WO2003017328A2 - Encapsulated integrated circuit package and method of manufacturing an integrated circuit package - Google Patents
Encapsulated integrated circuit package and method of manufacturing an integrated circuit package Download PDFInfo
- Publication number
- WO2003017328A2 WO2003017328A2 PCT/US2002/026095 US0226095W WO03017328A2 WO 2003017328 A2 WO2003017328 A2 WO 2003017328A2 US 0226095 W US0226095 W US 0226095W WO 03017328 A2 WO03017328 A2 WO 03017328A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- integrated circuit
- circuit package
- semiconductor die
- strip
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 103
- 239000004065 semiconductor Substances 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 23
- 239000008393 encapsulating agent Substances 0.000 claims abstract description 9
- 239000012778 molding material Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 39
- 229910000679 solder Inorganic materials 0.000 claims description 17
- 239000000853 adhesive Substances 0.000 claims description 12
- 230000001070 adhesive effect Effects 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000004593 Epoxy Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000004080 punching Methods 0.000 claims description 2
- 238000001721 transfer moulding Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 1
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/561—Batch processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
- H01L21/566—Release layers for moulds, e.g. release layers, layers against residue during moulding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/568—Temporary substrate used as encapsulation process aid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/13—Mountings, e.g. non-detachable insulating substrates characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5389—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1035—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1058—Bump or bump-like electrical connections, e.g. balls, pillars, posts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1094—Thermal management, e.g. cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/1815—Shape
- H01L2924/1816—Exposing the passive side of the semiconductor or solid-state body
- H01L2924/18165—Exposing the passive side of the semiconductor or solid-state body of a wire bonded chip
Definitions
- the present invention relates to integrated circuit packaging and manufacturing thereof, and more particularly, to integrated circuit packaging for improved dissipation of thermal energy.
- a heat sink is one type of device used to help dissipate heat from some integrated circuit packages.
- Various shapes and sizes of heat sink devices have been incorporated onto, into or around integrated circuit packages for improving heat dissipation from the particular integrated circuit package.
- U.S. Patent No. 5,596,231 to Combs entitled “High Power Dissipation Plastic Encapsulated Package For Integrated Circuit Die,” discloses a selectively coated heat sink attached directly on to the integrated circuit die and to a lead frame for external electrical connections.
- the invention features a method of manufacturing an integrated circuit package including providing a substrate having a first surface, a second surface opposite the first surface, a cavity through the substrate between the first and second surfaces and a conductive via extending through the substrate and electrically connecting the first surface of the substrate with the second surface of the substrate, applying a strip to the second surface of the substrate, mounting a semiconductor die on the strip, at least a portion of the semiconductor die being disposed inside the cavity, encapsulating in a molding material at least a portion of the first surface of the substrate, and removing the strip from the substrate.
- the invention features a method of manufacturing an integrated circuit package including providing a substrate having a first surface, a second surface opposite the first surface, a plurality of cavities, each said cavity through the substrate between the first and second surfaces, and a plurality of conductive vias, each said via extending through the substrate and electrically connecting the first surface of the substrate with the second surface of the substrate, applying a strip to the second surface of said substrate, mounting a plurality of semiconductor dies on the strip, at least a portion of each semiconductor die being disposed inside each cavity, encapsulating in a molding material at least a portion of the first surface of said substrate, and removing the strip from the substrate to expose a surface of each semiconductor die.
- the invention features an integrated circuit package including a substrate having a first surface, a second surface opposite the first surface, a cavity through the substrate between the first and second surfaces and a conductive via extending through the substrate and electrically connecting the first surface of the substrate with the second surface of the substrate, a semiconductor die electrically coupled with the conductive via, at least a portion of the semiconductor die being disposed inside the cavity of the substrate, an encapsulant material encapsulating a portion of the semiconductor die such that at least a portion of a surface of the semiconductor die is exposed.
- FIG. 1 is a simplified cross-sectional view of an integrated circuit package according to one embodiment of the present invention
- FIG. 2 is a simplified cross-sectional view of an integrated circuit package according to a second embodiment of the present invention
- FIG. 3 is a simplified bottom view of an integrated circuit package according to embodiments of the present invention
- FIGS. 4A - 4H show one example of steps performed in assembly of embodiments of an integrated circuit package of the present invention.
- FIGS. 5 A - 51 show another example of steps performed in assembly of embodiments of an integrated circuit package of the present invention.
- FIG. 6 is a simplified cross-sectional view of an integrated circuit package assembly including an integrated circuit package as shown in FIG. 2 and another integrated circuit package. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
- FIGS. 1 and 2 show certain components of integrated circuit packages according to embodiments of the present invention.
- the integrated circuit packages depicted in FIGS. 1 and 2 each generally include a substrate 101, a semiconductor die 103 and an encapsulant 105.
- the substrate 101 may be made of either a rigid material (e.g., BT, FR4, FR5 or ceramic) or a flexible material (e.g. , polyimide), and may have circuit traces 112 onto which a semiconductor die 103 may be interconnected using, for example, wire bonding techniques or tape automated bonding.
- the package measures about 1.0 mm thick (shown as dimension "a" in FIG. 1) and about 35 mm wide (shown as dimension "b" in FIG. 3).
- external terminals of one embodiment of the present invention may include an array of solder balls 106.
- the solder balls 106 may function as leads capable of providing power, signal inputs and signal outputs to the semiconductor die 103.
- Such a configuration may be referred to as a type of ball grid array. Absent the solder balls 106, such a configuration may be referred to as a type of land grid array, as shown in FIG. 1.
- traces 112 may be embedded photolithographically into the substrate 101, and are electrically conductive to provide a circuit connection between the semiconductor die 103 and the substrate 101. Such traces 112 may also provide an interconnection between input and output terminals of the semiconductor die 103 and external terminals provided on the package.
- the substrate 101 of the embodiment shown in FIG. 1 may have a multi-layer circuit trace 112 made of copper.
- the substrate 101 shown in FIG. 1 has vias 110 which may be drilled into it to connect the top and bottom portions of each circuit trace 112. Such vias 110 may be plated with copper to electrically connect the top and bottom portions of each trace 112.
- the substrate 101 shown in FIG. 1 may also have a solder mask on its surface. The solder mask of one embodiment electrically insulates the substrate and reduces wetting (i.e., reduces unwanted flow of solder into the substrate 101).
- the substrate 101 is designed with a cavity 120 made through the base material with sufficient clearance to accommodate the specific size of semiconductor die 103 used in the package.
- One embodiment may include a conductive trace 112 in the form of a ring around the cavity 120 in the substrate 101.
- a ring-shaped conductive trace 112 may be connected to the top surface of the substrate 101 by means of electrically conductive vias 110.
- Such an arrangement may allow a heat slug 108 to be electrically connected to the semiconductor die 103 by the way of wire bonding 104, thereby resulting in a ground plane surface beneath the semiconductor die 103, which may enhance the electrical characteristics of the package.
- the encapsulant material 105 does not extend to the package edge.
- electrically conductive vias 110 connect traces 112 from the top surface of the package to corresponding pads 113 on the side of the package opposite to the solder ball attachment.
- FIG. 4A shows a step in the manufacture of one type of the integrated circuit package showing a substrate 101 with a cavity 120.
- the substrate 101 may be produced in a form to accommodate standard semiconductor manufacturing equipment and process flows, and may also be configured in a matrix format to accommodate high-density package manufacturing.
- FIG. 5A depicts a step in another process for manufacturing integrated circuit packages, and shows a substrate 501 with a number of cavities 520-1, 520-2. As shown in FIG.
- a tape 102 with adhesive material on at least one side is applied to the bottom side of the substrate 101, and may be applied in strip form to accommodate a number of substrates.
- the tape 102 may be, for example, a high temperature stable polyimide with an adhesive material on at least one surface.
- FIG. 5B depicts a tape 502 having its adhesive material on the surface which interfaces with the bottom of the substrate 501.
- the adhesive material has a contact sticking characteristic such that a semiconductor die 103 placed into contact with the adhesive material will stick to the tape 502. In this embodiment, however, the adhesive material is such that no adhesive residue is left on the substrate 101 when the tape 502 is removed.
- FIG. 4C a semiconductor die 103 may then be mounted or otherwise attached to the tape 102 through the cavity 120 in the substrate 101.
- FIG. 5C depicts a number of semiconductor dies 503-1, 503-2 mounted or otherwise attached to the tape 502 through each of the cavities 520-1, 520-2 of the substrate 501.
- the semiconductor die 103 may then be interconnected to routing traces 112 of the substrate 101 by a gold thermo-sonic wire bonding technique.
- gold wires 104 may interconnect the semiconductor die 103 to traces 112 of the substrate 101.
- FIG. 5D depicts the semiconductor dies 503-1, 503-2 being interconnected to routing traces by, e.g., a gold thermo-sonic wire bonding technique.
- the substrate 101, 501 may be encapsulated.
- the encapsulant material 105, 505 may be an epoxy based material applied by, for example, either a liquid molding encapsulation process or a transfer molding technique.
