[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003037056A1 - Substrate with electromagnetic shield film - Google Patents

Substrate with electromagnetic shield film Download PDF

Info

Publication number
WO2003037056A1
WO2003037056A1 PCT/JP2002/010983 JP0210983W WO03037056A1 WO 2003037056 A1 WO2003037056 A1 WO 2003037056A1 JP 0210983 W JP0210983 W JP 0210983W WO 03037056 A1 WO03037056 A1 WO 03037056A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
silver
film
substrate
Prior art date
Application number
PCT/JP2002/010983
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Ohnishi
Keiji Sato
Yasutaka Tsuda
Katsuto Tanaka
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001328715A external-priority patent/JP2003133787A/en
Priority claimed from JP2002290283A external-priority patent/JP2004128220A/en
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Publication of WO2003037056A1 publication Critical patent/WO2003037056A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3676Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electromagnetic shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/867Means associated with the outside of the vessel for shielding, e.g. magnetic shields
    • H01J29/868Screens covering the input or output face of the vessel, e.g. transparent anti-static coatings, X-ray absorbing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/868Passive shielding means of vessels
    • H01J2329/869Electromagnetic shielding

Definitions

  • the present invention relates to an electromagnetic wave or remote control generated from the front of a display such as a plasma display panel (hereinafter referred to as PDP), a force sort ray tube (CRT), a liquid crystal display (LCD) and an electorite luminescence (EL).
  • PDP plasma display panel
  • CTR force sort ray tube
  • LCD liquid crystal display
  • EL electorite luminescence
  • the PDP emits electromagnetic waves (frequency: 30 to 1000 MHz) harmful to the human body or near infrared rays (wavelength: 850 to 1000 nm) that may cause the remote control of the home appliance to malfunction, these must be Need to be shielded.
  • a filter substrate for a DPP coated with a transparent conductive film is mounted on the front of the DPP for the purpose of shielding electromagnetic waves and near infrared rays on a glass substrate. .
  • the protective plate for PDP in which the multilayer conductive film laminated
  • An electromagnetic wave filter for a DPP having an electromagnetic shielding film is described.
  • a silver layer to which P d or the like is added is used as the silver layer, which is disadvantageous in cost and P d or the like is added to the silver layer.
  • the resistance value is increased as compared to other metal layers having the same film thickness.
  • the electromagnetic shielding film described in JP-A-11-307987 is In order to secure moisture resistance, a silver film to which an expensive Pd is added is used as a metal film as described above, but when a large amount of Pd is added, the resistance value of the transparent conductive film contributing to the electromagnetic wave shielding property In addition, problems such as a decrease in electromagnetic wave shieldability occur, which is disadvantageous in cost.
  • the present invention was made in view of the conventional problems, and adopted a multilayer film of a base layer including a silver 3 layer in which a dielectric layer using optical interference and a silver layer were combined.
  • An object of the present invention is to inexpensively provide a well-balanced substrate with an electromagnetic wave shielding film in which image display is easy to view.
  • the transparent substrate surface is covered with a transparent conductive film in which seven layers of dielectric layers and silver layers are alternately and sequentially repeated alternately from the substrate side. Thickness of each of the silver layers is 5N (99. 999%) or more, and the resistance value (sheet resistance) of the transparent conductive film surface is 1. It is characterized by having a 2 ⁇ / hole or less and a visible light transmittance of 60% or more.
  • the electromagnetic wave shielding film coated substrate comprises a transparent substrate, a first dielectric layer of a transparent metal oxide layer / a first silver layer / a first barrier layer of Z n A 1 / Second dielectric layer composed of transparent metal oxide layer / second silver layer / second barrier layer composed of Z n A 1 Third dielectric layer / third silver layer composed of transparent metal oxide layer ZZ n A 1 A third conductive layer composed of a third dielectric layer and a transparent conductive film composed of a fourth dielectric layer composed of a transparent metal oxide layer, wherein each silver layer has a thickness of 9 to 15 nm, Z n A 1
  • the film thickness of the barrier layer comprising the first dielectric layer and the fourth dielectric layer is 1.0 to 3.
  • the film thicknesses of the first dielectric layer and the fourth dielectric layer are 40 to 50 nm, and the second dielectric layer and the third dielectric layer
  • the transparent conductive film has a film thickness of 75 to 85 nm, a resistance value (sheet resistance) of the surface of the transparent conductive film of 2.5 ⁇ / hole or less, a visible light transmittance of 70% or more, and a transparent conductive film Coating
  • the visible light reflectance on the surface side of the transparent conductive film is 4% or less, and any silver layer constituting the transparent conductive film has a purity of silver of 5 N (99. 99 99%) or more.
  • Any Z n A 1 barrier layer that constitutes the conductive film It is a substrate with an electromagnetic wave shielding film characterized in that it is a Z n A 1 alloy containing 1 to 10% by weight.
  • FIG. 1 is a cross-sectional view of the layer configuration of a transparent conductive film according to an embodiment of the present invention.
  • the transparent conductive film has a sheet resistance of not more than 1.2 ⁇ / hole as a sheet resistance and is excellent in electromagnetic shielding performance and has a high visible light transmittance of 60% or more,
  • the reflectance is also low, it is possible to provide an electromagnetic wave shielding film-coated substrate having a well-balanced, easy-to-see image display and excellent in moisture resistance at low cost.
  • the electromagnetic wave shielding film coated substrate of the present invention is formed by repeatedly laminating the dielectric layer and the silver layer in this order on the surface of the transparent substrate so that the silver layer is three layers, and the dielectric layer is laminated on the uppermost layer.
  • a transparent conductive film formed by alternately laminating seven layers of dielectric layers and silver layers alternately and sequentially from the substrate side is coated on the transparent substrate surface.
  • the thickness of the silver layer is 18 nm or more, and the purity of silver in each silver layer is 5 N (999.99%) or more.
  • the resistance value of the surface of the transparent conductive film (see It has a resistance of 1.2 ⁇ / hole or less and a visible light transmittance of 60% or more.
  • the transparent conductive film is preferably a first dielectric layer having a thickness of 35 to 6 nm from the substrate side, a first silver layer having a thickness of 18 to 28 nm, and a thickness of 18 to 28 nm.
  • the film thickness of the silver layer influences the electromagnetic wave shielding property, the visible light transmittance and the reflection color tone, and in order to obtain a high electromagnetic wave shielding property of 30 dB or more, A film thickness of 18 nm or more is required.
  • 60% or more of visible light transmittance is ensured to make the image bright and easy to view, and 30 nm or less for each silver layer to avoid red reflected light. It is preferable to
  • the film thickness of the first silver layer is preferably 18 to 28 nm
  • the film thickness of the second silver layer is preferably 20 to 30 nm
  • the film thickness of the third silver layer is preferably 18 to 29 nm. If only two silver layers are provided (five layers including the dielectric layer as a whole), the resistance value of the film surface as in the present invention is a sheet resistance of 1.2 ⁇ or less, visible light transmittance It is impossible to easily obtain those with 60% or more.
  • each dielectric layer is formed of at least a zinc oxide layer or a tin oxide layer, and the thickness of each of these dielectric layers is as follows: the tin oxide layer in the first dielectric layer which is the lowermost layer; 50 nm, zinc oxide layer 5 to 55 nm, tin oxide layer in second dielectric layer 0 to 95 nm, zinc oxide layer 5 to 100 nm, tin oxide layer in third dielectric layer 5
  • the zinc oxide layer is preferably 5 to 100 nm
  • the tin oxide layer in the fourth dielectric layer is preferably 8 to 50 nm
  • the zinc oxide layer is preferably 5 to 55 nm. With a film thickness of 10%, it becomes impossible to make the visible light transmittance 60% or more.
  • the silver layer used in the present invention it is preferable to use silver having a purity of 5N (99. 999%) or more, although any silver layer does not contain any additives, and silver is preferably formed.
  • This is a device that traps the base pressure at the time of the poly cold (by condensing the water vapor present in the vacuum chamber on a low temperature cooling surface called a cryo coil so that a high vacuum can be obtained in the vacuum chamber). It is possible to obtain a high-density structure by applying a high vacuum by using US Polycold Systems Inc. (trade name of manufactured by IN ITAL Co., Ltd.) and the like, and as a silver barrier layer described later.
  • a film-coated substrate having good moisture resistance can be obtained without including impurities such as P d in A g.
  • a first barrier layer comprising a first dielectric layer / a first silver layer / a first silver layer / a Z n AI formed of a transparent metal oxide layer is formed on a transparent substrate.
  • Second dielectric layer consisting of layer / transparent metal oxide layer Z second silver layer third barrier layer consisting of ZnAl / third metal layer consisting of transparent metal oxide layer / third silver layer / third layer consisting of Z nAl Barrier Layer
  • any silver layer constituting the transparent conductive film has a silver purity of 5 N (99. 999%) or more, and any of the silver layers constituting the transparent conductive film.
  • Z n A 1 The rear layer is a substrate with an electromagnetic wave shielding film characterized in that it is a ZnAl alloy containing 1 to 10% by weight of A1, wherein the resistance value (sheet resistance) of the surface of the transparent conductive film is 2.5 ⁇ /. It is characterized by having a visible light transmittance of 70% or more and a visible light reflectance of 4% or less on the side coated with the transparent conductive film.
  • the thickness of the silver layer affects the electromagnetic shielding property, the visible light transmittance and the visible light reflectance, and the high electromagnetic shielding of 30 dB or more
  • Each silver layer needs to have a thickness of 10 nm or more in order to obtain good image quality.
  • each silver layer in order to brighten the image and improve visibility, 70% or more of visible light transmittance is secured, and image contrast
  • An amorphous film consisting of a tin oxide layer as an oxide layer is chemically and mechanically strong, and because of its amorphous loose structure, its adhesion to glass is also strong, and internal stress is also strong. It is hard to occur. Therefore, it is desirable to coat directly on the glass.
  • the thickness of the tin oxide layer in the first dielectric layer is preferably at least 8 nm or more in order to increase adhesion to glass and to eliminate the influence of alkali ions.
  • the dielectric layer is not limited to the zinc oxide layer or the tin oxide layer described above, and titanium oxide, S n Z n O, Z n A l, ITO, or the like can also be used.
  • tin oxide layer has poor adhesion to silver, in particular, and peeling at the tin oxide layer Z silver layer interface is likely to occur.
  • tin oxide has a weak bond with oxygen as its ionization tendency shows, and since the chemical potential of oxygen in the film is high, oxygen is easily diffused in the silver layer, the electrical resistance is increased, and high electromagnetic wave shielding is achieved. hard.
  • the tin oxide layer is preferably not in contact with the silver layer.
  • the tin oxide layer may contain an element as an amorphous film component which improves the chemical and mechanical properties and strengthens the adhesion to glass.
  • the layer immediately below the silver layer is preferably a zinc oxide layer.
  • the zinc oxide layer contains a known element (A1, Sn, etc.) as a component of the film that does not reduce the adhesion with the silver layer and makes it difficult for oxygen to diffuse in the silver layer. It is good.
  • the desired argon addition rate varies depending on equipment, but is approximately 10 to 30%. This value is determined by adding argon gradually from the oxygen atmosphere, observing whether the voltage applied to the target suddenly rises or the current suddenly drops, and then reducing argon a little.
  • the zinc oxide layer is dense and has the effect of preventing the diffusion of corrosive gases in the air, and also has the function of absorbing ultraviolet rays contained in sunlight, but its chemical durability is low.
  • a zinc oxide layer is used as the upper layer, it is desirable to further provide a tin oxide layer which is an amorphous oxide on the upper layer.
  • the above Z n as a zinc oxide layer
  • This Z n Al x O y layer prevents the oxidation of the silver layer, especially when heat treatment is performed at a high temperature above the softening point of the glass after forming a conductive film for bending and / or strengthening (including semi-reinforcing)
  • a metal barrier layer is preferably provided immediately above the silver layer to prevent oxidation of the silver layer. It is important to improve the moisture resistance, because the silver layer is likely to be oxidized due to moisture in the air, and if oxidation occurs, the resistance value is increased and a desired electromagnetic wave shielding property can not be obtained.
  • the metal barrier layer is not particularly limited in its components, but a Z n A 1 alloy layer containing 1 to 10% by weight of A 1 having high adhesion to both the silver layer and the dielectric layer is used. desirable.
  • the metal barrier layer referred to here is an alloy layer whose entire thickness is immediately after depositing a metal barrier layer directly on the silver layer, but then, for example, a dielectric layer is formed on the alloy layer.
  • the film thickness of the metal barrier layer indicates the film thickness when the Z n A 1 alloy layer is formed first.
  • the function of the metal barrier layer is as follows: when depositing the oxide layer of the second dielectric layer or the third dielectric layer, the effect of the oxidizing atmosphere does not affect the lower silver layer. Protect the silver layer of Furthermore, it also has the function of preventing moisture in the air from entering the film after film formation and oxidizing silver, thereby improving the moisture resistance of the silver layer. In addition, when the oxide dielectric layer is formed directly on the silver layer, irregularities are formed at the silver / dielectric interface, and the irregularities cause light scattering and the light transmittance is significantly reduced. The metal barrier layer also prevents the decrease in light transmittance to prevent the formation of the asperities.
  • this barrier layer is a light absorbing layer, too thick a layer may lower the light transmittance.
  • a Z n A 1 alloy is preferable, and in particular, A Z n A 1 alloy containing 1. 0 to 1. 0 wt% of oxygen has a high bonding strength with oxygen and traps oxygen and other corrosive ions that have diffused most effectively in the silver layer. Especially preferred. It is natural that the thicker the film thickness of this metal barrier layer is, the longer the strong effect is, but if it is too thick, the visible light transmittance is lowered. However, since a part of the metal barrier layer is oxidized when depositing the oxide next time, in order to make the visible light transmittance 60% or more, the first Venus barrier before oxidation is oxidized.
  • the thickness of the layer is preferably 1.3 to 3.5 nm, more preferably about 1.6 to 3. O nm. Furthermore, the thickness of the metal barrier layer for making visible light transmittance 70% or more needs to be 1. o to 3. O nm.
  • the transparent conductive film coated on the surface of the substrate with the electromagnetic wave shielding film of the present invention provides higher electromagnetic wave shielding performance as the resistance value becomes lower.
  • the sheet resistance which is the resistance value is 2.5 ⁇ .
  • the electromagnetic wave shielding performance at a wavelength of 1 GHz is 3 O dB or more, and it becomes possible to sufficiently shield the electromagnetic waves emitted from devices such as PDP.
  • the visible light transmittance is as high as 60% or more, it is possible to obtain a sufficiently bright image display.
  • the visible light ray reflectance on the glass surface side is about 12% or less, there is an advantage that the image penetration of the surrounding scenery is small, the image display is easy to view, and the red reflected light can be avoided.
  • it has excellent performance in the moisture resistance test (described later) for evaluating the degree of oxidation of the silver layer, and defects such as spots due to silver oxidation do not occur even in a hot and humid environment. It also has durability.
  • the visible light reflectance on the glass surface side is 4% or less, so the surrounding scenery It has the advantages of low image reflection and enabling image display with excellent contrast.
  • transparent glass plastic, etc.
  • a glass substrate general-purpose plain plate glass, so-called float plate glass, etc.
  • the composition of the glass is, but is not limited to, soda lime glass, aluminosilicate glass, etc. .
  • tempered glass with enhanced strength for example, surface compressive stress of about 100 MNZ m 2
  • semi-tempered glass for example, surface compressive stress of about 40 to 8 OMNZ m 2
  • the sputtering method of the conductive film of the present invention is preferable from the viewpoint of productivity, other film forming methods such as vacuum evaporation, ion plating, PC VD (plasma CVD) It is also possible to form a film by a method or the like.
  • the electromagnetic wave shielding film coated substrate of the present invention can be used as an electromagnetic wave shielding film coated substrate having a shielding function of near infrared rays which cause an erroneous operation of a remote control or an electromagnetic wave generated from the front of a display such as PDP or CRT.
  • a display such as PDP or CRT.
  • the surface and the back of the electromagnetic wave shielding film coated substrate of the present invention are anti-reflective by an adhesive etc., moisture proof of silver based transparent conductive film, prevention of scattering when broken glass, adhesion It is possible to attach a transparent film that has the function of adjusting the chromaticity of the entire film by adding a dye to the layer, and attach it to the front of the PDP (the electromagnetic shielding film is on the PDP side).
  • the transparent conductive film was formed by DC magnetron sputtering.
  • the present invention is not limited to the embodiments.
  • the sheet resistance of the film surface was measured by a four-point probe resistance meter (manufactured by Epson).
  • step difference measuring device dektak3 (made by S1 o an).
  • the sample was exposed to an atmosphere of 30 ° C.-90% RH for 2 weeks, and a sample having a size of at least 0.2 mm and no film defect or change in chromaticity was accepted.
  • the resistance value (sheet resistance) of the film surface of the transparent conductive film is 1.2 ⁇ or less, and the visible light transmittance is 60% or more.
  • the resistance value (sheet resistance) of the film surface of the transparent conductive film in Example 6 to Example 9 and Comparative Example 3 to Comparative Example 6 corresponds to a substrate with an electromagnetic wave shield film. 2.
  • a float glass substrate (visible light transmittance: 90.4%, with a black frame print on the rim of the glass and busbars, semi-reinforced) with a size of 1 00 Omm x 5 80 111] 11 approximately 3 111 111 (thick)
  • a film was formed in the following order using a sputtering device.
  • the pressure before film formation is Exhausting of the inside of the vacuum chamber 1 was sufficiently performed to 5 ⁇ 10 ⁇ 5 Torr.
  • a transport roll is installed below the target in the vacuum chamber 1, and when the glass substrate reciprocates on the roll, a predetermined metal layer or metal oxide is applied from the evening get to which power is applied. The layer is deposited on a glass plate.
  • the atmosphere is maintained at an inert atmosphere of Ar 100%, and the silver layer as the first silver layer is made 20 nm by the silver-gold, and it is made the first metal barrier layer by the 4A1-Zn target.
  • the 4 A 1 1 Zn alloy layer was deposited to a thickness of 1.6 nm.
  • the atmosphere is maintained at an inert atmosphere of Ar 100%, and the silver layer is used as a second metal barrier layer with a silver as an upper silver layer of 25 nm and a 4 A 1 Zn as a second metal barrier layer. of 4A 1-Z n alloy layer 1.
  • the transparent conductive film is formed by successively forming the second layer of 8.4 nm, the third layer of Z n Z layer of 34.4 nm, and the eighth pass of the fourth layer of S n 0 2 layer of 4.2 nm.
  • the coated substrate with the electromagnetic wave shielding film was discharged from the film forming chamber.
  • Table 1 shows the film configuration of each sample.
  • a substrate sample with an electromagnetic shielding film of the present invention was produced.
  • resistance value sheet resistance
  • visible light transmittance 64.2%
  • electromagnetic wave shielding property 30 to 1 000 MHz
  • an AR film with an AR (anti-reflection) treatment having an adhesive on the front and back of the substrate with an electromagnetic wave shielding film coated with the transparent conductive film obtained above is an AR film with anti-reflection treatment (Nippon Oil & Fat
  • the substrate was made of TAC resin
  • the adhesive was made of acrylic resin
  • the electromagnetic wave shielding filter was made.
  • the AR film has functions of preventing reflection and protecting the transparent conductive film and preventing breakage and scattering of the glass substrate.
  • the transparent conductive film was connected to a bus bar provided on the upper surface of a black frame printed on the periphery of the surface of the glass substrate.
  • the resistance value is 0.94 ⁇
  • the visible light transmittance is 64%
  • the near infrared transmittance (950 nm) is 0.05%
  • the moisture resistance there is no remarkable film defect or color change having a size of 0.2 mm or more, and the moisture resistance is very good
  • the PDP cover filter particularly for household class B type It had sufficient performance as an electromagnetic wave filter.
  • AgPd contains 1 atomic% of Pd
  • the film thickness of the 4 A 1-Z n alloy layer which is a metal barrier layer provided immediately above the second and third silver layers is 1.6 nm and 2.8 nm, respectively.
  • the same procedure as in Example 1 was followed except for the change.
  • Example 1 The procedure was the same as in Example 1 except that the film thickness was changed as shown in Table 1 in comparison with Example 1. As a result of evaluating the obtained sample, as shown in Table 1, it showed excellent performance. The moisture resistance was also passed.
  • Example 1 4 Replacement 3 ⁇ 4 (SIJ26) The procedure was the same as in Example 1 except that the film thickness was changed as shown in Table 1 in comparison with Example 1. As a result of evaluating the obtained sample, as shown in Table 2, it showed excellent performance. The moisture resistance was also passed.
  • Example 2 Compared to Example 1, all the same as Example 1 except that the film thickness of the 4 A 1 -Z n alloy layer which is a metal barrier layer provided immediately above the second silver layer was changed to 1.6 nm. I went to. As a result of evaluating the obtained sample, as shown in Table 2, it showed excellent performance. The moisture resistance was also passed.
  • Example 2 Compared to Example 1, the material of the metal barrier layer provided immediately above the silver layer was changed to T i, and the film thickness of the second 4 A 1-Z n alloy layer was changed to 1.6 nm. The same procedure as in Example 1 was followed except for the above. As a result of evaluating the obtained sample, as shown in Table 2, the transmittance was low and the moisture resistance was also poor.
  • Example 1 Compared to Example 1, all Example 1 and Example 1 were used except that the metal barrier layer provided immediately above the silver layer was made of a material of Ti and that the silver layer contained 1 atomic% of Pd. I went in the same way. As a result of evaluating the obtained samples, as shown in Table 3, although the moisture resistance was excellent, the resistance value was high.
  • Float glass substrate size of visible light transmittance: 90.4%, with black frame print and busbar on the rim of the glass, half size of about 100 0 mm x 5 0 0 111 111 thickness
  • a coating was formed in the following order on the surface of the reinforced product using a sputtering device.
  • a ZnO layer of a second layer was formed to a thickness of 38 nm with a Zn target under the same conditions as the first layer.
  • the atmosphere is maintained in an inert atmosphere of Ar 100%, the silver layer as the first silver layer is 10 nm by silver plating, and the ZnA as the first contact layer is ZnA as the first target.
  • An alloy layer was deposited at 1.6 nm.
  • Z N_ ⁇ as S n 0 2 Layers 1. 8 nm, 3-layer a Z n A 1 x O y layer with the first layer of the second dielectric layer 3.
  • 2-layer The layer was 45 nm, the second layer was an Sn 02 layer, the third layer was a 3.5 nm layer, and the fifth layer was a Zn o layer, 22.4 nm.
  • the atmosphere is maintained at an inert atmosphere of Ar 100%, the silver layer as the second silver layer is 14 nm by the silver getter, the Z as the second metal layer by the Z n A 1 target.
  • n A 1 alloy layer was deposited to a thickness of 1.6 nm.
  • fifth layer was deposited sequentially with 23.2 nm.
  • the atmosphere is maintained at an inert atmosphere of Ar 100%
  • the silver layer as the third silver layer is 12 nm by the silver plate
  • the Z nA as the third barrier layer by the Z nA 1 target As the sixth pass, the atmosphere is maintained at an inert atmosphere of Ar 100%
  • the silver layer as the third silver layer is 12 nm by the silver plate
  • the Z nA as the third barrier layer by the Z nA 1 target An alloy layer was formed to a thickness of 2.2 nm.
  • the S N_ ⁇ two layers as a layer th 1.4 nm, the Z nO layer 1 8. 5 nm, the S N_ ⁇ 2 layer as the 6 th layer 0. 7 nm are sequentially formed as the fifth layer, a transparent conductive
  • the substrate with the electromagnetic wave shielding film coated with the film was taken out from the film forming chamber.
  • the layer configuration of the obtained transparent conductive film is shown in FIG.
  • a substrate sample with an electromagnetic wave shielding film of the present invention was produced.
  • the surface resistance 2.5 ⁇ / hole
  • electromagnetic wave shielding property (30 to L 000 MHz): 30 dB or more
  • visible light transmittance 70% visible It had excellent characteristics with a light reflectance of 4%.
  • an AR film with AR (anti-reflection) treatment with an adhesive on the front and back of the substrate with an electromagnetic wave shielding film coated with the transparent conductive film obtained above is an AR film (Rose 1 ook made by NOF Corp.)
  • the base material was made of TAC resin
  • the adhesive was made of acrylic resin, to prepare an electromagnetic wave filter.
  • the AR film has functions of preventing reflection, protecting the transparent conductive film, and preventing breakage and scattering of the glass substrate.
  • the transparent conductive film was connected to a bus bar provided on the upper surface of a black frame printed on the periphery of the surface of the glass substrate.
  • the surface resistance 2.5 ⁇
  • the electromagnetic wave shielding property (30 to: L 000 MHz): 30 dB or more
  • the visible light reflection Rate Near-infrared transmittance (950 nm): 2.8%
  • moisture resistance 60 ° C, 90% RH, 1 000 h
  • the film thickness of the first dielectric layer is 4111111, the thickness of the first silver layer is 9.511111, and the thickness of the first barrier layer is 1 6 nm, the thickness of the second dielectric layer is 80 nm, the thickness of the second silver layer is 13.5 nm, the thickness of the second dielectric layer is 1.6 nm, and the thickness of the third dielectric layer is 82 nm
  • the transparent conductive film is formed by adjusting the film forming time so that the thickness of the third silver layer is 11. 5 nm, the thickness of the third barrier layer is 2.2 nm, and the thickness of the fourth dielectric layer is 42 nm. Shielding film coated The attached substrate was manufactured.
  • the film thickness of the first dielectric layer is 41 nm
  • the thickness of the first silver layer is 10 nm
  • the thickness of the first barrier single layer is the same under the same film forming conditions as in Example 6. 2.
  • the second dielectric layer thickness is 76 nm
  • the second silver layer thickness is 14 nm
  • the second barrier layer thickness is 2.0 nm
  • the third dielectric layer thickness is 78 nm
  • the transparent conductive film is coated by adjusting the deposition time so that the thickness of the third silver layer is 12 mm
  • the thickness of the third barrier layer is 2.6 nm
  • the thickness of the fourth dielectric layer is 41 nm.
  • a substrate with an electromagnetic shielding film was fabricated.
  • the film thickness of the first dielectric layer is 41 nm
  • the thickness of the first silver layer is 9 nm
  • the thickness of the first barrier layer is 1 under the same film forming conditions as in Example 6. 6 nm, thickness of second dielectric layer 76 nm, thickness of second silver layer 13 nm, thickness of second barrier layer 1.6 nm, thickness of third dielectric layer 7811111, third
  • the transparent conductive film was coated by adjusting the film formation time so that the thickness of the silver layer was 11 nm, the thickness of the third barrier layer was 2.2 nm, and the thickness of the fourth dielectric layer was 41 nm.
  • a substrate with an electromagnetic shielding film was made.
  • Table 3 shows the thickness, visible light transmittance, visible light reflectance, and surface resistance of each layer of the transparent conductive films of Examples 6 to 9.
  • the film thickness of the first dielectric layer is 35 nm
  • the thickness of the first silver layer is 10 nm
  • the thickness of the first barrier layer is 1.6 nm
  • thickness of second dielectric layer 70 nm thickness of second silver layer 14 nm
  • thickness of second barrier single layer 1.6 nm
  • thickness of third dielectric layer 70 nm third The film thickness is 12 nm
  • the thickness of the third barrier layer is 2.2 nm
  • the thickness of the fourth dielectric layer is 35 nm.
  • the film thickness of the first dielectric layer is 41 nm
  • the thickness of the first silver layer is 10 nm
  • the thickness of the first barrier layer is O under the same film forming conditions as in Example 6.
  • nm, thickness of second dielectric layer 76 nm, thickness of second silver layer 14 nm, thickness of second barrier layer 0 nm, thickness of third dielectric layer 78 nm, thickness of third silver layer The film formation time was adjusted so that the thickness of the third barrier layer was 0 nm and the thickness of the fourth dielectric layer was 41 nm, and a substrate with an electromagnetic shielding film coated with a transparent conductive film was fabricated.
  • the film thickness of the first dielectric layer is 41 nm, the thickness of the first silver layer is 10 nm, and the thickness of the first barrier single layer is 3.40 under the same film forming conditions as in Example 6. 2 nm, the thickness of the second dielectric layer is 76 nm, the thickness of the second silver layer is 14 nm, the thickness of the second barrier layer is 3.2 nm, the thickness of the third dielectric layer is 78 nm, the third silver layer A substrate with an electromagnetic wave shielding film coated with a transparent conductive film by adjusting the film forming time so that the film thickness is 12 nm, the thickness of the third barrier layer is 3.2 nm, and the thickness of the fourth dielectric layer is 41 nm. Was produced.
  • Example 2 The same film forming conditions and film thickness as in Example 1 except that the same film forming substrate as in Example 6 is used and the A 1 content of the Z n A 1 jacket attached in advance to the force sword of the sputtering apparatus is 15 wt%.
  • the substrate with an electromagnetic wave shielding film coated with a transparent conductive film was fabricated.
  • Table 4 shows the thickness, visible light transmittance, visible light reflectance, and surface resistance of each layer of the transparent conductive films of Comparative Examples 3 to 6. '
  • Visible light transmittance (3 ⁇ 4;) 68.7 30.0 63.4 67.5 Visible light reflectance (3 ⁇ 4) 4.2 5.4 ′ 7.2 4.0 Surface resistivity ( ⁇ / mouth) 2.3 8.5 2.6 2.4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

