying the present invention. FIG. 4 is a configuration diagram of a gas supply device embodying the present invention. FIG. 5 is a process curve diagram of the gas sterilization method according to the present invention. Figure 6 is a sterilization graph using D values. Figure 7 shows the sterilization reaction alkylated by ethylene oxide gas. It is a chemical formula. FIG. 8 is a graph showing the relationship between the number of bacteria and the culture time. FIG. 9 is a bar graph of N arrival time to confirm the sterilization effect of air plasma. Figure 10 is a graph of the relationship between temperature of biological indicators and air plasma discharge time. Fig. 11 is a bar graph of N arrival time to confirm the sterilization effect by heating. Fig. 12 is a bar graph of N arrival time to confirm the sterilization effect of mixed gas plasma. Figure 13 is a graph showing the relationship between the temperature of the biological indicator and the plasma discharge time of the mixed gas. FIG. 14 is a graph showing the time change characteristics of the ethylene oxide gas pressure. FIG. 15 is a table showing the amount of ethylene oxide gas adsorbed. FIG. 16 is a process curve diagram of an experiment for examining the disinfection effect of ethylene oxide gas diffusion. FIG. 17 is a bar graph of N arrival time confirming the bactericidal effect of FIG. FIG. 18 is a bar graph of the N arrival time when the discharge current in FIG. 17 is set to 60 [mA]. FIG. 19 is a process curve diagram of an experiment for examining the bactericidal effect of the air plasma post-treatment process. FIG. 20 is a bar graph of N arrival time for confirming the bactericidal effect of FIG. FIG. 21 is a process curve diagram of an experiment for examining the bactericidal effect in all treatment steps. FIG. 22 is a bar graph of N arrival time for confirming the bactericidal effect of FIG. FIG. 23 is a bar graph of N arrival time for confirming the sterilization effect when the discharge current is increased. FIG. 24 is a gas mass spectrometry spectrum in the air plasma pretreatment process. Figure 25 shows gas mass spectrometry data that constitutes air. FIG. 26 is a gas mass spectrometry spectrum without the biological indicator of FIG. 24 inserted. FIG. 27 is a gas mass spectrometry spectrum in a mixed gas plasma. Figure 28 shows mass spectrometry spectrum data for ethylene oxide gas, carbon dioxide, and carbon monoxide. FIG. 29 is a gas mass spectrometry spectrum in the air plasma post-processing step. BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings.
図 1 と図 2に、 本発明を実施したガス滅菌装置の部分横断面図 (図 2 の A— A '面) と部分縦断面図 (図 1 の B — 面) を示す。 FIGS. 1 and 2 show a partial cross-sectional view (A-A ′ plane in FIG. 2) and a partial longitudinal cross-sectional view (B-plane in FIG. 1) of the gas sterilizer embodying the present invention.
ガス滅菌装置は、 円筒状の真空容器 1の内壁に絶縁シー ト 2を介して 12枚の断面円弧状の分割電極 3 を密着して固定する。 In the gas sterilizer, twelve divided electrodes 3 having an arcuate cross section are fixed to the inner wall of a cylindrical vacuum vessel 1 via an insulating sheet 2 in close contact therewith.
分割電極 3 は、 真空容器 1 の長さ方向に沿って僅かな間隙 a をあけて 円周状に配列する。 The divided electrodes 3 are circumferentially arranged with a slight gap a along the length of the vacuum vessel 1.
真空容器 1 の外周は二重管 4で形成し、 放電時に冷却水を流して内壁 に密着する 12片の分割電極 3を冷却する。 · The outer circumference of the vacuum vessel 1 is formed by a double tube 4, and cooling water is flowed at the time of discharge to cool the twelve pieces of divided electrodes 3 which are in close contact with the inner wall. ·
真空容器 1 の内側には、 軸心に沿って円筒状の金属製メ ッシュ籠 5を 揷入し、 その中に被滅菌物 6 を入れる。 A cylindrical metal mesh basket 5 is inserted into the inside of the vacuum vessel 1 along the axis, and an object 6 to be sterilized is put therein.
また、 真空容器 1 の一方の端部に受電端子 7 とガス注入口 8 を設け、 他方にはガス圧力計 9を取り付ける。 In addition, a power receiving terminal 7 and a gas inlet 8 are provided at one end of the vacuum vessel 1, and a gas pressure gauge 9 is attached to the other end.
受電端子 7は、 図 3に示す対称 12相交流電源 10に接続する。 The power receiving terminal 7 is connected to a symmetrical 12-phase AC power supply 10 shown in FIG.
この とき、 対称 12相交流電源 10 の各相成分を真空容器 1 内壁 (内径 100mm, 長さ〜 500mm) に貼られた 12枚の分割電極 3 へ接続する。 At this time, each phase component of the symmetrical 12-phase AC power supply 10 is connected to twelve divided electrodes 3 attached to the inner wall of the vacuum vessel 1 (inner diameter 100 mm, length ~ 500 mm).
更に、 対称 12相交流電源 10 の中性点 b を同心円状に挿入されたメ ッ シュ籠 5 (内径〜 50mm, ステンレス 20メ ッシュ) へ接続する。 Furthermore, the neutral point b of the symmetrical 12-phase AC power supply 10 is connected to a mesh basket 5 (inner diameter ~ 50 mm, stainless steel 20 mesh) inserted concentrically.
但し、 中性点 bはアースされず浮遊電位に保たれる。 これは、 電位差 が各分割電極 3 とメ ッシュ籠 5および分割電極 3間のみで生じるよ うに するためである。 However, the neutral point b is not grounded and is kept at the floating potential. This is so that a potential difference is generated only between each divided electrode 3 and the mesh basket 5 and between the divided electrodes 3.
電極番号が円周方向に右回り に付けられ、 対応する番号を持つ相電圧 が各分割電極 3へ給電される。 Electrode numbers are given clockwise in the circumferential direction, and a phase voltage having a corresponding number is supplied to each divided electrode 3.
これによ り、 位相が 1 Z 12周期ずつずれていて振幅が同じ大きさの対 称 12相交流電流が 12枚の分割電極 3に供給される。 As a result, a symmetrical 12-phase alternating current having a phase shifted by 1 Z 12 periods and the same amplitude is supplied to the twelve divided electrodes 3.
主放電は各分割電極 3 と中性点電位のメ ッシュ籠 5間で生じ、 時間と
ともに位相の遅れる方向に移動し、 1 秒間に電源周波数(60 [Hz] )だけ回 転する。 放電によって生成されたプラズマは、 メ ッシュ籠 5のメ ッシュ を通し同心円状に中心に向かって中に入射する (拡散する)。 The main discharge occurs between each divided electrode 3 and the mesh basket 5 at neutral point potential, Both move in the direction of phase delay and rotate by the power supply frequency (60 [Hz]) per second. The plasma generated by the discharge passes through the mesh of the mesh basket 5 and enters (diffuses) concentrically toward the center.
多相交流放電によるプラズマ生成法は、 次のような特徴を持つ。 The plasma generation method using multi-phase AC discharge has the following features.
(a)低周波にも拘わらず放電休止の無い、時間変動の小さい直流的なブラ ズマの生成が可能である。 (a) It is possible to generate DC-like plasma with little time fluctuation without discharge pause despite low frequency.
( b )位相が異なる複数の電極に電力が時間分割的に分散給電され、時間平 均的に広範囲の空間領域へ均一なプラズマの生成が可能。 プラズマが電 源周波数で回転しながら生成される。 (b) Electric power is distributed and supplied to a plurality of electrodes having different phases in a time-divisional manner, and uniform plasma can be generated over a wide space area on a time-average basis. Plasma is generated while rotating at the power frequency.
(c)周波数が低いので電源を低コス トで大容量化が容易。大体積のプラズ マを低コス トで生成できる。 (c) Since the frequency is low, the power supply is low cost and large capacity is easy. Large volume plasma can be generated at low cost.
ガス注入口 8は、 図 4に示すガス供給装置 11 のガス供給管 12に接続 する。 The gas inlet 8 is connected to a gas supply pipe 12 of a gas supply device 11 shown in FIG.
ガス供給装置 11 ίま、へノヽ。フィノレタ(HEPA:High Eff icieNcy Particle Air filter, 0.3 μ raの粒子の捕集率が 99.97 %以上のフィルタ) 13 と、 シリ 力ゲルを充填したエア乾燥管 14を通して、 雑菌 ·水分が除去された無菌 の乾燥空気を真空容器 1 内に導入する。 Gas supply device 11 Aseptic from which various bacteria and water are removed through finoleta (HEPA: High EfficieNcy Particle Air filter, a filter with a collection rate of 0.3 μra of particles of 99.97% or more) 13 and an air drying tube 14 filled with silica gel Is introduced into the vacuum vessel 1.
一定量の空気を流入させて真空容器 1 内のガス圧力を一定にする時は- 排気側の真空バルブ (図示しない) を閉め切らず、 フ ローメータ 15の付 いている側から空気を導入する。 このとき、 プラグバルブ V I を開いて プラグバルブ V 2を閉じる。 When a certain amount of air is allowed to flow and the gas pressure in the vacuum vessel 1 is kept constant:-Do not close the vacuum valve (not shown) on the exhaust side, and introduce air from the side with the flow meter 15. At this time, open plug valve V I and close plug valve V 2.
酸化ェチレンガスは、 液体の液化酸化ェチレン 16を一度気化器 17に 導入し室温でガス化してから真空容器 1内へ導入する。 この とき、 ブラ グバルブ V 1 を閉じてプラグバルブ V 2を開く。 As for the ethylene oxide gas, a liquid liquefied ethylene oxide 16 is once introduced into the vaporizer 17, gasified at room temperature, and then introduced into the vacuum vessel 1. At this time, close the plug valve V1 and open the plug valve V2.
二酸化炭素 80%と酸化エチレンガス 20%の混合ガスを真空容器 1へ 導入するときは、 配管を気化器の手前で接続し直す。 ガスの注入速さは
プラグバルブ V 2によ り調整する。 When introducing a mixed gas of 80% carbon dioxide and 20% ethylene oxide gas into the vacuum vessel 1, reconnect the piping before the vaporizer. The gas injection speed is Adjust with plug valve V2.
図 5に、 本発明を実施したガス滅菌法の工程曲線図を示す。 FIG. 5 shows a process curve diagram of the gas sterilization method according to the present invention.
ガス滅菌法は、 低圧下の滅菌室に酸素元素を含む気体を供給してブラ ズマを発生させる前処理工程①と、 低圧下の滅菌室に滅菌ガスを供給す る滅菌工程②と、 再び低圧下の滅菌室に酸素元素を含む気体を供給して プラズマを発生させる後処理工程③で構成する。 The gas sterilization method includes a pretreatment step of supplying plasma containing an oxygen element to a sterilization chamber under low pressure to generate plasma, a sterilization step of supplying a sterilization gas to the sterilization chamber at low pressure, and a low pressure again. It consists of a post-processing step (3) in which a gas containing oxygen element is supplied to the lower sterilization chamber to generate plasma.
前処理工程①は、 プラズマ中で発生する化学的に活性な状態にある酸 素によ り被滅菌物 6 (微生物)表面の化学的反応性を増大させる工程で、 初めに、 メ ッシュ籠 5 の中へ被滅菌物 6 をセッ ト して真空容器 1 を閉じ る。 ここで、 減圧時に、 装置の内壁ゃ揷入物表面に付着している水が蒸 発する過程で気化熱によ りそれらの表面で結露乃至氷結するのを防ぐた め、 二重管 4の中にお湯を流して装置内壁温度を 45°C程度に予め加温し ておく。 The pretreatment step (1) is a step of increasing the chemical reactivity of the surface of the material to be sterilized (microorganisms) by oxygen in a chemically active state generated in the plasma. Place the object to be sterilized 6 into the container and close the vacuum vessel 1. Here, at the time of decompression, in order to prevent water adhering to the inner wall of the apparatus from adhering to the inner wall surface of the apparatus from evaporating, the heat of vaporization prevents condensation or freezing on those surfaces. Pour hot water and preheat the inner wall temperature of the equipment to about 45 ° C.
次に、真空容器 1内部を曲線 21に示すよ う に 0. 02Torr ( 1 /38, 000気圧) 程度まで減圧し、 へパフィルタ 13 とエア乾燥管 14を通して水および雑 菌を除去しながら外気 (空気) を真空容器 1 内に導入し、 曲線 22に示す よ うに、 0. 25Torr ( 1 /3, 000 気圧)まで充填する。 このとき、 空気以外に 酸素、 二酸化炭素などの酸素元素を含む気体を真空容器 1内に導入して もよい。 Next, the pressure inside the vacuum vessel 1 is reduced to about 0.02 Torr (1 / 38,000 atm) as shown by a curve 21, and the outside air is removed while removing water and bacteria through a hepa filter 13 and an air drying pipe 14. Air) into vacuum vessel 1 and fill to 0.25 Torr (1 / 3,000 atmospheres) as shown by curve 22. At this time, a gas containing an oxygen element such as oxygen or carbon dioxide other than air may be introduced into the vacuum vessel 1.
この圧力値程度に設定する理由は、 ガスが空気の場合、 この圧力値近 傍で放電開始電圧が最小になるからである。 The reason why the pressure is set at about this pressure value is that when the gas is air, the discharge starting voltage becomes minimum near this pressure value.
次に、 12相交流電源 10 をオンにして、 分割電極 3 とメ ッシュ籠 5の 間で 12相交流放電を生成し、メ ッシュ籠 5 の中へプラズマを拡散させる c プラズマ中で生成された化学的に活性な状態にある酸素 (酸素原子ラ ジカルや励起酸素分子) を、 滅菌パックの細孔を透過させ、 被滅菌物 6 表面に作用させる。 被滅菌物 6表面から吸着物 (油脂、 水など) を脱離
させて表面の清浄化を行い、 被滅菌物 6表面を化学的に活性化する。 こ の過程である程度の被滅菌物 6の殺菌が行われる。 このときの放電電力 は 150W程度である。 Next, the 12-phase AC power supply 10 was turned on to generate a 12-phase AC discharge between the divided electrode 3 and the mesh basket 5, and the plasma was generated in the c- plasma, which diffused the plasma into the mesh basket 5. Chemically active oxygen (oxygen atomic radicals and excited oxygen molecules) penetrates the pores of the sterilization pack and acts on the surface of the object 6 to be sterilized. Desorb adsorbed substances (oil, water, etc.) from the surface of the material to be sterilized 6 Then, the surface is cleaned, and the surface of the object to be sterilized 6 is chemically activated. In this process, a certain degree of sterilization of the material 6 to be sterilized is performed. The discharge power at this time is about 150W.
放電を連続して行う と、 放電中のガス放出によるガス圧力の上昇およ び放電中の熱の発生によるプラスチック製サンプルの溶融などの問題が 起きる。 If discharge is performed continuously, problems such as an increase in gas pressure due to gas release during discharge and melting of a plastic sample due to generation of heat during discharge will occur.
そのため、 曲線 22、 23、 24に示すよ うに、 放電プラズマ発生中のガス の発生による放電条件の変化を防ぎ、 また、 装置内部の加熱を抑制する ために、 放電を幾度か間歇的に行う。 放電を 5分間程度行い、 一旦、 装 置内部のガスを排気し、 0. 02Torr程度まで減圧した後、 空気を大気圧ま で導入する。 Therefore, as shown by the curves 22, 23, and 24, the discharge is performed several times intermittently in order to prevent the change of the discharge condition due to the generation of gas during the discharge plasma generation and to suppress the heating inside the device. Discharge for about 5 minutes, once exhaust the gas inside the device, reduce the pressure to about 0.02 Torr, and then introduce air to atmospheric pressure.
これを 1サイクルと して 4回程度行い、延べ 20分間程度の放電を行う。 この時間は、 全体の滅菌処理時間を 1 時間程度と想定した上での長さで ある。 ここで、 ガスや熱の発生の問題が小さい場合は、 連続的に放電プ ラズマ発生させても構わない。 This is performed about four times in one cycle, and discharge is performed for a total of about 20 minutes. This time is a length based on the assumption that the entire sterilization time is about 1 hour. Here, when the problem of generation of gas or heat is small, discharge plasma may be continuously generated.
滅菌工程②は、 低濃度酸化エチレンガスを被滅菌物 6 の近傍へ拡散し て付着させる工程で、 真空容器 1 の二重管 4を加温した状態で、 前処理 工程で真空容器 1 内部に溜まったガスを排気し、 曲線 24 に示すよ うに 0.* 02Torrまで減圧する。 The sterilization process (1) is a process in which low-concentration ethylene oxide gas is diffused and adhered to the vicinity of the material to be sterilized (6). Exhaust the accumulated gas and reduce the pressure to 0. * 02 Torr as shown in curve 24.
次に、 酸化エチレンガス (純度〜 100 % ) を真空容器 1 内へ導入し、 曲 線 25に示すよ うに、 最大で 7. 6Torr ( 1 / 100気圧)のガス圧力まで充填す る。 ここで、 導入する酸化エチレンが液体状態の場合、 ー且、 気化皿で 受けガス化し、 液体のまま真空容器内に噴射されるのを避ける。 Next, an ethylene oxide gas (purity 100100%) is introduced into the vacuum vessel 1 and filled up to a maximum gas pressure of 7.6 Torr (1/100 atm) as shown by a curve 25. Here, when the ethylene oxide to be introduced is in a liquid state, it is received and gasified in a vaporization dish, and is prevented from being injected as a liquid into the vacuum vessel.
次に、 真空容器 1 の二重管 4の温度を 45度から 50度の範囲内に保持 し、 酸化エチレンガスを熱で活性化しながら、 被滅菌物 6内部深くまで 拡散 · 浸透させ、 前処理工程で清浄化された被滅菌物 6表面に酸化ェチ
レンガスを吸着させる。 この過程で、 酸化エチレンガスによる被滅菌物Next, the temperature of the double tube 4 of the vacuum vessel 1 is kept within a range of 45 to 50 degrees, and while the ethylene oxide gas is activated by heat, the ethylene oxide gas is diffused and penetrated deep inside the object 6 to be sterilized, and pretreatment 6 The surface of the object to be sterilized cleaned in the process Adsorb Len gas. In this process, the material to be sterilized by ethylene oxide gas
6の主殺菌 · 滅菌が行われる。 全体の処理時間を 1時間程度と想定し、 拡散時間を 20分程度にする。 6. Main sterilization and sterilization are performed. Assuming that the entire processing time is about 1 hour, the diffusion time is about 20 minutes.