- the substrate 101 is fully encapsulated on one side.
- the substrate 101 is encapsulated only in the semiconductor die 130 and wire bond area, leaving much of the surface of the substrate 101 opposite to the solder ball area free of encapsulant material 105.
- the tape 102, 502 may then be removed from the package subassembly as shown in FIGS. 4F and 5F.
- solder balls 106 may then be attached to traces 112 of the substrate 101 using, for example, a reflow soldering process.
- FIG. 5G depicts solder balls 506 being attached to traces 512 of the substrate 501.
- the solder balls 106, 506 may be made of a variety of materials including lead (Pb) free solder.
- a heat slug 108 may be attached to the exposed surface of the semiconductor die 103 and the area surrounding the cavity 120 in the substrate 101 using a thermally conductive adhesive material 107 such as epoxy.
- the adhesive material 107 may also be electrically conductive, such as silver-filled epoxy.
- FIG. 5H depicts attacliment of a heat slug 508 to each semiconductor die 503 only.
- an alternative heat slug such as the one depicted in FIG.4H, may also be attached to one or more semiconductor dies 503.
- the integrated circuit packages may be singulated into individual units using, e.g., a saw singulation or punching technique.
- FIG. 6 shows an integrated circuit package assembly according to an embodiment of the present invention.
- an embodiment includes two integrated circuit packages stacked one on top of the other and attached to one another by solder balls 106.
- the integrated circuit package assembly shown in FIG. 6 includes two packages of the embodiment shown in FIG. 2 and a heat slug 108.
- Another embodiment of an integrated circuit package assembly according to the present invention may include two or more integrated circuit packages without a heat slug 108.
- Other embodiments of integrated circuit package assemblies according to the present invention may include integrated circuit packages other than the embodiments specifically shown in FIG. 6.
- the substrate 101 of certain embodiments of integrated circuit packages and assemblies may contain electrically conductive traces 112 on an upper surface of the substrate 101 to facilitate electrical coupling with a second integrated circuit package.
- the heat slug 108 shown in FIG. 6 may provide a thermal path between a semiconductor die 103 and the environment.
- the heat slug 108 may be aligned with and positioned below the bottom surface of the semiconductor die 103 such that the heat slug 108 may contact or thermally couple with an external device such as, e.g., a printed circuit board 200.
- the heat slug 108 is preferably made of a thermally conductive material such as copper or copper alloy.
- the heat slug 108 may be sized and configured for use in a specific package arrangement such that, in certain embodiments, the heat slug 108 contacts another type of external device (e.g., an integrated circuit package) to which a package is attached.
- the heat slug 108 may be plated with solder or some other appropriate metal to enhance the reflow of solder to the surface of the heat slug 108.
- the opposite side of the heat slug 108 may also be oxide coated to enhance the adhesion to the encapsulant material 105.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002332557A AU2002332557A1 (en) | 2001-08-15 | 2002-08-15 | Encapsulated integrated circuit package and method of manufacturing an integrated circuit package |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31241101P | 2001-08-15 | 2001-08-15 | |
US60/312,411 | 2001-08-15 | ||
US10/062,650 | 2002-01-31 | ||
US10/062,650 US6790710B2 (en) | 2002-01-31 | 2002-01-31 | Method of manufacturing an integrated circuit package |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003017328A2 true WO2003017328A2 (en) | 2003-02-27 |
WO2003017328A3 WO2003017328A3 (en) | 2003-11-13 |
Family
ID=26742525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/026095 WO2003017328A2 (en) | 2001-08-15 | 2002-08-15 | Encapsulated integrated circuit package and method of manufacturing an integrated circuit package |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2002332557A1 (en) |
WO (1) | WO2003017328A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008012481A1 (en) * | 2006-07-28 | 2008-01-31 | Microcomposants De Haute Sécurité Mhs | Process for fabricating an encapsulated integrated circuit and associated encapsulated integrated circuit |
EP1914803A1 (en) * | 2006-10-20 | 2008-04-23 | Broadcom Corporation | Low profile ball grid array (BGA) package witth exposed die and method of making same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620928A (en) * | 1995-05-11 | 1997-04-15 | National Semiconductor Corporation | Ultra thin ball grid array using a flex tape or printed wiring board substrate and method |
US5679978A (en) * | 1993-12-06 | 1997-10-21 | Fujitsu Limited | Semiconductor device having resin gate hole through substrate for resin encapsulation |
US5693572A (en) * | 1993-12-20 | 1997-12-02 | Sgs-Thomson Microelectronics, Inc. | Ball grid array integrated circuit package with high thermal conductivity |
US6396143B1 (en) * | 1999-04-30 | 2002-05-28 | Mitsubishi Gas Chemical Company, Inc. | Ball grid array type printed wiring board having exellent heat diffusibility and printed wiring board |
US6433360B1 (en) * | 1999-01-15 | 2002-08-13 | Xilinx, Inc. | Structure and method of testing failed or returned die to determine failure location and type |
-
2002
- 2002-08-15 AU AU2002332557A patent/AU2002332557A1/en not_active Abandoned
- 2002-08-15 WO PCT/US2002/026095 patent/WO2003017328A2/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679978A (en) * | 1993-12-06 | 1997-10-21 | Fujitsu Limited | Semiconductor device having resin gate hole through substrate for resin encapsulation |
US5693572A (en) * | 1993-12-20 | 1997-12-02 | Sgs-Thomson Microelectronics, Inc. | Ball grid array integrated circuit package with high thermal conductivity |
US5620928A (en) * | 1995-05-11 | 1997-04-15 | National Semiconductor Corporation | Ultra thin ball grid array using a flex tape or printed wiring board substrate and method |
US6433360B1 (en) * | 1999-01-15 | 2002-08-13 | Xilinx, Inc. | Structure and method of testing failed or returned die to determine failure location and type |
US6396143B1 (en) * | 1999-04-30 | 2002-05-28 | Mitsubishi Gas Chemical Company, Inc. | Ball grid array type printed wiring board having exellent heat diffusibility and printed wiring board |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008012481A1 (en) * | 2006-07-28 | 2008-01-31 | Microcomposants De Haute Sécurité Mhs | Process for fabricating an encapsulated integrated circuit and associated encapsulated integrated circuit |
FR2904472A1 (en) * | 2006-07-28 | 2008-02-01 | Microcomposants De Haute Secur | METHOD FOR MANUFACTURING ENCAPSULE INTEGRATED CIRCUIT AND INTEGRATED ENCAPSULE INTEGRATED CIRCUIT |
EP1914803A1 (en) * | 2006-10-20 | 2008-04-23 | Broadcom Corporation | Low profile ball grid array (BGA) package witth exposed die and method of making same |
US8169067B2 (en) | 2006-10-20 | 2012-05-01 | Broadcom Corporation | Low profile ball grid array (BGA) package with exposed die and method of making same |
Also Published As
Publication number | Publication date |
---|---|
WO2003017328A3 (en) | 2003-11-13 |
AU2002332557A1 (en) | 2003-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6790710B2 (en) | Method of manufacturing an integrated circuit package | |
US7015072B2 (en) | Method of manufacturing an enhanced thermal dissipation integrated circuit package | |
US6734552B2 (en) | Enhanced thermal dissipation integrated circuit package | |
US20040046241A1 (en) | Method of manufacturing enhanced thermal dissipation integrated circuit package | |
US6940154B2 (en) | Integrated circuit package and method of manufacturing the integrated circuit package | |
US7122401B2 (en) | Area array type semiconductor package fabrication method | |
US6781242B1 (en) | Thin ball grid array package | |
US7196403B2 (en) | Semiconductor package with heat spreader | |
US5843808A (en) | Structure and method for automated assembly of a tab grid array package | |
US7335532B2 (en) | Method of assembly for multi-flip chip on lead frame on overmolded IC package | |
US6271060B1 (en) | Process of fabricating a chip scale surface mount package for semiconductor device | |
US7019406B2 (en) | Thermally enhanced semiconductor package | |
TWI453838B (en) | No lead package with heat spreader | |
US20030143776A1 (en) | Method of manufacturing an encapsulated integrated circuit package | |
KR20050071524A (en) | Thermal enhanced package for block mold assembly | |
KR101119708B1 (en) | Land grid array packaged device and method of forming same | |
JP2009540572A (en) | Method for manufacturing array package using substrate with improved thermal characteristics | |
US20020039811A1 (en) | A method of manufacturing a semiconductor device | |
US6284566B1 (en) | Chip scale package and method for manufacture thereof | |
JPH0562980A (en) | Semiconductor device and manufacture thereof | |
WO2003017328A2 (en) | Encapsulated integrated circuit package and method of manufacturing an integrated circuit package | |
TWI283048B (en) | New package system for discrete devices | |
EP3840039B1 (en) | A semiconductor device and corresponding method | |
US20060012035A1 (en) | Method of packaging integrated circuits, and integrated circuit packages produced by the method | |
KR100308393B1 (en) | Semiconductor Package and Manufacturing Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase in: |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |