[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2003028299A1 - Information transmitter of rolling stock - Google Patents

Information transmitter of rolling stock Download PDF

Info

Publication number
WO2003028299A1
WO2003028299A1 PCT/JP2002/009733 JP0209733W WO03028299A1 WO 2003028299 A1 WO2003028299 A1 WO 2003028299A1 JP 0209733 W JP0209733 W JP 0209733W WO 03028299 A1 WO03028299 A1 WO 03028299A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
vehicle
network
modulated wave
noise
Prior art date
Application number
PCT/JP2002/009733
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Nagasu
Yutaka Sato
Mutsuhiro Terunuma
Hiroyuki Akiyama
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to KR1020047002383A priority Critical patent/KR100610641B1/en
Priority to JP2003531684A priority patent/JPWO2003028299A1/en
Publication of WO2003028299A1 publication Critical patent/WO2003028299A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G5/00Couplings for special purposes not otherwise provided for
    • B61G5/06Couplings for special purposes not otherwise provided for for, or combined with, couplings or connectors for fluid conduits or electric cables
    • B61G5/10Couplings for special purposes not otherwise provided for for, or combined with, couplings or connectors for fluid conduits or electric cables for electric cables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference

Definitions

  • the present invention relates to a railway vehicle information transmission device capable of performing high-speed, large-capacity transmission with high accuracy without being affected by noise.
  • connecting devices signal connecting devices
  • pneumatic connecting devices for transmitting information between vehicles are installed in front of and behind the vehicles in addition to mechanical connecting devices.
  • the signal connection device one that mainly connects with pins and connectors is used.
  • the connection terminal surface is oxidized due to prolonged exposure to the outside air, and an oxide film is generated. Since the oxide film is an insulator, the electrical connection between the connection terminals is hindered when the vehicle is connected again. For this reason, poor connection has occurred, which is a major obstacle to railway operation.
  • Inverted noise source equipment is usually installed under the vehicle floor.
  • railway vehicles use networks to communicate data such as control signals (including maintenance signals) and service signals (media signals).
  • data communication device communication errors are less likely to occur in a vehicle due to a shielding effect of a vehicle body made of metal.
  • vehicles are connected by couplers and wiring. The shielding effect is reduced. As a result, noise is applied to the wiring connecting the communication devices in the vehicle, and communication errors occur.
  • control signals including maintenance signals
  • service signals media signals
  • connection device signal connection device
  • a voltage exceeding 10 V is applied to electrically destroy an oxide film.
  • a high voltage exceeding 10 V is applied at the beginning of vehicle connection, and thereafter information is transmitted at a voltage of several volts, or information is constantly transmitted at a voltage exceeding 10 V.
  • An object of the present invention is to provide a railway vehicle information transmission device capable of performing high-speed, large-capacity transmission with high accuracy without being affected by noise in railway vehicles in which connection and disconnection between vehicles are performed. . Disclosure of the invention
  • a feature of the present invention is that data communication between vehicles is performed using a modulated wave signal obtained by modulating a carrier wave with a data signal (paceband signal).
  • the modulated wave signal can be set to an extremely high frequency with respect to the noise frequency, data transmission between vehicles can be performed without being affected by noise. If a high-frequency carrier is transmitted using a modulated wave signal modulated by a paceband signal, the frequency can be limited to a band required for data transmission by a bandpass filter, and communication can be performed even when the voltage amplitude is small. Therefore, high-speed, large-capacity transmission (broadband communication) can be performed accurately without being affected by noise.
  • FIG. 1 is a block diagram showing an embodiment of the present invention
  • FIG. 2 is a block diagram showing an example of a signal transmission device of the present invention
  • FIG. 3 is a cross-sectional view showing an example of a signal connection device
  • FIG. FIG. 5 is a cross-sectional view showing another example of the signal connection device
  • FIG. 6 is a configuration diagram showing one example of the signal connection device
  • FIG. 7 is another view of the signal connection device.
  • FIG. 8 is a block diagram showing an essential part of another embodiment of the present invention
  • FIG. 9 is a specific block diagram of a railway vehicle employing the present invention
  • FIG. FIG. 11 is another specific configuration diagram of a railway vehicle employing the present invention
  • FIG. 11 is another specific configuration diagram of a railway vehicle employing the present invention
  • FIG. FIG. 13 is a detailed configuration diagram of another example of the driving device
  • FIG. 14 is a configuration diagram of an example of the voltage detector built in the wireless device
  • FIG. 15 is a detailed configuration diagram of another example of the driving device.
  • FIG. 1 is a block diagram of a network of the present invention
  • FIG. 2 is a detailed block diagram of an example of a wireless transmission device
  • FIG. 3 is a diagram of an example of a signal connection device.
  • reference numeral 1 denotes a network configuration in one train of a railway car, which includes a network control device 15 and two wireless transmission devices 14 (A, B).
  • the network control device 15 controls data transmission of control signals (including maintenance signals) and service signals, and communicates with the wireless transmission device 14 through a network cable 18 (IEEE1394, Ethernet cable, etc.).
  • the network connection with the connected adjacent vehicle is performed via a wireless transmission device 14, and a coaxial cable 17 having excellent high-frequency transmission characteristics is used as a connection cable.
  • An Ethernet cable or the like is used to connect the network control device 15 and the wireless transmission device 14, and a baseband signal is used for signal (data) transmission.
  • a modulated wave signal obtained by modulating a carrier with a baseband signal is used for information transmission of the wireless transmission device 14 between the vehicles.
  • a paceband signal is a signal that transmits information using 0 and 1, depending on the encoding method, and usually has a signal band component from DC to several hundred MHz.
  • the modulated wave signal is a modulated wave signal obtained by modulating a carrier signal with a data signal, and can be converted to a desired frequency by selecting a frequency of the carrier signal.
  • noise devices such as a high-voltage inverter driving device that drives the vehicle and a power supply that supplies power inside the vehicle, so there is a large noise of several 10 MHz or less. . Therefore, baseband transmission is more susceptible to this noise.
  • the body is made of metal, so it is less affected by comparative noise due to this shielding effect.
  • a modulated wave signal with a higher frequency than the noise source is used for transmission between vehicles.
  • Wiring in the vehicle uses baseband transmission, which can be prepared at relatively low cost.
  • FIG. 2 shows a detailed configuration of an example of the wireless transmission device 14, and the network control device 15 includes a router, a hub (HUB), a server, and the like.
  • the data transmission device 19 2 of the wireless transmission device 14 is connected to the network control device 15 via the cable 18.
  • the data signal from the data transmission device 1992 is modulated by the modulator 1993, converted to a desired frequency by the frequency conversion amplifier 1994, and amplified.
  • the modulated wave signal amplified by the frequency conversion amplifier 194 removes an unnecessary signal in a pass filter 195 and is sent to a circuit 196.
  • Sirki Yure 1960 has directivity in signal transmission, transmits the modulated wave signal that has passed through the no-pass filter 1995 to the coaxial cable 17 and transmits the modulated wave signal received from the coaxial cable 17 to the bandpass filter 1. Transmit to bandpass filter 197 on the receiving side without transmitting to 95.
  • the modulated wave signal transmitted from the adjacent vehicle is sent to the bandpass filter 197 on the receiving side through the sensor 196, and the signal unnecessary for communication is removed.
  • the modulated wave signal that has passed through 197 is converted into a frequency that can be easily demodulated by a frequency conversion amplifier 198 and amplified, and a data signal is extracted from the modulated wave signal by a demodulator 119.
  • the data transmission device 1992 performs a data bridging process between the modulator 1993 and the demodulator 1999 and the network control device 15. Specifically, when the data signal from the network control device 15 is a serial signal, data extraction and clock reproduction are performed and transmitted to the modulator 1993. Similarly, clock recovery and the like are performed on the overnight signal from the demodulator 1999, and the signal is transmitted after being made compatible with the communication method of the network processing device 15.
  • the data transmission device 192 may have a memory and store and process the data. However, if the data is a vehicle control signal, it is desirable to reduce the delay time. Specifically, it is desirable to set it to 10 ⁇ s or less.
  • an electrical connection device is required at the connection of the transmission line to split and merge the vehicles. This is not a problem with a uniform transmission line such as a coaxial cable, but it is difficult to make an electrical connection device that requires splitting and merging uniformly, causing impedance mismatch and reflection at this point. The reflected signal returns to the transmitting side, causing a malfunction of the amplifier circuit in the transmitting section. In order to prevent this, Sirkyle 196 is used.
  • FIG. 2 shows a case where transmission and reception are performed by one coaxial cable 17, transmission and reception may be performed by another coaxial cable. In such a case, use an isolator for the transmitter to prevent the transmission signal from returning.
  • setting of a frequency used for transmission between vehicles will be described.
  • the wireless transmission device A of one vehicle is connected to the wireless transmission device B of another adjacent vehicle, the output signal (modulated wave signal) of the wireless transmission device A is transmitted by the wireless transmission device.
  • the output signal (modulated wave signal) of the wireless transmission device B received by B is received by the wireless transmission device A.
  • the transmission and reception carrier frequencies of the wireless transmission device 14 are separated, and the signal transmitted by the bandpass filter 197 on the receiving side is removed, because it is necessary to prevent signal degradation. There is a need to.
  • control signal control data
  • reliability is required. Therefore, it is common practice to use a double network for the network. In the case of a double system, it is necessary to use different frequencies for the first system and the second system in order to prevent signal interference at the signal connection device. Therefore, it is necessary to transmit at least four types of frequencies, and four types of wireless transmission devices 14 are required.
  • the frequency of the carrier signal is set as follows in order to halve the types of the wireless transmission devices 14.
  • FIG. 4 is an example of the frequency allocation of the carrier signal for halving the types of the wireless transmission devices 14.
  • the carrier frequency from wireless transmission equipment A to B is set to band 1 F1 for system 1 and fl 2 for system 2.
  • the carrier frequency from B to A is selected from the band 2 of the radio transmission apparatus, and the system 1 is f 21 and the system 2 is 22.
  • the pass band of the bandpass filter 195 on the transmitting side in the wireless transmission device A is frequency band 1
  • the passband of the bandpass filter 197 on the receiving side is frequency band 2
  • the wireless transmission device B The passband of the bandpass filter 195 on the transmission side in the frequency band 2 is that of the bandpass filter 195 on the transmission side
  • the frequency band 1 is that of the bandpass filter 197 on the reception side.
  • a dual network can be configured with two different types of wireless transmission devices having different node paths.
  • FIG. 3 shows a detailed example configuration of the signal connection device 2 of the vehicle connection unit.
  • the wireless transmission device 14 and the drive device 16 are connected to the network control device 15 through a network cable 18.
  • the driving device 16 is used to drive the entire device.
  • the connection between the network control device 15 and the wireless transmission device 14 uses IEEE1394 or Ethernet, and the connection between the network control device 15 and the drive device 16 uses CAN (Control Area Network) or DeviceNet.
  • CAN Control Area Network
  • DeviceNet A network suitable for real-time control is used.
  • a transmission line 17 (generally a coaxial cable) is connected to the wireless transmission device 14, and an antenna 11 is connected to the transmission line 17. Further, the antenna 11 is arranged so as to face another antenna 11 of another vehicle constituting the electric connection device 2. Another antenna 11 of another vehicle is connected to a radio transmission device 14 via a transmission line 17. The wireless transmission device 14 of another vehicle is also connected to the network control device 15 by the network cable 18.
  • the signal connection device 2 is formed in an electromagnetic shield structure, and the antenna 11 is electrically shielded by an electromagnetic shield material 12 made of a conductive material such as a metal.
  • the antenna 11 is surrounded by shielded wood 12.
  • An electromagnetic wave absorbing material 19 is provided between the electromagnetic shielding material 12 and the antenna 11, and the antenna 11 is an insulator 13 such as polyethylene air and the electromagnetic shielding material 12 and the electromagnetic wave absorbing material. 1 9 And insulated.
  • the wireless transmission device 14 modulates a high-frequency carrier wave (generally a sine wave) with a baseband signal (de-night signal) transmitted from the network control device 15 and converts the modulated signal to a transmission line.
  • a high-frequency carrier wave generally a sine wave
  • a baseband signal de-night signal
  • PSK Phase Shift Keying
  • the modulated wave signal transmitted from the wireless transmission device 14 is radiated by the antenna 11 and received by the other antenna 11.
  • the modulated wave signal received by the other antenna 11 is demodulated by the wireless transmission device 14 of the other vehicle, a paceband signal is extracted, and is applied to the network control device 15.
  • connection device 2 shown in FIG. 3 configures a signal connection between vehicles exposed to the outside air with an antenna 11, and communication is performed by transmitting a signal to the antenna 11 for modulation. Therefore, there is no need to electrically connect the networks between the vehicles, and the problem of poor contact can be avoided.
  • control signals such as the drive unit 16 and brakes is transmitted to the network between the vehicles. For this reason, if communication is interrupted due to external disturbances, there will be a serious problem such as stopping the operation of vehicles. To prevent this, the antenna 11 is surrounded by an electromagnetic shielding material 12 such as a metal. In addition, even if the electromagnetic shielding members 12 of adjacent vehicles (front and rear vehicles) are in mechanical contact and are electrically connected, the influence of noise can be prevented.
  • the electromagnetic shielding material 12 prevents radio waves radiated from the antenna 11 from being radiated to the outside, but reflects the radio waves.
  • the modulated wave radiated from one antenna 11 is directly received by the other antenna 11 and the direct wave directly directed to the other antenna 11 and the reflected wave reflected by the surface of the shield material 12 are received.
  • the other antenna 11 receives the direct wave and the reflected wave, and radio wave interference occurs on the antenna surface, so that the receiving performance is significantly reduced.
  • the electromagnetic wave absorber 19 prevents this, and is installed between the antenna 11 and the shield 12. Electromagnetic waves radiated from the antenna 11 in the direction of the shield material 12 are absorbed by the absorber 19 and are not reflected by the shield material 12. Therefore, the other antenna 11 receives only the direct wave, and there is no interference between the direct wave and the reflected wave, so that the deterioration of the receiving performance can be prevented.
  • the electromagnetic wave absorber 19 is not always necessary, and the geometric structure of the antenna 11, the insulator 13 and the shielding material 12 is devised, and the waveguide between the two antennas 11 is devised. Even if such an electromagnetic wave transmission path is formed, interference between a direct wave and a reflected wave can be prevented.
  • the antenna 11 used for the connection device 2 is small, and the antenna 11 can be reduced in size by processing the antenna 11 into a spiral shape.
  • the size of the antenna 11 is limited to about 1/10 of the wavelength.
  • the carrier wave is at least about 10 times the carrier wave (paceband signal).
  • the transfer rate of a practically used network is at least about 10 MHz, and it is preferable to use a carrier frequency of 100 MHz or more.
  • the size of the antenna 11 can be made at least about 30 cm.
  • two-way communication is performed using a pair of antennas 11
  • two-way (octagonal and B-direction) communication is performed in a time-sharing manner.
  • the wireless transmission device 14 on the left side in the figure is a transmitting device
  • the wireless transmission device 14 on the right side in the figure is a receiving device.
  • the left side is the receiving device and the right side is the transmitting device.
  • Such a method of performing two-way communication by time division is called half-duplex communication.
  • two transmission frequencies f 1 and f 2 are multiplexed on one transmission line 17. For example, assign frequency 1 for A-direction transmission and frequency 2 for B-direction communication.
  • the wireless transmission device 14 on the right side of the figure modulates the carrier f 1 and transmits it to the transmission line 17.
  • the signal f2 is extracted and demodulated.
  • the wireless transmission device 14 on the right side in the figure modulates and transmits the carrier wave f2, and transmits and demodulates: f1 at the first pass filter 197.
  • FIG. 5 shows another example of the connection device 2.
  • connection device 2 shown in FIG. 5 includes a plurality of antennas 11.
  • Fig. 5 (a) has two pairs of antennas 11 and performs bidirectional communication at different frequencies fKf2. For example, communication is performed from left to right in the figure at frequency 1 and from right to left in the figure at frequency 2. Therefore, full-duplex communication is possible.
  • FIG. 5 (b) is an example in which the connection device 2 includes a large number of antennas 11.
  • the connection device 2 includes a large number of antennas 11.
  • the communication speed of the wireless communication device 14 is lower than that of wired communication. Therefore, wireless communication often degrades the performance of the entire network. If the communication speed of the wired communication using the network cable 18 is 100 Mbps in the half-duplex communication method and the communication speed per pair of wireless communication antennas is 10 Mbps in the half-duplex communication method, set the antenna 11 to 1 By providing 0 sets, performance degradation due to wireless communication can be prevented.
  • FIG. 6 is a configuration diagram showing an example of the connection device 2, in which FIG. 6 (a) is an external view and FIG. 6 (b) is a cross-sectional view of a connection portion.
  • One connecting device 2A is configured as follows.
  • An electromagnetic shielding material 12 A made of metal or the like is disposed around the antenna 11 with an insulator 13 interposed therebetween to prevent electromagnetic waves from being radiated from the antenna 11 to the outside and the influence of the external electromagnetic waves.
  • An electromagnetic wave absorbing material 19 shown in FIG. 3 can be provided on the inner surface of the electromagnetic shield material 12A, and can be often used.
  • the shield material 1 2B of the other connecting device 2B must be shielded from the one connecting device 2A.
  • the diameter of the material is larger than 12 A.
  • the antennas 11 of the connection devices 2A and 2B are arranged so as to face each other.
  • Antenna 1 1 Is connected to a transmission line 17. Note that the transmission line 17 is connected to the wireless transmission device 14.
  • connection device 2A, 2B By forming a plurality of antennas 11 on one connection device 2A, 2B as shown in FIG. 6, a plurality of connections can be made simultaneously.
  • FIG. 7 is a configuration diagram showing another example of the connection device 2. As shown in FIG. FIG. 7 (a) is an external view, and FIG. 7 (b) is a cross-sectional view of a connecting portion.
  • FIG. 7 shows a configuration in which electrical connections are made by pins instead of antennas.
  • FIG. 7 shows the antenna 11 of FIG. 6 with pin-type connection terminals 22 and 23.
  • the female connection terminals 22 are electrically connected to each other by being inserted into the female connection terminals 23.
  • the connection terminals 22 and 23 are connected to the wireless transmission device 14 by the transmission line 17.
  • a wired signal transmission device is used as the wireless transmission device 14.
  • the pin-type connection terminals 22 and 23 are provided for electrically connecting each other.
  • a railway vehicle is disconnected from the connection terminals 22 and 23 and exposed to the open air for a long time, the surfaces of the pins 22 and 23 are oxidized and a contact failure occurs.
  • a contact failure occurs, only the current flowing through the parasitic capacitance between the pins 22 and 23 is generated, and the amplitude value of the voltage drops from 110 to 1/1000.
  • a code is restored by determining whether a received signal is higher or lower than a certain potential with reference to a certain potential. Therefore, it is impossible to determine the data even if the received signal is reduced by a factor of several.
  • communication when communication is performed using a modulated wave signal modulated by the signal transmission device 14, communication can be normally performed even if the signal level is reduced to about 1/1000.
  • Data communication between railway cars is performed in this way, and data communication between cars is performed using a modulated wave signal obtained by modulating a carrier wave at a data frequency (baseband signal). Since the modulated wave signal can have an extremely high frequency with respect to the noise frequency, data transmission between vehicles can be performed without being affected by noise.
  • the driving device used for railway vehicles is driven with a voltage of several kV and a voltage of several hundred A or more, so that a large potential difference occurs between the vehicles. Therefore, when the connection device 2 electrically connected as shown in Fig. 7 is used, the current (DC) between the signal transmission devices (wired signal transmission devices 14 corresponding to the radio transmission devices 14) of each vehicle is increased. Current flows, and parts of the signal transmission device 14 are damaged.
  • FIG. 8 shows an embodiment for solving such a problem.
  • FIG. 8 shows an example in which the connection device 2 uses an antenna.
  • an insulating device 25 for separating between the signal transmission device 14 and the connection device 2 is provided to cut off the DC component.
  • FIGS. 8 (b) and 8 (c) show specific examples of the insulating device 25.
  • FIG. A transformer or a capacitor is used as the insulating device 25.
  • 27 is an amplifier.
  • the transformer capacitor is not a discrete component but a pattern capacitor formed on a substrate using a pattern wiring.
  • FIG. 9 and 10 show a more specific configuration of a railway vehicle employing the present invention.
  • FIG. 9 shows a case where the number of connecting devices 2 is one
  • FIG. 10 shows a case where there are two sets.
  • the connection device 2 describes an example of a pair of antennas, but a connection device 2 in which a plurality of antennas are arranged as shown in FIG. 5 can also be used.
  • the antenna 51 is connected to the pre-wired radio transmission device 14 B, and the bridge-type radio transmission device 14 B is further connected to the network control device 15.
  • the network control device 15 is connected to a local network (LAN) 58 including a wireless transmission device 30 and a reception device 31.
  • LAN 58 is wirelessly networked.
  • the LAN 58 is referred to as an information LAN because its main purpose is to transmit image information and text data.
  • a drive device 16 and an operation control device 32 are connected.
  • the network control device 15 is connected to the repeater-type wireless transmission device 14R, and the electrical connection device 2 is connected to the repeater-type wireless transmission device 14R.
  • the control data of the vehicle device is transmitted, so that the control device is referred to as a control LAN 59.
  • the left side in FIG. 9 is the preceding vehicle, and the right side is the following vehicle.
  • the network configuration of the following vehicle is the same as that of the preceding vehicle, and a description thereof will be omitted.
  • multiple vehicles may be connected as needed, and may exceed 16 vehicles.
  • the bridge type wireless transmission device 14B has a function of analyzing received information and transmitting data only to ports that need to transmit.
  • the repeater-type wireless transmission device 14R is a device for relaying the received data, and the data received from the input terminal is transmitted from the output terminal as it is just after the waveform shaping.
  • the bridge-type wireless transmission device 14B requires an operation of recording data in a memory and analyzing the data, and it takes a long time before the input data is output.
  • the repeater-type wireless transmission device 14 R shapes the input signal waveform and transmits it as it is, so the delay time between the input terminal and the output terminal is reduced. The information is analyzed to determine the presence or absence of data transmission. There is Lu Yu as a device to do it.
  • the bridge-type wireless transmission device 14B knows the port to which each device is connected, and transmits data only to the port to which the device to which data is to be transmitted is connected. On the other hand, in the evening, we know the network and transmit data only to the network to which data should be transmitted.
  • the antenna 51 is used for communication between the train and the outside. For example, by communicating with a communication device installed at the platform of a station, information on the ground can be transmitted to the vehicle and information in the vehicle can be transmitted to the ground.
  • the information to be transmitted can be classified into information used in the information LAN 58 and information used in the control LAN 59.
  • Information used by the information LAN 58 includes image information such as movies, news, and passenger information.
  • the information used on the control LAN 59 includes equipment maintenance information such as control unit temperature and failure information.
  • the wireless transmission device 14 connected to the antenna 51 is not necessarily the ridge-type wireless transmission device 14B, and if the transmission delay is within the time required by the control LAN 59, the repeater A type wireless transmission device 14R can also be used.
  • a bridge-type wireless transmission device 14B and a network control device 15 that are integrally configured may be used.
  • FIG. 10 shows the connection device 2 for transmitting information on the information LAN 58 and the control LAN 5.
  • connection device 9 is an example of a configuration in which a connection device 2 for transmitting 9 pieces of information is separated.
  • the antenna 51 is connected to the bridge type wireless transmission device 14B.
  • the network controller 15 on the information LAN 58 side and the network controller 15 on the control LAN 59 side are independently connected to the bridge type radio transmission apparatus 14B.
  • the information LAN 58 is connected to the information LAN 58 of the following train by the connecting device 2
  • the control LAN 59 is connected to the control LAN 59 of the following train through the connecting device 2.
  • Information on the preceding and succeeding trains A type-type wireless transmission device 14B is used, and a repeater-type wireless transmission device 14R is used as a wireless transmission device connecting the control LAN 59.
  • Information Information communicated by LAN59 does not matter even if a time delay occurs between vehicles. In addition, it is often not necessary to transmit all information to subsequent trains. For this reason, although the transmission delay increases, it is desirable to use a pre-wired radio transmission apparatus 14B having a function of determining whether or not there is overnight transmission.
  • the control LAN 59 needs to coordinate multiple devices. Specifically, a driving device 16 and a braking device (not shown) are connected. For example, when the vehicle is stopped, information is mutually transmitted between the driving device 16 and the braking device to drive the vehicle. Coordinated control such as the braking device supplementing the braking force that the device 16 lacks. Therefore, in the control LAN 59, it is necessary to minimize the data transmission delay. Specifically, it is desirable to keep the total train speed at 10 ms or less. Therefore, it is preferable to use a repeater-type wireless transmission apparatus 14 R having a short transmission delay for the control LAN 59.
  • FIG. 11 shows an example in which open-type antennas 52 and 53 are used as connecting devices for information LAN 58.
  • an overnight transmission delay may occur.
  • communication failure may occur due to the influence of external radio waves.
  • the lost data can be restored by resending the data.
  • the antenna 51 for wirelessly transmitting with the ground-side device can be installed inside or outside the vehicle.
  • Fig. 9 and Fig. 10 show an example of installation inside a vehicle, for example, above a windshield in the driver's seat. Glass allows electromagnetic waves to pass, so it does not interfere with terrestrial communications. When installed outside the vehicle as shown in Fig. 11, there is an effect that the communication distance can be lengthened because obstacles such as glass are eliminated.
  • FIG. 12 shows an example of the detailed configuration of the driving device 16.
  • the power converter 100 supplied with power from the overhead wire 104 is The output controlled by the variable voltage and the variable frequency is supplied to the induction motor 103.
  • the induction motor 103 is mechanically connected to the wheels of the vehicle (electric vehicle), and controls the vehicle according to the output of the power converter 100.
  • the drive device 16 has a speed sensorless system that controls the induction motor 103 by estimating the rotation speed from the constant and the current value of the induction motor 103.
  • the control device 101 includes an operation pattern sent from the operation control device 32, each phase output current detected by the current detector (CT) 109, and a filter capacitor detected by the voltage detector (PT) 110. Voltage ECF is input.
  • the control device 101 controls the electric vehicle by performing feedback control based on the information, converting the result into a gate signal, and outputting the gate signal to the power converter 100.
  • the filter reactor (FL) 107, filter capacitor (FC) 108, power converter 100, and control device 101 are called underfloor equipment because they are installed below the vehicle body. I have. Since the control device 101 of the underfloor equipment needs to be connected to the operation control device 32 installed in the cab, it is necessary to wire the inside of a complicated vehicle over a long distance.
  • the power converter 100 uses a high-speed switching element such as an IGBT (Insulated Gate Bippo 1ar Transistor), a large switching noise is generated. Noise, it is necessary to improve noise resistance.
  • IGBT Insulated Gate Bippo 1ar Transistor
  • each phase output current detected by the current detector (CT) 109 and the voltage detector (PT) 110 It is necessary to detect the feed-back signal such as the filter capacitor voltage ECF detected in step 2 at high speed.
  • the pattern information from the operation control device 32 may have a cycle of about 10 ms, and does not require a high-speed response.
  • Wireless transmission is generally slower than wired transmission, but does not require wiring.
  • the wireless transceivers 105 and 106 are connected to the operation control device 32 and the control device 101, and the pattern information from the operation control device 32 is wirelessly communicated. JP02 / 09733
  • the communication rate is 160 kbps. It is desirable to use wireless communication equipment of at least 16 Okbps or more for communication of pattern information.
  • Relatively low-speed communication is sufficient, and by communicating wirelessly with the driver's cab remote from the underfloor equipment, wiring to the underfloor equipment is not required and line savings can be achieved.
  • noise insulation can be improved by the wireless insulation function, and the degree of freedom in arranging equipment under the floor can be improved.
  • FIG. 13 shows another example of the driving device 16 in consideration of the reduction in the number of wires inside the underfloor equipment and the degree of freedom in the arrangement of electrical components.
  • the same parts as those in FIG. 12 are denoted by the same reference numerals.
  • the voltage detector of the feedback capacitor (FC) 108 which is a feedback signal, is replaced with a wireless device built-in voltage detector 111 incorporating an A / D converter and a wireless device.
  • the detected capacitor voltage is communicated to the controller 101.
  • FIG. 14 shows an example of the configuration of the wireless device built-in voltage detector 111.
  • the DC voltage obtained by dividing the voltage of the filter capacitor (FC) 108 by the voltage divider 151 is input to the power supply 152.
  • the power supply 152 is a power supply (DC-DC converter) that outputs a constant output voltage even when the input voltage changes, and supplies power to the AZD converter 153 and the radio 154. Also, the output of the voltage divider 151 is converted to a digital signal by the A / D converter 153 and transmitted by the radio 154.
  • the A / D-converted filter capacitor voltage is wirelessly transmitted to the control device 101, not only is insulation between the filter capacitor 108 and the control device 101 unnecessary, but also the conventional This eliminates the need for analog wiring between the FC 108 and the controller 101. For this reason, the detection value of the FC voltage is less affected by noise, and higher control accuracy can be realized.
  • Filler capacitor voltage is 1 level for 2 levels and 3 levels for 1 —Even in the evening, there are two signals, the upper arm voltage and the lower arm voltage, and the amount of data is small.
  • the processing cycle of voltage control in practical use is about 200; s.
  • 200 Communication is possible if the speed is about 0 kbps.
  • Fig. 15 shows, in addition to the operation control device 32 and FC 108, the U, V, and W phase current detection values of the induction motor 103 detected by the wireless device's built-in current detector 112 wirelessly. This is to communicate with the control device 101.
  • the configuration of the wireless device built-in current detector 112 may be basically the same as that of the wireless device built-in voltage detector 111, and includes a DC power supply, an A / D converter, and a wireless device. As long as the communication speed can achieve the same response speed as the current control, 1 Mbps, which is the same as the voltage detection, may be used. Industrial applicability
  • the railway vehicle information transmission device of the present invention can perform data transmission between vehicles without being affected by noise, and transmit a high-frequency carrier wave using a modulated wave signal modulated by a baseband signal.
  • the frequency can be limited to the band required for data transmission by bandpass filtering, and communication is possible even when the voltage amplitude is small. Therefore, it is suitable for trains that require high-speed, high-capacity transmission with high accuracy without being affected by noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

The data communication of vehicles such as a rolling stock wherein vehicles are separated and connected repeatedly and noise-generating apparatuses such as an inverter are mounted under the floor is carried out through a network. Vehicles communicate date with a modulation wave signal that is a carrier wave signal modulated by a data signal (baseband signal). Since the frequency of a modulation wave signal is set much higher than a noise frequency, the data transmission between vehicles is carried out without being influenced by a noise.

Description

明 細 書  Specification
鉄道車両の情報伝達装置 技術分野 Railway vehicle information transmission device
本発明は、車両間の連結と分離が行われる鉄道車両間の情報伝達をノイズの 影響を受けることなく高速大容量伝送が精度良く行えるようにした鉄道車両 の情報伝達装置に関する。 背景技術  The present invention relates to a railway vehicle information transmission device capable of performing high-speed, large-capacity transmission with high accuracy without being affected by noise. Background art
鉄道車両においては、運用の無駄を排除することを目的として、一列車当た りの車両数が乗客数に応じて調整される。そのため、車両の分離と連結は頻繁 に行われる。 また、 車両の定期検査の時にも、 一両単位に切り離して整備する ために分離と連結が行われる。 このような運用形態に対応するため、車両の前 後には、機械的な連結装置以外に、 各車両間の情報伝送のために接続装置(信 号接続装置) や空気接続装置も設置されている。  For railway vehicles, the number of vehicles per train is adjusted according to the number of passengers in order to eliminate waste of operation. For this reason, vehicles are frequently separated and connected. Also, during periodic inspections of vehicles, separation and consolidation are carried out in order to maintain the vehicles separately. In order to cope with such an operation form, connecting devices (signal connecting devices) and pneumatic connecting devices for transmitting information between vehicles are installed in front of and behind the vehicles in addition to mechanical connecting devices. .
信号接続装置としては主にピンとコネクタで接続するものが用いられてい るが、切り離し後に長時間外気に晒されるために接続端子表面が酸化して酸化 膜が発生する。酸化膜は絶縁物であることから、車両を再び連結したときに接 続端子間の電気的な接続を阻害する。 このため、 接続不良が発生し、 鉄道運用 上の大きな阻害原因となっている。  As the signal connection device, one that mainly connects with pins and connectors is used. However, after disconnection, the connection terminal surface is oxidized due to prolonged exposure to the outside air, and an oxide film is generated. Since the oxide film is an insulator, the electrical connection between the connection terminals is hindered when the vehicle is connected again. For this reason, poor connection has occurred, which is a major obstacle to railway operation.
また、 最近の鉄道車両は駆動装置、 電源装置、 空調設備などはインバータ化 されて数 Hzから数十 MH zのノイズを発生している。 ィンバータ化されたノ ィズ発生源の機器は、 通常、 車両の床下に取付けられている。  In recent railway vehicles, drive units, power supply units, and air-conditioning equipment have been converted to inverters, generating noise from several Hz to several tens of MHz. Inverted noise source equipment is usually installed under the vehicle floor.
鉄道車両は制御信号 (保守信号を含む) やサービス信号 (メディア信号) な どのデータ通信をネヅ トワークを用いて行っている。データ通信装置は、車両 内においては金属で作られている車体のシ一ルド効果によって通信エラ一が 発生しにくくなつている。 しかし、車両間は、連結器や各配線で接続されてい るだけであることからシールド効果が小さくなる。そのため、車両のデ一夕通 信装置間を接続する配線にノイズが印加されて、 通信エラ一が発生する。 Railway vehicles use networks to communicate data such as control signals (including maintenance signals) and service signals (media signals). In a data communication device, communication errors are less likely to occur in a vehicle due to a shielding effect of a vehicle body made of metal. However, vehicles are connected by couplers and wiring. The shielding effect is reduced. As a result, noise is applied to the wiring connecting the communication devices in the vehicle, and communication errors occur.
なお、 鉄道車両において制御信号 (保守信号を含む) やサービス信号 (メデ ィァ信号) などのデータ通信をネヅトワークで行うことは、 雑誌「鉄道車両と 技術」 N O . 5 8、 第 2頁〜第 8頁に記載されている。  Data communication of control signals (including maintenance signals) and service signals (media signals) on railway vehicles via networks is described in the magazine “Rail Vehicles and Technology”, NO. It is described on page 8.
接続装置(信号接続装置) の接触不良を防止するには、 1 0 Vを超える大き な電圧を印加して酸化膜を電気的に破壊することが知られている。具体的には、 車両接続の初期に 1 0 Vを越える高電圧を加え、 その後は数 Vの電圧で情報 伝達したり、 常時 1 0 Vを越える電圧で情報伝達をしている。 また、 接続端子 の表面を金などの柔らかくて化学変化しにくい導電材料でメツキすることで、 接触不良を防止することも広く行われている。  It is known that in order to prevent connection failure of a connection device (signal connection device), a voltage exceeding 10 V is applied to electrically destroy an oxide film. Specifically, a high voltage exceeding 10 V is applied at the beginning of vehicle connection, and thereafter information is transmitted at a voltage of several volts, or information is constantly transmitted at a voltage exceeding 10 V. It is also widely practiced to prevent poor contact by plating the surface of the connection terminal with a soft conductive material such as gold which is not easily chemically changed.
接続初期だけ 1 0 Vを越える高電圧を印加して、 その後、 数 Vの低電圧で 情報通信する方法は、初期の高電圧印加だけでは酸化膜の破壊が十分でなく、 再び接触不良が発生する危険性がある。 また、 高電圧を発生する装置、 低電圧 の通信装置、およびこれらを切り替える装置が必要となり、構成が複雑になる ( 一方、常時 1 0 Vを越える高電圧で伝送する方法は、 出力段の能動素子の電 力損失が増大する。また、電圧の振幅を大きくするほど高速な出力段のトラン ジス夕が必要となることから、最近のシリアル通信のように 1 0 Mbpsを越え る高速大容量の伝送を実現するのは困難である。 Applying a high voltage exceeding 10 V only at the beginning of connection, and then communicating information at a low voltage of several volts, simply applying the high voltage in the initial stage does not sufficiently destroy the oxide film, causing contact failure again. There is a risk of doing. The device for generating a high voltage, the communication device of low voltage, and requires a device to switch between them, the configuration is complicated (the other hand, a method of transmitting a high voltage exceeding always 1 0 V is active the output stage The power loss of the device increases, and the larger the amplitude of the voltage, the faster the output stage of the transistor is required. Transmission is difficult to achieve.
接続装置の接触不良を防止するは、接続装置にアンテナを設け、車両間を無 線通信することが考えられる。鉄道車両のデータ通信は高速大容量化され、高 速ブロードバンドネヅ トワークを用いることが検討されている。データ信号の 周波数は 1 0〜 1 0 0 MH z程度であり、 ィンバ一夕化されたノィズ発生源の ノィズの影響を受けることになる。  In order to prevent contact failure of the connecting device, it is conceivable to provide an antenna in the connecting device and perform wireless communication between vehicles. High-speed and large-capacity data communication of railway vehicles is being studied, and the use of a high-speed broadband network is being studied. The frequency of the data signal is about 100 to 100 MHz, and is affected by the noise of the noise generator that has been integrated.
本発明の目的は、車両間の連結と分離が行われる鉄道車両間の情報伝送をノィ ズの影響を受けることなく高速大容量伝送が精度良く行える鉄道車両の情報 伝送装置を提供することにある。 発明の開示 An object of the present invention is to provide a railway vehicle information transmission device capable of performing high-speed, large-capacity transmission with high accuracy without being affected by noise in railway vehicles in which connection and disconnection between vehicles are performed. . Disclosure of the invention
本発明の特徴とするところは、 搬送波をデータ信号(ペースバンド信号)で 変調した変調波信号によって車両間のデ一夕通信を行うようにしたことにあ る。  A feature of the present invention is that data communication between vehicles is performed using a modulated wave signal obtained by modulating a carrier wave with a data signal (paceband signal).
変調波信号はノィズ周波数に対して極めて高い周波数にできるので、車両間 のデ一夕伝送をノイズの影響を受けることなく行える。 また、高周波の搬送波 をペースバンド信号で変調した変調波信号で伝送すると、データ伝送に必要な 帯域にバンドパスフィル夕で周波数を制限でき電圧振幅が小さくても通信可 能になる。 したがって、鉄道車両間の情報伝送をノイズの影響を受けることな く高速大容量伝送 (ブロードバンド通信) が精度良く行えるようになる。 図面の簡単な説明  Since the modulated wave signal can be set to an extremely high frequency with respect to the noise frequency, data transmission between vehicles can be performed without being affected by noise. If a high-frequency carrier is transmitted using a modulated wave signal modulated by a paceband signal, the frequency can be limited to a band required for data transmission by a bandpass filter, and communication can be performed even when the voltage amplitude is small. Therefore, high-speed, large-capacity transmission (broadband communication) can be performed accurately without being affected by noise. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の一実施例を示す構成図、第 2図は本発明の信号伝送装置の 一例構成図、第 3図は信号接続装置の一例を示す断面図、第 4図は本発明を説 明するための周波数特性図、第 5図は信号接続装置の他の例を示す断面図、第 6図は信号接続装置の一例を示す構成図、第 7図は信号接続装置の他の例を示 す構成図、第 8図は本発明の他の実施例の要部を示す構成図、第 9図は本発明 を採用した鉄道車両の具体的な構成図、第 1 0図は本発明を採用した鉄道車両 の具体的な他の構成図、第 1 1図は本発明を採用した鉄道車両の具体的な他の 構成図、第 1 2図は駆動装置の一例詳細構成図、第 1 3図は駆動装置の他の一 例詳細構成図、第 1 4図は無線機内蔵電圧検出器の一例構成図、第 1 5図は駆 動装置の他の一例詳細構成図である。 発明を実施するための最良の形態  FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing an example of a signal transmission device of the present invention, FIG. 3 is a cross-sectional view showing an example of a signal connection device, and FIG. FIG. 5 is a cross-sectional view showing another example of the signal connection device, FIG. 6 is a configuration diagram showing one example of the signal connection device, and FIG. 7 is another view of the signal connection device. FIG. 8 is a block diagram showing an essential part of another embodiment of the present invention, FIG. 9 is a specific block diagram of a railway vehicle employing the present invention, and FIG. FIG. 11 is another specific configuration diagram of a railway vehicle employing the present invention, FIG. 11 is another specific configuration diagram of a railway vehicle employing the present invention, FIG. FIG. 13 is a detailed configuration diagram of another example of the driving device, FIG. 14 is a configuration diagram of an example of the voltage detector built in the wireless device, and FIG. 15 is a detailed configuration diagram of another example of the driving device. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図〜第 3図に本発明の一実施例を示す。第 1図は本発明のネッ トワーク 構成図、第 2図は無線伝送装置の一例詳細ブロック図、第 3図は信号接続装置 の一例構成図である。 第 1図において、 1は鉄道車両の一車両内のネヅトワーク構成で、ネヅ トヮ ーク制御装置 1 5と 2台の無線伝送装置 1 4 ( A、 B ) から構成される。 ネッ トワーク制御装置 1 5は制御信号(保守信号を含む)やサービス信号などのデ —夕伝送を制御するもので、ネヅトワークケーブル 1 8 (IEEE1394、 Ethernet ケーブルなど)を通して無線伝送装置 1 4と接続される。連結された隣接車両 とのネツ トワーク接続は無線伝送装置 1 4を介して行われ、接続ケーブルには、 高周波伝送特性に優れた同軸ケーブル 1 7が使用される。 1 to 3 show one embodiment of the present invention. FIG. 1 is a block diagram of a network of the present invention, FIG. 2 is a detailed block diagram of an example of a wireless transmission device, and FIG. 3 is a diagram of an example of a signal connection device. In FIG. 1, reference numeral 1 denotes a network configuration in one train of a railway car, which includes a network control device 15 and two wireless transmission devices 14 (A, B). The network control device 15 controls data transmission of control signals (including maintenance signals) and service signals, and communicates with the wireless transmission device 14 through a network cable 18 (IEEE1394, Ethernet cable, etc.). Connected. The network connection with the connected adjacent vehicle is performed via a wireless transmission device 14, and a coaxial cable 17 having excellent high-frequency transmission characteristics is used as a connection cable.
ネットワーク制御装置 1 5と無線伝送装置 1 4との接続には Ethernetケー ブルなどを使用し、 信号(データ)伝送にはべ一スバンド信号を使用する。 車 両間の無線伝送装置 1 4の情報伝送には搬送波をベースバンド信号で変調し た変調波信号を使用する。ペースバンド信号は、 符号化方法にもよるが、 0と 1で情報を伝送する信号で、 通常、 直流から数百 MHzの信号帯域成分を有す る。 一方、 変調波信号は、搬送波信号をデータ信号で変調した変調波信号で、 搬送波信号の周波数を選定することで、 希望の周波数に変換できる。  An Ethernet cable or the like is used to connect the network control device 15 and the wireless transmission device 14, and a baseband signal is used for signal (data) transmission. A modulated wave signal obtained by modulating a carrier with a baseband signal is used for information transmission of the wireless transmission device 14 between the vehicles. A paceband signal is a signal that transmits information using 0 and 1, depending on the encoding method, and usually has a signal band component from DC to several hundred MHz. On the other hand, the modulated wave signal is a modulated wave signal obtained by modulating a carrier signal with a data signal, and can be converted to a desired frequency by selecting a frequency of the carrier signal.
鉄道車両では、車両を駆動する高電圧ィンバ一夕駆動装置や車両内の電源を 供給する電源装置など、多くのィンバー夕装置が使用されているため、数 1 0 MHz以下の大きなノイズが存在する。 そのため、 ベ一スバンド伝送はこのノ ィズの影響を受け易くなる。  In railway vehicles, many noise devices are used, such as a high-voltage inverter driving device that drives the vehicle and a power supply that supplies power inside the vehicle, so there is a large noise of several 10 MHz or less. . Therefore, baseband transmission is more susceptible to this noise.
車両内では、車体が金属で作られているため、 このシールド効果により比較 的ノイズの影響を受けにくいが、車体間には車体のシールド効果が無く、 ノィ ズの影響が大きくなる。そこで、車両間の伝送にはノイズ源よりも高い周波数 にした変調波信号を使用する。車両内の配線には、比較的低価格に準備できる ベースバンド伝送を使用する。  Inside the vehicle, the body is made of metal, so it is less affected by comparative noise due to this shielding effect. However, there is no shielding effect between the bodies and the effect of noise increases. Therefore, a modulated wave signal with a higher frequency than the noise source is used for transmission between vehicles. Wiring in the vehicle uses baseband transmission, which can be prepared at relatively low cost.
従来、 車両間の伝送エラーを防止する目的で、 1 0 V前後の電圧振幅で伝送 することが行われていたが、この場合 1 0 M b p sを超える高速伝送を実現す ることは実用上困難である。これに対し、車両間の伝送に変調波伝送を使用す ることで、 1 0 0 Mbpsを超える、 高速な車両のネヅトワークが実現できる。 第 2図は無線伝送装置 1 4の一例詳細構成を示し、ネッ トワーク制御装置 1 5は、 ルー夕、 集線装置 (HUB)、 サーバなどで構成される。 無線伝送装置 1 4のデータ伝送装置 1 9 2はケーブル 1 8を介してネッ トワーク制御装置 1 5に接続されている。デ一夕伝送装置 1 9 2からのデ一タ信号は変調器 1 9 3 で変調され、周波数変換増幅器 1 9 4で希望周波数に変換されると共に增幅さ れる。 Conventionally, transmission was performed with a voltage amplitude of around 10 V to prevent transmission errors between vehicles, but in this case, it is practically difficult to achieve high-speed transmission exceeding 10 Mbps. It is. On the other hand, by using modulated wave transmission for transmission between vehicles, a high-speed vehicle network exceeding 100 Mbps can be realized. FIG. 2 shows a detailed configuration of an example of the wireless transmission device 14, and the network control device 15 includes a router, a hub (HUB), a server, and the like. The data transmission device 19 2 of the wireless transmission device 14 is connected to the network control device 15 via the cable 18. The data signal from the data transmission device 1992 is modulated by the modulator 1993, converted to a desired frequency by the frequency conversion amplifier 1994, and amplified.
周波数変換増幅器 1 9 4によって増幅された変調波信号は ンドパスフィ ル夕 1 9 5で不要な信号を取り除きサーキユレ一タ 1 9 6へ送られる。サーキ ユレ一夕 1 9 6は信号伝送に方向性を持ち ノドパスフィル夕 1 9 5を通過 した変調波信号を同軸ケーブル 1 7に送信し、同軸ケーブル 1 7から受信した 変調波信号をバンドパスフィルタ 1 9 5に伝送せずの受信側のバンドパスフ ィル夕 1 9 7に伝送する。  The modulated wave signal amplified by the frequency conversion amplifier 194 removes an unnecessary signal in a pass filter 195 and is sent to a circuit 196. Sirki Yure 1960 has directivity in signal transmission, transmits the modulated wave signal that has passed through the no-pass filter 1995 to the coaxial cable 17 and transmits the modulated wave signal received from the coaxial cable 17 to the bandpass filter 1. Transmit to bandpass filter 197 on the receiving side without transmitting to 95.
隣接車両から送信されてくる変調波信号は、サ一キユレ一夕 1 9 6を通り受 信側のバンドパスフィル夕 1 9 7へ送られ、通信に不要な信号が取り除かれる < バンドパスフィル夕 1 9 7を通過した変調波信号は周波数変換増幅器 1 9 8 で復調しやすい周波数へ変換すると共に増幅され、復調器 1 1 9で変調波信号 からデータ信号が取り出される。  The modulated wave signal transmitted from the adjacent vehicle is sent to the bandpass filter 197 on the receiving side through the sensor 196, and the signal unnecessary for communication is removed. The modulated wave signal that has passed through 197 is converted into a frequency that can be easily demodulated by a frequency conversion amplifier 198 and amplified, and a data signal is extracted from the modulated wave signal by a demodulator 119.
デ一夕伝送装置 1 9 2は、変調器 1 9 3および復調器 1 9 9とネツ トワーク 制御装置 1 5とのデータ橋渡し処理を行う。具体的には、ネートワーク制御装 置 1 5からのデ一夕信号がシリアル信号の場合はデータ抽出やクロックの再 生を行い、 変調器 1 9 3へ送信する。 同様に、復調器 1 9 9からのデ一夕信号 に対してもクロック再生などを実行し、ネッ トワーク処理装置 1 5の通信方式 に会わせた後に送信する。  The data transmission device 1992 performs a data bridging process between the modulator 1993 and the demodulator 1999 and the network control device 15. Specifically, when the data signal from the network control device 15 is a serial signal, data extraction and clock reproduction are performed and transmitted to the modulator 1993. Similarly, clock recovery and the like are performed on the overnight signal from the demodulator 1999, and the signal is transmitted after being made compatible with the communication method of the network processing device 15.
なお、データ伝送装置 1 9 2は、 メモリを持ちデータを蓄えて処理しても良 いが、デ一夕が車両の制御信号の場合には、遅延時間を短縮することが望まれ る。 具体的には、 1 0〃 s以下にするのが望ましい。  Note that the data transmission device 192 may have a memory and store and process the data. However, if the data is a vehicle control signal, it is desirable to reduce the delay time. Specifically, it is desirable to set it to 10〃s or less.
サーキユレ一夕 1 9 6は必ずしも必要でなく、混合器を使用することもでき る。 ただし、 鉄道車両では、 以下の理由によってサーキユレ一夕 1 9 6を設け たほうが実用上から望ましい。 It is not absolutely necessary to use Sirky Yule 1960, and a mixer can be used. You. However, for railway vehicles, it is desirable from a practical point of view to provide Sirki Yure 1976 for the following reasons.
鉄道車両では、車両の分割、併合のために伝送路の接続部に電気接続装置が 必要となる。同軸ケーブルのような均一な伝送路では問題にならないが、分割 併合を必要とする電気接続装置は均一に作成することが難しく、インピーダン スの不整合が発生し、 この部分で反射が発生する。反射した信号は送信側へと 戻り、 送信部の増幅回路の誤動作を発生させる。 これを防止するために、 サー キユレ一夕 1 9 6が使用される。  For railway vehicles, an electrical connection device is required at the connection of the transmission line to split and merge the vehicles. This is not a problem with a uniform transmission line such as a coaxial cable, but it is difficult to make an electrical connection device that requires splitting and merging uniformly, causing impedance mismatch and reflection at this point. The reflected signal returns to the transmitting side, causing a malfunction of the amplifier circuit in the transmitting section. In order to prevent this, Sirkyle 196 is used.
なお、第 2図は送信と受信を 1本の同軸ケーブル 1 7で伝送する場合を示し たが、送信と受信を別な同軸ケーブルで行うようにすることもできる。その場 合には、 送信部にアイソレータを使用し、 送信信号が戻るのを防止する。 次に、車両間の伝送に使用する周波数の設定について説明する。第 1図に示 すように、一車両の無線伝送装置 Aは隣接する他の車両の無線伝送装置 Bに接 続されるので、 無線伝送装置 Aの出力信号(変調波信号) は無線伝送装置 Bで 受信され、 無線伝送装置 Bの出力信号 (変調波信号) は無線伝送装置 Aで受信 されることになる。  Although FIG. 2 shows a case where transmission and reception are performed by one coaxial cable 17, transmission and reception may be performed by another coaxial cable. In such a case, use an isolator for the transmitter to prevent the transmission signal from returning. Next, setting of a frequency used for transmission between vehicles will be described. As shown in FIG. 1, since the wireless transmission device A of one vehicle is connected to the wireless transmission device B of another adjacent vehicle, the output signal (modulated wave signal) of the wireless transmission device A is transmitted by the wireless transmission device. The output signal (modulated wave signal) of the wireless transmission device B received by B is received by the wireless transmission device A.
搬送波信号を使用した伝送では信号の干涉を防止する必要性から、無線伝送 装置 1 4の送信と受信の搬送波周波数を分離し、受信側のバンドパスフィルタ 1 9 7で自分が送信した信号を除去する必要がある。  In transmission using carrier signals, the transmission and reception carrier frequencies of the wireless transmission device 14 are separated, and the signal transmitted by the bandpass filter 197 on the receiving side is removed, because it is necessary to prevent signal degradation. There is a need to.
また、車両を制御する制御信号(制御デ一夕) を伝送する場合などは信頼性 が要求されるので、ネヅ トワークを 2重系にするのが一般的である。 2重系の 場合、信号接続装置での信号の干渉を防止するため、 1系と 2系で異なる周波 数を使用する必要がある。 したがって、少なくとも 4種類の周波数で伝送する 必要があり、 4種類の無線伝送装置 1 4が必要となる。無線伝送装置 1 4の種 類を半減するために搬送波信号のの周波数を次のように設定する。  In addition, when transmitting a control signal (control data) for controlling a vehicle, reliability is required. Therefore, it is common practice to use a double network for the network. In the case of a double system, it is necessary to use different frequencies for the first system and the second system in order to prevent signal interference at the signal connection device. Therefore, it is necessary to transmit at least four types of frequencies, and four types of wireless transmission devices 14 are required. The frequency of the carrier signal is set as follows in order to halve the types of the wireless transmission devices 14.
第 4図は無線伝送装置 1 4の種類を半減する搬送波信号の周波数割り当て の一例である。この場合、無線伝送装置 Aから Bへの搬送波周波数を帯域 1か ら選定し、 1系を f l l、 2系を f l 2とする。 また、 無線伝送装置; Bから A への搬送波周波数は帯域 2から選定し、 1系を f 2 1、 2系を 2 2とする。 さらに、無線伝送装置 Aにおける送信側のバンドパスフィル夕 1 9 5の通過 帯域を周波数帯域 1、受信側のバンドパスフィル夕 1 9 7の通過帯域を周波数 帯域 2とし、 また、無線伝送装置 Bにおける送信側のバンドパスフィルタ 1 9 5の通過帯域は周波数帯域 2、受信側のバンドパスフィルタ 1 9 7のそれを周 波数帯域 1する。 FIG. 4 is an example of the frequency allocation of the carrier signal for halving the types of the wireless transmission devices 14. In this case, the carrier frequency from wireless transmission equipment A to B is set to band 1 F1 for system 1 and fl 2 for system 2. In addition, the carrier frequency from B to A is selected from the band 2 of the radio transmission apparatus, and the system 1 is f 21 and the system 2 is 22. Further, the pass band of the bandpass filter 195 on the transmitting side in the wireless transmission device A is frequency band 1, the passband of the bandpass filter 197 on the receiving side is frequency band 2, and the wireless transmission device B The passband of the bandpass filter 195 on the transmission side in the frequency band 2 is that of the bandpass filter 195 on the transmission side, and the frequency band 1 is that of the bandpass filter 197 on the reception side.
このようにすれば ノドパスフィル夕一の異なる 2種の無線伝送装置で、 2重系のネヅ トワークが構成できる。  In this way, a dual network can be configured with two different types of wireless transmission devices having different node paths.
第 3図は車両接続部の信号接続装置 2の詳細な一例構成を示す。  FIG. 3 shows a detailed example configuration of the signal connection device 2 of the vehicle connection unit.
ネヅ トワーク制御装置 1 5にはネヅトワークケーブル 1 8を通して無線伝 送装置 1 4と駆動装置 1 6が接続される。駆動装置 1 6は装置全体を駆動する ために使用する。なお、 ネットワーク制御装置 1 5と無線伝送装置 1 4との接 続は IEEE1394や Ethernetが用いられ、ネヅトワーク制御装置 1 5と駆動装 置 1 6との接続は CAN (Control Area Network) や DeviceNetなどのリアル タイム制御に適したネヅ トワークが用いられる。  The wireless transmission device 14 and the drive device 16 are connected to the network control device 15 through a network cable 18. The driving device 16 is used to drive the entire device. The connection between the network control device 15 and the wireless transmission device 14 uses IEEE1394 or Ethernet, and the connection between the network control device 15 and the drive device 16 uses CAN (Control Area Network) or DeviceNet. A network suitable for real-time control is used.
無線伝送装置 1 4には、 伝送線路 1 7 (—般的には同軸ケーブル) が接続さ れ、 また伝送線路 1 7にはアンテナ 1 1が接続される。 さらに、 アンテナ 1 1 は電気接続装置 2を構成する他の車両のもう一つのアンテナ 1 1 と面して配 置されている。他の車両のもう一つのアンテナ 1 1は伝送線路 1 7を介して無 線伝送装置 1 4に接続される。他の車両の無線伝送装置 1 4もネッ トワークケ 一ブル 1 8でネヅトワーク制御装置 1 5が接続されている。  A transmission line 17 (generally a coaxial cable) is connected to the wireless transmission device 14, and an antenna 11 is connected to the transmission line 17. Further, the antenna 11 is arranged so as to face another antenna 11 of another vehicle constituting the electric connection device 2. Another antenna 11 of another vehicle is connected to a radio transmission device 14 via a transmission line 17. The wireless transmission device 14 of another vehicle is also connected to the network control device 15 by the network cable 18.
信号接続装置 2は電磁シールド構造に形成され、アンテナ 1 1は金属などの 導電性の材料からなる電磁シールド材 1 2で電気的にシールドされる。アンテ ナ 1 1はシ一ルド材 1 2で囲われている。電磁シールド材 1 2とアンテナ 1 1 の間には電磁波の吸収材 1 9が設けられると共に、アンテナ 1 1はポリエチレ ンゃ空気などの絶縁物 1 3で、電磁シールド材 1 2および電磁波の吸収材 1 9 と絶縁されている。 The signal connection device 2 is formed in an electromagnetic shield structure, and the antenna 11 is electrically shielded by an electromagnetic shield material 12 made of a conductive material such as a metal. The antenna 11 is surrounded by shielded wood 12. An electromagnetic wave absorbing material 19 is provided between the electromagnetic shielding material 12 and the antenna 11, and the antenna 11 is an insulator 13 such as polyethylene air and the electromagnetic shielding material 12 and the electromagnetic wave absorbing material. 1 9 And insulated.
無線伝送装置 1 4は、 高周波の搬送波(一般的には正弦波) をネッ トワーク 制御装置 1 5から送信されるベースバンド信号(デ一夕信号)で変調して、 変 調波信号を伝送線路 1 7へ送信する。変調方式としては、例えば符号の大小で 搬送波の振幅を変化させる ASK (Amplitude Shift Keying) 変調、 搬送波の 位相を変化させる PSK (Phase Shift Keying) など多く方式があり、 いずれ の方式を用いることができる。  The wireless transmission device 14 modulates a high-frequency carrier wave (generally a sine wave) with a baseband signal (de-night signal) transmitted from the network control device 15 and converts the modulated signal to a transmission line. Send to 17 There are many modulation methods such as ASK (Amplitude Shift Keying) modulation, which changes the amplitude of the carrier depending on the magnitude of the code, and PSK (Phase Shift Keying), which changes the phase of the carrier.Either method can be used. .
無線伝送装置 1 4から送信された変調波信号はアンテナ 1 1で放射され他 方のアンテナ 1 1で受信される。他方のアンテナ 1 1で受信された変調波信号 は他方の車両の無線伝送装置 1 4で復調されペースバンド信号が取り出され、 ネヅ トワーク制御装置 1 5に加えられる。  The modulated wave signal transmitted from the wireless transmission device 14 is radiated by the antenna 11 and received by the other antenna 11. The modulated wave signal received by the other antenna 11 is demodulated by the wireless transmission device 14 of the other vehicle, a paceband signal is extracted, and is applied to the network control device 15.
第 3図の接続装置 2は、外気に晒される車両間の信号接続をアンテナ 1 1で 構成し、 アンテナ 1 1へ変調は信号を伝送することで通信している。そのため 車両間のネツ トワークを電気的に接続する必要がなく、接触不良の問題を回避 できる。  The connection device 2 shown in FIG. 3 configures a signal connection between vehicles exposed to the outside air with an antenna 11, and communication is performed by transmitting a signal to the antenna 11 for modulation. Therefore, there is no need to electrically connect the networks between the vehicles, and the problem of poor contact can be avoided.
車両間のネッ トワークには駆動装置 1 6やブレーキなどの重要な情報(制御 信号) が伝送される。 このため、 外部からの妨害電波などで通信が途絶えると、 車両の運転停止など大きな問題となる。 これを防止するために、アンテナ 1 1 の周辺を金属などの電磁シールド材 1 2で囲う構造にしている。なお、隣接車 両(前後車両)の電磁シールド材 1 2は機械的に接触して電気的に接続されて いてもノイズの影響を防止できる。  Important information (control signals) such as the drive unit 16 and brakes is transmitted to the network between the vehicles. For this reason, if communication is interrupted due to external disturbances, there will be a serious problem such as stopping the operation of vehicles. To prevent this, the antenna 11 is surrounded by an electromagnetic shielding material 12 such as a metal. In addition, even if the electromagnetic shielding members 12 of adjacent vehicles (front and rear vehicles) are in mechanical contact and are electrically connected, the influence of noise can be prevented.
電磁シールド材 1 2はアンテナ 1 1から放射された電波が外部へ放射され るのを阻止するが、電波を反射する。一方のアンテナ 1 1から放射された変調 波は、直接に他方のアンテナ 1 1へ向う直接波と、 シールド材 1 2の表面で反 射した反射波とが他方のアンテナ 1 1に受信される。他方のアンテナ 1 1は直 接波と反射波を受信することになり、アンテナ表面で電波の干渉が発生し、受 信性能が著しく低下する。 電磁波の吸収材 1 9はこれを防止するもので、アンテナ 1 1とシールド材 1 2の間に設置される。アンテナ 1 1からシールド材 1 2方向へ放射された電磁 波は吸収剤 1 9で吸収されるためシールド材 1 2で反射しなくなる。そのため、 他方のアンテナ 1 1は直接波のみ受信することになり、直接波と反射波の干渉 が無くなり受信性能の劣化を防止できる。 The electromagnetic shielding material 12 prevents radio waves radiated from the antenna 11 from being radiated to the outside, but reflects the radio waves. The modulated wave radiated from one antenna 11 is directly received by the other antenna 11 and the direct wave directly directed to the other antenna 11 and the reflected wave reflected by the surface of the shield material 12 are received. The other antenna 11 receives the direct wave and the reflected wave, and radio wave interference occurs on the antenna surface, so that the receiving performance is significantly reduced. The electromagnetic wave absorber 19 prevents this, and is installed between the antenna 11 and the shield 12. Electromagnetic waves radiated from the antenna 11 in the direction of the shield material 12 are absorbed by the absorber 19 and are not reflected by the shield material 12. Therefore, the other antenna 11 receives only the direct wave, and there is no interference between the direct wave and the reflected wave, so that the deterioration of the receiving performance can be prevented.
なお、 電磁波の吸収材 1 9は必ず必要なものではなく、 アンテナ 1 1、 絶縁 物 1 3、およびシールド材 1 2の幾何学的な構造を工夫し、両アンテナ 1 1間 に導波管のような電磁波の伝送路を形成しても直接波と反射波の干渉を防止 できる。  Note that the electromagnetic wave absorber 19 is not always necessary, and the geometric structure of the antenna 11, the insulator 13 and the shielding material 12 is devised, and the waveguide between the two antennas 11 is devised. Even if such an electromagnetic wave transmission path is formed, interference between a direct wave and a reflected wave can be prevented.
また、接続装置 2に使用するアンテナ 1 1は小さい方が好ましく、 アンテナ 1 1を螺旋状に加工することなどにより小型化できる。ただし、 アンテナ 1 1 の大きさは波長の 1 / 1 0程度が限界である。  Further, it is preferable that the antenna 11 used for the connection device 2 is small, and the antenna 11 can be reduced in size by processing the antenna 11 into a spiral shape. However, the size of the antenna 11 is limited to about 1/10 of the wavelength.
さらに、 搬送波は少なくとも被搬送波(ペースバンド信号) の 1 0倍程度で あることが望ましい。現在、実用に供されているネットワークの転送速度は少 なくとも、 1 0 MH z程度あり、 1 0 0 MH z以上の搬送波周波数を使用する ことがよい。これにより、 アンテナ 1 1の大きさは少なくとも 3 0 c m程度に できる。  Further, it is desirable that the carrier wave is at least about 10 times the carrier wave (paceband signal). At present, the transfer rate of a practically used network is at least about 10 MHz, and it is preferable to use a carrier frequency of 100 MHz or more. Thereby, the size of the antenna 11 can be made at least about 30 cm.
また、 一対のアンテナ 1 1で双方向通信する場合は、 時分割して双方向 (八方 向と B方向) の通信を実行する。 A方向通信の場合は、 図示左側の無線伝送装 置 1 4が送信装置、 図示右側の無線伝送装置 1 4が受信装置となる。 また、 B 方向の時は図示左側が受信装置、 図示右側が送信装置となる。このように時分 割して双方向通信する方式を半二重通信と称している。 When two-way communication is performed using a pair of antennas 11, two-way (octagonal and B-direction) communication is performed in a time-sharing manner. In the case of the A-direction communication, the wireless transmission device 14 on the left side in the figure is a transmitting device, and the wireless transmission device 14 on the right side in the figure is a receiving device. In the direction B, the left side is the receiving device and the right side is the transmitting device. Such a method of performing two-way communication by time division is called half-duplex communication.
一対のアンテナでも常時双方向通信を行うことも可能である。これを全二重 通信と称する。 この場合、一本の伝送線路 1 7に f 1と f 2の二つの周波数を 多重することで実施する。例えば、 周波数 1を A方向伝送、 周波数 2を B 方向通信に割り当てる。図示右側の無線伝送装置 1 4では搬送波 f 1を変調し て伝送線路 1 7へ送信すると共に、伝送線路 1 7からバンドパスフィル夕 1 9 7で信号 f 2を取り出し復調する。図示右側の無線伝送装置 1 4ではこの逆、 つまり搬送波 f 2を変調して送信し ンドパスフィル夕 1 9 7で: f 1を取り 出し復調する。 It is also possible to always perform two-way communication with a pair of antennas. This is called full-duplex communication. In this case, two transmission frequencies f 1 and f 2 are multiplexed on one transmission line 17. For example, assign frequency 1 for A-direction transmission and frequency 2 for B-direction communication. The wireless transmission device 14 on the right side of the figure modulates the carrier f 1 and transmits it to the transmission line 17. At step 7, the signal f2 is extracted and demodulated. The wireless transmission device 14 on the right side in the figure modulates and transmits the carrier wave f2, and transmits and demodulates: f1 at the first pass filter 197.
第 5図に接続装置 2の他の例を示す。  FIG. 5 shows another example of the connection device 2.
第 5図に示す接続装置 2は複数のアンテナ 1 1を備えている。 第 5図 (a ) は二対のアンテナ 1 1を備え、 異なる周波数 f K f 2で双方向通信する。例 えば、周波数 1で図示の左から右へ、周波数 2で図示の右から左へ通信す る。 したがって、 全二重通信が可能となる。  The connection device 2 shown in FIG. 5 includes a plurality of antennas 11. Fig. 5 (a) has two pairs of antennas 11 and performs bidirectional communication at different frequencies fKf2. For example, communication is performed from left to right in the figure at frequency 1 and from right to left in the figure at frequency 2. Therefore, full-duplex communication is possible.
第 5図(b )は多数のアンテナ 1 1を接続装置 2が備えている例である。異 なる周波数 f l〜f nで通信することにより、高速な双方向通信が達成できる。 一般に、無線通信装置 1 4の通信速度は有線通信に比べ遅くなる。 したがって、 無線通信がネヅトワーク全体の性能を低下させることが多くなる。ネットヮー クケーブル 1 8を使用した有線通信の通信速度が半二重通信方式で 100Mpbs、 無線通信のアンテナ一対当たりの通信速度が半二重通信方式で 10Mbps 等の 場合には、アンテナ 1 1を 1 0組設けることによって無線通信による性能低下 を防止できる。  FIG. 5 (b) is an example in which the connection device 2 includes a large number of antennas 11. By communicating at different frequencies fl to fn, high-speed bidirectional communication can be achieved. Generally, the communication speed of the wireless communication device 14 is lower than that of wired communication. Therefore, wireless communication often degrades the performance of the entire network. If the communication speed of the wired communication using the network cable 18 is 100 Mbps in the half-duplex communication method and the communication speed per pair of wireless communication antennas is 10 Mbps in the half-duplex communication method, set the antenna 11 to 1 By providing 0 sets, performance degradation due to wireless communication can be prevented.
第 6図は接続装置 2の一例を示す構成図で、 第 6図 (a ) は外観図、 (b ) は接続部の断面図である。  FIG. 6 is a configuration diagram showing an example of the connection device 2, in which FIG. 6 (a) is an external view and FIG. 6 (b) is a cross-sectional view of a connection portion.
一方の接続装置 2 Aは次のように構成されている。アンテナ 1 1の周囲には 絶縁物 1 3を介して金属などからなる電磁シールド材 1 2 Aが配置され、アン テナ 1 1から外界への電磁波の放射、 外界電磁波の影響を防止する。 なお、 電 磁シ一ルド材 1 2 Aの内面には第 3図に示した電磁波の吸収材 1 9を設け屡 こともできる。  One connecting device 2A is configured as follows. An electromagnetic shielding material 12 A made of metal or the like is disposed around the antenna 11 with an insulator 13 interposed therebetween to prevent electromagnetic waves from being radiated from the antenna 11 to the outside and the influence of the external electromagnetic waves. An electromagnetic wave absorbing material 19 shown in FIG. 3 can be provided on the inner surface of the electromagnetic shield material 12A, and can be often used.
一方の接続装置 2 Aを他方の接続装置 2 Bに挿着して電気的に接続するた めに、他方の接続装置 2 Bのシールド材 1 2 Bは、一方の接続装置 2 Aのシー ルド材 1 2 Aより直径が大きく構成されている。 また、 各接続装置 2 A、 2 B のアンテナ 1 1は、相対して向かい合うように配置されている。アンテナ 1 1 には伝送線路 1 7が接続されるている。なお、伝送線 1 7は無線伝送装置 1 4 に接続されている。 To insert and electrically connect one connecting device 2A to the other connecting device 2B, the shield material 1 2B of the other connecting device 2B must be shielded from the one connecting device 2A. The diameter of the material is larger than 12 A. Further, the antennas 11 of the connection devices 2A and 2B are arranged so as to face each other. Antenna 1 1 Is connected to a transmission line 17. Note that the transmission line 17 is connected to the wireless transmission device 14.
第 6図のように複数のアンテナ 1 1を一個の接続装置 2 A、 2 Bに形成する ことによって、 複数の接続を同時に行うができる。  By forming a plurality of antennas 11 on one connection device 2A, 2B as shown in FIG. 6, a plurality of connections can be made simultaneously.
第 7図は接続装置 2の他の例を示す構成図である。第 7図(a ) は外観図、 ( b ) は接続部の断面図である。  FIG. 7 is a configuration diagram showing another example of the connection device 2. As shown in FIG. FIG. 7 (a) is an external view, and FIG. 7 (b) is a cross-sectional view of a connecting portion.
第 7図は電気的接続をアンテナでなくピンで構成したものである。第 7図は 第 6図のアンテナ 1 1をピン型の接続端子 2 2と 2 3にしたものである。ォス 型の接続端子 2 2はメス型の接続端子 2 3の内部へ挿入されることで相互が 電気的に接続される。各接続端子 2 2、 2 3は伝送線 1 7によって無線伝送装 置 1 4に接続されている。 この場合には、無線伝送装置 1 4は有線の信号伝送 装置が用いられる。  FIG. 7 shows a configuration in which electrical connections are made by pins instead of antennas. FIG. 7 shows the antenna 11 of FIG. 6 with pin-type connection terminals 22 and 23. The female connection terminals 22 are electrically connected to each other by being inserted into the female connection terminals 23. The connection terminals 22 and 23 are connected to the wireless transmission device 14 by the transmission line 17. In this case, a wired signal transmission device is used as the wireless transmission device 14.
ピン型の接続端子 2 2 , 2 3は相互を電気的に接続するために設けられてい る。鉄道車両は接続端子 2 2と 2 3を切り離して外気に長時間晒されると、 ピ ン 2 2、 2 3の表面が酸化して接触不良を発生する。接触不良が発生した場合、 両ピン 2 2、 2 3間の寄生容量を介して流れる電流だけとなり、電圧の振幅値 が 1 1 0から 1 / 1 0 0に低下する。  The pin-type connection terminals 22 and 23 are provided for electrically connecting each other. When a railway vehicle is disconnected from the connection terminals 22 and 23 and exposed to the open air for a long time, the surfaces of the pins 22 and 23 are oxidized and a contact failure occurs. When a contact failure occurs, only the current flowing through the parasitic capacitance between the pins 22 and 23 is generated, and the amplitude value of the voltage drops from 110 to 1/1000.
ネヅトワーク制御装置 1 5からのベースバンド信号を用いた伝送では、受信 信号をある電位を基準としてそれより高電位か低電位かで判定して符号を復 元する。そのため、受信信号が数分の 1に低下しただけでデータの判別が不可 能になる。 これに対し、信号伝送装置 1 4で変調した変調波信号で通信すると、 通常、信号レベルが 1 / 1 0 0 0 0程度に減少しても通信できるようになる。 このようにして鉄道車両間のデータ通信を行うのであるが、搬送波をデータ 周波数(ベースバンド信号)で変調した変調波信号によって車両間のデータ逋 信を行うようにしている。変調波信号はノイズ周波数に対して極めて高い周波 数にできるので、車両間のデータ伝送をノイズの影響を受けることなく行える ( また、高周波の搬送波をベースバンド信号で変調した変調波信号で伝送すると、 データ伝送に必要な帯域にバンドパスフィル夕で周波数を制限でき電圧振幅 が小さくても通信可能になる。 したがって、鉄道車両間の情報伝送をノイズの 影響を受けることなく高速大容量伝送が精度良く行えるようになる。 In transmission using a baseband signal from the network control device 15, a code is restored by determining whether a received signal is higher or lower than a certain potential with reference to a certain potential. Therefore, it is impossible to determine the data even if the received signal is reduced by a factor of several. On the other hand, when communication is performed using a modulated wave signal modulated by the signal transmission device 14, communication can be normally performed even if the signal level is reduced to about 1/1000. Data communication between railway cars is performed in this way, and data communication between cars is performed using a modulated wave signal obtained by modulating a carrier wave at a data frequency (baseband signal). Since the modulated wave signal can have an extremely high frequency with respect to the noise frequency, data transmission between vehicles can be performed without being affected by noise. ( Also, if a high-frequency carrier wave is transmitted with a modulated wave signal modulated with a baseband signal, , The frequency can be limited by the bandpass filter to the band required for data transmission, and communication is possible even when the voltage amplitude is small. Therefore, high-speed and large-capacity transmission of information between railway cars can be accurately performed without being affected by noise.
次に、 鉄道車両に使用される駆動装置は、 数 kVの電圧、 数百 A以上で駆動 するため、 車両間に大きな電位差が発生する。 そのため、 第 7図に示すような 電気的に接続された接続装置 2を用いると、各車両の信号伝送装置(無線伝送 装置 1 4に相当する有線の信号伝送装置 1 4 ) 間に電流(直流電流) が流れ、 信号伝送装置 1 4の部品が破損する。  Next, the driving device used for railway vehicles is driven with a voltage of several kV and a voltage of several hundred A or more, so that a large potential difference occurs between the vehicles. Therefore, when the connection device 2 electrically connected as shown in Fig. 7 is used, the current (DC) between the signal transmission devices (wired signal transmission devices 14 corresponding to the radio transmission devices 14) of each vehicle is increased. Current flows, and parts of the signal transmission device 14 are damaged.
第 8図にこのようなことを解決するための実施例を示す。なお、第 8図は接 続装置 2をアンテナを用いた例を示している。  FIG. 8 shows an embodiment for solving such a problem. FIG. 8 shows an example in which the connection device 2 uses an antenna.
第 8図に示すように、信号伝送装置 1 4と接続装置 2の間を分離する絶縁装 置 2 5を設け、 直流分を遮断するようにしている。  As shown in FIG. 8, an insulating device 25 for separating between the signal transmission device 14 and the connection device 2 is provided to cut off the DC component.
第 8図 (b )、 (c ) に絶縁装置 2 5の具体例を示す。絶縁装置 2 5としては トランスあるいはコンデンサが用いられる。 2 7は増幅器である。  FIGS. 8 (b) and 8 (c) show specific examples of the insulating device 25. FIG. A transformer or a capacitor is used as the insulating device 25. 27 is an amplifier.
第 8図 (b ) のトランスの場合、高周波信号はトランスで相互に伝送される が、 直流はトランスで阻止される。 また、 第 8図 (c ) コンデンサの場合は、 信号とグランドに共にコンデンサを追加することで、高周波のみが相互伝送さ れ、 直流はコンデンサによって阻止される。  In the case of the transformer in Fig. 8 (b), high-frequency signals are transmitted to each other by the transformer, but direct current is blocked by the transformer. Fig. 8 (c) In the case of a capacitor, adding a capacitor to both the signal and the ground allows only high frequencies to be transmitted to each other and blocks direct current.
なお、 周波数が GHzを越えるような高周波伝送では、 トランスゃコンデン サは、ディスクリート部品でなく、パターン配線で基板上に作成したものが用 いられる。  For high-frequency transmission with a frequency exceeding GHz, the transformer capacitor is not a discrete component but a pattern capacitor formed on a substrate using a pattern wiring.
第 9図、第 1 0図に本発明を採用した鉄道車両のより具体的な構成を示す。 第 9図は接続装置 2がー組の場合であり、第 1 0図は二組の場合を示してい る。なお、接続装置 2はのアンテナが一対の例を記載しているが、第 5図のよ うに複数のアンテナが配置された接続装置 2を用いることもできる。  9 and 10 show a more specific configuration of a railway vehicle employing the present invention. FIG. 9 shows a case where the number of connecting devices 2 is one, and FIG. 10 shows a case where there are two sets. Note that the connection device 2 describes an example of a pair of antennas, but a connection device 2 in which a plurality of antennas are arranged as shown in FIG. 5 can also be used.
第 9図において、アンテナ 5 1はプリヅジ型無線伝送装置 1 4 Bに接続され、 ブリッジ型無線伝送装置 1 4 Bはさらにネットワーク制御装置 1 5へ接続さ れている。ネッ トワーク制御装置 1 5は、無線伝送装置 3 0と受信装置 3 1か らなるローカルネットワーク (L A N ) 5 8に接続されている。 L A N 5 8は、 無線でネットワークが組まれている。なお、 L A N 5 8は画像情報やテキスト デ一夕の伝送が主目的に用いられるので情報 L A Nと呼ぶことにする。 In FIG. 9, the antenna 51 is connected to the pre-wired radio transmission device 14 B, and the bridge-type radio transmission device 14 B is further connected to the network control device 15. Have been. The network control device 15 is connected to a local network (LAN) 58 including a wireless transmission device 30 and a reception device 31. LAN 58 is wirelessly networked. The LAN 58 is referred to as an information LAN because its main purpose is to transmit image information and text data.
ネットワーク制御装置 1 5は、駆動装置 1 6と運転制御装置 3 2が接続され ている。また、 ネヅ トワーク制御装置 1 5はリピータ型無線伝送装置 1 4 Rに 接続され、リピー夕型無線伝送装置 1 4 Rには電気接続装置 2が接続されてい る。 ここで、 駆動装置 1 6と運転制御装置 3 2が接続された L A Nでは、 車両 機器の制御データが伝送されることから、制御 L A N 5 9と呼ぶことにする。 第 9図の図示左側を先行車両、右側を後続車両とする。後続車両のネッ トヮ ーク構成は、 先行車両と同じなので説明を省略する。 また、 実際の鉄道車両で は、 必要に両が応じ複数の車両が接続され、 1 6両を越えることもある。  In the network control device 15, a drive device 16 and an operation control device 32 are connected. In addition, the network control device 15 is connected to the repeater-type wireless transmission device 14R, and the electrical connection device 2 is connected to the repeater-type wireless transmission device 14R. Here, in the LAN in which the driving device 16 and the operation control device 32 are connected, the control data of the vehicle device is transmitted, so that the control device is referred to as a control LAN 59. The left side in FIG. 9 is the preceding vehicle, and the right side is the following vehicle. The network configuration of the following vehicle is the same as that of the preceding vehicle, and a description thereof will be omitted. Also, in an actual railway vehicle, multiple vehicles may be connected as needed, and may exceed 16 vehicles.
まず、プリッジ型無線伝送装置 1 4 Bとリピータ型無線伝送装置 1 4 Rにつ いて説明する。  First, the bridge type wireless transmission device 14B and the repeater type wireless transmission device 14R will be described.
プリッジ型無線伝送装置 1 4 Bは、受信情報を解析して、送信する必要があ るポートにだけデータを送信する機能を持っている。一方、 リピ一夕型無線伝 送装置 1 4 Rは、受信したデ一夕を中継する装置で、入力端子からの受信デー 夕は波形成形されただけでそのまま出力端子から送信される。  The bridge type wireless transmission device 14B has a function of analyzing received information and transmitting data only to ports that need to transmit. On the other hand, the repeater-type wireless transmission device 14R is a device for relaying the received data, and the data received from the input terminal is transmitted from the output terminal as it is just after the waveform shaping.
したがって、 プリッジ型無線伝送装置 1 4 Bは、データをメモリに記録して 解析する作業が必要となるため、入力したデータが出力されるまでには多くの 時間がかかる。これに対してリピー夕型無線伝送装置 1 4 Rは入力信号を波形 成形してそのまま送信するので、入力端子と出力端子間の遅延時間が短くなる, 情報を解析してデータ送信の有無を判定する装置としてルー夕がある。プリ ッジ型無線伝送装置 1 4 Bは各機器が接続されているポートを把握していて、 デ一夕を送信すべき機器がつながつているポートにだけデータを送信する。こ れに対し、ル一夕はネットワークを把握していて、データを送信すべきネット ワークにだけデータを送信する。 アンテナ 5 1は列車と外部との通信に使用される。例えば駅のホームに設置 された通信装置と通信することで、地上の情報を車両側へ、車両内の情報を地 上側へ伝送できる。伝送する情報は、情報 LAN 58で使用する情報と制御 L AN 59で使用する情報に分類できる。情報 LAN 58で使用する情報には、 映画などの画像情報、 ニュース、 乗客情報などがある。 また、 制御 LAN 59 で使ほする情報には、制御装置の温度や故障情報などの機器のメンテナンス情 報がある。 Therefore, the bridge-type wireless transmission device 14B requires an operation of recording data in a memory and analyzing the data, and it takes a long time before the input data is output. On the other hand, the repeater-type wireless transmission device 14 R shapes the input signal waveform and transmits it as it is, so the delay time between the input terminal and the output terminal is reduced.The information is analyzed to determine the presence or absence of data transmission. There is Lu Yu as a device to do it. The bridge-type wireless transmission device 14B knows the port to which each device is connected, and transmits data only to the port to which the device to which data is to be transmitted is connected. On the other hand, in the evening, we know the network and transmit data only to the network to which data should be transmitted. The antenna 51 is used for communication between the train and the outside. For example, by communicating with a communication device installed at the platform of a station, information on the ground can be transmitted to the vehicle and information in the vehicle can be transmitted to the ground. The information to be transmitted can be classified into information used in the information LAN 58 and information used in the control LAN 59. Information used by the information LAN 58 includes image information such as movies, news, and passenger information. The information used on the control LAN 59 includes equipment maintenance information such as control unit temperature and failure information.
アンテナ 5 1を使用して地上と情報伝送することにより、寧両内で画像情報 やニュース情報を必要に応じて逐次切り替えることが可能となる。一方、地上 側では、車両故障発生時などに車両の状況を受信することで、地上の専門家が 状況を的確に把握することで、 迅速な対策がとれるようになる。なお、 地上側 から伝送された画像情報などは、車両内に設置されたハードディスクなどに記 録することも可能である。これにより車両と地上間の通信が常時できない環境 でも、 常時、 乗客に画像情報サービスを提供することができる。  By transmitting information with the ground using the antenna 51, it is possible to sequentially switch image information and news information within Ningyo as needed. On the ground side, on the other hand, by receiving the status of the vehicle in the event of a vehicle failure, the ground specialists will be able to accurately grasp the status and take prompt measures. Image information transmitted from the ground can also be recorded on a hard disk installed in the vehicle. As a result, even in an environment where communication between the vehicle and the ground is not always possible, image information services can be provided to passengers at all times.
なお、第 9図の場合でも、アンテナ 5 1に接続される無線伝送装置 14は、 必ずしもプリッジ型無線伝送装置 14 Bでなく、伝送遅延が制御 L A N 59で 必要な時間以内であるならばリピー夕型無線伝送装置 14 Rを用いることも できる。 また、 ブリツジ型無線伝送装置 14Bとネヅトワーク制御装置 1 5を 一体にて構成したものを用いることもできる。  Note that, even in the case of FIG. 9, the wireless transmission device 14 connected to the antenna 51 is not necessarily the ridge-type wireless transmission device 14B, and if the transmission delay is within the time required by the control LAN 59, the repeater A type wireless transmission device 14R can also be used. Alternatively, a bridge-type wireless transmission device 14B and a network control device 15 that are integrally configured may be used.
第 1 0図は、情報 LAN 58の情報を伝送する接続装置 2と、制御 L A N 5 FIG. 10 shows the connection device 2 for transmitting information on the information LAN 58 and the control LAN 5.
9の情報を伝送する接続装置 2を分離した構成の例である。 9 is an example of a configuration in which a connection device 2 for transmitting 9 pieces of information is separated.
アンテナ 5 1はプリッジ型無線伝送装置 14 Bに接続される。プリッジ型無 線伝送装置 14Bには、情報 LAN 58側のネッ トワーク制御装置 1 5と、制 御 LAN 59側のネツトワーク制御装置 1 5がそれそれ独立して接続される。 情報 LAN 5 8は接続装置 2で後続列車の情報 LAN 58に接続され、また、 制御 LAN 5 9は接続装置 2を通して後続列車の制御 L AN 59に接続され ている。先行列車と後続列車の情報 LAN 58を結ぶ無線伝送装置にはプリッ ジ型無線伝送装置 1 4 Bが用いられ、制御 L A N 5 9を接続する無線伝送装置 にはリピー夕型無線伝送装置 1 4 Rが使用されている。 The antenna 51 is connected to the bridge type wireless transmission device 14B. The network controller 15 on the information LAN 58 side and the network controller 15 on the control LAN 59 side are independently connected to the bridge type radio transmission apparatus 14B. The information LAN 58 is connected to the information LAN 58 of the following train by the connecting device 2, and the control LAN 59 is connected to the control LAN 59 of the following train through the connecting device 2. Information on the preceding and succeeding trains A type-type wireless transmission device 14B is used, and a repeater-type wireless transmission device 14R is used as a wireless transmission device connecting the control LAN 59.
情報 L A N 5 9で通信される情報は、車両間で時間遅れが発生しても問題と ならない。 また、 総ての情報を後続列車に伝送する必要の無いことも多い。そ のため、伝送遅延が大きくなるがデ一夕送信の有無を判定する機能を持つプリ ヅジ型無線伝送装置 1 4 Bを用いることが望ましい。  Information Information communicated by LAN59 does not matter even if a time delay occurs between vehicles. In addition, it is often not necessary to transmit all information to subsequent trains. For this reason, although the transmission delay increases, it is desirable to use a pre-wired radio transmission apparatus 14B having a function of determining whether or not there is overnight transmission.
制御 L A N 5 9は、 複数の装置の協調を取る必要がある。具体的には、 駆動 装置 1 6やブレ一キ装置(図示せず) が接続されており、 例えば車両を停止さ せる場合、駆動装置 1 6とブレーキ装置で情報を相互に伝送して、駆動装置 1 6で足りない制動力をブレーキ装置が補うなどの協調制御を行う。したがって、 制御 L A N 5 9ではデータの伝送遅延を極力短くする必要がある。具体的には、 列車全体で 1 0 m s以下にすることが望ましい。 したがって、制御 L A N 5 9 には伝送遅延が短いリピー夕型無線伝送装置 1 4 Rを使用することがよい。 第 1 1図は、情報 L A N 5 8の接続装置として開放型のアンテナ 5 2と 5 3 を使用した例である。  The control LAN 59 needs to coordinate multiple devices. Specifically, a driving device 16 and a braking device (not shown) are connected. For example, when the vehicle is stopped, information is mutually transmitted between the driving device 16 and the braking device to drive the vehicle. Coordinated control such as the braking device supplementing the braking force that the device 16 lacks. Therefore, in the control LAN 59, it is necessary to minimize the data transmission delay. Specifically, it is desirable to keep the total train speed at 10 ms or less. Therefore, it is preferable to use a repeater-type wireless transmission apparatus 14 R having a short transmission delay for the control LAN 59. FIG. 11 shows an example in which open-type antennas 52 and 53 are used as connecting devices for information LAN 58.
先に説明したように情報 L A N 5 8では、デ一夕の伝送遅延が発生しても良 い。開放型のアンテナの場合、外来電波の影響により通信不良が発生すること がある。 しかしこのような場合でも、 データを再送することで喪失したデ一夕 を復活できる。  As described above, in the information LAN 58, an overnight transmission delay may occur. In the case of an open antenna, communication failure may occur due to the influence of external radio waves. However, even in such a case, the lost data can be restored by resending the data.
また、地上側装置と無線伝送するアンテナ 5 1は、車両の車内または外側の どちらにも設置することができる。第 9図、第 1 0図は車内に設置した例で、 例えば運転席のフロントガラスの上部に設置される。ガラスは電磁波を通過さ せるので、地上の通信の障害とならない。第 1 1図のように車外に設置すると、 ガラスなどの障害物が無くなるために通信距離を長くできるという効果があ る。  Further, the antenna 51 for wirelessly transmitting with the ground-side device can be installed inside or outside the vehicle. Fig. 9 and Fig. 10 show an example of installation inside a vehicle, for example, above a windshield in the driver's seat. Glass allows electromagnetic waves to pass, so it does not interfere with terrestrial communications. When installed outside the vehicle as shown in Fig. 11, there is an effect that the communication distance can be lengthened because obstacles such as glass are eliminated.
第 1 2図に駆動装置 1 6の一例詳細構成図を示す。  FIG. 12 shows an example of the detailed configuration of the driving device 16.
第 1 2図において、架線 1 0 4から電力を供給された電力変換器 1 0 0は、 可変電圧、可変周波数制御した出力を誘導電動機 103に供給する。 ここでは 図示しないが、 誘導電動機 1 03は車両 (電気車) の車輪と機械的に連結され ており、 電力変換器 1 00の出力に応じて車両を制御する。 なお、 駆動装置 1 6は、誘導電動機 103の定数や電流値から回転速度を推定して誘導電動機 1 03を制御する、 速度センサレス方式の構成示している。 In FIG. 12, the power converter 100 supplied with power from the overhead wire 104 is The output controlled by the variable voltage and the variable frequency is supplied to the induction motor 103. Although not shown here, the induction motor 103 is mechanically connected to the wheels of the vehicle (electric vehicle), and controls the vehicle according to the output of the power converter 100. The drive device 16 has a speed sensorless system that controls the induction motor 103 by estimating the rotation speed from the constant and the current value of the induction motor 103.
制御装置 1 0 1には、運転制御装置 32から送られる運転パターン、電流検 出器 (CT) 109で検出した各相出力電流、 および電圧検出器 (P T) 1 1 0で検出したフィル夕コンデンサ電圧 E C Fが入力される。制御装置 10 1は これらの情報をもとにフィ一ドバック制御を行い、結果をゲート信号に変換し て電力変換器 1 00に出力することで、 電気車を制御している。  The control device 101 includes an operation pattern sent from the operation control device 32, each phase output current detected by the current detector (CT) 109, and a filter capacitor detected by the voltage detector (PT) 110. Voltage ECF is input. The control device 101 controls the electric vehicle by performing feedback control based on the information, converting the result into a gate signal, and outputting the gate signal to the power converter 100.
ここで、 フィルタリアク トル (FL) 107、 フィル夕コンデンサ (F C) 1 08、電力変換器 1 00、制御装置 1 01は車体の下側に設置されているこ とから、 床下機器と呼ばれている。床下機器の制御装置 1 0 1は、運転台に設 置された運転制御装置 32と接続する必要があるため、複雑な車体内を長距離 にわたつて配線する必要がある。  Here, the filter reactor (FL) 107, filter capacitor (FC) 108, power converter 100, and control device 101 are called underfloor equipment because they are installed below the vehicle body. I have. Since the control device 101 of the underfloor equipment needs to be connected to the operation control device 32 installed in the cab, it is necessary to wire the inside of a complicated vehicle over a long distance.
また、電力変換器 1 00には I GB T ( I n s u 1 a t e d Ga t e B i p p o 1 a r T r ans i s t o r )などの高速スィヅチングスィヅチン グ素子を使用しているため、大きなスィツチングノィズが発生することから、 耐ノイズ性を高める必要がある。  In addition, since the power converter 100 uses a high-speed switching element such as an IGBT (Insulated Gate Bippo 1ar Transistor), a large switching noise is generated. Noise, it is necessary to improve noise resistance.
駆動装置 1 6の制御の処理周期は数百 2 sの高速を要求され、 このため、電 流検出器 (CT) 1 09で検出した各相出力電流、 および電圧検出器 (PT) 1 1 0で検出したフィル夕コンデンサ電圧 E C Fなどのフィードパヅク信号 は高速に検出する必要がある。これに対して運転制御装置 32からのパターン 情報などは 1 0ms程度の周期でよく、 高速の応答を必要としない。  The processing cycle of the control of the drive unit 16 requires a high speed of several hundred 2 s. Therefore, each phase output current detected by the current detector (CT) 109 and the voltage detector (PT) 110 It is necessary to detect the feed-back signal such as the filter capacitor voltage ECF detected in step 2 at high speed. On the other hand, the pattern information from the operation control device 32 may have a cycle of about 10 ms, and does not require a high-speed response.
無線伝送は有線伝送に比べ、一般的に伝送速度が遅いが、配線を必要としな い。運転制御装置 32と制御装置 10 1に無線送受信機 1 05、 1 06を接続 し、運転制御装置 32からのパターン情報を無線通信することで、電磁ノイズ JP02/09733 Wireless transmission is generally slower than wired transmission, but does not require wiring. The wireless transceivers 105 and 106 are connected to the operation control device 32 and the control device 101, and the pattern information from the operation control device 32 is wirelessly communicated. JP02 / 09733
17 や配線の問題を解決する。無線通信の速度は、 1 6ビットのデータを 1 0個( 1 6 0ビヅ ト) を 1 m s周期で送信させるとすれば、通信速度は 1 6 0 k b p s となる。パターン情報の通信には少なくとも 1 6 O k b p s以上の無線通信設 備を使用することが望ましい。  17 and wiring problems. Assuming that 16 pieces of 16-bit data (160 bits) are transmitted at a cycle of 1 ms, the communication rate is 160 kbps. It is desirable to use wireless communication equipment of at least 16 Okbps or more for communication of pattern information.
比較的低速の通信でよく、また床下機器から離れた運転台との通信を無線通 信させることで、 床下機器まで配線が必要がなくなり、 省線化が図れる。 また 無線の絶縁機能により耐ノイズ性向上も図ることができ、かつ床下機器配置の 自由度も向上できる。  Relatively low-speed communication is sufficient, and by communicating wirelessly with the driver's cab remote from the underfloor equipment, wiring to the underfloor equipment is not required and line savings can be achieved. In addition, noise insulation can be improved by the wireless insulation function, and the degree of freedom in arranging equipment under the floor can be improved.
第 1 3図に床下機器内部の省線化と電気品の配置の自由度を考慮した駆動 装置 1 6の他の例を示す。なお、第 1 2図と同じ部品には同一符号を付してい る。  FIG. 13 shows another example of the driving device 16 in consideration of the reduction in the number of wires inside the underfloor equipment and the degree of freedom in the arrangement of electrical components. The same parts as those in FIG. 12 are denoted by the same reference numerals.
第 1 3図はフィードバヅク信号であるフィル夕コンデンサ(F C ) 1 0 8の 電圧検出部を、 A / D変換器と無線機を内蔵した無線機内蔵電圧検出器 1 1 1 としたものである。検出したフィル夕コンデンサ電圧は制御装置 1 0 1へ通信 する。  In FIG. 13, the voltage detector of the feedback capacitor (FC) 108, which is a feedback signal, is replaced with a wireless device built-in voltage detector 111 incorporating an A / D converter and a wireless device. The detected capacitor voltage is communicated to the controller 101.
第 1 4図に無線機内蔵電圧検出器 1 1 1の一例構成を示す。  FIG. 14 shows an example of the configuration of the wireless device built-in voltage detector 111.
フィルタコンデンサ(F C ) 1 0 8の電圧を分圧器 1 5 1で分圧した直流電 圧を電源 1 5 2に入力する。電源 1 5 2は入力電圧が変化しても電圧一定の出 力電圧を出力する電源 (DC- DCコンバータ) で、 A Z D変換器 1 5 3と無線機 1 5 4へ電力を供給する。 また、分圧器 1 5 1の出力は A / D変換器 1 5 3で ディジタル信号に変換され、 無線機 1 5 4で送信される。  The DC voltage obtained by dividing the voltage of the filter capacitor (FC) 108 by the voltage divider 151 is input to the power supply 152. The power supply 152 is a power supply (DC-DC converter) that outputs a constant output voltage even when the input voltage changes, and supplies power to the AZD converter 153 and the radio 154. Also, the output of the voltage divider 151 is converted to a digital signal by the A / D converter 153 and transmitted by the radio 154.
制御装置 1 0 1には A / D変換されたのフィル夕コンデンサ電圧が無線で 伝送されるので、フィル夕コンデンサ 1 0 8と制御装置 1 0 1の絶縁が必要と なくなるばかりでなく、従来使われていた F C 1 0 8と制御装置 1 0 1とのァ ナログ配線が不要になる。 このため、 F C電圧の検出値がノイズの影響を受け にく くなり、 制御の高精度化が実現できる。  Since the A / D-converted filter capacitor voltage is wirelessly transmitted to the control device 101, not only is insulation between the filter capacitor 108 and the control device 101 unnecessary, but also the conventional This eliminates the need for analog wiring between the FC 108 and the controller 101. For this reason, the detection value of the FC voltage is less affected by noise, and higher control accuracy can be realized.
フィル夕コンデンサ電圧は、 2レベルィンバ一夕で 1信号、 3レベルィンバ —夕でも上アームと下アーム電圧の 2信号であり、データ量としては少ないも のとなる。現在、実用に供されている電圧制御の処理周期は 2 0 0; s程度で あり、 同等の応答速度を実現しょうとすると、 1 2ビツトの A/ D変換器を使 用しても 2 0 0 k b p s程度の速度であれば通信は可能である。 しかし、 より 高速に電圧データを読み取る必要のある処理もあり、 1 M b p sの通信速度と することが望ましい。 Filler capacitor voltage is 1 level for 2 levels and 3 levels for 1 —Even in the evening, there are two signals, the upper arm voltage and the lower arm voltage, and the amount of data is small. At present, the processing cycle of voltage control in practical use is about 200; s. To achieve the same response speed, even if a 12-bit A / D converter is used, 200 Communication is possible if the speed is about 0 kbps. However, there are some processes that need to read the voltage data faster, so it is desirable to set the communication speed to 1 Mbps.
第 1 5図は、運転制御装置 3 2、 F C 1 0 8に加え、 無線機内蔵電流検出器 1 1 2で検出した誘導電動機 1 0 3の U、 V、 W相の電流検出値を無線で制御 装置 1 0 1へ通信するようにしたものである。  Fig. 15 shows, in addition to the operation control device 32 and FC 108, the U, V, and W phase current detection values of the induction motor 103 detected by the wireless device's built-in current detector 112 wirelessly. This is to communicate with the control device 101.
駆動装置 1 6を第 1 5図のように構成することにより、床下機器の省配線と 耐ノイズ性が一層高まる。無線機内蔵電流検出器 1 1 2の構成は基本的には無 線機内蔵電圧検出器 1 1 1と同様でよく、 直流電源、 A/ D変換器、 無線機か ら構成される。通信速度も現状の電流制御と同様の応答速度を実現するのであ れば、 電圧検出と同様の 1 M b p sでよい。 産業上の利用可能性  By configuring the drive unit 16 as shown in Fig. 15, the wiring saving and noise resistance of the underfloor equipment are further improved. The configuration of the wireless device built-in current detector 112 may be basically the same as that of the wireless device built-in voltage detector 111, and includes a DC power supply, an A / D converter, and a wireless device. As long as the communication speed can achieve the same response speed as the current control, 1 Mbps, which is the same as the voltage detection, may be used. Industrial applicability
以上のように、本発明の鉄道車両の情報伝送装置は、車両間のデータ伝送を ノイズの影響を受けることなく行え、 また、高周波の搬送波をベースバンド信 号で変調した変調波信号で伝送すると、デ一夕伝送に必要な帯域にバンドパス フィル夕で周波数を制限でき電圧振幅が小さくても通信可能になる。したがつ て、鉄道車両間の情報伝送をノィズの影響を受けることなく高速大容量伝送を 精度良く行うことが要求される列車に適している。  As described above, the railway vehicle information transmission device of the present invention can perform data transmission between vehicles without being affected by noise, and transmit a high-frequency carrier wave using a modulated wave signal modulated by a baseband signal. In addition, the frequency can be limited to the band required for data transmission by bandpass filtering, and communication is possible even when the voltage amplitude is small. Therefore, it is suitable for trains that require high-speed, high-capacity transmission with high accuracy without being affected by noise.

Claims

請 求 の 範 囲 The scope of the claims
1 . ネ ヅトヮ一クによってデータの通信が行われる車両と、前記ネッ トワーク におけるデータ通信を制御するネットワーク制御手段と、搬送波信号を前記デ —夕信号で変調した変調波信号を発生する信号伝送手段と、前記車両の外側に 設けられ、前記変調波信号を連結された他の率両に伝達する信号接続装置とを 具備することを特徴とする鉄道車両の情報伝送装置。  1. A vehicle in which data communication is performed by a network, network control means for controlling data communication in the network, and signal transmission means for generating a modulated wave signal obtained by modulating a carrier signal with the data signal. And a signal connection device provided outside the vehicle and transmitting the modulated wave signal to another connected vehicle.
2 .ネットワークによってデータの通信が行われ、床下にノイズ発生機器が取 付けられている車両と、前記ネットワークにおけるデータ通信を制御するネッ トワーク制御手段と、搬送波信号を前記データ信号で変調し、前記ノイズ発生 機器が発生するノィズ周波数より高い周波数の変調波信号を発生する信号伝 送手段と、前記車両の連結部外側に設けられ、前記変調波信号を連結された他 の車両に伝達する信号接続装置とを具備することを特徴とする鉄道車両の情 報伝送装置。  2.A vehicle in which data communication is performed by a network and a noise generating device is installed under the floor, network control means for controlling data communication in the network, and a carrier signal modulated by the data signal. Signal generating means for generating a modulated wave signal having a frequency higher than the noise frequency generated by the noise generating device, and a signal connection provided outside the connecting portion of the vehicle for transmitting the modulated wave signal to another connected vehicle; An information transmission device for a railway vehicle, comprising:
3 .ネットワークによってデータの通信が行われ、床下にノイズ発生機器が取 付けられている車両と、前記ネヅトワークにおけるデータ通信を制御するネッ トワーク制御手段と、搬送波信号を前記データのベースバンド信号で変調し、 前記ノィズ発生機器が発生するノィズ周波数より高い周波数の変調波信号を 発生する信号伝送手段と、前記車両の連結部外側に設けられ、前記変調波信号 を連結された他の車両に伝達するシールド材で囲われている信号接続装置と を具備することを特徴とする鉄道車両の情報伝送装置。  3.A vehicle in which data communication is performed by a network and a noise generating device is installed under the floor, network control means for controlling data communication in the network, and a carrier signal modulated by a baseband signal of the data. A signal transmitting means for generating a modulated wave signal having a frequency higher than a noise frequency generated by the noise generating device; and a signal transmitting means provided outside a connecting portion of the vehicle for transmitting the modulated wave signal to another connected vehicle. An information transmission device for a railway vehicle, comprising: a signal connection device surrounded by a shield material.
4 .ネットワークによってデータの通信が行われ、床下にノイズ発生機器が取 付けられている車両と、前記ネットワークにおけるデ一夕通信を制御するネッ トワーク制御手段と、搬送波信号を前記データのベースバンド信号で変調し、 前記ノィズ発生機器が発生するノィズ周波数より高い周波数の変調波信号を 発生する信号伝送手段と、前記車両の連結部外側に設けられ、前記変調波信号 を連結された他の車両の信号接続装置に電気的に接続される信号接続装置と、 前記信号伝送手段と前記信号接続装置の間に設けられ、直流を遮断する絶縁手 段とを具備することを特徴とする鉄道車両の情報伝送装置。 4.A vehicle in which data communication is performed by a network, and a noise generating device is installed under the floor, network control means for controlling data communication in the network, and a carrier signal that is a baseband signal of the data. A signal transmission means for generating a modulated wave signal having a frequency higher than a noise frequency generated by the noise generating device; and a signal transmission means provided outside a connecting portion of the vehicle and connected to the other vehicle connected with the modulated wave signal. A signal connection device electrically connected to the signal connection device; an insulating device provided between the signal transmission means and the signal connection device for interrupting direct current An information transmission device for a railway vehicle, comprising: a step;
5 .ネヅトヮ一クによってデ一夕の通信が行われ、床下にノイズ発生機器が取 付けられている車両と、前記ネットワークにおけるデータ通信を制御するネッ トワーク制御手段と、搬送波信号を前記データのベースバンド信号で変調した 変調波信号を発生する変調手段および連結された他の車両から送信される変 調波信号を復調したデータを前記ネッ トワークに送信する復調手段を有する 信号伝送手段と、前記車両の連結部外側に設けられ、前記変調波信号を連結さ れた他の車両の伝達する信号接続装置とを具備することを特徴とする鉄道車 両の情報伝送装置。 5. The network communicates overnight, and a vehicle having a noise generating device installed under the floor, network control means for controlling data communication in the network, and a carrier signal based on the data base. Signal transmission means having modulation means for generating a modulated wave signal modulated by a band signal, and demodulation means for transmitting data obtained by demodulating a modulated wave signal transmitted from another connected vehicle to the network; and And a signal connection device for transmitting the modulated wave signal to another vehicle to which the modulated wave signal is connected.
6 .ネットワークによって車両制御情報とサービス情報を含むデ一夕の通信が 行われ、床下にノイズ発生機器が取付けられている車両と、前記ネッ トワーク におけるデータ通信を制御するネッ トワーク制御手段と、搬送波信号を前記デ 一夕のベースバンド信号で変調し、前記ノィズ発生機器が発生するノィズ周波 数より高い周波数の変調波信号を発生する信号伝送手段と、前記車両の連結部 外側に設けられ、前記変調波信号を連結された他の車両の信号接続装置に複数 のコネクタによって電気的に接続される信号接続装置と、前記信号伝送手段と 前記信号接続装置の間に設けられ、直流を遮断する絶縁手段とを具備すること を特徴とする鉄道車両の情報伝送装置。 6.A network including vehicle control information and service information is transmitted overnight, and a vehicle in which noise generating equipment is installed under the floor, network control means for controlling data communication in the network, and carrier waves. A signal transmitting means for modulating a signal with the baseband signal of the night and generating a modulated wave signal having a frequency higher than a noise frequency generated by the noise generating device; and A signal connection device electrically connected by a plurality of connectors to a signal connection device of another vehicle to which the modulated wave signal is connected; and an insulation provided between the signal transmission means and the signal connection device for blocking direct current. And an information transmission device for a railway vehicle.
7 .ネットワークによって車両制御情報とサ一ビス情報を含むデ一夕のブロー ドバンド通信が行われ、床下にノイズ発生機器が取付けられている車両と、前 記ネットワークにおけるデータ通信を制御するネットワーク制御手段と、搬送 波信号を前記データ信号で変調し、前記ノィズ発生機器が発生するノィズ周波 数より高い周波数の変調波信号を発生する信号伝送手段と、前記車両の連結部 外側に設けられ、前記変調波信号を連結された他の車両に伝達する信号接続装 置とを具備することを特徴とする鉄道車両の情報伝送装置。  7. Network broadband communication including vehicle control information and service information is performed via the network, and a network control means for controlling data communication in the network with a vehicle in which noise generating equipment is installed under the floor. A signal transmitting means for modulating a carrier signal with the data signal to generate a modulated wave signal having a frequency higher than a noise frequency generated by the noise generating device; and A signal connection device for transmitting a wave signal to another connected vehicle.
8 .ネットワークによってデータの通信が行われ、床下にノイズ発生機器が取 付けられている車両と、前記ネットワークにおけるデータ通信を制御するネッ トワーク制御手段と、搬送波信号を前記データのベースバンド信号で変調し、 前記ノィズ発生機器が発生するノィズ周波数より高い周波数の変調波信号を 発生する無線伝送手段と、前記車両の連結部外側に設けられ、前記変調波信号 を連結された他の車両の信号接続装置にアンテナによって無線送信する信号 接続装置とを具備することを特徴とする鉄道車両の情報伝送装置。 8. Data communication is performed by a network, and a vehicle that has noise generating equipment installed under the floor is connected to a network that controls data communication in the network. Network control means, a radio transmission means for modulating a carrier wave signal with a baseband signal of the data, and generating a modulated wave signal having a frequency higher than a noise frequency generated by the noise generating device, and a radio transmission means provided outside a connecting portion of the vehicle. And a signal connection device for wirelessly transmitting the modulated wave signal to a signal connection device of another vehicle to which the modulated wave signal is connected by an antenna.
9 .ネヅ トワークによって車両制御情報とサービス情報を含むデータのブロー ドバンド通信が行われ、床下にノイズ発生機器が取付けられている車両と、前 記ネットワークにおけるデータ通信を制御するネットワーク制御手段と、搬送 波信号を前記データ信号で変調し、前記ノィズ発生機器が発生するノイズ周波 数より高い周波数の変調波信号を発生する無線伝送手段と、前記車両の連結部 外側に設けられ、前記変調波信号を連結された他の車両の信号接続装置に複数 のアンテナによって無線送信する前記アンテナがシールド材で囲われている 信号接続装置とを具備することを特徴とする鉄道車両の情報伝送装置。 9. Broadband communication of data including vehicle control information and service information is performed by the network, and a vehicle in which a noise generating device is installed under the floor; network control means for controlling data communication in the network; Wireless transmission means for modulating a carrier signal with the data signal to generate a modulated signal having a frequency higher than a noise frequency generated by the noise generating device; and And a signal connection device in which the antenna is wirelessly transmitted by a plurality of antennas to a signal connection device of another vehicle connected with the signal connection device, wherein the signal connection device is surrounded by a shield material.
PCT/JP2002/009733 2001-09-25 2002-09-20 Information transmitter of rolling stock WO2003028299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020047002383A KR100610641B1 (en) 2001-09-25 2002-09-20 Information transmitter of rolling stock
JP2003531684A JPWO2003028299A1 (en) 2001-09-25 2002-09-20 Railway vehicle information transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001290523 2001-09-25
JP2001-290523 2001-09-25

Publications (1)

Publication Number Publication Date
WO2003028299A1 true WO2003028299A1 (en) 2003-04-03

Family

ID=19112822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009733 WO2003028299A1 (en) 2001-09-25 2002-09-20 Information transmitter of rolling stock

Country Status (4)

Country Link
JP (1) JPWO2003028299A1 (en)
KR (1) KR100610641B1 (en)
CN (1) CN1541468A (en)
WO (1) WO2003028299A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113313A1 (en) * 2004-05-17 2005-12-01 Siemens Aktiengesellschaft Rail vehicle comprising a train coupling and corresponding train coupling
WO2006013638A1 (en) * 2004-08-04 2006-02-09 Hitachi, Ltd. Connector, information processor, and information transmission system
JP2006197164A (en) * 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd Data transmission system
EP1762455A1 (en) * 2005-09-08 2007-03-14 Voith Turbo Scharfenberg GmbH & Co. KG Automatic central buffer coupling with an antenna for wireless signal transmission
JP2008113103A (en) * 2006-10-30 2008-05-15 Hitachi Ltd Communication device for rail vehicles
JP2010519100A (en) * 2007-02-15 2010-06-03 デルネル・クープレル・アクチボラグ Train connector connector and connection block configured to connect railway vehicles
JP2012502844A (en) * 2008-09-23 2012-02-02 エラ−コンタクト ゲゼルシャフトミットベシュレンクターハフトゥング Intermediate buffer coupling for rail vehicles
WO2012034630A1 (en) * 2010-09-17 2012-03-22 Harting Electric Gmbh & Co. Kg Electric coupling for railways
JP2012529402A (en) * 2009-06-12 2012-11-22 ザ・ボーイング・カンパニー Method and apparatus for aircraft wireless communication using fuselage stringers
WO2013017335A1 (en) * 2011-07-29 2013-02-07 Siemens Aktiengesellschaft Data transmission device, railway vehicle junction unit and rail vehicle combination
EP2581994A1 (en) 2011-10-13 2013-04-17 Tyco Electronics Nederland B.V. Contactless plug connector and contactless plug connector system
US9838057B2 (en) 2013-06-10 2017-12-05 Mitsubishi Electric Corporation Inter-vehicle communication device
SE2350325A1 (en) * 2023-03-23 2024-03-26 Dellner Couplers Ab Central buffer coupler, signal transceiver, vehicle member and computer-implemented method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616251B (en) * 2011-01-27 2014-12-10 中国铁路总公司 Automatic access management method and control device for high-speed train
CN102530026A (en) * 2011-12-23 2012-07-04 北京世纪东方国铁科技股份有限公司 Synchronous operation and control system and method of locomotives
US9283969B2 (en) * 2013-05-28 2016-03-15 Electro-Motive Diesel, Inc. Locomotive/tender car communication system
KR101683461B1 (en) 2014-12-29 2016-12-07 한국철도기술연구원 Contactless information transfer apparatus for railway vehicle
DE102017131416B3 (en) * 2017-12-29 2019-06-27 Te Connectivity Germany Gmbh Method and device for transmitting data within a vehicle
DE102018222589A1 (en) * 2018-12-20 2020-06-25 Siemens Mobility GmbH Antenna arrangement and rail vehicle with antenna arrangement, having several antennas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713599A (en) * 1980-06-30 1982-01-23 Tokyo Shibaura Electric Co Method of transmitting information for vehicle
JPS596703A (en) * 1982-07-01 1984-01-13 Hitachi Ltd Vehicle data transmission system
JPS60203037A (en) * 1984-03-28 1985-10-14 Hitachi Ltd Control data transmission system for train
JPH0911900A (en) * 1995-06-28 1997-01-14 Nabco Ltd Inter-rolling stock signal transmitting device
JP2000318612A (en) * 1999-05-10 2000-11-21 Kokusai Electric Co Ltd Automatic guide broadcast device and starting system of automatic guide display device
JP2001001901A (en) * 1999-06-16 2001-01-09 Toshiba Transport Eng Inc Inter-rolling stock distance interface device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713599A (en) * 1980-06-30 1982-01-23 Tokyo Shibaura Electric Co Method of transmitting information for vehicle
JPS596703A (en) * 1982-07-01 1984-01-13 Hitachi Ltd Vehicle data transmission system
JPS60203037A (en) * 1984-03-28 1985-10-14 Hitachi Ltd Control data transmission system for train
JPH0911900A (en) * 1995-06-28 1997-01-14 Nabco Ltd Inter-rolling stock signal transmitting device
JP2000318612A (en) * 1999-05-10 2000-11-21 Kokusai Electric Co Ltd Automatic guide broadcast device and starting system of automatic guide display device
JP2001001901A (en) * 1999-06-16 2001-01-09 Toshiba Transport Eng Inc Inter-rolling stock distance interface device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113313A1 (en) * 2004-05-17 2005-12-01 Siemens Aktiengesellschaft Rail vehicle comprising a train coupling and corresponding train coupling
WO2006013638A1 (en) * 2004-08-04 2006-02-09 Hitachi, Ltd. Connector, information processor, and information transmission system
JP2006197164A (en) * 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd Data transmission system
EP1762455A1 (en) * 2005-09-08 2007-03-14 Voith Turbo Scharfenberg GmbH & Co. KG Automatic central buffer coupling with an antenna for wireless signal transmission
JP2008113103A (en) * 2006-10-30 2008-05-15 Hitachi Ltd Communication device for rail vehicles
JP2010519100A (en) * 2007-02-15 2010-06-03 デルネル・クープレル・アクチボラグ Train connector connector and connection block configured to connect railway vehicles
US8348074B2 (en) 2007-02-15 2013-01-08 Dellner Couplers Ab Connector and connection block in a train coupler arranged for connection of a rail vehicles
JP2012502844A (en) * 2008-09-23 2012-02-02 エラ−コンタクト ゲゼルシャフトミットベシュレンクターハフトゥング Intermediate buffer coupling for rail vehicles
JP2012529402A (en) * 2009-06-12 2012-11-22 ザ・ボーイング・カンパニー Method and apparatus for aircraft wireless communication using fuselage stringers
WO2012034630A1 (en) * 2010-09-17 2012-03-22 Harting Electric Gmbh & Co. Kg Electric coupling for railways
US8985356B2 (en) 2010-09-17 2015-03-24 Harting Electric Gmbh & Co. Kg Electric coupling for railways
WO2013017335A1 (en) * 2011-07-29 2013-02-07 Siemens Aktiengesellschaft Data transmission device, railway vehicle junction unit and rail vehicle combination
EP2581994A1 (en) 2011-10-13 2013-04-17 Tyco Electronics Nederland B.V. Contactless plug connector and contactless plug connector system
US9838057B2 (en) 2013-06-10 2017-12-05 Mitsubishi Electric Corporation Inter-vehicle communication device
SE2350325A1 (en) * 2023-03-23 2024-03-26 Dellner Couplers Ab Central buffer coupler, signal transceiver, vehicle member and computer-implemented method
SE545948C2 (en) * 2023-03-23 2024-03-26 Dellner Couplers Ab Central buffer coupler, signal transceiver, vehicle member and computer-implemented method

Also Published As

Publication number Publication date
KR20040032932A (en) 2004-04-17
KR100610641B1 (en) 2006-08-09
CN1541468A (en) 2004-10-27
JPWO2003028299A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
WO2003028299A1 (en) Information transmitter of rolling stock
JP4575898B2 (en) In-train communication system and in-train communication method
WO2019137154A1 (en) Train-ground wireless integrated bearing system and method employing lte-u
ES2676199T3 (en) Methods and system to increase data transmission speeds through a three-phase power system
US7801166B2 (en) Ruggedized analog front-end for a network communicative device in a railway-like environment
US20070236079A1 (en) System and method for enhanced end-of-train performance using locomotive consist communications
JP5242283B2 (en) Railway vehicle information network equipment
US8537727B2 (en) Avionic system comprising a controller and at least one peripheral that are linked by a line mutualized for power and data
JP2009500237A (en) Contactless data communication connection
CN106465083A (en) Shared use of a motor vehicle antenna by an e-call controller
CN107483436A (en) A kind of physical layer dual-mode design method of communication module in Internet of Things
WO2019137395A1 (en) Comprehensive bearing system for track transport
JPWO2006013638A1 (en) Connector, information processing apparatus, and information transmission system
KR100697421B1 (en) Method for transmitting data via a traction control which carries an electrical driving current for vehicles
KR101289725B1 (en) Wireless communication system on mono-rail, control method thereof, and wireless communication system data processing method on mono-rail
JP4893413B2 (en) In-train communication equipment
JP2006115479A (en) Signal connection apparatus
US20160218772A1 (en) Collector Wire Network for Communication of Locally Fixed Systems Parts with at Least One Variable-Location System Part
EP4382391A1 (en) Architecture for a data transmission between a plurality of electric traction vehicles and a corresponding remote control center
CN210469391U (en) Subway train wireless communication system based on master-slave switching
JP2005318448A (en) Inductive loop type radio communications system
CN109617571A (en) A kind of signal processing apparatus and its method for realizing signal dispatching
JP2008113103A (en) Communication device for rail vehicles
JP2003237580A (en) Transmitting-receiving device on vehicle
SE545948C2 (en) Central buffer coupler, signal transceiver, vehicle member and computer-implemented method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003531684

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028157206

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047002383

Country of ref document: KR

122 Ep: pct application non-entry in european phase