被滅菌物 6が狭窄構造をした細長いカテーテルなどのチューブ類の場 合は、 真空含浸法を利用すると、 狭窄構造の内部まで隈なく酸化工チレ ンガスを押し込むこ とができる。 真空含浸法は、 変圧器やコンデンサ内 部へ絶縁油をしみ込ませる場合などに利用されている公知の手法で、 本 件の場合、 排気した低圧力状態の滅菌室に滅菌ガスを供給後、 15分間ほ ど経過したら、 大気圧力の空気を滅菌室に一気に導入することによ り、 滅菌ガスを被滅菌物に奥深く押し込み、 拡散 · 浸透させる。 . 拡散終了後は、 装置内部の酸化エチ レンガスを排気し、 0. 02Torr程度 まで減圧する。 こ こで、 排気過程で装置外に出る酸化エチレンガスを水 の中にバブリ ングさせ、 エチレングリ コールと して回収する。 In the case where the material 6 to be sterilized is a tube such as an elongated catheter having a stenotic structure, the oxidized titanium gas can be pushed into the entire stenosis structure by using the vacuum impregnation method. The vacuum impregnation method is a well-known method used to impregnate insulating oil into the interior of a transformer or a capacitor. In this case, after supplying a sterilized gas to a evacuated low-pressure sterilization chamber, the vacuum impregnation method is used. After about a minute, air at atmospheric pressure is blown into the sterilization chamber at once to push the sterilizing gas deep into the material to be diffused and permeate. After the diffusion is completed, exhaust the ethylene oxide gas inside the device and reduce the pressure to about 0.02 Torr. Here, the ethylene oxide gas that goes out of the device during the exhaust process is bubbled into water and collected as ethylene glycol.
酸化エチレンガス圧力値は、曲線 26に示すよ うに充填直後から時間と と もに指数関数的に下がる。 これは、 酸化エチ レンガスが真空容器 1内 へ拡散しながらサンプル表面などへ吸着することを示す。 酸化エチレン ガスは吸着性の強いガスと して知られている。 ガスの減少量、 即ち、 吸 着量は、酸化エチレンガスの初期充填圧力が高いほど大きく なる。また、 前処理工程①を施した場合の吸着量は、そう しない場合よ り大きく なる。 As shown in curve 26, the ethylene oxide gas pressure value decreases exponentially with time immediately after filling. This indicates that the ethylene oxide gas is adsorbed on the sample surface while diffusing into the vacuum vessel 1. Ethylene oxide gas is known as a highly adsorptive gas. The amount of gas reduction, that is, the amount of adsorption increases as the initial filling pressure of the ethylene oxide gas increases. In addition, the amount of adsorption when the pretreatment step (1) is performed is larger than when the pretreatment step is not performed.
また酸化エチ レンによる酸化の程度によ り抵抗値が変わる金属薄膜 (亜鉛、銅、 鉄など) を利用すれば、 滅菌処理の達成度をモニタできる。 金属薄膜の抵抗値から酸化の程度が検出でき、 酸化の程度から滅菌の程 度が推定できるので、 滅菌の程度が充分でない場合には、 処理時間を延 長するなどの処置をとる。 If a metal thin film (zinc, copper, iron, etc.) whose resistance changes depending on the degree of oxidation by ethylene oxide is used, the achievement of sterilization can be monitored. The degree of oxidation can be detected from the resistance value of the metal thin film, and the degree of sterilization can be estimated from the degree of oxidation. If the degree of sterilization is not sufficient, take measures such as extending the treatment time.
後処理工程③は、 初期プラズマによる吸着酸化エチレンの化学的活性 化およびそれによる滅菌と、 プラズマによる残留 (吸着) 酸化エチレン
ガスの分解および脱離を行う工程で、 真空容器 1 の二重管 4を加温した 状態で、 滅菌工程で充填した酸化工チレンガスを排気し、 曲線 27に示す よう に 0. 02Torrまで、減圧する。 The post-treatment process ③ consists of chemical activation of the adsorbed ethylene oxide by the initial plasma and sterilization by it, and residual (adsorbed) ethylene oxide by the plasma. In the process of decomposing and desorbing gas, with the double pipe 4 of the vacuum vessel 1 heated, the oxidized titanium gas filled in the sterilization process was exhausted, and the pressure was reduced to 0.02 Torr as shown by curve 27. I do.
次に、 へパフィルタ 13 とエア乾燥管 14を通して水および雑菌を除去 した後、 外気 (空気) を真空容器 1 内に導入し、 曲線 28 に示すよ うに 0. 25Torrまで充填する。 Next, after removing water and various bacteria through a hepa filter 13 and an air drying tube 14, outside air (air) is introduced into the vacuum vessel 1 and filled up to 0.25 Torr as shown by a curve 28.
この ときも同様に、 空気以外に酸素、 二酸化炭素などの酸素元素を含 む気体を真空容器 1 内に導入してもよい。 At this time, similarly, a gas containing an oxygen element such as oxygen or carbon dioxide other than air may be introduced into the vacuum vessel 1.
次に、 空気プラズマを装置内に発生させ、 プラズマ中で生成された化 学的に活性な状態にある酸素を、 装置内部および被滅菌物 6表面に残留 した酸化ェチレンに作用させ、 環境に無害な水と二酸化炭素に分解 · ガ ス化し離脱させる。 残留酸化エチ レンはそもそも少量なので、 5 分間程 度の放電プラズマを発生させる。 Next, air plasma is generated inside the device, and the chemically active oxygen generated in the plasma acts on the ethylene oxide remaining on the inside of the device and on the surface of the object to be sterilized 6 to be harmless to the environment. Decomposes into clean water and carbon dioxide. Since the residual ethylene oxide is small in the first place, a discharge plasma is generated for about 5 minutes.
こ こで、 プラズマ発生初期の段階において、 滅菌パッ クの細孔を透過 した化学的に活性な状態にある酸素が、 滅菌工程の拡散過程で被滅菌物 6表面に吸着した酸化エチ レンに作用し、 酸化ェチレンを化学的に活性 化する (炭素一酸素間結合を開烈させたりすること)。 その結果、 被滅菌 物 6表面と吸着酸化エチレンとが化学反応を起こ し、 被滅菌物 6 の殺 菌 · 滅菌が行われる。 Here, in the initial stage of plasma generation, oxygen in a chemically active state that has passed through the pores of the sterilization pack acts on the ethylene oxide adsorbed on the surface of the material 6 to be sterilized in the diffusion process of the sterilization process. Then, it chemically activates ethylene oxide (opening the carbon-oxygen bond). As a result, a chemical reaction occurs between the surface of the object 6 and the adsorbed ethylene oxide, and the object 6 is sterilized and sterilized.
空気プラズマ処理は必要に応じて複数回繰り返す。 例えば、 被滅菌物 の量が多く 、 そのために被滅菌物の表面に残留する酸化エチレン成分が 多い場合は、 5分間の空気プラズマ処理 1回だけでは、 残留酸化工チレ ン成分の分解 · 無害化が充分でないことが考えられる。 そのよ うな場合 には、 5分間の空気プラズマ処理を 2回以上行う。 The air plasma treatment is repeated a plurality of times as necessary. For example, if the amount of the material to be sterilized is large and the amount of ethylene oxide remaining on the surface of the material to be sterilized is large, a single air plasma treatment for 5 minutes will decompose and detoxify the remaining oxidized titanium components. May not be sufficient. In such a case, perform air plasma treatment twice or more for 5 minutes.
このよ う に 1回乃至複数回の空気プラズマ処理が終ったら、 真空容器 1内部に溜まったガスを排気し、 曲線 29に示すよ うに 0. 02Torrまで減
圧した後、 へパフィルタ 13 とエア乾燥管 14を通して水および雑菌を除 去しながら外気 (空気) を真空容器 1 内に導入し、 曲線 30に示すよ う に 大気圧に戻す。 After one or more air plasma treatments have been completed, the gas accumulated in the vacuum vessel 1 is exhausted and reduced to 0.02 Torr as shown by a curve 29. After the pressure is applied, outside air (air) is introduced into the vacuum vessel 1 while removing water and various bacteria through a hepa filter 13 and an air drying tube 14, and the pressure is returned to the atmospheric pressure as shown by a curve 30.
最後に真空容器 1 を開け、 被滅菌物 6 を取り 出す。 Finally, open the vacuum container 1 and remove the material 6 to be sterilized.
以下に本発明の実施例を示す。 " 本実施例における滅菌は、 ウィルスを含め、 全ての微生物を殺滅する プロセスをいう。 実際には、 滅菌は確率的な概念と して運用される。 予 め、 無菌性保証レベル (S t er i l i ty As suraNc e Leve l : SAL) を設定し単 位面積あたりの被滅菌物に生存する微生物の数と種類(バイォバーデン) およびその致死速度(菌数を 10分の 1 とするために必要な時間を D値と いう) から SALの達成される滅菌条件を計算して実施する。 Hereinafter, examples of the present invention will be described. "Sterilization in this example refers to the process of killing all microorganisms, including viruses. In practice, sterilization is operated as a probabilistic concept. erility As suraNc e Level (SAL) is set and the number and type of microorganisms (bioburden) that survive on the material to be sterilized per unit area (bioburden) and the mortality rate (required to reduce the number of bacteria to 1/10) The sterilization conditions to achieve SAL are calculated from the appropriate time and called the D value.
図 6に D値を利用した滅菌グラフの一例を示す。 Figure 6 shows an example of a sterilization graph using D values.
現在では SAL と して 10—6 ( 100万分の 1 ) が国際的に採用されており、 日本薬局方 13局追捕においても同じ概念が「最終滅菌方」に採用された。 これは、 滅菌操作後単位面積あたり の被滅菌物に、 1 個の微生物が生存 する確率が 100万回に 1回であることを意味する。 想定すべきバイォバ 一デンを知るには事前に適切な微生物モニタ リ ングを行わなければなら ないが、 多く の場合、 単位あたり 106個 (100万個) の菌数を想定し、 か つ致死速度の測定に、 その滅菌法に対して最も抵抗性の強い菌、 すなわ ち指標菌を用いることで運用されている。 Now is as a SAL 10- 6 (100 per million) has been adopted internationally, even in the Japanese Pharmacopoeia 13 stations add catching was adopted on the same concept of "terminal sterilization how". This means that the probability that a single microorganism survives on the material to be sterilized per unit area after the sterilization operation is once in 1,000,000 times. Although the know Baioba one den be assumed to be performed beforehand a suitable microbial monitoring-rings often assumed number of bacteria of 106 per unit (one million), or One lethal The speed is measured by using bacteria that are most resistant to the sterilization method, that is, indicator bacteria.
本実施例における酸化工チレンガスの滅菌作用は、 微生物を構成する 蛋白質(prot e iN)が酸化エチレンガスによ り アルキル化されるこ と によ るもので、 その滅菌反応の化学式を図 7に示す。 The sterilization effect of oxidized titanium gas in this example is based on the fact that proteins (prote iN) constituting microorganisms are alkylated by ethylene oxide gas, and the chemical formula of the sterilization reaction is shown in FIG. Show.
本実施例における滅菌効果の確認は、 滅菌装置内に生物学的イ ンジケ ータを挿入し行った。 生物学的インジケータと して、 3Mァテス ト TM1264 を使用した。 このインジケータの滅菌フィルタ蓋付き容器内には、 酸化
エチ レンガスに対 して最も抵抗性の強い菌株である枯草菌(Bacillus subtil is)が芽胞状態で 3.2X 106個格納されている。 The confirmation of the sterilization effect in this example was performed by inserting a biological indicator into the sterilizer. 3M Test TM1264 was used as a biological indicator. Oxidation inside the container with a sterile filter lid on this indicator Bacillus subtilis and against the ethyl Rengasu the most resistant strong strain (Bacillus subtil is) is 3.2x 10 6 cells stored in spores state.
滅菌処理後、 37°Cの状態で 48時間培養し、 培養液が変色しなければ国 際無菌保証レベルの滅菌が達成されたこ とになる。 未滅菌の場合、 完全 増殖状態で黄色に変色する。 初期菌数に対する残存菌数の割合、 即ち各 滅菌工程における殺菌効果を、 生物学的イ ンジケータ培養時の完全増殖 状態に至るまでの時間差で知るこ とができる。 After sterilization, the cells are cultured at 37 ° C for 48 hours. If the culture solution does not change color, sterilization at an international level of sterility assurance has been achieved. If not sterilized, it will turn yellow when fully grown. The ratio of the number of remaining bacteria to the initial number of bacteria, that is, the bactericidal effect in each sterilization step, can be determined by the time difference until the biological indicator is fully grown at the time of culturing.
ここで、 芽胞状態について簡単に説明する。 Here, the spore state is briefly described.
細菌細胞は、 周囲の環境がその細菌の生育に不利な状況になる と、 死 滅していく のが一般的である。 しかし、 ある種の細菌は、 乾燥、 高温な どの環境条件が悪く なる と、 芽胞と呼ばれる状態にな り 生き延びる。 そ の耐性は物理的、 化学的刺激に対して強い抵抗性を持っている。 水分の 少ない濃厚な原形質と核を厚い殻で覆っており 、 乾燥熱、 消毒剤のよ う な化学薬品処理、紫外線、放射線照射に対して強い抵抗性がある。 120° (:、 15 分のオー ト ク レープで、 あらゆる芽胞は完全に死滅するが、 100°Cの 煮沸にも耐えるこ とができる。 Bacterial cells generally die when the surrounding environment is detrimental to their growth. However, certain types of bacteria survive in poor conditions, such as drought and high temperatures, when they become spores. Its resistance is strong against physical and chemical stimuli. It is covered with a thick shell with a low density of dense protoplasm and nucleus, and has strong resistance to drying heat, chemical treatments such as disinfectants, ultraviolet rays, and radiation. At 120 ° (:, 15 minutes autoclaving, all spores are completely killed, but can withstand boiling at 100 ° C.
細菌の培養において、 dt 時間における細菌の増殖分 dn は、 その時間 の細菌の数と増殖時間に比例するので、 In bacterial culture, the bacterial growth dn at dt time is proportional to the number of bacteria and the growth time at that time.
dn=andt ·■■ ( 1 ) dn = andt
と表わすことができ る。. 但し、 a は細菌の増殖定数とする。 Can be expressed as Where a is the bacterial growth constant.
(1)式を積分するこ とによ り 、 By integrating equation (1),
差替え用紙(規則 2Θ
Replacement form (Rule 2Θ
Inn = at + c Inn = at + c
n^nQ exp( i) (2) とな り 、 (2) 式が得られる。 但し、 n。は培養時における細菌数の初期値 とする。 n ^ n Q exp (i) (2), and the equation (2) is obtained. Where n. Is the initial number of bacteria during culture.
ここで、 生物学的インジケータを培養した場合に、 培養液の色が完全 増殖状態で黄色に変色した時の細菌の数を とおき、 細菌数の初期値の 違いによる生物学的ィ ンジケータの培養液が黄色に変色するまでの時間 の違いを考える。 初期値が nQ1及び n。2の場合に、 細菌数が #まで増殖す るまでの時間をそれぞれ 及び t2とする と、 Here, when the biological indicator is cultured, the number of bacteria when the color of the culture solution changes to yellow in a fully grown state is calculated, and the biological indicator is cultured according to the difference in the initial value of the number of bacteria. Consider the difference in the time until the solution turns yellow. Initial values are n Q1 and n. In the case of 2, when the time until you grow bacteria count up # respectively and t 2,
N = n02 exp(af2) (4) N = n 02 exp (af 2 ) (4)
と表される。 It is expressed as
図 8 に細菌数と培養時間の関係グラフを示す Figure 8 shows a graph showing the relationship between the number of bacteria and the culture time.
差きぇ 紙(規則 2
( 3 )式及ぴ(4)式よ り Paper (Rule 2 From equations (3) and (4)
となる。 (5 )式よ り培養結果における時間差 t 2_ t J は細菌数の初期値 n Becomes According to equation (5), the time difference t 2 _ t J in the culture result is the initial value n of the number of bacteria.
0 1、 n Q 2の比の対数に比例することがわかる。 0 1, n Q 2 of seen to be proportional to the logarithm of the ratio.
従って、 各工程における殺菌効果を、 初期菌数に対する残存菌数の割 合、 即ち、 生物学的インジケータ培養時の完全増殖状態に至るまでの時 間差から定量的に知ることができる。 Therefore, the bactericidal effect in each step can be quantitatively determined from the ratio of the number of residual bacteria to the initial number of bacteria, that is, the time difference until the biological indicator is fully grown during culture.
(実験例 1 ) (Experimental example 1)
空気プラズマにおける殺菌効果を確認するために、 以下の実験を行つ た。 The following experiment was performed to confirm the sterilization effect of air plasma.
前記の生物学的インジケータを滅菌装置内へセッ ト し、 空気プラズマ のみによる処理実験を行い、 その殺菌効果を生物学的インジケータを培 養して調べた。 The biological indicator was set in a sterilizer, a treatment experiment using only air plasma was performed, and the sterilizing effect was examined by cultivating the biological indicator.
一方、 放電 . プラズマ発生に伴う生物学的イ ンジケータの温度上昇を 測定すると ともに、 温度上昇による殺菌効果の有無を調べるために、 生 物学的インジケータを大気圧下で恒温槽に入れ加熱し、 その効果の確認 実験を行った。 On the other hand, in order to measure the temperature rise of the biological indicator due to the discharge and plasma generation, and to examine the sterilization effect due to the temperature rise, the biological indicator was put in a constant temperature bath at atmospheric pressure and heated. Confirmation of the effect An experiment was performed.
a . 実験方法 a. Experimental method
減圧時に、 装置内壁や滅菌物挿入用の籠表面に付着している水が蒸発 する過程で気化熱によ りそれらの表面で結露するのを防ぐため、 大気圧 下で滅菌装置を 45 °C程度に予め加温する。 装置二重壁内へお湯を'流すか、 或いは装置外壁に卷いた帯状ヒータで装置を加熱する。 装置全体が温ま つたら装置内の籠に被滅菌物である生.物学的ィンジケ一タを揷入し、 装 差替え用紙 (規則 2
つたら装置内の籠に被滅菌物である生物学的ィンジケ一タを揷入し、 装 置内部を 0. 02 [Torr]程度まで油回転真空ポンプで減圧する。 During depressurization, the sterilizer is operated at 45 ° C under atmospheric pressure to prevent water adhering to the inner wall of the device or the surface of the basket for inserting sterilized materials from condensing on the surface due to heat of vaporization during evaporation. Preheat to a degree. Hot water is poured into the double wall of the device, or the device is heated by a strip heater wound on the outer wall of the device. Once the entire device has warmed up, insert the biologic indicator to be sterilized into the basket inside the device and insert the replacement paper (Rule 2). Then, put the biological indicator, which is the object to be sterilized, into the basket inside the device and reduce the pressure inside the device to about 0.02 [Torr] using an oil rotary vacuum pump.
そして、 空気をへパフィルタおよびシリカゲルを通し、 それぞれ雑菌 および水分を除去しながら 0. 25 [Torr]まで導入する。 放電を発生させ、 5 分間継続した後、 一旦 0. 02 [Torr]まで排気 · 減圧し、 再び空気を 0. 25 [Torr]まで導入する。 Then, air is introduced through a hepafilter and silica gel to 0.25 [Torr] while removing various bacteria and moisture. Generate a discharge, and after continuing for 5 minutes, evacuate and reduce the pressure to 0.02 [Torr], and introduce air again to 0.25 [Torr].
これを 1サイクルの放電処理と して何回か繰り返す。 放電を間歇的に 行う理由は、 放電中のガス発生による圧力上昇に伴い放電条件が変化す るのを避けるためと、 内部にセッ ト された生物学的ィ ンジケ一タが放 電 . プラズマによ り過度に加熱されるのを防ぐためである。 This is repeated several times as one cycle of discharge treatment. The reason for performing the discharge intermittently is to prevent the discharge conditions from changing due to the pressure rise due to gas generation during the discharge, and to set the biological indicator set inside to the discharge plasma. This is to prevent overheating.
放電処理サイクルが終了したら、 へパフィルタおよびシリ力ゲルを通 し空気を実験装置內に大気圧になるまで導入する。 装置を開け中から生 物学的インジケータを取り 出す。この時、表面温度を熱電対で測定する。 When the discharge treatment cycle is completed, air is introduced into the experimental device (2) through the hepafilter and the silica gel until the atmospheric pressure is reached. Remove biological indicators while opening device. At this time, the surface temperature is measured with a thermocouple.
b . 生物学的インジケータによる殺菌効果の確認 b. Confirmation of sterilization effect by biological indicator
処理後の生物学的インジケータを規定の培養器に入れ、 完全繁殖に至 るまでの時間 を観測し、 処理過程における殺菌効果を調べた。 The biological indicator after treatment was placed in a specified incubator, and the time required for complete propagation was observed, and the bactericidal effect in the treatment process was examined.
図 9 (a)及ぴ(b)に空気プラズマの殺菌効果を示す。 ここで、 図(a)は、 第 1相の放電電流 (以後、 放電電流と記す) 及び放電電圧 (以後、 放電 電圧と記す) の実効値がそれぞれ 50 [mA]、 270 [V]、 そして全相にわたる 電力の総和の平均値 (以後、 放電電力値と記す) が 120 [W]の場合の結果 である。 一方、 図(b)は、 放電電流値、 放電電圧値及ぴ放電電力値がそれ ぞれ 60 [mA]、 285 [V]及び 150 [W]の場合である。 Figures 9 (a) and 9 (b) show the sterilization effect of air plasma. Here, Fig. (A) shows that the effective values of the first phase discharge current (hereinafter referred to as discharge current) and discharge voltage (hereinafter referred to as discharge voltage) are 50 [mA], 270 [V], and The results are for the case where the average value of the total power over all phases (hereinafter referred to as the discharge power value) is 120 [W]. On the other hand, FIG. 7B shows the case where the discharge current value, the discharge voltage value and the discharge power value are 60 [mA], 285 [V] and 150 [W], respectively.
図 9 (b)において、 棒グラフが 3本一組になっているのは、 生物学的ィ ンジケータが 3個装置内へ同時に揷入されたことを意味する。 生物学的 イ ンジケータの初期菌数にバラつきがあるので、 培養データの平均値か ら正しい結果を得たい為である。
図 9 (a)よ り、 空気プラズマ延べ処理時間が 1 5 分までの場合、 完全繁 殖到達時間 は無処理の場合よ り僅かに長く なるだけであるが、 延べ処 理時間が 20分を越すと、 到達時間 7Πま階段状に長く なることが分かる。 完全繁殖到達時間 ^の増大は殺菌効果が有るこ とを表すので、 滅菌パッ ク された被滅菌物を空気プラズマ雰囲気中にある時間放置するだけで、 ある程度の殺菌が行われることを示す。 しかし、 この空気プラズマ処理 時間を長く しても滅菌効果は増大しない。 In FIG. 9 (b), a set of three bar graphs means that three biological indicators were simultaneously inserted into the apparatus. This is because we want to obtain the correct result from the average value of the culture data because the initial bacterial count of the biological indicator varies. According to Fig. 9 (a), when the total treatment time of air plasma is up to 15 minutes, the time to reach full propagation is slightly longer than that without treatment, but the total treatment time is 20 minutes. It can be seen that the arrival time becomes longer in a stepped manner until it reaches 7 mm. Since an increase in the time to complete reproduction ^ indicates a sterilizing effect, it is shown that a certain degree of sterilization can be achieved simply by leaving the sterile-packed object in an air plasma atmosphere for a certain period of time. However, even if this air plasma treatment time is extended, the sterilization effect does not increase.
図 9 (b )よ り、 空気プラズマ延べ処理時間が 1 0 分を越すと完全繁殖到 達時間 が階段状に長く なり、 図 9 ( a)の場合よ り、 短い処理時間で殺菌 効果が出ることが分かる。処理時間が 1 5分よ り長い所での到達時間の長 さは、 図 9 (a)の場合に比べ 2 時間程度長く なるが、 大きな違いはない。 ここで、 プラズマを生成する放電電力は図 9 ( a)よ り 25 %大きい 1 50 [W] である。 放電電力を大きくすると、 滅菌前処理と しての空気プラズマ処 理工程時間を短く できるといえる。 As shown in Fig. 9 (b), when the total treatment time of the air plasma exceeds 10 minutes, the time to reach full propagation becomes longer in a stepwise manner, and the sterilization effect is obtained in a shorter treatment time than in Fig. 9 (a). You can see that. The length of the arrival time where the processing time is longer than 15 minutes is about two hours longer than in the case of Fig. 9 (a), but there is no significant difference. Here, the discharge power to generate plasma is 150 [W], which is 25% larger than that in Fig. 9 (a). It can be said that increasing the discharge power can shorten the air plasma treatment process time as pretreatment for sterilization.
図 1 0に、実験直後に取り出した生物学的ィンジケータの容器表面温度 と放電時間の関係を示す。 ここで、 放電電流値は 50 [mA]である。 温度の 測定は、 装置內が大気圧に戻された後、 取り 出されたインジケータ容器 表面に熱電対感温子が押し当られ行われた。 Figure 10 shows the relationship between the container surface temperature and the discharge time of the biological indicator taken out immediately after the experiment. Here, the discharge current value is 50 [mA]. The temperature was measured by returning the thermometer to the atmospheric pressure and then pressing a thermocouple thermocouple against the surface of the indicator container that was removed.
図 1 0 よ り 、生物学的インジケータ容器は空気プラズマに直接接触して いるので、 延べ放電処理時間が長く なるにつれプラズマにより加熱され ることが分かる。 しかし、 加熱温度はせいぜい 90 °C程度であり、 この加 温による芽胞状態にある本試験の生物学的インジケータ (枯草菌) への 影響 (殺菌) は小さいと考えられる。 From FIG. 10, it can be seen that since the biological indicator container is in direct contact with the air plasma, it is heated by the plasma as the total discharge processing time becomes longer. However, the heating temperature is at most about 90 ° C, and it is considered that the effect (killing) on the biological indicator (Bacillus subtilis) in this test in a spore state by this heating is small.
c . 大気圧下における生物学的インジケータの加温による殺菌効果 生物学的インジケータがその容器の加熱によ り、 殺菌効果を受けるか どうかを調べるために、 大気圧下で恒温槽に生物学的ィンジケータを入
れ試験した。 設定した温度になっている恒温槽に生物学的ィ ンジケータ を 30分間揷入し、 外へ取り 出した後、 培養器に入れ殺菌効果を調べた。 図 11に、 恒温槽温度に対する完全繁殖到達時間 の変化を示す。 生物 学的インジケータを入れた恒温槽温度を 100°C以上にすると、到達時間 の値が無処理の場合よ り長く なり、 加熱による殺菌効果が出てく ること が分かる。 こ こで、 恒温槽温度が 130°C以上になると生物学的イ ンジケ ータ の容器が変形し融け始める。 c. Bactericidal effect of heating the biological indicator under atmospheric pressure. To determine whether the biological indicator is sterilized by heating the container, place the biological indicator in a thermostat at atmospheric pressure. Insert indicator Tested. A biological indicator was introduced into a thermostat at the set temperature for 30 minutes, taken out, and placed in an incubator to examine the sterilizing effect. Figure 11 shows the change in the time required to reach full breeding with respect to the temperature of the thermostat. When the temperature of the thermostat containing the biological indicator is set to 100 ° C or more, the value of the arrival time becomes longer than that of the case without treatment, and it can be seen that the sterilization effect by heating is obtained. Here, when the temperature of the thermostat reaches 130 ° C or more, the container of the biological indicator starts to deform and melt.
図 1 1 の結果と図 9 (a)および(b)の空気プラズマの場合とを比べると、 完全繁殖到達時間 が長く なり始める温度および到達時間 の長さは、 それぞれ高く及び短い。 Comparing the results in Fig. 11 with the air plasmas in Figs. 9 (a) and (b), the temperature and the length of time at which the time to reach full breeding begins to increase are higher and shorter, respectively.
この結果よ り、 図 9 (a)および(b)の空気プラズマ処理において観測さ れた殺菌効果は、 生物学的インジケータ容器のプラズマによる加熱によ り引き起こされるのではなく 、 空気プラズマの存在そのものが関係した 何かによ り もたらされるといえる。 From this result, the bactericidal effect observed in the air plasma treatment of FIGS. 9 (a) and 9 (b) is not caused by the plasma heating of the biological indicator container, but by the presence of the air plasma itself. Can be brought about by something related to it.
(実験例 2 ) (Experimental example 2)
二酸化炭素 80 %と酸化エチレンガス 20 %の混合ガスを用いた場合の 殺菌効果を確認するために、 以下の実験を行った。 プラズマを生成する ガスの違いによ り、 どのよ うな変化が殺菌効果に現れるかを調べた。 The following experiment was performed to confirm the bactericidal effect when a mixed gas of 80% carbon dioxide and 20% ethylene oxide gas was used. We investigated what changes in the germicidal effect were caused by the different gases that generated the plasma.
a . 実験方法 a. Experimental method
大気圧下で滅菌装置を 45°C程度に予め加温した後、 実験装置内に生物 学的インジケータを挿入し、 装置内部を 0. 02 [Torr]程度まで油回転真空 ポンプで減圧する。二酸化炭素 80 %と酸化ェチレンガス 20 %の混合ガス を装置内に 0. 25 [ Torr] まで導入する。 放電を発生させ 5分間継続した 後、 ー且 0. 02 [Torr]まで排気 ·減圧し、 再び混合ガスを 0. 25 [Torr]まで 導入する。 これを 1 サイ クルの放電処理と して何回か繰り返す。 After pre-heating the sterilizer at about 45 ° C under atmospheric pressure, insert a biological indicator into the experimental equipment, and depressurize the inside of the equipment to about 0.02 [Torr] using an oil rotary vacuum pump. A gas mixture of 80% carbon dioxide and 20% ethylene oxide gas is introduced into the equipment up to 0.25 [Torr]. After the discharge was generated and continued for 5 minutes, the pressure was evacuated and reduced to 0.02 [Torr], and the mixed gas was introduced again to 0.25 [Torr]. This is repeated several times as one cycle of discharge treatment.
放電処理サイクルが終了したら、 へパフィルタおよびシリカゲルを通
し空気を実験装置内に大気圧になるまで導入する。 装置から学的インジ ケータを取り 出し、 表面温度を熱電対で測定した。 ここで、 生物学的ィ ンジケータの初期菌数にバラつきがあることを考慮して、 3 個のインジ ケータを同時に装置内へ挿入した。 At the end of the discharge cycle, pass through a hepafilter and silica gel. Then, air is introduced into the experimental apparatus until the pressure becomes atmospheric pressure. The indicator was removed from the instrument and the surface temperature was measured with a thermocouple. Here, considering that the initial bacterial count of the biological indicator varies, three indicators were simultaneously inserted into the apparatus.
b . 生物学的インジケータによる殺菌効果の確認 b. Confirmation of sterilization effect by biological indicator
図 12に、延べ放電時間に対する完全繁殖到達時間の実験結果を示す。 ここで、放電電流、放電電圧値および放電電力値は、それぞれ 50 [mA]、 285 [V]および 1 25 [W]である。 Fig. 12 shows the experimental results of the time required to reach complete propagation with respect to the total discharge time. Here, the discharge current, discharge voltage value and discharge power value are 50 [mA], 285 [V] and 125 [W], respectively.
放電電圧が空気プラズマの場合 (270 [V] ) に比べ大きく なつている。 二酸化炭素が一酸化炭素へ解離し、 放電エネルギーの一部が奪われるの で、 これを補うために電圧が上昇すると考えられる。 The discharge voltage is larger than in the case of air plasma (270 [V]). Carbon dioxide is dissociated into carbon monoxide, and some of the discharge energy is taken away, so the voltage is likely to rise to compensate for this.
図 12 よ り、 延べ処理時間が 10分を過ぎた頃から、 完全繁殖到達時間 ^が無処理の場合よ り長く なることが分かる。 図 9 (a)に示された空気プ ラズマの場合と比較すると、 混合ガスの場合は、 到達時間が長く なり始 める処理時間が 5分程度短く 、処理時間が 1 5分以降の到達時間は 2時間 程度長い。 しかし、 ほとんど同じよ うな値である。 From Fig. 12, it can be seen that the total breeding arrival time ^ becomes longer than the non-treatment time when the total treatment time exceeds 10 minutes. Compared to the case of the air plasma shown in Fig. 9 (a), in the case of the mixed gas, the arrival time is longer and the processing time to start is shorter by about 5 minutes, and the arrival time after the processing time is 15 minutes or more Is about 2 hours longer. However, they are almost the same value.
図 1 3に、実験直後に取り 出した生物学的インジケータの容器表面温度 と放電時間の関係を示す。 こ こで、 データがバラついているのは、 何回 かの実験における値を示しているからである。 放電電流値は 50 [mA]であ る。 延べ処理時間に対するインジケータ表面温度の上昇は、 図 10の空気 プラズマの場合と比べると同じよ う になつている。 Figure 13 shows the relationship between the vessel surface temperature and the discharge time of the biological indicator taken out immediately after the experiment. Here, the data are varied because they show the values in several experiments. The discharge current value is 50 [mA]. The increase in the indicator surface temperature with respect to the total processing time is the same as that in the case of the air plasma in Fig. 10.
図 1 2および図 1 3に示された結果よ り、 二酸化炭素 80 %、 酸化ェチレ ンガス 20 %の混合ガスプラズマにおいても、 空気プラズマの場合とほと んど同様な殺菌効果が生ずることが分かる。 これは、 二つの場合に共通 した要因によ り殺菌が引き起こされていることを示唆する。 The results shown in Fig. 12 and Fig. 13 show that almost the same germicidal effect can be obtained with the mixed gas plasma of 80% carbon dioxide and 20% ethylene oxide gas as with the air plasma. . This suggests that sterilization was caused by a factor common to the two cases.
滅菌効果が何によ り引き起こされるかについては、 いずれの場合も化
学的に活性な状態にある酸素に因る と考えられる。 空気プラズマにおい て、 構成成分である酸素分子から化学的に活性な状態にある酸素が生成 される。二酸化炭素 80 %と酸化ェチレン 20 %の混合ガスプラズマにおい て、 二酸化炭素が一酸化炭素と酸素に解離し化学的に活性な状態にある 酸素が生成される。 In each case, the cause of the sterilization effect is determined. It is thought to be due to oxygen being in a chemically active state. In air plasma, oxygen in a chemically active state is generated from the constituent oxygen molecules. In a mixed gas plasma of 80% carbon dioxide and 20% ethylene oxide, carbon dioxide is dissociated into carbon monoxide and oxygen, and oxygen that is chemically active is generated.
(実験例 3 ) (Experimental example 3)
酸化エチレンガスの拡散による殺菌効果を確認するために、 以下の実 験を行った。 The following experiment was performed to confirm the disinfection effect by diffusion of ethylene oxide gas.
先ず、 酸化エチレンガス拡散過程における酸化エチ レンガスの吸着特 性を調べた。 次に、 酸化エチレンガス拡散による殺菌実験において、 空 気プラズマ前処理無しと有りの二通り の場合についてその効果を調べた, ( 1 ) 酸化エチレンガスの吸着特性 First, the adsorption characteristics of ethylene oxide gas in the ethylene oxide gas diffusion process were examined. Next, in a sterilization experiment by diffusion of ethylene oxide gas, the effect was examined in two cases, with and without air plasma pretreatment. (1) Adsorption characteristics of ethylene oxide gas
a . 実験方法 a. Experimental method
大気圧下で滅菌装置を 45°C程度に予め加温した後、 実験装置内に生物 学的イ ンジケータを挿入し、装置内部を 0. 02 [Torr]程度まで油回転真空 ポ.ンプで減圧した。 After pre-warming the sterilizer to approximately 45 ° C under atmospheric pressure, insert a biological indicator into the experimental device, and depressurize the inside of the device to approximately 0.02 [Torr] using an oil rotary vacuum pump. did.
先ず、 酸化エチレンガス を装置内へ 0. 25 [Torr]まで導入し、 20分間封 入 · 拡散させ、 空気プラズマ前処理をしない場合の酸化エチレンガスの 吸着特性を調べた。 First, ethylene oxide gas was introduced into the apparatus to 0.25 [Torr], sealed and diffused for 20 minutes, and the adsorption characteristics of ethylene oxide gas without air plasma pretreatment were examined.
次に、 空気プラズマによる前処理を施した後に、 酸化エチレンガスを 装置内へ 0. 25 [Torr]まで導入し、 20分間封入 ·拡散させ、 酸化エチレン ガスの吸着特性を調べた。 Next, after pretreatment with air plasma, ethylene oxide gas was introduced into the apparatus up to 0.25 [Torr], sealed and diffused for 20 minutes, and the adsorption characteristics of ethylene oxide gas were examined.
更に、 空気プラズマによる前処理を 10分間施した後に、 酸化エチレン ガスを幾通りかの圧力値まで導入し、 10分間封入 ·拡散させ、 初期濃度 の違いによる酸化エチレンガスの吸着特性の変化を調べた。 Furthermore, after pretreatment with air plasma for 10 minutes, ethylene oxide gas was introduced to several pressure values, sealed and diffused for 10 minutes, and the change in the adsorption characteristics of ethylene oxide gas due to the difference in initial concentration was investigated. Was.
b . 実験結果
図 14に、 酸化ェチレンガス圧力の時間変化 (吸着特性) を示す。 ここ で、 破線で結んだデータは空気プラズマ前処理を施さない状態で酸化工 チレンガスを封入 · 拡散させた場合の圧力値である。 一方、 実線で結ん だデータは空気プラズマ前処理 (延べ処理時間 20分) を行った後に酸化 エチレンガスを封入 · 拡散させた場合のそれである。 b. Experimental results Figure 14 shows the change over time (adsorption characteristics) of the ethylene oxide gas pressure. Here, the data connected by the broken line is the pressure value when the oxidized titanium gas is sealed and diffused without performing the air plasma pretreatment. On the other hand, the data connected by the solid line is the data when ethylene oxide gas is encapsulated and diffused after air plasma pretreatment (total treatment time: 20 minutes).
図 14よ り、 空気プラズマ前処理有りの場合は無しの場合よ り、 酸化工 チレンガス圧力の減少が大きいことが分かる。 ガス圧力の減少分から拡 散終了時 (20分後) の酸化エチレンガスの吸着量を計算すると、 空気プ ラズマ前処理の場合が 1 1. 6mg、 空気プラズマ前処理無しの場合が 4. 8mg となる。 こ こで、 装置内容量を 5. 5 リ ッ トル、 装置内における酸化ェチ レンガス温度を 45°Cと した。 From Fig. 14, it can be seen that the decrease in oxidized titanium gas pressure is greater with and without air plasma pretreatment than without. The amount of ethylene oxide gas adsorbed at the end of diffusion (after 20 minutes) was calculated from the decrease in gas pressure. The calculated value was 11.6 mg for air plasma pretreatment and 4.8 mg for no air plasma pretreatment. Become. Here, the capacity in the apparatus was set to 5.5 liters, and the temperature of the ethylene oxide gas in the apparatus was set to 45 ° C.
空気プラズマ前処理による酸化エチレン吸着量の増加は、 空気プラズ マによ り装置内部がク リーニングされ、装置内部に存在する物体表面(被 滅菌物である生物学的ィ.ンジケータも含めて)の化学的反応性が上がり、 酸化エチレンガスが吸着し易く なったからだと考えられる。 The increase in the amount of ethylene oxide adsorbed by the air plasma pretreatment is due to the fact that the inside of the device is cleaned by the air plasma and the surface of the object (including the biological indicator, which is the object to be sterilized) inside the device. This is probably because the chemical reactivity increased and ethylene oxide gas was easily adsorbed.
図 15に、初期封入圧力に対する酸化エチレンガスの吸着量の変化を示 す。 ここで、 空気ブラズマ前処理の延べ時間は 10分、 封入 ·拡散時間は 10 分である。 図 15 よ り、 初期封入圧力が低いと、 酸化ェチレンガスの 吸着量も小さく なることが分かる。 Figure 15 shows the change in the amount of ethylene oxide gas adsorbed against the initial filling pressure. Here, the total time for air plasma pretreatment is 10 minutes, and the encapsulation and diffusion time is 10 minutes. From Fig. 15, it can be seen that the lower the initial filling pressure, the smaller the adsorption amount of ethylene oxide gas.
一方、 図 1 5の初期封入圧力値が 0. 76 [Torr]の場合の 10分後のガス圧 力値と、図 14 の空気プラズマ前処理有りで同じ封入時間におけるガス圧 力値を比較する と、 図 14の場合の方が低いことが分かる。 この違いは、 空気プラズマ前処理の延べ時間の違いに因るものと考えられる。 何故な らば、 図 15 の場合は 10分間で図 14 の場合は 20分間である。 空気ブラ ズマ前処理が短いと (但し、 装置内部の清浄化がまだ充分でない時間帯 において)、 内部表面の化学的反応性の活性化が不充分で、 酸化エチレン
が吸着され難いと考えられる。 On the other hand, the gas pressure value after 10 minutes when the initial filling pressure value in Fig. 15 is 0.76 [Torr] and the gas pressure value at the same filling time with air plasma pretreatment shown in Fig. 14 are compared. It can be seen that the case of FIG. 14 is lower. This difference is thought to be due to the difference in the total time of air plasma pretreatment. This is because in Fig. 15 it is 10 minutes and in Fig. 14 it is 20 minutes. If the air plasma pretreatment is short (but during the time when the inside of the equipment is not sufficiently cleaned), the activation of the chemical reactivity of the inside surface is insufficient and ethylene oxide is not used. Is considered to be difficult to be adsorbed.
( 2 ) 酸化エチレンガス拡散の殺菌効果 (2) Sterilization effect of ethylene oxide gas diffusion
a . 実験方法 a. Experimental method
図 16 (a)および(b)に、 酸化エチレンガス拡散による殺菌効果を調べる 実験工程を示す。 Fig. 16 (a) and (b) show the experimental steps for examining the bactericidal effect of ethylene oxide gas diffusion.
ここで、 酸化エチレンガスの初期封入圧力は 7. 6 [Torr]および拡散時 間は 20分である。 Here, the initial filling pressure of ethylene oxide gas is 7.6 [Torr] and the diffusion time is 20 minutes.
図 16 (a)は空気プラズマ前処理無しの場合で、 純粋に酸化エチレンガ ス拡散のみによる工程である。 図 16 (b)は空気プラズマ前処理と酸化工 チレンガス拡散を施した場合の工程である。 Fig. 16 (a) shows the case without air plasma pretreatment, which is a process using pure ethylene oxide gas diffusion alone. Fig. 16 (b) shows the process when air plasma pretreatment and oxidation gas diffusion are performed.
図 16 (a)において、大気圧下で滅菌装置を 45°C程度に予め加温する時、 装置内に生物学的インジケータを予め挿入し加温しておいた。 これは、 図 16 (b)の工程において、 生物学的インジケータが空気プラズマ前処理 工程で加温されるのを考慮し、 温度条件を同じょ うにするためである。 In FIG. 16 (a), when the sterilizer was previously heated to about 45 ° C. under atmospheric pressure, a biological indicator was inserted into the apparatus in advance and heated. This is to make the temperature conditions the same in consideration of the biological indicator being heated in the air plasma pretreatment step in the step of FIG. 16 (b).
図 16 (b)において、 空気プラズマ前処理延べ時間を 20分 (4サイクル 放電) と した。 In Fig. 16 (b), the total time of air plasma pretreatment was set to 20 minutes (4 cycles of discharge).
b . 実験結果 b. Experimental results
図 17に、 各工程処理後の生物学的インジケータの完全繁殖到達時間 ^ を示す。 工程 1は空気プラズマ前処理 (延べ時間 20分) 工程を、 工程 2 は酸化エチレンガス拡散処理工程を表す。 工程 1 +工程 2は、 二つの処理 工程を続けて施すことを表す。 ここで、 工程 1における、 放電電流、 放 電電圧値はそれぞれ 50 [mA]、 270 [V]である。 放電電力値は凡そ 120 [W] である。 FIG. 17 shows the time to reach full propagation ^ of the biological indicator after each step treatment. Step 1 represents the air plasma pretreatment (total time 20 minutes) step, and step 2 represents the ethylene oxide gas diffusion treatment step. Step 1 + Step 2 means that two processing steps are performed successively. Here, the discharge current and the discharge voltage value in step 1 are 50 [mA] and 270 [V], respectively. The discharge power value is about 120 [W].
図 17 より、 工程 1および工程 2を合わせた工程における殺菌効果が、 それぞれの工程が単独で持つ殺菌効果よ り大きく なることが分かる。 ェ 程 2、 即ち、 生物学的インジケータを予め 45 °C程度に加温し、 装置を真
空 (0. 02 [Torr] ) にした状態で、 低濃度 (7. 6 [Torr] ) の酸化エチレンガ スを導入 ' 拡散させる工程において、 単独工程でもある程度の殺菌効果 がある。 From FIG. 17, it can be seen that the bactericidal effect in the combined step 1 and step 2 is greater than the bactericidal effect of each step alone. Step 2, i.e., preheat the biological indicator to about 45 ° C and clean the device. In the process of introducing and diffusing low-concentration (7.6 [Torr]) ethylene oxide in the state of empty (0.02 [Torr]), even a single process has a certain sterilization effect.
二つの工程を合わせると大きな殺菌効果がもたらされる理由と して、 工程 1 の空気プラズマ前処理によ り装置内部 (被滅菌物も含む) が清浄 化されその表面の化学的反応性が高まるために、 工程 2における酸化工 チレンガスの吸着量が増え、 酸化エチレンガスによる殺菌効果が大きく なったためと考えられる。 The reason why the two processes combine to provide a large sterilization effect is that the air plasma pretreatment in process 1 cleans the inside of the equipment (including the material to be sterilized) and increases the chemical reactivity of its surface. In addition, it is probable that the adsorption amount of oxidized titanium gas in step 2 increased, and the sterilization effect of ethylene oxide gas increased.
図 18に、 空気プラズマ前処理 (延べ時間 20分) 工程における放電電 流を 60 [mA]にした場合の、 各工程処理後の生物学的イ ンジケータの完全 繁殖到達時間 を示す。 こ こで、 工程 1 における、 放電電圧値は、 285 [V ] である。 放電電力値は凡そ 1 50 [W]である。 Figure 18 shows the time required for the biological indicator to reach full propagation after each process when the discharge current was 60 mA in the air plasma pretreatment process (total time 20 minutes). Here, the discharge voltage value in step 1 is 285 [V]. The discharge power value is about 150 [W].
図 18 よ り 、放電電圧が大きく なると、即ち、投入電力が大きく なる と、 空気プラズマ前処理工程 1 と酸化エチレン拡散処理工程 2を合わせたェ 程において、 完全繁殖到達時間 N 48時間以上 (実際には何日経つても 変化無し) となり 、 完全滅菌が達成されることが分かる。 As can be seen from FIG. 18, when the discharge voltage is increased, that is, when the input power is increased, in the process of combining the air plasma pretreatment step 1 and the ethylene oxide diffusion treatment step 2, the time required to reach full propagation N 48 hours or more No change for many days), indicating that complete sterilization is achieved.
この結果は、 空気プラズマによる前処理工程が効果的に行われる と、 低濃度の酸化エチ レンガスによ り高速 (20分程度) に滅菌処理を遂行で きることを示す。 このことは、 本発明における最も重要な結果の一つで ある。 This result indicates that if the pretreatment process using air plasma is performed effectively, sterilization can be performed at a high speed (about 20 minutes) using low-concentration ethylene oxide gas. This is one of the most important results in the present invention.
(実験例 4 ) (Experimental example 4)
空気プラズマ後処理工程における殺菌効果を確認するために、 以下の 実験を行った。 The following experiment was conducted to confirm the sterilization effect in the air plasma post-treatment process.
以下に、 空気プラズマ前処理工程①を行わずに、 酸化エチレンガス拡 散工程②と空気プラズマ後処理工程③のみを行った場合の実験結果( 1 ) と、 工程①、 工程②および工程③の全工程を行った場合の実験結果 ( 2 )
を示す。 The experimental results (1) when only the ethylene oxide gas diffusion step (2) and the air plasma post-treatment step (3) were performed without performing the air plasma pre-treatment step (1), and the results of steps (2), (3), and (3) Experimental results when all processes were performed (2) Is shown.
( 1 ) 酸化ェチレンガス拡散と空気プラズマ後処理のみの場合の実験結 果 (1) Experimental results with only ethylene oxide gas diffusion and air plasma post-treatment
図 19および図 20に、 酸化エチレンガス拡散工程②の後に加えた短時 間の空気プラズマ後処理工程③の殺菌効果を調べるための実験工程、 お よびその時の実験結果をそれぞれ示す。 Figures 19 and 20 show the experimental process for examining the sterilizing effect of the short-time air plasma post-treatment process ③ added after the ethylene oxide gas diffusion process ②, and the experimental results at that time, respectively.
こ こで、 酸化エチレンガスの初期封入圧力は 7. 6 [Torr]、 拡散時間は 20分である。 空気プラズマ後処理時間は 5分、 放電電流は 50 [mA]、 放電 電圧は 270 [V]、 および放電電力は凡そ 120 [W]である。 Here, the initial filling pressure of ethylene oxide gas is 7.6 [Torr], and the diffusion time is 20 minutes. The air plasma post-treatment time is 5 minutes, the discharge current is 50 [mA], the discharge voltage is 270 [V], and the discharge power is about 120 [W].
図 20 の結果よ り、酸化ェチレンガス拡散工程 2における初期封入圧力 が高く なるにつれ空気プラズマ後処理工程 3を施した後に現れる殺菌効 果が大きく なることが分かる。 From the results shown in FIG. 20, it can be seen that the sterilizing effect that appears after the air plasma post-treatment step 3 increases as the initial filling pressure in the ethylene oxide gas diffusion step 2 increases.
こ こで、酸化エチレンガス封入初期圧力が 7 . 6 [Torr]の場合の完全繁 殖到達時間 ま 28時間である。 一方、 図 17に示された同条件における 酸化エチレン拡散工程 2のみによる場合は 18. 5時間、 また、 図 17に示 された空気プラズマ前処理工程 1 (延べ 20 分) と工程 2による場合は 28時間である。 これらの到達時間の比較から、 空気プラズマ後処理のェ 程時間は 5分と短いにもかかわらず、 この工程における殺菌効果は大変 大きく 、 効率的であることが分かる。 Here, when the initial pressure of filling ethylene oxide gas is 7.6 [Torr], the time to reach full propagation is 28 hours. On the other hand, 18.5 hours when only the ethylene oxide diffusion step 2 under the same conditions shown in Fig. 17 was used, and 18.5 hours when the air plasma pretreatment steps 1 (total 20 minutes) and step 2 shown in Fig. 17 were used. 28 hours. From the comparison of these arrival times, it can be seen that the sterilization effect in this step is very large and efficient, although the air plasma post-treatment step time is as short as 5 minutes.
実用上、 図 20において注目すべき点は、 データはバラついているが封 入圧力 3. 8 [Torr]においても殺菌効果が得られていることである。 この 圧力における酸化エチレンガス濃度は、 従来の酸化エチレンガス濃度の 約 1 / 100の値に相当する。 Practically, the point to be noted in Fig. 20 is that although the data varies, the sterilizing effect is obtained even at a sealing pressure of 3.8 [Torr]. The ethylene oxide gas concentration at this pressure is equivalent to about 1/100 of the conventional ethylene oxide gas concentration.
空気プラズマ後処理工程 3 の直前における酸化ェチレンの装置内吸着 残留量がどれ位であるかは不明である。 何故ならば、 酸化エチレンガス 拡散 · 吸着工程後の排気 · 減圧 (0. 02 [Torr] ) 過程で、 吸着した酸化工
チ レンの一部がガス化し排出されると考えられるからである。 It is unclear how much residual ethylene oxide adsorbed in the device immediately before air plasma post-treatment process 3. The reason is that the oxidizer that was adsorbed in the process of diffusion and decompression (0.02 [Torr]) of ethylene oxide gas diffusion and adsorption process This is because part of the styrene is likely to be gasified and discharged.
空気プラズマ後処理工程における殺菌機構と して、 残留した酸化ェチ レンが空気プラズマ中で生成される化学的に活性な状態にある酸素など によ り活性化され、 非滅菌物との化学反応性が促進される、 次のよ うな シナリオが考えられる。 As a sterilization mechanism in the air plasma post-treatment process, the remaining ethylene oxide is activated by chemically active oxygen and the like generated in the air plasma, causing a chemical reaction with non-sterile substances. The following scenarios can be considered in which the nature is promoted.
①酸化エチレンガス拡散工程 2において被滅菌物の近傍に酸化ェチレン が吸着し、 真空排気後もその一部が気化せず残留する。 (1) Ethylene oxide is adsorbed in the vicinity of the material to be sterilized in the ethylene oxide gas diffusion step 2, and a part of it remains without vaporization even after evacuation.
②被滅菌物の近傍に残留した酸化エチレンは、 後処理工程 3の空気ブラ ズマにおいて発生する化学的に活性な状態にある酸素や粒子と して振舞 う高エネルギーの電子、 イオンなどの衝擊(作用)を受ける。 (2) Ethylene oxide remaining in the vicinity of the material to be sterilized impinges on high-energy electrons and ions that behave as chemically active oxygen and particles generated in the air plasma in the post-treatment process (3). Action).
③残留酸化エチレンは衝撃によ り、 被滅菌物との化学反応に必要な活性 化ェネルギーを得る。 ③ The residual ethylene oxide obtains the activation energy necessary for the chemical reaction with the material to be sterilized by impact.
④活性化エネルギーを得た残留酸化エチレンは、 直ちに、 近傍に存在す る被滅菌物と化学的反応を起こ し、 被滅菌物を殺菌する。 残留 The residual ethylene oxide that has obtained the activation energy immediately causes a chemical reaction with the nearby sterile object, and sterilizes the sterile object.
( 2 ) 全処理工程を施した場合における空気プラズマ後処理の実験結果 a . 空気プラズマ前処理および後処理工程における放電電流が同じ場 (2) Experimental results of air plasma post-treatment when all treatment steps were performed a. If the discharge currents in the air plasma pre-treatment and post-treatment steps were the same,
図 2 1およぴ図 22に、 空気プラズマ前処理工程① +酸化エチレンガス 拡散工程② +空気プラズマ後処理工程③の殺菌効果を調べるための実験 工程、 およびその時の殺菌結果をそれぞれ示す。 Fig. 21 and Fig. 22 show the experimental process for examining the disinfection effect of the air plasma pretreatment process (1) + ethylene oxide gas diffusion process (2) + air plasma post-treatment process (3), and the disinfection results at that time, respectively.
こ こで、 空気プラズマ前処理工程①および後処理工程③において、 放 電電流は 50 [mA]、 放電電圧は 270 [V]、 および放電電力は凡そ 120 [W]で める。 Here, in the air plasma pretreatment step (2) and the post-treatment step (3), the discharge current is 50 [mA], the discharge voltage is 270 [V], and the discharge power is about 120 [W].
図 22 の結果よ り、 二つの処理工程へ短時間 (5分) の空気プラズマェ 程③を加えるだけで、完全繁殖到達時間が 6時間も延びることが分かる。 即ち、 最後の工程③において効率的な殺菌効果が生ずることが分かる。
全工程に亘る殺菌機構と して、 前述したシナリ オの一番前の部分へ、 次のよ うなシナリ ォが加わる と考えられる。 From the results in Fig. 22, it can be seen that the addition of a short time (5 minutes) of the air plasma process (3) to the two treatment steps increases the time to complete reproduction by 6 hours. In other words, it can be seen that an efficient sterilizing effect occurs in the last step (3). It is considered that the following scenario will be added to the forefront of the scenario described above as a sterilization mechanism for the entire process.
①装置内部 (被滅菌物も含む) は、 前処理工程 1 における空気プラズマ において発生する化学的に活性な状態にある酸素や粒子と して振舞う高 エネルギーの電子、 イオンなどの衝撃 (作用) を受ける。 (1) Inside the device (including the material to be sterilized), the impact (action) of high-energy electrons and ions that behave as chemically active oxygen and particles generated in the air plasma in the pretreatment process 1 is generated. receive.
②上の衝撃 (作用) により装置内部 (被滅菌物も含む) は清浄化され、 装置内部の化学的反応性が高められる。 この時、 ある程度の殺菌効果も 現れる。 (2) The inside of the device (including the object to be sterilized) is cleaned by the above impact (action), and the chemical reactivity inside the device is enhanced. At this time, a certain bactericidal effect also appears.
③化学的反応性が高められた装置内部へ工程 2において酸化エチレンガ スが拡散されると、 酸化エチレンガスが装置内部 (被滅菌物も含む) に 吸着し易く なる。 この時、 強い殺菌効果、 即ち滅菌効果が現れる。 (3) If ethylene oxide gas is diffused into the equipment with enhanced chemical reactivity in step 2, the ethylene oxide gas is likely to be adsorbed inside the equipment (including the material to be sterilized). At this time, a strong sterilizing effect, that is, a sterilizing effect appears.
b . 空気プラズマ後処理工程における放電電流を大きく した場合 図 23に、全処理工程において空気プラズマ後処理工程 3の放電電流を 大きく した場合の殺菌効果を示す。 ここで、 放電電流が 50 [mA]、 60 [mA] および 70 [mA ]における、 放電電圧はそれぞれそれ 270 [V]、 285 [V]および 300 [V]、 そして放電電力はそれぞれ凡そ 120 [W]、 1 50 [W]および 180 [W] である。 b. When the discharge current is increased in the air plasma post-treatment step Figure 23 shows the sterilization effect when the discharge current in the air plasma post-treatment step 3 is increased in all the treatment steps. Here, when the discharge current is 50 [mA], 60 [mA] and 70 [mA], the discharge voltage is 270 [V], 285 [V] and 300 [V] respectively, and the discharge power is approximately 120 [V], respectively. W], 150 [W] and 180 [W].
図 23 の実験結果よ り、 工程 3における放電電流を上げ過ぎると、 完全 繁殖到達時間 〃が逆に短く なり、 殺菌効果が減ぜられることが分かる。 From the experimental results in Fig. 23, it can be seen that if the discharge current in step 3 is too high, the time to complete propagation 〃 will be shorter, and the bactericidal effect will be reduced.
工程③において、 空気プラズマにおける残留酸化エチレンの分解 (二 酸化炭素、 水、 一酸化炭素、 水素へ) と脱離が同時に起きる。 従って、 工程③における放電電流、 即ち、 放電電力が大きく なり過ぎると、 この 脱離と分解作用がプラズマによる残留酸化エチレンの活性化作用よ り大 き く なり、 その結果と して、 工程③における殺菌効果が小さく なると考 えられる。 In process (3), decomposition (to carbon dioxide, water, carbon monoxide, and hydrogen) and desorption of residual ethylene oxide in the air plasma occur simultaneously. Therefore, if the discharge current in step (3), that is, the discharge power, becomes too large, the desorption and decomposition actions become greater than the action of activating the residual ethylene oxide by the plasma, and as a result, in step (3), It is thought that the sterilization effect is reduced.
(実験例 5 )
空気プラズマ後処理工程③において残留酸化エチレンがどのよ う に分 解 · 無害化されるかを、 以下に装置内のガス成分を分析し調べた。 (Experimental example 5) In the air plasma post-treatment process (3), how the residual ethylene oxide is decomposed and made harmless was analyzed by analyzing the gas components in the equipment below.
先ず、 前処理工程①おける空気プラズマの発生によ り、 装置内のガス 成分にどのよ うな変化が現れるかを調べた。 この時、 装置内に被滅菌物 (実際には、 生物学的インジケータ) を揷入した場合と、 何も挿入しな い場合におけるガス成分の違いを調べ、 空気プラズマ前処理工程 1 にお いて生ずる作用について検討した。 First, we investigated how the gas composition in the system changes due to the generation of air plasma in the pretreatment process. At this time, the difference in gas components between the case where an object to be sterilized (actually, a biological indicator) is inserted into the apparatus and the case where nothing is inserted is examined. The effects that occur are discussed.
次に、二酸化炭素 80 %と酸化ェチレン 20 %の混合ガスを用いたプラズ マについてガス分析を行った。これは以下の二つの理由による。一つは、 図 12に示したよ うに、 この混合ガスプラズマにおいて (前処理工程①の 空気プラズマと同様な) 殺菌効果が何故得られたかを検討するためであ る。 も う一つは、 ある既知の割合で酸化エチレンガスが存在する条件下 において、 酸化エチレンがプラズマの存在によ り どのよ うに変わるかを 予め把握するためである。 何故ならば、 工程②の後に装置内に残留する 酸化エチレンの量は未知で且つ大変少量であるので、 工程③におけるそ の変化を正しく知ることは難しいと予想されたからである。 最後に、 空 気プラズマ後処理工程 3におけるガス分析を行った。 そ して、 上述した 二つの場合の結果も含めたデータを基に、 装置内に残留した酸化工チレ ンが工程③においてどのよ う に分解 ' 無害化されるの力 、 また、 このェ 程において何故殺菌効果が生ずるのかを検討した。 Next, gas analysis was performed on plasma using a mixed gas of 80% carbon dioxide and 20% ethylene oxide. This is for the following two reasons. One is to investigate why a sterilization effect (similar to the air plasma in the pretreatment step 1) was obtained in this mixed gas plasma as shown in FIG. The other is to understand in advance how ethylene oxide changes due to the presence of plasma under conditions where ethylene oxide gas is present at a certain known ratio. This is because the amount of ethylene oxide remaining in the apparatus after step (2) is unknown and very small, so it was expected that it would be difficult to correctly know the change in step (3). Finally, the gas analysis in the air plasma post-treatment process 3 was performed. Then, based on the data including the results of the two cases described above, based on the data, how the oxidized titanium remaining in the device is decomposed and made harmless in step (3). In this study, the reason why the bactericidal effect occurs was examined.
放電プラズマ発生時の時々刻々のガス分析は、 四重極質量分析計 (日 電ァネルバ、 AQA- 100MPX) のモニター画面に映し出される質量分析スぺ ク トルがビデオカメラで撮影され、 行われた。 画像は、 実験終了後、 ビ デォキヤプチヤー · ボー ドを通しコ ンピュータに取り込まれた。 ガス種 の同定は、 ガス質量分析スぺク トルのデータベースを参照し行われた。 The momentary gas analysis during the generation of discharge plasma was performed using a video camera to capture the mass spectrometry spectrum displayed on the monitor screen of a quadrupole mass spectrometer (Nidec ANELVA, AQA-100MPX). After the experiment was completed, the images were captured on a computer via a video capture board. Identification of gas species was performed by referring to the database of gas mass spectrometry spectra.
( 1 ) 前処理工程①における空気プラズマ
先ず、 前処理工程①における空気プラズマの発生によ り、 装置内のガ ス成分にどのよ う な変化が現れるかを調べた。 この時、 装置内に被滅菌 物 (実際には、 生物学的インジケータ) を揷入した場合と、 何も挿入し ない場合におけるガス成分の違いを調べ、 空気プラズマ前処理工程①に おいて生ずる作用について検討した。 (1) Air plasma in pretreatment process (1) First, we investigated what changes would occur in the gas components in the equipment due to the generation of air plasma in the pretreatment step (1). At this time, the difference in gas components between the case where an object to be sterilized (actually, a biological indicator) is inserted into the device and the case where nothing is inserted is examined, and the difference is generated in the air plasma pretreatment process. The effect was studied.
a . 装置内へ生物学的インジケータを揷入した場合 a. When biological indicators are introduced into the device
図 24(a)、 (b)、 (c)および(d)に、 実験装置内に生物学的インジケータ を揷入した場合の空気プラズマ前処理工程①におけるガス質量分析スぺ ク トル結果の推移を示す。 Figures 24 (a), (b), (c) and (d) show the transition of gas mass spectrometry results in the air plasma pretreatment step when a biological indicator was introduced into the experimental apparatus. Is shown.
図 24(a)は分析系 (配管部、 排気部や分析管部) に残留するガス種の 質量スぺク トルを示し、 これがガス分析の際のベースレベルになる。 Figure 24 (a) shows the mass spectrum of the gas species remaining in the analysis system (piping, exhaust, and analysis pipe), which is the base level for gas analysis.
図 24(b)、 (c)および(d)は、 それぞれ、 放電直前、 放電直後および放 電 5 分後の質量スペク トルを示す。 こ こで、 横軸は M/Z、 Mは質量数お よび Zはイオン価数である。 但し、 中性の時が Z=l、 1価イオンの時 Z=2 である。 Figures 24 (b), (c) and (d) show the mass spectra immediately before, immediately after, and 5 minutes after discharge, respectively. Here, the horizontal axis is M / Z, M is the mass number and Z is the ionic valence. However, Z = l when neutral and Z = 2 when monovalent ions.
空気の初期封じ込めガス圧力は 0.25[Torr]、放電電流は 60[mA]およぴ 放電電圧は 293 [V]である。 ' 図 24 (a)において、 M/Z=18 の所に小さなピークが観測されるので、 ガ ス分析系にわずかに水蒸気 (H20 = 1 X 2 + 16=18, Z=l) が存在していること が分かる。 一般的に、 水はほとんどの真空装置壁に安定して吸着してお り、 真空排気を長時間行ってもなかなか脱離しない。 図 24(b)よ り、 放 電前の質量分析スペク トルにおいて、 M/Z-14, 18, 28, 32および 40 の 所にピークが観測される。 こ こで、 空気の組成は窒素 78..084%、 酸素 20.948%、 アルゴン 0.938%、 二酸化炭素 0.033%である。 The initial containment gas pressure of air is 0.25 [Torr], the discharge current is 60 [mA], and the discharge voltage is 293 [V]. 'In FIG. 24 (a), a so small peak at M / Z = 18 is observed, slightly water vapor gas analysis system (H 2 0 = 1 X 2 + 16 = 18, Z = l) is You can see that it exists. In general, water is stably adsorbed on most vacuum equipment walls, and does not easily desorb even after long evacuation. According to Fig. 24 (b), peaks are observed at M / Z-14, 18, 28, 32, and 40 in the mass spectrometry spectrum before discharge. Here, the composition of air is 78.084% nitrogen, 20.948% oxygen, 0.938% argon, and 0.033% carbon dioxide.
図 25に、 これらのガス種に対する質量分析スペク トルデータを示す。 ここで、 ガス種特有のスペク トルが現れる理由は、 ガスが電子ビームで
イオン化され分析される過程で、 特有な解離成分が生成されるからであ る。 本来検出されるべき ピーク以外に現れるスぺク トルはフラグメ ン ト 成分と呼ばれる。 Figure 25 shows the mass spectroscopy spectrum data for these gas species. Here, the reason that the spectrum peculiar to the gas type appears is that the gas is an electron beam. This is because a unique dissociation component is generated during the process of ionization and analysis. The spectrum that appears in addition to the peak that should be detected is called a fragment component.
図 25 のデータを参照する と、 図 24 (b)において、 M/Z=14, 28 のスぺク トルに対応するガス種は窒素分子(N2=14X2 = 28, Z = l)、 M/Z=18は水蒸気、 M/Z=32 は酸素分子 (02=16X2 = 32, Z=l) および M/Z=40 はアルゴン原子 (Ar=40, Z=l) であるこ とが分かる。 Referring to the data in FIG. 25, in FIG. 24 (b), M / Z = 14, 28 of the scan Bae-vector in the corresponding gas species molecular nitrogen (N 2 = 14X2 = 28, Z = l), M You can see that / Z = 18 is water vapor, M / Z = 32 is oxygen molecule (0 2 = 16X2 = 32, Z = l) and M / Z = 40 is argon atom (Ar = 40, Z = l). .
装置内のガス成分は、 水蒸気と装置内へ導入された空気であるこ とが . 確認された。 It was confirmed that the gas components in the equipment were steam and air introduced into the equipment.
図 24(c)よ り、 放電プラズマ発生直後のガス質量分析スペク トルにお レヽて、 M/Z=2, 14, 18, 28, 32, 40および 44の所にピークが観測される。 図 24(b)と比較する と、 M/Z=2および 44に新たにピークが現れている。 これら二つのピークは、 図 25 のスぺク トルデータを参照する と、 M/Z=2 は水素分子 (H2=l X 2, Z=l)、および M/Z = 44は二酸ィ匕炭素( C02=12 + 16 X 2 = 44, 1=1) に対応するこ とが分かる。 According to Fig. 24 (c), peaks are observed at M / Z = 2, 14, 18, 28, 32, 40, and 44 in the gas mass spectrometry spectrum immediately after the generation of the discharge plasma. Compared to FIG. 24 (b), new peaks appear at M / Z = 2 and 44. Referring to the spectrum data in FIG. 25, these two peaks show that M / Z = 2 is a hydrogen molecule (H 2 = l X 2, Z = l) and M / Z = 44 is a diacid It can be seen that this corresponds to dani carbon (C0 2 = 12 + 16 X 2 = 44, 1 = 1).
図 24 (c)と (b)を比較する と、 即ち、 放電開始直前、 直後の内部のガス 成分の変化を見る と、 図 24(c)において酸素分子のピークが減少し、 水 素分子および二酸化炭素のピークが新たに現れ、 水蒸気のピークが増加 するこ とが分かる。 When comparing FIGS. 24 (c) and (b), that is, looking at the changes in the gas components inside immediately before and immediately after the start of discharge, the peak of oxygen molecules decreases in FIG. It can be seen that a new carbon dioxide peak appears and the water vapor peak increases.
図 24 ( よ り 、 放電プラズマ発生 5分後の質量分析スペク トルにおい て、 M/Z=2, 1 2, 14, 16, 17, 18, 28, 32, 40 および 44 の所にピーク が観測される。 図 24(c)と比較する と、 M/Z = 12, 16および 17 に新たにピ ークが現れている。 図 25 のスぺク トルデータを参照する と、 M/Z=12 は 二酸化炭素あるいは/および一酸化炭素のスぺク トルのフラグメ ン ト成 分、 M/Z=16 は水蒸気と二酸化炭素あるいは/および一酸化炭素のスぺク トルのフラ グメ ン ト成分、および M/Z = 17 は水蒸気のスぺク トルのフラ グ
メ ン ト成分である こ とが分かる。 Fig. 24 (Accordingly, peaks were observed at M / Z = 2, 12, 14, 16, 17, 18, 28, 32, 40, and 44 in the mass spectrometry spectrum 5 minutes after the generation of the discharge plasma. Compared with Fig. 24 (c), new peaks appear at M / Z = 12, 16 and 17. According to the spectrum data in Fig. 25, M / Z = 12 is a fragment component of the spectrum of carbon dioxide and / or carbon monoxide, M / Z = 16 is a fragment component of the spectrum of water vapor and carbon dioxide and / or carbon monoxide, And M / Z = 17 are the steam spectrum flags. It can be seen that it is a ment component.
こ こで、 M/ Z= 28 のピークにおいて窒素分子と一酸化炭素スぺク トルの それが重なるが、 図 24 ( d)における ピーク の変化分は一酸化炭素スぺク トルを表すと考えられる。 以下の理由による。 Here, the peak of M / Z = 28 overlaps with that of the nitrogen molecule and the carbon monoxide spectrum, but the change in the peak in Fig. 24 (d) is considered to represent the carbon monoxide spectrum. Can be For the following reasons.
①窒素分子の (質量分析)スぺク トルのフラグメ ン ト成分である M/Z= 14 の値に変化が無いので、 窒素分子の主スぺク トル ( M/Z = 28 ) にも変化は 無い。 従って、 M/Z-28 における ピークの増加は一酸化炭素あるいはこ の 所にフラ グメ ン ト成分を有するガス種、即ち、二酸化炭素の増加による。 ① Since there is no change in the value of M / Z = 14, which is the fragment component of the (mass spectrometry) spectrum of the nitrogen molecule, it also changes to the main spectrum of the nitrogen molecule (M / Z = 28) There is no. Therefore, the increase in the peak at M / Z-28 is due to an increase in carbon monoxide or gas species having a fragment component there, ie, carbon dioxide.
②二酸化炭素のスぺク トルの M/ Z=28 フ ラ グメ ン ト成分の大き さ は元の それの一割程度である。 M/Z=28 における ピークの増加は、 M/Z=44の二酸 化炭素の主スぺク トル成分の大き さ よ り大きい。 (2) The magnitude of the M / Z = 28 fragment component of the carbon dioxide spectrum is about 10% of that of the original. The increase in the peak at M / Z = 28 is larger than the size of the main spectral component of carbon dioxide at M / Z = 44.
図 24 ( d)と (c )と比較する と、 即ち、 放電プラズマ発生の時間経過に伴 う内部のガス成分の変化を見る と、 酸素分子が更に減少してほとんど無 く なり 、 一酸化炭素が新たに現れ、 水素分子と水蒸気および二酸化炭素 のピークが増加している。 When comparing FIG. 24 (d) and (c), that is, looking at the change of the internal gas components with the lapse of time of the discharge plasma generation, oxygen molecules are further reduced and almost disappear, and carbon monoxide is reduced. Appears, and the peaks of molecular hydrogen and water vapor and carbon dioxide are increasing.
図 24 ( d)、 (c)および(b )の結果は、 空気プラズマの発生によ り空気の 構成成分である酸素が化学的に活性化され装置内部の炭素や水素を含む 有機物などと反応し、 酸素の消費と二酸化炭素や水などの発生が起きる こ とを示唆する。 ここで、 プラズマのエネルギーによ り 、 二酸化炭素や 水蒸気の解離や、 装置内部壁 (被滅菌物も含む) に吸着している水の脱 離も、 同時に引き起こ される と考えられる。 The results in Fig. 24 (d), (c) and (b) indicate that oxygen, which is a component of air, is chemically activated by the generation of air plasma and reacts with organic substances including carbon and hydrogen inside the equipment. It suggests that oxygen consumption and the production of carbon dioxide and water may occur. Here, it is considered that the dissociation of carbon dioxide and water vapor and the desorption of water adsorbed on the inner wall of the device (including the object to be sterilized) are simultaneously caused by the energy of the plasma.
以下のよ う な化学反応式が考えられる。 The following chemical reaction formula is conceivable.
C, Hを含む有機物など + 02* (或いは 20) → (反応) aC02 + bH20 + cH2 H20 (装置内部壁などの吸着水) → (脱離) H20 (水蒸気) Organic substances including C and H + 0 2 * (or 20) → (reaction) aC 0 2 + bH 2 0 + cH 2 H 20 (adsorbed water on the inner wall of equipment) → (desorption) H 2 0 (water vapor )
一部の 2 C02 → (解離) 2C0 + 02 Some 2 C0 2 → (dissociation) 2C0 + 0 2
一部の 2H20 (水蒸気) → (解離) 2H2+ 02 .
但し、 *は励起状態を表し、 a, b および cは任意の整数を表す。 Some 2H 2 0 (water vapor) → (dissociation) 2H 2 + 0 2 . Here, * represents an excited state, and a, b and c represent arbitrary integers.
b . 生物学的イ ンジケータを揷入しない場合 b. If no biological indicator is introduced
図 26 ( a)、 (b)、 (c )および(d)に、 実験装置内に生物学的インジケータ を無揷入の場合の前処理工程 1 におけるガス質量分析スぺク トル結果の 推移を示す。 図 26 (a)はガス分析系に残留するガス種の質量スペク トル を示し、 図 26 (b)、 (c )および(d)は、 それぞれ、 放電直前、 放電直後お よび放電 5分後の質量スぺク トルを示す。 ここで、 放電プラズマ条件は 前と同じである。 Figures 26 (a), (b), (c) and (d) show the transition of the results of gas mass spectrometry spectrum in pretreatment step 1 when no biological indicator was introduced into the experimental apparatus. Show. Figure 26 (a) shows the mass spectrum of the gas species remaining in the gas analysis system, and Figures 26 (b), (c) and (d) show the mass spectra immediately before, immediately after, and 5 minutes after discharge, respectively. Shows the mass spectrum. Here, the discharge plasma conditions are the same as before.
図 24 ( a) , (b), (c )および(d)と、 それぞれ同じ時間帯の分析結果を比 較し、 生物学的イ ンジケータの有無による変化を調べる。 Fig. 24 (a), (b), (c) and (d) are compared with the analysis results in the same time zone, and the change due to the presence or absence of the biological indicator is examined.
. ガス分析系おょぴ放電プラズマ生成直前の装置内のガス質量分析スぺ ク トル結果は、 同様な条件で測定しているので、 本質的に同じである。 ガス分析系にわずかに水蒸気が、 およぴ装置内に空気と水蒸気が検出さ れている。 The gas mass spectrometry results in the gas analysis system immediately before the generation of the discharge plasma are essentially the same because they are measured under similar conditions. Slight water vapor is detected in the gas analysis system, and air and water vapor are detected in the instrument.
放電直後の質量分析スぺク トルである図 26 ( c)と図 24 ( c )についても ほとんど同じよ う な結果となっている。 放電の開始によ り、 酸素分子の ピークが減少し、 水素分子および二酸化炭素のピークが新たに現れ、 ま た、 水蒸気のピークが増加している。 The results are almost the same for the mass spectrometry spectra immediately after discharge, Figure 26 (c) and Figure 24 (c). With the start of discharge, the peak of molecular oxygen decreases, the peaks of molecular hydrogen and carbon dioxide appear, and the peak of water vapor increases.
しかし、 放電 5分後の質量分析スぺク トル'である図 26 (d)と図 24 ( d ) については、 違いが見られる。 生物学的インジケータ未揷入の図 26 ( d) の場合の方が、 酸素分子主スペク トルの減少量が小さく 、 新たに現れる 一酸化炭素の主スぺク トル (窒素分子主スぺク トルと重なっているので その増加分) の大きさが小さく 、 そして、 水素分子、 水蒸気および二酸 化炭素の主スぺク トルの増加量は小さく なっている。 However, there is a difference between FIGS. 26 (d) and 24 (d), which are mass spectrometry spectra 5 minutes after discharge. In the case of Fig. 26 (d) where the biological indicator is not used, the decrease in the oxygen molecular main spectrum is smaller and the newly appearing carbon monoxide main spectrum (nitrogen molecule main spectrum) is smaller. Therefore, the magnitude of the increase is small, and the increase in the main spectrum of hydrogen molecules, water vapor and carbon dioxide is small.
殺菌 · 滅菌時に装置内へ挿入される生物学的イ ンジケータのケースお よびその口に付いている滅菌フィルタはプラスチック製である。 また、
ケース内部に格納されている枯草菌芽胞は紙に塗布されている。 プラス チックや紙は有機高分子材料 (C , H, 0から成る) で作られているので、 これらは化学的に活性な状態にある酸素と容易に反応し、 二酸化炭素と 水蒸気にガス化され得る。 Sterilization · The case of the biological indicator inserted into the device during sterilization and the sterilization filter on the mouth are made of plastic. Also, Bacillus subtilis spores stored inside the case are applied to paper. Since plastics and paper are made of organic polymeric materials (composed of C, H, 0), they readily react with chemically active oxygen and are gasified into carbon dioxide and water vapor. obtain.
図 26 (この結果よ り、 プラズマによ り発生する酸素ラジカルと化学反 応すべき有機物の生物学的ィンジケータが装置内部に揷入されていない ので、 酸素の消費が少なく 、 反応物と しての二酸化炭素や水蒸気が少な いといえる。 ここで、 生物学的インジケータが未挿入の場合でも、 酸素 がある程度消費され二酸化炭素や水蒸気が発生するのは、 装置内部には 油脂などのわずかな汚れが付着しているからだと考えられる。 Fig. 26 (According to this result, oxygen radicals generated by plasma and biological indicators of organic substances to be chemically reacted are not introduced into the apparatus, so that the consumption of oxygen is small and the reaction Here, it can be said that even if the biological indicator is not inserted, a certain amount of oxygen is consumed and carbon dioxide and water vapor are generated even when the biological indicator is not inserted because only a small amount of dirt such as oil and fat is present inside the device. It is considered that it is attached.
c . 工程①における殺菌過程の考察 c. Consideration of sterilization process in process
以上のガス分析結果よ り、 空気プラズマ前処理工程 1 において、 以下 のよ うなことが生ずると示唆される。 The above gas analysis results suggest that the following occurs in the air plasma pretreatment step 1.
1 )プラズマの発生によ り空気の構成成分である酸素が化学的に活性な状 態にされる。 1) Oxygen, a constituent component of air, is chemically activated by the generation of plasma.
2)化学的に活性な状態にある酸素は装置内部表面(被滅菌物も含む)に付 着する有機物などと化学反応を起こ し、 付着物をガス化し表面よ り脱離 させる。 この時、 .装置内部表面(被滅菌物も含む)に吸着する水も脱離す る。 この過程において、 微生物表面を構成する有機物の一部が酸化され 殺菌効果も生ずる。 2) Oxygen in a chemically active state causes a chemical reaction with organic substances attached to the inside surface of the device (including the object to be sterilized), and gasifies the attached matter and desorbs from the surface. At this time, water adsorbed on the inner surface of the device (including the object to be sterilized) is also eliminated. In this process, some of the organic substances that make up the surface of the microorganisms are oxidized, and a bactericidal effect also occurs.
3)装置内部表面 (被滅菌物も含む) が清浄化され、 その表面の化学的反 応性が著しく高められる。 3) The inside surfaces of the equipment (including those to be sterilized) are cleaned, and the chemical reactivity of the surfaces is significantly enhanced.
化学的反応性が著しく高められた装置内部(被滅菌物も含む)表面は、 注入された酸化エチレンガスと非常に効率良く反応するので、 実施例 3 の酸化エチレンガス拡散の殺菌効果で記述した実験のよ うに、 ガス濃度 が極めて低く とも高速な殺菌 · 滅菌処理が可能になる と考えられる。
( 2 ) 二酸化炭素 80°/。と酸化エチレン 20 %の混合ガスを用いたプラズマ a . ガス分析実験 The surface of the inside of the device (including the object to be sterilized) whose chemical reactivity has been significantly increased reacts with the injected ethylene oxide gas very efficiently, so that the sterilization effect of diffusion of ethylene oxide gas in Example 3 was described. As in experiments, it is thought that high-speed sterilization / sterilization can be achieved even at extremely low gas concentrations. (2) Carbon dioxide 80 ° /. A. Gas analysis experiment using mixed gas of methane and 20% ethylene oxide
図 27 (a)、 (b)、 (c)および(d)に、 二酸化炭素 80% +酸化ェチレン 20% の混合ガスプラズマにおけるガス質量分析スペク トル結果の推移を示す ( 図 27(a)は分析系の残留ガスに対する結果を示し、 図 27 (b)、 (c)および (d)は、 それぞれ、 放電直前、 放電直後および放電 5分後の装置内ガスに 対する結果を示す。 こ こで、 二酸化炭素 80%と酸化ェチレンガス 20%の 混合ガスの初期封じ込めガス圧力は 0.25[Torr]、放電電流は 60[mA]およ ぴ放電電圧は 299[V]である。 Figures 27 (a), (b), (c) and (d) show the changes in the results of gas mass spectrometry in a mixed gas plasma of 80% carbon dioxide + 20% ethylene oxide ( Fig. 27 (a) Figures 27 (b), (c), and (d) show the results for the gas in the apparatus immediately before, immediately after, and 5 minutes after the discharge, respectively. The initial containment gas pressure of a mixed gas of 80% carbon dioxide and 20% ethylene oxide gas is 0.25 [Torr], the discharge current is 60 [mA], and the discharge voltage is 299 [V].
図 27 (a)は図 26(a)および図 24(a)と同じで、 ガス分析系にわずかに水 蒸気が残留していることを示す。 Fig. 27 (a) is the same as Fig. 26 (a) and Fig. 24 (a) and shows that a slight amount of water vapor remains in the gas analysis system.
図 27 (b)より、 放電直前の質量分析スぺク トルにおいて、 図 27 (a)に示 された成分以外に、 M/Z=12, 14, 15, 16, 22, 28, 29, 43 および 44 の 所にピークが観測される。 こ こで、 装置内のガス種を確認するための参 照データと して、 図 28 (a)、 (b)および(c)に、 データベースから抽出し た酸化エチレンガス、 二酸化炭素および一酸化炭素に対するガス質量分 析スぺク トルをそれぞれ示す。 各スぺク トルは主ピークを 100 と して目 盛られている。 From Fig. 27 (b), in the mass spectrometry spectrum immediately before discharge, in addition to the components shown in Fig. 27 (a), M / Z = 12, 14, 15, 16, 22, 28, 29, 43 And 44 peaks are observed. Here, as reference data for confirming the gas type in the equipment, Fig. 28 (a), (b) and (c) show the ethylene oxide gas, carbon dioxide and monoxide extracted from the database. The gas mass analysis spectrum for carbon is shown. Each spectrum is scaled with the main peak at 100.
図 28 (a)および(b)を参照すると、図 27(b)における M/Z=14, 15, 29, 43 および 44 のスぺク トルは酸化エチレンに対応し、 M/Z=12, 16, 22, 28 および 44 のピークは二酸化炭素に対応するこ とが分かる。 従って、 装 置内へ導入されたガス成分は、 二酸化炭素と酸化エチレンの混合ガスで あるこ とが確認される。 Referring to FIGS. 28 (a) and (b), the spectrum of M / Z = 14, 15, 29, 43 and 44 in FIG. 27 (b) corresponds to ethylene oxide, and M / Z = 12, It can be seen that the peaks at 16, 22, 28 and 44 correspond to carbon dioxide. Therefore, it was confirmed that the gas component introduced into the device was a mixed gas of carbon dioxide and ethylene oxide.
図 27(c)よ り、 放電直後の質量分析スぺク トルにおいて、 図 27( b )と 比較し、 M/Z=2および 28のピークが大きく なり、 M/Z = 32の所に小さなピ ークが新たに現れている。 その他のスぺク トルの大きさはほとんど同じ
であるので、 図 25 のデータ よ り ガス種を同定する と、 放電プラズマの発 生直後に発生したガスは、 水素、 一酸化炭素および酸素である。 これら は、 プラズマからのエネルギーを得て、 以下のよ う な反応が生じる と考 えら; ftる。 From Fig. 27 (c), in the mass spectrometry spectrum immediately after the discharge, the peaks at M / Z = 2 and 28 are larger than those in Fig. 27 (b) and smaller at M / Z = 32. A new peak is emerging. Other vectors are almost the same size Therefore, when the gas species is identified from the data in Fig. 25, the gases generated immediately after the generation of the discharge plasma are hydrogen, carbon monoxide, and oxygen. These are thought to take the energy from the plasma and cause the following reactions: ft.
2C02 → (解離) 2C0 + 02 2C0 2 → (dissociation) 2C0 + 0 2
H20 (吸着水) → (脱離) H20 (水蒸気) H 20 (adsorbed water) → (desorption) H 20 (steam)
2H20 (水蒸気) → (解離) 4H2+ 02 2H 2 0 (water vapor) → (dissociation) 4H 2 + 0 2
図 27(d)よ り 、 放電プラズマ発生 5 分後のガス質量分析スぺク トルに おいて、 M/Z-2, 12, 14, 16, 17, 18, 27, 28, 29および 44の所にピー クが観測される。 図 27 ( c )と比較する と、 M/Z=2, 18および 28 のピーク がとても大き く な り 、 M/Z=44 のピークがずいぶんと小さ く なっている。 図 25および図 28 のスぺク トルデータを参照しガス種を同定する と、 水 素、 水蒸気および一酸化炭素の発生が増え、 一方で二酸化炭素が減少す るこ とが分かる。 さて、 酸化エチレンガスについて検討する。 図 27 (d) のスぺタ トル結果において、 M/Z = 15 のピークが消え、 M/Z=29 のピークが 大変小さ く な り 、 そして、 M/Z=43 のピークが消えている。 こ こで、 M/Z = 29 のピークには一酸化炭素のフラグメ ン トスぺク トルが重なり 、 M/Z=44の ピークには二酸化炭素の主スぺク トルが重なっている。従って、図 28 (a) に示されるよ う な酸化エチレンに特徴的なガス質量分析スぺク トルが観 測されていなレ、。 According to Fig. 27 (d), in the gas mass spectrometry spectrum 5 minutes after the generation of the discharge plasma, the M / Z-2, 12, 14, 16, 17, 18, 27, 28, 29 and 44 Peaks are observed in places. Compared to Fig. 27 (c), the peaks at M / Z = 2, 18, and 28 are very large, and the peak at M / Z = 44 is much smaller. When gas types are identified with reference to the spectrum data in Fig. 25 and Fig. 28, it is found that the generation of hydrogen, water vapor and carbon monoxide increases, while the carbon dioxide decreases. Now, consider ethylene oxide gas. The peak at M / Z = 15 has disappeared, the peak at M / Z = 29 has become very small, and the peak at M / Z = 43 has disappeared in the statistic results in Fig. 27 (d). . Here, the fragment spectrum of carbon monoxide overlaps with the peak at M / Z = 29, and the main spectrum of carbon dioxide overlaps with the peak at M / Z = 44. Therefore, a gas mass spectrometry spectrum characteristic of ethylene oxide as shown in FIG. 28 (a) has not been observed.
—方、 M/Z=27 に現れる小さなピークについてはエタ ン (C2H6=30) のフ ラグメ ン トスぺク トルである可能性が考えられる。 こ のガス種の質量分 析スペク トルは、 データベースによれば、 主ピーク力 S M/Z=28 (100°/。)、 第 1副ピーク力 S 27 (33%)、第 2副ピークが 29 (22%)、第 3畐 ijピーク力 S 26 (23%) - および第 4副ピークが 14(3%)である。 図 27(d)において、 これに対応す る全てのピークが観測されるこ とが分かる。 また、 エタンは、 酸化ェチ
レンと水素の間の On the other hand, the small peak appearing at M / Z = 27 may be the fragment vector of ethane (C 2 H 6 = 30). According to the database, the mass analysis spectrum of this gas species shows that the main peak force SM / Z = 28 (100 ° /.), The first secondary peak force S 27 (33%), and the second secondary peak 29 (22%), 3rd ij peak force S 26 (23%)-and 4th sub peak is 14 (3%). In Fig. 27 (d), it can be seen that all the corresponding peaks are observed. Also, ethane is Between ren and hydrogen
C2H40 + 2H2 → C2H6 + H20 C 2 H 40 + 2H 2 → C 2 H 6 + H 20
の反応によ り生成され得る。 It can be produced by the reaction of
以上の結果よ り 、 酸化エチレンガスおよび二酸化炭素は、 5 分間の放 電プラズマからのエネルギーによ り 、 以下のよ う な反応によ り分解され る と考えられる。 From the above results, it is considered that ethylene oxide gas and carbon dioxide are decomposed by the following reaction by the energy from the discharge plasma for 5 minutes.
2C02→ (解離) 2CO+02 …二酸化炭素の解離、 酸素の発生 2C0 2 → (dissociation) 2CO + 0 2 … dissociation of carbon dioxide, generation of oxygen
2 C2H40 + 502→ (酸ィ匕) 4H20 + 4C02 2 C 2 H 4 0 + 50 2 → (Occasion) 4H 2 0 + 4C 0 2
…酸化エチ レンの酸化、 水、 二酸化炭素の発生 H20 (吸着水) → (脱離) H20 (水蒸気) …吸着水の脱離 … Oxidation of ethylene oxide, generation of water and carbon dioxide H 20 (adsorbed water) → (desorption) H 20 (water vapor)… desorption of adsorbed water
2H20 (水蒸気) → (解離) 4H2+02 …水蒸気の解離、 水素、 酸素の発生 こ こで、 二酸化炭素および水蒸気の解離反応から発生する酸素は、 放 電プラズマからのエネルギーによ り活性化され、 化学的によ り反応性の 高い分子或いは原子に変わる と考えられる。 2H 2 0 (water vapor) → (dissociation) 4H 2 +0 2 … dissociation of water vapor and generation of hydrogen and oxygen Here, oxygen generated from the dissociation reaction of carbon dioxide and water vapor depends on the energy from the discharge plasma. It is considered to be activated and converted to a molecule or atom that is chemically more reactive.
02→ (励起) 02 …化学的に活性な酸素分子の発生 0 2 → (excitation) 0 2 … Generation of chemically active oxygen molecules
02→ (解離) 0 + 0 …化学的に活性な酸素原子の発生 b . ガス分析結果から殺菌過程の考察 0 2 → (dissociation) 0 + 0… Generation of chemically active oxygen atoms b. Consideration of sterilization process from gas analysis results
実施例 2 の図 12の所で既述したよ う に、空気プラズマおよび二酸化炭 素 80 %と酸化エチレンガス 20 %の混合ガスプラズマにおいて、ほとんど 同様な殺菌効果が生じた。 即ち、 異なるガス中で生成されたプラズマに おいて、 同じよ う な殺菌結果が得られた。 従って、 殺菌効果は二つの場 合に共通した要因によ り 引き起こ される と考えられるので、 ガス分析実 験において二つの場合に共通する結果からその要因を検討する。 As already described with reference to FIG. 12 in Example 2, almost the same sterilizing effect was produced by air plasma and mixed gas plasma of 80% carbon dioxide and 20% ethylene oxide gas. That is, similar sterilization results were obtained with plasmas generated in different gases. Therefore, it is considered that the bactericidal effect is caused by factors common to the two cases, and the factors are examined from the results common to the two cases in the gas analysis experiment.
図 24 ( d)および図 27 ( d)に示された放電プラズマ発生 5分後の二つの場 合のガス分析結果を比較する と、 共通する点は、 水素、 水および一酸化 差替え用紙 (規則^〉
炭素の発生である。 ここで、 二酸化炭素についての比較は、 混合ガスプ ラズマの場合に二酸化炭素が予め存在しているので、 難しい。 これらの ガスは、 それぞれのガス分析で既述したよ うに、 酸素による炭素化合物 の酸化反応、 水蒸気および二酸化炭素の解離反応の結果と して生ずると 考えられる。 一方、 殺菌 ·滅菌されるべき微生物は (炭素、 水素、 酸素、 窒素などを含む) 有機物であるので、 酸素による酸化反応によ り殺菌 - 滅菌が行われると考えられる。従って、二つの場合のガス分析結果よ り、 殺菌効果に結び付き得る共通な点は、 酸素による酸化反応がプラズマ中 において生じていると推測される点である。 Comparing the gas analysis results in the two cases 5 minutes after the generation of the discharge plasma shown in Fig. 24 (d) and Fig. 27 (d), the common points are that hydrogen, water, and monoxide replacement paper (rule ^> It is the generation of carbon. Here, comparison of carbon dioxide is difficult in the case of mixed gas plasma because carbon dioxide already exists. These gases are considered to be produced as a result of the oxidation reaction of carbon compounds by oxygen and the dissociation reaction of water vapor and carbon dioxide, as described in the respective gas analyses. On the other hand, the microorganisms to be disinfected and sterilized are organic substances (including carbon, hydrogen, oxygen, nitrogen, etc.), so it is considered that sterilization-sterilization is carried out by oxidation reaction with oxygen. Therefore, based on the results of gas analysis in the two cases, a common point that can lead to a bactericidal effect is that the oxidation reaction by oxygen is presumed to occur in the plasma.
空気プラズマにおいては空気の構成成分である酸素が、 二酸化炭素 80 %と酸化エチレンガス 20 %の混合ガスプラズマにおいては二酸化炭 素の解離から生じた酸素が、 それぞれプラズマによ り化学的に活性化さ れ酸化反応を起こす。 その結果、 プラズマが生成されるガスが異なるに もかかわらず、 同じよ うな殺菌効果が得られたといえる。 In air plasma, oxygen, which is a component of air, is chemically activated by plasma, and oxygen generated by dissociation of carbon dioxide is chemically activated by plasma in a mixed gas plasma of 80% carbon dioxide and 20% ethylene oxide gas. This causes an oxidation reaction. As a result, it can be said that the same germicidal effect was obtained regardless of the gas generated by the plasma.
混合ガスの場合に殺菌効果を本来持つ酸化エチレンガスが入っている にもかかわらず、 空気プラズマの場合と同様な殺菌効果しか得られなか つた理由は、 混合ガスプラズマにおいて、 二酸化炭素から解離した酸素 によ り酸化エチレンが分解されてしまったからである。 一般的に、 ガス はプラズマ化されることによ りその化学的反応性が高められる。しかし、 酸化エチレンガスについてはそもそも不安定なガスなので、 プラズマ化 によ り直接的にその化学反応性を高めよ う とすることは適当でない、 と いえる。 留意すべき重要な結果の一つである。 Despite the fact that the mixed gas contains ethylene oxide gas, which has a germicidal effect, the only germicidal effect similar to that of the air plasma was obtained because the oxygen gas dissociated from carbon dioxide in the mixed gas plasma. This caused ethylene oxide to be decomposed. Generally, gas is converted into plasma to increase its chemical reactivity. However, since ethylene oxide gas is an unstable gas in the first place, it is not appropriate to directly increase its chemical reactivity by plasma conversion. This is one of the important results to keep in mind.
( 3 ) 酸化エチレン拡散 · 排気後の後処理工程③における空気プラズマ 空気プラズマ後処理工程③におけるガス分析を行った。 そして、 装置 内に残留した酸化ェチレンが工程③においてどのよ うに分解 · 無害化さ れる力 、また、この工程において何故殺菌効果が生ずるのかを検討した。
a . ガス分析実験 (3) Diffusion of ethylene oxide and air plasma in post-treatment step (3) after exhaust gas analysis was performed in air plasma post-treatment step (3). Then, it was examined how the ethylene oxide remaining in the apparatus is decomposed and detoxified in step (3), and why a sterilizing effect is generated in this step. a. Gas analysis experiment
図 29(a)、 (b)、 (c)および(d)に、 空気プラズマ後処理工程 3における ガス質量分析スぺク トル結果の推移を示す。 図 29(a)は分析系に残留す るガス種の質量スぺク トルを示す。 図 29(b)、 (c)および(d)は、 それぞ れ、 放電直前、 放電直後および放電 5分後の質量スペク トルを示す。 FIGS. 29 (a), (b), (c) and (d) show the transition of the results of gas mass spectrometry in the air plasma post-processing step 3. FIG. 29 (a) shows the mass spectrum of the gas species remaining in the analysis system. Figures 29 (b), (c) and (d) show the mass spectra immediately before, immediately after, and 5 minutes after discharge, respectively.
こ こで、 実験装置を 45°C程度に加温した状態で生物学的インジケータ を揷入し、 装置内ガスを真空ポンプで排気し 0.02[Torr]まで減圧した。 酸化ェチレンガスを初期圧力 7.6[Torr]まで注入し、 20分間封じ込めた 状態で拡散 ·吸着させた。 そして、装置内ガスを排気し、 一旦 0.02[Torr] まで減圧した後、 空気を圧力 0.25 [Torr]まで導入した。 放電電流は 60[mA]おょぴ放電電圧は 290 [V]である。 Here, the biological indicator was inserted while the experimental apparatus was heated to about 45 ° C, and the gas in the apparatus was evacuated with a vacuum pump to reduce the pressure to 0.02 [Torr]. Ethylene oxide gas was injected up to an initial pressure of 7.6 [Torr], and was diffused and adsorbed in a sealed state for 20 minutes. Then, the gas in the apparatus was evacuated, and once reduced to 0.02 [Torr], air was introduced to a pressure of 0.25 [Torr]. The discharge current is 60 [mA] and the discharge voltage is 290 [V].
図 29(b)よ り、 放電直前のガス質量分析スぺク トルにおいて、 M/Z=14, 15, 16, 18, 28, 29, 32, 40 および 44 の所にピークが観測される。 こ こで、 図 25 の表および図 28 のスぺク トノレデータを参照すると、 M/Z=14 および 28 のスペク トルは窒素分子、 32は酸素分子、 40はアルゴンをそ れぞれ表わすことが分かる。 一方、 M/Z=15, 16, 29 および 44 は酸化工 チレンのスぺク トルを表わすことが分かる。 According to Fig. 29 (b), peaks are observed at M / Z = 14, 15, 16, 18, 28, 29, 32, 40 and 44 in the gas mass spectrometry spectrum immediately before discharge. Here, referring to the table of FIG. 25 and the spectrum data of FIG. 28, the spectra of M / Z = 14 and 28 indicate nitrogen molecules, 32 indicates oxygen molecules, and 40 indicates argon. I understand. On the other hand, it can be seen that M / Z = 15, 16, 29 and 44 represent the spectrum of oxidized ethylene.
従って、 装置内のガス成分は、 導入された空気ガスと、 直前の工程 2 において装置内に吸着 · 残留した酸化エチレンの一部が気化したガスで あることが分かる。 Therefore, it can be seen that the gas components in the apparatus are the introduced air gas and the gas in which a part of the ethylene oxide adsorbed and remaining in the apparatus in the immediately preceding step 2 is vaporized.
図 29(c)よ り、 放電プラズマ発生直後のガス質量分析スペク トルにお いて、 図 29(b)の結果と比較すると、 M/Z=2に対応する水素が急に大き く なり、 32に対応する酸素が少し小さ く なる。 図 29 ( より、 放電プラズ マ発生 5分後の質量分析スぺク トルにおいて M/Z=2, 1 2, 14, 16, 17, 18, 26, 27, 28, 29, 40および 44の所にピークが観測される。 図 29(c)と比 較すると、 M/Z=2, 16, 18, 28および 44 のピークが大きく なり、 M/Z=15
および 32 のピークが全く 消え、 M/Z=12, 17, 26, 27が新たに現れ、 M/Z=14 および 40 のピークは変わらなレ、。図 25および図 28 のスぺク トルデータ を参照しガス種を同定する と、 M/Z = 2に対応するスぺク トルは水素分子、 M/Z=17 の一部および 18 のスペク トルは水蒸気、 M/Z=12, 14 の一部、 16 の一部、 28 の増加分のほとんどの部分および 29 の一部のスぺク トルは 一酸化炭素、 そして、 M/Z=12, 16 の一部、 28 の増加分の一部および 44 のほと んどの部分のスペク トルは二酸化炭素に対応するこ とが分かる。 ここで、 消滅した M/Z=32は酸素分子、 M/Z=14および 28の一部は窒素分 子、 M/Z=40 はアルゴンに対応する。 According to Fig. 29 (c), in the gas mass spectrometry spectrum immediately after the generation of the discharge plasma, the hydrogen corresponding to M / Z = 2 suddenly increased in comparison with the result in Fig. 29 (b). Oxygen corresponding to the temperature becomes slightly smaller. Figure 29 (From Fig. 29, the M / Z = 2, 12, 14, 16, 17, 18, 26, 27, 28, 29, 40, and 44 in the mass spectrometry spectrum 5 minutes after the occurrence of discharge plasma. Compared to Fig. 29 (c), the peaks at M / Z = 2, 16, 18, 28 and 44 are larger and M / Z = 15 And the peaks at 32 and 32 disappear completely, M / Z = 12, 17, 26 and 27 appear, and the peaks at M / Z = 14 and 40 remain unchanged. Referring to the spectrum data in Fig. 25 and Fig. 28, the gas species is identified.The spectrum corresponding to M / Z = 2 is a hydrogen molecule, a part of M / Z = 17 and the spectrum of 18 Is steam, M / Z = 12, part of 14, part of 16, most of the increase of 28 and part of the spectrum of 29 are carbon monoxide, and M / Z = 12, It can be seen that some of the spectra, some of the 28 gains, and most of the 44 correspond to carbon dioxide. Here, the disappeared M / Z = 32 corresponds to an oxygen molecule, M / Z = 14 and 28 correspond to nitrogen molecules, and M / Z = 40 corresponds to argon.
酸化エチレン成分について検討する。 図 29(d)において、 M/Z=15 のピ ークは消え、 M/Z=29 のピークは小さ く なつてレヽる。 ここで、 M/Z=29 のピ 一クには一酸化炭素のフラグメ ン トスぺク トルカ S重な り、 M/Z=44のピー クには二酸化炭素の主スペク トルが重なっている。 図 28(a)の酸化ェチ レンのガス質量分析スぺク トルにおいて、 M/Z=15 のスぺク トル成分は主 成分の大き さの 53%程度もあるので、図 29(d)において M/Z=15 のピーク が消えているこ とは、 酸化エチレンが消えているこ とを示すと解釈され る。 Consider the ethylene oxide component. In FIG. 29 (d), the peak at M / Z = 15 disappears, and the peak at M / Z = 29 becomes smaller and smaller. Here, the fragment spectrum of carbon monoxide overlaps with the peak at M / Z = 29, and the main spectrum of carbon dioxide overlaps with the peak at M / Z = 44. In the gas mass spectrometry spectrum of ethylene oxide in Fig. 28 (a), the spectrum component at M / Z = 15 is about 53% of the size of the main component, so Fig. 29 (d) The disappearance of the peak at M / Z = 15 is interpreted as indicating that the ethylene oxide has disappeared.
—方、 図 29 (d)における M/Z = 26 および 27 のスぺク トルについては、 前小節の二酸化炭素 80%と酸化エチレン 20%の混合ガスプラズマの場 合の図 27(d)の所で指摘したよ う に、 ェタン (C2H6=30) である可能性が 挙げられる。 図 29(d)と図 27(d)のスぺク トルを比較する と、 今回の図 29 (d)の方が M/Z=27および 26のピークが大き く 、ハツキリ と現れている。 On the other hand, the spectra at M / Z = 26 and 27 in Fig. 29 (d) are shown in Fig. 27 (d) for the mixed gas plasma of 80% carbon dioxide and 20% ethylene oxide in the previous section. As pointed out above, there is a possibility that it is ethane (C 2 H 6 = 30). Comparing the spectra of FIG. 29 (d) and FIG. 27 (d), the peak at M / Z = 27 and 26 is larger in FIG. 29 (d), and the peaks appear.
これは、 両者の場合における酸素分子の存在量の違いによる と考えら れる。 つま り 、 プラズマ発生時における酸素分子の量が、 図 29(d)の場 合の方が図 27(d)の場合よ り少なく 、 酸化エチ レンの酸化分解が完全に 進まないからだと推測される。 以下に二つの場合に分けて酸素分子分圧
を概算し、 この推論の妥当性を示す。 This is thought to be due to the difference in the amount of oxygen molecules present in both cases. In other words, it is presumed that the amount of oxygen molecules during plasma generation is smaller in the case of FIG. 29 (d) than in the case of FIG. 27 (d), and the oxidative decomposition of ethylene oxide does not proceed completely. You. The oxygen molecular partial pressure is divided into the following two cases And show the validity of this inference.
(i)先ず、 図 27(d)の二酸化炭素 80%と酸化エチレン 20%の混合ガスプ ラズマの場合の酸素分子の量を概算する。 この混合ガスに酸素分子は 元々含まれていないが、 ブラズマからのェネルギーを得て、 以下の二つ の反応によ り酸素分子が発生する。 (i) First, the amount of molecular oxygen in the case of a mixed gas plasma of 80% carbon dioxide and 20% ethylene oxide shown in Fig. 27 (d) is estimated. Although this mixed gas does not originally contain oxygen molecules, it obtains energy from plasma and generates oxygen molecules by the following two reactions.
C02→ (解離) C0+(l/2)02 … ( 1 ) C0 2 → (dissociation) C0 + (l / 2) 0 2 … (1)
C2H40+(5/2) 02→ (酸化) H20 + 2C02 ·■· ( 2 ) C 2 H 4 0+ (5/2) 0 2 → (oxidation) H 2 0 + 2C0 2
混合ガスの初期封入圧力は 0.25[Torr]であるので、 二酸化炭素および 酸化エチレンガスの初期圧力は、 それぞれ 0.2[Torr]およぴ 0.05[Torr] である。 酸化エチレンガスを完全に酸化するために必要な酸素分圧を計 算する。 Since the initial filling pressure of the mixed gas is 0.25 [Torr], the initial pressures of carbon dioxide and ethylene oxide gas are 0.2 [Torr] and 0.05 [Torr], respectively. Calculate the oxygen partial pressure required to completely oxidize ethylene oxide gas.
上記(1)式を(2)式に代入し、 更に、 両辺に現れる酸素分子を枏殺する と (上記(2)式の過程で発生する二酸化炭素は上記(1)式の反応で全て解 離されると仮定すること と等価)、 Substituting the above equation (1) into the equation (2) and killing the oxygen molecules appearing on both sides (the carbon dioxide generated in the process of the above equation (2) is completely solved by the reaction of the above equation (1)) Is assumed to be separated),
C2H40+ (3/2) 02→H20 + 2C0 … ( 3 ) C 2 H 4 0+ (3/2) 0 2 → H 2 0 + 2C0… (3)
となる。 従って、 初期分圧 0.05[Torr]の酸化ェチレンガスを完全に酸化 分解するためには、 分圧 0.075 [Torr]の酸素分子の発生が必要であるこ とが分かる。 今、 プラズマによ り全ての二酸化炭素が上記(1)の反応で解 離されると仮定すると、 発生する酸素分子分圧は 0. l[Torr]となり、 酸 化工チ レンを完全に酸化するために必要な量よ り大きい。 Becomes Therefore, in order to completely oxidize and decompose ethylene oxide gas with an initial partial pressure of 0.05 [Torr], it is understood that oxygen molecules with a partial pressure of 0.075 [Torr] must be generated. Now, assuming that all the carbon dioxide is dissociated by the above-mentioned reaction (1) by the plasma, the generated oxygen molecular partial pressure is 0.1 l [Torr], and the oxygenated titanium is completely oxidized. Larger than required for
(ii)次に、 図 29(d)の空気プラズマの場合の酸素分子の量を概算する。 空気の 20%の成分が酸素であるので、初期封入圧力 0.25[Torr]において 酸素分子分圧は 0.05[Torr]となる。 この分圧から、 装置内の酸素分子の 総モル数を計算すると、 1.4X10— 5 mole となる。 (ii) Next, the amount of oxygen molecules in the case of the air plasma shown in FIG. 29 (d) is roughly estimated. Since oxygen accounts for 20% of the air, the partial pressure of oxygen molecules becomes 0.05 [Torr] at the initial filling pressure of 0.25 [Torr]. This partial pressure Calculating the total number of moles of oxygen molecules in the device, the 1.4X10- 5 mole.
但し、 装置内容積を 5.5?、 温度を 45°Cと した。 一方、 空気プラズマ後 差替え用紙 (規則 2 I
工程 3 に入る前に装置内に残留している酸化ェチレン量を凡そ 10mg 程 度と仮定する と、 2. 3 X 10— 4mo l e となる。 従って、 装置内の酸素分子の量 は残留酸化ェチレンを完全に酸化 · 分解するのに必要な量よ り 充分多く はないといえる。 However, the internal volume of the equipment was 5.5? And the temperature was 45 ° C. On the other hand, after air plasma, the replacement paper (Rule 2 I And approximately assumed 10mg extent oxidation Echiren amount remaining in the device before entering the step 3, a 2. 3 X 10- 4 mo le. Therefore, it can be said that the amount of oxygen molecules in the apparatus is not much larger than the amount necessary for completely oxidizing and decomposing the residual ethylene oxide.
こ こで、 実施例 3 の酸化エチレンの吸着量を 1 1 . 6 m g と概算した。 減 圧工程 3に入る前に装置内はー且減圧されるので、 この過程で吸着した 一部は脱離する と予想される。 吸着量のどの程度の割合が残留量になる のかは不明である。 Here, the adsorption amount of ethylene oxide in Example 3 was estimated to be 11.6 mg. Before the depressurization step 3, the pressure in the apparatus is reduced and the part adsorbed in this process is expected to be desorbed. It is unknown what proportion of the adsorption amount will be the residual amount.
b . 工程③における残留酸化エチレンの分解 b. Decomposition of residual ethylene oxide in process ③
以上の実験結果よ り 、 空気プラズマ後処理工程③における 5分間の放 電プラズマ中において、 吸着 · 残留酸化エチ レンは以下のよ う な過程で 分解 · 無害化される と考えられる。 Based on the above experimental results, it is considered that the adsorbed and residual ethylene oxide is decomposed and made harmless in the discharge plasma for 5 minutes in the air plasma post-treatment process ③ in the following process.
1 )プラズマからのエネルギー sによる空気構成成分の酸素の化学的活性 02→ (励起) 02* …化学的に活性な励起酸素分子の発生 1) Chemical activity of oxygen in air components due to energy s from plasma 0 2 → (excitation) 0 2 *… Generation of chemically active excited oxygen molecules
02→ (励起) 0 + 0 …化学的に活性な酸素原子の発生 0 2 → (excitation) 0 + 0… Generation of chemically active oxygen atom
#プラズマを構成する数万度の温度を持つ電子が雰囲気ガスへ衝撃し、 与えるエネルギーのこ と を指す。 # Bombarding electrons into the atmosphere gas having a temperature several tens of thousands of degrees that make up the plasma, refers to the this energy applied.
2)化学的に活性な酸素による吸着 · 残留酸化エチレンの酸化分解 · ガス 化脱離 2) Adsorption by chemically active oxygen · Oxidative decomposition of residual ethylene oxide · Gasification desorption
2C2H40+ 502→ (酸ィ匕) 4C02+4H20 2C 2 H 4 0+ 50 2 → (Occasion) 4C0 2 + 4H 2 0
C2H40 + 50→ (酸ィ匕) 2C02+2H20 C 2 H 4 0 + 50 → (Occasion) 2C0 2 + 2H 2 0
• · · 酸化反応による二酸化炭素および水の発 生 · · · Generation of carbon dioxide and water by oxidation reaction
3 )放電プラズマからのエネルギー #による二酸化炭素や水蒸気の解離 3) Dissociation of carbon dioxide and water vapor by energy # from discharge plasma
差替え用紙 (規則
2C02→ (解離) 2C0+02 Replacement form (Rules 2C0 2 → (dissociation) 2C0 + 0 2
二酸化炭素の解離による一酸化炭素および酸素 の発生 Generation of carbon monoxide and oxygen by dissociation of carbon dioxide
H20 (吸着水) → (脱離) H20 (水蒸気) → (解離) 4H2+02 H 20 (adsorbed water) → (desorption) H 20 (water vapor) → (dissociation) 4H 2 +0 2
水蒸気の解離による水素および酸素 の発生 Generation of hydrogen and oxygen by dissociation of water vapor
4)酸素不足による酸化エチレンガスの未分解 4) Undecomposition of ethylene oxide gas due to lack of oxygen
C2H40+2H2→ (還元) C2H6+H20 …還元反応によるェタンの発生 C 2 H 4 0 + 2H 2 → (reduced) C 2 H 6 + H 2 0… Reduction reaction generates ethane
c . 工程③における殺菌過程の考察 c. Consideration of sterilization process in process ③
実験例 4で既述したよ う に、 残留酸化エチレンが存在する条件下にお ける空気プラズマにおいて殺菌効果が得られた。 その過程を、 以上に既 述したガス分析結果よ り考察する。 As described above in Experimental Example 4, a bactericidal effect was obtained with air plasma under the condition where residual ethylene oxide was present. The process is considered from the gas analysis results described above.
空気プラズマ前処理工程①および二酸化炭素と酸化エチレン混合ガス プラズマにおける殺菌効果は、 プラズマによ り化学的に活性化された酸 素による被滅菌物の酸化過程によ り 引き起こ される と考えた。 しかし、 空気プラズマ後処理工程③における殺菌効果は、 それとは異なる過程で もたら される と考えられる。 何故ならば、 も し、 空気プラズマ前処理工 程①と同様に化学的に活性化された酸素による ものだと仮定する と、 ェ 程③の処理時間は 5分間であるので、 余り に短すぎる時間の間に殺菌効 果がもたら されるこ とになる。 しかも、 工程①において、 空気プラズマ における殺菌効果は既に飽和している。 The disinfection effect in the air plasma pretreatment process (1) and the mixed gas plasma of carbon dioxide and ethylene oxide was thought to be caused by the oxidation process of the material to be sterilized by oxygen chemically activated by the plasma. . However, it is considered that the sterilization effect in the air plasma post-treatment process ③ is brought about in a different process. Because, assuming that it is due to chemically activated oxygen as in air plasma pretreatment step (2), the processing time in step (3) is 5 minutes, so too short A bactericidal effect will be achieved over time. Moreover, in the process (2), the sterilization effect of the air plasma is already saturated.
空気プラズマ後処理工程③において重要な点は、 装置内 (被滅菌物) The important point in the air plasma post-treatment process ③ is inside the equipment (substance to be sterilized)
差替え用紙 (細 I 6)
の隅々に吸着酸化エチレンが残留している条件下で、 空気プラズマが生 成されていることである。 Replacement paper (Fine I 6) Air plasma is generated under the condition that adsorbed ethylene oxide remains in every corner of the area.
プラズマによ り化学的に活性化された空気中の酸素が吸着酸化工チレ ンに作用し、 殺菌過程に間接的に関与する過程が考えられる。 It is conceivable that oxygen in the air chemically activated by the plasma acts on the adsorbed oxidized titanium and indirectly participates in the sterilization process.
図 29 ( d)で示したよ う に、 空気中の酸素成分の消滅 (消費) と吸着酸 化工チレンの脱離 . 分解が観測されている。 この実験結果は、 吸着酸化 エチレンは化学的に活性化された酸素によ り作用を受けているこ とを示 す。 As shown in Fig. 29 (d), the disappearance (consumption) of oxygen components in the air and the desorption / decomposition of adsorbed oxidized titanium are observed. The results of this experiment indicate that the adsorbed ethylene oxide is affected by chemically activated oxygen.
ここで、 高濃度酸化エチレンガスを長時間拡散させる従来の方法によ る滅菌過程を改めて書き記すと、 50°C前後の熱エネルギーにより一部の 酸化エチレンガス ((CH2) 20) の酸素と炭素部分の結合が開裂し、 その化 学的に活性化した酸化エチレンガスが被滅菌物と反応 (アルキル化) す る。 その結果、 殺菌 · 滅菌が行われる。 Here, the sterilization process using the conventional method of diffusing high-concentration ethylene oxide gas for a long time is rewritten as follows. The thermal energy of about 50 ° C causes the oxygen oxide of some ethylene oxide gas ((CH 2 ) 20 ) The bond between carbon and carbon is cleaved, and the chemically activated ethylene oxide gas reacts (alkylates) with the material to be sterilized. As a result, sterilization and sterilization are performed.
このよ うに酸化エチレンガスが 50 °C程度の熱エネルギーで活性化さ れ得る という ことから、 化学的に活性化された酸素 (この酸素は空気プ ラズマによ り一万度以上の高エネルギーを持つと考えられる) は吸着酸 化工チレンを容易に活性化し得る、 という推理が成り立つ。 Since ethylene oxide gas can be activated with heat energy of about 50 ° C, chemically activated oxygen (this oxygen can generate more than 10,000 degrees of high energy by air plasma) ) Can be easily activated adsorbed oxidized titanium.
すなわち、 被滅菌物近傍に吸着したほとんどの酸化エチレンは、 化学 的に活性化された酸素から被滅菌物と反応するために必要な活性化エネ ルギーを受け、 被滅菌物と反応すると考えられるのである。 しかもこの 反応は効率よく発生するため、 低量の残留酸化エチレンであっても、 有 効な殺菌効果が短時間に現れる と考えられる。 In other words, most of the ethylene oxide adsorbed near the object to be sterilized receives the activation energy necessary to react with the object to be sterilized from chemically activated oxygen and reacts with the object to be sterilized. is there. Moreover, since this reaction occurs efficiently, an effective sterilizing effect is expected to appear in a short time even with a small amount of residual ethylene oxide.
この過程に引き続いて、 あるいは同時に、 化学的に活性化された酸素 による反応後の酸化エチレンおよび残留酸化ェチレンの酸化分解過程が 生ずる。 但し、 この時、 図 29 ( d)に示すよ うに、 初期封入酸素分子分圧 が少なすぎる場合は、 残留酸化エチレンが水と二酸化炭素に完全に分解
されず、 一部ェタ ンへなどへ変換される。 産業上の利用可能性 Subsequent to or simultaneously with this process, a process of oxidative decomposition of ethylene oxide and residual ethylene oxide after reaction with chemically activated oxygen occurs. However, at this time, as shown in Fig. 29 (d), if the initial partial pressure of oxygen molecules is too low, the residual ethylene oxide is completely decomposed into water and carbon dioxide. It is not converted to some etanes. Industrial applicability
以上説明したよ う に、 本発明によれば、 多相交流放電によ り発生させ た空間的に一様なプラズマと低濃度の酸化エチレンガスを用いることに よ り、 滅菌むらが小さく 、 高速で且つ残留性の低い酸化エチレンガス滅 菌処理を実現できる。 As described above, according to the present invention, the use of spatially uniform plasma generated by multi-phase AC discharge and low-concentration ethylene oxide gas reduces sterilization unevenness and increases the speed of sterilization. In addition, ethylene oxide gas sterilization with low persistence can be realized.
従来の酸化エチレンガス滅菌処理に比べ、 酸化エチレン濃度は 1 / 50 以下で、 滅菌処理時間は滅菌および残留処理時間を含めて、 1 / 10以下で ある。 総合的な性能向上比は 500倍以上である。 実用化されているプラ ズマ滅菌処理の一つに過酸化水素プラズマ滅菌処理があるが、 水を吸収 するセルロース類の滅菌ができない欠点及び透過性に問題がある。 本発 明においては、 透過性の良い酸化エチレンガスによる従来の滅菌処理が 適用できるものと同様なものへ使用が可能であり、 適用範囲が広い。 Compared to conventional ethylene oxide gas sterilization, ethylene oxide concentration is 1/50 or less, and sterilization time is 1/10 or less, including sterilization and residual processing time. The overall performance improvement ratio is more than 500 times. Hydrogen peroxide plasma sterilization is one of the plasma sterilization processes that have been put into practical use, but it has a drawback in that it cannot sterilize water-absorbing celluloses and has a problem in permeability. In the present invention, it is possible to use the same as those to which the conventional sterilization treatment using ethylene oxide gas with good permeability can be applied, and the applicable range is wide.
更に、 ホルムアルデヒ ドガスを用いる場合でも同様な効果を実現可能 である。 Furthermore, the same effect can be realized even when using formaldehyde gas.
本発明で使用するガス滅菌装置において、 先ず、 多相交流放電で発生 させた空間的に一様なプラズマによ り、 化学的に活性な酸素を空間的に 一様に発生させ、 次に、 それを被滅菌物表面へ到達 ' 作用させることに よ り被滅菌物表面の化学的反応性を高め、 そして、 滅菌ガス注入による 空間的に偏り の無いガス滅菌が行われる。 In the gas sterilizer used in the present invention, first, chemically active oxygen is generated uniformly spatially by the spatially uniform plasma generated by the multi-phase AC discharge. By causing it to reach the surface of the object to be sterilized, the chemical reactivity of the surface of the object to be sterilized is increased, and spatially unbiased gas sterilization by injecting sterilizing gas is performed.
装置内壁に沿って取り付けられた分割電極へ多相交流電源の各相成分 を接続し、 装置中央に取り付けられた被滅菌物を格納する金属メ ッシュ 籠へ多相交流電源の中性点を接続する。 放電は、 各相の分割電極とメ ッ シュ籠間で生じ、 電源周波数の一周期の間に電極間を一回りする。 その 結果、 放電の結果生じたプラズマが放射状に内側に向かって金属メ ッシ
ュの籠の中へ拡散する。 金属メ ッシュ籠の中に格納された被滅菌物周辺 に、 空間的にほぼ一様なプラズマが存在するこ とになる。 Connect each phase component of the polyphase AC power supply to the split electrode mounted along the inner wall of the equipment, and connect the neutral point of the polyphase AC power supply to the metal mesh basket installed at the center of the equipment that stores the object to be sterilized I do. Discharge occurs between the divided electrodes of each phase and the mesh cage, and goes around between the electrodes during one cycle of the power supply frequency. As a result, the plasma resulting from the discharge is radiated inward to the metal mesh. Spreads into the baskets. A spatially almost uniform plasma will exist around the object to be sterilized stored in the metal mesh basket.
プラズマ中において化学的に活性な酸素が被滅菌物周辺に偏り無く発 生し、 被滅菌物を包む滅菌パックを通過して被滅菌物表面に到達 · 作用 する。 化学的に活性な酸素によ り被滅菌物表面の化学的反応性が空間的 に偏り無く高められ、 その結果、 滅菌ガス注入による空間的にむらのな いガス滅菌が行われる。
Chemically active oxygen is generated evenly around the object to be sterilized in the plasma, and reaches the surface of the object to be sterilized after passing through the sterilization pack surrounding the object to be sterilized. The chemically reactive oxygen enhances the chemical reactivity of the surface of the object to be sterilized evenly in space, and as a result, spatially uniform gas sterilization by injecting sterilizing gas is performed.