A substrate with a well-balanced electromagnetic shield film, excellent in electromagnetic shielding performance, enabling the user to easily see the image display thanks to high visible light transmittance, and low reflectance, and excellent humidity resistance. This substrate with an electromagnetic shield film has, over the surface of a transparent substrate, a transparent conductive film comprising seven layers of dielectric layers and silver layers alternately formed in the order from the substrate side. Each silver layer has a thickness of 18 nm or more and a silver purity of 99.999% or more. The surface resistance value of the transparent conductive film is 1.2 Ω/□ or less. The visible light transmittance of the substrate is 60% or more.

Description

電磁波シールド膜付き基板 発明の背景  Background of the Invention
本発明は、 プラズマディスプレイパネル (以下、 PDPと略す) 、 力ソード レイチューブ (CRT) 、 液晶ディスプレイ (LCD) 、 エレクト口ルミネッ センス (EL) などのディスプレ明イの前面から発生する電磁波或いはリモコン の誤動作を生じる近赤外線の遮蔽機能を有する電磁波シールド膜付き基板に 書  The present invention relates to an electromagnetic wave or remote control generated from the front of a display such as a plasma display panel (hereinafter referred to as PDP), a force sort ray tube (CRT), a liquid crystal display (LCD) and an electorite luminescence (EL). Write on a substrate with an electromagnetic wave shielding film that has a near infrared shielding function that causes a malfunction.
関する。 Related.
PDPでは、 人体に有害な電磁波(周波数: 30〜 1000 MHz)或いは周 辺の家電機器のリモコンの誤動作を招く恐れがある近赤外線(波長: 850〜 1000 nm)が放出されるので、 これらを効率的に遮蔽する必要がある。 こ のための対策としては従来、 ガラス基板上に電磁波と近赤外線を遮蔽する目的 で透明導電膜が被覆された P DP用フィルタ基板を該 P DPの前面に装着す ることが知られている。  Since the PDP emits electromagnetic waves (frequency: 30 to 1000 MHz) harmful to the human body or near infrared rays (wavelength: 850 to 1000 nm) that may cause the remote control of the home appliance to malfunction, these must be Need to be shielded. As a countermeasure for this, conventionally, it is known that a filter substrate for a DPP coated with a transparent conductive film is mounted on the front of the DPP for the purpose of shielding electromagnetic waves and near infrared rays on a glass substrate. .
例えば、 W〇 98/13850号公報においては、 基体側から 1種以上の金 属を含有する Z ηθを主成分とする酸化物層と銀を主成分とする金属層とが 交互に (2 n+ l) 層積層された多層の導電膜が被覆された PDP用保護板に ついて記載されており、 また、 特開平 1 1一 307987号公報においては、 基板側から屈折率が 1. 6〜2. 8の誘電体層と銀主成分層とを交互に積層し た 7層の積層体とし、 銀主成分層を銀に対して 0. 1〜0. 5原子%のパラジ ゥムを含有させた電磁遮蔽膜を有する P DP用の電磁波フィル夕一について 記載されている。  For example, in WO 98/13850, an oxide layer mainly composed of Z 主 成分 θ containing one or more metals from the substrate side and a metal layer mainly composed of silver alternate (2 n + l) It describes about the protective plate for PDP in which the multilayer conductive film laminated | stacked layer was coat | covered, and in Unexamined-Japanese-Patent No. 11-307987, refractive index is 1.6-2 from a board | substrate side. A layered structure of seven layers in which eight dielectric layers and a silver-based layer are alternately laminated, and the silver-based layer contains 0.1 to 0.5 atomic percent of palladium with respect to silver An electromagnetic wave filter for a DPP having an electromagnetic shielding film is described.
しかしながら、 W098/1 3850号公報の発明は、 銀層として P d等を 添加した銀層が用いられており、 コスト的に不利であるとともに該銀層に P d 等を添加しているために膜厚の同じ他の金属層と比較して抵抗値が高くなる 等の問題がある。また、特開平 1 1— 307987号公報記載の電磁遮蔽膜は、 耐湿性を確保する目的で前記と同様に金属膜として高価な P dを添加した銀 膜を使用しているが、 該 P dを多く添加すると電磁波シールド性に寄与する透 明導電膜の抵抗値が増加し、 電磁波シールド性が低下する等の問題が生じると ともにコスト的に不利である。 However, according to the invention of W098 / 1 3850, a silver layer to which P d or the like is added is used as the silver layer, which is disadvantageous in cost and P d or the like is added to the silver layer. There is a problem that the resistance value is increased as compared to other metal layers having the same film thickness. Moreover, the electromagnetic shielding film described in JP-A-11-307987 is In order to secure moisture resistance, a silver film to which an expensive Pd is added is used as a metal film as described above, but when a large amount of Pd is added, the resistance value of the transparent conductive film contributing to the electromagnetic wave shielding property In addition, problems such as a decrease in electromagnetic wave shieldability occur, which is disadvantageous in cost.
発明の要約 Summary of the invention
本発明は、 従来のかかる課題に鑑みてなしたものであって、 光学干渉を利用 した誘電体層と銀層とを組み合わせた銀 3層を含む Ί層の多層膜を採用した。 本発明の目的は、 画像表示が見易いバランスのとれた電磁波シールド膜付き 基板を安価に提供することである。  The present invention was made in view of the conventional problems, and adopted a multilayer film of a base layer including a silver 3 layer in which a dielectric layer using optical interference and a silver layer were combined. An object of the present invention is to inexpensively provide a well-balanced substrate with an electromagnetic wave shielding film in which image display is easy to view.
本発明の第 1の特徴による電磁波シールド膜付き基板は、 透明基板表面に、 基板側から誘電体層、 銀層が交互に順次繰り返し 7層積層されてなる透明導電 膜が被覆され、 各銀層の厚さが 1 8 nm以上であり、 いずれの銀層も銀の純度 が 5N ( 99. 999 %) 以上の純度であり、 該透明導電膜の膜表面の抵抗値 (シート抵抗) が 1. 2 Ω /口以下であり、 可視光線透過率が 60%以上であ ることを特徴とする。  In the electromagnetic wave shielding film coated substrate according to the first aspect of the present invention, the transparent substrate surface is covered with a transparent conductive film in which seven layers of dielectric layers and silver layers are alternately and sequentially repeated alternately from the substrate side. Thickness of each of the silver layers is 5N (99. 999%) or more, and the resistance value (sheet resistance) of the transparent conductive film surface is 1. It is characterized by having a 2 Ω / hole or less and a visible light transmittance of 60% or more.
また、 本発明の第 2の特徴による電磁波シールド膜付き基板は、 透明基板上 に、 透明金属酸化物層よりなる第 1誘電体層/第 1銀層/ Z n A1よりなる第 1バリヤー層/透明金属酸化物層よりなる第 2誘電体層/第 2銀層/ Z n A 1 よりなる第 2バリャ一層/透明金属酸化物層よりなる第 3誘電体層/第 3銀 層 Z Z n A 1よりなる第 3バリャ一層 Z透明金属酸化物層よりなる第 4誘電体 層からなる透明導電膜が積層された基板であって、 各銀層の膜厚がそれぞれ 9 〜 1 5 nm、 Z n A1よりなるバリヤ一層の膜厚がそれぞれ 1. 0〜3. O n m、 第 1誘電体層および第 4誘電体層の膜厚が 40〜50 nm、 第 2誘電体層 および第 3誘電体層の膜厚が 7 5〜85 nmからなり、 該透明導電膜表面の抵 抗値(シート抵抗)が 2. 5 Ω /口以下であり、 可視光線透過率が 70%以上で あり、 透明導電膜が被覆された面側の可視光反射率が 4%以下であり、 該透明 導電膜を構成するいずれの銀層も銀の純度が 5 N ( 99. 9 99 %) 以上の純 度であり、 該透明導電膜を構成するいずれの Z n A 1のバリヤ一層が、 A 1を 1〜 1 0重量%含む Z n A 1合金であることを特徴とする電磁波シールド膜 付き基板である。 The electromagnetic wave shielding film coated substrate according to the second aspect of the present invention comprises a transparent substrate, a first dielectric layer of a transparent metal oxide layer / a first silver layer / a first barrier layer of Z n A 1 / Second dielectric layer composed of transparent metal oxide layer / second silver layer / second barrier layer composed of Z n A 1 Third dielectric layer / third silver layer composed of transparent metal oxide layer ZZ n A 1 A third conductive layer composed of a third dielectric layer and a transparent conductive film composed of a fourth dielectric layer composed of a transparent metal oxide layer, wherein each silver layer has a thickness of 9 to 15 nm, Z n A 1 The film thickness of the barrier layer comprising the first dielectric layer and the fourth dielectric layer is 1.0 to 3. O nm, the film thicknesses of the first dielectric layer and the fourth dielectric layer are 40 to 50 nm, and the second dielectric layer and the third dielectric layer The transparent conductive film has a film thickness of 75 to 85 nm, a resistance value (sheet resistance) of the surface of the transparent conductive film of 2.5 Ω / hole or less, a visible light transmittance of 70% or more, and a transparent conductive film Coating The visible light reflectance on the surface side of the transparent conductive film is 4% or less, and any silver layer constituting the transparent conductive film has a purity of silver of 5 N (99. 99 99%) or more. Any Z n A 1 barrier layer that constitutes the conductive film It is a substrate with an electromagnetic wave shielding film characterized in that it is a Z n A 1 alloy containing 1 to 10% by weight.
図面の簡単な説明 Brief description of the drawings
図 1は本発明の実施形態である透明導電膜の層構成の断面図である。  FIG. 1 is a cross-sectional view of the layer configuration of a transparent conductive film according to an embodiment of the present invention.
好適な実施例の説明 Description of the Preferred Embodiment
本発明の電磁波シールド膜付き基板は、 透明導電膜の抵抗値がシート抵抗と して 1 . 2 Ω /口以下であり電磁遮蔽性能に優れるとともに、 可視光透過率が 6 0 %以上と高く、 且つ反射率も低いために画像表示が見易く、 さらに耐湿性 にも優れたバランスのとれた電磁波シールド膜付き基板を安価に提供できる ものである。  In the electromagnetic wave shielding film coated substrate of the present invention, the transparent conductive film has a sheet resistance of not more than 1.2 Ω / hole as a sheet resistance and is excellent in electromagnetic shielding performance and has a high visible light transmittance of 60% or more, In addition, since the reflectance is also low, it is possible to provide an electromagnetic wave shielding film-coated substrate having a well-balanced, easy-to-see image display and excellent in moisture resistance at low cost.
本発明の電磁波シールド膜付き基板は、 透明基板表面に、 誘電体層、 銀層、 がこの順に、 銀層が 3層となるように繰り返し積層され、 最上層に誘電体層が 積層されてなる透明導電膜を被覆したものであり、 該膜表面の抵抗値がシート 抵抗値として 1 . 2 Ω Ζ口以下であり、 可視光線透過率が 6 0 %以上であるこ とを特徴とするものと、 抵抗値 (シート抵抗値) が 2 . 5 Ω /口以下であり、 可視光線透過率が 7 0 %以上であることを特徴とするものである。  The electromagnetic wave shielding film coated substrate of the present invention is formed by repeatedly laminating the dielectric layer and the silver layer in this order on the surface of the transparent substrate so that the silver layer is three layers, and the dielectric layer is laminated on the uppermost layer. A film coated with a transparent conductive film, wherein the film surface has a sheet resistance value of 1.2 Ω or less and a visible light transmittance of 60% or more. It is characterized in that the resistance value (sheet resistance value) is 2.5 Ω / hole or less and the visible light transmittance is 70% or more.
本発明の第 1の特徴の電磁波シールド膜付き基板は、 透明基板表面に、 基板 側から誘電体層、 銀層が交互に順次繰り返し 7層積層されてなる透明導電膜が 被覆され、 各銀層の厚さが 1 8 n m以上であり、 いずれの銀層も銀の純度が 5 N ( 9 9 . 9 9 9 % ) 以上の純度であり、 該透明導電膜の膜表面の抵抗値 (シ ート抵抗) が 1 . 2 Ω /口以下であり、 可視光線透過率が 6 0 %以上であるこ とを特徴とする。  In the electromagnetic wave shielding film coated substrate according to the first aspect of the present invention, a transparent conductive film formed by alternately laminating seven layers of dielectric layers and silver layers alternately and sequentially from the substrate side is coated on the transparent substrate surface. The thickness of the silver layer is 18 nm or more, and the purity of silver in each silver layer is 5 N (999.99%) or more. The resistance value of the surface of the transparent conductive film (see It has a resistance of 1.2 Ω / hole or less and a visible light transmittance of 60% or more.
さらに、 前記透明導電膜は、 好ましくは、 基板側から、 膜厚が 3 5〜6 3 n mを有する第 1誘電体層 Z膜厚が 1 8〜2 8 n mを有する第 1銀層/膜厚が 7 0〜 1 0 0 n mを有する第 2誘電体層/膜厚が 2 0〜 3 0 n mを有する第 2銀層/膜厚が 7 0〜1 0 5 n mを有する第 3誘電体層/膜厚が 1 8〜2 9 n mを有する第 3銀層/膜厚が 3 5〜6 3 n mを有する第 4誘電体層から構 成されてなることを特徴とする。 電磁波遮蔽性能を左右する銀層は、 該銀層の膜厚が電磁波遮蔽性、 可視光線 透過率および反射色調に影響を及ぼし、 30 dB以上の高電磁波遮蔽性を得る ためには各銀層ともに 1 8 nm以上の膜厚が必要であり、 一方画像を明るくし て見易くするために可視光線透過率を 60%以上確保し、 且つ赤い反射光を避 けるためには各銀層ともに 30 nm以下とすることが好ましい。 Furthermore, the transparent conductive film is preferably a first dielectric layer having a thickness of 35 to 6 nm from the substrate side, a first silver layer having a thickness of 18 to 28 nm, and a thickness of 18 to 28 nm. Dielectric layer having a thickness of 70 to 100 nm / second silver layer having a thickness of 20 to 30 nm / third dielectric layer having a thickness of 70 to 105 nm A third silver layer having a film thickness of 18 to 29 nm / a fourth dielectric layer having a film thickness of 35 to 6 3 nm. In the silver layer which determines the electromagnetic wave shielding performance, the film thickness of the silver layer influences the electromagnetic wave shielding property, the visible light transmittance and the reflection color tone, and in order to obtain a high electromagnetic wave shielding property of 30 dB or more, A film thickness of 18 nm or more is required. On the other hand, 60% or more of visible light transmittance is ensured to make the image bright and easy to view, and 30 nm or less for each silver layer to avoid red reflected light. It is preferable to
特に、第 1銀層の膜厚は 18〜28 nm、第 2銀層の膜厚は 20〜30 nm、 第 3銀層の膜厚は 18〜29 nmとすることが好ましい。 なお、 銀層を 2層設 けただけでは (全体では誘電体層を含めて 5層) 、 本発明のような膜表面の抵 抗値がシート抵抗として 1. 2 ΩΖ口以下、 可視光線透過率が 60%以上であ るものを容易に得ることが不可能である。  In particular, the film thickness of the first silver layer is preferably 18 to 28 nm, the film thickness of the second silver layer is preferably 20 to 30 nm, and the film thickness of the third silver layer is preferably 18 to 29 nm. If only two silver layers are provided (five layers including the dielectric layer as a whole), the resistance value of the film surface as in the present invention is a sheet resistance of 1.2 Ω or less, visible light transmittance It is impossible to easily obtain those with 60% or more.
次に、 各誘電体層は、 少なくとも酸化亜鉛層または酸化錫層より形成され、 各誘電体層におけるこれらの各膜厚は、 最下層である第 1誘電体層における酸 化錫層は 8〜50 nm、 酸化亜鉛層は 5〜 55 n m、 第 2誘電体層における酸 化錫層は 0〜9 5 nm、 酸化亜鉛層は 5〜1 00 nm、 第 3誘電体層における 酸化錫層は 5〜100 nm、 酸化亜鉛層は 5〜1 00 nm、 第 4誘電体層にお ける酸化錫層は 8〜 50 nm、 酸化亜鉛層は 5〜 55 nmとすることが好まし く、 上記範囲以外の膜厚では可視光線透過率を 60 %以上とすることができな くなる。  Next, each dielectric layer is formed of at least a zinc oxide layer or a tin oxide layer, and the thickness of each of these dielectric layers is as follows: the tin oxide layer in the first dielectric layer which is the lowermost layer; 50 nm, zinc oxide layer 5 to 55 nm, tin oxide layer in second dielectric layer 0 to 95 nm, zinc oxide layer 5 to 100 nm, tin oxide layer in third dielectric layer 5 The zinc oxide layer is preferably 5 to 100 nm, the tin oxide layer in the fourth dielectric layer is preferably 8 to 50 nm, and the zinc oxide layer is preferably 5 to 55 nm. With a film thickness of 10%, it becomes impossible to make the visible light transmittance 60% or more.
さらに、 本発明で用いる銀層は、 いづれの銀層も添加物を含有していないも の、 特に 5N ( 99. 999 %) 以上の純度の銀、 を用いることが好ましく、 銀を成膜する時のベ一ス圧をポリコールド (真空チャンバ一に存在する水蒸気 をクライオコイルと呼ばれる低温冷却表面に凝縮させる事によりトラップし 真空チャンバ一に高真空を得られる様にする装置であり、 このポリコ一ルドは 米国 POLYCOLD SYSTEMS I NT E RN AT I ONAL社製 の商品名) 等の使用により高真空にする事により高密度の構造とすることが可 能となり、 さらに後述する銀のバリヤ一層として Z n A 1などを用いる事によ り P d等の不純物を A gに含有させなくても耐湿性の良好な膜付き基板を得 ることができる。 また、 本発明の第 2の特徴の電磁遮蔽膜付き基板は、 透明基板上に、 透明金 属酸化物層よりなる第 1誘電体層/第 1銀層/ Z n A Iよりなる第 1バリヤ一 層/透明金属酸化物層よりなる第 2誘電体層 Z第 2銀層 ZnAlよりなる第 バリヤー層/透明金属酸化物層よりなる第 3誘電体層/第 3銀層/ Z nAl よりなる第 3バリヤ一層 Z透明金属酸化物層よりなる第 4誘電体層からなる 透明導電膜が積層された基板であって、 各銀層の膜厚がそれぞれ 9〜 1 5 nm、 Z nAlよりなるバリヤ一層の膜厚がそれぞれ 1. 0〜3. O nm、 第 1誘電 体層および第 4誘電体層の膜厚が 40〜50 nm、 第 2誘電体層および第 3誘 電体層の膜厚が 7 5〜85 nmからなり、 であり、 該透明導電膜を構成するい ずれの銀層も銀の純度が 5 N ( 99. 999 %) 以上の純度であり、 該透明導 電膜を構成するいずれの Z n A 1のバリヤ一層が、 A 1を 1〜 10重量%含む ZnA l合金であることを特徴とする電磁波シールド膜付き基板であって、 該 透明導電膜表面の抵抗値(シート抵抗)が 2. 5 Ω /口以下であり、 可視光線透 過率が 70 %以上であり、 透明導電膜が被覆された面側の可視光反射率が 4% 以下であることを特徴とする。 Furthermore, as the silver layer used in the present invention, it is preferable to use silver having a purity of 5N (99. 999%) or more, although any silver layer does not contain any additives, and silver is preferably formed. This is a device that traps the base pressure at the time of the poly cold (by condensing the water vapor present in the vacuum chamber on a low temperature cooling surface called a cryo coil so that a high vacuum can be obtained in the vacuum chamber). It is possible to obtain a high-density structure by applying a high vacuum by using US Polycold Systems Inc. (trade name of manufactured by IN ITAL Co., Ltd.) and the like, and as a silver barrier layer described later. By using n A 1 or the like, a film-coated substrate having good moisture resistance can be obtained without including impurities such as P d in A g. In the electromagnetic shielding film coated substrate according to the second aspect of the present invention, a first barrier layer comprising a first dielectric layer / a first silver layer / a first silver layer / a Z n AI formed of a transparent metal oxide layer is formed on a transparent substrate. Second dielectric layer consisting of layer / transparent metal oxide layer Z second silver layer third barrier layer consisting of ZnAl / third metal layer consisting of transparent metal oxide layer / third silver layer / third layer consisting of Z nAl Barrier Layer A substrate on which a transparent conductive film comprising a fourth dielectric layer comprising a Z transparent metal oxide layer is laminated, wherein each silver layer has a thickness of 9 to 15 nm and a barrier layer comprising Z nAl The film thickness is 1. to 3. O nm, the thickness of the first dielectric layer and the thickness of the fourth dielectric layer are 40 to 50 nm, and the thickness of the second dielectric layer and the thickness of the third dielectric layer are 7 And any silver layer constituting the transparent conductive film has a silver purity of 5 N (99. 999%) or more, and any of the silver layers constituting the transparent conductive film. Z n A 1 The rear layer is a substrate with an electromagnetic wave shielding film characterized in that it is a ZnAl alloy containing 1 to 10% by weight of A1, wherein the resistance value (sheet resistance) of the surface of the transparent conductive film is 2.5 Ω /. It is characterized by having a visible light transmittance of 70% or more and a visible light reflectance of 4% or less on the side coated with the transparent conductive film.
前述の透明導電膜において、 電磁遮蔽性能を左右する銀層は、 該銀層の膜厚 が電磁遮蔽性、 可視光線透過率および可視光線反射率に影響を及ぼし、 30 d B以上の高電磁遮蔽性を得るためには各銀層ともに 10 nm以上の膜厚が必 要であり、 一方画像を明るくして視認性をよくするために、 可視光線透過率を 70 %以上確保し、 かつ画像コントラストを高めるために可視光線反射率を 4 %以下と低くするためには各銀層ともに 1 5 nm以下とすることが好ましく、 特に、 第 1銀層の膜厚は 9〜1 O nm、 第 2銀層の膜厚は 1 3〜14nm、 第 3銀層の膜厚は 1 1〜1 2 nmとすることがより好ましい。 銀層を 2層設けた だけでは、 本発明のような膜表面の表面抵抗値が 2. 5 ΩΖ口以下で、 可視光 線透過率が 7 0 %以上で、 可視光線反射率が 4 %以下であるものを得ることは 容易ではない。  In the above-described transparent conductive film, in the silver layer that determines the electromagnetic shielding performance, the thickness of the silver layer affects the electromagnetic shielding property, the visible light transmittance and the visible light reflectance, and the high electromagnetic shielding of 30 dB or more Each silver layer needs to have a thickness of 10 nm or more in order to obtain good image quality. On the other hand, in order to brighten the image and improve visibility, 70% or more of visible light transmittance is secured, and image contrast In order to lower the visible light reflectance to 4% or less in order to increase the film thickness, it is preferable to set each silver layer to 15 nm or less, and in particular, the film thickness of the first silver layer is 9 to 1 O nm, the second More preferably, the film thickness of the silver layer is 13 to 14 nm, and the film thickness of the third silver layer is 11 to 12 nm. If only two silver layers are provided, the surface resistance of the film surface as in the present invention is 2.5 Ω or less, the visible light transmittance is 70% or more, and the visible light reflectance is 4% or less. It is not easy to get what is.
酸化物層としての酸化錫層よりなる非晶質の被膜は、 化学的にも機械的にも 強く、 且つ非晶質のルーズな構造のためガラスとの密着力も強く、 内部応力も 発生しにくい。 従ってガラスの直上に被覆することが望ましい。 ガラスとの密 着力を高め、 アルカリイオンの影響を断っための第 1誘電体層中の酸化錫層の 厚みは少なくとも 8 n m以上とすることが好ましい。 なお、 誘電体層は、 前記 の酸化亜鉛層、酸化錫層に限定されるものではなく、酸化チタン、 S n Z n O、 Z n A l〇、 I T O等を用いることも出来る。 An amorphous film consisting of a tin oxide layer as an oxide layer is chemically and mechanically strong, and because of its amorphous loose structure, its adhesion to glass is also strong, and internal stress is also strong. It is hard to occur. Therefore, it is desirable to coat directly on the glass. The thickness of the tin oxide layer in the first dielectric layer is preferably at least 8 nm or more in order to increase adhesion to glass and to eliminate the influence of alkali ions. The dielectric layer is not limited to the zinc oxide layer or the tin oxide layer described above, and titanium oxide, S n Z n O, Z n A l, ITO, or the like can also be used.
しかし、 前記酸化錫層は、 特に銀との密着力が劣り酸化錫層 Z銀層界面での 剥離が起こりやすい。 又、 酸化錫はそのイオン化傾向から分かるように酸素と の結合が弱く、 被膜内の酸素の化学的ポテンシャルが高いため、 銀層に酸素が 拡散しやすく電気抵抗が上り、 高電磁波遮蔽を達成し難い。  However, the above-mentioned tin oxide layer has poor adhesion to silver, in particular, and peeling at the tin oxide layer Z silver layer interface is likely to occur. In addition, tin oxide has a weak bond with oxygen as its ionization tendency shows, and since the chemical potential of oxygen in the film is high, oxygen is easily diffused in the silver layer, the electrical resistance is increased, and high electromagnetic wave shielding is achieved. hard.
これらの理由より、 酸化錫層は銀層と接触させないことが好ましい。 なお、 酸化錫層には化学的、 機械的特性を向上し、 またガラスとの密着力も強くする 非晶質の被膜成分としての元素が含まれても良い。  For these reasons, the tin oxide layer is preferably not in contact with the silver layer. The tin oxide layer may contain an element as an amorphous film component which improves the chemical and mechanical properties and strengthens the adhesion to glass.
一方、 酸化亜鉛層は、 銀層との密着力が高く、 又酸素との高い結合力によつ て層内の酸素のポテンシャルが低いため、 銀層内に酸素が拡散しにくい。 従つ て銀層直下の層は酸化亜鉛層が望ましい。 なお、 酸化亜鉛層には銀層との密着 力を低下せず、 銀層内に酸素が拡散しにくくするような被膜の成分としての公 知の元素 (A 1、 S n等) が含まれても良い。  On the other hand, since the zinc oxide layer has high adhesion to the silver layer, and the high bonding force with oxygen, the potential of oxygen in the layer is low, so oxygen does not diffuse easily in the silver layer. Therefore, the layer immediately below the silver layer is preferably a zinc oxide layer. The zinc oxide layer contains a known element (A1, Sn, etc.) as a component of the film that does not reduce the adhesion with the silver layer and makes it difficult for oxygen to diffuse in the silver layer. It is good.
なお、 銀層に接触する酸化物層中の酸素の化学ポテンシャルはできる限り低 く保つことが肝要で、 酸化亜鉛成膜時の雰囲気は酸素と共にできるだけ多くの アルゴンを添加するのが望ましい。 望ましいアルゴンの添加率は設備によって 異なるが概ね 1 0〜 3 0 %である。 この値は酸素雰囲気から徐々にアルゴンを 添加していき、 ターゲットに掛かる電圧が急に上がるか、 電流が急に下がる現 象を観測し、 そこからアルゴンを若干減らすことで決められる。  In addition, it is important to keep the chemical potential of the oxygen in the oxide layer in contact with the silver layer as low as possible, and it is desirable to add as much argon as possible together with oxygen at the time of film formation of zinc oxide. The desired argon addition rate varies depending on equipment, but is approximately 10 to 30%. This value is determined by adding argon gradually from the oxygen atmosphere, observing whether the voltage applied to the target suddenly rises or the current suddenly drops, and then reducing argon a little.
また、 酸化亜鉛層は緻密で大気中の腐食性ガスの拡散を防ぐ効果があり、 ま た太陽光線に含まれる紫外線を吸収する働きがあるが化学的耐久性が低いた め、 第 3銀層の上層に酸化亜鉛層を用いる場合には、 さらにその上層に非晶質 酸化物である酸化錫層を設けることが望ましい。  In addition, the zinc oxide layer is dense and has the effect of preventing the diffusion of corrosive gases in the air, and also has the function of absorbing ultraviolet rays contained in sunlight, but its chemical durability is low. When a zinc oxide layer is used as the upper layer, it is desirable to further provide a tin oxide layer which is an amorphous oxide on the upper layer.
また、 誘電体層としての金属酸化物層としては、 酸化亜鉛層として前記 Z n O層のほかに Z n A 1 xOy ( x = l〜 2、 y = l〜4 ) 層を用いることが好ま しい。 この Z n A l xOy層は、 特に曲げ及び/又は強化 (半強化も含む) のた めに導電膜を形成後にガラスの軟化点以上の高温で熱処理する場合、 銀層の酸 化を防止するのに特に有効であり、 後述する金属バリヤ一層の直上に設けるこ とが好ましい。 Moreover, as a metal oxide layer as a dielectric layer, the above Z n as a zinc oxide layer In addition to the O layer, it is preferable to use a Z n A 1 x O y (x = 1 to 2, y = 1 to 4) layer. This Z n Al x O y layer prevents the oxidation of the silver layer, especially when heat treatment is performed at a high temperature above the softening point of the glass after forming a conductive film for bending and / or strengthening (including semi-reinforcing) In particular, it is preferable to provide it directly on the metal barrier layer described later.
次に、 銀層の直上部には、 該銀層の酸化を防止するために金属バリヤ一層を 設けることが好ましい。 前記銀層は空気中の湿分による酸化が起こりやすく、 酸化が生じると抵抗値が高くなり所望の電磁波遮蔽性が得られなくなるので、 耐湿性を向上させることは重要である。 金属バリヤ一層としては、 特にその成 分を限定するものではないが、 銀層と誘電体層の両層に高い密着性を持つ A 1 を 1〜 1 0重量%含む Z n A 1合金層が望ましい。 なお、 ここでいう金属バリ ャ一層とは、 銀層の直上に金属バリヤ一層を成膜した直後は全厚が合金層であ るが、次いで、例えば、該合金層の上層に誘電体層の金属酸化物を成膜する時、 酸化性雰囲気 (例えば酸素 8 0 %、 アルゴン 2 0 % ) で成膜するため、 該合金 層の上層部の一部が酸化物に変換される。 この上層部が酸化された酸化物層と 残った合金層を含めて金属バリヤ一層と呼ぶ。 すなわち、 金属バリヤ一層の膜 厚とは、 最初に Z n A 1合金層を成膜した時の膜厚を示す。  Next, a metal barrier layer is preferably provided immediately above the silver layer to prevent oxidation of the silver layer. It is important to improve the moisture resistance, because the silver layer is likely to be oxidized due to moisture in the air, and if oxidation occurs, the resistance value is increased and a desired electromagnetic wave shielding property can not be obtained. The metal barrier layer is not particularly limited in its components, but a Z n A 1 alloy layer containing 1 to 10% by weight of A 1 having high adhesion to both the silver layer and the dielectric layer is used. desirable. The metal barrier layer referred to here is an alloy layer whose entire thickness is immediately after depositing a metal barrier layer directly on the silver layer, but then, for example, a dielectric layer is formed on the alloy layer. When forming a metal oxide film, in order to form a film in an oxidizing atmosphere (for example, 80% oxygen, 20% argon), a part of the upper layer portion of the alloy layer is converted to an oxide. The upper layer is called a metal barrier layer including the oxidized oxide layer and the remaining alloy layer. That is, the film thickness of the metal barrier layer indicates the film thickness when the Z n A 1 alloy layer is formed first.
該金属バリヤー層の作用は、 前記第 2誘電体層或いは第 3誘電体層の酸化物 層を成膜する際に、 その酸化性雰囲気の影響が下部の銀層に及ばないように成 膜中の銀層を保護するものである。 さらに、 成膜後に大気中の水分が膜中に入 りこみ銀を酸化させるのを防ぎ、 銀層の耐湿性を向上する作用も併せて有して いる。 また、 銀層の直接上に酸化物誘電体層を形成すると、 銀/誘電体界面に 凹凸が形成され、 この凹凸が光散乱の原因となり光線透過率が大幅に低下しま う。 金属バリヤ一層は、 該凹凸の形成を防ぐため、 光線透過率の低下も防止す る。  The function of the metal barrier layer is as follows: when depositing the oxide layer of the second dielectric layer or the third dielectric layer, the effect of the oxidizing atmosphere does not affect the lower silver layer. Protect the silver layer of Furthermore, it also has the function of preventing moisture in the air from entering the film after film formation and oxidizing silver, thereby improving the moisture resistance of the silver layer. In addition, when the oxide dielectric layer is formed directly on the silver layer, irregularities are formed at the silver / dielectric interface, and the irregularities cause light scattering and the light transmittance is significantly reduced. The metal barrier layer also prevents the decrease in light transmittance to prevent the formation of the asperities.
しかしながらこのバリヤ一層は光吸収層であるため、 厚すぎても光線透過率 を低下させてしまう。  However, since this barrier layer is a light absorbing layer, too thick a layer may lower the light transmittance.
この金属バリヤ一層としては、 前記のように Z n A 1合金が好ましく、 特に 八 1を 1. 0〜1 0. 0重量%含む Z n A 1合金は、 酸素との結合力が高く、 最も効果的に銀層中に拡散してきた酸素その他の腐食性イオンをトラップす るので特に好ましい。 この金属バリヤ一層の膜厚は、 厚いほど強い効果が長続 きすることは当然であるが、 厚すぎると可視光線透過率を下げてしまう。 しか し、 次に酸化物を成膜する際、 該金属バリヤ一層の一部は酸化されるので、 可 視光線透過率を 60 %以上とするためには、 その酸化前の最初の金星バリヤ一 層の厚みは 1. 3〜3. 5 nmとすることが好ましく、 より好ましくは 1. 6 〜3. O nm程度が良い。 さらに、 可視光線透過率を 70 %以上とするための 金属バリヤ一層の厚みは、 1. o〜3. O nmとする必要がある。 As the metal barrier layer, as described above, a Z n A 1 alloy is preferable, and in particular, A Z n A 1 alloy containing 1. 0 to 1. 0 wt% of oxygen has a high bonding strength with oxygen and traps oxygen and other corrosive ions that have diffused most effectively in the silver layer. Especially preferred. It is natural that the thicker the film thickness of this metal barrier layer is, the longer the strong effect is, but if it is too thick, the visible light transmittance is lowered. However, since a part of the metal barrier layer is oxidized when depositing the oxide next time, in order to make the visible light transmittance 60% or more, the first Venus barrier before oxidation is oxidized. The thickness of the layer is preferably 1.3 to 3.5 nm, more preferably about 1.6 to 3. O nm. Furthermore, the thickness of the metal barrier layer for making visible light transmittance 70% or more needs to be 1. o to 3. O nm.
本発明の電磁波シールド膜付き基板表面に被覆される透明導電膜は、 抵抗値 が低くなればなるほど高い電磁波遮蔽性能が得られ、 例えば、 該抵抗値である シ一ト抵抗が 2. 5 ΩΖ口以下の場合には、 波長 1 GHzにおける電磁波遮蔽 性能が 3 O dB以上が得られ、 PDP等の機器から放射される電磁波を充分に シールドすることが可能となる。 また、 可視光線透過率が 60 %以上と高いの で充分に明るい画像表示を得ることが可能となる。 また、 ガラス面側の可視光 線反射率が約 12 %以下であるので周囲の景色の像のり込みが少なく画像表 示が見易いとともに赤い反射光を避けることができる等の利点を有する。 さら に、 銀層の酸化の程度を評価する耐湿性試験 (後述) においても優れた性能を 有し、 高温多湿の環境下であっても銀の酸化による斑点等の欠陥が発生せず、 高耐久性も併せ持つ。  The transparent conductive film coated on the surface of the substrate with the electromagnetic wave shielding film of the present invention provides higher electromagnetic wave shielding performance as the resistance value becomes lower. For example, the sheet resistance which is the resistance value is 2.5 Ω. In the following cases, the electromagnetic wave shielding performance at a wavelength of 1 GHz is 3 O dB or more, and it becomes possible to sufficiently shield the electromagnetic waves emitted from devices such as PDP. In addition, since the visible light transmittance is as high as 60% or more, it is possible to obtain a sufficiently bright image display. Further, since the visible light ray reflectance on the glass surface side is about 12% or less, there is an advantage that the image penetration of the surrounding scenery is small, the image display is easy to view, and the red reflected light can be avoided. In addition, it has excellent performance in the moisture resistance test (described later) for evaluating the degree of oxidation of the silver layer, and defects such as spots due to silver oxidation do not occur even in a hot and humid environment. It also has durability.
また、 シート抵抗が 2. 5 Ω /口以下、 可視光線透過率が 70 %以上とする 電磁波シールド膜付き基板の場合は、 ガラス面側の可視光線反射率が 4%以下 であるので周囲の景色の像の映り込みが少なく、 コントラストの優れた画像表 示が可能となる等の利点を有する。  In the case of a substrate with an electromagnetic wave shielding film that has a sheet resistance of 2.5 Ω / hole or less and a visible light transmittance of 70% or more, the visible light reflectance on the glass surface side is 4% or less, so the surrounding scenery It has the advantages of low image reflection and enabling image display with excellent contrast.
本発明の透明基板としては、 透明のガラス、 プラスチック等を用いることが出 来、 例えばガラス基板としては、 汎用の普通板ガラス、 所謂フロート板ガラス などであり、 クリアをはじめグリーン、 ブロンズ等各種着色ガラスや各種機能 性ガラス、強化ガラスやそれに類するガラス、合せガラスのほか複層ガラス等、 さらに平板あるいは曲げ板等各種板ガラス製品として使用できることは言う までもない。 また、ガラスは透明プラスチック板等との積層体であってもよレ^ なお、 ガラスの組成は、 ソ一ダ石灰ガラス、 アルミノシリケ一トガラス等であ るが、 これらに限定されないことは、 言うまでもない。 For the transparent substrate of the present invention, it is possible to use transparent glass, plastic, etc. For example, as a glass substrate, general-purpose plain plate glass, so-called float plate glass, etc. Various functional glass, tempered glass and similar glass, laminated glass, double glass, etc. Furthermore, it can not be overemphasized that it can be used as various plate glass products, such as a flat plate or a bending board. Even if the glass is a laminate with a transparent plastic plate etc., the composition of the glass is, but is not limited to, soda lime glass, aluminosilicate glass, etc. .
なお、 強度が強化された強化ガラス (例えば、 表面圧縮応力が 100MNZ m2程度) 、 或いは半強化ガラス (例えば、 表面圧縮応力が 40〜8 OMNZm 2程度) を用いるとガラスが割れにくいのでより好ましい。 The use of tempered glass with enhanced strength (for example, surface compressive stress of about 100 MNZ m 2 ) or semi-tempered glass (for example, surface compressive stress of about 40 to 8 OMNZ m 2 ) is more preferable because the glass is less likely to break. .
また、 本発明の導電膜の成膜方法は、 生産性の点よりスバッタリング法が好 ましいが、 その他の成膜法である真空蒸着法、 イオンプレーティング法、 PC VD (プラズマ CVD) 法等で成膜することも可能である。  In addition, although the sputtering method of the conductive film of the present invention is preferable from the viewpoint of productivity, other film forming methods such as vacuum evaporation, ion plating, PC VD (plasma CVD) It is also possible to form a film by a method or the like.
なお、 本発明の電磁波シールド膜付き基板は、 PDP、 CRTなどのデイス プレイ前面から発生する電磁波、 或いはリモコンの誤動作を生じる近赤外線の 遮蔽機能を有する電磁波シールド膜付き基板に用いることが可能であり、 例え ば、 PDP用に用いる場合には、 本発明の電磁波シールド膜付き基板の表面及 び裏面に粘着剤等により反射防止、 銀系透明導電膜の防湿、 ガラス割れ時の飛 散防止、 粘着層の色素添加によるフィル夕全体の色度調整などの機能を有する 透明フィルムを貼り付け、 PDPの前面 (電磁遮蔽膜は PDP側) に装着して 用いることが出来る。  The electromagnetic wave shielding film coated substrate of the present invention can be used as an electromagnetic wave shielding film coated substrate having a shielding function of near infrared rays which cause an erroneous operation of a remote control or an electromagnetic wave generated from the front of a display such as PDP or CRT. For example, when used for PDP, the surface and the back of the electromagnetic wave shielding film coated substrate of the present invention are anti-reflective by an adhesive etc., moisture proof of silver based transparent conductive film, prevention of scattering when broken glass, adhesion It is possible to attach a transparent film that has the function of adjusting the chromaticity of the entire film by adding a dye to the layer, and attach it to the front of the PDP (the electromagnetic shielding film is on the PDP side).
以下、 実施例により本発明を具体的に説明する。 なお、 透明導電膜の成膜は DCマグネトロンスパッタリング法により行った。 但し、 本発明は係る実施例 に限定されるものではない。  Hereinafter, the present invention will be specifically described by way of examples. The transparent conductive film was formed by DC magnetron sputtering. However, the present invention is not limited to the embodiments.
なお、 下記に示す実施例、 比較例で得られた電磁波シールド膜付き基板のサ ンプルの性能評価は以下の方法で評価した。  The performance evaluation of the sample of the substrate with an electromagnetic wave shielding film obtained in the following Examples and Comparative Examples was evaluated by the following method.
(1)可視光線透過率、 可視光線反射率、 反射色調: (1) Visible light transmittance, visible light reflectance, reflection tone:
J I S R 3 1 06に準拠し、 分光光度計 (4000型、 日立製作所製ス ぺクトロフォトメ一夕一) により波長 380〜780 nm間の可視光線透過率 Tv、 可視光線反射率 (ガラス面側 Rg、 膜面側 R f) 、 反射色調 a *、 b * (ガラス面側、 膜面側) を測定した。 (2)抵抗値: According to JIS R 316, visible light transmittance Tv, visible light reflectance (glass side Rg, film) between wavelengths 380 to 780 nm by a spectrophotometer (model 4000, manufactured by Hitachi, Ltd. Spectrophotometer One) The surface side R f) and the reflection color tones a * and b * (glass side, film side) were measured. (2) Resistance value:
4探針プローブ抵抗計 (エプソン社製) により膜表面のシート抵抗を測定し た。  The sheet resistance of the film surface was measured by a four-point probe resistance meter (manufactured by Epson).
(3)膜厚:  (3) Film thickness:
段差測定器 d e k t a k 3 (S 1 o a n社製) により測定した。  It measured by the level | step difference measuring device dektak3 (made by S1 o an).
(4)電磁遮蔽性:  (4) Electromagnetic shielding:
米国軍用規格 M I L- s t d 285に準じて測定した。  Measured according to US military standard M I L-st d 285.
(5)耐湿性:  (5) Moisture resistance:
30°C— 90 %RHの雰囲気中にサンプルを 2週間暴露し、 0. 2 mm以上 の大きさをもつ膜欠陥や色度変化のないものを合格とした。  The sample was exposed to an atmosphere of 30 ° C.-90% RH for 2 weeks, and a sample having a size of at least 0.2 mm and no film defect or change in chromaticity was accepted.
実施例 1から実施例 5および比較例 1、 比較例 2は、 透明導電膜の膜表面の 抵抗値 (シート抵抗) が 1. 2 Ω ロ以下であり、 可視光線透過率が 60%以 上である電磁波シ一ルド膜付き基板にかんするものであり、 また、 実施例 6か ら実施例 9および比較例 3から比較例 6は、 透明導電膜の膜表面の抵抗値 (シ —ト抵抗) が 2. 5 Ω /口以下であり、 可視光線透過率が 70%以上である電 磁波シールド膜付き基板にかんするものである。  In Examples 1 to 5 and Comparative Example 1 and Comparative Example 2, the resistance value (sheet resistance) of the film surface of the transparent conductive film is 1.2 Ω or less, and the visible light transmittance is 60% or more. The resistance value (sheet resistance) of the film surface of the transparent conductive film in Example 6 to Example 9 and Comparative Example 3 to Comparative Example 6 corresponds to a substrate with an electromagnetic wave shield film. 2. A substrate with an electromagnetic wave shielding film with a visible light transmittance of 70% or more, which is 5 Ω / hole or less.
実施例 1 Example 1
大きさが 1 00 OmmX 5 80111]11 約3111111 (厚さ) のフロートガラス基 板 (可視光線透過率: 90. 4%、 ガラスの周縁部の黒枠プリントおよびブス バー付き、 半強化加工品) の表面上に、 スパッ夕装置を用いて下記順序で被膜 を形成した。 '  A float glass substrate (visible light transmittance: 90.4%, with a black frame print on the rim of the glass and busbars, semi-reinforced) with a size of 1 00 Omm x 5 80 111] 11 approximately 3 111 111 (thick) On the surface, a film was formed in the following order using a sputtering device. '
先ず、 スパッタリング装置に、 力ソードに予め S n、 Z n (3台) 、 銀、 Z n A 1 (八 1含有率4 セ %) の各金属ターゲットを取り付けたのち、 成膜前 の圧力が 5 X 10—5Torrとなるまで真空チャンバ一内の排気を充分に行った。 なお、 本方法は、 真空チャンバ一内のターゲットの下方に搬送ロールが設置さ れ、 そのロール上をガラス基板が往復動する時に電力が印加された夕一ゲット より所定の金属層あるいは金属酸化物層がガラス板上に成膜されるようにな つている。 1パス目として、 成膜室の雰囲気を酸化性雰囲気 (02: A r = 9 : 1 ) に保 持し、 S nターゲットにより第 1誘電体層の 1層目としての S n02層を 5. 3 nm成膜した後、 1層目と同条件で Zn夕一ゲットにより 2層目の Z n〇層を 42. 7 nm成膜した。 First, after attaching each metal target of S n, Z n (3 units), silver, and Z n A 1 (eight percent content 4 percent) to the force sorter in the sputtering apparatus in advance, the pressure before film formation is Exhausting of the inside of the vacuum chamber 1 was sufficiently performed to 5 × 10 −5 Torr. In this method, a transport roll is installed below the target in the vacuum chamber 1, and when the glass substrate reciprocates on the roll, a predetermined metal layer or metal oxide is applied from the evening get to which power is applied. The layer is deposited on a glass plate. As a first pass, oxidizing atmosphere the atmosphere in the deposition chamber (0 2: A r = 9 : 1) To retain the S n0 2 layer as a first layer of the first dielectric layer by S n target 5. After 3 nm of film formation, 41.7 nm of second layer of Zn 0 layer was formed by Zn wetting under the same conditions as the first layer.
2パス目として雰囲気を A r 100 %の不活性雰囲気に保持し、 銀夕一ゲッ トにより第 1銀層としての銀層を 20 nm、 4 A 1— Z nターゲットにより第 1金属バリヤ一層としての 4 A 1一 Zn合金層を 1. 6 nm成膜した。  As the second pass, the atmosphere is maintained at an inert atmosphere of Ar 100%, and the silver layer as the first silver layer is made 20 nm by the silver-gold, and it is made the first metal barrier layer by the 4A1-Zn target. The 4 A 1 1 Zn alloy layer was deposited to a thickness of 1.6 nm.
3パス目として成膜室の雰囲気を再び酸化性雰囲気 (〇2: Ar==9 : 1) に 保持し、 第 2誘電体層の金属酸化物層を形成した。 第 2誘電体層の 1層目とし ての 4A 1— Z n〇層を 8. 2 nm、 2層目としての S n 02層を 16.4 nm、 3層目としての Z ηθ層を 65. 4 nmを順次成膜した。 3 pass as film forming chamber atmosphere again oxidizing atmosphere (〇 2: Ar == 9: 1) to hold, to form a metal oxide layer of the second dielectric layer. As the first layer of the second dielectric layer, 4A 1−Z n 層 layer is 8.2 nm, S n 0 2 layer as the second layer is 16.4 nm, and Z θθ layer as the third layer is 65. A film of 4 nm was sequentially formed.
4パス目として雰囲気を A r 100 %の不活性雰囲気に保持し、 銀夕ーゲッ トにより上部銀層としての銀層を 25 nm、 4 A 1一 Z n夕ーゲットにより第 2の金属バリヤ一層としての 4A 1— Z n合金層を 1. 4nm、 5パス目とし て成膜室の雰囲気を再び酸化性雰囲気 (02 : Ar = 9 : 1) に保持し、 第 3誘 電体層の 1層目としての Z n A 1 xOy層を 8. 5 nm, 2層目としての S nO 2層を 16. 9 nm、 3層目としての Z n O層を 67. 6 nm、 6パス目として 雰囲気を A r 100 %の不活性雰囲気に保持し、 銀ターゲットにより上部銀層 としての銀層を 23 nm、 4 A 1— Zn夕一ゲットにより第 2の金属バリヤ一 層としての 4 A 1— Z n合金層を 1. 8 nm、 7パス目として成膜室の雰囲気 を再び酸化性雰囲気 (02: Ar = 8 : 2) に保持し、 第 4誘電体層の 1層目と しての Z n A 1 x〇y層を 4. 2 nm、 2層目としての S n〇2層を 8. 4 nm、 3層目としての Z n〇層を 34. 4nm、 8パス目として 4層目としての S n 02層を 4. 2 nm順次成膜し、透明導電膜が被覆された電磁波シールド膜付き 基板を成膜室より排出した。 As the fourth pass, the atmosphere is maintained at an inert atmosphere of Ar 100%, and the silver layer is used as a second metal barrier layer with a silver as an upper silver layer of 25 nm and a 4 A 1 Zn as a second metal barrier layer. of 4A 1-Z n alloy layer 1. 4 nm, 5 pass the again oxidizing atmosphere of the deposition chamber atmosphere maintained at (0 2:: Ar = 9 1), the third dielectrics layer 1 8.5 nm as the layer Z n A 1 x Oy layer, 16.9 nm as the second layer SnO 2 layer as the second layer 67.6 nm as the third layer The atmosphere is maintained at an inert atmosphere of Ar 100%, and a silver target is used to form a silver layer as a top silver layer 23 nm, 4 A 1-Zn as a second metal barrier layer. With the Z n alloy layer at 1.8 nm and the seventh pass, the atmosphere in the deposition chamber is again maintained in the oxidizing atmosphere (0 2 : Ar = 8: 2) and used as the first layer of the fourth dielectric layer. Layer with a thickness of 4.2 nm and a second layer of S n 〇 The transparent conductive film is formed by successively forming the second layer of 8.4 nm, the third layer of Z n Z layer of 34.4 nm, and the eighth pass of the fourth layer of S n 0 2 layer of 4.2 nm. The coated substrate with the electromagnetic wave shielding film was discharged from the film forming chamber.
なお、 第 1金属バリヤ一層および第 2金属バリヤ一層の 4 A 1— Z n合金層 の上層に酸化性雰囲気で Z n A 1 xOy層を成膜するとき、 前記 4 A 1— Z n合 金層は酸化されていた。 なお、 表 1に各サンプルの膜構成を示す。 以上のようにして本発明の電磁波シ一ルド膜付き基板サンプルを作製した。 得られた電磁波シ一ルド膜付き基板の特性を評価した結果、 表 2に示すように 抵抗値 (シート抵抗) : 0. 94Ω /口、 可視光透過率: 64. 2%、 電磁波 シールド性(30〜 1 000 MHz) : 40 dB以上、 耐湿性も合格であり優れ た特性を有するものであった。 When a Z n A 1 x O y layer is formed in an oxidizing atmosphere on the upper layer of the 4 A 1-Z n alloy layer of the first metal barrier layer and the second metal barrier layer, the 4 A 1-Z n alloy is The layer was oxidized. Table 1 shows the film configuration of each sample. As described above, a substrate sample with an electromagnetic shielding film of the present invention was produced. As a result of evaluating the characteristics of the obtained electromagnetic wave shielded film coated substrate, as shown in Table 2, resistance value (sheet resistance): 0.94 Ω / hole, visible light transmittance: 64.2%, electromagnetic wave shielding property ( 30 to 1 000 MHz): 40 dB or more, moisture resistance was also pass, and had excellent characteristics.
次に、 上記で得られた透明導電膜が被覆された電磁波シールド膜付き用基板 の表面と裏面に、 粘着剤を有した AR (反射防止)処理付きの ARフィルム (日 本油脂製 R e a 1 o o k、 基材は TAC樹脂製、 粘着剤はアクリル系樹脂) を 貼り付け電磁波シールドフィルタ一を作製した。 この ARフィルムは、 反射防 止を行うとともに透明導電膜の保護とガラス基板の割れ飛散防止等の機能を 有するものである。 なお、 該透明導電膜は、 ガラス基板表面の周縁部にプリン ト印刷された黒枠の上面に設けられたブスバーに接続された。  Next, an AR film with an AR (anti-reflection) treatment having an adhesive on the front and back of the substrate with an electromagnetic wave shielding film coated with the transparent conductive film obtained above is an AR film with anti-reflection treatment (Nippon Oil & Fat The substrate was made of TAC resin, the adhesive was made of acrylic resin, and the electromagnetic wave shielding filter was made. The AR film has functions of preventing reflection and protecting the transparent conductive film and preventing breakage and scattering of the glass substrate. The transparent conductive film was connected to a bus bar provided on the upper surface of a black frame printed on the periphery of the surface of the glass substrate.
この作製した電磁波シ一ルドフィル夕一の特性を評価した結果、抵抗値: 0. 94 ΩΖ口、 可視光線透過率 64%、 近赤外線透過率(9 50 nm) : 0. 05 %を示すとともに、 耐湿性を評価した結果、 0. 2mm以上の大きさをもつ顕 著な膜欠陥や色度変化は無く、 非常に良好な耐湿性を示し、 PDPカバーフィ ルター、 特に家庭用のクラス Bタイプ用の電磁波フィル夕一としての充分な性 能を備えていた。 As a result of evaluating the characteristics of the produced electromagnetic wave shielded filter, the resistance value is 0.94 Ω, the visible light transmittance is 64%, the near infrared transmittance (950 nm) is 0.05%, As a result of evaluating the moisture resistance, there is no remarkable film defect or color change having a size of 0.2 mm or more, and the moisture resistance is very good, and the PDP cover filter, particularly for household class B type It had sufficient performance as an electromagnetic wave filter.
表 1 table 1
Figure imgf000015_0001
Figure imgf000015_0001
(注) AgPd: Ag中に Pdを 1原子%含む  (Note) AgPd: Ag contains 1 atomic% of Pd
13 差替え用紙 (規則 26) 表 2 13 replacement forms (Rule 26) Table 2
Figure imgf000016_0001
Figure imgf000016_0001
実施例 2 Example 2
実施例 1と比較して、 第 2 , 第 3の銀層の直上部に設けた金属バリヤ一層で ある 4 A 1— Z n合金層の膜厚を 1 · 6 n m、 2 . 8 n mとそれぞれ変更した た以外は全て実施例 1と同様に行った。  In comparison with Example 1, the film thickness of the 4 A 1-Z n alloy layer which is a metal barrier layer provided immediately above the second and third silver layers is 1.6 nm and 2.8 nm, respectively. The same procedure as in Example 1 was followed except for the change.
得られたサンプルを評価した'結果、 表 1に示すように優れた性能を示すもの であった。 なお、 耐湿性も合格であった。  As a result of evaluating the obtained samples, as shown in Table 1, it showed excellent performance. The moisture resistance was also passed.
実施例 3 Example 3
実施例 1と比較して、 表 1に示すように膜厚を変更した以外は全て実施例 1 と同様に行った。 得られたサンプルを評価した結果、 表 1に示すように優れた 性能を示すものであった。 なお、 耐湿性も合格であった。  The procedure was the same as in Example 1 except that the film thickness was changed as shown in Table 1 in comparison with Example 1. As a result of evaluating the obtained sample, as shown in Table 1, it showed excellent performance. The moisture resistance was also passed.
実施例 4 Example 4
1 4 差替え用 ¾ (SIJ26) 実施例 1と比較して、 表 1に示すように膜厚を変更した以外は全て実施例 1 と同様に行った。 得られたサンプルを評価した結果、 表 2に示すように優れた 性能を示すものであった。 なお、 耐湿性も合格であった。 1 4 Replacement 3⁄4 (SIJ26) The procedure was the same as in Example 1 except that the film thickness was changed as shown in Table 1 in comparison with Example 1. As a result of evaluating the obtained sample, as shown in Table 2, it showed excellent performance. The moisture resistance was also passed.
実施例 5 Example 5
実施例 1と比較して、 第 2銀層の直上部に設けた金属バリヤ一層である 4 A 1 - Z n合金層の膜厚を 1 . 6 n mに変えた以外は全て実施例 1と同様に行つ た。 得られたサンプルを評価した結果、 表 2に示すように優れた性能を示すも のであった。 なお、 耐湿性も合格であった。  Compared to Example 1, all the same as Example 1 except that the film thickness of the 4 A 1 -Z n alloy layer which is a metal barrier layer provided immediately above the second silver layer was changed to 1.6 nm. I went to. As a result of evaluating the obtained sample, as shown in Table 2, it showed excellent performance. The moisture resistance was also passed.
比較例 1 Comparative example 1
実施例 1と比較して、 銀層の直上部に設けた金属バリヤ一層の材質を T i に変更し、 第 2の 4 A 1— Z n合金層の膜厚を 1 . 6 n mに変更した以外は全 て実施例 1と同様に行った。 得られたサンプルを評価した結果、 表 2に示すよ うに透過率が低く耐湿性も劣るものであった。  Compared to Example 1, the material of the metal barrier layer provided immediately above the silver layer was changed to T i, and the film thickness of the second 4 A 1-Z n alloy layer was changed to 1.6 nm. The same procedure as in Example 1 was followed except for the above. As a result of evaluating the obtained sample, as shown in Table 2, the transmittance was low and the moisture resistance was also poor.
比較例 2 Comparative example 2
実施例 1と比較して、 銀層の直上部に設けた金属バリヤ一層を T iの材質に、 また銀層に P dを 1原子%含有させた材質を用いた以外は全て実施例 1と同 様に行った。 得られたサンプルを評価した結果、 表 3に示すように耐湿性は優 れているものの抵抗値が高いものであった。  Compared to Example 1, all Example 1 and Example 1 were used except that the metal barrier layer provided immediately above the silver layer was made of a material of Ti and that the silver layer contained 1 atomic% of Pd. I went in the same way. As a result of evaluating the obtained samples, as shown in Table 3, although the moisture resistance was excellent, the resistance value was high.
実施例 6 Example 6
大きさが 1 0 0 O mm X 5 8 0 111111 約3 111111 (厚さ) のフロートガラス基 板 (可視光線透過率: 9 0 . 4 %、 ガラスの周縁部の黒枠プリントおよびブス バー付き、 半強化加工品) の表面上に、 スパッ夕装置を用いて下記順序で被膜 を形成した。  Float glass substrate (size of visible light transmittance: 90.4%, with black frame print and busbar on the rim of the glass, half size of about 100 0 mm x 5 0 0 111 111 thickness) A coating was formed in the following order on the surface of the reinforced product using a sputtering device.
先ず、 スパッ夕装置に、 力ソードに予め S n、 Z n ( 3台) 、 銀、 Z n A 1 (A 1含有率 4 w t % ) の各金属ターゲットを取り付けたのち、 成膜前の圧 力が 1 . 5 X 1 0 "4P a以下となるまで真空チャンバ一内の排気を充分に行つ た。 なお、 本方法は、 真空チャンバ一内のターゲットの下方に搬送口一ルが設 置され、 そのロール上をガラス基板が往復動する時に電力が印加された夕一ゲ ッ卜より所定の金属層あるいは金属酸化物層がガラス板上に成膜されるよう になっている。 First, after attaching metal targets of S n and Z n (3 units), silver, and Z n A 1 (A 1 content rate 4 wt%) to the force sorter in advance in a sputtering device, the pressure before film formation Evacuating the inside of the vacuum chamber 1 was sufficiently performed until the force became 1.5 X 10 " 4 Pa or less. In addition, according to this method, a transfer port is provided below the target in the vacuum chamber 1. Set on the roll and power is applied when the glass substrate reciprocates on the roll. A predetermined metal layer or metal oxide layer is formed on a glass plate from a wafer.
1パス目として、 成膜室の雰囲気を酸化性雰囲気 (02 : A r = 9 : 1) に 保持し、 S nターゲットにより第 1誘電体層の 1層目としての S nO 2層を 3 nm成膜した後、 1層目と同条件で Znターゲットにより 2層目の ZnO層を 38 nm成膜した。  As the first pass, the atmosphere of the film forming chamber is maintained in an oxidizing atmosphere (02: Ar = 9: 1), and the Sn target as the first layer of the first dielectric layer is 3 nm by the Sn target. After film formation, a ZnO layer of a second layer was formed to a thickness of 38 nm with a Zn target under the same conditions as the first layer.
2パス目として雰囲気を A r 100 %の不活性雰囲気に保持し、 銀夕一ゲッ トにより第 1銀層としての銀層を 10nm、 Z n A 1ターゲッ卜により第 1ノ リャ一層としての ZnA 1合金層を 1. 6 nm成膜した。  As the second pass, the atmosphere is maintained in an inert atmosphere of Ar 100%, the silver layer as the first silver layer is 10 nm by silver plating, and the ZnA as the first contact layer is ZnA as the first target. (1) An alloy layer was deposited at 1.6 nm.
3パス目として成膜室の雰囲気を再び酸化性雰囲気 (02: A r = 9 : 1 ) に 保持し、 第 2誘電体層の金属酸化物層を形成した。 第 2誘電体層の 1層目とし ての Z n A 1 xOy層を 3. 3 nm、 2層目としての S n 02層を 1. 8 nm、 3 層目としての Z n〇層を 45 nm、 4層目としての S n〇2層を 3. 5 nm, 5 層目としての Zn〇層を 22. 4 nm順次成膜した。 As the third pass, the atmosphere of the film forming chamber was maintained again in the oxidizing atmosphere (0 2 : A r = 9: 1) to form the metal oxide layer of the second dielectric layer. Z N_〇 as S n 0 2 Layers 1. 8 nm, 3-layer a Z n A 1 x O y layer with the first layer of the second dielectric layer 3. As 3 nm, 2-layer The layer was 45 nm, the second layer was an Sn 02 layer, the third layer was a 3.5 nm layer, and the fifth layer was a Zn o layer, 22.4 nm.
4パス目として雰囲気を A r 100 %の不活性雰囲気に保持し、 銀夕ーゲッ トにより第 2銀層としての銀層を 14 nm、 Z n A 1ターゲットにより第 2ノ' リャ一層としての Z n A 1合金層を 1. 6 nm成膜した。  As the fourth pass, the atmosphere is maintained at an inert atmosphere of Ar 100%, the silver layer as the second silver layer is 14 nm by the silver getter, the Z as the second metal layer by the Z n A 1 target. n A 1 alloy layer was deposited to a thickness of 1.6 nm.
5パス目として成膜室の雰囲気を再び酸化性雰囲気 (02: A r = 9 : 1) に 保持し、 第 3誘電体層の 1層目としての Z nA lxy層を 3. 4nm、 2層目 としての S n〇2層を 1. 8 nm、 3層目としての Z n〇層を 46 nm、 4層目 としての S n02層を 3. 6 nm、 5層目としての Z n O層を 23. 2 nm順次 成膜した。 As the fifth pass, the atmosphere of the deposition chamber is again maintained in the oxidizing atmosphere (0 2 : A r = 9: 1), and the Z nA l x o y layer as the first layer of the third dielectric layer is selected. Snm layer as second layer: 1.8 nm, Zn layer as third layer: 46 nm, second layer as SnO2 layer: 3.6 nm, fifth layer Was deposited sequentially with 23.2 nm.
6パス目として雰囲気を A r 100 %の不活性雰囲気に保持し、 銀夕一ゲッ トにより第 3銀層としての銀層を 12 nm、 Z nA 1ターゲットにより第 3の バリヤ一層としての Z nA 1合金層を 2. 2 nm成膜した。  As the sixth pass, the atmosphere is maintained at an inert atmosphere of Ar 100%, the silver layer as the third silver layer is 12 nm by the silver plate, the Z nA as the third barrier layer by the Z nA 1 target. An alloy layer was formed to a thickness of 2.2 nm.
7パス目として成膜室の雰囲気を再び酸化性雰囲気 (02: Ar = 9 : 1) に 保持し、 第 4誘電体層の 1層目としての Z n A 1 xOy層を 1 · 3 nm、 2層目 としての S nO,2層を 0. 7 nm、 3層目としての Z n〇層を 18. 4nm、 4 層目としての S n〇2層を 1.4nm、 5層目としての Z nO層を 1 8. 5 nm、 6層目としての S n〇2層を 0. 7 nm順次成膜し、透明導電膜が被覆された電 磁波シールド膜付き基板を成膜室より取り出した。 得られた透明導電膜の層構 成を図 1に示した。 As the seventh pass, the atmosphere in the deposition chamber is again maintained in the oxidizing atmosphere (0 2 : Ar = 9: 1), and the Z n A 1 x Oy layer as the first layer of the fourth dielectric layer is 1 · 3 nm , SnO as the second layer, 0.7 nm as the second layer, and 18.4 nm as the third layer, the second layer 18.4 nm, 4 The S N_〇 two layers as a layer th 1.4 nm, the Z nO layer 1 8. 5 nm, the S N_〇 2 layer as the 6 th layer 0. 7 nm are sequentially formed as the fifth layer, a transparent conductive The substrate with the electromagnetic wave shielding film coated with the film was taken out from the film forming chamber. The layer configuration of the obtained transparent conductive film is shown in FIG.
以上のようにして本発明の電磁波シールド膜付き基板サンプルを作製した。 得られた電磁波シールド膜付き用基板の特性を評価した結果、 表面抵抗: 2. 5 Ω/口、 電磁波シールド性(30〜; L 000MHz) : 30 dB以上、 可視光 線透過率 70 %、可視光反射率 4%と優れた特性を有するものであった。次に、 上記で得られた透明導電膜が被覆された電磁波シールド膜付き用基板の表面 と裏面に、 粘着剤を有した AR (反射防止)処理付きの ARフィルム (日本油脂 製 R e a 1 o o k、 基材は TAC樹脂製、 粘着剤はアクリル系樹脂) を貼り付 け電磁波シ一ルドフィルターを作製した。 この ARフィルムは、 反射防止を行 うとともに透明導電膜の保護とガラス基板の割れ飛散防止等の機能を有する ものである。 なお、 該透明導電膜は、 ガラス基板表面の周縁部にプリント印刷 された黒枠の上面に設けられたブスバーに接続された。  As described above, a substrate sample with an electromagnetic wave shielding film of the present invention was produced. As a result of evaluating the characteristics of the obtained substrate with an electromagnetic wave shielding film, the surface resistance: 2.5 Ω / hole, electromagnetic wave shielding property (30 to L 000 MHz): 30 dB or more, visible light transmittance 70%, visible It had excellent characteristics with a light reflectance of 4%. Next, an AR film with AR (anti-reflection) treatment with an adhesive on the front and back of the substrate with an electromagnetic wave shielding film coated with the transparent conductive film obtained above is an AR film (Rose 1 ook made by NOF Corp.) The base material was made of TAC resin, and the adhesive was made of acrylic resin, to prepare an electromagnetic wave filter. The AR film has functions of preventing reflection, protecting the transparent conductive film, and preventing breakage and scattering of the glass substrate. The transparent conductive film was connected to a bus bar provided on the upper surface of a black frame printed on the periphery of the surface of the glass substrate.
この作製した電磁波シールドフィルターの特性を評価した結果、 表面抵抗: 2. 5 ΩΖ口、 電磁波シールド性(30〜: L 000 MHz) : 30 dB以上、 可 視光線透過率 7 1 %、 可視光線反射率:近赤外線透過率(950 nm) : 2. 8 %を示すとともに、耐湿性(60°C、 90 %RH、 1 000 h)も評価した結果、 0. 2 mm以上の大きさをもつ顕著な膜欠陥や色度変化は無く PDP用の電磁 波シールドフィルタ一として優れた性能を有していた。  As a result of evaluating the characteristics of the produced electromagnetic wave shielding filter, the surface resistance: 2.5 Ω, the electromagnetic wave shielding property (30 to: L 000 MHz): 30 dB or more, the visible light transmittance 71%, the visible light reflection Rate: Near-infrared transmittance (950 nm): 2.8% and moisture resistance (60 ° C, 90% RH, 1 000 h) are also evaluated. The result is remarkable with a size of 0.2 mm or more There was no film defect or color change, and it had excellent performance as an electromagnetic wave shielding filter for PDP.
実施例 7 Example 7
実施例 6と同じ成膜基板を用い、 実施例 6と同じ成膜条件によって第 1誘電 体層の膜厚が 4111111、第1銀層膜厚が9. 511111、第1バリャ一層膜厚が1. 6 nm、 第 2誘電体層膜厚が 80 nm、 第 2銀層膜厚が 13. 5 nm、 第 2バ リャ一層膜厚が 1. 6 nm、 第 3誘電体層膜厚が 82 nm、 第 3銀層膜厚が 1 1. 5 nm、 第 3バリヤ一層膜厚が 2. 2 nm、 第 4誘電体層膜厚が 42 nm となるように成膜時間を調節して透明導電膜が被覆された電磁波シールド膜 付き基板を作製した。 Using the same film formation substrate as in Example 6, and under the same film forming conditions as in Example 6, the film thickness of the first dielectric layer is 4111111, the thickness of the first silver layer is 9.511111, and the thickness of the first barrier layer is 1 6 nm, the thickness of the second dielectric layer is 80 nm, the thickness of the second silver layer is 13.5 nm, the thickness of the second dielectric layer is 1.6 nm, and the thickness of the third dielectric layer is 82 nm The transparent conductive film is formed by adjusting the film forming time so that the thickness of the third silver layer is 11. 5 nm, the thickness of the third barrier layer is 2.2 nm, and the thickness of the fourth dielectric layer is 42 nm. Shielding film coated The attached substrate was manufactured.
実施例 8 Example 8
実施例 6と同じ成膜基板を用い、 実施例 6と同じ成膜条件によって第 1誘電 体層の膜厚が 41 nm、 第 1銀層膜厚が 1 0 nm、 第 1バリヤ一層膜厚が 2. 0 nm、 第 2誘電体層膜厚が 76 nm、 第 2銀層膜厚が 14 nm、 第 2バリヤ —層膜厚が 2. 0 nm、 第 3誘電体層膜厚が 78 nm、 第 3銀層膜厚が 12 η m、 第 3バリヤ一層膜厚が 2. 6 nm, 第 4誘電体層膜厚が 41 nmとなるよ うに成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板 を作製した。  Using the same film formation substrate as in Example 6, the film thickness of the first dielectric layer is 41 nm, the thickness of the first silver layer is 10 nm, and the thickness of the first barrier single layer is the same under the same film forming conditions as in Example 6. 2. 0 nm, the second dielectric layer thickness is 76 nm, the second silver layer thickness is 14 nm, the second barrier layer thickness is 2.0 nm, the third dielectric layer thickness is 78 nm, The transparent conductive film is coated by adjusting the deposition time so that the thickness of the third silver layer is 12 mm, the thickness of the third barrier layer is 2.6 nm, and the thickness of the fourth dielectric layer is 41 nm. A substrate with an electromagnetic shielding film was fabricated.
実施例 9 Example 9
実施例 6と同じ成膜基板を用い、 実施例 6と同じ成膜条件によって第 1誘電 体層の膜厚が 41 nm、 第 1銀層膜厚が 9 nm、 第 1バリヤ一層膜厚が 1. 6 nm、 第 2誘電体層膜厚が 76 nm、 第 2銀層膜厚が 1 3 nm、 第 2バリヤ一 層膜厚が 1. 6 nm、第 3誘電体層膜厚が 7811111、第3銀層膜厚が1 1 nm、 第 3バリヤ一層膜厚が 2. 2 nm、 第 4誘電体層膜厚が 41 nmとなるように 成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作 製した。  Using the same film formation substrate as in Example 6, the film thickness of the first dielectric layer is 41 nm, the thickness of the first silver layer is 9 nm, and the thickness of the first barrier layer is 1 under the same film forming conditions as in Example 6. 6 nm, thickness of second dielectric layer 76 nm, thickness of second silver layer 13 nm, thickness of second barrier layer 1.6 nm, thickness of third dielectric layer 7811111, third The transparent conductive film was coated by adjusting the film formation time so that the thickness of the silver layer was 11 nm, the thickness of the third barrier layer was 2.2 nm, and the thickness of the fourth dielectric layer was 41 nm. A substrate with an electromagnetic shielding film was made.
表 3に実施例 6〜 9の透明導電膜の各層膜厚および可視光線透過率、 可視光 線反射率、 表面抵抗値を示した。 Table 3 shows the thickness, visible light transmittance, visible light reflectance, and surface resistance of each layer of the transparent conductive films of Examples 6 to 9.
表 3 Table 3
Figure imgf000021_0001
比較例 3
Figure imgf000021_0001
Comparative example 3
実施例 6と同じ成膜基板を用い、 実施例 6と同じ成膜条件によって第 1誘電 体層の膜厚が 3 5 nm、 第 1銀層膜厚が 10 nm、 第 1バリヤ一層膜厚が 1. 6 nm、 第 2誘電体層膜厚が 70 nm、 第 2銀層膜厚が 14 nm、 第 2バリヤ 一層膜厚が 1. 6 nm、 第 3誘電体層膜厚が 70 nm、 第 3銀層膜厚が 12 n m、 第 3バリヤ一層膜厚が 2. 2 nm, 第 4誘電体層膜厚が 35 nmとなるよ うに成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板 を作製した。  Using the same film formation substrate as in Example 6, and under the same film forming conditions as in Example 6, the film thickness of the first dielectric layer is 35 nm, the thickness of the first silver layer is 10 nm, and the thickness of the first barrier layer is 1.6 nm, thickness of second dielectric layer 70 nm, thickness of second silver layer 14 nm, thickness of second barrier single layer 1.6 nm, thickness of third dielectric layer 70 nm, third The film thickness is 12 nm, the thickness of the third barrier layer is 2.2 nm, and the thickness of the fourth dielectric layer is 35 nm. A substrate with a shield film was produced.
比較例 4 Comparative example 4
実施例 6と同じ成膜基板を用い、 実施例 6と同じ成膜条件によって第 1誘電 体層の膜厚が 41 n m、 第 1銀層膜厚が 10 nm、 第 1バリヤ一層膜厚が O n m、 第 2誘電体層膜厚が 76 nm、 第 2銀層膜厚が 14 nm、 第 2バリヤ一層 膜厚が 0 nm、 第 3誘電体層膜厚が 78 nm、 第 3銀層膜厚が 12 nm、 第 3 バリヤ一層膜厚が 0 nm、 第 4誘電体層膜厚が 41 n mとなるように成膜時間 を調節して透明導電膜が被覆された電磁波シールド膜付き基板を作製した。 比較例 5 Using the same film formation substrate as in Example 6, the film thickness of the first dielectric layer is 41 nm, the thickness of the first silver layer is 10 nm, and the thickness of the first barrier layer is O under the same film forming conditions as in Example 6. nm, thickness of second dielectric layer 76 nm, thickness of second silver layer 14 nm, thickness of second barrier layer 0 nm, thickness of third dielectric layer 78 nm, thickness of third silver layer The film formation time was adjusted so that the thickness of the third barrier layer was 0 nm and the thickness of the fourth dielectric layer was 41 nm, and a substrate with an electromagnetic shielding film coated with a transparent conductive film was fabricated. . Comparative example 5
実施例 6と同じ成膜基板を用い、 実施例 6と同じ成膜条件によって第 1誘電 体層の膜厚が 41 n m、 第 1銀層膜厚が 10nm、 第 1バリヤ一層膜厚が 3. 2nm、 第 2誘電体層膜厚が 76 nm、 第 2銀層膜厚が 14 nm、 第 2バリヤ 一層膜厚が 3. 2 nm、 第 3誘電体層膜厚が 78 nm、 第 3銀層膜厚が 12 n m、 第 3バリヤ一層膜厚が 3. 2nm、 第 4誘電体層膜厚が 41 nmとなるよ うに成膜時間を調節して透明導電膜が被覆された電磁波シールド膜付き基板 を作製した。  Using the same film formation substrate as in Example 6, the film thickness of the first dielectric layer is 41 nm, the thickness of the first silver layer is 10 nm, and the thickness of the first barrier single layer is 3.40 under the same film forming conditions as in Example 6. 2 nm, the thickness of the second dielectric layer is 76 nm, the thickness of the second silver layer is 14 nm, the thickness of the second barrier layer is 3.2 nm, the thickness of the third dielectric layer is 78 nm, the third silver layer A substrate with an electromagnetic wave shielding film coated with a transparent conductive film by adjusting the film forming time so that the film thickness is 12 nm, the thickness of the third barrier layer is 3.2 nm, and the thickness of the fourth dielectric layer is 41 nm. Was produced.
比較例 6 Comparative example 6
実施例 6と同じ成膜基板を用い、 スパッタ装置の力ソードに予め取り付ける Z n A 1夕ーゲットの A 1含有率を 15 w t %とする以外はすべて実施例 1 と同じ成膜条件および膜厚で成膜し、 透明導電膜が被覆された電磁波シールド 膜付き基板を作製した。  The same film forming conditions and film thickness as in Example 1 except that the same film forming substrate as in Example 6 is used and the A 1 content of the Z n A 1 jacket attached in advance to the force sword of the sputtering apparatus is 15 wt%. The substrate with an electromagnetic wave shielding film coated with a transparent conductive film was fabricated.
表 4に比較例 3〜 6の透明導電膜の各層膜厚および可視光線透過率、 可視光 線反射率、 表面抵抗値を示した。'  Table 4 shows the thickness, visible light transmittance, visible light reflectance, and surface resistance of each layer of the transparent conductive films of Comparative Examples 3 to 6. '
表 4 比較例 3 比較例 4 比較例 5 比較例 6 第 4誘電体層膜厚(nm) 35 41 41 41 第 3バリヤ一層膜厚(nm) 2.2 0 3.2 2.2  Table 4 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Fourth Dielectric Layer Thickness (nm) 35 41 41 41 Third Barrier Single Layer Thickness (nm) 2.2 0 3.2 2.2
第 3 Ag層膜厚(nm) 12 12 12 12 第 3誘電体層膜厚(nm) 70 78 78 78 第 2バリヤ一層膜厚(nm) 1.6 0 3.2 1.6  Third Ag film thickness (nm) 12 12 12 12 Third dielectric film thickness (nm) 70 78 78 78 Second barrier single-layer film thickness (nm) 1.6 0 3.2 1.6
第 2 Ag層膜厚(nm) 14 14 14 14 第 2誘電体層膜厚 (nm) 70 76 76 76 第 1バリヤ一層膜厚(nm) 1.6 0 3.2 1.6  Second Ag layer thickness (nm) 14 14 14 14 Second dielectric layer thickness (nm) 70 76 76 76 First barrier single layer thickness (nm) 1.6 0 3.2 1.6
第 1 Ag層膜厚(nm) 10 10 10 10 第 1誘電体層膜厚(nm) 35 41 41 41  First Ag layer film thickness (nm) 10 10 10 10 First dielectric layer film thickness (nm) 35 41 41 41
可視光線透過率 (¾;) 68.7 30.0 63.4 67.5 可視光線反射率 (¾) 4.2 5.4 ' 7.2 4.0 表面抵抗値(Ω /口) 2.3 8.5 2.6 2.4  Visible light transmittance (3⁄4;) 68.7 30.0 63.4 67.5 Visible light reflectance (3⁄4) 4.2 5.4 ′ 7.2 4.0 Surface resistivity (Ω / mouth) 2.3 8.5 2.6 2.4

Claims

請 求 の 範 囲 The scope of the claims
1. 透明基板表面に、 基板側から誘電体層、 銀層が交互に順次繰り返し 7層 積層されてなる透明導電膜が被覆され、 各銀層の厚さが 1 8 nm以上であり、 いずれの銀層も銀の純度が 5 N ( 99. 999 %) 以上の純度であり、 該透明 導電膜の膜表面の抵抗値 (シート抵抗) が 1. 2 Ω/口以下であり、 可視光線 透過率が 60 %以上であることを特徴とする電磁波シールド膜付き基板。 1. A transparent conductive film comprising a dielectric layer and a silver layer alternately and repeatedly laminated seven layers sequentially from the substrate side is coated on the transparent substrate surface, and the thickness of each silver layer is 18 nm or more, The silver layer also has a purity of 5 N (99. 999%) or more, and the resistance (sheet resistance) of the surface of the transparent conductive film is 1.2 Ω / hole or less, and the visible light transmittance Is 60% or more. A substrate with an electromagnetic shielding film.
2. 前記透明導電膜は、 基板側から、 膜厚が 35〜63 nmを有する第 1誘 電体層ノ膜厚が 1 8〜28 nmを有する第 1銀層 Z膜厚が 7 0〜1 00 nm を有する第 2誘電体層 Z膜厚が 20〜3 0 nmを有する第 2銀層/膜厚が 7 0〜 1 0 5 nmを有する第 3誘電体層/膜厚が 1 8〜29 nmを有する第 3 銀層 Z膜厚が 35〜6 3 nmを有する第 4誘電体層から構成されてなること を特徴とする請求項 1記載の電磁波シールド膜付き基板。 2. The transparent conductive film has a first dielectric layer thickness of 35 to 63 nm and a first silver layer thickness of 18 to 28 nm from the substrate side. Second dielectric layer having a thickness of 00 nm Second silver layer having a thickness of 20 to 30 nm / A third dielectric layer having a thickness of 70 to 105 nm a thickness of 18 to 29 A third silver layer having nm thickness is formed of a fourth dielectric layer having a thickness of 35 to 6 nm. The substrate with an electromagnetic wave shielding film according to claim 1.
3. 各銀層の直上部に、 A 1を 1〜10重量%含む Z nA 1合金でなる、 膜 厚 1. 3〜3. 5 nmの金属バリヤ一層を設けてなることを特徵とする請求項 1乃至 2のいずれかに記載の電磁波シールド膜付き基板。 3. A special feature of the present invention is to provide a 1.3 to 3.5 nm thick metal barrier layer made of a Z nA 1 alloy containing 1 to 10% by weight of A 1 immediately above each silver layer. A substrate with an electromagnetic wave shielding film according to any one of Items 1 to 2.
4. 透明基板上に、 透明金属酸化物層よりなる第 1誘電体層 Z第 1銀層 ZZ n A 1よりなる第 1バリヤー層ノ透明金属酸化物層よりなる第 2誘電体層 Z第 2 A g層/ Z n A 1よりなる第 2バリヤー層 Z透明金属酸化物層よりなる第 3 誘電体層 Z第 3銀層 Z Z n A 1よりなる第 3バリャ一層/透明金属酸化物層よ りなる第 4誘電体層からなる透明導電膜が積層された基板であつて、 各銀層の 膜厚がそれぞれ 9〜 1 5 nm、 Z nAlよりなるバリヤ一層の膜厚がそれぞれ 1. 0〜3. 0 nm、 第 1誘電体層および第 4誘電体層の膜厚が 40〜50 n m、 第 2誘電体層および第 3誘電体層の膜厚が 75〜85 nmからなり、 該透 明導電膜表面の抵抗値(シート抵抗)が 2. 5 ΩΖ口以下であり、 可視光線透過 率が 70%以上であり、 透明導電膜が被覆された面側の可視光反射率が 4%以 下であり、 該透明導電膜を構成するいずれの銀層も銀の純度が 5 N (99. 9 99%) 以上の純度であり、 該透明導電膜を構成するいずれの Z nA 1のバリ ヤー層が、 A 1を 1〜 1 0重量%含む Z nA 1合金であることを特徴とする電 磁波シ一ルド膜付き基板。 4. First dielectric layer Z composed of a transparent metal oxide layer First transparent layer composed of a first metal layer ZZ n A 1 Second transparent layer composed of a transparent metal oxide layer Z Second one Second barrier layer consisting of Ag layer / Z n A1 Third dielectric layer consisting of Z transparent metal oxide layer Z third silver layer ZZ third layer consisting of third barrier layer / transparent metal oxide layer consisting of 1 And the thickness of each silver layer is 9 to 15 nm, and the thickness of the barrier layer made of ZnAl is 1. to 3 respectively. 0 nm, the film thickness of the first dielectric layer and the fourth dielectric layer is 40 to 50 nm, and the film thickness of the second dielectric layer and the third dielectric layer is 75 to 85 nm; The resistance of the film surface (sheet resistance) is 2.5 Ω or less, visible light transmission The visible light reflectance of the surface coated with the transparent conductive film is 4% or less, and the purity of silver of all the silver layers constituting the transparent conductive film is 5 N (99 9 99%) or more, and any of the barrier layers of Z nA 1 constituting the transparent conductive film is a Z nA 1 alloy containing 1 to 10% by weight of A 1. Substrate with electromagnetic wave shield film.
5. 第 1銀層の膜厚が 9〜1 O nm、 第 2銀層の膜厚が 1 3〜14nm、 第 3銀層の膜厚が 1 1〜 12 nmであることを特徴とする請求項 4に記載の電 磁波シールド膜付き基板。 5. The film thickness of the first silver layer is 9 to 1 O nm, the film thickness of the second silver layer is 13 to 14 nm, and the film thickness of the third silver layer is 11 to 12 nm. A substrate with an electromagnetic wave shield film according to item 4.
6. 第 1誘電体層における酸化錫層が 3〜50 nm、 酸化亜鉛層が 5〜50 nm、 第 2誘電体層における酸化錫層が 0〜 85 nm、 酸化亜鉛層が 5〜 85 nm、 第 3誘電体層における酸化錫層が 5〜 85 nm、 酸化亜鉛層が 5〜 85 nm、 第 4誘電体層における酸化錫層が 0〜50 nm、 酸化亜鉛層が 0〜50 nmであることを特徴とする請求項 4乃至 5に記載の電磁波シールド膜付き ¾个反。 6. The tin oxide layer in the first dielectric layer is 3 to 50 nm, the zinc oxide layer is 5 to 50 nm, the tin oxide layer in the second dielectric layer is 0 to 85 nm, the zinc oxide layer is 5 to 85 nm, The tin oxide layer in the third dielectric layer is 5 to 85 nm, the zinc oxide layer is 5 to 85 nm, the tin oxide layer in the fourth dielectric layer is 0 to 50 nm, and the zinc oxide layer is 0 to 50 nm The electromagnetic wave shielding film according to any one of claims 4 to 5, characterized in that
7. 透明基板の直上層が酸化錫層よりなることを特徴とする請求項 1乃至 6 に記載の電磁波シールド膜付き基板。 7. The substrate with an electromagnetic wave shielding film according to any one of claims 1 to 6, wherein the immediate upper layer of the transparent substrate is made of a tin oxide layer.
8. 電磁波シールド膜付き基板の前面及び Z又は裏面に、 樹脂フィルムより なる保護板を設けてなることを特徴とする請求項 1乃至 7に記載の電磁波シ —ルド膜付き基板。 8. A substrate provided with an electromagnetic shielding film according to any one of claims 1 to 7, wherein a protective plate made of a resin film is provided on the front surface and Z or the rear surface of the substrate provided with an electromagnetic shielding film.
9. 電磁波シールド膜付き基板が、 プラズマディスプレイパネルの前面に装 着されてなることを特徴とする請求項 1または 8に記載の電磁波シールド膜 付き基板。 9. The substrate with an electromagnetic shielding film according to claim 1 or 8, wherein the substrate with an electromagnetic shielding film is attached to the front surface of the plasma display panel.
PCT/JP2002/010983 2001-10-26 2002-10-23 Substrate with electromagnetic shield film WO2003037056A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-328715 2001-10-26
JP2001328715A JP2003133787A (en) 2001-10-26 2001-10-26 Substrate with electromagnetic wave shielding film
JP2002290283A JP2004128220A (en) 2002-10-02 2002-10-02 Substrate with electromagnetic wave shield film
JP2002-290283 2002-10-02

Publications (1)

Publication Number Publication Date
WO2003037056A1 true WO2003037056A1 (en) 2003-05-01

Family

ID=26624124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010983 WO2003037056A1 (en) 2001-10-26 2002-10-23 Substrate with electromagnetic shield film

Country Status (2)

Country Link
TW (1) TW200300109A (en)
WO (1) WO2003037056A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862961A1 (en) * 2003-11-28 2005-06-03 Saint Gobain TRANSPARENT SUBSTRATE USED ALTERNATELY OR CUMULATIVELY FOR THERMAL CONTROL, ELECTROMAGNETIC SHIELDING AND HEATED GLAZING.
EP1659845A1 (en) * 2003-08-25 2006-05-24 Asahi Glass Company Ltd. Electromagnetic shielding multilayer body and display using same
CN102126833A (en) * 2011-03-10 2011-07-20 黄骅荣达玻璃有限公司 Low-emissivity coated glass
EP1501768B1 (en) 2002-05-03 2017-04-19 Vitro, S.A.B. de C.V. Substrate having thermal management coating for an insulating glass unit
CN109791338A (en) * 2016-08-22 2019-05-21 唯景公司 It is electromagnetically shielded electrochromic
US11462814B2 (en) 2014-11-25 2022-10-04 View, Inc. Window antennas
US11559852B2 (en) 2011-12-12 2023-01-24 View, Inc. Thin-film devices and fabrication
US11561446B2 (en) 2011-09-30 2023-01-24 View, Inc. Fabrication of electrochromic devices
US11579571B2 (en) 2014-03-05 2023-02-14 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11599003B2 (en) 2011-09-30 2023-03-07 View, Inc. Fabrication of electrochromic devices
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11630366B2 (en) 2009-12-22 2023-04-18 View, Inc. Window antennas for emitting radio frequency signals
EP2577368B1 (en) 2010-05-25 2023-07-26 AGC Glass Europe Solar control glazing with low solar factor
US11732527B2 (en) 2009-12-22 2023-08-22 View, Inc. Wirelessly powered and powering electrochromic windows
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11799187B2 (en) 2014-11-25 2023-10-24 View, Inc. Window antennas
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US12061402B2 (en) 2011-12-12 2024-08-13 View, Inc. Narrow pre-deposition laser deletion
US12087997B2 (en) 2019-05-09 2024-09-10 View, Inc. Antenna systems for controlled coverage in buildings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101768257B1 (en) * 2013-09-02 2017-08-14 (주)엘지하우시스 Low-emissivity coat and building material for window including the same
CN106435475B (en) * 2016-09-08 2018-09-14 江苏双星彩塑新材料股份有限公司 A kind of energy saving fenestrated membrane of blue-green three-silver low radiation and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239044A (en) * 1986-11-27 1988-10-05 旭硝子株式会社 Transparent conductive laminate
JPH11307987A (en) * 1998-04-16 1999-11-05 Nippon Sheet Glass Co Ltd Electromagnetic wave filter
JP2000252682A (en) * 1999-02-26 2000-09-14 Central Glass Co Ltd Substrate with electromagnetic shielding film
JP2000329934A (en) * 1999-05-18 2000-11-30 Mitsui Chemicals Inc Transparent electrically conductive film
JP2001047549A (en) * 1999-08-06 2001-02-20 Mitsui Chemicals Inc Transparent conductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239044A (en) * 1986-11-27 1988-10-05 旭硝子株式会社 Transparent conductive laminate
JPH11307987A (en) * 1998-04-16 1999-11-05 Nippon Sheet Glass Co Ltd Electromagnetic wave filter
JP2000252682A (en) * 1999-02-26 2000-09-14 Central Glass Co Ltd Substrate with electromagnetic shielding film
JP2000329934A (en) * 1999-05-18 2000-11-30 Mitsui Chemicals Inc Transparent electrically conductive film
JP2001047549A (en) * 1999-08-06 2001-02-20 Mitsui Chemicals Inc Transparent conductive film

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1501768B1 (en) 2002-05-03 2017-04-19 Vitro, S.A.B. de C.V. Substrate having thermal management coating for an insulating glass unit
EP1659845A4 (en) * 2003-08-25 2008-07-30 Asahi Glass Co Ltd Electromagnetic shielding multilayer body and display using same
EP1659845A1 (en) * 2003-08-25 2006-05-24 Asahi Glass Company Ltd. Electromagnetic shielding multilayer body and display using same
US7771850B2 (en) 2003-08-25 2010-08-10 Asahi Glass Company, Limited Electromagnetic wave shielding laminate and display device employing it
CN1906136B (en) * 2003-11-28 2010-10-20 法国圣戈班玻璃厂 Transparent substrate which can be used alternatively or cumulatively for thermal control, electromagnetic armour and heated glazing
JP2007512218A (en) * 2003-11-28 2007-05-17 サン−ゴバン グラス フランス Transparent substrates that can be used alternatively or progressively for thermal control, electromagnetic shielding, and heating windows
EA015109B1 (en) * 2003-11-28 2011-06-30 Сэн-Гобэн Гласс Франс Glazing element
US7972713B2 (en) 2003-11-28 2011-07-05 Saint-Gobain Glass France Transparent substrate which can be used alternatively or cumulatively for thermal control, electromagnetic armour and heated glazing
US20110236663A1 (en) * 2003-11-28 2011-09-29 Saint-Gobain Glass France Transparent substrate which can be used alternatively or cumulatively, for thermal control, for electromagnetic armour and for heated glazing
CN101921066B (en) * 2003-11-28 2012-11-28 法国圣戈班玻璃厂 Alternative or accumulative transparent substrate used for heat control, electromagnetic shielding and window glass heating
US8440329B2 (en) 2003-11-28 2013-05-14 Saint-Gobain Glass France Transparent substrate which can be used alternatively or cumulatively, for thermal control, for electromagnetic armour and for heated glazing
WO2005051858A1 (en) * 2003-11-28 2005-06-09 Saint-Gobain Glass France Transparent substrate which can be used alternatively or cumulatively for thermal control, electromagnetic armour and heated glazing
FR2862961A1 (en) * 2003-11-28 2005-06-03 Saint Gobain TRANSPARENT SUBSTRATE USED ALTERNATELY OR CUMULATIVELY FOR THERMAL CONTROL, ELECTROMAGNETIC SHIELDING AND HEATED GLAZING.
US11630366B2 (en) 2009-12-22 2023-04-18 View, Inc. Window antennas for emitting radio frequency signals
US11732527B2 (en) 2009-12-22 2023-08-22 View, Inc. Wirelessly powered and powering electrochromic windows
EP2577368B1 (en) 2010-05-25 2023-07-26 AGC Glass Europe Solar control glazing with low solar factor
CN102126833A (en) * 2011-03-10 2011-07-20 黄骅荣达玻璃有限公司 Low-emissivity coated glass
US11561446B2 (en) 2011-09-30 2023-01-24 View, Inc. Fabrication of electrochromic devices
US11599003B2 (en) 2011-09-30 2023-03-07 View, Inc. Fabrication of electrochromic devices
US12061402B2 (en) 2011-12-12 2024-08-13 View, Inc. Narrow pre-deposition laser deletion
US11559852B2 (en) 2011-12-12 2023-01-24 View, Inc. Thin-film devices and fabrication
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US11668990B2 (en) 2013-02-08 2023-06-06 View, Inc. Fabrication of electrochromic devices
US11579571B2 (en) 2014-03-05 2023-02-14 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11799187B2 (en) 2014-11-25 2023-10-24 View, Inc. Window antennas
US11462814B2 (en) 2014-11-25 2022-10-04 View, Inc. Window antennas
US11670833B2 (en) 2014-11-25 2023-06-06 View, Inc. Window antennas
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
CN109791338A (en) * 2016-08-22 2019-05-21 唯景公司 It is electromagnetically shielded electrochromic
US12087997B2 (en) 2019-05-09 2024-09-10 View, Inc. Antenna systems for controlled coverage in buildings
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness

Also Published As

Publication number Publication date
TW200300109A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
WO2003037056A1 (en) Substrate with electromagnetic shield film
US7771850B2 (en) Electromagnetic wave shielding laminate and display device employing it
EP0949648B1 (en) Protective plate for a plasma display and a method for producing the same
US6316110B1 (en) Electromagnetic wave filter for plasma display panel
US20050074591A1 (en) Transparent substrate with antiglare coating having abrasion-resistant properties
CN1770972B (en) Electromagnetic wave shielding filter, method of manufacturing the same, pdp apparatus including the same filter
EP2270554A1 (en) Low reflection glass and protective plate for display
WO2004042436A1 (en) Optical filter
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
RU2717490C2 (en) Glass containing functional coating, including silver and indium
JP2003133787A (en) Substrate with electromagnetic wave shielding film
JP2000059082A (en) Electromagnetic wave filter
JP3924849B2 (en) Transparent conductive film and electromagnetic wave shielding filter using the same
JP2004128220A (en) Substrate with electromagnetic wave shield film
JP3732349B2 (en) Low emissivity glass and its manufacturing method
JP4820738B2 (en) Electromagnetic wave shielding laminate and display device using the same
JP2004047216A (en) Transparent electrically conductive film
JP2002003244A (en) Substrate for electromagnetic wave shielding filter
JP2811917B2 (en) Heat shielding glass
KR100618374B1 (en) Pdp filter having structure of multi-layer thin film
JP2000062082A (en) Electromagnetic wave shielded film
JP2004264350A (en) Front filter
WO2007029494A1 (en) Low-radiation double glazing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase